
AD-A234 974

RADC-TR-90-406
Final Technical Report
December 1990

MULTILEVEL SECURITY FOR
KNOWLEDGE BASED
SYSTEMS

SRI international

Teresa F. Lunt and Thomas D. Garvey

APPROVED FOR PUBLIC RELEASe" DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

91* ~ j\ Y

This report has been reviewed by the RADC Public Affairs Division (PA)
and Is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

R DC-TR-90-406 has been reviewed and is approved for publication.

APPROVED: ~~

JOSEPH V. GIORDANO
Project Engineer

APPROVED: irJS46d P.4

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

RONALD S. RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (COAC) Griffiss AFB NY 13441-5700. This will assist us in main-
taining a current mailing list.

Do not return copies of this report unleas contractual obligations or notices
on a specific document require that it be returned.

1. AMCY WEOtLY"" em hKi*IOTE 30 OrT YP AM DATES COVERED

SDecember 1990 IFina --
4.TIRE AND SUBTITLE &. FUNDING NMBERS
MULTILEVEL SECURITY FOR KNOWLEDGE BASED SYSTEMIS C - F30602-87-D-00949

Task 6

AUR40R(S) PE - 35167G
PR - 1068

Teresa P. Lunt and Thomas D. Garvey TA - QC
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ U - 06

7. PEIWORIIN ORAAMA10N NAME() AID A0CRESS4ES) &. PEIWORMING ORGANIZATMO
SRI International REPORT NMBMER
333 Ravenswood Ave NIA
Menlo Park CA 94025

OLSANORN(ACYOF N AND AORE89)I ONS.OF94GA4.I0WOFM
, 4ENCYNAMAGNCY REPORTNUAMBER

Rome Air Development Center (COAC)
Grif flea APB NY 13441-5700 RADC-TR-90-406

11. SUPPLEMENTARY NOTES
RADC Project Engineer: Joseph V. Giordano/COAC/(315) 330-2925
The prim contractor for this effort is lIT Research Instituta, Maryland Technology
Center, Lanham, MaEyland. _____________

12L. 019STRIBlONAVAI.AOMN STATEENT 2b. DISTRIBUTION CODE
-Approved for public release; distribution unlimited. j

I1I ABSTACT" w muoW*

'We discuss work aimed at defining a multilevel, mandatory security policy for knowledge
based systems. We address two distinct Issues: an effective Implementation formalism
based-on a multilevel, object oriented programing paradigm, and requirements for
ensuring the correctness of Inferences computed on the basis of possibly contradictory
information from different access classes. We define requirements for an object-
oriented system capable of handling multilevel objects within a single access class.
We then outline a method by which multilevel objects may be used to implement a simple
knowledge based system built on production rules. We argue that the issues regarding
correctness are similar to those of truth maintenance in standard knowledge based
systems and may be addressed by similar methods.

14. SUBJECT TERMS it MAWA OF PAM$

Muiltilevel Security, Knowledge Based Systems, Computer Security, 64

Ob ect-Oriented System_________
17. SECURITY CLASSICATION I& SECURITY CLASICTION I a SECURIY CLASiFICAllON 2Q. LIMTATION OF~ ABSTRACT
OFREPORT OF iMSPAGEOFAhIT
UNCLASSIFIED UNCLASSIFIED UNCASSFIED UL

S1~ d 0a~fi.I

-lS .GR&I

1 TIC TAB f

Justification

I Dy__
!Distrib-,tilon/

Availability Codes

Avadil and/or 1
,Dis t speolal

Contents W

1 Introduction and Overview 1

1.1 Introduction............................... 1

1.1.1 Overview of the Report.................... 1

1.1.2 Objectives of the Approach 3

2 General Background 5

2.1 Overview of Multilevel Security 5

2.1.1 The Multilevel Security Lattice 6

2.1.9 Mandatory Security. 7

2.1.3 The Reference Monitor. 8

2.2 Object Oriented Programming Systems. 9

2.2.1 Objects. 10

2.2.2 Methods 10

2.2.3 References to Objects. 12

2.3 Objects as the Basis for Knowledge Based Systems. 13

2.4 Security Policy for Object Oriented Programming Systems. . 14

:1.

Contents

2.4.1 Multilevel Object Model 14

2.4.2 Single-Level Object Model 15

2.4.3 Composite Object Model 16

3 The Composite Object Model 17

3.1 General Properties of the Composite Object Model 18

3.2 Security Properties of the Composite Object Model 19

3.3 Required Operations for the Composite Object Model 22

3.3.1 Implementation of Partitions 22

3.3.2 Object Composition 22

3.3.3 Method Evaluation 23

3.3.4 Reading and Writing Instance Variables 24

4 Multilevel Knowledge Based Systems 27

4.1 Knowledge Based Programming Constructs 27

4.1.1 Production Rule Systems 27

4.1.2 Frame Systems 29

4.2 Object Oriented Implementation 29

4.2.1 Objects 29

4.2.2 Operations 30

4.2.3 Security Issues 32

4.3 Inference Issues 33

5 Example 37

5.1 Scenario 37

Contents Ii

5.2 The Knowledge Base......................... 38

5.3 Choosing an Operative........................ 40

5.4 Drawing Conclusions From Data.................. 42

5.5 Discussion................................ 43

6 Summary and Conclusions 45

6.1 Summary................................ 45

6.2 Comparison with the Single-Level Object Model......... 46

6.3 Conclusion............................... 48

6.4 Future Directions............................ 50

Chapter 1

Introduction and Overview

1.1 Introduction

The emerging technology of knowledge based systems (KBSs) is of great
import for applications in business, industry, and the military. Many of
these applications will involve the use of information with different degrees
of sensitivity by users with different degrees of trustworthiness. Such ap-
plications require that information be segregated and managed in order to
ensure that users can access only that information for which they are specif-
ically cleared. To the best of our knowledge, however, none of the systems
developed to date, under development, or in the planning stages explicitly
addresses either mandatory or discretionary security. Although security is
not a-driving requirement of these systems, it seems unlikely that they will
pass much beyond the proof-of-concept stage without the imposition of some
security requirements. Thus these systems could not be used in a multilevel
environment or in applications that require controlled access to portions of
the system.

1.1.1 Overview of the Report

The work reported here addresses the problem of providing a multilevel
secure framework for developing knowledge-based systems. We partitioned

2 Introduction and Overview

the problem into three stages:

* Definition of a security policy for object oriented programming systems
(OOPS)

* Specification of a candidate knowledge based system (KBS) within an
OOPS

• Investigation of issues of correctness within the KBS.

In addressing the first stage, we developed three distinct security policy
models. These are referred to as the Multilevel Object Model, the Single-
Level Object Model (also called the Millen-Lunt model), and the Composite
Object Model. In the Multilevel Object Model, objects are truly multilevel,
with components that range over different access clarses. The object itself is
at an access class equal to or lower than the class of the lowest component or
value it contains. In the Single-Level model, objects and their components
are all at a single access class, but they may contain the names of objects
at higher or lower access classes. In the Composite Object model, objects
may be composed from other objects at equal or lower access classes only
(as opposed to the Multilevel Object model). In this model, objects are also
single-level, but the additional restriction preventing access to objects at
higher access classes greatly simplifies the resulting security semantics and
subsequent implementations. We recommend that the Composite Object
model be the focus for future development and realization.

One of the goals of our security policy is to provide a framework that is
habitable and supports the development of knowledge based systems with-
out subjecting the developer or user to onerous restrictions or requirements.
Furthermore, the simpler the policy, the easier it is to validate an implemen-
tation and to assure its effectiveness. This in turn makes it easier to provide
high levels of assured security.

The remainder of the report focuses on the Composite Object model, the
first two models having been reported on in our Interim Report [15]. We
begin with a brief overview of background material, including a description
of the Multilevel Object model and the Single-Level Object model. We
then describe the Composite Object model in detail. -Following that, we
describe a notional KBS based on production rules that could be constructed
within the OOPS environment. We describe its operation using a detailed

Introduction and Overview 3

example. We conclude the report with a detailed comparison of the models
and recommendations for future work.

1.1.2 Objectives of the Approach

In this work, we were motivated by the desire to develop a security policy
that would be simple to-describe and implement, but that would not prove
overly constraining to system developers. The perspective we adopted was
that of a hierarchically-distributed system. That is, from the user's per-
spective, the data or knowledge base is distributed across a hierarchy of
program/database partitions at and below the viewer's apical position. A
lower level user will have a view of the data/knowledge base which includes
only the part of the hierarchy at the user's level and below.

Our model is slightly more constraining than mandatory security requires in
that we do not allow users to be aware of information stored at higher levels.
Neither can they invoke procedures involving higher level objects or modify
higher level data. Of course, users are not allowed to modify lower level
data, but this is dictated by mandatory security. This additional constraint
does not seem to unduly limit a system developer, and it has the advantage
of leading to a security policy that is extremely simple to enforce. In our
model, security is inherent in the structure of the programming architecture,
as the program structure mirrors the security structure; security does not
require treatment of the special cases that arise when low-level subjects are
allowed to invoke high-level procedures, such as how to handle returned
values. Our model requires only a reference monitor to enforce mandatory
security.

We assign security levels, to processes or subjects, derived from the clearance
of the user on whose behalf the subject is operating. When a user invokes the
KBS, an instance of the system runs as a subject with an access class equal
to the user's clearance. Hence the only objects available to that subject are
those visible at (i.e., dominated by) the subject's access class.

This approach implies that all functions must be carried out by single-level
subjects. The use of only single-level subjects for routine processing provides
the greatest degree of security possible, and considerably reduces the risk
of disclosure of sensitive information. Thus, the KBS, when operating on

4 Introduction and Overview

behalf of a user, cannot gain access to any data whose classification is not
within the user's clearance.

This implies a KBS design that does not rely on a single server to service all
users. On the contrary, the system must support multiple server instances
that share the same logical knowledge base.

Our model segregates security issues from programming issues; the system
developer does not need to be concerned with security, except for-one point:
because of multilevel security, the information stored in one partition may
contradict that stored in another, and the different partitions may not have
access to the same information. This means that the user must verify re-
sults computed from information stored at lowez levels in the hierarchy.
This raises issues of truth maintenance that must be addressed by system
implementers.

V

Chapter 2

General Background

Before describing our policy for a multilevel knowledge based system, we
review several key concepts. We first describe the concept of multilevel se-
curity. Next, we provide a brief overview of object oriented programming
concepts. In Chapter 4, we discuss production systems and frame represen-
tations, two representative methods used in a KBS.

2.1 Overview of Multilevel Security

The concern for multilevel security arises when a computer system contains
information with a variety of classifications and has users who are not all
cleared for the highest classification of data contained in the system. The
classification of the information to be protected is defined as the potential
damage that could result from unauthorized disclosure of the information.
The clearance assigned to a user is defined as the user's trust*orthiness to
not disclose sensitive information to individuals not cleared and thus not so
trusted. We use the term access class to include both user clearances and
information classification.

5

6 General Background

2.1.1 The Multilevel Security Lattice

An access cas consists of a hierarchical sensitivity level (e.g., TOP-
SECRET, SECRET, CONFIDENTIAL, UNCLASSIFIED) and a set of non-
hierarchical categories. In order for a user to be granted access to classified
information, the user must be cleared for the hierarchical sensitivity level
as well as for each of the categories in the information's access class. For
example, information might be classified TOP-SECRET SPOOK OUTER-
SPACE. In order for a user to obtain access to this information, the user
would have to be cleared for TOP-SECRET as well as for the categories
SPOOK and OUTER-SPACE. The sensitivity levels are hierarchical because
they are linearly ordered, e.g., TOP-SECRET is greater than SECRET is
greater than CONFIDENTIAL is greater than UNCLASSIFIED. Thus, for
example, persons cleared for TOP-SECRET information may also have ac-
cess to SECRET information. The categories are nonhierarchical because
they do not have such a linear ordering. However, the set of access classes
(<sensitivity level, category set> pairs) is partially ordered and forms a lat-
tice [4]. By a partial ordering we mean that given any two access classes,
either one is greater than or equal to the other, or the two are said to be
noncomparable. For example, TOP-SECRET is greater than SECRET, but
TOP-SECRET SPOOK and TOP-SECRET OUTER-SPACE axe noncom-
parable, because neither is greater than the other: a TOP-SECRET SPOOK
user cannot obtain access to TOP-SECRET OUTER-SPACE information,
and vice versa.

We call the partial ordering relation on the lattice of access classes the
dominance relation. We say that one access class A dominates another
access class B if the sensitivity level of A is greater than or equal to the
sensitivity level of B and if the security categories of A include all those
of B. For example, TOP-SECRET SPOOK OUTER-SPACE dominates
TOP-SECRET OUTER-SPACE.

In a multilevel computer system, we use system-low to, refer to, that access
class handled by the system that is dominated by all other access classes,
handled by the system; we use the term system-high obversely.

General Background 7

2.1.2 Mandatory Security

The Department of Defense (DoD) policies restricting access to classified
information to cleared personnel are called mandatory security policies. In
addition to those required for mandatory security, additional access con-
trols may be imposed by a site or system. These additional controls enforce
what is called discretionary security. The access controls commonly found
in most operating systems are examples of discretionary access controls.
There are many discretionary security issues surrounding any KBS; for ex-
ample, different types of users (engineers, managers, maintainers, testers,
and consumer-users) may have different access rights to the rules and data
in the system. However, although we believe discretionary security concerns
are significant and merit serious attention, for the purposes of this paper we
are concerned only with mandatory security.

Mandatory security requires that classified data be protected not only from
direct access by unauthorized users, but also from disclosure through indirect
means, such as covert signaling channels and inference. Covert channels are
channels that were not designed to be used for information flow but that can
nevertheless be exploited by malicious software to signal high classification
data to low clearance users. For example, a high process, a program instance
with a high access class because it is acting on behalf of a high user, in order,
to encode high information, may use read and write locks observable to a
low process over time (e.g., locked = 1, unlocked = 0). Inference occurs
when a low user can infer high information based on observable system
behavior. For example, a low user attempting to access a high object can
infer something quite different according to whether the system responds
with "object not found" or "permission denied."

Thus, mandatory security requires that no information can flow from high
access classes to low. The mandatory access control requirements are for-
malized by two rules, the first of which protects data from unauthorized
disclosure, and the second of which protects data from contamination.

* Simple Security Property: A subject S is not allowed to read data of
access class c unless classification(S) >_ c

* *Property- A subject S is not allowed to write data of access class c
unless classification(S) < c

8 General Background

In the above rules, a subject is a process acting on a user's behalf; a process
has a clearance level derived from that of the user.

The simple security property and *property above are based on properties
of the same names defined in the Bell and LaPadula security model [1]. The
*property is intended to prevent sensitive information from being transferred
to an object whose access class is not dominated by that of the information,
so that the information will not become accessible to users who are not
cleared for it. This confinement property prevents subjects, represented by
software acting on behalf of users, from writing down (including writing to
noncomparable access classes). The motivation for the *property is that
whereas cleared personnel can be trusted not to disclose classified informa-
tion deliberately, computer programs, through errors of design or implemen-
tation, might move classified information to a location not protected at the
required access class, or might contain Trojan horses that deliberately and
maliciously violate security. The *property is said to enforce confinement,
since the effects of a malicious program are confined to objects at the sub-
ject class and higher. A somewhat weaker property would allow a subject
to write down when the subject does not have read access to information
whose classification dominates the classification of the information being
written. Although this weaker property would prevent malicious software
from copying down, its enforcement would be more complicated than for the
relatively simple *property.

Mandatory security intends to prevent users from drawing inferences from
the perceived presence, appearance, and disappearance of objects; prevent
the observable behavior of the system from depending on information classi-
fied higher than the user's clearance; and prevent users' visible effects from
being used as a signaling path.

2.1.3 The Reference Monitor

To satisfy mandatory security in multilevel computer systems, we assign
access classes to processes, derived from the clearance of the user on whose
behalf the process is operating. Traditional practice is to segregate the
security-relevant functions into a security kernel or reference monitor. The
reference monitor mediates each reference to an object by any process, al-
lowing or denying the access based on a comparison of the access classes

General Background 9

associated with the process and with the object. The reference monitor
must be tamperproof; it must be invoked for every reference; and it must
be small enough to be subject to analysis and test that can be assured as
complete. When assurance is important, the reference monitor is subject
to formal analysis; that is, formal mathematical proof, sometimes by using
automated tools, that the monitor correctly enforces the mandatory security
policy. The result of such analysis is called formal verification. The refer-
ence monitor forms the core of the trusted computing base (TCB), which
contains all security-critical code.

The DoD has developed evaluation criteria for trusted computer systems [6].
These criteria incorporate the concept of the reference monitor and include
requirements for assurance as well as many other security requirements. The
"trust" in trusted computer systems rests on the ability to provide convinc-
ing arguments or proofs that the security mechanisms work as advertised
and cannot be disabled or subverted. These criteria include requirements
for "minimizing the complexity of the TCB, and excluding from the TCB
modules that are not protection-critical," so that the reference monitor is
"small enough to be verifiable" [6]. Without such a requirement, a high
degree of assurance would not be feasible.

The approach we take here assumes an existing verified reference monitor
underlying and constraining the KBS; thus, the KBS itself does not enforce
any portion of the mandatory security policy. This is similar to the approach
taken for the SeaView multilevel database system [14] and is consistent with
the general security architecture known as TCB subsets [18].

2.2 Object Oriented Programming Systems

It is often convenient to organize programs around objects, which model
real-world entities.1 Each object has some state and a set of operations that
can be performed on it. An object's state is represented by a set of instance
variables which are part of the object definition. Operations on objects are
handled by methods, which are executed in the context of the object's state
upon the receipt of messages. Object oriented programming (OOP) is a
powerful technique for organizing and managing very large programs, which

'Much of the material in this section came from [15].

10 General Background

would otherwise be impossibly complex.

An OOP consists of a set of objects and a set of operations on these objects.
The design of such a program consists of three major tasks:

* Choosing the kinds of objects to provide in the program

* Defining the characteristics of each object

* Determining the operations to perform on each object.

2.2.1 Objects

OOP, as originated in the Smalltalk system [8], adopted the idea o a class
hierarchy and carried it further.by introducing message passing and meth-
ods. An object represents either a class or an individual, and stores named
attributes instance variables.

Smalltalk supports both a subclass and an instance relation, wherein an
instance object is an individual, by which relation it can have no instances
of its own. Both subclasses and instances inherit the variables of the parent
class object, and may have additional variables of their own.

For the purposes of this report, we will not make use of the distinction
between subclass objects and individual objects. We will use the term "in-
stance" ambiguously to refer either to a subclass or to an individual instance.
The difference between a subclass and an individual instance is significant
primarily for reasons of implementation efficiency; it does not affect secu-
:,ty policy. Thus, our model is equally valid for systems that make this
distinction and those that do not.

2.2.2 Methods

An object has methods defined for it. Methods encapsulate the behavior of
an object, in that an object can be acted upon only through executing the
methods defined for the object. Methods are invoked by sending messages to
an object. A message consists of a command, which selects the appropriate
method, and some arguments, if necessary; this is illustrated in Figure 2.1.

General Background 1

object id Employee

Class Person

Instances E3490

Parent Instance

Class Employee

Instances

Figure 2.1: Message Processing

12 General Background

A method performs three sorts of activities: it may read and write the vari-
ables of the object where it resides; it may send messages to other objects, to
invoke methods there; and it may, when it terminates, return a value to the
sender of the message that invoked it. The transmittal ability provides for
much of both the usefulness and the complexity of object oriented systems.

For example, a bank-account object would have methods for the commands
Withdraw, Deposit, and Query-balance. To withdraw or deposit funds in a
specific bank account, a message of the form command value is sent to the
object representing that bank account, where command is either Withdraw
or Deposit, and value is the amount to be deposited or withdrawn. To query
the balance for a specific account, the message Query-balance would be sent
to the account object.

Methods are inherited by instances. Thig means that a method placed in a
class object is automatically made available to its descendants. The With-
draw method for bank accounts, for example, need only be placed in the
Bank-account class object, to permit all individual bank accounts to re-
spond to a Withdraw message. Inheritance of methods is one of the greatest
benefits of the object oriented approach.

2.2.3 References to Objects

Every object has a unique identifier called an object id. A reference to an
object is needed when one wishes to send a message to it; the reference is
the object's address. Here, we will treat the object id as the name of the
object (and vice versa). An instance variable will be identified by the name
of its containing object conjoined' with its own when necessary for unam-
biguous reference. Our multilevel security policy will involve interactions
among objects in different address spaces. In these cases, an object id will
be unambiguously specified as a pathname, consisting of the address-space
name conjoined with the object name.

Objects can be linked to one another by references in suitable variables.
References can represent any of a multitude of relationships. For example, an
Employee object may have a Job variable. Its value is often not just the name
of a job, but rather a reference to another object containing information
about the job, such as its duties and salary range.

General Background 13

Command (Args) Object

Methods
Return Value Command (Args):

<method>

Figure 2.2: The Class-Instance Relation

Objects are linked also by the class-instance relation. In Smalltalk, this
relation is implicit and maintained by the system. For the purposes of
modeling security in object oriented systems, we shall make this relation
explicit, by assuming the existence of standard variables called "Class" and
"Instances" in every object. The value of the Class variable is the identifier
of the parent class of the object. The value of the Instances variable is
a (possibly empty) list of identifiers of the object's instances. Figure 2.2
illustrates the class-instance relation.

2.3 Objects as the Basis for Knowledge Based
Systems

The OOP model is a natural extension of the frame-based model for knowl-
edge [16] and is a natural formalism for constructing a KBS. Object oriented
models support the notion of a class hierarchy, an essential feature of a KBS.
In an earlier report, we discussed how the object model can easily support
a KBS based on production rules [15]. Furthermore, virtually every KBS is
based on a logical foundation of some kind. We believe that most of these
can also be supported by the framework described in this report. In par-
ticular, systems for reasoning with uncertain information tend to provide
a propositional framework for representing the space of possible events. In

14 General Background

classical probability theory [91 and in nonclassical methodologies such as the
Shafer-Dempster Theory of Evidence [17], for example, primitive events are
represented as a set of mutually exclusive and exhaustive statements. These
event spaces could be represented adequately as objects.

2.4 Security Policy for Object Oriented Pro-
gramming Systems

For the past year we have been conducting an investigation into a model of
security for a multilevel KBS. Because our initial investigations have shown
that a KBS can be straightforwardly modeled and implemented on object
oriented systems, much of our work has focused on developing a security
model for an object oriented database system (OODBS).

2.4.1 Multilevel Object Model

Our first model of a secure OODBS was developed under the SeaView
project [12]. In this model, classifications can be associated with objects
(including classes) and facets of objects, where a facet could be an instance
variable, a method, or a constraint. Thus, in this model, objects can be mul-
tilevel; that is, various portions of an object, such as class name, instance
variable names, and methods, can have different classifications.

We defined a hierarchy property, which requires that the access class of an
object must dominate that of its parent class object. This property is needed
to permit the object to inherit methods and variables from its parent. This
is a fundamental property that will play a part in any model of security for
object oriented systems.

This model also requires that an object's facets be classified at least as high
as the object itself. This is analogous to the SeaView property that requires
that any data contained in a tuple be classified at least as high as the tuple's
primary key, and that any data that can be stored in a relation be classified
at least as high as the name of the relation [13]. We called this the facet
property for our multilevel object model.

General Background 15

2.4.2 Single-Level Object Model

The semantics of the Multilevel Object model are relatively complex, and
would lead to significant complexity in any implementation. For this reason,
we turned to a security policy based on single-level objects (discussed in
detail in [15]). Here, although the objects themselves are at a single access
class, they may contain references (such as object identifiers) to objects at
other access classes, both higher and lower. These references do not have
security classes of their own, but are at the class of the object.

Subjects operating within an access class may send messages to higher ob-
jects, resulting in the creation of a subject at the higher access class. Values
may not be returned from these higher subjects, in order to avoid the prob-
lem of writing down.

In the Single-Level model, the access class of objects that are created must
dominate that of the subject that requested the creation. This enables low
subjects to create high objects.

This single-level object model includes the hierarchy property, discussed
above. We demonstrated that typical database security and integrity policies
can be supported by this model.

We felt that the requirements that were imposed by allowing low subjects
to access high objects were still too complic .ted for straightforward imple-
mentation and verification. In order to simplify such requirements and still

-provide effective multilevel security, we introduced the Composite Object
model with the additional restriction of forbidding access to high objects by
low subjects. In the remainder of the report, we discuss this model in detail.

For our current project, we developed a security model for an OODBS in
which objects are single-level rather than multilevel [15]. The reasons for
doing this were twofold: first, several difficulties with multilevel objects
convinced us that we needed a model for single-level objects to put us on a
more solid footing; secondly, we felt that a single-level object model might
be sufficient to support a multilevel KBS.

This single-level object model includes the hierarchy property, discussed
above. We have demonstrated that typical database security and integrity
policies can be supported by this model [15].

16 General Background

2.4.3 Composite Object Model

More recently, we have developed a new security model that allows one
to represent multilevel entities without the difficulties encountered in the
multilevel object model. (See [12] for a discussion of these difficulties.) This
model also retains the simplicity of the single-level object model. We present
this new composite object model in the next chapter.

Chapter 3

The Composite Object
Model

Here we present a composite object model that supports multilevel objects.
Our considerations of typical intelligent applications have led us to the con-
clusion that multilevel objects are desirable for a KBS. Our composite ben-
efits from the advances of, and avoids most of the complexities of, the initial
multilevel object model developed under the SeaView project, and retains
the simplicity of the Millen-Lunt single-level model. In our new composite
object model, the access class of the object dominates the access class of its
components (as contrasted with the facet property of the multilevel object
model [12]. Each of these components is itself an object, which in turn can
be multilevel and can consist of lower level components. This provides a
very simple way of constructing multilevel objects. This model also leads
to a natural decomposition of multilevel objects from single-level partitions.
Thus, queries and updates on multilevel objects can be decomposed into
queries and updates on the single-level partitions. This approach is easily
generalized to an object model in which the object base is distributed and
queries and updates are distributed across numerous processors and memo-
ries.

17

18 The Composite Object Model

3.1 General Properties of the Composite Object
Model

Because of the lack of a consistently applied semantic interpretation, as-
sociating labels with the various structural eliments in a database system
involves certain ambiguities. In order to Jefiri, the meaning of an object be-
ing classified, we must specify exactly what information we intend to protect
when we assign an access class to an object.

Three dimensions of classification have been proposed [19]:

" The data itself may be classified.

" The existence of the data may be classified.

" The reason, or rule, for classifying the data may be classified.

Our model does not contain explicit rules for classifying information. Thus,
we do not need to address the third security dimension.

In addition, in our model, we collapse the first and second security dimen-
sions. Thus, in our model, when we say that an object has access class c
we mean that the information it contains has classification c and that the
fact that the object exists is classified c. This means that in our model, the
existence of an object should be hidden from lower level subjects.

The existence of an object can be inferred by the appearance of its name or
object id as the value of a variable in some other object. Thus, an object
id for a high object cannot be stored in a low object. In other words,
low objects cannot contain references to high objects. We feel that this
is a reasonable restriction, because in our model all multilevel objects are
composite objects, wherein the access class of the composite dominates that
of its components. Thus, the composite object can point to its components,
but not vice versa. Traversals of the object hierarchy can reasonably be
expected to move from composite objects to component objects.

This also means that the creation of composite objects must-begin with the
creation of the components. To create a composite object, a subject creates
an object, then builds references to the already existing components. There
is no need for backward references.

The Composite Object Model 19

One consequence of this choice of security semantics is that if a subject
creates a high object out of or from a lower class or type, then a reference
to the new high offspring cannot be stored in the low parent object. So that
high processes can traversethe object hierarchy from top to bottom, the
system might include an object index at each access class that lists objects
and their parents. Entries to these indexes would be made as a side effect
of the "create object" operation. Another alternative would be to allow the
creating subject to decide where to store the id of the new object. It must
be stored in an object of the same access class as the creating subject, and
it must be stored somewhere, or else the new object will be inaccessible.

The attributes of our security model are summarized according to the prop-
erties enumerated in the following section.

3.2 Security Properties of the Composite Object
Model

In the security policy proposed here, we allow multilevel objects, or objects
with facets from multiple access classes to reside in the same program par-
tition. The classification of the object dominates both the name of the facet
and its value. This is captured in the Object Dominance Property.

Property 1 (Object Dominince Property). The classification of an
object dominates that of its facets. The facets may have different classifica-
tion levels. 3

We also require that the existence of an object have the same classification
as the object itself. Therefore, low objects should not be aware of high
objects.

Property 2 (Object Existence Property). The classification of the ex-
istence of the object, i.e., the classification of the object id, is the same as
the classification of the object itself. 0

This is handled in our proposed implementation by the fact that object ids
are pathnames relative to the user's partition, and there is no means to refer
to a higher partition.

20 The Composite Object Model

-The access dass of an object is constrained by the following property.

Property 3 (Hierarchy Property). The access class of an object must
dominate that of its parent object. 0

This property is needed to permit the object to inherit methods and vari-
ables from its parent. Any attempt to read an object by reading one of its
variables, or to execute it by sending, a message to it, may implicitly read
the object's parent class and perhaps the parent's parent class, and-so on,
until a default value or appropriate method is found.

We implement the security policy by creating a program lattice that mirrors
the security lattice. Each access class in the security lattice has a correspond-
ing partition in the program lattice. The following properties formalize this
relation.

Property 4 (Correspondence Property). The program lattice is iso-
morphic to the security lattice. There is a one-to-one correspondence be-
tween partitions in the program lattice and access classes in the security
lattice. o

The highest partition will correspond to the system-high access class. Just
a.- a particular access class dominates all inferior access classes, a particular

,tition will dominate all inferior partitions.

Property 5 (Partition Dominance Property). A partition in the pro-
gram lattice corresponding to access class S dominates a partition corre-
sponding to access class B iff A dominates B. 0

All references to objects must be handled by the trusted reference monitor
(RM). To enforce this rule, we require that each program partition exist in
its own local address space; the only way to access information in different
address spaces will be through a call to the RM.

The structure of the program lattice is maintained locally through a distin-
guished index object in each partition. The index object will contain (or be
able to compute easily) the following information:

The Compos;ite Object Model 21

" A list of the partition's directly inferior partitions

" A list of'all objects in the partition.

* A list of all object instances in the partition

The list of partitions will provide the means for traversing the lattice struc-
ture through recursive calls to the RM. The list of objects will enable the
RM to quickly access components of particular objects in a partition. The
list of instances will simplify the operation of constructing instances from
objects in inferior partitions.

Objects and facets are identified by local pathnames which specify the par-
tition and the object to the level of detail necessary for unambiguous iden-
tification.

We allow an object to read down, but in order to avoid illegal informa-
tion flows, we do not allow it to write down. Our policy has the following
read/write properties.

Property 6 (Read Property) A subject S can read an object 0 only if
S dominates 0. E

A subject can write an object only if its access class equals the access class
of the object. This means that a subject cannot write down.

Property 7 (Write Property) A subject S can write an object 0 only if
they have the same access class. 0

An attempt to write down will be intercepted by the RM and one of two
possible actions could occur: the RM could return an error, or it could
create a polyinstantiated (or shadowed) object or facet in the partition of
the subject.

Our write property differs from the traditional Bell and LaPadula model [1]
in that in our model, subjects cannot write up, while in the Bell and La-
Padula model they can. Furthermore, in our approach, an object in a par-
ticular partition will not be aware of higher level objects, nor will they be
accessible to it.

22 The Composite Object Model

3.3 Required Operations for the Composite Ob-
ject Model

Within a multilevel security policy, we must address the issues- of creation,
modification and destruction of objects and instances, message passing and
method evaluation, and reading and writing-of instaice variables.

3.3.1 Implementation of Partitions

We propose that partitions be implemented as separate program address
spaces with specific access classes; access to these address spaces would be
mediated by the RM. Each partition would maintain a list of subordinate
partitions with locally unique names. References to these partition names
would be mapped by the RM into its global partition table.

These partitions could comprise a permanent structure and represent parti-
tions in an OODBS.

3.3.2 Object Composition

One of the key advantages of object oriented systems is the ability of one
object to inherit properties from other component objects. In the security
policy outlined here, an object at one access class may be composed of
objects at the same or lower access classes. The access class of the new
object will be the same as that of the creating subject. When a new object is
defined, additional instance variables may be specified. These new variables,
of necessity, will be classiied at the access class of the new object because
instance variables do not exist independent of objects, variables will either
be inherited from pre-existing component objects, or will be specified when
the object is defined. As in a standard OOPS, when instance variables
with the same name are inherited from component objects, only one will be
retained.

We do not differentiate between instances of an object class and the object
class itself for inheritance. That is, object instances can be constructed from
other object instances.

The Composite Object Model 23

Newly defined instance variables may shadow those from other objects in
the normal fashion. This will allow a high object, for example, to create
its own version of variables that would otherwise be inherited from a low
object.

Similarly, methods may be inherited from component objects. As with vari-
ables, methods may be shadowed in order to allow a high object to carry out
computations differently than a low object, while using the same invocation
sequence.

In an implementation of this model, we assume that every object and facet
will be uniquely identified by a relative pathname which includes the name
of the partition owning the object, the object name, and, where appropriate,
the facet name.1

A low user may modify, redefine, or destroy an object at the low access class,
even when that object is a component of a high-level object. The lower user
will have no way of knowing of such high references or links to the low
object. Therefore, we place the responsibility for ensuring the consistency
of information with the .high user. In order to facilitate this, we propose
that each partition have an Error Handier that will take appropriate action
when reference to a nonexistent object or variable is made.

If a stable copy of a low object or facet is needed, i.e., a copy that cannot
be modified or deleted by low users, then a high copy should be created
that polyinstantiates the low object. This will allow the high user both to
guarantee the stability of the object's value and to monitor any changes low
users might make, since the value of the low, polyinstantiated object will
still be accessible through its unique pathname. This approach may not
be desirable for situations where the low data is highly fluid and the high
subject requires a stable information base.

3.3.3 Method Evaluation

In an OOPS, a method is invoked upon receipt of a message by an object.
The message specifies the method and provides any arguments pertinent

'Since we assume these unique pathnames, we do not distinguish composite objects,
where an object's components retain their identities, from complex objects that are created
from other objects whose independent identities are lost in the creation process.

24 The Composite Object Model

to the evaluation. This process is carried out by creating a subject at the
access class of the object sending the message. The method is processed
at this access class, and the RM enforces read and write properties based
on this access dass. The method should always return a value; the access
class of the value returned will be that of the subject itself. This may result
in different copies of the same information classified both low-and high, as
when the value of a low instance variable is returned to a high. subject); in
these cases, we recommend the use of an advisory label [14] indicating the
access class of the origin of the information. Such a label is for information
purposes only; it is not used in any release decision by the RM.

The use of functional closure [20] allows the message sender to specify the
variable binding environment to be used during method execution. A fuic-
tional closure encapsulates a process and a binding context in order to con-
trol the process execution environment. Specifically, by providing an associ-
ation list of variable names and desired bindings in the message, the sender
could effectively shadow variable bindings which would otherwise be used.
For example, the sender could specify that the value for a low variable's
value be used rather than the high value which would otherwise be used by
default.

3.3.4 Reading and Writing Instance Variables

A composite object may inherit instance variables from lower level com-
ponent objects. In order to ensure that read and write (and initialization)
operations do not violate the security policy, we require that all such accesses
be implemented via methods which will entail a call to the RM.

We propose to implement references to low variables from high objects by
storing, in the value slot of the high instance variable, an indirect poiater to
the variable in the low object. Until an attempt is made by the high-level
object to write an instance variable inherited from the lower level, the lower-
level variable will be accessed through this indirect pointer. If the high-level
object attempts to write the variable, the reference monitor signals an error
and the error handler will replace the indirect pointer with the new value
(or, possibly, a pointer to the new value), which will effectively shadow the
lower-level variable. An alternative method, if it is desirable to monitor
the information stored in the low object, would be to add a new instance

The Composite Object Model 25

variable to the object in such a fashion that either the old or new values
could be accessed under control of the high object, for example by adding
it to the "front" of the list of instance variables (with respect to the order
in which instance variables are accessed), rather than replace the indirect
pointer; this would polyinstantiate the variable, but leave both high and low
values accessible.

In this model, all updates would be single-level updates, and thus the model
raises no new issues with regard to concurrency control or transaction man-
agement beyond those already under investigation in the database security
community (see, for example, [7]).

Chapter 4

Multilevel Knowledge Based
Systems

Here, we first provide a brief introduction to typical KBS programming con-
structs. We then discuss issues related to the implementation of~a particular
form of KBS, the production system, within an object oriented framework.
Finally, we turn to issues of correctness within a hierarchical, multilevel
KBS.

4.1 Knowledge Based Programming Constructs

The most prevalent knowledge based programming methodologies involve
the use of rule based and/or frame based techniques. Here, we briefly review
these concepts.

4.1.1 Production Rule Systems

One of the most ubiquitous forms of KBS is the production system (PS),
where knowledge is represented in the form of production rules and declar-
ative statements [2]. Informally, a rule may be described in the following
format:

27

29 Multilevel Knowledge Based Systems

Rule 0 If <CIRCUMSTANCES>
then <DO ACTION, OR CONCLUDE SOMETHING>

A production system provides a knowledge base of such rules, working mem-
ory for the storage of facts and data representing the current state of the
system, plus a rule interpreter that selects the next rule to be activated (or
"fired"), that applies it to the working memory, and that carries out the
resulting action.

In a production rule, the <circumstances> component is called the an-
tecedent and the <do action, or conclude something> component is called
the "hypothesis" when the action is to alter the working memory or the
action when the result is to carry out some other process. In this paper, we
shall refer to this component as the hypothesis.

There are two distinct processing paradigms that might be used in a PS. The
first is called forward chaining (or data directed processing), which matches
data in the working memory against the hypothesis components of each
rule in order to produce a set of candidate rules. During the matching
process, variables may be bound which may cause other rule components to
be more precisely specified. A single rule from the candidate set is selected
and activated which may possibly result in a modification of the working
memory. This process is repeated until the desired result is obtained.

An alternative strategy is called backward chaining (or goal directed pro-
cessing) which matches goals stored in the working memory against the
antecedent component of each rule, in order to determine which rules might
satisfy the goal. A single rule from the set of candidates is selected, and its
hypothesis is posted in the working memory as a new goal. The process it-
erates until an antecedent subgoal is posted which is already in the working
memory and, therefore, known to be true.

Mixed strategies are often employed which involve both goal directed and
data directed processing.

Multilevel Knowledge Based Systems 29

4.1.2 Frame Systems

The class-hierarchy aspect of object oriented programming grew out of Min-
sky's "frame" idea for organizing knowledge [16]. In an artificial intelligence
context, a frame represents a concept. More concretely, a frame defines the
common attributes of a class of objects. An attribute is stored in a named
slot. Defining an attribute says that the slot is present, and also, in some
cases, gives the slot a default value.

Frames are hierarchicilly related according to the generality of the concepts
they represent. If one frame represents a class of objects, frames below it in
the hierarchy represent subclasses, not arbitrary subsets but more specific
concepts.

Inheritance is essential to the frame idea. A slot in a class frame is inherited
by its subclass frames. The fact that the class Project has Project-leader as
a slot means that the class Research-project automatically has the Project-
leader slot as well, and so will any subclasses of Research-project.

Given the intimate relationship between frames and OOPS, an implementa-
tion of a frame system as an object oriented system is quite natural. There-
fore, we will not address such an implementation here.

4.2 Object Oriented Implementation

Here we describe the implementation of a simple production system (PS)
within an OOPS.

4.2.1 Objects

There are numerous ways in which a PS may be implemented within an
0OPS. Our approach will be to define the following classes of object.

* Database object for storing, searching, and accessing the working
memory for the PS

30 Multilevel Knowledge Based Systems

* Rule object containing slots for the antecedent and hypothesis com-
ponents of the rule, containing methods for determining whether the
rule can be activated and containing methods activating the rule and
returning the results of activation

9 Rule Base object containing the set of rules

9 Pattern object containing the patterns that compose the antecedent
and hypothesis components of a rule as well as the statements in the
working memory, and containing patterns with no variables or univer-
sally quantified variables quantified pattern

* Binding object consisting of a pattern plus a list of binding pairs
which result from matching two pattern objects and contain variable
names and values (which may, inturn, be a variable name)

* Rule Interpreter object containing slots for the current working
memory and the current rule base, and including the necessary meth-
ods for selecting the next rule which could be activated, for resolving
conflicts, for causing selected rules to be activated, and for initiating
changes to the working memory

A database object will include slots for pointers to lower level database
objects stored in subpartitions. Searches through the database, then, will
continue until all lower-level databases have been searched. In general, the
order of searching lower level databases will be determined by their order
within the database object. This has the effect of making an object at one
partition effectively range over all appropriate subpartitions.

This concept of hierarchical continuation will also be used for rule objects as
well as for frames and other representations such as propositional sets used
for tasks such as reasoning with uncertain information.

4.2.2 Operations

A prototypical forward-chaining processing sequence might follow these
steps.

1. The user sends a START message to the current Rule Interpreter (RI)
instance.

Multilevel Knowledge Based Systems 31

2. The RI cycles through its current rule set, sending MATCH-P mes-
sages to each of the rules.

3. Each rule, upon receiving the MATCH-P message, passes it to the
antecedent pattern object. The pattern object attempts to match its
pattern to each statement in the working memory. If a successful
match is found, a binding object is created and returned for storage
in the rule; otherwise, the match returns FALSE.

4. The RI compiles a list of those rule instances for which a successful
match was found and stores them as the candidate rule set.

5. If there is more than one candidate rule, the RI invokes the conflict
resolution procedure by sending a message to itself in order to select
one rule for activation.

6. The selected rule is sent an ACTIVATE message, causing it to return
either a new entry for the working memory, or a process to be executed.

7. The RI then either executes the specified process, or, by sending the
ADD-DATA message to the database object, with the new data, the
rule, and the antecedent binding object as arguments, it adds the new
entry to the working memory, along with the basis for inferring the
new data.

8. At the conclusion of the process, the RI may decide to terminate, or
to send itself a CONTINUE message to continue the process.

At the conclusion of this process, new data items may be added to working
memory. Each item will be qualified with the data and inference chain that
led to the data.

A prototypical backward-chaining process might consist of these steps:

1. The user sends a SATISFY message to the RI object with the goal
to be achieved as its argument.

2. Upon receipt of the SATISFY message, the RI examines the goal and
determines whether the goal is a single statement, a conjunc*)n, or a
disjunction. A recursive approach is used for handling each case.

32 Multilevel Knowledge Based Systems

Single Goal: (continue the process) with no special action
Disjunction: select an evaluation order and map over the disjuncts,

sending the SATISFY message to the RI with each disjunct as
the argument, and returning TRUE as soon as one of the goal
statements is satisfied.

Conjunction: select an evaluation order and map over the con-
juncts, sending the SATISFY message to the RI with each con-
junct as the argument; return TRUE only if all the conjuncts are
satisfied. Any variable bindings which result from the satisfaction
of a conjunct must be used for applied to subsequent conjuncts.

3. The RI sends the MATCH-P message to the goal pattern.

4. Upon receipt of the MATCH-P message, the goal pattern searches
first searches the current working memory to determine whether the
goal pattern matches any current data pattern objects. If a match is
found, a binding object is created and a TRUE result is returned with
the database pattern as the basis for the result.

5. If no match is found in the database, then the pattern object searches
the current rule set, attempting to match the hypothesis components
of rules. Rules yielding a successful match are collected together.

6. The Rule Interpreter selects one rule, based on a problem oriented
conflict resolution criterion.

7. The Rule Interpreter sends itself a SATISFY message with the an-
tecedent component of the rule as its argument. If a TRUE result is
returned from this SATISFY message, then a TRUE result is also
returned for the rule, with both the data pattern and the rule itself as
the basis for the result.

At the end of this process, either the attempt to satisfy the goal will have
failed, or it will have succeeded and the chain of inference from the data
objects through the rules will be provided as the basis for the result.

4.2.3 Security Issues

Only a few special requirements are imposed on these processes by multilevel
security, as we no-e here.

Multilevel Knowledge Based Systems 33

" The methods must support the ability to continue a search through
lower level objects for appropriate rules and data

" There must be an ability to handle conflicts which arise when contra-
dicfory information or rules are stored at different access classes

" Newly created data must be stored in the database object at the access
class of the process that creates the data

4.3 Inference Issues

Another set of issues arises when we consider correctness and consistency of
inferences. In particular, since objects at high access classes may incorpo-
rate information which contradicts information at lower access classes, it is
likely that high level inferences will, at times, contradict low level inferences.
Furthermore, rules at high access classes may provide alternatives to rules
at lower access classes. Selection of appropriate rules for achieving goals,
or selection of which statements to believe becomes an important issue in a
multilevel KBS.

These issues are addressed in work on Truth Maintenance in knowledge based
systems [3]. A particular concern in truth maintenance systems (TMS) is
handling default assumptions or beliefs that are later invalidated by new
information. A common approach is to keep track of the basis for each
belief and to use the basis in order to determine what to believe, once a
contradiction occurs.

We advocate a similar process here. Low level data may be treated as de-
fault data by objects at higher access classes. When a contradiction between
a low statement and a high inference is detected, a conflict resolution pro-
cedure must be invoked to determine which statement should be considered
as representing the truth. The resolution of such conflicts must be deter-
mined on the basis of the information supporting each. Accordingly, we feel
that it is essential to store with each information item the source of that
information for use in conflict resolution. Interesting work on hierarchical
nonmonotonic knowledge structures has been reported by Konolige [10]. We
feel that this theoretical work is directly relevant to the issues raised here,
and plan to investigate these connections in greater depth.

34 Multilevel Knowledge Based Systems

A similar problem arises from resolution of conflicts between rules to be
used in order to satisfy a goal. We must have a basis for selecting the most
appropriate rule to be used in each instance.

For maintaining a "correct" view of the world, we advocate the following
conflict resolution rules.

* Backward chaining: When multiple rules are applicable, select the
highest rule; if multiple rules still pertain, select on the basis of domain
knowledge. This is based on the heuristic that the higher rule is more
likely to be correct than the lower rule.

* Forward chaining: When a contradiction is generated, choose the
statement generated by the highest level rule. This is based on the
same heuristic as in the case of backward chaining.

Contradictions are of greatest concern when they occur within the same
access class, since they may be more difficult to resolve. Contradictions
between high and low statements should be less troublesome, presuming
that "true" information is more likely to be sensitive and therefore placed
in higher access classes than incorrect information. One possible heuristic
for resolving such contradictions is to choose high information over low in-
formation. The presumption of information quality may not always be true,
however, and in general contradictions must be resolved by examining the
sources of the inconsistent statements in order to determine which should
be accepted.

High statements that contradict low ones should not be a problem, since the
high statements will be found first in a search through the working memory.

Handling contradictions implies the ability to recognize contradictions. Sim-
ple contradictions occur when a statement is inferred which is the negation
of a statement already in the working memory. In these cases, a straight-
forward search through the database, possibly optimized through an intell-

gent indexing pfocedure, can identify contradictions and select the correct
statement. In other cases, however, contradictions may exist when a set of
statements are considered jointly. Uncovering these contradictions remains
a difficult AI problem and is not considered here. If a general solution is
found to the problem of implicit inconsistency among a set of statements,

Multilevel Knowledge Based Systems 35

we believe that we will be able to adapt that approach for use in-supporting
multilevel security.

Chapter 5

Example

Here we illustrate a number of the issues raised in the preceding chapters. In
particular, we will focus on the issue of correctness and contradiction, using
a simple rule based system for illustration. We assume that the processes
of achieving goals and generating inferences will be handled in an object
oriented implementation as described above, and we will not address these
issues here.

5.1 Scenario

Our examples are based on the following scenario. We have a secret mission
that requires us to send a message to an operative working on a remote
island in the Antarctic. The location of this operative is so sensitive that
we must create an unclassified1 scenario that will mask our true intent.
Because of the distances involved and the uncertain Antarctic weather, our
messenger must travel by sea. However, in order to conceal this fact at the
unclassified level, we have indicated that our operative must travel by air.
In the following example, we shall reason about which operative to send,
Tweety or Opus. We follow the reasoning and show that our conclusions
depend on the access class of the subject and the information available at

'The levels, unclassified and secret, are not intended to have any relation to US De-
partment of Defense classifications, but were chosen on the basis of their descriptiveness.

37

38 Example

each access class.

5.2 The Knowledge Base

Our information is represented by the following sets of rules and data items.
In these examples, the construction $x is used to indicate the universal
variable, x. We also use a prefix notation for predicates.

The set of rules available at the unclassified level, shown in Figure 5.1,
represent the following knowledge:

SAll birds fly.

i Something that is yellow is not black.

* All penguins can swim.

* All penguins are black.

* If something can fly and is small, then choose it. (This is our selection
rule for choosing an operative.)

Our unclassified database, shown in Figure 5.2, represents the following
facts:

* Opus is a bird.

* Tweety is a bird.

* Tweety is yellow.

* Tweety is small.

At the secret level, we have the additional rules shown in Figure 5.3. In
particular, we know something more about penguins which was not known
at the unclassified level. The rules at this level represent the following
knowledge:

Example 39

Unclassified Rules

Rule 1 If (BIRD $x)
then (FLY $x)

Rule 2 If (YELLOW $x)
then (NOT (BLACK $x))

Rule 3 If (PENGUIN $x)
then (SWIM $x)

Rule 4 If (PENGUIN $x)
then (BLACK $x)

Rule 5 If (FLY $x) AND (SMALL $x)
then (CHOOSE $x)

Figure 5.1: The Unclassified Rule Set

Unclassified Data

(BIRD OPus)
(BIRD TWEETY)
(YELLOW TWEETY)

(SMALL TWEETY)

Figure 5.2: Unclassified Data

40 Example

Secret Rules

Rule 6 If (PENGUIN $x)
then (NOT (FLY $x))

Rule 7 If (SWIM $x) AND (BLACK $x)
then (CHOOSE $x)

Figure 5.3: Classified Rules

Secret Data

(PENGUIN Opus)

Figure 5.4: Classified Data

* No penguin can fly.

* If something is black and can swim, then choose it as the operative.

As Figure 5.4 shows, we have one additional fact at the secret level: we
know that Opus is a penguin.

Now we wish to draw some conclusions from this data.

5.3 Choosing an Operative

We begin by trying to satisfy the goal, (CHOOSE $Y). The value assigned
to Sy will be our choice, in the event of successfully achieving the goal. While
we will gloss over many of the details, we will follow the general procedure
outlined above for backward chaining.

We begin with the view from the unclassified level. The process is started
when we send the message (SATISFY (CHOOSE $y)) to the Rule Inter-

preter. This goal is a single statement and is not already in the database.

Example 41

Therefore, we next search for rules which could satisfy the goal. The single
rule selected is Rule 5, with the variable $x bound to $Y. This results in
the RI sending itself the message, (SATISFY ((FLY $Y) AND (SMALL
SY))). This is a conjunctive goal and requires successful solution of the two
subgoals, (SATISFY (FLY $Y)) and (SATISFY (SMALL $Y)). The
first subgoal matches rule 1, and results in the message (SATISFY (BIRD
$Y)) being passed to the RI.

This subgoal may be satisfied in two ways, either by matching the statement
(BIRD Opus) or by matching (BIRD TWEETY). Assume that (BIRD
Opus) is matched first. This causes $x to be bound to Opus, which modifies
the subgoal, (SATISFY (SMALL $Y)) to be the more specific subgoal,
(SATISFY (SMALL Opus)). This subgoal ultimately fails, as there is
no rule which is applicable, nor is there a statement in the database which
matches the subgoal.

Here we take a back-tracking approach, and when a failure occurs, we return
to the last point where a choice was made to try a new possibility. The last
choice involved the match to (BIRD $S), so now we try the second match,
(BIRD TWEETY). This results in the more specific subgoal, (SATISFY
(SMALL TWEETY)), being sent to the RI. This goal is satisfied by the
statement in the database, (SMALL TWEETY). Each component of the
conjunctive goal is now satisfied, and as a result, the conjunctivegoal is also.
This yields the final solution, (CHOOSE TWEETY). Tweety is chosen as
the best operative for the job.

At the secret level,, we find two rules are candidates for determining an
operative, Rule 5 and Rule 7. Our conflict resolution process causes us to
choose Rule 7, as it is the higher rule. The subgoals that result in this
case are (SWIM SY) and (BLACK $Y). The first subgoal does not match
anything in the database, but does match the hypothesis component of
unclassified Rule 3, resulting in the new subgoal, (PENGUIN $Y). This
subgoal matches (PENGUIN Opus), and binds $y to Opus. This result
constrains the second subgoal of the conjunct to (BLACK Opus). Again,
this subgoal does not match anything in the database, but does match the
Rule 4, resulting in the new s'hgoal, (PENGUIN Opus), which is satisfied.
The satisfaction of these subgoals leads to the satisfaction of the original
goal, with Opus as the resulting value.

Here, we have selected Opus as the best operative. By using information

42 Example

Unclassified Data

(FLY OPus)-(local inference: (BIRD Opus) + Rule 1)
(FLY TwEETY)-(Iocal inference: (BIRD TWEETY) + Rule 1)
(BIRD Opus)
(BIRD TWEETY)
(YELLOW TWEETY')
(SMALL TwEETY)

Figure 5.5: Unclassified Data With New Inferences

privy to the secret level, we reach a different conclusion, just as we had
desired.

5.4 Drawing Conclusions From Data

We now wish to consider forward-chaining operations or direct inference
generation. There are many schemes for controlling such inference processes,
which we will not concern ourselves with here. Instead, we will choose certain
inferences for illustrative purposes.

First, we will consider inferences generated at the unclassified level. We
begin by considering the statement, (BIRD Opus). This statement matches
the antecedent component of Rule 1, and therefore allows us to infer the
statement, FLY Opus. Similarly, we can infer (FLY TWEETY). We add
both of these statements, along with their derivations, to the database,
yielding the updated database shown in Figure 5.5. We could continue the
process further, but we now wish to switch our attention to the secret level.

At the secret level, we generate the same inference that was generated at the
unclassified level, (FLY Opus), but with a different justification that the
inference was made at the secret level. Only one secret statement, (PEN-
GUIN Opus), matches any rules. The matched rules are the unclassified
rules 3 and 4, and the secret rule 6. These rules entail the new inferences,
(SWIM Opus), (BLACK Opus), and (NOT (FLY Opus)). Here, the
only problem occurs when we attempt to add the last statement, (NOT

Example 43

Secret Data

(NOT (FLY OPus))-(local inference: (PENGUIN Opus) + Rule 6)
(SWIM Opus)-(local inference: (PENGUIN Opus) + Rule 3)
(BLACK Opus)-(local inference: (PENGUIN Opus) + Rule 4)
(BLACK Opus)
(PENGUIN Opus)

Figure 5.6: Classified Data With New Inferences

(FLY OPus)); here, we have created a contradiction. Using our conflict
resolution rule, we accept the statement, (NOT (FLY Opus)), and remove
the statement (FLY Opus), as the former statement was generated by a
higher rule. The final database is shown in Figure 5.6.

We could continue the inference process, as we now have another rule which
is applicable, but we will stop here. We have illustrated the point that
different inferences could be generated at the different access classes. Within
each access class, however, we are able to maintain a "correct" view, based
on the information and knowledge available at the access class.

5.5 Discussion

In these examples, we have illustrated the control of inferencing processes
within a multilevel environment. We were able to generate inferences appro-
priate to the knowledge available to users at different access classes, and to
show how these inferences could be maintained separately, while providing
users with information appropriate to their clearances.

The issue of correctness of inferences is an important o,'e for any KBS.
Correctness becomes particularly difficult when different information and
knowledge is available to different actors in the process. However, we feel
that multilevel security does not bring requirements which are significantly
different or unique. Therefore, we feel that current methods under investi-
gation by Al scientists for handling truth maintenance and nonmonotonic
reasoning should be equally applicable here.

Chapter 6

Summary and Conclusions

6.1 Summary

In this report we have addressed two distinct issues involved with implement-
ing a multilevel security policy for a KBS: an appropriate implementation
medium and the correctness of inferences. We began by proposing a multi-
level security policy for object oriented programming systems, based on the
concept of multilevel objects. We identified several requirements for such a
system and showed how our policy would support these requirements.

We next outlined an approach for implementing a particular form of KBS,
a production system, within an object oriented framework. This allows us
to ensure that multilevel security is maintained within such a system.

Finally, we identified a number of more subtle issues associated with main-
taining the correctness of inferences within a multilevel security framework.
These issues seem to be strongly linked to issues involved in nonmonotonic
reasoning or truth maintenance in more standard knowledge based systems,
and we propose methods similar to those used by truth-maintenance sys-
tems. In particular, we propose that the basis for an inference be stored
with statements in the working memory. When a contradiction appears,
the statement derived from the highest level information is the one to be
selected.

45

46 Summary a.. Conclusions

This work has only begun to address the issues of multilevel security in
KBSs, and while many important technical problems have only been iden-
tified at this time, we feel that the approaches we are following will lead to
the ability to develop secure and habitable KBSs.

6.2 Comparison with the Single-Level Object
Model

The composite object model we presented here is an extension of the single-
level object model described by MiUllen and Lunt in their recent report [15].
Both models use an object oriented data model as a basis, and are very
similar in many respects. In both models, objects have a single classifica-
tion. However, in our composite object model, single-level objects can be
combined into multilevel composite objects, where the component objects
retain their identity as objects.

In both models, objects can contain references to other objects; one way an
object can do this is through inheritance. Both models include a hierarchy
property, which requires that the access class of an object must dominate
that of its parent object.

Another way an object can refer to another object is by storing an object
identifier (id) as the value of an instance variable. In the Millen-Lunt model,
an object 01 can contain a reference to another object 02 only if the ref-
erenced object 02 has an access class dominated by that of 01 or if the
referenced object 02 was created by a subject whose access class is domi-
nated by that of 01. In contrast, in the composite object model presented
here, if an object 01 contains a reference to another object 02, then the
access class of 01 must dominate that of 02.

This difference means that, in the composite object model, the existence of
an object is considered to be classified at the access class of the object itself.
Thus, in this model, low users cannot know of the existence of high objects,
and consequently low objects cannot contain references to high objects. In
the Millen-Lunt model, however, low subjects may know of the existence
of a high object if the high object was created by a low subject, and, by
extension, of that class of high objects. Thus the object id of the high object

Summary and Conclusions 47

can be stored as a value in a low object, if the high object was created by
a low subject. The Millen-Lunt model hides the existence of a high object
from low subjects if the high object was created by a high subject; in this
case, the existence of a high object is protected by ensuring that its object
id is not stored in a low object.

This brings us to the question of writing up. Neither model allows a sub-
ject to write into an object of a higher access class. However, the MUllen-
Lunt model allows low objects to create high objects. The composite object
model, on the other hand, does not allow any writing up whatsoever. In
particular, it does not allow low subjects to create high objects.

Neither model has polyinstantiation, although what Millen and Lunt call
"apparent polyinstantiation" can arise in both models [15]. That is, ob-
ject ids cannot be polyinstantiated because object ids are guaranteed to be
unique. However, in the Millen-Lunt model, the user-defined object name or
other identifying attribute can be polyinstantiated. Lunt and Millen called
this "apparent polyinstantiation" in that polyinstantiation may "seem" to
occur in the application, because the identifying attributes by which the user
knows the instances may not be unique. For example, a low user can create
an instance of a low "employee" object with the same employee name as an
invisible high instance of "employee." This polyinstantiation is only appar-
ent, because the two instances have unique and distinct object ids. But to
the high user there appear to be two occurrences of the same employee at
different access classes.

The composite object model also allows appz2rent polyinstantiation, but in
all cases such polyinstantiation occurs as the result of a decision to polyin-
stantiate by a high subject. Unlike the Millen-Lunt model, polyinstantiation
cannot occur simply because some action by a low user results in a name
conflict, as in the above example. We sometimes call this "shadowing" to
distinguish it in our model,

The Millen-Lunt single-level object model explicitly modeis integrity con-
straints and classification constraints, whereas the composite object model
does not. However, these constraints can be easily incorporated into the
composite object model framework in much the same way as for the Millen-
Lunt model.

The Millen-Lunt single-level object model shows how inference rules can be

48 Summary and Conclusions

represented within the model framework. The composite model takes this
idea much further.

Both models rely on an underlying security kernel for the enforcement of
mandatory security. This means that with both models, the system layer
providing the object oriented interface can be untrusted with respect to
mandatory security. Neither model addresses discretionary security.

Other differences between the models are as follows. The Millen-Lunt model
carefully defines the role of subjects and contains several properties that
govern the, activity of subjects. By contrast, the composite model presented
here does not in any way constrain the implementation of subjects. The
Millen-Lunt model describes a set of system operations and discusses the
security requirements and constraints relevant to those operations. The
composite object model does not define a list of operations. The Mullen-
Lunt model includes some detail on how such a system might actually be
implemented. This composite object model does not.

6.3 Conclusion

In this project we have developed three distinct security policy models, the
Multilevel Object Model, the Single-Level Object Model, and the Composite
Object Model. We focused primarily on the latter two models.

In this report we describe the Composite Object Model which builds on the
foundation of the Millen and Lunt [15] single-level object model in order to
develop a model capable of representing multilevel entities. We have taken
an approach in which multilevel objects can be constructed from single-level
components, and our approach avoids the difficulties of earlier models of
multilevel objects [12]. We feel that the real-world applications that may
make use of a multilevel KBS will require the ability to model multilevel
objects directly.

As in the work by Millen and Lunt, we have shown here how a multilevel
KBS can be implemented by using a multilevel object oriented database sys-
tem as a framework. We have shown how such a framework can be modeled
to provide the ability to represent multilevel objects, and we have shown
how realistic reasoning systems can make use of such a framework. We have

Summary and Conclusions 49

shown that the multilevel object oriented model we present here can be im-
plemented as an untrusted system layer on a conventional reference monitor
that enforces mandatory security. This is important for several reasons.
First, it demonstrates the feasibility of building a high-assurance multilevel
KBS. The "trust" in trusted computing systems rests on the ability to pro-
vide convincing arguments or proofs that the security mechanisms work as
advertised and cannot be disabled or subverted. In building a multilevel
KBS, providing such assurance is potentially problematical because of the
size and complexity of the system. Achieving Class Al assurance is possible
only if that portion of the system enforcing mandatory security is small and
isolated. Building on a previously verified reference monitor for mandatory
security satisfies this requirement.

Secondly, building the KBS as an untrusted system layer on a conventional
reference monitor means that such systems can be constructed in a cost-
effective manner, reusing established security solutions, and avoiding the
need for a large verification effort. avoiding the need for a large verification
effort.

Third, such an architecture suggests the possibility that multilevel KBS can
be built to provide the full functionality users expect from such systems.
The architecture we envision here is similar to that of SeaView, in that
multilevel composite objects are broken into single-level objects that can
in turn be stored in storage objects of the corresponding access class and
managed by an underlying reference monitor [14]. Both designs include the
basic functionality required by multilevel applications utilizing an integrated
collection of information classified at different security levels.

Fourth, this approach provides the greatest degree of security possible, be-
cause it considerably reduces the disclosure risk to sensitive information.
This is because the KBS is governed by the underlying reference monitor,
which partitions data according to their classification. Thus, no subject
can gain access to any information whose classification is not dominated
by the subject's access class. All operations can be handled by single-level
untrusted subjects. This is the most conservative approach possible for
mandatory security. Any other approach would require the use of trusted
subjects, which would admit additional risk.

Finally, a system constructed in this way can take advantage of the TCB
subsetting evaluation strategy [18, 11].

50 Summary and Conclusions

However, there are still many implementation issues to resolve if we are to
construct a multilevel KBS in this way. It is almost certainly the case that
current reasoning systems have not been implemented such that it would
be straightforward to port them to run on a reference monitor. The TCB
subsetting approach means that there must be at least one instance of the
system for each active security level (a security level is considered to be active
if there is a subject active at that level). Thus, the KBS must be able to sup-
port multiple system instances that share the same logical knowledge/data
base. Conventional concurrency control and recovery mechanisms will not
work in a multilevel environment. Global data structures cannot be used.
Thus, multilevel security will have a significant impact on the design of
a KBS because the design will be constrained by the underlying reference
monitor.

Although we believe that the work presented here is a significant advance in
the state of the art, further work is necessary to prove some of the concepts
we have introduced. Construction of a prototype system would expose the
implementation issues and prove the viability of the approach. In addition,
further work is necessary to identify and model the discretionary security
issues for KBSs.

6.4 Future Directions

In this report we have presented a model for a multilevel KBS. Although the
work presented here is a significant first step, further work is necessary to
prove some of the concepts we have introduced and to evaluate the overall
habitability of the system. In particular, the issue of truth maintenance
methods and their effects on the overall usability of the system needs to be
investigated. The -next step would be to build a proof-of-concept prototype
system to prove the viability of our approach. We see two alternatives for
developing a prototype system.

* The prototype could be constructed to run on a high-assurance refer-
ence monitor, such as the Gemini Computers GEMSOS system. To
do this, a rudimentary reasoning system would have to be built from
scratch to run on the reference monitor. The resulting prototype would
have only very limited functionality, but would be multilevel secure

Summary and Conclusions 51

and would demonstrate the feasibility of the architectural approach.

9 The prototype KBS could be constructed on a single-level OOPS and
built so as to mimic the effects of multilevel security. Although the
resulting prototype would not in fact be multilevel secure, it would be
able to demonstrate the effects of multilevel security on the applica-
tions that use the KBS.

In addition to building a proof-of-concept prototype, it would be profitable
to develop a sample application for implementation on the prototype. This
task would best be undertaken with the second approach to building the pro-
totype. The advantage of developing a sample application would be to test
the adequacy of the model for realistic applications and to identify potential
strategies for realistic applications and to identify potential strategies for
dealing with such complications as shadowing and the design of multilevel
composite objects.

It is important that the subset of the knowledge base visible at any access
class be capable of yielding meaningful results. It is also important that
the subset of the knowledge base visible at any access class be dosed with
respect to inference of higher level subsets. Developing a knowledge base
that satisfies these requirements will be a challenging new task. Tools will
be required to assess the impact of specific sets of data/knowledge classi-
fications. Because its knowledge is encoded for logical processing, a KBS
is potentially able to reason about the closure of subsets of its knowledge
base with respect to inference. Methods have been proposed for using Al
techniques for locating potential inferences arising from classification incon-
sistencies in relational databases [5]; analogous techniques may be applicable
for multilevel knowledge bases. For a KBS, such reasoning may be able to
take advantage of the fact that the much of the semantics of the application
is captured in the knowledge base.

Discretionary access control is also relevant to a KBS and deserves attention
in future work. A KBS has several distinct types of users, each with their
own set of authorized capabilities. Because knowledge changes frequently,
there are many types of engineer and expert with roles to play in maintaining
the knowledge base. There may be a czar to resolve conflicts when the
experts disagree. There will be test engineers who develop and run test
cases on proposed modifications to the knowledge base. Such users may be
restricted to certain subsets of the knowledge base, and these subsets may

52 Summary and Conclusions

be appropr'Ate objects of discretionary access control. Finally, there are
the consumers, users of the system, for whom discretionary access controls
seem especially relevant. Further study is necessary to examine appropriate
discretionary security policies for KBSs.

The security model presented here could also be extended to model integrity
properties as well as security properties.

Future work could formalize the model we have presented here and specify.a
set of primitive operations that could be formally verified to meet the basic
properties of the model.

In conclusion, we believe that we have defined a workable and verifiable
security policy for both OOPS and KBS built on top of them. The next
step is to implement a prototype system and evaluate issues relating to
habit abity.

Bibliography

[1] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified
exposition and multics interpretation. Technical Report ESD-TR-75-
306, The MITRE Corporation, Bedford, MA; March 1976.

[2] E. Charniak and D. McDermott. Introduction to Artificial Intelligence.
Addison-Wesley, Reading, MA, 1985.

[3] J. deKleer. An assumption-based TMS. Artificial Intelligence, 28:127-
162, 1986.

[4] D. E. Denning. Cryptography and Data Security. Addison-Wesley,
Reading, MA, 1982.

[5] D. E. Denning and M. Morgenstern. Military database technology
study: AI techniques for security and reliability. Technical report, Com-
puter Science Laboratory, SRI International, Menlo Park, CA, 1986.

[6] Department of Defense Trusted Computer System Evaluation Criteria,
DOD 5200.,8-STD. Department of Defense, December 1985.

[7] A. Downing, I. Greenberg, and T. F. Lunt. Issues in distributed
database security. In Proceedings of the 5th Aerospace Computer Secu-
rity Conference, December 1989.

[8] A. Goldberg and D. Robson. Smalltalk-80: The Lanouage and its Im-
plementation. Addison-Wesley, Reading, MA, 1983.

[9] K. Konolige. Bayesian methods for updating probabilities. In R. 0.
Duda, P. E. Hart, K. Konolige, and R. Reboh, editors, A Computer-
Based Consultant for Mineral Ezploration, SRI International, 333
Ravenswood Avenue, Menlo Park, CA 94025, 1979.

53

54 Summary and Conclusions

[10] K. Konolige. Lecture notes in artificial intelligence. In Non-Monotonic
Reasoning. Springer-Verlag, June 1988.

[11] T. F. Lunt. Multilevel database systems: Meeting class Al. In C. E.
Landwehr, editor, Database Scrurity II: Status and Prospects. North
Holland, 1989.

[12] T. F. Lunt. Multilevel security for object-oriented database systems.
In D. L. Spooner and C. E. Landwehr, editors, Database Security III:
Status aad Prospects. Elsevier, 1990.

(13] T. F. Lunt, D. E. Denning, R. R. Schell, W. R. Shockley, and M. Heck-
man. The SeaView security model. IEEE Transactions on Software
Engineering, June 1990.

[14] T. F. Lunt, R. R. Schell, W. R. Shockley, M. Heckman, and D. Warren.
A near-term design for the SeaView multilevel database system. In
Proceedings of the 1988 IEEE Symposium on Security and Privacy,
April 1988.

(15] J. K. Millen and T. F. Lunt. Secure knowledge-based systems. Tech-
nical Report SRI-CSL-90-04, Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, August 1989.

[16] M. Minsky. A framework for representing knowledge. In The Psychology
of Computer Vision. McGraw-Hill, New York, 1975.

[17] G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, Princeton, NJ, 1976.

[18] W. R. Shockley and R. R. Schell. TCB subsetting for incremental
evaluation. In Proceedings of the Third AIAA Conference on Computer
Security, December 1987.

(19] G. W. Smith. Identifying and representing the security semantics of an
application. In Proceedings of the Fourth Aerospace Computer Security
Applications Conference, December 1988.

[20] G. L. Steele Jr. Common LISP. Digital Press, 1984.

