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The Weighted Uni-Dimensional Similarities

Problem with Least Absolute Value Metric Is

NP-Hard

by

Nathan P. Ritchey and Gerald L. Thompson

ABSTRACT

The purpose of this paper is to prove that the weighted uni-dimensional

similarities problem with least absolute value metric (USPAM) is, in general,

NP-Hard. In the first four sections of the paper, the USPAM problem and four

lemmas are presented which will be used in Section 6 to prove the main theorem

of this paper. It is shown that the simple max cut problem can, in a polynomial

number of steps, be converted into a special case of the USPAM problem, which

shows that the USPAM problem is NP-Hard. Finally, some special cases of the

USPAM problem are described for which polynomial solutions exist.
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The Weighted Uni-Dimensional Similarities

Problem with Least Absolute Value Metric Is

NP-Hard

by

Nathan P. Ritchey and Gerald L. Thompson

1. Problem Description

The USPAM problem can be defined as follows: Given m attributes and

m(m-1)/2 measurements of the distances d between attributes i and j forii

i,j=l,... ,m and i < J, find model locations z , i=1,... ,m on the real line so

that W is minimized, where

rn-i m

W= Z Z (w d IIzdj- iz - ) (l)
1=1 J=1+i J

and w > 0 is the weight attached to the deviation between the measured

distance d j and the model distance Iz J-z[.

Geometrically, a pcsitioning of the m points on the number line is sought

such that the sum of the absolute values of the differences between the observed

distance d j and the model distance Iz J-zj between pairs i and j is

minimized. Problems such as this, but using a least squares metric, arise often

in economics and psychometrics, see Poole, 1984. As far as we know, this is the

first paper to consider an absolute value metric for the problem.

2. A Preliminary Result

LEMMA 1. If the observed distances, d], i,j=1, ...,m, j > i, are integral,

then the optimal model locaLion of each z , i=i .... m is at an integer location

on the real line.

PROOF. Consider an arbitrary ordering of the z 's, renumbered, if

necessary, so that zI< z2 < ... < z . The locally optimal solution for this

ordering can be found by solving the following linear program.
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M-1 M

Min W E Z (w e + w e-) (P)
1=1 J=i+l i I Ii ii

subject to

z -z + e+ - e- = d
j i Ij i] ij

e+

zI,, eJ > 0 for all i,j=1, .. ,m, i < j.

Notice that the coefficient matrix formed by this constraint set is the

transpose of a node-arc incidence matrix for a complete graph together with an

identity matrix and a negative identity matrix, which is well known to be

totally unimodular. Hence, the locally optimal placement of each point, zIt

for 1,...,m given by the solution to the linear program (P) for this ordering,

and in fact, for every feasible ordering, is integral. Since every local

solution occurs at an integer point, the global solution must occur at an

integer point, which completes the proof.

Remark 1. Since there are m!/2 different orderings, the global solution

to (1) can be found by solving that many linear programs (P). However, this is

a very inefficient solution procedure.

Remark 2. It is always possible to shift any local solution up or down the

number line and not change the value of the objective function. This fact is

obviously true since the objective function involves only distances between

pairs of points.

Remark 3. From Lemma 1 and Remark 2 it follows that, after shifting, any

feasible ordering has clusters of model locations at r+1 integer points

0,1,..., r on the real line, with k positions located at 0, k located at0 1

1, etc., and k +k +...+ k =m.0 1 r

3. Binary Data

Suppose that all of the observed weights and distances are required to be

binary, that is, w = 0 or 1 and d = 0 or 1 for i,j=l, .. ,m and j > i.

ii i
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The uni-dimensional similarities problem with absolute value metric and binary

data is called the binary USPAM problem.

LEMMA 2. For any binary USPAM problem, there exists at least one optimal

solution such that z. = 0 or 1, for all i=1,... m.

PROOF. By Remark 2 above, we can shift any solution so that there is at

least one i such that z = 0 and that there is no other index, k such thatI

zk < 0. From Lemma 1, we know that a global solution to this problem has

integral values. Assume that an optimal solution has been found and that there

exists at least one h such that z h 0 or 1. Therefore, z > 2.h h -

By Remark 3 we know there are r+l model locations n the real line with

k at 0, k at 1, etc.., with k + k 1 +...+ k = m. If r > 2 we will show0 1 0 1 r -

that it is possible to move all the k model positions from location r tor

r-2 without increasing the objective function (1). Let z be located atJ

integer r and z be located at integer k < r. There are two cases: k=r-1i

and k < r-2.

For the first case, k=r-1 so that when z is located at rj

Ilzj-z, I-d1 jl = Ir-r+1JId J = I1-d 1~ I

and wilen z is located at r-2 we have
j

lzy-z1Hd1 jl = Ir-2 -r+lI-d~j = 1d1 IJ

which is the same.

For the second case, r - k > 2, so that when z is located at r we

have
I, , i II 2 _ i

I - I-di l I ir-ki-d J I 12 -

and when z is located at r-2J

z-zI-d = r-2 - > I2-21-d = d
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Because d is a binary variable
Ii

12-d1 ZI dij

which shows that moving z from r to r-2 does not increase the objectivej

function in this case either.

All the other terms in (1) which do not involve the model location r, stay

the same so the objective function is not changed by moving z from r toJ

r-2.

By repeatedly applying this argument we can find an optimal solution which

uses only the model locations 0 and 1, completing the proof.

4. Graphical Interpretation

The binary USPAM problem can be interpreted as a problem on the graph

G(N,E), whose node set is N = {1,.. ., m} and whose edge set is E = {(i,j)Ii~j

and d = 1). A feasible solution to the binary USPAM problem is a partition ofIi

N into two disjoint subsets S and S with S containing the indices i such

that z =0 and S contains those with z = 1. In order to construct a1 1

partition that minimizes (1) try to use the following rules:

(a) if d =1 for two nodes i and j, place i in one set and j inii

in the other

(b) If d =0, place i and j in the same set.Ii

An optimal partition is one that violates these two rules a minimum number of

times, since violating either rule causes a penalty of 1 in the objective

function (1).

It is easy to see that for some problems, this procedure cannot satisfy

both of these rules for all pairs of indices. Consider the following simple

example: Let d = for i=i,2,3 for j > i. Graph G is a triangle becauseIi

by rule (b) edges (1,2), (1,3) and (2,3) are in E. The objective function for

this Droblem is
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W 11 ,z1 -z2, + 1 -1 z-z 3,1 I+ l-z2-z31

The minimum value of W is 1 and can be obtained (for instance) by choosing

z1=0, z 2=1, and z,= 1. It is impossible to satisfy both rules (a) and (b) for

this example.

Let E = {(i,j)li*j and (i,j) i E} be the complement of E; then it

follows that

IEl + IE1 = m(m-1)/2

where Jlx is the number of elements in set X:

Given a partition of N into two subsets S and S define the following:
0 1

(a) (i,j) is external if icS0 and jcS or jeS0 and icS1.

(b) (i,j) is internal if i and j belong to S0 or i and j belong to S .

For the same partition of N we define

E the set of external edges of E
x

E the set of internal edges of E

E the set of external edges of
x

I the set of internal edges of E.

From these definitions it follows that

IE 1 + !E1 + IExl + 1E, = m(m-1)/2. (2)

Using these definitions it is obvious that the binary USPAM problem can be

restated as follows.

LEMMA 3. The binary USPAM problem is to choose S and S so as to0 1

optimize either of the two objective functions

(a) Minimize W = + IEJ

(b) Maximize Z = lE I + IE l

PROOF. Statement (a) follows from the graphical interpretation of the

problem. The equivalence of the two objective functions follows by rewriting

(2) as
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I E X + gnI= m(mp-1)/2 - 1IEX - 1E11

completing the proof.

LEMMA 4. An optimal solution to the binary USPAM problem gives W=O if

and only if G is a complete bipartite graph and S and S are chosen0 1

accordingly.

PROOF. A complete bipartite graph G = (N,E) has the property that N

can be partitioned into two subsets N and N such that E consists exactly

of all of the edges (i,j) with icN0  and jeN I. If we choose S =N0  and

SI=N , then W=O. Conversely if G = (N,E) and there exist subsets S and S1

such that W=O then IE = 0 and IEl = 0 so that E =O and EI = whichx I

implies that E=E and E ,= so that G is a complete bipartite graph.
x!

Remark 4. From the objective function in Lemma 3(a) another interpretation

of the binary USPAM problem can be stated as follows. Given a gr-aph G, choose

a partition So, S1 of N so that if a complete bipartite graph is constructed

by adding the edges in E and deleting those in E the smallest total numberx |

of changes must be made.

5. The Simple Maximum Cut Problem

Closely related to the binary USPAM problem is the simple maximum cut

problem which can be stated using the same notation as follows. Given a graph

G = (N,E) find a partition S and S of N so that the number of external0 1

arcs, E , connecting the two sets is maximized.x

Although the maximum cut problem is known to be, in general, NP complete

(Garey and Johnson, 1979), there is a considerable literature about the problem.

Grotschel, et al., 1988, provide a good literatuie ieview of the problem. See

also Barahona, 1983; Barahona, et al., 1985; Barahona, et al., 1986; and

Fonlupt, et al., 1984.

6



6. Conversion of the Simple Maximum Cut Problem into a Binary USPAM Problem

We now show that an simple max cut problem can be converted into n binary USPAM

problem in a polynomial number of steps, which will show that the binary USPAM

problem is NP-hard.

THEOREM. The uni-dimensional similarities problem is, in general, NP-hard.

PROOF. Consider the simple maximum cut problem defined on a graph G -T

(N,E). We show it is a special type of binary USPAM problem on the same graph

with d j=wj =1 if (i,j)eE and d J=wj =0 if (i,j)cE. The objective function

for the binary USPAM problem is that given in Lemma 3(b). Using the weights

defined above it is

Maximize z=11EXI + OIEI = IEJI (3)

because the weights are zero on edges (i,j)cE . Since the objective function in

(3) is exactly that of the simple max cut problem, the proof is complete.

There are certain instances where the USPAM problem can be solved in

polynomial time. For example, if the data is perfect (i.e. the optimal

objective function value, W=O), the positions of any pair of points, i and j,

at a distance of d away from each other will uniquely determine the

positions of the rest of the points. Also, for the simple max cut problem,

Barahona and Mahjoub, 1986, have presented a polynomial time algorithm for

solving it on any graph, G, not contractible to K . This algorithm, called the5

separation algorithm, uses the ellipsoid method to solve LP problems. Earlier,

Grotschell and Pulleyblank, 1981, presented an algorithm for weakly bipartite

graphs which include graphs not contractible to K and having nonnegative

weights. Also, Orlova and Dorfman, 1972, and Hadlock, 1975, have used matching

techniques and planar duality to solve planar max cut problems in polynomial

time.
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7. Conclusicns

We have shown that the uni-dimensional similarities problem is, in general,

NF-hard and have given sever;,' instances for which a polynomial solution method

exists. In order to obtain a solution for a specific problem having general

data, we could develop heuristic procedures or convert the problem into a 0-1

mixed integer program, see Ritchey, 1989. Many of the heuristics developed for

the traveling salesman problem can be used in a solution process for this

problem. Regardless of the chosen method of solution, at each iteration of a

method, an L estimation problem must be solved. Therefore, it is likely that1

good solutions to a larger problem, (m > 20), will be computationally expensive

to obtain.
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