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Introduction

Control laws for modern fighter aircraft are typically developed using a "point® design
approach. Figure 1 is an illustrated example of the complexity associated with this process. The
engineer begins with a six degree of freedom (DOF) nonlinear model which completely describes
the aerodynamics of the aircraft throughout its maneuvering envelope. The aircraft model normally
evolves through extensive wind tunnel tesiing and computational fluid dynamic analyses and
includes various uncertainties and inaccuracies. A baseline structure for the aircraft control system
must then be developed which defines the necessary feedback parameters and compensations.
From here, the engineer chooses a single trim (or stationary) point within the aircraft flight
envelope. The control law design is effectively centered around this point. The aerodynamic
model is then linearized at the trim point so that conventional linear control theory may be applied
to generate gains and parameters for the baseline con. ol structure. Other techniques such as
Linear Quadratic Gaussian (LQG) or Linear Quadratic Regulator (LQR) may be used to generate
controller gains which minimize a quadratic cost function. Once the controller gains have been
generated, the engineer chooses a different trim point and again linearizes the aircraft mode! and
generates the optimal controller gains at the new point. This method is iterated until a complete
set of controller gains has been generated for several points within the flight envelope. Once the
process has been completed, the engineer has essentially created a discrete nonlinear functional
mapping from the aircraft envelope into the desired control system gains. This lengthy design
technique, however, limits the total number of trim points the engineer is able to investigate for a
given aircraft.

implementation of the various flight control laws is done by "scheduling” the controller
gains as a function of the of the trim point parameters (e.g. Mach number, altitude, wing sweep,
etc.). In flight, these parameters are measured so that the proper controller gains can be found
through standard look-up tables residing in the Filight Control Computers (FCC) memory.
However, the trim point parameters are measured as continuous variables and their values
frequently fall between two discrete design points each of which corresponds to a particular set of
controller gains. At this point the FCC must perform time consuming multi-variable
interpolations/extrapolations to estimate the values for the controller gains.

In the past, neural networks have been used extensively in applications such as pattern
recognition, functional synthesis and optimization [1],[2]. In control applications, they have been
used as adaptive controllers and state estimators [3],[4].{5].[6]. Neural networks offer several
advantages which may enhance the performance of g: ‘n scheduled controllers and simplify their
development process.

For example, back-propagation networks can implement nonlinear mappings of
continuous valued inputs through supervised learning. Neural network dynamics also
display a fast adaptation rate to a large number of parameters and a uniform rate of
convergence which is indJependent of network size. Neural networks exhibit natural
robustness due to their generalization properties [from ref. 3].

The objective of this research is to incorporate emerging neural network technology into a
feasible concept which will simplify control system development by automating the design of
controller gains. The benefits anticipated by developing this concept are twofold: 1) reduce time
and personnel required to develop control laws and 2) increase the number of design points used
in the flight envelope to improve controller performance.

Concept

Our approach is to apply current neural network concepts to synthesize a nonlinear
functional relationship between aircraft trim point parameters and the desired control system gains
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for a fixed-structure control law. The concept, as Niustrated in figure 2, compares the aircraft
responses with predetermined desired response models in the neural control stage. The neural
control stage "grades” how well the aircraft/controller is responding with respect to the desired
response models. The grade Is then used to adjust the neural network so that new controller gains
may be produced which enable the aircraft/controller to achieve responses more closely matched
to the desired responses. This cycle Is performed repeatedly at each arbitrary trim point until the
"grade” falis within allowable tolerances.

Figure 3 Is a detailed description of the flight control law synthesis concept in block

diagram form. The following is a brief description of each major component:

1)

2)

3)

4)

5)

The Aircraft Model is a complete set of mathematical equations (nonlinear differential)
which describe the motion of the aircraft in one or more of its axes. Aerodynamic data
which reflect coefficients of lift, drag and moments for the aircraft at different flight
conditions and configurations accompany the equations of motion.

The Fixed-Structure Feedback Controller contains the control laws which, in
combination with the correct gains, provide the aircraft with the proper handling qualities

and stability margins. Control laws are the mathematical equations which reiate the pilot
input commands and sensed aircraft parameters to control surface deflections. The
fixed structure implies that input commands and sensed parameters are always present
within the control laws but, their "weights® or gains (i.e. the degree to which they affect
the control law) may vary as a function of the aircraft's flight condition.

The Performance Models are a set of second order linear transfer functions which are
intended to exemplify the desired maneuvering characteristics of the aircraft/controller.
The performance models are designed in accordance with the frequency and damping
requirements listed in MIL-F-8785C "Militarv Specification for Flying Qualities of Piloted
Airplanes.” The frequency and damping requirements are based on zlassification (e.g.
fighter, transpon, etc.), category and desired flying quality level for the specific aircraft.

The Test Input is the pilot commanded input to both the aircraft and the performance
model. Various test inputs are used to excite different modes in the aircraft model (e.g.
pitch doublet is used to excite short period mode).

The Cost Functional or performance index Is the mechanism used to determine the
"mismatch® between the output of the performance models and the actual response of
the aircraft at a given trim point. Aithough there are many mathematical relationships
which may be used for the cost functional [7], a common one in control system design is
the root mean square error (Erms) given by the equation:

b}

T
1 %
Erms=[ 7 J[ e?(t)at ] (1)

Where 2(t) = [xq(!) - Xa(t)]? is the square error between the aircraft response xa(t) and
the desired response x4(t) provided by the performance models over the period, T. If the
performance index is averaged over all selected design points P in the envelope, the
average system error (Eas) Is obtained:

Eag = E(Ems)/P (2)

The Eas has been previously referred to as the "grade” of the aircraft controller.




6)

7)
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The Neuyral Network chosen for the control law synthesis concept is the multilayer
feedforward perceptron network. This type of network is Hlustrated schematically in
figure 4 and is typically composed of sets of nodes (processors) arranged in layers. The
output of each node in the previous layer is then connected to the input of each node in
the subsequent layer through an adjustable weight known as the synaptic weight.
Layers between the output layer and the input layer are called hidden layers. The
adjustable weights are intended to amplify, attenuate or inhibit transmission of nodal
outputs from one layer to the next. The net input to each node in a layer is the sum of
the weighted outputs of every node in the previous layer (equation 3) with the exception
of the input layer [1]. A nodal output is then determined by the activation function of the
particular node which maps its net input plus a node "bias” into the output of the node.
Although It is not a requirement, all nodes within a network typically possess the same
activation function. For the case of our multilayer network, an activation function known
as the sigmoid function, given by equation (4) was chosen.

netin; = I W;0; (3)
0j = 1/(1 + e-(netinj + 8;)/60, (4)

Where Wj; is the synaptic weight connecting the output of " node in layer N-1 to the
input of node | in layer N. 8j is the bias input and 8¢ is the temperature coefficient used
to modify the shape of the sigmoid at node |.

The neural network's main function in the control law synthesis concept is to develop for
the aircraft controller a set of optimal gains for each design point in the envelope. Trim
point parameters are furnished as .aputs and the network transmits gains to the aircraft
controller via its output layer.

The Training Algorithm is the vehicle by which synaptic weights and node biases of a
particular neural network can be determined so that the network provides a specific
functional mapping. The training algorithm can be thought of as a neural network
"designer." Back-Error-Propagation (BEP) was one of the first effective training
algorithms for multilayer perceptron networks and is stil used in many applications
because of its straight-forward implementation. BEP in the form used in this study was
introduced by Rumelhart, Hinton and Williams [8],[9] in 1986. BEP learning is an
fterative gradient algorithm that modifies the synaptic weights throughout a neural
network to minimize the error between the actual output of the network and its desired
output which is determined by the user [10],[11]. For the concept presented in this
study, the neural network outputs are the aircraft controller gains which are not known
apriori to training. Therefore, the algorithm must be modified slightly to remain useful in
this application.

The desired synaptic weights for the network are achieved by making incremental
changes to the weights according to the following equation:

Wij(n+l) = Wj(n) + né&;X (5)
Where Wij(n) is the old synaptic weight, W;(n+1) Is the new weight and n is the training
constant. O; is the output of node i in a hidden layer (or the i input I;, when node j lies in
the first hidden layer). & is the error or gradient term for node j. If node j is an output
node, then

§j = 0j(1 =~ Oj) (=6Eas/80)) (6)
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in the standard implementation of the BEP algorithm, the term =& Eas/6 O in equation 6
would be replaced by the error between the desired output and the actual network
output (d; - O;). As mentioned before, the desired output is unknown in our application
but, the gradient of the average system: error (eq. 2) with respect to the network outputs
(6 Eas/6 Oj) can be determined numerically.

If node ] lies within the hidden layers of the network, then
§ = Xj(1 - X])Zkb'ijk ’ (7)
where k Is over all nodes in the layer directly following node |.

Using the recursive equation (5) with equations (6) and (7), the algorithm starts at the
output nodes O, and works its way back through the successive hidden layers. Node
biases are adapted in a nearly identical fashion by assuming they are connection weights
from nodes with constant valued outputs.

Finally, a momentum term Is added to equation (5) to accelerate convergence of the
algorithm to the desired solutions [1],[10],[11]). The term suggests that the synaptic
weight change which occurs from training cycle n to n+1 is somewhat related to the
previous weight change from training cycle n-1 to n. The proportionality constant &
determines the amount of the previous weight change that will be used. Incorporating
the momentum term, equation (5) becomes

Wi(n+l) = Wj(n) + néX;
+ a[Wj(n) = Wiy(n-1)] , (8)

where 0 < a < 1. Equation (8) is the expanded equation implemented in our training
algorithm.

The flight control law synthesis concept as shown in figure 3 is very similar in structure to
the popular adaptive control technique known as the Model Referencing Adaptive Controller
(MRAC). Both the MRAC and the neural network concept described in this report use a
performance model (or command model) and an adaptation scheme to achieve controller gain
adjustments. There are however, some major distinction between the two approaches:

1) The MRAC operates on-line (i.e. while the aircraft is in flight) and therefore, must provide
stability as well as proper flying qualities from the onset. On the other hand, the neural
network concept described herein operates off-line (as a control designer) and can learn
by experience which gains stabilize the aircraft and provide adequate handling
characteristics.

2) The neural network incorporates memory into the concept in the form of synaptic weights.
This is an important difference because the MRAC must constantly adjust the controller
gains as the aircraft progresses through the envelope. The neural network concept
however, remembers the gains at a particular trim point and makes adjustments as
needed. Once the network has arrived at the proper gains, the training algorithm
essentially halts until an event occurs (e.g. change in aircraft dynamics) which produces
an output error between the aircraft/controller and the performance model.
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Operation of the flight control law synthesis concept Is summarized in the foi.owing steps:

Step 1. Initialize Network Weights and Biases. Randomly set all synaptic weights and
node blases to small values.

Step 2. Trim alrcraft. Set aircraft at trim point to begin design.

Step 3. Calculate the Controller Gains. Forward propagate the set of trim parameters
(input) via equations 3 and 4 through the neural network and transfer the outputs
to the aircraft controller.

Step 4. Apply Test input. Initiate the test maneuver (e.g. pitch doublet) for the
aircraft/controller and the performance model

Step 5. Evaluate Performance of Controller. Calculate the root mean square error
(Erms - €Q. 1) between the aircraft and performance model.

Step 6. Repeat Steps 2 Through 5. Repeat these steps for each trim point in the
design envelope.

Step 7. Grade the Neural Network. With Emg calculations from step 5 determine the
average system error (Eas - €g. 2) and gradients for training.

Step 8. Train the Neural Network. Adjust the synaptic weights and node biases of the
network (eq. 5 - 8) using BEP to reduce the Egs.

Step 9. Repeat Procedure. Repeat steps 2 through 7 until the Ess has fallen below a
prescribed tolerance.

RESULTS

The flight control law synthesis concept and neural network algorithms aforementioned
were coded in software and numerous simulations were performed to examine the effectiveness of
this approach. As an initial effort, very simplified models and control structures replaced the
aircraft model and flight control system. In addition, the performance models were also replaced
by arbitrary models not intended in any way to describe actual aircraft handling characteristics as
in Mil-F-8785C. This section contains some of the results of these computer simulations which
were designed to support the basic ideas of the neural network/flight control law synthesis
concept.

The first simulation used a second order Single Input Single Output (SISO) linear system
in place of the aircraft model. The transfer function of the model is given by equation (9).

Hi(s) = 1/(s% + 2s + 1) (9)

This transfer function represents a critically damped system with a damping ratio of 1.0 and a
natural frequency of 1.0 rad/sec. The control structure for this example is Hlustrated in figure 5.
The controller provides proportional output and rate feedback via gains Ky and K, and a
proportional input gain K3. An arbitrary SISO linear system has been chosen as the performance
model for this example with a transfer function given by:

Hao(s) = 4/(s? + 2.82s + 4) (10)
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The simulation was configured according to the following specifications:

Test Input | ! unit step

PlantModel @ Hy(s) (eq.9)
' 'Pel'O':ma‘_'hceMOd'el : ._ﬂé(s)_ T e, 10
‘CostFunctional ~ : Ems . a1
S Ry i ea.2)

Training Algorithm  :  back-error propagation

Neural Network ~ : 2 inputs (plant initial conditions)
3 hidden layers
layer 1 - 10 nodes
layer 2 - 12 nodes
layer 3 - 15 nodes
3 outputs (gains)

*Note that a set of three different initial condition vectors [x1(0) x2 (0)]'r were
used as inputs to the neural network and therefore, formed three design points
for the controller.

Two separate trials were run for the first simulation and the initial controller gains were
changed between trials. For each of the trials, the initial conditions and gains were set to:

Trial #1: (X1 = 0.0,% = 0.0) -> (Ki=00,Kaz=00,Ks=1.0)
(X1 =0.1,% =03) -> (K3 =00,Kz=0.0,Ks=10)
(X1 = 05,x2 = 0.75) ->  (Ky = 0.0, K2 = 0.0, Ka = 1.0)

initial cost: 0.1881

Trial #2: (X1 =00,x2=0.0) -> (Ky=20K:=5.0,K3=5.0)
X1 =01,%=03 -> (Ki=20K2=50K3=5.0)
(X1 = 05,% = 0.75) ->  (Ky = 2.0, Kz = 5.0, K3 = 5.0)

initial cost: 0.152

The gains K, K2 and K3 were adjusted dynamically by the neural network throughout the
simulation so that the plant/controller response began to match more closely the response of the
performance model in each successive training cycle. The resuits of both simulation trials are
listed below:

Trial #1: (X1 = 0.0,x2 = 0.0) -> (K1 = -0.226, K2 = 1.495, K3 = 2.443)
(<1 =01,x2=03) -> (Ky=-0.226, Kz = 1.492, K3 = 2.438)
(X1 =05,x2 =075 -> (Ky = -0.225, Ko = 1.488, K3 = 2.431)

training cycles: 200
final cost: 0.03876
performance improvement: 79.39%

6
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Trial #2:  (x; = 0.0,x2=00) -> (K = 1.386, K2 = 3.611, K3 = 4.645)
(X1 = 0.1,x2=03) -> (Kt =1.385, Kz = 3.610, K3 = 4.646)
(x1 = 0.5, %2 = 0.75) -> (K1 = 1.385, K2 = 3.610, K3 = 4.648)

training cycles: 55
final cost: 0.009869
performance improvement: 93.51%

Figures 6 and 7 show the initial and final responses for each trial run at the first initial
condition. The desired responses are identified by a dashed line and the actual plant/controller
responses by the solid line. It should be noted that trial #2 arrived at a better solution quicker th. »
trial #1. This result is primarily due to the choice of initial gains for each trial run. The first set of
initial gains caused the network and training routine to progress to a local minimum at Ky = -0.226,
Ko = 1.492, K3 = 2.438). Whereas, the second set of inltial gains caused the network to progress
to a lower minimum at K;q = 1.385, K = 3.610, K3 = 4.646). It should also be noticed that the
network arrived at essentially the same gains for each initial condition. This is a correct result
because it can be shown that a linear plant (as in the first simulation) requires only a linear control
system (i.e. one set of gains for all conditions) to produce the required response.

The final set of simulations also used a second order SISO system in place of the aircraft
model. However, a n-nlinearity was incorporated into the model to provide the neural
network/flight control lan  /nthesis concept with a more realistic problem. Nonlinearities in plant
dynamics can have many forms. A rate limiter was included in this particular example to represent
a typical nonlinear system. The linearized transfer function of the model is given by equation (11).

Hi(s) = 4/(s% + 1.2s + 4) (11)
This transfer function represents a underdamped system with damping ratio of 0.3 and a natural
frequency of 2.0 rads/sec. The control structure and performance model for this example are

identical 1o those presented in the previous example.

This simulation was configured according to the following specifications:

Test Input : unit step
Plant Model : nonlinear;
rate limited {eq. 11)
Controiler . figure 5;
3 design points
Performance Model : Hx(s) {eq. 10)
Cost Functional : Ems {eq. 1)
Eas {eq. 2)

Training Algorithm  :  back-error propagation

Neural Network ;2 Inputs (plant initial conditions)
2 hidden layers
layer 1 - 5 nodes
layer 2 - 10 nodes
3 outputs (gains)
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As in the first simulation example, two separate trial run were made and the Initial
controller gains were changed between trials. For the each of the trials, the initial conditions and
Gains were set to:

Trial #1; (X1 = 0.0,%x2=00) -> (K1 =00, Kz = 0.05, Ka = 1.0)
X1 =0.1,%=03) -> (Ky =00, Kz =005 Ka = 1.0)
(X1 = 0.5, %2 = 0.75) -> (K1 = 0.0, K2 = 0.05, K3 = 1.0)

initial cost: 0.09864

Trial #2: (x1 =00,% =00) -> (Ki =09, Kz =205, Ka=275)
(x1 =0.1,%x2=03) -> (Ki =08 Kz =205, K = 2.75)
(x1 =05,x2=0.75) -> (K1 = 0.9, Kz = 2.05, K3 = 2.75)

initial cost: 0.1080

Again, the gains K1, K2 and K3 were adjusted dynamicaily by the neural network throughout the
simulationh so that the plant/controiler response began to match more closely the response of the
performance model in each successive training cycle. The results of both simulation trials are
lie*” 4 below:

Trial #1: (X1 = 0.0,x2 = 0.0) -> (Ki = 0.754, K2 = 1.279, K3 = 2.313)
(X1 =0.1,x2=03) -> (Ki = 0.741, Kz = 1.271, Kz = 2.283)
(X1 = 05,x2= 0.75) -> (K1 = 0.724, Kz = 1.262, K3 = 2.270)

training cycles: 100
final cost: 0.04415
performance improvement: 55.24%

Trial #2: (<1 =00,x2=00) -> (K;=1.033 Kz =2.593, K3 = 3.593)
(x1=01,%=03) -> (Ky=1.039 Kz = 2616, K3 = 3.627)
(X1 =05,x2 =075 -> (Ki=1.052 Kz = 2.654, K3 = 3.686)

training cycles: 50
final cost: 0.0443
performance improvement: 58.98%

Figures 8 and 9 show the initial and final responses for each trial run of the nonlinear
simulation example. The desired responses are again identified by a dashed line and the actual
plant/controller responses by the solid line. In this example, the concept concluded with roughly
the same amount of success at both sets of initial gains. There is an initial mismatch between the
desired and actual responses in both cases due to the rate limiting imposed by the plant dynamics.
It is interesting to note that the neural network did not attempt to drive up the feedback gains of the
controller to cvercompensate for this nonlinear rate limit. The network, however, realized the
physical limitations of the problem and attempted to provide the best possible solution.

CONCLUSIONS

Based on an analysis of the results obtained from the computer simulations and
discussed in the previous section, some concluding statements can be made about our neural
network /flight control law synthesis concept:

1) The neural network, working within our concept, was able to produce feasible controller
gains which improved the plant/controlier response with respect to the performance model.

8
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2) The neural network was able to accomplish (1) without any prior knowledge of the plant,
controller or performance model dynamics.

3) The neural network did not supply controller gains which would cause the plant/controller
to become unstable or diverge from the performance model.

4) The neural network provided better results faster when the initial gains were close to
optimum.

5) The neural network will not always converge to an optimal solution. The network gives no
indication that it has arrived at either an optimal or sub-optimal solution.

6) The neural network did not attempt to overcompensate for limitations imposed by
nonlinearities within the plant (e.g. continually increase a feedback gains when the
plant/controller is rate saturated).

7 The neural network did not require specific knowledge regarding the source or location of
the error (i.e. steady state error, peak overshoot error, etc.) but was able to increase the
plant/controller performance based on Ems information alone.

in light of the preceding conclusions, a neural network operating in an environment such
as the one descrite herein may offer several advantages over conventional controller design
methods. Such advantages include: 1) a simplified design procedure due to the networks ability to
produce optimal gains without specific knowledge of aircraft dynamics, 2) a more accurate
controller design due to the networks ability to handle a large number of parameters and many
design points and 3) a more robust controller due to the generalization properties of the network.
However, it should be noted that the neural network field is far from mature and many sources of
uncertainty still exist which inhibit a complete understanding of their operation within application
such as the control law synthesis concept. And although reasonable results were obtained for the
selected linear and nonlinear examples herein, a great effort and challenge still remains to apply
such a concept to the highly complex dynamics of an aircraft model.

FUTURE WORK

in the future, work of this nature shall progress in the following direction:

1) Software integration of a nonlinear three degree-of-freedom aircraft simulation model. The
model shall include force and moment equations for the longitudinal axis of an F/A-18

aircraft with aerodynamic data for the full maneuvering envelope.

2) Develop a set of performance models via Mil-F-8785C for the longitudinal axis of a Class IV,
Category A high maneuverability fighter/attack aircraft with Level | handling qualities.

3) Conduct experiments with 3-DOF aircraft model and the neural network/flight control law
synthesis concept via repeated computer simulation and analysis.

4) Evaluate performance of aircraft and neural network generated controller.

5) Investigate potentials for improving concept and possibilities of implementing variations of
this concept in an on-line adaptive/iearning control scheme.
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FIGURE 5: CONTROL STRUCTURE FOR LINEAR
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