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BACKGROUND

Modern explosively formed projectile warheads, such as SADARM, produce a single robust penetrating
fragment, However, greater Icthality could often be achieved by either a number of smaller fragments or a
deep penetrating jet depending on the target propertics. Therefore, multiple mode warheads provide increased
utility and overall lethality due to their applicability over a irger range of targets. The Advanced Warhead
Concepts ILIR project is investigating advanced multiplc mode warhead concepts based on charge designs
cmploying explosives with diffcrent properties and initiation logic. These advanced warhead concepts are
being investigated using dynamic f{initc element analysis and experimental verification. Current dynamic finite
element programs, such as DYNA3D, do not adequately treat detonation interaction phenomena produced by
explosives with different properties and multiple initiation points. Thercfore, the FY90 effort was to develop
and implement a significant cnhancement for the trcatment of detonation interactions. This has been done by
producing an advanced dctonation products enualion of state, appropriate for overdriven detonations produced
by detonation interactions. This new equation of state provides an improved high pressure description, and
retains the low pressure expansion behavior required for standard material acceleration modeling.

APPROACH

Thermochemical calculations have proven to be very useful for the prediction of explosive products
propertics, particularly ncar and above the Chapman-Jouguet state. Unfortunately, they do not reproduce the
products expansion behavior accurately enough for typical warheads design. Currently, thermodynamic
equations of state (JWL) used for warheads design are normally calibrated to give agrcement with copper
cylinder cxplosive expansion cxperiments. Thesc equations of state have not been calibrated for high pressures
above the Chapman-Jouguct state. Experimentation and comparison with thermochemical calculations (Figures
1,2, and 3) have demonstrated that a poor description of the high pressure region exists. In order to achieve a
suitable equation of state, an appropriate cquation of state form (JWLB) was derived. A standard explosive
(octol 75/25) was used for copper cylinder expansion tests and explosive dent plate tests. The new equation of
statc was parameterized for octol 75/25, using both thermochemical calculations and cylinder test results in
order to adequatcly describe both the high pressurc region and lower pressure cxpansion behavior. After
implementing the equation of state into a finite clement program, dynamic finite element analysis of the
experimentation using JWLB and a standard equation of state (JWL) with standard octol 75/25 paramcters was
completed. The experimental and computational results were reduced and compared.

EQUATION OF STATE FORMULATION

‘The equation of state form was chosen so as 1o adequately describe the high pressure regime produced
by overdriven detonntion, and yet retain the low pressure expansion behavior required for standard material
aceeleration modeling, “To this end, the derived form is based on the Joncs-Wilkens-Lee (JWL) equation of
state due o ils asymplotic approach to an idcal gas at high cxpansions. Additional exponential terms and a
variable Gruncisen paramcter have been added to adequately describe the high pressure region above the
Chapmun-Jouguet state. ‘The resulting equation of state form, named Jones-Wilkens-Lee-Baker (JWLB), is as

follows:
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The J'VLB equation of state form is based on a first order cxpansion around the principle Iscntrope:
Ps = ZAie'R'v + cv{otl),

Using the Gruneisen Parameter,

a=VE

JE'V
the isentropic identity,

P=-1’E

’
aVls
and the Chapman-Jouguet condition,

Ecj = Eo + 5(Pcj + Po)(Vo - Vcj)
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the final form may be derived

P = X(E - Es) + Ps % Final Form.
v

Some important characteristics of the equation of state are that the Gruncisen Parameter A, is represented as an

analytic function of specific volume, V. A + 1 approaches a constant adiabatic gamma, b i| =w+l

P aVis
for large V, s0 that ideal gas behavior is asymptotically approached.

EXPERIMENTATION

Copper cylinder expansion tests and steel dent plate tests were done. The copper cylinder expansion
tests consisted of oxygen free copper tube (10"H X 1"OD X 3/4"ID) filled with octol 75/25. Each charge was
detonated from one end, and the cylinder wall movement was measured using an ultrahigh specd smear
camera. The dent plate tesis consisted of a 3" diameter charge placed on top of three 3" thick RHA steel
plates. The charge is detonated and the resulting dent profile is measured using a sliding micrometer. The
charges consisted of 1.5" and 2.5" height octol 75/25.

PARAMETERIZATION

A generalized method of parameterization has been developed using a nonlincar optimization program
(NLQPEB), thermochemical calculations (TIGER), and a mathematical cylinder test model (CYLTEST). The
NLQPEB program was developed by ARDEC for the solution of generalized nonlincar optimization problems
with equality and inequality constraints. The program utilizes sequential quadratic programming, with a
Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable metric update and a modified merit function based on the
Kuhn-Tucker first order necessary conditions. NLQPEB is used to solve for a set of JWLB parameters that
reproduce the predicted pressure, volume, Gruncisen parameter principle isentrope behavior in the least squares
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scnsc.  Additional equality constraints are imposcd so that the predicted Chapman-Jouguet state be reproduced,
and that CYLTEST reproduces the experimental cylinder expansion test results at seven volume expansions,
The pressure, volume, Gruneisen parameter principle isentrope behavior and the Chapman-Jouguet state are
predicted using the computer program TIGER. Either the Becker-Kistiakowsky-Wilson (BKW) or the
Jacobs-Cowperthwaite-Zwisler (JCZ3) thermochemical equations of state can be used for the calculations. The
mathematical cylinder expansion test model, implemented into the program CYLTEST, is a modification of the
model suggested by G.1. Taylor using Reynolds hydraulic treatment. The modification includes radial flow and
cylinder wall thinning considerations. The parameterization method was used with BKW and the LLNL
reviscd BKW paramcters (BKWR) to produce JWLB parameters for octol 75/25. The octol 75/25 JWLB
parameters are:

Al.Mbar Az,Mbar A3,Mbar R1 R2 R3 C Mbar w
909.17 89.469 .81495 15.941 5.4178 2.1956 01048 30731
A Az Ay Avs R R Ry3 R4
65.093 -179.81 156.04 78487 3.69061 4.52693 5.80143 958640

po,g/cc Eo,Mbar  D,cm/us Pcj,Mbar
1.821 096034 85381 33755

Figures 4, 5, and 6 comparc BKWR and JWLB calculations,
DYNAMIC FINITE ELEMENT COMPUTATIONS

The equation of state has been implemented into the dynamic finite element program DYNA2D.
The cylinder expansion and plate dent tests have been modeled using JWLB, as well as JWL with standard
parameters for comparison. Figure 7 shows the cylinder test modeling at 6 microsecond intervals. Figure 8
shows the plate dent test initial and final configurations. The material boundaries and computational mesh of
both computations can be clearly seen in the figures. The Johnson-Cook material model and the
Mic-Gruneisen equation of statc were used for both the copper and steel material descriptions. Extensive
rezoning was required for the plate dent calculation.

RESULTS COMPARISON

Figure 9 presents a comparison of the finite clement and experimental cylinder expansion test
results. The cylinder test dynamic finite element results agree very closely with the experimental results. The
JWLB cquation of state results agree slightly better than the JWL results. The dent plate computations also
agree closely with the experimental results, It was found that the closest agreement was achieved using an
Ignition and Growth reactive scheme rather than a standard programmed burn for the explosive detonation.
Figure 10 presents a comparison of the finite clement and experimental plate dent test results,

CONCLUSION

An advanced thermodynamic equation of state applicable to problems involving overdriven
detonation has been developed.  ‘Ihe cquation of state has been parameterized for octol 75/25 and a
comparison of cxperimental results to computational results has been completed.  The new equation of st?te
maintains required low pressure expansion behavior while providing a better high pressure descript.lon
applicable to overdriven detonation.  The new equation of state will be uscd for cvaluating advanced multnplc
mode warhcads concepts based on charge designs employing explosives with different prope'rtics and initiation
logic. Finally, the new cquation of state will be uscd for warheads development and analysis on severt'!l other
programs including Insensitive Munitions, More Powerful Explosives and Targel Dcfc_at.' Typical applications
include shaped charge wave shaping, peripheral initiated cxplosively formed projectiles, and Mach stem
detonations,
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Figure 1. Pressure versus relative specific volume for the principle isentrope of octol 75/25 below the
Chapman-Jouguet state. The thermochemical calculations (BKWR and JCZ3) agree fairly well with the

standard JWL.
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Figure 2. Pressure versus relative specific volume for the principle isentrope and reactive Hugoniot of octol
7525 above the Chapman-Jouguet statc. The standard JWL underpredicis the high pressure region.
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Figure 3. The Gruneisen parameter versus relative specific volume for the principle isentrope and reactive
Hugoniot.
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Figure 4. Pressure versus relative specific volume for the principle isentrope of octol 75/25 below the
Chapman-Jouguet state. The BKWR and JWLB calculations agree fairly well.
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Figure 5. Plots of pressure versus relative specific volume for the principle isentrope and reactive Hugoniot of
octo] 75/25 above the Chapman-Jouguet state. The BKWR and JWLB calculations agree very closely.
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Figure 6. Plot of the Gruncisen parameter versus specific volume for the principle isentrope and reactive
Hugoniot. The BKWR and JWLB calculations agree very closcly.
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Figure 7. Cylinder expansion test finite element computation at 6 microsecond intervals.
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Figure 8. Plste dent test finite clement computation initial and final configurations.
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Figure 9. Dynamic finite clement and expcrimental displacement versus time for the cylinder expansion test.
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Figurc 10. Dynamic finite clement and experimental dent plate profile comparison.
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