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£ II

Final Report

AFOSR Contract:

Computational Complexity and Efficiency in
Electro-Optical Computing Systems

John Reif, Duke University

0 Abstract of RESEARCH APPROACH and Objectives:

(l)To develop robust theoretical model for a wide class of electro-op-
tical computing systems

(2)To extend the known capabilities, by design of new, more efficient
algorithms for electro-optical computing using less time, volume and en-
ergy. In particular, to develop efficient algorithms that use optimal com-
binations of time, volume and energy on electro-optical computing systems

(3)To determine the fundamental theoretical limitations and capabili-
ties of electro-optical computing systems.

In particular, to determine lower bounds on tradeoffs between vol-
ume, time, and other resources (such as energy) of any electro-optical
computing system to solve fundamental problems.

1 Summary of Technical Progress during this Contract:

Work by Reif in optical computing has been in five areas:

(A). Efficient Optical Algorithms

(A. 1) the VLSIO model

(A.2) Efficient Electro-Optical Algorithms in the VLSIO
model

(B) Lower bounds for Optical Computation

(B.1) Lower Bounds for the Volume of Electro-Optical
Devices in the VLSIO model



(B.2) Lower Bounds for the energy consumption of Electro-
Optical devices in the VLSIO model.

(C) The Ray Tracing Problem

(D) Optical Memory Storage and Computation Using Fiber Optic
Delay Loops

(E) Holographic Based Computing

(E.1) Reifs Holographic Message Routing System

(E.2) Holographic Memory Storage

(E.3) Optical Expanders

We give the details in the following.

(A). Efficient Optical Algorithms
(A.1) the VLSIO model

Our goal is to determine the fundamental theoretical limitations and
capabilities of optical computing systems. Our first step is to develop a
robust theoretical model for a wide class of electro-optical computing
systems. [Barakat and Reif,1987] developed a new model for Electro-
Optical devices, known as VLSIO. The VLSIO model includes both
electrical and also optical components; that is it allows combinations of 2D
VLSI chips as well as optical devices such as lenses and holograms. The
VLSIO model allows us to compare the time, volume and energy of a wide
variety of distinct electro-optical systems.

No other model had been previously invented. The VLSIO model
allows one to give a precise comparisons between proposed optical
algorithms, using well defined metrics such as time, volume and energy.

This is a new model of computation and we expect that the growth in
the optical technology during this decade would spur growth in algorithm
research.

See appendix A. 1 for more details.

(A.2) Efficient Electro-Optical Algorithms in the VLSIO model



Our goal here is to extend the known capabilities of electro-optical
devices, by design of new, more efficient algorithms for electro-optical
computing systems in the VLSIO model. This requires that we develop
algorithms that make optimal tradeoffs between key rzsources of time,
volume and energy. We used both known techniques from VLSI algorithms
as well as the special 3D properties of optical devices in the VLSIO model.

[Barakat and Reif, 87] developed efficient new VLSIO algorithms
using small volume and constant tkne for matrix multiplication and other
matrix problems. Recently [Reif and Tyagi,90] they developed efficient
optical algorithms for a much larger class of fundamental
problems(including most problems found in standard algorithm texts),
which occur frequently in practice.

Actually we consider the two models of computation-VLSIO and
DFT-Circuit. We describe both algorithms for a set of direct applications
of DFT, as well as algorithms that seem unrelated to the DF'; in particular
two sorting algorithms, an algorithm for the element distinctness, and also
both one dimensional and two-dimensional string matching algorithms. We
compare the performance of DFT-VLSIO algorithms with the known
VLSIO lower bounds. In many cases, these are near optimal and much
more efficient than other optical algorithms previously proposed and in
some cases our algorithms are optimal. See Appendix A.2.

(B) Lower bounds for Optical Computation

Our goal here is to determine lower bounds on volume, time, and
other resources (such as energy) of any elecro-optical computing system in
the VLSIO model to solve fundamental problems. We strive to get
tradeoffs between resources. To do this, we extend techniques developed
for obtaining lower bounds for VLSI.

(B.1) Lower Bounds for the Volume of Electro-Optical Devices
in the VLSIO model

INITIAL THEORITICAL RESULTS: Previously, [Barakat and
Reif,87] showed the first known lower bounds for any optical device to
compute various functions of n inputs within time T and volume V in the
VLSIO model. This was the first time anyone had given general lower
bounds on the volume and time tradeoff of Electro-Optical devices. The
lower boundb huid for a large class of problems (known as transitive
problems) including sorting, routing, and most other standard
combinatorial or algorithmic problems.



(B.2) Lower Bounds for the energy consumption of Electro-
Optical devices in the VLSIO model.

[Tyagi and Reif, 1989] recently for the first time proved lower bounds
on energy consumption, volume and time for a large class of problems
using any possible Electro-Optical devices. This is the first time anyone
has given general lower bounds on the energy consumption of Electro-
Optical devices. In particular, they showed for time T and energy E, the
Product ET is greater than a certain function of the input size and
demonstrated matching upper bounds on the ET product for shifting.
Again, these lower bounds hold for a large class of problems (known as
transitive problems), including sorting, routing, and most other standard
combinatorial or algorithmic problems. See Appendix B

(C) The Ray Tracing Problem

In a recent paper, [Reif, Tygar, Yoshida,90] we have investigated a
problem that is fundamental for optical system design. In particular, we
consider optical systems consisting of a set of refractive or reflective sur-
faces. The ray tracing problem is, given an optical system and the position
and direction of an initial light ray, to decide if a light ray reaches some
given final position. We assume the position and the tangent of the incident
angle of the initial light ray is rational. For many years, ray tracing has
been used for designing and analyzing optical systems. Ray tracing is now
also extensively used in computer graphics to render scenes with complex
curved objects.

The computability and complexity of various ray tracing problems are
investigated. Our results are:

* Ray tracing in three dimensional optical systems which consist
of a fixed finite set of curved reflective or refractive surfaces
is undecidable, even if all the surfaces are represented by
systems of rational quadratic inequalities. However, the
problem is recursively enumerable.

* Ray tracing in three dimensional optical systems which consist
of a fixed finite set of flat reflective or refractive surfaces is
undecidable, if the coordinates of the endpoints of some of
surfaces are irrational. However, the ray tracing system is



PSPACE-hard, if we restrict ourselves to surfaces with
rational coordinates.

For any d > 2, the ray tracing of d dimensional optical
systems which consist of a fixed finite set of flat reflective
surfaces is in PSPACE, if the positions of all the surfaces are
rational, and are placed perpendicular to each other.

For details, see Appedix C.

(D) Optical Memory Storage and Cormputation Using Fiber
Optic Delay Loops

The use of delay loops for memory is an old idea, dating back to the
use of mercury storage tubes in the early digital computers of the 50's.
Nevertheless it is an becoming an important now for optical computation,
since it is one of very few known methods for doing storage completely in
the optical domain. The key problem is that data can only be accessed with
the delay for the propagation around the loop.

In very new research , Reif and Tyagi have developed efficient
algorithms for bit serial optical computers using fiber optic delay lines for
auxiliary storage. In particular, they have some very interesting new
techniques for using a very small set of optical delay loops to manage the
intermediate storage for a wide range of algorithms and computations on
interconnect networks. The key new idea is a method for utilizing data just
at the right time so that there is no delay for the propagation around the
appropriate loop. This extends the work of [Jordan, 1989] at Boulder, who
has implemented a delay loop memory system and discussed its use in
simulating networks.

[Reif and Tyagi,to appear 90]

(E) Holographic Based Computing
(E.1) Reif's Holographic Message Routing System

This is a very interesting outgrowth of Reifs work in optical comput-
ing. See Appendix E for details.

Message routing in a parallel machine concerns providing arbitrary
interconnections between its processors. The Connection Machine, for
example, is a 65,536 processor bit serial SIMD parallel machine, requiring
65,536 messages to be routed to distinct addresses. There is a bottleneck in



this information transfer mechanism: the routing time in these parallel
machines is approximately a thousand times longer than the instruction
time. Optical hardware provides the potential ft- high bandwidth, low
crosstalk and power dissipation for connecting processors at the board-to-
board level. It has also been shown that impedance matching requirements
favor optics over electronics for fast data transfer.

Previous work on dynamic optical interconnects has employed spatial
light modulators (SLMs) in optical crossbars, or volume holograms to re-
configure connections in real-time. These two approaches have
disadvantages: the former requires setting N2 switches to achieve the
interconnections, while the latter is limited by the slow response time of
photorefractive recording materials.

Dynamic holographic architectures for connecting processors in
parallel computers have been limited by the response time of the
holographic recording media.

In [Reif,90] and [Maniloff, Johnson, and Reif,89] we present a novel
optical interconnect architecture, involving spatial light modulators (SLMs)
and volume holograms, which uses spatial light modulators to dynamically
control the holographic routing of messages between originator and
destination processors. This system is not limited by the response time of
the volume holographic recording media, which stores the destination
address: the routing is achieved as fast as the optical beam can be
modulated by the SLM.

Multiple-exposure holograms are stored in a volume recording media,
which associate the address of a destination processor on a spatial light
modulator with a distinct reference beam. A destination address
prcgrarnmed on the spatial light modulator is then holographically steered
to the correct destination processor.

A small prototype of the Holographic Message Routing System was
constructed by Maniloff and Johnson at Boulder CO in a collaborative
project with Reif. We in [Maniloff, Johnson, and Reif,89] present the
design and experimental results of a holographic router for connecting
four originator processors to four destination processors. Our first
prototype holographic router used ferroelectric liquid crystal (FLC) SLMs
to connect four originator processors to four destination processors at 10
kHz.



In [Reif,90] We also present results on reducing the number of
switches in the SLM required to route N originator processors to N
destination processors in a single time step.

(E.2) Holographic Memory Storage

The use of holography for memory storage is an old idea, but is
becoming increasingly practical and exciting due to the use of LiNbO 3
crystals which can store from hundreds up to a thousand images, where
each image can resolve a page of up to a few megabytes of storage. A key
problem in the practical development of holographic memory storage is the
use of orthogonal images to address Lhe holographic memory, which is
solved by the use of the optical expanders described in E.3 See appendix
E.3 for a further discussion of holographic matching and holographic
memory storage.

(E.3) Optical Expanders

An Optical Expander is a device that expands the ]imension of a
pattern space. This is a new idea due to Reif that was motivated by needs of
the holographic message routing system but appears to be a very basic
problem. An optical expander allows the Holographic Message Routi-g
System to be scaled up to very large sizes using a small (logarithmic
number) of address bits. Reif has worked with his student Akitoshi
Yoshida and with Barakat on new methods for optical expanders. For more
detail, see Appendix E.3



2 Summary of new Research in Spring, 1991
2.1 Optical Memory and Storage

One of the biggest challenges in the electro-optical field to to develop
metiods for fast memory storage and retrieval, for large amount of data.

2.2 Multi-frequency Optics

The use of multiple frequencies to aid in computation and in optical

storage is very intriguing; Reif is just beginning to explore this idea.

2.2.1 Multi-frequency Storage

Using a single fiber optic delay loop of approx a kilometer on a single
frequency, up to tens of kilobytes car, be stored. it is possible that with the
use of multiple frequency up to possibly a megabyte could be stored. Reif
is investigating these possibilities.

2.2.2 Multi-frequency Computation

Reif is investigating the use of multi-frequency in general
computation; this may decrease the volume required by electro-optical
devices. Also, Reif is investigating the use of multi-frequency to allow
numerical computations to be done in optics with much higher accuracy.
There may be limitations to the use of multi-frequency; Reif is investi-
gating lower bounds as well.
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(5)J.H. Reif and A. Tyagi, An Optical Delay Line Memory Model
with Efficient Algorithms, Advanced Research in VLSI
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(6)J. Reif, A. Yoshida, and D. Tygar The Computability and
Complexity of Optical Beam Tracing, 31st IEEE
Symposium on Foundations of Computer Science, Saint
Louis, Missouri, October, 1990.

(7)A. Tyagi and J.H. Reif, Energy Complexity of Optical-
Computations , appeared in The 2nd IEEE Symposium on
Parallel and Distributed Processing. Dallis, TX, December
1990.

(8)J. Reif, Optical Expanders Give Ccnstant Time Holographic
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(9) J. Reif and A. Yoshida. Optical Expanders with Holographic
Memory and Routing Applications, May, 1990, submitted
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4 Personnel
4.1 The Background of the PI:

Reif is a theoretical computer scientist and applied mathematician by
training, but is known for working in diverse areas, including robotics and
parallel computing, and has written over 80 papers in these areas. His re-
search style is to work on newly developing area, and to contribute basic
new models, new lower bound techniques and particularly new and novel
algorithmic techniques which can be used in the particular domain.

To solve problems in a new emerging area, Reif has brought to bear
to a large number of diverse techniques he has learnt in exploring other
related areas (some time obviously related, sometime apparently
unrelated). In some cases, Reif's work leads to results that may be
practical and that have been implemented. Examples are

(1) the parallel nested dissection algorithm of [Pan and Reif]
implemented in [Leiserson et. al, 86] and [Opsahl and Reif, 86]

(2). the massively parallel BLITZEN machine described in [Davis and
Reif, 88] and [Blevins et. al, 90], and

(3) the parallel compression described in [Storer and Reif, 88]
(4) as well as the holographic routing system described herein.
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Solving sparse systems of linear equations on the Connection
Machine (with C.E. Leiserson, J.P. Mesirov, L. Nekludova,
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Conference, A51, Boston, MA, July 1986.

Solving sparse systems of linear equations on the Massive Parallel
Machine (with T. Opsahl). First Symposium on Frontiers of
Scientific Computing, NASA, Goddard Space Flight Center,
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Real-time compression of video on a grid-connected parallel
computer (with J.A. Storer). 3rd International Conference
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4.2 Other Faculty Supported

d.3 Graduate Student Support

Akitoshi Yoshida (to receive masters)
Sandeep Sen (received PhD)
Steve Tate (received PhD)

5 Travel:

On March 15, 1989, visit to Boulder, Colorado to view 1st
demonstration of prototype holographic router being constructed in
collaboration between Reif and Johnson at University of Colorado at
Boulder. (This work began under AFSOR support, and was in 1989
augmented by a DARPA/ARO contract to Reif which has now expired.)



On Aug, 1989 visited Barakat at Harvard to work on paper on Optical
Expanders to improve holographic router. Begin computer simulations of
optical expander system.

On Sept, 1989 visit to Boulder, Colorado to discuss with Johnson
construction of a larger scale holographic router at University of Colorado
at Boulder.

On Sept, 1989 gave a talk optical computation and holographic routing
at Univ Saarbucken, West Germany on optical routing system. Possible
collaboration discussed.

On Feb, 1990 gave an invited talk on optical computation and
holographic routing at the Pen State.

On Feb, 1990 gave an invited talk on optical computation and
holographic routing to a large audience at the Parallel Computation
Workshop at Courant Inst, NYU.

On April, 1990 gave an invited talk on optical computation and
holographic routing at the University of North Carolina

On May, 1990 gave a invited talk on optical computation and parallel
algorithms at the Parallel Computation Workshop (ran by Vishkin at Univ
Maryland) Workshop at Annapolis, Maryland.

On June, 1990 gave an invited talk on optical computation and
holographic routing at Brandeis Univ, MA.

On July,1990 gave invited talks on optical computation and
holographic routing in Greece (at Crete) and at various locations in Israel
(at Technion, at the University of Tel Aviv, and the University of
Jerusalem)

6 Conference Talks:

J.H. Reif and A. Tyagi, Efficient Algorithms for Optical
Computing with the DFT Primitive in The 10th Conference
on Foundations of Software Technology and Theoretical
Computer Science , Lecture Notes in Computer Science,
Springer-Verlag, Bangalor, India, December 1990A.



J.H. Reif and A. Tyagi, An Optical Delay Line Memory Model
with Efficient Algorithms, Advanced Research in VLSI
Conference, MIT Press,March 25-27, Santa Cruz, CA,
1991B.

J. Reif, A. Yoshida, and D. Tygar. The Computability and
Complexity of Optical Beam Tracing, 31st IEEE
Symposium on Foundations of Computer Science, Saint
Louis, Missouri, October, 1990.

A. Tyagi and J.H. Reif, Energy Complexity of Optical-
Computations , appeared in The 2nd IEEE Symposium on
Parallel and Distributed Processing. Dallis, TX, December
1990.



Appendix A
VLSIO Algorithms

A.1 The VLSIO MODEL

DFT-VLSIO and DFT-Circuit Models

VLSI Model:

It has been observed many times that the conventional electronic
devices are inherently constrained by 2-dimensional limitations. Indeed,
this was the original motivation for the VLSI model of Thompson
[Thompson 80] which has been successfully applied to model such circuits.
The widely accepted VLSI model allowed us both to compare the
properties of algorithms such as area and time, and also to determine the
ultimate limitations of such devices.

Let us first summarize the 2-D VLSI model, which is essentially the
same as the one described by Thompson [Thompson 79]. A computation is
abstracted as a communication graph. A communication graph is very
much like a flow graph with the primitives being some basic operators that
are realizable as electrical devices. Two communicating nodes are adjacent
in this graph. A layout can be viewed as a convex embedding of the
communication graph in a Cartesian grid. Each grid point can either have
a processor or a wire passing through. A wire cannot go through a grid
point with a processor unless it is a terminal of the processor at that grid
point. The number of layers is limited to some constant y. Thus both the
fanin and fanout are bounded by 4 y. Wires have unit width and bandwidth
and processors have unit area. The initial data values are localized to some
constant area, to preclude an encoding of the results. The input words are
read at the designated nodes called input ports. The input and subsequent
computation are synchronous and each input bit is available only once. The
input and output conventions are where-determinate but need not be when-
determinate.

VLSIO Model:

The recent development of high speed electro-optical computing
devices allows us to overcome the 2-D limitations of traditional VLSI. In
particular, the optical computing devices allow computation to be done in 3
dimensions, with full resolution in all the dimensions.



A rather different model for 3-D electro-optical computation is
described in [Barakat, Reif, 87], which combines use of optics and
electronics components in ways that models currently feasible devices.
This model is known as the VLSIO model, with the 0 standing for optics.
In this model, the fundamental building block is the optical box, consisting
of a rectilinear parallelpiped whose surface consists of electronic devices
modeled by the 2-D VLSI model and whose interior consists of optical
devices. Communication from the surface is assumed to be done via
electrical-optical transducers on the surface. Given specified inputs on the
surface of the optical box, it is assumed that the output to the surface is
produced in 1 time unit. Note that we do not rule out the possibility of two
wide optical beams crossing, while still transmitting distinct information.
However, there is an assumption (justified by a theorem of Gabor [Gabor,
61]) that a beam of cross section A can transmit at most O(A) bits per unit
time. This is the only assumption made about the power of the optical
boxes.

For the purposes of upper bounds, we would have to be more specific
about the computational power of optical boxes. The use of electro-optical
devices will certainly allow us to overcome the 2-D limitations. The
VLSIO potentially has more advantages over 2-D VLSI than just 3-
dimensional interconnections of 3-D VLSI. In particular, it is well known
that a 2 dimensional Fourier transform or its inverse can be computed by
an optical device in unit time. In our discrete model, we assume that an
optical box of size n/ 2 x n"2 x n/ 2 with an input image of size nlt x n11 2

can compute a 2-D Discrete Fourier Transform (DFT) in unit time. We
call this the DFT-VLSIO model.

This is consistent with the capabilities of the electro-optical
components constructed in practice. In this case, the VLSIO model is
clearly more powerful than the 3-D VLSI model, e.g. since in that model
we cannot do a DFT in constant time. A VLSIO device consists of a
convex volume with a packing of optical boxes whose interiors do not
intersect, but may be connected by wires between their surfaces. This
allows for communication between two optical boxes. Note that the VLSIO
model encompasses the 3-D VLSI model as a subcase: the particular
subcase where each optical box is just a 2-D surface with no volume.

A VLSIO circuit is an embedding of a communication graph with the
nodes corresponding to optical boxes in a three dimensional grid. The
volume of a VLSIO circuit is the volume of the smallest convex box
enclosing it. Due to Gabor's theorem [Gabor, 61] establishing a finite



bound on the bandwidth of an optical beam, without any loss of generality,
we assume that only binary values are used in transmitting information.

The DFT-Circuit Model:

Let R be an ordered ring. A circuit over R consists of an acyclic
graph with a distinguished set of input nodes, and a labeling of all the non-
input nodes with a ring operation. In the DFV circuit model, we allow:

1. scalar operations such as x, /, + and comparison with 2
inputs, and

2. DFT gates with n inputs and n outputs.

The size of the DFT circuit is the sum of the number of edges and the
number of nodes. Recall from Parberry, Schnitger [Parberry, Schnitger,
88] that a threshold circuit is a Boolean circuit of unbounded fanin, where
each gate computes the threshold operation. Threshold circuits are shown
in Reif and Tate [Reif, Tate, 87] to compute a large number of algebraic
problems such as polynomial division, triangular Toeplitz inverse, integer
division, sin, cosine etc. in noCo) size and simultaneous 0(1) depth.

Since the first output of a DFT gate is the sum of the inputs, and since
comparison operations are allowed, a DFT circuit clearly has at least the
power of a threshold circuit of the same size and depth. The question we
address in this section is the power of the DFT operation above and beyond
its power to compute threshold. Note that no non-trivial lower bounds on
a threshold circuit computing a DFT are known. But, just by its definition,
at least n threshold gates are required for a DFT computation.

A2 Efficient Optical Algorithms Using The DFT

Primitive

A2.0

The optical computing technology offers new challenges to the
algorithm designers since it can perform an n-point DFT computation in
only unit time. Note that DFP' is a non-trivial computation in the PRAM
model. We develop two new models, DFT-VLSIO and DFT-Circuit, to
capture this characteristic of optical computing. We also provide two
paradigms for developing parallel algorithms in these models. Efficient



parallel algorithms for many problems including polynomial and matrix
computations, sorting and string matching are presented. The sorting and
string matching algorithms are particularly noteworthy. Almost all of
these algorithms are within a polylog factor of the optical computing
(VLSIO) lower bounds derived in [Barakat, Reif 87] and [Tygar, Reif 89].

A2.1

Over the last 15 years, VLSI has moved from being a theoretical
abstraction to being a practical reality. As VLSI design tools and VLSI
fabrication facilities such as MOSIS became widely available, the algorithm
design paradigms such as systolic algorithms, that were thought to be of
theoretical interest only, have been used in high performance VLSI
hardware. Along the same lines, the theoretical limitations of VLSI
predicted by area-time tradeoff lower bounds have been found to be
important limitations in practice. The field of electro-optical computing is
at its infancy, comparable to the state of VLSI technology, say, 10 years
ago. Fabrication facilities are not widely available-instead, the crucial
electro-optical devices must be specially made in the laboratories.
However, a number of prototype electro-optical computing systems-
perhaps most notably at Bell Laboratories under Wong, as well as optical
message routing devices at Boulder, Stanford and USC, have been built
recently. The technology for electro-optical computing is likely to advance
rapidly in the 90s, just as VLSI technology advanced in the late 70s and
80s. Therefore, following our past experience with VLSI, it seems likely
that the theoretical underpinnings for optical computing technology-
namely the discovery of efficient algorithms and of resource lower bounds,
are crucial to guide its development.

What are the specific capabilities of optical computing that offer room
for new paradigms in algorithm design? It is well known that optical
devices exist that can compute a two-dimensional Fourier transform or its
inverse in unit time, see Goodman [Goodman, 82]. This is a natural
characteristic of light. This opens up exciting opportunities for the
algorithm designers. In the widely accepted model of parallel
computation-PRAM, not many interesting problems can be solved in 0(1)
time. In particular, the best known parallel algorithm for Discrete Fourier
Transform-FFT, takes time O(log n) for an n-point DFT. Given this
powerful technology, the question we address is, "which problems can use
the DFT computation primitive gainfully?" It is not immediately clear that
given a problem, apparently disparate from DFT, such as sorting, how one
reduces it to several instances of DFT to derive an efficient algorithm. We
identify two general techniques that benefit a host of problems. First, we



show a way to compute 1-dimensional n-point DFI' efficiently using a
series of 2-dimensional DFTs. Note that the optical devices compute a 2-
dimensional DFT. However, the 1-dimensional DFT seems to be the one
which is more naturally usable in most of the problems. Secondly, we
demonstrate an efficient way to perform a parallel-prefix computation with
DFT primitives. Equipped with these two techniques, we propose constant
time solutions for a variety of problems including sorting, several matrix
computations and string matching.

We consider discrete models for optical computing with a DFT primi-
tive. In particular, an n-point DFT operation or its inverse can be
computed in unit time using n processors. The development of a new
model of computation is a task full of trade-offs. Only the essential
characteristics of the underlying computing medium should be reflected in
the model. Any unnecessary characteristics only serve to undermine the
usefulness of such a model. PRAM (parallel random access machine) has
provided a much needed model for the development of parallel algorithms
for some time now. The algorithm designers do not have to worry about
underlying networks and the details of timing inherent in the VLSI
technology used to implement the processors. In a similar vein, our
objective is to develop a model that captures the essence of optical
computing medium with respect to algorithm design. We believe that the
most important characteristic that distinguishes the optical technology from
the VLSI technology is the ability to compute a powerful primitive, DF,
in unit time. Not surprisingly then, this is the focus of our models. Our
new models are:

" [DFT-Circuit Model:] where we allow an n-point DFT
primitive gate along with the usual scalar operations of
bounded fanin.

* [DFT-VLSIO:] which extends the standard VLSI model to 3-
dimensional optical computing devices that compute the 2-D
DFT as a primitive operation. We refer to an electro-optical
computation as VLSIO, where 0 stands for optics.

Note that although we did not mention a PRAM-DFT model where a
set of n processors can perform a DFr in unit time; all the algorithms in
DFT-Circuit model work for such a PRAM-DPT model.

A PRAM-DF can simulate a DF-Circuit of size s(n) and time 1(n)
with s(n) processors in time O(t(n)). Hence, a PRAM-DFT' model is an



equally acceptable choice for the development of parallel algorithms in
optical computing.

Our main results are efficient parallel algorithms for solving a
number of fundamental problems in these models.

The problems solved include:

1. prefix sum

2. shifting

3. polynomial multiplication and division

4. matrix multiplication, inversion and transitive closure.

5. Toeplitz matrix multiplication, polynomial GCD,
interpolation and inversion.

6. sorting

7. 1 and 2 dimensional string matching

Note: The sorting and string matching algorithms were not at all
obvious. Although, we don't have any lower bounds in the DFT-circuit
model, many of these parallel algorithms are optimal with respect to the
VLSIO model. The known lower bound results in VLSIO are as follows.
Barakat and Reif Barakat, Reif 87] showed a lower bound of (2(1f3/2) on
V T312 of a VLSIO computation for a function f with information
complexity If. V denotes the volume of the VLSIO system computing f.
We [Tyagi, Reif 89] proved a lower bound of .-2(11f( 1r12) ) on the energy-
time product for a VLSIO model with the energy function f(x). We
compare our results with the best-known PRAM algorithms for the
corresponding problems. All the bounds are in Big-Oh notation (0).



Appendix B.
Lower Bounds for the energy consumption of
Electro-Optical devices in the VLSIO model.

Over the last 15 years, VLSI has moved from being a theoretical
abstraction to being a practical reality. As VLSI design twols and VLSI
fabrication facilities such as MOSIS became widely available, the algorithm
design paradigms such as systolic algorithms, that were thought to be of
theoretical interest only, have been used in high performance VLSI
hardware. Along the same lines, the theoretical limitations of VLSI
predicted by area-time tradeoff lower bounds have been found to be
important limitations in practice. The field of electro-optical computing is
at its infancy, comparable to the state of VLSI technology say 10 years ago.
Fabrication facilities are not widely available-instead, the crucial electro-
optical devices must be specially made in the laboratories. However, a
number of prototype electro-optical computing systems-perhaps most
notably at Bell Laboratories under Wong, as well as optical message
routing devices at Boulder, Stanford and USC, have been built recently.
The technology for electro-optical computing is likely to advance rapidly
in the 90s, just as VLSI technology advanced in the late 70s and 80s.
Therefore, following our past experience with VLSI, it seems likely that
the theoretical underpinnings for optical technology-namely the discovery
of efficient algorithms and of resource lower bounds, are crucial to guide
its development.

Barakat and Reif [Barakat, Reif 871 developed a model for electro-
optical computing systems. They refer to an electro-optical computation as
VLSIO, where 0 stands for optics. Since we anticipate the number of
VLSI components in optical computers to be large, the VLSI prefix in
VLSIO can be reasonably used. The following two significant aspects
distinguish VLSI from VLSIO. VLSIO has a 3 dimensional character.
Secondly, the information in VLSIO is carried by optical beams rather than
electrical currents.

Just as area, energy and time are three fundamental resources in a
VLSI computation, volume, energy and time are the resources of interest
in a 3-D VLSI circuit or an optical computing system. The volume, time
lower bounds for optical computations have been established by Barakat
and Reif [Barakat, Reif 871 along the lines of AT2 VLSI bounds. But, a
similar asymptotic analysis of energy bounds in VLSIO computations is
missing. A study of energy requirements in 3-D VLSI has also not been
undertaken. Energy has received increased attention recently because the



power consumption largely determines the total cost of a high performance
computer due to heat dissipation. The theoretical physicists have also
considered the viability of characterizing the computational costs entirely
in terms of energy. All of the recent research activity in energy
complexity has been directed at the study of the energy requirements in 2-
D VLSI computations. More specifically, the first formal result in
switching energy was due to Lengauer, Mehlhorn [Lengauer, Melhom 81],
which shows that the switching energy of transitive functions, E, is
-2(n2/P log(AP2/n2)), which is .q(n2) for AP2 = O(n2). P is the period of a

pipelined computation. Kissin [Kissin 82, 85] proposed a formal model for
switching energy distinguishing between uniswitch and multiswitch models.
When a wire is assumed to switch at most once during the course of com-
putation, it is a uniswitch circuit. Most of the pipelined computations fall
in this class. The more general model, that allows each wire to switch any
number of times, is called the multiswitch model. Snyder, Tyagi [Snyder,
Tyagi 86] and Leo [Leo 84] considered variations on Lengauer, Mehlhom
result. The first tight bound on uniswitch and multiswitch energy-period
product [92(n2)] for shifting was obtained by Aggarwal et. al. [Aggarwal et.
at, 88]. Tyagi [Tyagi 89] derived a tight bound on multiswitch energy,
-2(n'-), and average case uniswitch and multiswitch energy. The 3-D VLSI
model has been studied by Rosenberg [Rosenberg 81], Preparata
[Preparata 83], and Leighton, Rosenberg [Leighton,Rosenberg 86] with
respect to volume-time trade-offs. We analyze the energy requirements in
3-D VLSI and VLSIO systems.

The energy consumption model developed in Kissin [Kissing 82]
applies to the 3-dimensional VLSI as well. But, as a first step, a consistent
model of energy consumption in optical computing is needed. In this
section, we propose two models for the energy consumption in an optical
computer which are consistent with the VLSIO model described in
[Barakat, Reif 87]. Within these models, we demonstrate tight bounds on
both energy and energy-time product for the optical computation of several
functions.

A key property which we have considered in this work is the energy
consumed by an electro-optical device. This is determined by summing the
energy consumed by each wire and by each optical beam. This energy
consumption is assumed to be due to switching. In all the energy models
considered to date-a wire of length d consumes switching energy e(d),
which is consistent with the currently used CMOS technology. However, in
an optical computation, an energy cost non-linear (even exponential) in the
length of the switching wire is justifiable for some frequency range. This
leads to a generalization of the energy model. In particular, we assume an



eiergy function, f(d), such that f(d) energy is consumed by a wire/beam of
length d switching between 0 and 1. Here f() -s a function that -nay or
may not be nonlinear, but f and its first derivative must be continuous
functions. We argue thatf(d) can, in theory, be an exponential function in
d for optical beams. We also show why, in practice, f(d) may be a
polynomial or even a linear function. Our energy lower bounds encompass
any such energy function f(d). Note that the case of a nonlinear energy
function has not been considered previously even for 2-D VLSI. The local
cutting techniques used for the linear energy model consider the energy
consumption of the unit-length wire segments incident on the cut.
However, in such a local context, any non-linear energy function, at best,
measures the same energy consumptin at the cut as does the linear energy
function. The unit length segments consume the same order of energy for
all the energy functions. Hence a somewhat more global lower bound
approach is needed in the generalized energy model.

Results: We derive the lower bounds, shown in the table below, on
uniswitch and multiswitch energy E and energy-time product ET of a
transitive function. The matching upper bounds are established for a
transitive function: shifting.

Note that the objective of multiswitch circuits is to find a tight
embedding for the devices under the premise that it leads to shorter links.
The overall energy saving is derived from the observation that the repeated
use of short links leads to a smaller ET product. On the other hand, a
uniswitch circuit will have to make links long in order to propagate inior-
mation far enough. But it will use every link only once. Hence, as shown
in [Tyagi 89], in 2-D VLSI a multiswitch circuit always has a lower energy
consumption than a uniswitch circuit. Interestingly, as we show, the only
3-D VLSI examples satisfying the multiswitch lower bound for f(x)< x41 3

are uniswitch circuits. We believe that no 3-D circuits exist satisfying the
lower bound in this energy function range. This says that for the 3-D case,
there is a zone :x <f(x)< x413, where long links leading to higher
volume perform better than a circuit with short links, defying the
conventional wisdom.



Appendix C
Complexity of Optical Ray Tracing

We examine ray tracing problems in [Reif, Akitoshi, and Tygar, 90].
The history of ray tracing goes back at least to Archimedes, who examined
images formed by a mirror tc understand the law of reflections. In the
15th to 18th centuries, many scientists and astronomers in Europe worked
on geometrical optics and invented optical instruments such as telescopes.
In 1730, Newton published his book "Opticks" in which he formally
defined the reflective and refractive laws of optics, and first defined and
investigated some ray tracing problems. These classical ray tracing
problems are very important to the design of most optical systems which
consists of a set of refractive or reflective surfaces, and involve tracing the
path of rays to investigate the performance of the systems. Ray tracing
also has important application in computer graphics, where ray tracing is
used to render pictures which consist of objects with surfaces that reflect or
refract light rays.

The ray tracing problem is a decision problem: given an optical
system (namely, a finite set of reflective or refractive surfaces) and an
initial position and direction of a light ray and some fixed point p, does the
light ray eventually reach the point p.

Our optical systems consist of a finite set of optical objects that may be
totally reflective (we call these mirrors), partially reflective (we call these
half-silvered mirrors), or totally absorbent (we call these lenses). We
restrict ourselves to optical systems constructed out of flat (e.g., line
segments) mirrors and half-silvered mirrors; and out of lenses whose
boundaries are quadratic curves. (We call these lenses quadratic lenses.)
Do mirrors reflect if a light-beam is directed exactly at an endpoint? It
will turn out that this matters for the case when we furm a corner out of
two mirrors. What should happen when the light beam is directed exactly
at the corner? We shall allow mirrors (and half-silvered mirrors) to
reflect entirely along the surface of either a closed, half-closed, or open
line segment.

The positions of our mirrors, half-silvcred mirrors, and lenses can be
either rational or irrational. If the optical system consists only of mirrors
or half-silvered mirrors with endpoints with rational coordinates, we say
that the optical system is rational. If the optical system contains mirror or



half-silvered mirrors with endpoints that have irrational coordinates then
we say the optical system is irrational.

We are interested in if the light will reach a final certain position, and
not in the intensity of the light at that position. Throughout this section, we
assume that the path taken by light rays are determined by the classical laws
of optics: the law of reflection and the law of refraction.

(The law of reflection states that the incident angle and the reflected
angle are equal, and the law of refraction states that the angle of refraction
depends on the incident angle and the index of refraction of the materials.)
We always assume that the initial position of the light ray has rational
coordinates and the tangent of the initial incident angle is rational, and the
test point p has rational coordinates. (In general, in our lower bound
proofs, it suffices to let the light rays initially enter perpendicular to a
window of the optical systems.) Our surprising discovery is that if the
optical system is rational it may have high complexity, or even be
undecidable. We generally denote n to be the number of bits in binary en-
coding of the optical system.

Our results of the computational complexity for ray tracing in various

optical systems may be summarized as follows:

1. Ray tracing in three dimensional optical systems which consist
of a finite set of mirrors, half-silvered mirrors, and quadratic
lenses is undecidable, even if the endpoints of the objects in
the optical system all have rational coordinates. However, the
problem is recursively enumerable.

2. Ray tracing in three dimensional optical systems which consist
of a finite set of mirrors is undecidable, if the mirrors'
endpoints are allowed to have irrational coordinates.
However, the ray tracing problem is PSPACE-hard, if we
restrict ourselves to mirrors with endpoints that are rational
coordinates.

2. For any d _> 2, ray tracing of d dimensional optical systems
which consist of a finite set of mirrors surfaces lies in
PSPACE, if the positions of all the surfaces are rational, and
they lie perpendicular to each other. For d > 3, the problem
is PSPACE-complete.

We consider three optical models in this section:



In optical model (1), each optical system consists of a finite set of
quadratic lenses, mirrors, and half-silvered mirrors. A light ray travels
through the system with reflections or refractions. We show that the
problem of deciding if the light ray will reach a given final position in this
system is undecidable. In order to show this, we simulate a universal
Turing machine with this optical model. What is perhaps surprising, is that
our optical system has a fixed number of optical lenses and mirrors, and
yet the ray tracing problem for it simulates any recursive enumerable
computation, where the input is given by the initial position of the light
ray.

In optical model (2), each optical system consists of a finite set of
mirrors and half-silvered mirrors in three dimensional space. We again
show that the problem of deciding is undecidable. To show this, we
simulate a 2-counter machine with this optical model. Next, we consider
the compatational complexity when we restrict ourselves to rational optical
systems. In this case, we show that the problem is PSPACE-hard. To
show this, we first define a certain augmented bounded 2-counter machine.
Then, we simulate this augmented bounded 2-counter machine with this
optical system. By showing the augmented bounded 2-counter machine can
compute an arbitrary polynomial space problems, we conclude that the
problem of deciding if the light ray reach a given final position in this
system is in PSPACE-hard. (Although we show that the problem is
PSPACE-hard, we do not even know if this restricted problem is
decidable.)

Optical model (3) is a generalization of optical model (2). In optical
model (3), each optical system occurs in a unit-sized d dimensional
hypercube. The hypercube contains a rational optical system of mirrors.
Each of the mirrors lies perpendicular to every other mirror. We show
that the problem of deciding if the light ray will reach a given final posi-
tion has a non-deterministic polynomial space algorithm, thus showing the
problem is in PSPACE.

Theoretically, these optical systems can be viewed as general optical
computing machines, if our constructions can be carried out with infinite
precision, or perfect accuracy. However, these systems may not be
practical, since the above assumption may not hold in physical world. The
motivation for this work comes from an interest in investigating the
problem complexities in ray tracing problems.



Apppendix D
Optical Memory Storage and Computation Using

Fiber Optic Delay Loops
D.1 Data Storage: A Key Problem in Optical

Computing

Optical computing technology can obtain extremely high data rates
beyond which can be obtained by current semiconductor technology.
Therefore, in order to sustain these extremely high data rates, the dynamic
storage must be based on new technologies which will likely be wholly or
partly optical. Jordan at the Colorado Optoelectronic Computing Systems
Center and some other groups have proposed and used optical delay loops
for dynamic storage. In these data storage systems, an optical fiber, whose
characteristics match the operating wavelength, is used to form a delay
line loop. In particular, the system sends a sequence of optically encoded
bits down one end of the loop and after a certain delay (which depends on
the length and optical characteristics of the loop), the optically encoded bits
appear at the end of the loop, to be either utilized at that time and/or once
again sent down the entrance of the loop.

This idea of using propagation delay for data storage dates back to the
use of mercury delay loops in early electronic computing systems before
the advent of large primary or secondary memory storage. Jordan at
Boulder has achieved over 104 bits per fiber loop of approximately one
kilometer. This was achieved in a small, low cost prototype system with a
synchronous loop without very precise temperature control. Nevertheless,
Jordan used such a delay loop system to build the second (after Wong's)
known purely optical computer (which can simulate a counter). This does
not represent the ultimate limitations of optical delay loops, which could in
principal provide very large storage using higher performance electro-
optical transducers and the use of multiple loops. Actually, the key
problem with such a dynamic storage is that it is not a random-access
memory. A delay line loop cannot be tapped at many points since a larger
number of taps leads to excessive signal degradation. This implies that if
an algorithm is not designed around this shortcoming of the dynamic
storage, it might have to wait for the whole length of the loop for each data
access. Systolic algorithms also exhibit such a tight inter-dependence
between the dynamic storage and the data access pattern.



D.2. Our New Delay Loop Memory Model
and Our Results

We have studied the repercussions of the use of memory loops on
algorithm design. The use of delay loops as memories is necessitated by
the required extremely high data rates.

In [Reif and Tyagi,90], we proposed the delay loop memory(DLM)
model as a theoretical model of sequential electro-optical computing with
dynamic storage using a fixed number of delay loops.

Our theoretical model contains the basic features that current delay
loop systems use, as well as systems in the future are likcly to use. It
would seem that the restrictive discipline imposed on the data access
patterns by a loop memory would degrade the performance of most
algorithms, because the processor might have to idle waiting for data. We
demonstrate that an importint class of algorithms, ascend/descend
algorithms, can be realized in the loop memory model without any loss of
efficiency. In fact, the sequential realizations span a broad range for the
number cf loops required. A parallel implementation performing the
optimal amount of work is also shown. Some matching lower bounds are
illustrated, as well. of optical delay systems that exists and may be built in
the feature.

We developed an optimal implementation of the ascend-descend class
of algorithms on DLM model. Note that many problems including
merging, sorting, FFT, matrix transposition and multiplication and data
permutation are solvable with an ascend/descend algorithm which is a very
general class of parallel algorithms described by [Ullman,871 text book on
Computational Aspects of VLSI.

An ascend or descend phase takes time 0(n log n) in DLM model
using log n loops of geometrically increasing sizes.], 2,4,...n. Note that

a straight-forward emulation of a butterfly network with
0(n log n) time performance requires 0(n) loops: n loops of size 1,

n/2 loops of size 2, n/4 of size 4, .., I of size n. It can be implemented in

time nl. 5 just with two loops of sizes "/n and n each. This can be
generalized into an ascend-descend scheme with time n k + nl. 52-12 with 1
< k < l+log n loops. At this point in time, a loop is a precious resource in
optical technology, and hence tailoring an algorithm around the number of
available loops is an important capability. The k-loop adaptation of the
ascend/descend algorithm provides just this capability.

A single loop processor takes n2 time. A matching lower bound also
exists for this case, which is derived from one tape Turing machine
crossing sequence arguments. Matrix multiplication and matrix
transposition can also be performed in DLM without any loss of time.



We also consider a butterfly network with p log p DLM processors,
where 1 < p < 1+n. The work (# of processors, time product) of this
network for ascend-descend algorithms is shown to be O(n log n). Note
that a butterfly network performs n log n work. This shows that the
ascend-descend algo-ithms can be redesigned in such a way as not to incur
any work loss due to the restrictive nature of the loop memories.



Appendix E
Holographic Based Computing

E.1 Holographic Message Routing

We describe an clectro-optical message routing bystein fu sending N
messages between N processors in constant time using 2N log N switches.
A spatial light modulator (SLM) is used to holographically steer messages
directly to their destination processor. The system is unique in that it uses
fixed holograms to achieve free space dynamic routing. A small prototype
implementation has been already constructed [Maniloff, Johnson and
Reif,89]. (An appendix describes practical issues.)

We introduce a new optical technique which we call the optical
expander. We discuss how an optical expander can be used to solve a key
problem, namely the orthogonality of message patterns. In particular, the
optical expander system is used to decrease the number of address bits
used by the router and to improve separation of distinct address patterns
matched by the holograms. We discuss the theory of the optical expander
system and give for the first time a rigorous proof of its correctness and
performance.

E.1.1 The Potential of Optical-Electronic Systems

The inherent high parallelism and connectivity of optical signal
processing lends itself directly to such applications as optical
interconnection. (See the recent text of [Feitelson,88]). The recent
development of moderately high speed, high dynamic range spatial light
modulators has lead to the prototype development of variety of optically
based signal processing systems.

E.1.2 Our Holographic Routing System

Dynamic message switching is the problem of sending N messages
between N processors, where the destination permutation is given
dynamically. In this section we describe a novel holographic message
routing system for dynamic message switching. We use a spatial light
modulator (SLM) to holographically steer messages directly in free space
to their destination processor. An important innovation of our holographic
routing system is the use of fixed holographs to do the dynamic message
switching. It uses 2N log N boolean switches, which is optimal within a
factor of 2.



In brief, our holographic message routing system is a unique
architecture which uses N multiple-exposure holograms, each containing N
images to connect N processors to N processors, via free space routing.
The system uses N spatial light modulators (SLMs), each with 2log N
pixels. A column of light illuminates each processor's SLM which is
programmed with an encoded address for a destination processor. This
optically encoded address is routed directly to the correct processor by a
hologram containing N images, each correlated with a particular
destination processor. This optical interconnection network is a direct
message router taking constant time as compared to conventional fixed
interconnection networks which require time delay at least log N. Our
holographic message system can be applied to do very high speed message
routing for massively parallel machines such as the CONNECTION
machine.

E.1.3 An Implementation of the Holographic Routing System

There was a collaborative Optical Routing Project between theoretical
computer scientist, John Reif, at the Computer Science Department, Duke
University and optical engineers Kristina Johnson and Eric Maniloff at the
Center for Optoelectronic Computing Systems at University of Colorado,
Boulder. While Reif initially conceived of the theory of the system, the
practical implementation was due to Johnson and Maniloff, who built a 4
by 4 prototype holographic routing system (for implementation details see
[Maniloff, Johnson and Reif,89]) at the Center for Optoelectronic
Computing Systems at University of Colorado, Boulder. This running
prototype implementation was completed in April, 1989. Because of the
small size of this prototype system, an optical expander system was not
required. They have also developed in [Strasser, Maniloff, Johnson,
Goggin,89] a, procedure for recording multiple-exposure holograms with
equal diffraction efficiency in photorefractive media. Reif has also
directed computer simulations of the message routing applications.(the
availability of a device which can control light with a high spatial resolu-
tion and with a short cycle time is critical to the successful realization of a
second generation our system; for this we acknowledge the technical
assistance from Derek Lile, Colorado State University, on the development
of Il-V MQW/CCD SLMs.)

E.1.4 Comparison with other Routing Systems

Interconnection networks in parallel processing computers are very
important subjects. There are many interconnection networks for different



applications, since different algorithm requires different degree of
globality of the interconnects. Because of the availability of non-linear
devices as gates which is extensively used in the interconnection network,
electrically implemented interconnections are widely seen among many
computer organizations. However, the fture of electric interconnections is
not necessarily bright. The problem comes from its restricted dimension-
the wiring is confined on a two dimensional plane-and from RC delay on
interconnections.

These drawbacks which are found in electrical interconnections do not
exist in optical interconnections. Light beams need not be confined in a
wave guide such as an optical fiber, but can travel freely through space. In
addition, light beams can have a great bandwidth, and the propagation of
light traveling through space or in a fiber is not affected by resistance,
capacitance, or inductance. Thus, optical interconnections offer a high data
transfer rate in a simple architecture by a set of light beams freely
traveling through space. The various papers discuss the potential of optical
interconnections.

Among various message routing networks the highest level of
interconnection is a crossbar network which uses N2 interconnects to
connect N source units and N destination units. The number of electrical
interconnection wires required by each processing unit to communicate
with the other processing unit on- and off-board will limit the feasible size
of the network. The property of light beams which we briefly mentioned
above may give a great potential for an alternative high-speed optical
crossbar type of networks.

The property of light beams which we briefly mentioned above may
give great potential for an inexpensive and high-speed optical crossbar
network.

There are several optical interconnection networks which have already
been proposed. One is optical crossbar network. The optical crossbar
network typically uses an N x N spatial light modulator (SLM) to connect
N source processors to N destination processors. Each source processor
uses a column of the N x N SLM to address one of N distinct destination
processors. The advantage cf this optical crossbar is that once all the
entries of the N x N SLM are set, the message can be transmitted at very
high data rates, namely at optical pulse modulation rate. This matrix-vector
multiplier based crossbar network has two drawbacks. One is that at most
I/N of the power incident on the SLM will reach the detector. The other is
that it takes a long time to electrically set an N x N SLM.



E.2 Holographic Memory Storage

Holographic Matching
In this section, we describe the general idea of holograms and that of

holographic associative matching.

Principle of Holograms
A photograph records the intensity distribution of the light wave

scattered by an object. A hologram, however, records the intensity and
phase distribution of the light scattered by an object. Since a hologram has
the information about the intensity and the phase of the scattered light
wave, we can reconstruct the image of the object from the hologram.

In order to record the phase information of the scattered light, we
superimpose a reference wave to the light wave scattered by an object.
Then, the resulting interference pattern can be recorded on a photographic
plate.

Wave Front Recording and Associative Matching
For wave front recording and holographic associative matching, two

coherent beams are used in the recording. Both the object beam, which we
wish to record, and a reference beam illuminate the photographic medium.
The photographic medium records the interference fringes which are
produced as the interaction between the object beam and the reference
beam. After recording, when the recorded fringes are illuminated by a
reconstruction beam-typically a reproduction of the reference beam, the
fringes diffract the reconstruction beam into three main beams; the zero
order term which corresponds to the reconstruction beam, a first order
diverging virtual image which corresponds to the reconstructed object
beam, and the other first order converging real image which corresponds
to the conjugate of the object beam. The arrangement of the recording
must be carefully done so that these beams do not overlap each other.
When the wave length or the position of a reconstruction beam differs
from those of the refcrence beam, the reconstructed images are altered.

The geometry of hologram formation affects the diffraction properties
of the hologram. The thickness of plane holograms is small compared to
the spacing of the interference fringes recorded on the media. This type of
the holograms can be considered as a plane diffraction grating. On the
other hand, volume holograms are thick, and the interference fringes are
recorded in three dimensions. Thus, the volume holograms can be consid-
ered as volume diffraction gratings where the diffracted beams obey
Bragg's law. The reconstruction of the volume hologram is very sensitive



to the direction of the reconstruction beam. If this direction is not identical
to the direction obtained from Bragg's law, there will be no images
reconstructed. This property offers a possibility in making multiple-
exposure distinct holograms in a single piece of volume photographic
medium. The distinct holograms may be recorded by using distinct
reference beams. Later, each hologram can be reconstructed by using the
corresponding reference beam as a reconstruction beam. Thus, illuminating
a multiple-exposure volume hologram by a reconstruction beam can be
viewed as addressing a stored image associated with the reconstruction
beam.

Mtdia for Volume Holograms
As a media for volume holograms, thick photographic emulsion has

been used for many years. However, other mediums such as various types
of photorefractive nonlinear optical crystals have received much attention
for their flexibility in dynamic recording. The most widely used such
media is Fe-doped lithium niobate (LiNbO3). When this type of crystals is
illuminated, the concentration of photocarriers in the crystal will be
changed. These photocarriers will be trapped, and will produce the change
in the refractive index of the crystal.

Many researchers have investigated multiple-exposure holograms on
volume media. They showed hundreds of distinct holograms may be
recorded, if the medium is thick enough, and the different reference beams
has an angular displacement of a few minutes. Staebler et al. showed that
as long as the distinct reference beams enter at angular displacements of at
least n/1000, it is possible to record at least 512 multiple holographic
exposures in a volume medium. Therefore, we can use a single volume
hologram to store N = 512 images as long as we use N mutually
orthogonal addressing beams. These N beams can be constructed by use of
our optical expander.

Holographic Memory Storage
Holograms can be used to implement random access memory storage

systems. The basic idea of holographic memory storage is that the data are
arranged in blocks which are stored in holograms. A block of memory can
be retrieved at time by using its corresponding reconstruction beam. This
type of memory is particularly suited for read-only applications, since the
holograms can be fixed. However, dynamically modifiable holograms such
as photorefractive materials may give potential for active holographic
memory storage systems. The work in the 70s promised the advantage of
holographic memory over the other types of memory in terms of
bit/volume ratio, size, and throughput. However, the lack of appropriate
recording materials and fast addressing methods kept holographic memory



behind the progress of MOS VLSI based memory. Recently, the advance in
recording materials such as various photocrystals and, the success in
fabricating an array of large number of micro lasers have provided a
chance for holographic memory to be efficiently implemented. Several
prototypes of such a memory storage system have been developed at
Microelectronics and Computer Technology and Bellcore.

In a typical holographic memory storage system, the data are
organized in blocks. Our proposed holographic memory storage system
uses d light beams to retrieve N blocks of data, where d 2 log N.
Without our optical expander, such systems require either a beam deflector
to deflect a laser beam into one of N unique directions, or an electrically
implemented line decoder which accepts log N bits of binary information
and creates one of N unique laser beams. Both approaches have several
disadvantages. We mention these disadvantages in E.3. Optical Expander.

Our optical expander will provide an alternative approach by utilizing
its three dimensionality with flexibility and accuracy provided by digital
operations.

E.3 Optical Expanders

An optical expander takes as an input a boolean pattern of size d = c
logN bits, and expands it to a boolean pattern of size N bits, where c is
a constant satisfying 1 _< c _< 2. Each expanded boolean pattern is required
to be mutually orthogonal to the others. Thus, an optical expander can be
viewed either as an electrooptical line decoder which converts d bits of
optically encoded binary information to up to N unique optical outputs, or
as a digital beam deflector which uses a control signal encoded in d bits to
deflect an input laser beam into one of N directions.

More precisely, an optical expander takes as input one of N distinct
boolean vectors Pz,P2' ... P, of length d. We call these vectors the input
patterns. Each input pattern is optically encoded by using d pixels, each
pixel being either ON (denoted by 1) or OFF (denoted by 0). We will
require that each input pattern has exactly d12 pixels ON. The optical
expander produces a spatial output pattern r, from given input pattern p,.
Each output pattern r, is one of N distinct orthogonal boolean vectors of
length N.

In addition to our standard optical expander, we define a generalized
optical expander. A generalized optical expander is also an electrooptical
system which takes as an input a boolean pattern of size d bits and expands
it to a boolean pattern of size N bits. Here, unlike the standard optical
expander, each expanded boolean pattern may have more than one ON
(denoted by 1) in its elements. In other words, a generalized optical
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expander creates a boolean pattern of size N which is a bit wise OR
product of some subset of the N mutually orthogonal boolean patterns. The
advantage of this generalized optical expander becomes clear in certain
applications. It can be used in broadcasting messages in a message switching
network. It can also be applied to a holographic memory system with a
multiple readout capability, where bit wise OR, AND, or XOR products of
several images (data) can be directly obtained as a superimposed output on
the detector array.

Our optical expander accepts an input pattern encoded in d bits, and
expands it into a pattern encoded in N bits. We wish to have an exponential
expansion, so d has to be represented by d = c logN for some constant c.
First, we describe an optical expander with the constant c = 2. Later, we
will look at an encoding scheme with the constant c = 1 for a large d. This
allows us to produce a greater number of orthogonal patterns with the
same number of input bits. However, setting c = 2 offers several
advantages. First of all, it makes the coding scheme simple, since d = 2
logN offers a coding scheme where each pi can be a concatenation of two
binary strings: one representing i in binary format, and the other
representing i in one's complement binary format. Thus, p, can be easily
produced from the binary-coded output from the electrical interface
without any additional electrical mapping interfaces. Secondly, it also
makes optical interconnection patterns from d optical inputs to the
threshold array regular, thus resulting in a simple implementation. Finally,
it can provide an addressing scheme for a generalized optical expander.

Optical Expanders require Non-linear optical systems
A linear optical system can not be used as an optical expander, since

any linear mapping from an input of size d creates no more than d linear
independent output patterns. Thus, it is impossible to create a set of N > d
mutually orthogonal patterns by any linear optical system on d linear
independent patterns.

Non Linear Optical Filters
Non-linearity can be introduced to an optical system by two methods.

One method is to use a non-linear device. Thresholding input intensity at a
certain level to produce output is a non-linear operation. It can be
implemented by optical non-linear devices such as optical logic etalon
(OLE), or by electrooptical non-linear devices such as self electrooptic
effect device (SEED). The other method is to translate input into spatial
patterns, and then to use a linear filter on the fourier image plane. An
example is Theta modulation, where data are encoded as a grating of
different orientations. In our optical expanders, we use non-linear devices.



Disadvantages of Other Approaches
We review the disadvantages of previous approaches such as a beam

deflector based on an acoustooptic effect or on Kerr cell, and a VLSI
implementation.

Systems which require N distinct entry beams either to an N-
superimposed hologram or to an array of N devices may use an optical
expander to generate N beams from optical input of c logN bits. Without
our optical expander, such systems require either a beam deflector to
deflect a laser beam into one of N unique directions, or an electrically
implemented line decoder which accepts logN bits of binary information
and creates one of N unique laser beams.

Analog beam deflectors based on acoustooptic effect have several
drawbacks. First of all, they are bulky and acoustooptic modulators require
high drive power. Secondly, they are limited by capacity-speed product. A
frequency band width Af as high as 300MHz can be obtained by the
acoustooptic material such as alpha-iodic acid. If we want to switch the
deflector every Iisec, then with a safety factor of 2, the number of
resolvable points will be at most 150. In order to overcome the
disadvantage of the acoustooptic beam deflector, a multistage digital beam
deflector has been designed. They demonstrated a 20-stage deflector
consisting of a series of nitrobenzene Kerr cells and birefringent calcite
prisms. The laser beam was deflected into a two dimensional 1024 x 1024
plane in every 2pisec. This approach provided a great flexibility and
accuracy in controlling the deflection angle. However, it required very
high bias voltage and switching voltage of several kilovolts, and the power
consumption was 400W.

Electrically implemented large line decoders are not practical in terms
of speed and wiring areas for a large N. As we mentioned earlier, the 1/0
constraints limit the size of system which can be practically implemented.
For a large N, the output may have to be serially transmitted from the
chip.

Our optical expander will provide an alternative approach to these
devices by utilizing its three dimensionality with flexibility and accuracy
provided by digital operations.

Our Results
We designed two optical expanders, and investigated each model in

terms of size, power requirement, and speed.
One approach was based ,, an idea of implementing a large line

decoder by using optical interconnections. This was done by using optical
matrix-vector multiplication followed by a thresholding operation. In this
model, the optical signal emitted from a signle laser diode (LD) source is
distributed to N threshold devices. Thereforc, the maximum switching



cycle B (cycle/sec) is proportional to the radiation power from a single
LD source PID and inversely proportional to the output size N. The
physical size is determined by the integration density of a V-N x q-N
threshold dcv'ce array.

The other approach used a set of small identical switching cells to
implement a novel digital beam deflector. In this model, all the switches
have a fan-out of 1, and ar ccnnected in series. Therefore, given the
rad:ation power of an input laser end the required optical output power of
the optical expander, the maximum output size N is determined by the loss
at t1 e switching cells.

Applications of optical expanders have been also discussed to motivate
the desig z and construction of our optical expanders.

See Reif and Yoshida, 90] for details.


