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DACKGROUND 

Modem explosively formed projectile warhwuls, such as SADARM, produce a single robust penetrating 
fragment. However, greater lethality could often be achieved by either a number of smaller fragments or a 
deep penetrating jet depending on the target properties. Hicrefore, multiple mode warheads provide increased 
utility and overall lethality due to their applicability over a larger range of targets. The Advanced Warhead 
Concepts 1L1R project is investigating advanced multiple mode warhead concepts based on charge designs 
employing explosives with different properties and initiation logic. These advanced warhead concepts are 
being investigated using dynamic finite clement analysis and experimental verification. Current dynamic finite 
element programs, such as DYNA3D, do not adequately treat detonation interaction phenomena produced by 
explosives with different properties and multiple initiation points. Therefore, the FY90 effort was to develop 
and implement a significant enhancement for the treatment of detonation interactions. This has been done by 
producing an advanced detonation products equation of state, appropriate for overdriven detonations produced 
by detonation interactions. This new equation of state provides an improved high pressure description, and 
retains the low pressure expansion behavior required for standard material acceleration modeling. 

APPROACH 

Thermochemical calculations have proven to be very useful for the prediction of explosive products 
properties, particularly near and above the Chapman-Jouguct state. Unfortunately, they do not reproduce the 
products expansion behavior accurately enough for typical warheads design. Currently, thermodynamic 
equations of state (JWL) used for warheads design are normally calibrated to give agreement with copper 
cylinder explosive expansion experiments. These equations of state have not been calibrated for high pressures 
above the Chapman-Jouguct state. Experimentation and comparison with thermochemical calculations (Figures 
1,2, and 3) have demonstrated that a poor description of the high pressure region exists. In order to achieve a 
suitable equation of state, an appropriate equation of state form (JWLB) was derived. A standard explosive 
(octol 75/25) was used for copper cylinder expansion tests and explosive dent plate tests. The new equation of 
state was parameterized for octol 75/25, using both thermochemical calculations and cylinder test results in 
order to adequately describe both the high pressure region and lower pressure expansion behavior. After 
implementing the equation of state into a finite element program, dynamic finite element analysis of the 
experimentation using JWLU and a standard equation of state (JWL) with standard octol 75/25 parameters was 
completed. The expcrimcnial and computational results were reduced and compared. 

liOUATION OFSTATU WRMUIATION 

'ihe equalioii of stale form was chosen so as to adequately describe the high pressure regime produced 
by overdriven dclonniion, and yci retain the low pressure expansion behavior required for standard material 
acceleration modeling. To this end, the derived form is based on the Jones-Wilkens-Lee (JWL) equation of 
stale due to its asymptotic approach to an ideal gas at high expansions. Additional exponential terms and a 
variable Gruneisen parameter have been added to adequately describe the high pressure region above the 
Chupman-Jouguet state. The resulting equation of slate form, named Jones-Wilkens-Lcc-Baker (JWLB), is as 
follows: 

L   'L    RiVJ 

.RiV+AJE + C(1.W(oH-l) 
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The TVLB equation of state form is based on a first order expansion around the principle tacmropc: 
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Using the Gruneiaen Parameter, 

the isentropic identity, 
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and the Chapman-Jouguet condition, 
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P = ^(E - Es) + Ps » Final Form. 

Some important characteristics of the equation of state are that the Gruneisen Parameter A, is represented as an 
V dF analytic function of specific volume, V.   X + 1 approaches a constant adiabatic gamma,  
? dV 

for large V, so that ideal gas behavior is asymptotically approached. 

EXPERIMENTAHON 

Copper cylinder expansion tests and steel dent plate teats were done. The copper cylinder expansion 
tests consisted of oxygen free copper tube (lO'H X TOD X 3/4"ID) filled with octol 75/25. Each charge was 
detonated from one end, and the cylinder wall movement was measured using an ultrahigh speed smear 
camera. The dent plate tests consisted of a 3" diameter charge placed on top of three 3" thick RHA steel 
plates. The charge is detonated and the resulting dent profile is measured using a sliding micrometer. The 
charges consisted of 1.5" and 2.5" height octol 75/25. 

PARAMETERIZATION 

A generalized method of parameterization has been developed using a nonlinear optimization program 
(NLQPEB), thermochemical calculations (TIGER), and a mathematical cylinder test model (CYLTEST). The 
NLQPEB program was developed by ARDEC for the solution of generalized nonlinear optimization problems 
with equality and inequality constraints. The program utilizes sequential quadratic programming, with a 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable metric update and a modified merit function based on the 
Kuhn-Tucker first order necessary conditions. NLQPEB is used to solve for a set of JWLB parameters that 
reproduce the predicted pressure, volume, Gruneisen parameter principle isentrope behavior in the least squares 



sense. Additional equality constraints are imposed so that the predicted Chapman-Jouguet state be reproduced, 
and that CYLTEST reproduces the experimental cylinder expansion test results at seven volume expansions. 
The pressure, volume, Gruneisen parameter principle isentrope behavior and the Chapman-Jouguet state are 
predicted using the computer program TIGER. Either the Beckcr-Kistiakowsky-Wilson (BKW) or the 
Jaoobs-Cowperthwaite-Zwisler (JCZ3) thermochemical equations of state can be used for the calculations. The 
mathematical cylinder expansion test model, implemented into the program CYLTEST, is a modification of the 
model suggested by G.I. Taylor using Reynolds hydraulic treatment. The modification includes radial flow and 
cylinder wall thinning considerations. Itic parameterization method was used with BKW and the LLNL 
revised BKW parameters (BKWR) to produce JWLB parameters for octol 75/25. The octol 75/25 JWLB 
parameters are: 

A-.Mbar A-Mbar A-.Mbar Rl R2 R3 C.Mbar CD 

909.17 89.469 .81495 15.941 5.4178 2.1956 .01048 30731 

65.093 -179.81 156.04 

AA4 
.78487 

hi 
3.69061 

RA2 
4.52693 

RA3 
5.80143 

RA4 
.958640 

po,g/cc 
1.821 

Eo.Mbar 
.096034 

D,cm/jUs 
.85381 

Pcj.Mbar 
.33755 

Figures 4, 5, and 6 compare BKWR and JWLB calculations. 

DYNAMIC FINITE ELEMENT COMPUTATIONS 

The equation of stale has been implemented into the dynamic finite element program DYNA2D. 
Hie cylinder expansion and plate dent tests have been modeled using JWLB, as well as JWL with standard 
parameters for comparison. Figure 7 shows the cylinder test modeling at 6 microsecond intervals. Figure 8 
shows the plate dent test initial and final configurations. The material boundaries and computational mesh of 
both computations can be clearly seen in the figures. The Johnson-Cook material model and the 
Mie-Gruneisen equation of state were used for both the copper and steel material descriptions. Extensive 
rczoning was required for the plate dent calculation. 

RBSULIS COMPARISON 

Figure 9 presents a comparison of the finite element and experimental cylinder expansion test 
results. The cylinder test dynamic finite element results agree very closely with the experimental results. The 
JWLB equation of state results agree slightly better than the JWL results. The dent plate computations also 
agree closely with the experimental results. It was found that the closest agreement was achieved using an 
Ignition und Growth reactive scheme rather than a standard programmed burn for the explosive detonation. 
Figure II) presents n comparison of the finite clement and experimental plate dent test results. 

(INCLUSION 

An advanced thermodynamic equation of state applicable to problems involving overdriven 
detonation has been developed. 'Ihc equation of state has been parameterized for octol 75/25 and a 
compjirison of experimental results to computational results has been completed. The new equation of state 
maintains required low pressure expansion behavior while providing a better high pressure description 
applicable to overdriven detonation. The new equation of state will be used for evaluating advanced multiple 
mode warheads concepts based on charge designs employing explosives with different properties and initiation 
logic. Finally, the new equation of state will be used for warheads development and analysis on several other 
programs Including Insensitive Munitions, More Powerful Explosives and Target Defeat. Typical applications 
include shaped charge wnve shaping, peripheral initiated explosively formed projectiles, and Mach stem 
detonations. 
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Figure 7. Cylinder expansion test finite element computation at 6 mkroaeooad intervals. 
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