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CHAPTER 1

INTRODUCTION

1.1 A NEED FOR A NEW APPROACH TO ELECTROMAGNETIC

5HYPERVELOCITY LAUNCHERS AND THEIR POWER S;I)PLTFS

5 Electromagnetic propulsion, in the sense of hypervelocity launchers

has been hailed at the beginning of this decade as "an emerging technology

Iwith the potential of having a major impact in every aspect of our lives."[1]

I Contrary to the general expectations, however, the initial hopes have

not materialized yet, the projectile velocity records remaining essentially

unbroken: for railguns 5.7 km/sec obtained by Richard Marshal and

coworkers at the Australian National University at Canberra (1970) [21, and for

coilguns, 4.9 km/sec obtained by V.N. Bondoletov and coworkers in 1975 in

3the Soviet Union.[3]

3A relative improvement has occurred in the kinetic energy stored in

the moving member of the electromagnetic accelerator [4,5], but at markedly

lower velocities. If this is the direction of improvement, then energies stored

in the electric trains built with linear electric motors in Japan and Western

I Europe will surpass any such records.

IOne of the reasons why the current state of the art in electromagnetic

launchers and associated power supplies technology has not reached the

expectations is the fact that most of the activity in this domain has been

focused on the easiest solutions of simple railgun accelerators (requiring the
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2

fabrication technology available in virtually any laboratory or shop) which

were manufactured predominantly by laboratories which had power supplies 3
already built for other programs (homopolar generators in conjunction with

an inductor and an opening switch, or high performance capacitors).

The choice for homopolar generators is also questionable since they are 3
known for their low voltage and low power density. A recent study (under

auspices of D.C. Hardison Panel) has shown that homopolar machines are not 5
well suited for electromagnetic launching applications. (Elliott [6]). The actual

power supply consists not only of the homopolar machines, but includes

heavy and voluminous inductors in which magnetic energy is transiently I
stored and explosive opening switches which actually provide the high

voltage necessary in order to drive high currents into railguns (though at a

very low efficiency compared to alternative capacitor schemes). For Richard

Marshall and coworkers at Canberra [21, the homopolar generator was existent

and the only choice.

A smaller effort was directed toward heteropolar structures used as

accelerators in the form of induction coilguns and synchronous commutated

coilguns. Concepts and preliminary designs have been performed for such

alternative structures, but no notable experiment has been built or tested yet.

The only ones tested have exhibited less than mediocre results [71. 1
Thus, there is a need for a scientific look, from a fundamental point of

view, at the general problem of electromagnetic accelerators and their power

supplies.

I
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The analogy with the electrical machine counterparts - rotating or even

linear - has multiple limitations and can be counterproductive or even

I misleading, due to the highly transient and short duration operation of

accelerators as compared with the mostly steady-state performance of regular

electrical machines.

a. The first basic feature of all electromagnetic launchers is the

requirement of complete integration with their power supplies.

I At each moment of operation, the stator barrel of the accelerator,

the projectile, and the power supply must form a carefully tuned

system, capable of achieving a uniform and efficient

j electromechanical energy conversion with no contacts or

feedback control. The tuning of the system varies during the

launch since the parameters of the system must change in order

to achieve an almost constant acceleration and uniformly

distributed body forces and heating in the armature as well as in

the barrel as a means of surviving the mechanical and thermal

stresses [8].

b. Another basic feature of electromagnetic launchers and their

power supplies is the variability of their structure [9]. The

classification patterns and the characterization following a

certain classification in the domain of classical electrical

machines do not translate identically to the transient nature of

accelerators. For example, the synchronous and asynchronous

regimes trespass into each other during operation and the
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customary methods of analysis for one or another regime cannot I
be used; in commutated launchers, each commutation occurs at n

a different velocity and position and at different values of the

currents flowing inside of the projectile and, thus, all the 3
classical patterns of analytical treatment of electromechanical

devices become obsolete and not directly applicable. m

c. The phenomena of flux compression existing only in some I
transient regime in classical electrical machines play a

fundamental role in both launchers and electromechanical

power supplies of high performance and efficiency. 3
d. In order to completely define and characterize the highly

transient operation of both accelerator and power supply, finite

element, three-dimensional, transient, electromagnetic I
computer codes are necessary. The survival of the projectile, the

compactness of the launcher, and complex problems of shielding U
of the electronics in the payload for "smart" projectile require

the exact knowledge in time and space, at any point in the

launcher barrel, at any point in the projectile, and at any relative

position between them of the electromagnetic fields. From there

thermal fields and ensuing mechanical stresses can be calculated 3
readily transferring data to similar thermal and stress finite I
element codes [101.

What is the most efficient path toward hypervelocitv electromagnetic I
launchers and what are the power supplies which best conform to such u

a
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accelerators? In order to answer this question we will concentrate on the

I "promising" heteropolar structures and will relegate to other treatments and

publications about generalized railguns in which some high impedance

I variants may bring some hope of improvement in the performance of

- homopolar structures used as launchers. (IEEE Transactions on Plasma

Science No 3, June 1989, is devoted almost exclusively to railguns.)

The Bondoletov experiment, obtaining 4.9 km/sec in one single stage,

gshows the efficiency of repulsion coils, in attaining hypervelocities, for

macroparticle. (This reminds us of the fact that, in the realm of conventional

Ielectrical machines, the repulsion induction motors are capable of high

velocities, in very efficient schemes.)

There are several definite ideas as points of referenc,- on the most

efficient path toward hypervelocity electromagnetic launchers.

a. The first idea is a natural thought derived from the experiment

[31 mentioned dbove: to ircrease the number of stages from one

I to several, obtaining a "Generalized Bondoletov Accelerator"

I (GBA).

b. In order to obtain a uniform force profile in the projectile and

Ithe barrel, a current must be impressed in the projectile before

the acceleration had begun [111. A liquid nitrogen cooled

projectile has the potential of maintaining the persistent current

during the short time of the launching. At liquid nitrogen
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temperature, the specific heat has still an important value, while I
the resistance of the copper decreases more than six times. 3

c. Another fundamental characteristic of electromagnetic

hypervelocity accelerators is not only the fact that the space

around the projectile where the electromechanical power 3
conversion takes place,is strictly localized to a small traction of

the total length of the accelerator, but, also, that the parameters !

of such conversion are continuously changing from the breech

toward the muzzle of the launcher.

Then, using different power supplies for different segments of I
the launcher stator (barrel) in the moments when the projectile I
is contained in the respective segment (Driga [11]) improves

drastically the efficiency of the system. Discrete coils in the GBA 1
are pulsed by dedicated electrical machines at the proper

intervals of time. I

d. It is shown by Driga, et. al in [8] and [12] that the traveling wave I
for the induction or synchronous launchers must accelerate at a

determined pace with respect to the projectile. It is preferable to

obtain such an accelerated wave by a continuous increase in the 3
frequency of the power supply, rather than modifying the polar

pitch of the winding. When pulses of voltage and current are 1
used for discrete coils, for example, this requirement is modified

into decreasing the pulse width and increasing its amplitude as U
the projectile is accelerated.

_____ ____ ____ ___]
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The process can also be described a generalized rising frequency of the

power supply. Our notion of frequency variation (learned from the

I customary electrical machines, e.g. the starting of synchronous motors using a

varying frequency power supply with many cycles) must be modified for the

I case when only one cycle, or even less, is present. A generalization in this

respect means that the shape of the voltage and current must vary

parabolically -the parameters of the parabola being determined by the

I acceleration values and patterns - at the given individual stator coil

(Driga[13]).

I
I
I
I
I
I

I
I
I



i

8 1
CHAPTER 2

ANALYTICAL AND NUMERICAL TREATMENT OF THE

ELECTROMAGNETIC LAUNCHERS AND THEIR POWER SUPPLIES 3
INCORPORATING MAGNETIC FLUX COMPRESSION I

2.1 A DISCUSSION ON COMPENSATION AND FLUX COMPRESSION

In the recent development of electromagnetic launch technology,

electromagnetic launchers of higher impedance (coilguns - as heteropolar 3
converters, or multiturn, augmented railguns) have not achieved the same

advances as railgun launchers. There are several reasons for this. One is the I
complexity of such high impedance devices, where the payoffs of high g
efficiency, high performance, and, especially, flexibility are counterbalanced by

extreme demands in computations and design, requiring sophisticated 3
transient 3D electromagnetic computer codes series connected, or interacting,

with 3D stress and thermal finite element codes. These codes require high- I
performance supercomputers and the personnel which few laboratories have

been able to dedicate to this task.

A second, even more demanding reason, is the need for dedicated, i
high-voltage power supplies with capabilities for complex pulse tailoring, i

advancing considerably the technology of electromechanical pulsed power

converters. 3
Recent studies (Elliott [61) have shown that the inherently low-voltage I

homopolar machines are not well suited for many electromagnetic launching I
I
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applications. The actual power supply consists not only of the homopolar

machine, but includes heavy and voluminous inductors in which magnetic

energy is stored by discharge of the homopolar machine and explosive

opening switches which actually provide the high voltage necessary in order

to drive high currents into railguns (though at a very low efficiency,

compared to alternative capacitor schemes).

This combination of low-voltage rotating machines, matching

inductors, and opening switches cannot satisfy the waveshape complexity

required by the higher impedance coilguns, even in a condition of extensive

modularity.

A step ahead is represented by the Kaman alternator [6] which, being a

higher voltage machine, leads to considerable improvement of efficiency

when used in a similar scheme, due to a more rapid charging of the inductive

store.

High-voltage capacitors achieve higher efficiency and recovery of an

important part of the discharge energy. Their drawback lies in the fact that

the limits of energy storage densities in electric fields are orders of magnitude

lower than those for energy densities possible in magnetic fields. Also, they

require elaborate power conditioning schemes, even for simple railguns.

Complex power conditioning systems for the complex waveshapes required

by heteropolar launchers such as coilguns will have an adverse impact to the

efficiency of the of the capacitor schemes.
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Compensated pulsed alternators have the advantages of high voltage,

high efficiency, and capability of intermediate storage of energy in magneticI

fields. They are frequently described as a one-element power supply (Figure

1), or single-element power supply philosophy, in papers by Driga [81 and

Driga, et al. [13], replacing and modifying complex multielement energy i
conversion, storage, and power conditioning. I

However, the devices described above are not truly compensated

alternators since both general procedures for obtaining the complex pulse

shaping by topological distributions (mainly harmonic synthesis) and by

dynamic interactions (mainly by nonuniformly distributed shields and other I
types of compensation, by change of alignment of different machines

windings, as well as the use of a pulse transformer incorporated in machine),

represents a means to decompensate, to undo the machine compensation. 3
The descriptions of these machines includes flux compression elements

which supposedly provide "active compensation." Actually, flux i
compression is not compensation, as will be shown below. However, rotating

flux compressors have all the promising characteristics to become the primary

choice for power supplies for high power, complex heteropolar launchers 3
(complex coilguns) for military, space, and industrial applications. U

The computational efforts for the design of rotating magnetic flux

compressors are tremendous in order to determine the time evolution of

complex interacting electromagnetic fields, the transient mechanical stresses,

and thermal regimes. However, the payoffs are equally tremendous. These i
machines can make the difference in assuring the success of high-power 3

I
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GUN F GUN

Coo o. ATO R
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CONVERSION, GUN
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6701.0001

F

I Figure 1. One-element power supply philosophy



I

12 |I

heteropolar accelerators for hypervelocities. On the other hand, since the date

when the patent [14] for the compensated pulsed alternator, including the I
rotating flux compressor feature, was issued, advances in rotating flux

compressors have been minor (Weldon, et al [37]).

A frequent misunderstanding in approaching pulsed rotating and I
linear electromechanical converters is to equate the compensation by eddy- 5
currents produced in shields in order to reduce the internal impedance -

during the pulsed discharge (by so-called "passive compensation") with the 3
flux compression phenomena (incorrectly called "active compensation"). U

The first case is widely known and applied frequently in short-circuit

alternators used for high-power circuit testing of electrical equipment [38]. A 3
one-pulse compensated pulsed alternator, including a pulse-shaping system

based on harmonic synthesis, was patented by Kapitza in 1927 and used by U
Rutherford and Kapitza to produce high magnetic fields [39, 40, 41]. The 3
"Pulsator" machine [42] invented by Rebut and Torossian (1966) represents a

more sophisticated "one-pulse" compensated alternator used for controlled I
thermonuclear fusion application. Enrico Levi and Harish Pande introduced

a continuous aluminum shield for compensation and used an airgap- I
winding for their "electromechanical pulsers" at the Polytechnic Institute of 3
Brooklyn (1961 and 1963) [43].

The principle of all these machines is simple and is illustrated (Figure 1
2) below for a compensated structure in which the two-layer winding is an 5
airgap winding and the shield is continuous and made of aluminum. The I

I
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14 I
eddy-currents appearing in the shield, delay the penetration of magnetic flux,

and consequently maintain the internal impedance of the system at a low I
level. Figures 3, 4, 5, and 6 show the unfolding in time of the compensation i

phenomenon at 5, 10, 15, and 20 ptsec-time intervals.

The second case is the flux compression phenomenon and was

proposed by the author as his part in a patent for pulsed alternators [141. It is 5
achieved in its simplest form by an identical winding connected in series with

the armature winding and placed on the other member of the rotating 3
machine.

This arrangement does not provide true compensation since, during a 360

electrical degree cycle, the machine takes all the possible values for the i
internal impedance from the maximum to the minimum. The misnomer

"compensation" comes from the false analogy with a dc compensated

machine, where a similar arrangement provides compensation due to the fact

that the commutator and brush system maintains the alignment of magnetic

axes of the two windings, in spite of the rotation of the armature. in the 5
arrangement described below, the angle between the two magnetic axes is I
continuously varying, covering all the possible values for the internal

inductance (considering that such a machine is "compensated" is analogous t
to stating that a broken watch shows the perfect time once every 12 hours).

The essential difference between "compensation" and "flux compression" is

related to the electromechanical power conversion feature. In the second

case, the system of two windings linking a magnetic flux in the conditions of I
I
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I Figure 3. Magnetic flux at t = 5 gisec

1 3 11-

t1 1.11

4.~ 4 3 --------- -----

z



I

16 U
I

Figure 3a. Vector potential values at t = 5 iisec

I

Contour number r X A First point found In Elmement numbered I
r 2

1 1.71027E-08 5.53221E-03 -4.OOOOOE-03 77 1
2 3. 42054E-08 6. 60000E-03 -3. 64420E-03 79
3 5. 13080E-08 6. 60000E-03 -2. 38445E-03 79
4 6.84107E-08 7.20000E-03 -2.35157E-03 80
5 8. 55134E-08 7. 20000E-03 -1. 78960E-03 109

6 1.02616E-07 7.20000E-03 -1.46341E-03 138 3
7 1. 19719E-07 6. 60000E-03 -1. 07205E-03 166
8 1. 36821E-07 7. 20000E.-a3 -9. 58662E-04 167
9 1.53924E-07 4. 1333'-ZE-0Z -5. A1437E-04 188

10 1. 71027E-07 4.46667E--33 -5. 6Z228E-04 189

11 1. 88129E-07 5. 33333E-03 -5. a,966E-04 192
12 2.05232E-07 4.13333E--03 -4. 28142E-04 217 I
13 2.22335E-07 4.13333E-03 -4.62129E-04 217
14 2.39438E-07 4.46667E--03 -4. 59439E-04 218
15 2.56540E-07 5. 33333E-03 -4.71676E-"4 221

16 2. 7364ZE-07 5.66667E-33 -4. 51507E-04 222
.7 2. 90746E-07 4. 46667E-03 -3. 78475E-04 247,,

18 3. 07848E-07 4. 46667E--.3-:5. 5 1094E-04 247
19 3. 2495IE-07 5.33333E--03 -3. 74704E-04 250
20 3. 42054E-07 4. 46667E-03 -2. 76764E-04 276 3
21 3.59156E-07 5.OOOOOE-03 -2. 52543E-04 278
22 3.76259E-07 5.33333E-03 -2. 79454E-04 279
23 3. 93362E-07 5. OOOOOE-J3 -i. 53050E-04 307 I
24 4. 10464E-07 5. 33333E-03 -1. 82612E-04 308
25 4. 27567E-07 5. OOOOOE- 0 -2. 19852E-05 336

26 4.44670E-07 5.33333E-03 -2.81961E-05 337
27 4.61772E-07 5. OOOOOE-03 1. 20807E-04 365
28 4.78875E-07 5. 3333E--03 9.75367E-05 366 3
29 4. 95978E-07 5..3:3:'E-03 1. 66569E-04 395
30 5. 1.USOE-07 5.33333E-03 3. 50000E-04 424

I
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I Figure 4. Magnetic flux at t = 10 psec
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Figure 4a. Magnetic vector potential values at t = 10 gsec

Contour number r X A First point found in Elmement numbered
r z

1 3. 61410E-08 5. 25737E-03 -4. OODOOE-03 76 3
2 7.22820E--08 6.19910E-03 -3. 35292E--03 79

3 1. 08423E-07 6. 60000E--03 -2. 84064E-03 79

4 1. 44564E-07 7. 20000E-03 -2. 66588E-03 80

5 1.80705E-07 7.80000E-03 -2.22314E-03 81

6 2.16846E-07 7o80000E-03 -1.71033E-03 110 U
7 2. 52987E-07 7. 2000E-03 -1. 32633E-03 138

8 2. 8912SE-07 C. COOOOE-03 -1. 03463E-03 166

9 3. 25269E-07 3. 60000E-03 -5. 69286E-04 186 I
10 3.61410E-07 4. 13333E-03 -6.04573E-04 188

11 3.97551E-07 4.13333E-03 -5.56776E-04 188

12 4.33692E-07 4.S800OE--03 -5.53115E-04 190 3
13 4. 69833E-07 5. 33333E-.03 -5. 59844E-04 192

14 5.05974E-07 4.13333E--03 -4.69568E-04 217

15 5.4211SE-07 4.46667E-03 -4. 68438E-04 218 1
16 5.78256E-07 5.O0000E-03 -4. 52977E-04 220

17 6. 14397E-07 5.33333E-03 -4. 600;3E-04 221 I
15 6.50538E-07 4.46667E-03 -3. 81746E-04 247
19 6. 86679E-07 4. 46667E-03 -3. 52069E-04 247

20 7.22820E-07 3.33333E--03 -3. 79866E-04 250 1
21 7. 58961E-07 5. 33333E-03 -3. 52675E;-04 250

22 7. 95102E-07 5.33333E-03 -3. 15237E-04 279

23 8.31242E-07 5.33333E-03 -2.76681£-04 279

24 8. 67383E-07 5. 3Z33:!E--03 -2. 29912E-04 308

25 9. 03524E-07 5. 33333E-03 -1. 64691E-04 308

26 9. 39665E-07 5. 3:333E--03 -8. 14006E-'05 337 3
27 9.75806E-07 4.80000E-03 1.40253E-04 364

28 1.01195E-06 5.33333E-03 7.80595E-05 366 I
29 1. 04809E-06 5. 33333E-03 1. 50401E-04 395

30 1. 08423E-06 5. 33333E-03 2. 50000E-04 395 I

I
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Figure 5. Magnetic flux at t =15 p.tec
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Figure 5a. Magnetic vector potential values at t = 15 g±sec

Contour number r X A First point found In Elmement numbered

I 5. 658456-08 5. 00353E-03 -4. 000006-03 76
2 1.13169E-07 6.000006--03 -B.01951E--C3 78

3 1.69753E-07 C.C.0006-03 -3. 14876E--03 79
4 2. 263356-07 6. 600006--03 -2. 19407E-03 79
5 2. 82922E-07 7. 200006.-03 -2. 16063E--03 s0

6 3. 39507E-07 7. 200006-03 -1. 74285E-03 109
7 3. 96091E-07 7. 2000CE-03 -1. 448.38E-03 138
8 4.52676E-07 6.600006-03 -1. 12252E-03 1663
9 5. 09260E-07 6. 600006-03 --9.7!:743E-04 166

10 5. 65845E-07 3. 600006-03 -5. 65848E-04 18e

11 6.22429E-07 4.1:3:3 E --C3 --6.07511E-04 18ee
12 6.79014E-07 4.13333E-03 -5.60372E-04 188
13 7. 355986-07 4. 46667E-03 -5. 52470E-04 189
14 7.92183E-07 5.33333E--03 -5.70756E-04 192I
15 8.48767E-07 4.13333E-03 -4.66791E-04 217

16 9.05351E-07 4.466C7E-03 -4.675116-04 2183
17 9.619366-07 5.000006--03 -4.53777E-04 220
18 1.01852E-06 5.333336.-03 -4.60876E-04 221

19 1.07510E-06 4.46667E-03 -3.74902E-04 247I
20 1.13169E-06 5.00000E-03 -3.57630E-04 249

21 1. 15827-00 5-.3333E6-03 -3.75148E-04 250
22 1.244866-06 4.46667E--03 -2. 53143E-04 276
23 1.30144E-06 5.333:3E-03 -3.02839E-04 279
24 1. 35803E-06 5.33333E-03 -2. 61292E6-04 279

25 1.414616-06 5.3.3333E-03 -1.97859E-04 308
26 1.47120E-06 5.00000E-03 -9.46264E-06 336
27 1. 527786-06 5. 333.3E-4..3 -i.893866-05 3373
28 1. 58437E-06 5. 33333E--03 6. 37434E-05 366
29 1. 64095E-06 5.323333E-03 1. 42674E-04 366
30 1. 69753E-06 5. 33333E-03 2. 50000E-04 3951
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I Figure 6. Magnetic flux at t -=20 isec
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Figure 6a. Magnetic vector potential value at t = 20 lisec

I

Contour number r X A First point found In Elowment numbered 3
r z

I 8. 72344E-08 4.49038E-03 -4. OOOOOE-03 74

2 1.74469E-07 5. 666C7E-03 -2. 6141 9E-03 77 I
3 2.61703E-07 6. 000001.-03 -2. 27288.--03 78
4 3. 48937E-07 6. 60000E-03 -2. EB3417E-03 79
5 4.36172E--07 6.60000E-03 -2.05208-03 79

6 5. 23406E-07 7. 80000E-03 -2. 20496E-03 81

7 6.10640E-.07 7.200OE-03 -1.7C533E-03 109 I
8 6. 97875E-.-07 C.60000E--0n3 -1.34189=-03 137
9 7.1!5109E-07 .60000E-03 -7. 6278E.-04 157

10 8. 72344E-07 4. 13ZF..3E--'C3 -7. 9058--04 i59

11 9. 595781E-07 4.4C6C7E-03 -7.71904E-04 160
12 1.04681E-06 5.OQ00E-03 -7. 55330E--04 1G2

13 1.13405E-06 3.60000E-03 -5.72009E-04 186
14 1.22128E-06 3.80000E-03 -5.61152E-.04 187
15 1.30852E-06 4. 13333E-03 -5. 82448E-04 188 3
16 1.39575E-06 4.4S667E-03 -5. 82540E-04 189
17 1.48298E-06 4.OOOOE-03 -5. 62034E-04 190

18 1. 57022E-06 5. 33333E-03 -5.6C542E-04 192 I
19 1. 65745E--06 4.46667E-03 -4.76029E-04 218
20 1.74469E-06 4.80000E-03 -4.511B1E-04 219

21 1.83192E-06 5.33333E-03 -4. 68557E-04 221
22 1.91916E-06 4.46667E-03 -3.59542E-04 247

23 2. 00639E-06 5. 33333E-03 -3. 96905E-04 250
24 2. 09362E-06 5. 33333E--03 -3. 59731E-04 250
25 2. 18086E-06 5. 33333E-03 -3. 09463E-04 279

26 2. 26809E-06 5. 33333E-03 -2. 54552E-04 279 1
27 2. 35533E-06 5. 33333E-03 -1. 55267E-04 308
28 2. 44256E-06 5.33333E-03 --6. 47236E-06 337

29 2.52980E-06 5..33333E-03 1. 06247E--04 366 I
30 2.61703E-06 5.333-.3E-03 2.500OOE-04 395 I

I
I
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a large inductance and consequently small current is compressed by external

I forces, converting mechanical (kinetic) power into electrical power - in

I condition of limited flux losses - until it reaches the position of minimum

inductance in the presence of large currents.

I

I 2.2 SIMPLIFIED FLUX COMPRESSION CIRCUIT ANALYSIS AND

ELECTROMECHANICAL POWER CONVERSION CONSIDERATIONS

I
The classical treatment of the simplest flux compression system

I involves a simple R, L circuit, in which the flux to be compressed is /stored

initially in the inductance by means of an external power supply which in

Figure 7 is represented as a current source which is already short-circuited at

3 t=0 when the compression begins. In principle, the flux is compressed by

rapidly modifying the relative position of an arrangement of conductors [15],

5 forcing the magnetic flux to conform to a continuously decreasing inductance

L(t). Since the magnetic energy (as well as the magnetic coenergy) in the

system, Win, can be expressed as a function of the instantaneous current, I(A),

3 and the magnetic flux,F(Wb): as state variables:

W =L(t)12 =1 T2

2 2 L(t) (2.1)

3 it can be seen that in condition of constant flux, the magnetic energy stored in

the system and partly delivered to the load is continuously increasing untilI
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Figure 7. The simplest scheme for a flux compressor I
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the minimum inductance position is reached. It is obvious that the increase

Iin electromagnetic energy occurs by conversion of the mechanical energy

stored as kinetic energy in the moving conductors. However, the flux does

not remain constant, being affected by losses into the circuit resistance, R.

The differential equation for the circuit in terms of magnetic flux is:

d(LI)+ R
dt L (2.2)

where the magnetic flux ' has been expressed in terms of inductance:

er=UL(Wb) (2.3)

The solution of the differential equation (2) is:

LI = LoIo exp { dt
0 (2.4)

where

L = total inductance of the circuit at time t, (H)
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I = current through the circuit at time t, (A) I
LO= initial total inductance at time t = 0, (H)

0 = initial current (time t=O), (A)

RL = the load resistance which somewhat I
increased to take into account the resistance
of the rest of the circuit [&2.1 3

I
As the total inductance is decreasing, the current is increasing:

I()=- L 010exp _-( -L dtj
L(t) f L(t) (2.5) 3

In order to obtain the instantaneous power balance we multiply (2.2) by I, and 3
by rewriting the first term, we get:

l/2dL dX.RI+d(1u2 1 I
2 dx d dt 2 ) (2.6) I

Considering that the flux compression is obtained by a translational motion

in the direction of the generalized coordinate, x,, we obtain: 3
_[I, 2 dL][dX1 R 2 d (1112~"

72 djJ + )' (2.7) I

where the two pairs of brackets in the left hand member contain the I
generalized force on the x direction Tand the velocity in the same direction,

ii,respectively:

I
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_p T = R 12 + d W "

dt (2.7')

The mechanical power input necessary to decrease the inductance of

the circuit is spent in increasing the magnetic energy stored in the system and

is partially lost in Joule heat.

If, as in rotating machinery, a rotational motion is responsible for the

flux compression by decreasing the inductance of the circuit, relation (2.7)

becomes:

2 da2 dt L-] J +dt 2  ) (2.8)

3 where, in the left side we have the torque T(N * m) as generalized force in the

a direction and the angular velocity N rad/s) as the derivative of the angular

displacement arad with respect to time. Then the instantaneous power

balance becomes:

-T. = RI + dW,
dt (2.9)

where Wm is the magnetic energy stored in the circuit at that particular

moment.

However, pulsed electrical generators incorporating flux compression

features have the advantage of producing new flux during compression

which is continuously integrated and compressed, in addition to the initial

flux. Then the equation (2.2) becomes
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I

d [i] R LJ]= f(t)
dt L (2.2') 5

The simplicity of the equation is deceiving, fit) being a complicated

function, since the excitation flux and the angular velocity, co, are variable I
and nonlinear during the compression and the differential equation must be 3
linked to the instantaneous balance of power, and to the diffusion equation

for the electromagnetic fields in 3D structures requiring elaborate numerical 3
codes, in condition of relative motion.

In equations (2.7-2.9) the converted power appearing in the left side

member has a negative sign. In electromagnetic converters, this sign shows 3
the direction of energy flow. This case indicates the generator - flux

compressor regime in the linear topology variant, equations (2.7) and (2.7')

and in the rotating variant, equations (2.8) and (2.9). 3
The mechanical energy comes from the kinetic energy usually stored in 3

the mass of moving conductors achieving compression. In turn, the kinetic

energy is produced by some form of primary energy codng from an 3
explosive for the common flux compressors designed to achieve ultra-high

fields or from a turbine, in the case of electromechanical power supplies for I
launchers (e.g. compulsator) [14].

Conversely, for electromagnetic accelerators, the terms describing the

converted power and the magnetic energy stored in the circuit change signs in I
order to show the change in direction of energy flow, from magnetic energy to 3
an increase in the kinetic energy of the projectile: U

I
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a .i= Ri 2 dW
dt (2.7")

and

'J2 -.= dW,
dt (2.9')

The equations (2.1) to (2.9) are global or integral relations describing the

whole magnetic flux compression (generators) or accelerator circuits. Point

(or local) relations may be used for a local and distributed characterization of

the power conversion.

Following the classical treatment of Levi and Panzer [16] Nasar [171, or

White and Woodson [181, the unit volume element of the conductor is

considered the building block of the converter. By establishing the different

specific power densities and by multiplying them by the elementary volume

dw, the electromechanical energy conversion process is characterized and

defined locally, in each point of the converter.

The power balance relations for the unit volume of conductor [16] are:

d uf1I 4 i.-=(J xB).U+f. O

dt (2.10)

72 (2.11)

We denote the power per unit volume or specific power with lower

case p(w/m 3). Then, Ph. = specific kinetic power, P o,1 = specific converted
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I
power transformed into heat by Joule effect. Then:

= fRdu-= d (14. u2. I
dt dt 2 (2.12)

I= X (2.13)

~ = E * J (2.15)

=1 (2.16)

I
leading to the equivalent circuits per unit volume of conductor of a magnetic

flux compressor (generator) (Figure 8) and of an electromagnetic accelerator 3
(Figure 9).

What must be the law of variation for velocity U? One of the

optimum situations in electromagnetic accelerator design is reached when I
the forces are uniformly distributed over the projectile - assuring a uniform

distribution of stresses - and leading to a constant acceleration during the I

launch time. In [8] (Driga, et.al.), the means to achieve an accelerated

travelling wave following almost exactly the motion law of the projectile by

using a continuously rising frequency or a variable pitch winding or a

combination of both was described. I
As shown in Driga [9], a rising frequency generator, while possible in

different variants in a pulsed mode, is a very demanding and complex

electrical machine which works properly only for a limited span of its

I
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circumference. But even then, such a power supply would not create the

purely sinusoidal travelling wave acting uniformly on the currents in the

projectile - ideal condition which is unattainable in practice. The reasons for

that [19] are related to the harmonics arising due to the finite length of the

barrel wave packet, its lack of perfect smoothness, and the finite length of the

projectile whose leading and lagging ends must slip ahead and behind the

wave packet, only the middle of it travelling at the speed of the accelerated

wave.
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Fd 0t- Ioses - :.P
los -0-~ca electromechanicalI

-(u xB)J=(J xB)uI

Figure 8 Electromechanical power conversion in a unit volume of an3

electromagnetic flux compressor

Ef 41L~ 4 mehncl electromechanical e'Myi

-(JxB), (x B)J

Figure 9. Electromechanical power conversion in a unit volume of anI
electromagnetic launcher
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m
2.3 ANALYTICAL AND NUMERICAL TOOLS FOR ANALYSIS AND

m SYNTHESIS OF ELECTROMAGNETIC LAUNCHERS AND POWER

3 SUPPILES

Then, what are the right tools for the analysis and synthesis of power

supplies and electromagnetic accelerators? Obviously, the rapid evolution of

the magnetic flux distributions and currents accompanying them needs a

global characterization; while locally, the evaluation of the flux densities and

current densities describe the electromagnetic state at each point.

It is widely assumed that the next breakthroughs and innovations in

hypervelocity accelerator technologies will come from advances in analysis

and modelling, controlling electromagnetic diffusion and fast transient

phenomena in the projectile and launcher barrel, and in the power supplies.

This leads us to consider the finite elernpnt mnethod as the main tool for

analyzing the transient electromagnetic phenomena during the magnetic flux

compression - expansion.

Later in Chapter 3 the above problem, involving a 3-D f.e.m.

formulation using a Galerkin technique, is described in detail.

Driga, et. al., [10] and Pillsbury [24] describe a 2-D axisymmetric f.e.m.

formulation of a transient electromagnetic diffusion in fast discharging

homopolar machines, also used to illustrate simple magnetic compensation

arrangements.

m
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Magnetic flux compression - expansion devices require the knowledge

of 3-D flux distributions, and since the magnetic flux and, consequently, I
magnetic stress concentrations occur at connections where the field is three-

dimensional, simplifications to two-dimensional structures are no longer

acceptable.

The computational efforts for a three-dimensional f.e.m.

electromagnetic computer code are very large since such a transient code

solves the problems for all three components of the vector potential

(A , AY' A,).

By comparison, the similar code for two-dimensional axisymmetric

structures mentioned above solves the problem for only one component of

the magnetic vector potential (Ao). I

One of the most important features, important not only for numerical

reasons, but having also deep theoretical implications, is the selection of the I
Coulomb's gauge for the magnetic potential:

divA = 0 (2.12) I
This choice, beside completely defining the field of vectors A, makes the

D=0I
statement that the quasistationary assumption d t holds. Also, that

locally:

divJ = 0 (2.13)

I
I
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is valid for all the magnetic flux compression - expansion devices (or,

globally, in circuit terms, the first Kirchhoff's law applies). Equation (2.12) is

immediately derived from (2.13), taking into account that the product R2 IAI

remains finite at large distances (R -4 -). Coulomb's gauge choice, required

point-wise, is justified by Driga, et. al. [10] and Pillsbury [24] as simplifying the

governing equations for the 2-D formulation, and its application. In that

particular code, was imposed by the use of Lagrange multipliers. However, in

the axisymmetric geometry, the condition follows naturally, since prescribing

a current, the entire circuit is implied, and condition (2.13) is respected. Also,

_ in such conditions, the Lagrange multipliers may be replaced equivalently by

some appropriate penalty function.

In the 3-D finite element code, the situation changes completely. In

I such geometries, the usual forcing function is prescribed brick by brick, and

small discrepancies introduced by round-off errors, for example, lead to the

fact that Coulomb's gauge becomes invalid. Also, the nonidentical three-

dimensional elements joining each other add to discrepancies in the

condition (2.12), point-wise.

The tool imposing the Coulomb's gauge constraint globally per

element and, also, point-wise in the sense of distribution along two adjacent

integration points, is the use of Lagrange multipliers.

As shown in Chapter 4, the Lagrange multipliers in this three-

dimensional code represent sheets of currents flowing through the faces of

the three-dimensional elements and, by compensating the discrepancies,
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impose the Co,lomb's gauge, point-wise, in the entire volume. The I
numerical and theoretical implications of this fact represent some of the

original contributions of this work.

The nonuniformities in prescribing the forcing function and other

nonuniformities introduced by the nature of the finite element method itself 3
(finite elements for example...) are compensated by the magnetic flux

produced by surface currents flowing through the faces of the volume

elements. Then, in Chapter 5, this compensation method is applied to the 3-

D finite element formulation for solving the complete system of Maxwell's

equations under the constraint divA = 0. The three-dimensional, transient 3
code is applied to a generalized Bondoletov-type accelerator, having both

massive conductive elements characterized by free diffusion and stranded

and transposed conductive elements, in which the flow of current is

controlled. The magnetic field and current density space distributions are I
plotted at successive intervals for a rectangular stator coil repelling a 3
rectangular copper plate.

Comparisons are made with a similar flux compression system with I

round coil and round plate which, due to its axisymmetric arrangement, cai 3
be solved with a two-dimensional code. The difference between the two

solutions is theoretically fundamental, being based on the manner in which 3
the constraint divA = 0 is imposed.

In the latter case, it follows almost automatically due to the symmetry

of the current (and vector potential) distributions; in the first case, it I
practically illustrates the considerations made in Chapter 4, showing how 3

I
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efficient are the limit cases of sheets of currents flowing along the faces of the

volume-finite elements in establishing the right (quasistationary) distribution

of magnetic flux.

The computational effort for analyzing and synthesizing magnetic flux

compression - expansion convertors using using three-dimensional f.e.m.

transient codes is tremendous. The payoffs are equally tremendous, since

only perfectly designed defices can assure the success of hypervelocity

accelerators, overcoming the extreme stress levels with an exact knowledge of

their transient evolution.

The examples presented are three-dimensional plots of magnitude and

directions for magnetic field and currents density of a flux compression

system with transient field diffusion. The consecutive stages of the magnetic

flux compression are shown at consecutive intervals of 5 psec, namely 5, 10,

15, and 20 psec. (During this time the inertia causes the projectile to move

very little.)

There is another important reason why the two-dimensional

axisymmetric codes axe ineffective and must be replaced by three-dimensional

ones (even if apparently small changes in structure can be made to the latter

to look axisymmetric), namely the armature reaction. The armature reaction,

changing in time during launching due to its spatial shift of the magnetic

fields, adds irrevocably the third dimension component.

The output of the 3-D code, in terms of magnetic vector potential,

permits the calculation of magnetic fields and current density distributions,
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electromagnetic body forces, Joule losses, and the density of magnetic energy

stored in the field. Then, all terms in the formulas (2.12) to (2.16) can be 3
calculated and the electromechanical power conversion characterized in each

point of the electromagnetic device.

Globally, by integration, the magnetic flux being compressed results

almost directly, since the vector potential, ;7, and the flux density, T, are

related by the Stokes' theorem: I

(D = f9* =f d

se C

where the surface Sc lies on the curve c.

Similarly, the currents, the total magnetic energy stored in the field,

total Joule losses, and global forces car, be calculated from local field values

and integrated. 3
Then, the formulas (2.5) to (2.9) may be applied characterizing the 3

power conversion phenomena globally in the magnetic flux compression -

expansion devices. I

In fact, the forces of electromagnetic origin (and the velocities which I
result from the continuous acceleration in the barrel) are of main concern in

obtaining new limits of performance in electromagnetic hypervelocity I
accelerators. Such forces can be calculated in three different ways.

1. As the global, resultant force (a generalized Lagrangian force,

acting along a generalized coordinate);

I
I
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2. As the distribution of body forces in the projectile volume and

2. in the rest of the accelerator;

I 3. And, finally, as stresses, using the artificial method of

electromagnetic stress tensor, reducing the problem of electric

and magnetic fields of force to that of an elastic continuum.

I The three methods are formally equivalent and their expressions result

directly and elegantly due to the almost symmetrical structure of Maxwell's

equations for macroscopic nonrelativistic electrodynamics.

The theoretical tools which transform the expressions for forces from

one form to another are related to:

a) The constancy of magnetic flux as the constraint used to assure

the proper transformation in order to find the generalized

3 Lagrangian forces along a generalized coordinate (global or

integral characterization); and

b) The complex and subtle notion of flux derivative (2.12) as

applied to electromagnetic systems in motion. Again, using the

constancy of the magnetic flux as a constraint, we obtain all the

equivalent body forces of electromagnetic origin (local or point

characterization).

Such results obtained in Chapter 5 permit a direct transition from the

global to local (and reverse from local to global) characterization of forces in

electromagnetic accelerators and their power supplies.

I
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CHAPTER 3

THE FORMULATION OF THE FINITE ELEMENT, THREE DIMENSIONAL

TRANSIENT ELECTROMAGNETIC PROBLEM FOR MAGNETIC FLUX I
COMPRESSION DEVICES AND ELECTROMAGNETIC LAUNCHERS

3.1 INTRODUCTION

The finite element method is ideal for analyzing the transient

magnetic field diffusion in the flux compression devices in three- I
dimensional domains. It can easily handle discontinuous geometrical shapes

and material discontinuities in solving the penetration of magnetic flux into

complex structures of the flux compression devices.

A formulation of three-dimensional transient electromagnetic

problem for flu= compression is presented in this chapter. It solves the

magnetic field diffusion problems in terms of all three components of the

magnetic vector potential (A,,AY,Az) by comparison with the similar

numerical codes for two-dimensional axisymmetric electromagnetic I
structures which solve the flux penetration problems for one component of

the magnetic vector potential (AO).

Magnetic flux compression devices comprise, among various

conductive and insulating materials, also stranded and transposed

conductors. These components are also taken into account by the present

formulation by the artifice of considering their conductivity zero and I
prescribing their current densities as a function of time, usually obtained

I
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with good accuracy using circuit analysis methods, or, alternatively, from an

iteration procedure.

3 One of the important characteristics of the present formulation is the

introduction of superficial currents - flowing through the faces of the three-

dimensional finite elements - as Lagrange multipliers.

The approximation of the magnetic flux which is a perfect continuum

due to the solenoidal characteristics of the flux density B, by the f.e.m, a

discrete method of solving parabolic, partial differential equations [301, is

performed by imposing the Coulomb gauge [31], pointwise. This is based on

the fact (shown in Chapter 4) that the magnetic field produced by a

distribution of volume currents inside an element (brick, prism, etc.) can be

replaced by an identical magnetic field structure produced by a distribution of

surface currents [26], [31] flowing on different faces of the respective elements.

The prescription of current densities element by element, round-off errors in

calculating the current densities, the slight mismatch of adjacent or boundary

elements, etc., will require a strong imposition of Coulomb's gauge in order

to enforce the solenoidal character of the current density everywhere.

3.2 DOMAIN OF DEFINITION AND GENERAL ASSUMPTIONS

The domain under consideration, extending eventually to infinity in

all three dimensions, has (Figure 10) three different types of subdomains:

DI= conductors, carrying currents impressed by external or internal
I voltage or current sources (conductors stranded and transposed);

DE = solid conductors which are seats of eddy currents;

Do = nonconductive domains.



I

42

00DElDE

WWDO I
___ II

Figure 10. Structure of the electromagnetic system analyzed by the 3-D, 3
transient f.e.m. code

The general assumptions are: N
a. The magnetoquasistatic approximation applies to all I

electromagnetic launcher problems: 3

d (3.1)

b. The materials are isotropic. I

c. Hysteresis effects are neglected.

3.3 MAXWELL'S EQUATIONS

Maxwell's equations, as applied to electromagnetic launchers, are:

curl! = 7 (3.2)

curl- = _ ..-

c r (3.3)

I
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3 divff = 0 (3.4)

divJ = 0 (3.5)

a 8 = H (3.6)

S E R E,,i ...)= .7, + 7,+ (3.7)

I' where the "impressed" fields:

"E (i = 1,2,...n) (3.8)

correspond to "impressed" electromotive forces of nonelectric origin (due to

chemical effects, thermal effects, etc.).

In the case of electromagnetic launchers, persistent currents induced in

I the projectile in the earlier stages of launching, as well as the electromotive

forces of electromechanical origin obtained by integrating the (ai x )

induction terms, must be taken into account properly as being "impressed."

1 3.4 GOVERNING EQUATIONS

3A theorem due to Helmholtz [25], [321 states that any vector field which

is finite, uniform, and continuous and which vanishes at infinity may be

expressed as the sum of a gradient of a scalar V and a curl of a zero divergence

vector A:

i "fT = gradVl + cur i

-_ under the condition:
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divA = 0 (3.9)

then, this separation into a divergenceless part, curl Aj, and a curless part, grad

V, is unique [25], [321: 1
- = curiA (3.10)

The Coulomb's gauge applies in order that the continuity equation be

satisfied in the domain of interest. It is enforced in the f.e.m. formulation by

use of Lagrange multipliers, as shown in the next chapter. 1
Faraday's law is expressed (3.3) as: 3

VxE---at 9

However, when, in a body (conductor or not), the domain in which the

field Eis calculated moves with velocity 17 (as in the case of the projectile of

the electromagnetic launcher), then the derivative of the magnetic flux must j
be considered in a context of an integration surface moving with the material

[251.

Applying the general formula of the flux dervative [251 to the 3
Faraday's law (3.3), we obtain:

dtI t(3.11)

and, since div'B = 0, we obtain: 3
I

________I
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U dB -

curE =--+ cur(u X B)
dt (3.11a)

and, using (1.9)

- a -u curIE d curiA +curi(ii 1T)Tt (3.11b)

Since the inversion of the order of the space and time derivatives is

permissible,

curiE = -curi[A + U x B] (3.11ic)

or

(3.11d)

meaning that the expression in the parentheses is curlless and, consequently,

may be expressed as a gradient of a scalar potential

E + A + U x B = -gradgV (3.12)

We may consider a "generalized" time derivative [25] of the vector

potential:

A = A +11 xB

such that

E + A = -grad(1

In fact, gradV/ may contain different terms
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grad / = gradV1 + gradqV2+... (3.12c) I
Then, the current density is:

- (3.13)

I
By using (3.13), the magnetic circuit law (3.2) may be written as:

curlH7 = J A (--gradlpj+,,(.3a

and by rearranging the terms, we obtain: 1
aA+ agradV/ + curl-curA = J,

-1 (1.13b)

In the stator, and in the projectile, as well as a corollary of Coulomb's gauge,

the current density is solenoidal, (3.5). 1
Thus, by considering equation (3.13), we can write: 1

div[4- (- gradJ +IJ] =(0
dt (3.14)

Using, from now on as shorthand, the del (V) operator and considering, also, I
that X implies A, we can write:

dt )(3.14b)I

Summarizing the mathematical transformations performed above, the

finite element, three dimensional formulation of the transient

____ ____I
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electromagnetic problem is governed by the following system (I)of differential

equations with partial derivatives:

dA 1v
r-+Vx x AaV + CV = (3.13b)

dt Y

I aodA' +V.(-'V) =0 (3.14b)

V ( A=0 (3.9)

V.1=0 (3.5)

In electromagnetic accelerators and their power supplies stranded and

transposed conductors are widely used. Such a situation is characterized by

the suppression of the eddy currents which would otherwise perturb the

quasistationary distribution of the current densities in the conductors. In the

system of equations (I), such conductors (shown as subdomains 2:, .,Z )

are considered as having zero conductivity, since imposing a = 0 in the

numerical code forces the eddy currents J, to be zero. Then,

4 = J: (3.5)

is prescribed as a function of time, for example, and the condition (1.14d)

becomes:

VIj* =0 (3.5a)

Using circuit analysis methods, J, can be obtained with good approximation.
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I

3.5 THE FINITE ELEMENT FORMULATION FOR THE 3-D, TRANSIENT

ELECTROMAGNETIC PROBLEM USING GALERKIN METHOD I

The Galerkin method [33], [34], [10] permits one to obtain an I
approximate solution to a differential equation. In the finite element

method, the application of Galerkin technique ib based on the requirement of 1
orthogonality between the functions used for approximation and the error 3
between the approximate and the exact solution to the differential equation.

Considering a differential equation Lu - f = 0 (where L is a linear differential 5
operator) which has an approximate solution 17 = INu,, then the error (or

residual) e = LI - f can be efficiently minimized if we require the annulment I
of integrals NiF"dw = 0 for each of the basis functions Ni. 3

These sets of integrals state mathematically that the basis functions 1
must be orthogonal to the error over the entire domain D.

The finite element procedure is deeply rooted in variational calculus,

the solutions being obtained by minimizing a functional over the domain

under consideration. The Galerkin method permits that finite element

formulations to be extended to domains where no variational principle is

feasible. The transient electromagnetic problem of diffusion of fields is one of 3
such problems which being described by parabolic differential equations with

partial derivatives refer, to lossy systems. i

The finite element formulation for the 3-D problem looks at first sight, I
similar to the formulation used for the much simpler problem of two-

I
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dimensional axisymmetric diffusion (Pillsbury [241). The simplicity of the last

one is assured by the need to find only one component for the vector

potential [A = X,] while in the three-dimensional problem which is the object

of the present work it is necessary to find all three components of the vector

potential [

As in the simpler problem to the unknowns (A=vector potential,

V =scalar potential, and I, =Lagrange multiplier), we associate a set of test

functions 11, v, and r, respectively.

Among the conditions required in applying the Galerkin method are:

a. The test functions must be chosen from the same family as the

trial functions;

b. The test and the trial functions must be linearly independent;

c. The trail functions should satisfy the boundary conditions and

initial conditions exactly.

Condition a) defines the Galerkin method, condition b) is necessasry to

ensure that independent equations are available to obtain the unknown

coefficients; and, finally, condition c) relates to the efficiency of the method.

In order to apply the Galerkin method, the dot product of the teat

functions with the governing equations is integrated over the volume (w) of

each element and summated over all k elements.
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X{(aFA+Vx'VXA+aVg-Js')Oi~w+ JX~(Vffidw+fr(V ;Qdw}=O

k' D ," D ,D

Vv3

Using a vector identity, the element equation is transformed, yielding

expressions which contain also the contributions over the boundary of the

elements SD,: 3
-v x1VXX *Wdw V .C ;V Axiw+Jj(iVXA>(VX}W3

f(I1VxX (Vxi)dw+ Jfl). VX hX isI
D 'U } SD'

J( I VxX (V x i)dw + f ix U) eRds =
D J ) SD,3

where the integrals over Dk, are volume integrals and over SDk, are surface

integrals, respectively. 1
In the same manner: 3

f[vc (-A)]vdw IV ) - V-- ) 3
D, D,
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Y a A )*(V -)d - J(-a A ) mi s = 5

A
ID, SD,

and also:

f[7V*(-a Vp)V~dw=

f (a V )(Vv)dw+ fv(-a Vds.
SD, SD&

If the integrals referring to the test function v are summarized, their

physical meaning becomes evident:

I [V.(- )+V.(-aVV)dw=

r )(Vv)+(rVV)e (Vv)iw+ jv(-aA -ay d=D, SD,

H aA+Vigjvvdw+ f VT. 9idy
D, ,Y SD,

f -- Vvdw + J.,vds = o

Vv

Finally:

f f(i x 1).ids=o
'SD,

Ii,
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I
and

f + +V .Vvdw+ fJ,* vds. - I

VV. I
The trial functions representing the magnetic vector potential A, the

electrokinetic scalar potential V, the Lagrange multipliers A and the

corresponding test functions u,v, and 't must be smooth enough in order to

assure that the integrand in the Galerkin formulation is finite. If: 1
A, J, ,v e H'

and 3

," e L2  I

Then the weak form obtained by using the Galerkin technique leads to the I
finite element equations written on element basis:

fJ[aAi-Vx.Vxf+aVVo-J+L(Vi)+(V)iW+I

±I
k Di

f [' X,. + '2.2*i]ds+ f 7Tx 17. s= 0
k{ SD, -S D SD!

VU, T"

For electromagnetic accelerators and their power supplies, a minimum

electromagnetic signature represents a figure of merit. I

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _!
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Then, prescribing a zero value for the potential vector at far-field

(R = -) represents a normal condition and occurrence. The values of the

I fields become negligibly small at relatively short distances because of

compensations and efficiency considerations. It follows that at the boundary

SD of the domain being analyzed, i = 0, and this means that:

f (W x W.ids = 0
SD

I The assumption was made that a e H', implying that W" is continuous

I across the interface, then:

I SDj -SD

[],

since

3 171 =; XH 2

As a result, the finite element equations, written on the element basis

U using a Galerkin technique, simplifies to:

D,

(3.16)

The "electrokinetic" problem considerations lead to the finite element

equations written on element basis:

II
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If [A - VV]*Vvdw+X f[.J, ! vj +.T 0 '7V2]& +J ~ds = 0
k D, SD-SD D

Vv

Using the same far-field considerations as above, we assume with

sufficient accuracy that the scalar (electrokinetic) potential is zero at the I
boundaries of the domain (v=O on SD). Then,

J ., * hvds = 0
SD

By virtue of the assumptions made before, 11 e H', v is continuous at

the interfaces; then: I

fX(. J I )I(~ + (1 n. I4
SD' -SD

X (Yz-. nv,-ods =

SD -SD

since J, J,,; I
then: I

kv Dw (3.17)

Relations (3.16) and (3.17) represent the final form of the system of I
equations on element basis for the Galerkin approach of the 3-D transient I
finite element code.

I
I
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In actually solving a particular electromagnetic problem, it is important

Ito systematically look at the form taken by the boundary conditions for H, B,

I and J:

!x H =0;

B°R=0;

ixJ =0;

For the potentials (vector and scalar) A and V, a similar systematic look

is necessary:

I
v.(j x;)= A.VxF-I.V xA= !!of

I If WxA=0, then -B°!=0

3 For nonconductive materials, as well as for stranded and transposed

conductors, a is considered zero:

a=0 ix=O

For other conductive materials a * 0, but since

I V= V = constant, then x J=0 (where i = 1, 2..n) n being the number of

conductors.I
I
I
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3.6 FINITE ELEMENT INTERPOLATION

A., NB vNW 1  A.=M2;L.

ui=Nauj v=NkVk rMm3

dt dt U, c dt-NU = crdt~,-U

a cV~, v~ & W~U =v. aN' Vui = aN N yfIu7 1
* .*=JjNu 3
* -VXA.Vxff =eqA,qepgu,,U,

(39145,-n t3qf3rs)Ar,qUt,s

I

(N s ut'. s -A ,u

(Nfl sNas, U - 3.,,,A
±(NpN.ji, -Na,jNp,i)A#Ua
Ii

where erst is the permutation symbol defined by the equation:I

e1 11=e22=e333 -e 12=ej 13= .... =0

e213=e 321=e 132=-13
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equal to zero whenever the values of any two indices coincide; eiki equals 1

when the subscripts permute like 1,2,3, and eijk=-l otherwise.

I If 8 is the Kronecker symbol, e relates to 3 according to the identity:

e3 3 3.3

)L(V W) = ,2, ui,j M. A,,Na,iu i = M , ,iZu

* X(V. A) = vrA,,1 =M-N AjA

1 3.7 ELEMENT EQUATIONS

f aNNt0b~j d Jg- (Na,.r j -Na,jNfl, Af +

|D, I A Ua +

i ~ ~~ a_ N,,,V, + .,i, l,-.,,, fu +i

I~~ ~ N1 f [MRN~1 x

+ M dNt,jA"" 0
Do,

D, 
udL , 

JV

VVk,

Then:
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* aNNp8.. 1 dtl- *iNlNoj - NaijNpi)]Af+[faNNjI fe +a

f M"Na,= JJiNQ

I
D, "I D,

where i = 1,2,3 and a = 1,2,...N, N being the number of nodes. 5
o" --!Vv = a'- Lv, Cr dAj Nd,= aN. v

dt dt ' d dt

a Vv =rN lN.N, = rN,,N, Nf(Vk

f MnINp~lAP = 0 m =1, 2,... M3

where M is the number of multipliers I

.raI d +r ,,JaN,.JI,., =0 1
We denote: I

__ I
di

AP,, dt....

dt (3.18) 3
Then, the system of equations in compact matrix form is: I

(3.19) 3
where I

I
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I

I a JN.Noi65, 0, 0

C= k f t N", 0, 0
m 0, 0, 0

(3.20)

ln

fl-(N,,,,o.f,j,- No,j,,,), f, aN:, j M"No..3 AL DD
I O ),/d 'Dk D

k k0, faNN, 0

m fMUN,, 0, 0

D, (3.20a)

I i.,

0
3 (3.20b)

3.8 TIME MARCHING ALGORITHM

In solving the transient (diffusion) electromagnetic problem described

I by the finite element system of equations:

C.i+ kx= F (3.19)
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the first derivative of the nodal point unknowns is approximated by the

discrete form: I

x = (- O)x-+ ex " '

v+1 -X

At I
leading to:

c 1- I--I+ k[( - )x+ ex+'] = (1- e)F"+ eF" |

-I ,,, )-I

and further: I

-- +kx =|..---(1-e)k x+(1-e)F"+OF+1
LAt -I - Ea I- -

when 0 = 1 we have a backward difference form of the ordinary differential 1
equations which is unconditionally stable. 3
The matrix equation becomes: 3
CA

-~+ ka& ka kA AP

S Atki"k, 0 * = I
6 koxi, 0, 0 IL. ( 1

A tI D, I

o, 0, 0 V, 0

(3.21) I
I
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where

cI,,- IMAN ,J)

I Z - faA'NNN

D,

k = J.MoNN

D,

, ~~D, 1(4ATJ+N

D,D,

k;, M"tNa. i 0

I (3.21a)Ii 1+
Df A-+Ii N

kvfaIN.D
DfaA:I'
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CHAPTER 4 3

SUPERFICIAL CURRENTS AS LAGRANGE MULTIPLIERS IN THREE- 3
DIMENSIONAL FINITE ELEMENT METHOD FORMULATIONS FOR

ELECTROMAGNETIC PROBLEMS 3
4.1 INTRODUCTION: THE ENFORCEMENT OF COULOMB'S GAUGE 3

In conditions of quasistatic approximation ( = ) which apply to all

electromechanical magnetic flux compression and magnetic flux expansion

converters, Coulomb's gauge [31], [32], [10] for the magnetic vector potential is

"chosen:"

divX = 0. (4.1) 5
The gauge "choice" is necessary, since a vector field must be completely g

c.aacherized by specifying both its curl and its divergence in every point of its

domain of definition [25], [311, [32]. While drastically simplifying the 3
governing equations (see Chapter 3), the main reason for introducing is not to

simplify them, as stated in [24], but is enforced in order to satisfy the I
continuity equation in the domain of interest:

divJ = 0. (4.2)

Equation (4.2) is actually a corollary of the Coulomb gauge for the

condition that: 3
R2 jq<oa when R o (4.3) 3

I
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since, by taking the divergence of the two members of the Helmholtz

equation for magnetic fields (simplified for the magnetostatic conditions [25],

[31]):

VA = - J "], (4.4)

and considering (4.2), we find that divA is a constant and, since its value is

zero at the infinity, the constant is zero everywhere,

The enforcement of the Coulomb gauge will mean that, in

electromechanical converters, all the conduction currents are closed in

themselves, and the energy spent in electromagnetic radiation is negligibly

small, even for the case of rapid launchers.

For electromagnetic systems modelling, there exist several two-

dimensional f.e.m. numerical codes. Their usefulness is based on the fact that

many electromagnetic problems can be simplified to two-dimensional

symmetries and solved with more modest computational means.

In such codes, the equation (4.2) and the Coulomb gauge are easily

enforced. In an axisymmetric structure, a coil app~ars as its cross-section and

is implied that the current distribution will be idtentical in all its other cross-

sections.

In three-dimensional structures modelling the true, unsimplified

structure of the electromagnetic system, the situation changes, especially in

the finite element method since the entire domain is built by volume

elements (bricks, pyramids, wedges, etc.) which must match the continuity
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equation (4.2) not only in some points of the integration, but along and all I
over the entire domain. In other words, the special role of enforcing the 3
Coulomb gauge in three-dimensional f.e.m. systems is to bridge a method

which is fundamentally discrete with a requir.!ment of pointwise continuity. I
The "plaster" used to "smooth-out" the discrete 3-D electromagnetic structure

is a group of superficial currents flowing through the 3-D element faces, thus

producing magnetic fields which impose the constraint divA = 0. Such

superficial currents will be assimilated with Lagrange multipliers.

This chapter will be devoted to outlining the special physical meaning

of superficial Lagrange multipliers in three dimensional, finite element 3
formulation of electromagnetic problems, in magnetic flux compression

devices. I

4.2 THREE-DIMENSIONAL ELEMENTS I

Finite element method [221, [281, [291, [30] is based on the replacement of 3
a continuous system (which, in our case, is the domain in which the

electromagnetic transient problem must be solved) by an equivalent discrete I
system, made out of Finite elements (volume, or three-dimensional, in our 3
case). The geometry of all the elements :'ust be defined analytically and

appropriate interpolation functions N must be constructed for each element. 3
To define the geometry of elements, a set of n points is selected. These 3

points, called geometrical nodes, may sometimes coincide with interpolation

nodes. Each element is analytically and uniquely defined in terms of I
geometrical nodes belonging to that element and its boundary. Two distinct 3

U
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elements can have common points only on their common boundaries if such

I boundaries exist; no overlapping is allowed. Figure 11 shows elements as

rectangular prisms (linear and quadratic) with 8 and, respectively, 20 nodes.

In order to assure the interelement continuity, it is necessary that, along a

whole face of an element, the nodal values define a unique variation of the

unknown function.

Using three normalized coordinates, we have the following shape

3 functions (271, [301:

For the linear element (8 nodes):

N I(1+ 0 )(1 + 70 ) + 0 )
'8 (45)

For the quadratic element (20 nodes):

Comer nodes:

N, 1 (1+ o)( + n7)(1 + o)( o + 0 + 2)
18 (4.6)

Mid-size nodes:

0, or, =+±1C =+±1

1
N, _ (1- _ 2)(a + T70)(1 + 0)

4 (4.7)

Figure 12 shows triangular prism elements, linear and quadratic, with 6

and, respectively, 15 nodes. In this case, the shape functions are obvious and

found in any book on finite element method [27], [301. Again, for
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I
I

=I I

8 Nodes

20 Nodes )

oI'll
II

Figure 11. Three-dimensional, finite elements as rectangular prisms with 8 or
20 nodes. Surface curreni through faces represent Lagrange multipliers.

I
I
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I1 
11=1

I , 5

) 3

7 1-

[4 !131
I)

II(
I 

15 Nodes

I5

Figure 12. Three-dimensional, finite elements as triangular prism elements
with 6 or 15 nodes. Surface currents through faces represent Lagrange
multipliers.
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interelement continuity, it is necessary that, along a whole face of an element

the nodal values define a unique variation of the unknown function. I
4.3 PRESCRIPTION OF THE FORCING FUNCTION IN THREE- 3

DIMENSIONAL FINITE ELEMENT ELECTROMAGNETIC PROBLEMS I
In electromagnetic problems, the forcing functions are globally, voltage

sources or current sources, impressed upon a certain network. In I
electromagnetic field problems solved by f.e.m. codes, the forcing functions

corresponding to voltages are the intensities of applied electric fields and,

corresponding to current sources are current densities. I

Current densities, for example, are prescribed element by element. I
Two distinct elements have as common boundaries points, lines, or surfaces.

At their common boundaries, the assembled elements should leave no holes 3
or, as mentioned above, overlap. When the boundary of the domain cannot

be exactly filled by the elements selected, an error called geometrical I
discretization error, cannot be avoided. 3

By prescribing current densities, element by element, the current, u
representing the surface integral (the flux) of the local current densities, does

not obey exactly the first Kirchhoff's law or locally divJ = 0 (or by implication I
divA = 0) does not hold, two elements, one hexahedronal, the other prismatic,

may be adjacent and the current density prescription as forcing function may I
lead to discrepancies in the Coulomb's gauge which must be fulfilled

pointwise. I
I
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Round-off errors in computation of currents - even for an apparently

balanced input - lead to discrepancies upsetting the solenoidal character of the

current densities.

The method of correcting such discrepancies is the introduction of

surface (sheets) currents flowing through the element faces and by the

magnetic field they create a compensating effect. Then, the Coulomb's gauge

seems to be imposed pointwise in the entire volume of the domain. We are

identifying such sheets of currents with Lagrange multipliers.

4.4. PHYSICAL INTERPRETATION OF SUPERFICIAL CURRENTS AS

LAGRANGE MULTIPLIERS IN F.E.M. FORMULATIONS OF THREE-

DIMENSIONAL ELECTROMAGNETIC PROBLEMS

The Helmholtz theorem [251, [311 states that any vector field is uniquely

separable into a divergenceless part, curl A and a curless part, grad V, in each

point of the field, and in average in each of the three dimensional elements

in the finite element formulation. We are interested in the transverse

component of the vector field (transverse to the direction of greatest change

which is the lamellar or longitudinal one), the Coulomb gauge imposing a

linear relationship between the three components of the vector potential A,

decreasing the number of i.,dependent components to two.

For the 3-D f.e.m. formulation of the transient electromagnetic

problem, the Galerkin method is used in order to obtain the finite element

equations. The formulation is carried out in Chapter 3. The equation (3.18)

from this chapter is reproduced here:
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o +VxixVxX+dVtr-Jm 69+
/t /I

;(V.*W)+ V.X)}dv =o (3.18)

for any u and ?.

In equation (3.18), the Coulomb gauge constraint div A =0 has been

enforced using the Lagrange multipliers X and the corresponding test I
functions r.

From the above equations, the dimensionality of the Lagrange

multiplier results in [A] and represents a surface current (a current sheet).

In any type of 3-D elements (as in Figure 11, for example), they

materialize in the face of the elements. Their use is based on the fact that the 3
magnetic field produced by a distribution of volume currents inside an

element (brick, prism, tetrahedron, etc.) can be substituted by an identical I
magnetic field structure produced by a distribution of surface currents flowing g
on different faces of the respective element.

The current density for the sheet current, Kis obtained by passing to

limit of a volume current density 7 when one of the dimensions (the "

thickness t) goes to zero (Figure 13).

The total current I (Figure 14) can be expressed as

1 = h(l t n(I) I
U
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I
I

.4--low

I
I
I

Figure 13. Surface current density K on a face of a 3-D element (brick) as a
I passing to a limit operation.

dj N
Figure 14. Calculation of current I as a line integral of surface current K.
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where

whelimJ t (4.8)

In general, the surface current I (Figure14) is given by the integral

I

M (4.9) I
The surface currents equivalent of the continuity condition for the

volume currents expressed in point form by equation (4.2) is:

C
C (4.10)

In some treatments [321, equation (4.8) is replaced by a double integral of 5
a surface divergence of the current density K. I

To illustrate how the Lagrange multipliers act in imposing a constraint

(e.g. the gauge condition), let's assume a given distribution of currents I
7(x,y,z) in a volume V already divided in 3-D elements. The volume V is 3
surrounded by the dosed surface Z such that the flux density B produced by

the volume currents 7 is tangential everywhere to the surface ZX. I

Adistribution of sheet currents of density K over the surface F,, is chosen

(Durand [321) such that.

-gK = lXB, (4.11) 1
I
I
I
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Then, multiplying by the positive (outward) normal to Z, both sides of

(4.11) and considering the properties of the double cross product, yields the

1 value of the flux density results as:

I =All(iXfl (4.12)

If we superimpose (considering linear media) the effects of the two

current distributions, volume Y and surface )T we find the flux densities:

I B = B1  inside of surface Y

B=O outside of y,. (4.13)

The known condition of discontinuity (jump) in the value of B when

crossing a sheet of currents

Babove - B below =/ko[ x K] is satisfied by the relations (4.12) and (4.13).

From Biot and Savart's law:

4 ( x -7 = jf x gradI7-)s = 1L0 curliJ--(.
47r r 3 E r 1r r(4.14)

and knowing both its divergence and its curl (divB = O,curlB = .uoJ), Afis

completely defined for the electromagnetic problems concerning

electromechanical converters (launchers and electromechanical power

supplies.)
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If the currents Y had existed alone, they would have produced outside

of surface I a flux density equal and opposite to that produced by the volume I
distribution of currents Jand a flux density f equal to zero inside of Z.

On this fact lies the physical meaning and the mechanisms of

operation of the Lagrange multipliers, acting as current sheets in the 3-D I
elements in a finite element grid: They are the means to replace the currents

.7 for their action outside the boundary Z by superficial currents flowing over

surface 7. I

In the same way, we can consider the case in which the dosed surface Z 5
is exterior to the volume enclosed by the 3-D element (or the set of 3-D

elements of which the volume of definition for the electromagnetic problem I
consists). Following the same reasoning as above, the superficial distribution

of the sheet of currents 9produces inside of boundary 1" the same flux

density Bt

B, =-9o[f x KI (4.15) 1

as the volume currents 7. Outside of surface Z, the flux density produced by

the current sheet !ris zero. As an example, in Figure 15 we have a cylinder

with a radius r through which a current I of densityJ = 1 flows uniformly. I
rr

On the toroidal surface surrounding concentrically the cylinder, a I
surface current density K can always be chosen in order to produce a field B,

inside of the torus, identically equal to zero. I
I
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Figure 15. Illustrative of the mechanism of current sheets acting as Lagrange
multipliers.
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We must emphasize that Lagrange multipliers refer to the vector

potential X, enforcing its divergence to be zero, not to the flux density B

which is the curl of X. However, since the topic is the physical significance of I
the Lagrange multipliers, the flux density which is more familiar was used.

Lagrange multipliers impose the condition div A--O. The expression of I
divergence in terms of surface currents for the magnetostatic problem results 1
from [251, [32]:

divA =- L (j grd(!s I
and since K'is a vector tangent to the surface, we may write equation (4.16) as: I
divA L' Jjdivk- - div,( ' ds.

4 ir1 r (r (4.17)I

Where the following vectorial identity was employed: 3

r (4.18)

In (4.17) and (4.18), the s index was used in order to indicate the surface 3
gradient and divergence.

Since

fdivkds = f(F. o)dt I
L r (4.19)

I
where the curve 1" surrounds the surface Z, we conclude that: I

I
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divK = 0.

Also, on the curve I we have:

resulting that divA = 0 is imposed by surface currents flowing on the faces of

elements in electromechanical converters treated here.

IThe boundary conditions for the vector potential, when crossing a

sheet of currents are:I
A a = A b

and

(4.20)I
4.5 AN ILLUSTRATATION OF THE USE OF THREE-DIMENSIONAL

F.E.M. TRANSIENT ELECTROMAGNETIC CODE

As an illustration of the application of the three-dimensional, finite

element transient electromagnetic code using superficial currents as Lagrange

multipliers - a simple flux compression structure was chosen. This

arrangement comprises a rectangular coil of two turns made of stranded and

transposed copper conductor in which a current is impressed in a ramp

variation. The current density increases linearly in the coil from 0 to 6.2 x

A
109 -T in a time of 25 isec.
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In front of the coil, compressioning the magnetic flux is a rectangular

piece of solid copper, having a conductivity of 5.8 x 107 f2m, which is the seat

of the eddy currents. Referring to Figure 10 in Chapter 3, the coil is

representative of subdomains Dj, the copper plate of subdomains DE, and the 3
rest of the space, of domains Do. I

The structure is truly three-dimensional; however, it can be grossly

approximated by a two-dimensional axisyruretric configuration for a 3
comparison check. I

Figures 17 and 18 represent the division of the entire domain

considered in the problem in 3-D elements. The electromagnetic (transient) I
diffusion problem is solved at time intervals of 5 pLsec and plotted at intervals 3
of 5, 10, 15, and 20 psec. The figures represent the magnitude of current

density in its vectorial representation and the magnetic field, respectively, in 3
upper face of the copper plate and three-dimensionally at 5, 10, 15, and 20 sec

time. I

It is clear that division in a relatively small number of elements takes 3
its toll in the precision of representation. It is also notable that the accuracy

remains high, the introduction of Lagrange multipliers playing an important

role. 3

I
I
I
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In order to have a term of comparison, a similar, but two-

I dimensional, axisymmetric system was considered. The elements have

comparable size, in spite of differences in shape, the coil is still stranded

I and tranposed, while the massive copper plate has the same conductivity

i as its three-dimensional counterpart. The current density was chosen in

order that the total magnetomotive force would be comparable for the two

I coils. The plots are still made for 5, 10, 15, and 20 sec times.

The axisymmetric structure of the simple flux compi assor is given

in Figure 2. Figures 3-6 show the unfolding in time of the flux lines as the

coil is pulsed with current, and eddy currents are developing in the plate.

This two-dimensional case is reproduced from a paper by M. D. Driga and

H. D. Fair, "Advanced Concepts for Electromagnetic Launcher Power

Supplies Incorporating Magnetic Flux Compression," [35].
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CHAPTER 5

AN APPROACH OF CALCULATING FORCES IN ELECTROMECHANICAL

ACCELERATORS BY USING THE METHOD OF FLUX DERIVATIVE

5.1 INTRODUCTION: POWER BALANCE AND THE MAGNETIC FLUX

DERIVATIVE

The operation of electromagnetic macroparticle accelerators is based on

the mechanism of conversion of electromagnetic into mechanical powerl.

Mechanical power is the rate at which mechanical work is performed by a

1distribution of forces acting on the moving projectile. In the case of

electromagnetic launchers such forces are of electromagnetic origin. We will

consider three ways of determining the mechanical forces of electromagnetic

I principals responsible for driving the electromagnetic accelerators:

a. As the distribution of body forces in the projectile volume and

in the rest of the accelerator;

I b As the global, resultant force (a generalized Lagrangian force,

acting along a generalized coordinate);

c. And, finally, as stresses, using the artificial method of

electromagnetic stress tensor, reducing the problem of electric

and magnetic fields of force to that of an elastic continuum.

1 Characteristic to electromagnctic macvoparticle accelerators is their extremely high power
ratings, for very short time intervals. lie energies involved are relatively low with respect to
other high energy industrial processes: I kwh=3.6 MJ When such energy is delivered in 2 msec,

for example, it corresponds to a power of 1.8xl0 9w=.C'.W.
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The theoretical tools which transform the expressions for forces from

one form to another are related to: 3
a. The constancy of magnetic flux as the constraint used to assure 3

the proper transformation in order to find the generalized

Lagrangian forces along a generalized coordinate (global or I
integral characterization); and

b. The complex and subtle notion of flux derivative [25] as applied

to electromagnetic systems in motion. Again, using the I
constancy of the magnetic flux as a constraint, we obtain all the 3
equivalent body forces of electromagnetic origin (local or point

characterization). £
Since the electromechanical accelerators and their power supplies are I

based on magnetic flux compression devices, it is very significant that the

constancy of the magnetic flux constraint in the Lagrangian formulation, and 3
the same in the flux derivative approach, is the analytical tool which unifies

the theoretical treatment of such devices. I

Macroscopically, forces of electromagnetic origin can be expressed I
directly and elegantly since the electromagnetic component of the energy of a

thermodynamic system can be distinctly 2 separated from other types of

energy. The instantaneous power balance for an electromagnetic system can 3
be written as:

2 Electromagnetic energy of a system is that part of the i-',mal energy which depends only on I
the state vari:)blp- nf thp etn'.mgiieU field, varying when they vary and remaining
constant when they remain constant. 3

I
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( x F .d-9-= fJf f v +f Jff .- + f + F v
S (5.1)

In certain conditions of media homogeneity the balance can be written

as:

/ 2 2

J(fx f1)f fT?=Jf vT+v-4-JfIf D +_L
soV (5.1a)

or

x fH). dJ fEd v + -4-ff f p, +w,.) d v
S V

where

DE E2  D '
2 2 2E (5.1b)

H A M'-I2  B'
W,,- 2 - 2 2u (5.1c)

are the electric and magnetic energy densities.

Or, in other words, the input of energy in unit time in the system (of

volume / and surrounded by the surface S,) expressed by the flux of

Poynting's vector through the area S, enclosing the system is spent as joule

losses (E. -) and also for increasing the elertric energy density (2) and

magnetic energy density 2-) of the system.
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As it is well known, electromagnetic power balance (5.1) is obtained

directly from Maxwell's equations, after few mathematical manipulations, 3
starting from: d

V = tI + (magnetic circuit law) (5.2)

Vx I +dt (Faraday's law) (5.3)

and by dot multiplying by f both sides of (5.1A) and using the vectorial

identity: I

V.(E X Fl)=i4 *Vx E -f *VxH R

we obtain: 3
-V.(L x )+ H *Vx E = E + ra I

Substituting the value of V x E from Faraday's law (2A) and 3
regrouping the terms:

-V.( x /+)=E .+B.- -+ _

By integrating over the volume of the system and transforming the

volume integral on the left side into a dosed surface integral covering the 3
volume (using Gauss' divergence theorem), the relation (5.1) is obtained.

There is a subtle difficulty in using (5.1) to the case when the

accelerated body (projectile) is moving. We assume that the surface of 3
integration is driven together with the projectile, also e and g remain I

I
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I "substantially" constant (or in other words, a point in movemrent maintains

I its properties 3). Then the relation (5.1) remains valid with the assumption

that the partial derivatives of 5 and 9 with respect to time, are replaced by

I their flux derivatives with respect to time

dD drepc

dt dt (5.4)

It d (5.5)

where, the flux derivatives of the fields D) and are [251

Sdt - +u div + curl (0xzi) (5.6)

dt + u div +curl (gx zi) (5.7)

and using the other two Maxwell's equations:

I div A= (5.8)

and

i div g =0 (5.9)

d t (5.10)i+V

ds!= d+ Wgradu
3 If g remains "substantially" constant dt dt where u is the instantaneous
velocity of the point.
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dt dt (5.11) 1
5.2 GLOBAL (GENERALIZED) FORCES OF ELECTROMAGNETIC ORIGIN

One important way in which mechanical forces of electromagnetic

origin responsible for driving electromagnetic accelerators can be evaluated is I
by employing the methods of analytical (Lagrangian) dynamics consistent

with the first principle of thermodynamics and with Maxwell's equations.

For elementary displacements between two states of an insulated I
thermodynamic system, the first principle postulates that the sum of the 3
elementary mechanical work performed by mechanical forces d L and of the

elementary increase in the thermal energy dQ must equal the change in the 3
internal energy of the system, d W • I

-d W = dL + dQ (5.12)

i
In the presence of the electromagnetic field, the terms dependent on

state variables of the electromagnetic field can be separated from the internal 3
energy of the system. Repeating the statement from the last section, the

electromagnetic energy of a system is that part of the internal energy which U
varies with the variation of the electromagnetic state variables, remaining U
constant when they remain constant.

As a consequence, the balance of energy (5.12) can be written separately

for the electromagnetic energy in which case the elementary mechanical work 3
I
I
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is produced by mechanical forces of electromagnetic origin and the thermal

energy accounts for the joule (and hysteresis) losses in the system.4

In rewriting the energy balance, we are using the fundamental identity

for electromagnetic energy (Al). Then, for the infinitesimal time dt•

-d W = Pldt + Pdt + dL (5.12a)

where

P1 =JJJf f Jdv
V

represents the joule losses in the system (W)

P5 =-ffrExH4)- d,,F
S

represents the electromagnetic power input, flowing into the system through

its boundary surface S, (the external normal to the surface is by convention

the positive one).

The chosen transformation - in the sense of Lagrangian dynamics -

must permit an expedient evaluation of the mechanical work dL and from

it, of mechanical forces of electromagnetic origin. Such a transformation is

defined by the constraint:

Pdt + Pdt =0 (512b)

then

4 Since the electromechanical systems are notoriously efficient, a lossless model of the system
gives sufficient accuracy.
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P, +P. =0 
(5.12c)

Let us express the constraint (5.12b) by using the identity (5.1):

P1 P', f ( J d~ dDP ,d(5.12d)

In order to impose the constraint the integrand in the left side of the

equation (5.12d) must be zero. The two instances in which this happens are

(a) the fields (electric and magnetic) are zero, instance with no significance 3
and (b) the flux derivatives are kept zero during the transformation

(interesting!). 3
-- = 0 leads to the constraint V,'. = const. (5.13a) I

dt

dfB0 =0const.
dt leads to the constraint m, (5.13b)

Substituting (5.13a and b) in (5.12c)

-d w = dL3

0. =const • (5.12e)

actually splitting the energy dW in its electric and magnetic counterparts:

dL =- d WV - dW,, (5.12f)

For an electromechanical system with n degrees of freedom

dL = IF dxk I
k =1 (5.14)

I
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where Fk , Xk are the generalized Lagrangian force and generalized

Lagrargian coordinates, respectively.

By varying only the X, coordinate:

dxj 0 dx=k 0 (k # j)

X I . IIW.F = -(t, ij o- t,(,dx W ,.MD (5.15)

V=const 0. =COst (.5

In summary, the steps followed in order to find the global, generalized

Lagrangian force acting along the j th generalized coordinate are:

a. The system is constrained to change such as [P, + P] = 0;

b. Among all possible virtual movements, the variation of onlv one

generalized coordinate is chosen;

c. The expression found for the force is then valid independently of

the variation of fluxes or currents (T e constraints of constant

electric and magnetic flux densites describe the transformation

employed in order to derive the expression for the force and does

not affect the application of this expression in the situation of

variable flux, for example.)

d. Choosing the right generalized coordinates (their number being

fixed at the number of degrees of freedom of the system) can

provide a special insight into the electromagnetic accelerator

operation.
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Some pairs, generalized coordinate - generalized force are shown in

table A.I. 9
TABLE A.I. 3

Generalized Coordinate Generalized Force

Displacement, dx (m) Force, F (N) 1
Rotation angle d a (rad) Torque T (N*m) 3
Surface ds s (m2) SupEricial Tension t(N/m)I

Volume d v (m 3 ) Pressure p (N/m 2 ) I

For example, by expressing the energy as a function of th,, volume, the I
generalized force results is th, (magnetic) pressure on the accelerator system. I

Expressing the magnetic energy as functions of electric flux and

magnetic flux (actually, magnetic flux linkage) as the independent variable

may not be the most convenient choice. Many times the use of current as 3
independent variable in the energy expression represents a more natural and

convenient alternative. The Legenre transformation from analytical 3
mechanics is the tool changing an energy function of a given set of variables

into a new energy function of a new set of variables, the old and the new I
variables being related to each other by a joint transformation. The 3
transformation has the remarkable property that is entirely symmetrical on

both systems (the same transformation that leads from the old to the new 3
system leads back from tne new to the old systenm) Since, in this treatment,

I
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only magnetic acceleration will be considered, the new energy function is the

magnetic coenergy *N,, introduced through Legendre's transformation:

N (I ,I ,x2,... C) = 'J,,0 I - W (P,, X1, x2.., x) (5.16)

Then, the energy balance becomes:

dL = dW (5.17)

and the generalized force along the xj coordinate:

w cW ( I , X, if. x21- X

F =, )1 (5.18)

5.3 LOCAL (BODY) FORCES OF ELECTROMAGNETIC ORIGIN AND THE

FLUX DERIVATIVE METHOD

Electromagnetic accelerators and, especially, the projectile operate at

extreme stress levels. For the same globai force, a design can fail or

successfully survive depending on how judicious the body forces are

distributed.

The same methodology which led to finding the generalized force,

starting from Maxwell's equations ard being consistent with the first

principle, can be also used to find the electromagnetic body forces.

A transformation, in the sense of Lagrangian dynamics, defined by the

constraint (5.12b) was chosen in the form of equation (5.12e):

- d W =dL

o. *°ns (5.12e)
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In terms of power (differential energy d W in incremental time dt):

(d dW _dL = fr f fId
dt ~vcnt dt- Jf*id• • V

=CWM (5.19) I

Where (- is the body force 3m) in the volume dv element and U- is I
m

the velocity of the element -. The energy N (j) can be substituted by the

volume integral of the energy density w ( :

f f~ fwdy - fJf ff.adv

-wns" (5. 19a)

In order to find the expression for the body force (5.19a) must be

transformed in a way to obtain the vectorial factor which multiplies the 5
velocity ui in the right hand member of the equation. Splitting the energy

density into its electric and magnetic counterparts yields: I
Jfff.-dv -- fvf[(OI) ( )

V O- - . 0 --i di(5 .1 9 b ) I
(We have a derivative of a volume integral on a domain with moving

bodies. An assumption is made that through the surface which surrounds 3
the volume of the integration domain bodies do not "enter" or "come out" -

or, in other words, the surrounding surface is being "driven" by polarized or I
magnetized bodies.) 5

I
I
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The energy densities in 5.19b are given by 5.1b and 5.1c. Taking the

derivative by parts

Jf f iTdv f- E+F1(f
2r v--I 7F 2i

(5.19c)

Observation: Considering that the material properties e and p. remain

substantially constant, or in other words, a point in movement main, t.,s its

properties, yields:

dse - de -de -u- ff d E gd

dt u grade =0 or dt - t -=d - -

(5.12)

The condition of constant flux (electric and magnetic) imposes the

constraint of zero flux derivatives for 15 and :

dt 5 dD div b + curl( x )= 05
dt +dt (5.6)

and

dt -B + u div B + curl(g + i)= (57)

and, by using Maxwell's equations:

div D = A and div 9 =0;

-[curl(5 x U-)+ pu]
d D

dt (5.6a)
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= ) -[curl(9 x i)] £
df = 0

(5.7a) U
Substituting (5.6a) and (5.7a) and (5.19d) back into (5.19c):

f f f f J ff dv= f f [ if+ . curlDxif)-
V V

( 2 gradej. *i +F1 * curl(9 x i) -H gradlp zi dv (520a) 2
In the right side, two terms still do not have u- as an explicit vectorial

factor. In order to transform them we use the vectorial identities: I
div[E x (b x 1 = E curl(D x a )- (D x a) * curl E (5.20b) 3
div[I x(9 x i)] =9 H curl(f) x x) -(ffx )* curl H (5.20c) 5

Also, in the condition of constant electric and magnetic flux, the 3
Faraday's law and the magnetic circuit law become

dB - + f Icurl ft -- =0; curl H =f-+d-D-=]
dt dt (5.20d and e)

The substitution of equations (5.20a, b, c, d, and e) into (5.20-a) leads to a

remarkable expression: I
Er~2  H2 1

fJJf * Udv = f J pE---gradE +(j x B)H 2-gradv 3
V22

x4[ x(D x n-) +H x (9 x ii)] adsI
(5.20f) I

I
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The surface integral, which results from the two divergence terms

(5.20b) and (5.20c) becomes zero after applying Gauss' theorem since we chose

the surface surrounding the domain such that, if = 0 on it. Then, the body
I force r :

+ f grade + - x B-2 grad(.2 2 (5.21)

I where the electric field intensity and the magnetic flux density

B (T) can be seen as volume force densities exerted by the field on the unit
C

element of free charge A' m 3 and respectively of moving charge, fI A
(conduction current density m2.)

The other two terms proportional to the gradients of electric

permittivity and magnetic permeability represent the body forces exerted by

the electric field on the polarizable materials and respectively by the magnetic

field on magnetizable materials.

In summary, the steps followed in order to find the body force (the

electromagnetic force density per unit volume) are:

a) The system is constrained to change such as the electric and

magnetic flux remain constant during the transformation

consistent with the first principle of thermodynamics and

Maxwell's equations;
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b) The constancy of the electric and magnetic flux is imposed by

equating to zero the flux derivatives of the field vectors E) and U

c) The body force is obtained as a vectorial factor, multiplying the

local velocity ii in the expression for electromagnetic power; I

d) The body forces, thus obtained are universally valid for I
macroscopic, nonrelativistic electrodynamics;

3) In the above derivation, the variation of e and I' with respect to the

volume density of the materials (T) has been neglected. If such

variation exists, the electro- and, respectively, the magneto-striction I

terms will appear in (5.21).

E2 d-r ; ¢ , n J (522

5.4 THE ELECTROMAGNETIC STRESS TENSOR AND 3
ELECTROMAGNETIC IMPULSE 3
The Maxwell's electromagnetic stress tensor was actually based on 3

Faraday's idea of an intermediary medium with special electric properties for

transmitting the force. Let us again assume the domain ¢" , surrounded by 3
the surface S. (Figure 4) The force F2, = -F,2 is introduced to maintain the

equilibrium when the imaginary elastic strings are cut. This way, the global I
electromagnetic force F (N ) is equivalent to the stresses 2)integrated 5
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over the area S, which in turn, balances the body forces of electromagnetic

origin f (3) integrated over the volume,

f =f ffd v =J4ftds
,, (5.23)

The replacement of body forces by stresses (using the Gauss'

transformation of a volume integral into a surface integral) is performed for

the particular case of a stationary regime = 0 and absence of material

motion U = 0.5 At the end of this paragraph, the nonstationary regime will

be considered while evaluating the electromagnetic impulse (so necessary in

calculating different aspects of the recoil in electromagnetic guns).

Starting from equation (5.21) we will try to express the body force of

electromagnetic origin as a divergence, in order to find an equivalent stress

distribution

E2  H2
f = pE - -jgradE + f x B-2gradu=

2 2

Ed ivD -grad (- Egrad + curI x B
K )+ 2

-grad + ograd H + curiE x 5 + HdivB (521b)

in which the last two terms, added for symmetry, have zero value.

5 The expression for the body force (A-21) was obtained in the previous paragraph under the

constraint of zero flux derivatives which in case of absence of motion u = 0 yields the equations
curiH = J and curiE = 0.
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By using the vectorial identity:

(Vx ( D = X

2(v x ) -- 4v(- ( v) (5.24a)

and

(V x R x = I
-PR x (V X [ = H) (/q V)!F(.2b

-g2 (5.24b)I

the volume force density expression becomes:

f- =f r+afmag.= I
E+div - grad(,)+ grad (H E2) grad ( - H2)+ (grad )E 5

2MI 22(52c
+ ldiv - grad (-- )+ ugrad (-jj)- ggrad (-! )+(Bgrad )H (5.21c,

In relation (5.21c) there is a perfect symmetry between the electric and I
magnetic field quantities. The right side of the equation (5.21c) expresses the

tensoral divergence of a dydic:

The x components of the electric and magnetic body forces in this

relation are: 3
f .=EdivE + 1 * gradEJ- =div(E, x 5) div(F--

(5.21d)

I
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fmagx = H, divB + B * gradHx -3 (p2) = div(H, x - div(F---l

(5.21e)

considering also the y and z components, we can express, finally, the body

force as a tensorial divergence:

f-=fI. +fmg.= F div T,+ f div TY + k div T (5.25)

where F, f, k are the unit vectors of the three axes of coordinates x , y, z

and

H/(~2S 2 (5.25a)

= E2 +H, - k + (5.25c)

integrating by components

F =Jfffdv =fff F div Tdv+ ff f div Tydv+fff k div Ifdv
V V V

(5.25d)

and using Gauss' theorem we can transform the volume integral of a

divergence into a flux through a dosed surface integral:

s sV (5.26)
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I

where

=. TXT=y

T= TzYT=I

is the electromagnetic stress tensor

and

TT * i! = (F; T,, + f-; Ty + F; ;T ) F

F nT- ds =fJfdiv f dv=fff dv
v v V (5.23a) 3

Then, the normal component of the stress tensor is:

E (D * n) +/ I ) (ff 0 - i(W,,. + WR) (5.27) 3
and, the expression for the Maxwell's tensor:

T = EYD, + HYB, EYDy +HYBy-w EYDz + HYBz

ED, + HB, EDY + HBY FD + HBz - w

where W = W . + Wm is the electromagnetic energy density (km3). Since we !
are interested only in the magnetic terms 5

2-grad= div Tm (5.27a)

then 5
U
I
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T " F 9 9 iT r 2(5 .2 7 b )

where ff is the positive normal to the surface. As a rule, F1 the intensity of

the magnetic field bisects the angle between f and

Electromagnetic Impulse

Suppose that the regime is not stationary as was assumed at the

beginning of the paragraph (5.20e). Then cur = f + In this case, the

equation (5.23) must be modified:

ff fd v- f rTds =-dfrJf f x 9)d v
v, (5.29)

or

V ',(5.29a)

If we consider an isolated system, which extends to infinity, then the

surface integral disappears since T- goes to zero faster than ds is increasing

for an R - -. This yields:

S x0(5.29b)
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The resultant force in an isolated mechanical system interacting with

an electromagnetic system is zero; expressed in terms of the mechanical and I
electromagnetic6 impulse:

d ff(f) x O
(5.30)

or the sum of the impulse is constant

" I
[Gch .+ f f(E) x A)d v] const.

In general, 3

d (Gmch. + GCl a =, 4(-i)(-,i)d s 8 (5.30a) 3

The expression (5.30a) is important in evaluating the design questions

related to recoil in electromagnetic guns. The volume integral of the 3
electromagnetic force density, the Maxwell's stress tensor, and the

electromagnetic impulse become tools in defining and calculating globally i
and locally the recoil in electromagnetic accelerators.

I
I
I

6 Tedensity of electromagnetic impulse is D x B = EgdE x -= ep i

I
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CHAPTER 6

SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK

6.1 SUMMARY

It is considered, in this work, that one of the reasons why the

electromagnetic hypervelocity launchers and associated power supply

technologies have not reached their expectations is the fact that most of the

activity in this domain has been focused on simple railgun accelerators in

conjunction with the questionable choice for homopolar generators known

for their inherent low voltage and low power density. In order to increase the

power densities, the homopolar machines have to be used in conjunction

with heavy and voluminous inductors in which the magnetic energy is

transiently stored and explosive opening switches which actually provide the

high voltages necessary for driving high currents into railguns.

In order to drastically improve the performance of hypervelocity

electromagnetic launchers the solution is to use as power supplies complex

rotating flux compressors (beyond so-called compulsators) in conjunction

with heteropolar electromagnetic launchers with variable structures.

The computation effort for the design of such complex magnetic flux

compressors and heteropolar hypervelocity accelerators is tremendous in

order to determine the time evolution of complex interacting electromagnetic

fields.
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For the demanding analysis and design of flux compression structures,

a three-dimensional, finite element method formulation for the

electromagnetic field diffusion is presented. 3
The formulation is based on the Galerkin technique since in the

domain of parabolic partial derivative equations no variation principle is

possible. This formulation requires large computational efforts since it solves

the transient problem for all three components of the vector potential (as

compared with axisymmetric f.e.m. codes solving for one component only). i

One of the original features of the formulation is the introduction of 3
superficial currents (sheets of currents) with linear current density, T,

flowing through the faces of each volume element (brick, prism, etc.) and I
compensating for the discrete nature of the finite element method and for 3
other nonuniformities aid discrepancies such as in prescribing the forcing

functions (current densities, for example) element by element enforcing

point-wise the solenoidality of flux density, B, current densityJ, and

magnetic vector potential, "A(divB = 0; divJ = 0; div-A = 0). I

The superficial currents with linear current densities are introducedI

in the f.e.m. formulation as Lagrange multipliers, solenoidality of the three

vectors, B, 1, and A, being the constraint imposed by the Lagrange

multipliers.

The unfolding in time of the flux compression phenomena occurring

in a three-dimensional flux compression structure (pulsed coil in front of I
i
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consecutively, produc.ing remarkable veiocities. Armature reaction will

introduce, however, complex three-dimensional field distributions.

In the domain of the power siplies, complex rotary flux compressors

as those proposed by Driga and Fair in [35] must be analyzed by the analytical

and numerical methods treated in the present work.

One of the features desired to be incorporated into the f.e.m. 3-D code is

the relative motion between the rotor and stator for the flux compressors and

between the barrel and the projectile for the accelerators. In order to

accommodate such problems, the f.e.m. computer code must be adaptive with

possibility of continuous change in e structure of formulation.

The program must have an "initial" mesh changes according to the

movement of the projectile.

The algorithm must assume two rigid bodies, both generating magnetic

fields moving with relation to one another in an accelerated or decelerated

manner.

A mesh of brick elements is generated around each bo 'y and those

meshes meet along a mesh interface, Z. To provide for a smooth sliding of

one element with respect to another, a special five mode interface element is

used [36]. The associated shape functions, IV(C, 7"), are defined on a master

element, Q. The moving local coordinates on a typical element are then

given by an isoparametric map.
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While codes with adaptive mesh exist for solving problems in other

domains of technology (such as supersonic flow in domains with moving

bodies), they do not exist for electromechanical systems where they will have i
an important impact on analyzing highly transient systems.

I
I
I
I
U
U
I
I
I
I
I
I
i
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