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1 Introduction

The intention of this study was to investigate the usefulness of self-organizing
neural systems to the problems of object recognition and orientation esti-
mation. Self-organizing neural systems like unsupervised cluster algorithms
from classical pattern recognition are most useful when no predetermined
labels are available to attach to input patterns which must be categorized by
the system. This is an important requirement for natural systems which must
assign labels to environmental stimuli that will possibly later take on some
importance. However, this makes it necessary to assign a “natural” category
to the input stimuli from the environment. Only with some type of super-
visory feedback will this natural category be associated with the “proper”
label for the input pattern. Without this teaching input, the internal, self-
organizing principles of the system must be used to assigrt categories. These
assigned categories may or may not coincide with the unique labels of an ex-
ternal supervisory system. If such a supervisory system is available, then this
information should be utilized to improve the performance of the system as
seen by the supervisor during training. This is because the performance crite-
ria or categories of the supervisory system may or may not coincide with those
corresponding to the self-organizing principles of the unsupervised learning
system. Therefore, if supervisory inputs are available, a supervised learning
system will in general produce more appropriately labeled patterns.

The experimental results described in this report indicate that for the low
resolution aircraft silhouettes, it is difficult to obtain self-organized “natural”
categories that coincide with the known object labels supplied by a supervi-
sory system. Results are also provided that illustrate some of the difficulties
with the ART 1 and Neocognitron neural systems maintaining consistent
categorization with translation, rotation, and noise.

The report begins by providing an introduction to artificial neural net-
works in section 2. In section 3, a special class of artificial neural networks,
those utilizing unsupervised learning, are discussed. This type of learning is
contrasted with two types of supervised learning, learning with a teacher and
learning with a critic. A classical self-organizing system for feature catego-
rization, the K-nearest means algorithm, is described as a point of reference
in section 4. A self-organizing neural network using competitive learning,
Kohonen’s self-organizing topological feature maps is described in section 5.
Networks of this type are useful for feature extraction or vector-quantization.
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Another competitive learning self-organizing system mith many interesting
;properties, the adaptive-resonance theary (ART) medel, is presented in sec-
tion6. Same expetiments that illustrate the properties of this network .are
also presented. The general self-organizing learning principle of Hebbian
learning is discussed in section 7. This Jeads $o the principle network -chosen
for -close scrutiny in this study. The Neocognitron :medel for visual pattern
-categorization is .described in section 8. Also in section 8, aircraft classifica-
tion-experimental procedures and results.are provided for the Neocognitron.
The computational complexity of the Neecognitron model is also presented
in section 8. Concluding remarks are given in the final section 9.

2 Artificial Neural Networks

Investigations into neural metwork ‘models of human perception have taken
iPlace since the 1940’s [15,29). Artificial neural networks (ANNs) are .also
krown as connectionist models, parallel distributed processing, or neuromor-
phic systems. However, the success of recent discoveries using new architec-
tures and training procedures have caused renewed interest in this.approach.
New technology on the horizon providing massively parallel implementations
(e.g. optical computers) of these theories make them even more attractive.
The elementary processing element for the artificial neural network con-
sists of a simple processing node having numerous inputs which are weighted
(according the connections strength) and summed. After subtraction of .a

von Neumann Artificial Neural

L_(_bm;:mter _f System L
Few, complex PEs Many, simple PEs
Limited interconnections Massive interconnection
Inherently fault intolerant Inherently fault tolerant
Programmed Learn by experience
PEs fast (10 nsec) PEs slow (10 msec)
Excellent symbolic processing | Excellent sensory processing

Table ]: Comparison between von Neumann computers and artificial neural
systems.




threshold, a non-linear function is performed to produce an output, i.e.

g

N-1
y=f(3 wizi-0),

=0

where z; = inputs from the previous layer or the stimulus input, w; = the
connections weights, § = threshold, and

ra={y %

, =<0

Sigmoidal non-linearities are also used. Different models vary in the con-
nection pattern and the computation of the connections weights.

The Hopfield model [16,17,18] is a single-layer recursive neural network
with symmetric connection weights. These connection weights are specified a
priori by the problem to be solved. This network has been used to find (near)
optimal solutions to some n-p complete problems, in particular, the traveling
salesman problem. This network can also be used as a pattern classifier or
content-addressable memory. The Hopfield network has problems including
convergence to “spurious” outputs corresponding to a misclassification of the
input pattern. Also, a large number of nodes (N) are required to recognize
M classes, experience has shown that it is necessary for M < 0.15N.

The three-laycr perceptron is a feedforward network with two “hidden”
layer~ of neurons between the stimulus input and the final output layer.
This multi-layered perceptron overcomes many of the limitations of the first-
order perceptrons that were throughly studied by Minsky and Papert [31].
Recently developed algorithms have been successful in solving a number of
interesting problems {33]. The most successful is the recently reported error
back-propagation training algorithm (BPN) [33,35]. The network consists of
three or more layers. Each input is connected to every node of the first hidden
layer. The outputs of the first hidden layer are connected to every node in
the second hidden layer. Similarly, the outputs of the second hidden layer
are connected to every node of the final output layer. To begin training the
network, all the connecticn weights are initialized to small random values.
Then, for each training input pattern, the input feature is feedforward from
the input units through the hidden layer units and through the output units.
Each input training pattern is paired with a desired output pattern. The
back-propagation training algorithm is a gradient search technique in the
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space of the connection weights that seeks to minimize the mean-square error
between the actual output of the network and the desired output. Beginning
at the final output layer, the error between the outpnt and the desired output
is propagated back towards the input. At each layer, the weights are adapted
to reduce the error. The weights for both layers are adapted after the error
is feedback.

A three-layer perceptron when used as a pattern classifier can, in theory,
form arbitrarily complex boundaries in the input feature space. A theorem
proved by Kolmogorov and described in 28] provides an existénce theorem
for this kind of neural network. It states that any continuous mapping of
n variables to m output variables can be implemented exactly with a three-
layer neural network having n neurons on the first layer, 2n +1 in the middle
layer, and m in the final layer. However, this existence proof gives no clue as
to how the weights are to be calculated. The back-prop4gation algorithms
were among the first to dramatically improve the search time required for
obtaining near optimal connection weights.

3 Unsupervised Learning

Most of the artificial neural networks are constructed to produce a desired
output given a particular input. This is accomplished by repeatedly pre-
senting pairs of inputs with" its associated desired output. The difference or
error between the networks actual output and the desired output is used to
modify the weights in such a way that will (eventually) reduce this error.
This type of learning is called learning-with-a-teacher. This is because the
network must be supplied with the correct response for a given input by the
teacher. Popular networks of this type are the various perceptron models, e.g.
first & higher order perceptrons with the perceptron, least-mean-squares, or
back-propagation learning rulcs. These learning algorithms essentially per-
form some variant of gradient descent in the weight space to attain a global
minimum on the error surface.

Two other kinds of learning are also possible. Unsupervised learning is
when the system produces it own output representation for each input it is
presented. The universe of input signals are categorized according to prin-
ciples that emerge as a consequence of the input processing rules of each
individual neuron (processing node) and the inter-neuronal architecture (in-




terconnections with associated weights). The network uses principles of self-
organization to assign subsets of inputs to the same output class. ANNs
with this type of ledrning are similar to clustering algorithms in traditional
pattern recognition. Here no teacher supplies what is the correct or desired
output for the network. This is useful when either no labeled training data
is available or when it is useful to determine what is the “natural” clustering
of the input patterns.

Learning-with-a-critic [1] or graded learning is a type of learning which fits
somewhere in between the previous two. In this case the network is supplied
with inputs and produces outputs or responses. The critic supplies a signal
to the system which simply grades the performance of the network. The
desired output is not supplied to the network. This reward or punishment
signal is used to improve the performance of the network. This type of
learning is similar to the reinforcement learning experiménts conducted on
mammals. These models simulate the learning behavior exhibited in the
famous experiments by Pavlov. For example, a dog learns the conditioned
response of salivation by repeated sounding of a bell prior to the presentation
of food. This type of learning is being used by the authors as a mechanism
for producing the selection of visual attention.[19] These drive-reinforcement
models [24] utilize the temporal difference of neuronal inputs and outputs
to determine the strength and direction of changes of the neuronal input
synaptic weights. .

This report will focus on the usefulness of unsupervised learning in neu-
ral networks as it applies to the the recognition of simple shapes in imagery.
In particular, networks with this type of learning are in general at a disad-
vantage in comparison to the supervised learning ‘algorithms. Unsupervised
learning or self-organizing systems are most useful when no pattern cate-
gories are available. The self-organizational principles in operation in the
neural networks are used by the system to form its own categorization of the
input patterns. If the user of the system already has a fixed idea as to the
classes to which are to be mapped, the supervised networks will undoubtedly
provide a better mapping function. This mapping function provides the best
approximation in some sense from the input patterns to the user assigned
label or output vector. As a point of reference, we will first describe a tra-
ditional method of unsupervised learning for pattern recognition, K-nearest
means.




4 K-Nearest Means

"The ‘K-nearest ‘mealis algorithm is a method of partitioning a set -of input
training vectors, {z(n)}, into K clusters C;. The procedure begins first with
an initialization phase, where the K vectors are initialized to describe initial
cluster centers, y,(0), 1 < i < K. Next, the-set of input training vectors are
classified into one of K sets. The nearest neighbor rule is used to-assign each
input vector to the closest cluster C;:

z€ C(t), iffdlz,y,(t)] < dlz,y ()], allj#i.

Next the cluster centers are updated io be the centroid of all the training
vectors currently assigned to that cluster. The classification and cluster
center-updating is continued until either few training vecters change their to
a particular cluster, or a maximum number of iterations has been performed.
Variations of the algorithm allow for the merging-or splittingof a cluster using
a measure of the cluster dispersion or overlap. Once these cluster centers are
formed, the intra-class sample mean vector and covariance matrix can be
estimated to obtain a parametric classifier to classify new unknown input
vectors. '

Of significance here, is to note that the the input patterns are not labeled
by a teacher to indicate the “proper” class assignment. Instead, the algorithin
self-organizes a partitioningof the input pattern space by assigning an index
indicating one of K classes, according to its own classification and cluster
updating rules.

5 Self-Organizing Topological Feature Maps

An artificial neural network for performing categorization of multi-dimensional
input vectors has been advanced by Tuevo Kohonen[20,21,22,23]. This net-
work performs it task in a way very similar to the K-nearest means classi-
fier. This network is organized as a single layer of either a} linear or two-
dimensional array of neurons. Each neuron receives each element of the input
vector, ;. Associated with each input element is a weight, w;;. The output
or activation of the network is obtained as the weighted sum of the input




vector elements and the associated weight. For the s, neuron

n
- '
yi = z:w.-,-z,-, zeR, 7 =1,...,n.
j=1

or
yi=w-z

The network uses a self-organizing principle to learn a mapping between
the input vector and an output vector. This network learns a mapping or
transformation between the input vector, z € R and the output vector, y €
R'orR?. If the inputs are ordered with respect to a metric in the input vector
space, R", then the outputs retain order relative to some metric in the output
vector space, R! or ®2. In other words, the mapping is topology preserving.
It is this property however that would make this network, unsuitable for the
recognition of the images of three-dimensional objects.

During the learning phase, each neuron also has local competitive interac-
tions. This can be accomplished by connecting the output of each neuron to
neurons in its local neighborhood through inhibitory weights. Each neuron
also has an excitatory connection between its own output and input as well
as those neurons within a smaller local neighborhood. If an input pattern
persists, then this local competitive interaction causes a strongly respond-
ing neuron to suppress the activity of its neighbors while enhancing its own
output (as well as those in & small neighborhood). Eventually a “bubble” of
activity forms around the strongest responding neuron. The neuronal weights
are then updated according to the differential equation

dw; _ | oz —fw;, inside bubble
dt ~ |0, outside bubble

This leads to a discrete time simulation with discrete time variable ¢,
having both training and processing phase. The training phase has two
steps. First a similarity matching is performed to determine the position, C,
of the maximally responding neuron in the network.

Similarity Matching

lz(ts) — wo(t)ll = min{llz(ts) — wi(ta)l)}




Updating

The learning or updating of the weights then takes place according to whether
the neuron is within the local neighborhood, N¢, as

wi(te +1) = wi(te) + a(te)z(te) — wi(te)], fori € N
or outside the local neighborhood as
wi(te +1) = w;(t), fori 3 N¢

The radius of the neighborhood shrinks linearly with each time. The
learning constant, a(t;), decreases linearly with time after an initial phase
where a & 1. The elements of the output vector, y., are the outputs of each
of the neurons in the network. .

After the learning phase is complete, the input patterns, z are processed
to provide an output vector, y, whose elements are obtained from

yi=w - L.

5.1 Applications

Kohonen provides several examples of how the self-organizing topological
feature maps (SOMs) can be used. The example is called “The Magic TV." A
two- dimensiona!l array of neurons is used. The simple sensing device consists
of a circular photosensitive device divided into three equal area sectors. A
crude optical focusing device images a spot of light as a large spot exciting
one or more sectors of the sensing device. The electrical output from each
sectors forms a three-dimensional input vector supplied to all the network
neurons. After sufficient learning cycles have been performed, it is found that
the position of the maximally responding neuron corresponds to the position
of the point light source in the input plane.

A second example has a robotics application. In this case, a feeler mech-
anism is simulated. The mechanism consist of two jointed arms with the
endpoint of each connected. Each arm as two joints whose movement is re-
stricted in the plane. The relative angle of each joint is provided as input to a
two-dimensional network. The network is trained by positioning the mutual
endpoint of the feeler at random positions. After suitable training cycles,
the position of the maximally responding neuron in the network corresponds

8




to relative spatial position of the feeler endpoint. Note that this transfor-
mation from joint angle to position is a very non-linear (albeit continuous)
transformation.

A third example has been widely reported. This is the use of the SOM
as a speech phoneme indicator. In this case the multi-dimensional input is
related to the magnitude of the Fourier transform of a segment of speech.
After suitable training, the network responds with the maximally respond-
ing neuron that is related to the phonetic content of the speech segment.
Kohonen calls this a tonotopic map.

The self-organizing topological feature map of Kohonen is not ideally
suited to pattern classification. Instead, this network is better used as a fea-
ture extraction or feature transformation processor. This is because of the
topology preservation properties of the processing transformation. Catego-
rization of input patterns often requires discontinuous trahsformations.

6 Adaptive Resonance Theory

The self-organizing neural network of Carpenter and Grossberg [2] is based
on their Adaptive Resonance Theory (ART). ART 1 is used to categorize
binary input patterns. ART 2 [3] has been developed for the recognition of
analog inputs. These networks perform unsupervised clustering of sequential
inputs. Learning of this kind is often described as competitive learning. As
the first input is applied, the first cluster center is formed. As subsequent
inputs patterns are applied, a distance measure is obtained. If the distance
to the first cluster is greater than a threshold, a new cluster center (or criti-
cal feature pattern) is formed. If the distance is less than the threshold, the
nearest matching cluster center is adapted. As more inputs are applied, they
are either used to adapt an existing critical feature pattern or to form a new
one. The matching scores between input and cluster centers (so called critical
feature patterns) are computed using a feedforward network. The maximum
matching score is selected using lateral inhibition among the output nodes.
Feedback connections are provided to deselect the maximum output node
and to compare the input to the critical feature pattern. The threshold or
vigilance parameter determines how close an input must match an existing
critical feature pattern. This regulates the number of critical features pat-
terns learned by the system, i.e. whether the categories are fine or coarse.




6.I Algerithmic Description

The dynamics of the network are complete described by a set of differential
equations. An algorithmic description of the network is provided by Lipp-
mann(27] and reproduced below:

Step 1: Initialization

where b;;(t) and t;; are the bottom-up and top-down connection weights or
long term memory traces (LTMs), respectively. The ¢ jth weight corresponds

to the ith input element projecting to the jth output node. The value p is
the vigilance which indicates how close a match must be to be recognized or
stored in LTM.

Step 2: Apply New Input

The input vector with element values z; equal to +1 is applied to the network.

Step 3: Compute Matching Scores

N-1
pi= 3 bi(t)zi, 0SjSM-1

=0

Step 4: Select Best Matching Exemplar

- max
H; j { .i}

10



Step 5: Vigilance Test

If |it;-zll/llzll > p, then go to Step 7,
else go to Step 6.

where

N-1 N-1
lzll = 3 i and |t -zll = 3tz

=1 =0

Step 6: Disable Best Matching Exemplar

The output of the selected output node is set to zero and no longer is allowed
to be considered in the selection of a maximum in step 4. Then go to Step 3.

Step 7: Adapt Best Matching Exemplar

t.'j-(i + l) =15 ;

.. — 'i!.(‘)zl
bip(t+1) = S+ tye(t)z,

Step 8: Repeat

Repeat by going back to Step 2, but first enable any nodes disabled in Step
6.

6.2 Properties

A simple implementation of this model was used to verify its fast learning
capabilities. Overhead views of three aircraft (the same used in the investi-
gation of the Neocognitron model) were used. The network quickly learned
the three input patterns. The fast online learning is a distinct advantage of
the ART networks. However, the ART1 and ART2 networks do not have
any position or orientation invariance properties. This makes this kind of
network unsuitable for shape recognition. However, with some fixed shape
invariant transformation on the input image, it may be possible to perform
invariant pattern recognition using this network. Some important advantages
this network possesses are:
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1. Real-time (or on-line) learning

This network:is designed to allow “recoding” or updating of the stored
(average) templates in the long-term memory traces or weights.
This is very much unlike the supervised networks such as the feed-
forward networks with error back-propagation learning. For the
BPNs, when a new pattern is added to the training set, the net-
work must make many learning cycles over the entire training set.
As for the ART network, if a pattern is sufficiently close to the
stored pattern, the new information in the pattern is used to up-
date the stored pattern. This is possible when the network is not
required to assign input patterns to a category selected by some
external user or teacher.

2. Eflective use of memory capacity

3. Fast direct access to familiar patterus

6.3 Experiments & Results

A simple implementation of the ART 1 network was used to illustrate the
capabilities and limitations of this approach. Overhead views of three air-
craft; B57, F104, Phantom, were generated as silhouettes within a 16x16
image array. An ART 1 network with six category nodes or neurons was
used. The three aircraft were input to the network having vigilance param-
eter, p, of 0.9. The output of the simulation is shown in Figures 1-3. With
the vigilance at this high level the network quickly stores the three patterns
individually. Applying the same three aircraft shapes causes no change to
the stored patterns.

The same network after initialization was again presented with the three
overhead views of the aircraft. However, in this case the vigilance parameter
has been set to a lower value, p = 0.75. In this case, the third pattern
(Phantom) causes recoding over the first pattern (B57), i.e. both patterns
are assigned to the same category. This simulation results are shown in
Figure 4-5.

Next, translated version of the same views of the aircraft are input to the
network. With the same vigilance of 0.9, the translated shapes are considered
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0.9.
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to be different patterns are are stored separately in the network as shown in
Figure 6-8.

The network is again presented with the same sequence of patterns, but in
this case the vigilance parameter is much lower, p = 0.75. Instead, as might
be hoped, the three translated shapes are assigned to different categories,
while two of the non-translated shapes are assigned to the same category.
The simulation results are shown in Figure 9-11.

The results of the ART 1 simulation in categorizing rotated views are
depicted in Figures 12-13 and 14-16. The network organizes the three original
view as well as the rotated views into separate when the vigilance parameter
is at a high value, p = 0.9. When the vigilance parameter is reduced to a
lower value of 0.75, the new rotated views of the Phantom are place in two
separate, where as the original view has been placed in the same pattern
category as the B57. .

7 Self-Organization using Hebbian Learning

Donald O. Hebb in his book The Organization of Behavior [15) was the first to
explicitly state an important principle in unsupervised learning in biological
systems. He states

When an axon of cell A is near enough to excite a ceil B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased, (p.50)

In mathematical terms, the weight or efficacy of a connection between the
input, z;, and the output, y;, increases in proportion to the joint occurrence
(or correlation), i.e.

Aw.-,- = ayir;.

So, learning takes place without a separate specific teaching input. Hebbian
or modifications of Hebbian learning have been proposed by many investiga-
tors as the central principal for performing the self-organization in technical
systems.
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Figure 7: (Part b) ART 1: Translated shapes are stored as new patterns with

rho = 0.9.
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Figure 9: ART 1: Translated shapes are stored as new patterns with rho =

0.75, while two non-translated assigned to same category.
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Figure 11: (Part ¢) ART 1: Translated shapes are stored as new patterns
with rho = 0.75, while two non-translated assigned to same category.
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Figure 12: ART 1: Rotated shapes are stored as new patterns with rho = 0.9.
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Figure 13: (Part b) ART 1: Rotated shapes are stored as new patterns with

rho = 0.9.
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Figure 14: ART 1: Rotated shapes are stored as new patterns with rho =
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Figure 15: (Part b) ART 1: Rotated shapes are stored as new patterns with
rho = 0.75, while two non-translated assigned to same category.
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7.1 Networks of Oja & Linsker

Oja (32] has investigated the information processing capabilities for & simple
feedforward neuron having a linear output activation function,

n
v =+ I iz,
i=1

using Hebbian type adaptation of the weights. The Hebb synaptic weights
are constrained by the total resources available for the neuron to the form
connection, e.g.

_wO) +wi)es(t)
VErlwi () + vu(#)a; ()

This leads to a weight vector update or adaptation rule that can be approx-
imated as

wij(t+1) =

wift +1) = w(t) + wit)[z(t) - wi(tw())-

Let the correlation matrix for a stationary input vector z be C, = E{z(t)z”(t)}.
Oja found that a neuron so constructed develops a weight vector, w, that is
the normalized first eigenvector of the correlation matrix Cy corresponding
to the largest eigenvalue. The output of the linear neuron is a linear combi-
nation of the inputs which maximizes the variance of the output. In other
words, the neuron performs ‘the first principle comporents transformation on
the input.

In a similar, but larger study, Ralph Linsker [25,26,88) investigated the
self-organizing abilities of a multi-layer feedforward network that employs
local connections from one layer to the next with Hebb type learning. The
network was motivated by the visual systems of early mammals. Learning
was performed first at the lowest levels. Then the later levels where then
trained. The network was stimulated with totally unstructured random in-
put images. The network forms “feature analyzing cells” at each layer. The
first layer of neurons form excitatory connections. The second layer devel-
ops “opponent cells” having a on-center off-surround receptive fields. Layers
three, four, and five form “on-center” cells with the correlation between out-
puts within each layer baving the “Mexican-hat” function as a function of
intercellular distance only. The sixth layer forms bi-lobed or tri-lobed “edge”
detectors. Islands of cells having similar orientations are formed. The spatial

30




layout or topology of these orientation selective cells is very similar to that
observed in the macaque monkey.

This suggests that multi-layered feedforward networks with Hebbian type
learniag can self-organized to extract those features necessary for visual pat-
tern recognition.

8 Neocognitron

Fukushima has proposed a self-organizing network called the Neocogni-
tron[4,5,6,7,8,9,10,11,12,13]. This network is a multi-layer feedforward net-
work. The network was constructed in a manner to categorized input pat-
terns unaffected by shifts in position and some distortion of the shape.

8.1 Architecture

The network topology or architecture is multi-layered in order to obtain hi-
erarchical recognition or clustering of detected features. The first plane,
uo(z,y) = un(n), consists of the two-dimensional input image. This pro-
vides the inputs or stimuli to the first layer of processed elements or cells.

The network was devised in such a way as to grossly model the early vision
processing of mammals. As such, the input is processing by a ‘layer’ of cells
whose output is passed to the next layer. Processing continues up until the
final output layer. The cell-plane or position of the maximally responding
cell in this final layer is an indication of the category into which the input
image pattern has classified. Each layer of cells is actually a pair of cell layers
each performing a different function. The first layer of cells are called S-cells
and model the simple cells of the mammalian visual system. The output
of the S-cells are used as inputs to the C-cells which model the complex
cells. Each of these pairs of cell layers are subdivided into cell planes. A cell
plane is a two-dimensional array of cells. Each cell in the cell plane uses the
same feature detecting receptive field weights. The receptive field is the local
neighborhood of cells in the previous layer that provide the excitatory input
to a cell. The number of cells in each cell planes decreases at higher layers.
In this way, a cell at the highest layer has a receptive field that effectively
covers the entire original input cell plane or image.
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‘The Neocognitron model was implemented in the C programming lan-
sguage. ‘Thisimplementation utilizes-window managément utilities to-provide
an:interactive environment for investigating the behavior of this network.
The détails of the program are described in the Neotool Usér’s'Mznual[14).

82 -Pro*é‘essing

‘Inthefollowing:sectionsthe processing by the cells of each type are described.

B8.3 S-cells

{Using the notation us(k;,n), to denote the simple'or S-cell in the &th cell-
:plane in the 1th layer at -position 'n, each 'S-cell receivés inputs froin the
:previous C-cell planes in-a‘local neighborhood (or recéptiwe fiéld) about the
same ‘position n. The output of the S-cells is obtained by the function

usulkip) =m -9,

1 4 Ta'y Lyes, ailki-, .k) voi1(kiryn +y).
1 + gbi(kr)vei-i(n) %

where .a; are the variable weights iin the receptive field B, for the ith layer.
The weight b, is the strength of the variable weight for the inhibitory input
-obtained .as the the output.of the v.-cell. The gain constant r gontrdl's the
selectivity of the S-cell. K is the number of cell planes in ‘the I** cell layer.
The activation function, ¢ is defined as

“={5 130

8.4 V.-cells

The v.-cells provides an inhibitory input to the S-cells. A single plane of
ve-cell exist at each layer. The output of the v.-cell is calculated as

Kiy

Veioa(n) = \J z E a-1(v)ud oy (kioryn + p)

ki =1 veB,

32




The receptive weights, ¢;, for the v.-cells are fixed.

vl

W al) = ek

where |v| is the distance between the position v and the center of the receptive
field. This indicates that the receptive field weights, ¢;, should be peaked
towards the center of the receptive field. For the aircraft shape recognition
experiments described latter, this proved to adversely affect the ability to
learn features extended over the entire receptive field. Therefore, for our
implementation of the model, ¢;(v), are constant over the size of the receptive
field, B;. They are normalized by C(!) so that their sum is unity, i.e.

Ki-s

Z 2 c;-;(g) = 1. .

k_,=1veB

This inhibitory signal is used to shunt the output of all the S-cells at the
same position.

8.5 C-Cells

The C-cells are used to detect the occurrence of features detected by the
S-cells. Summing the responses from the S-layer over a small receptive field
or neighborhood, D;, makes it possible to detect the occurrence of features
even with moderate spatial shifts of the features. Similar to the S-cell, the
C-cell receives inputs from the previous corresponding S-cell plane within
the receptive field as well as an inhibitory input derived from the same S-cell
layer outputs aggregated as the output of the v,-cell at the same position.
The C-cell output is calculated as

1 + T,ep, di(v)usi(ki,n + v)
1 + vsi(n)

The activation function, ¢ is defined as

-1

UCl(khE) =y [

=, z20

where § is typicaily chosen to be 0.5.
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&6 V,-Cells
The v,-cells provide, the inhibitory input to. the €-cells. The output of the
V,-cells is calculated as

t,s((n K Z Z d((V)USl k;,n+ V)
k=1 UQD‘

The receptive weights, d,, for the v,-cells.are fixed and for-our implementa-
tion of the model monotonically decrease with increasing ||x||. In particular,

dz(l/) D(L) I |

The constant D(!) is chosen such that the sum is: unity, ig.

Y. d(y) =t

veD,

8.7 Learning

The network self-organizes by reinforcing the weights. in response to; inputs.
to the network. The networks learns without a teacher. During the learn-
ing phase, input patterns are repeatedly applied as stimuli. A Hebbian type
learning rule is used: update the individual weights. In order for the network
to be-capable of responding in a unique way to input stimuli, all the variable
weights must not be-simultaneously updated. Therefore, a competition. is set
up so the receptive field weights of the most strongly responding cells to a
stimulus are reinforced. Representative cells for reinforcement are selected
by finding those cells with the maximum response with a. local neighbor-
hood. The individual S-cell planes can be interpreted as being stacked into
S-columns similar to-the hypercolumns discovered: in. mammalian visual cor-
tex. Cells in the same S-column defined as those cells at the same position ¢
but belong to different cell planes k; compete. Only the strongest responding
cell in the S-column can be reinforced. If a cell is suppressed by another
in another cell plane, then another cell in the same plane can become the
candidate for reinforcement. Let a representatnve cell u,(kiit) , for the I*
layer on the k"‘ cell-plane, at position ii. be chosen for reinforcement. Cor-
responding to each S-cell plane, ki, in each layer, I; are a set of excitatory
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weights with a receptive field in each cell plane of the previous layer, k;_,,
and provides input to the S-cell at position v, i.e. ai(k;—y, v, k). In addition,
each cell plane has"an inhibitory weight associated with the v.-cell, b(k;).
These variable weights are reinforced according to the rule

Aai(kiey, v k) = i 1oy (2 uo1-a (ka2 + v),

and R
Ab(kr) = g - vei-(n),

where ¢; is a the positive learning constant for layer I. The values of the
excitatory variable weights are initially set to small values but with differing
orientation sensitivity. The variable inhibitory weights were initialized to
zero.

8.8 Computational Complexity

The computational complexity of the Neocognitron model when processing
the input image as it is feed forward to the output level can be closely approx-
imated by the number of multiply-accumulates required. This is summarized
in the formula below:

number of Mult./Accum. = T, Ki IS (2+|Bi]- Kiy + 1)
+1Cil (2 |Di| + 1)]

where K is the number of layers, |S)| and |C;| are the number of cells ( or
X,y positions) in the Iy, layer of the S and C cell-planes, respectively. |Bi|
and |Dj| are the number of cells in the receptive fields for the S and C cells
for the Iy, layer, respectively.

8.9 Experiments & Results

In the following section a set of classification experiments are described.
The network is trained with overhead views of three aircraft derived from
planar patch models. The three aircraft used are the B57, F104, and the
Phantom. The images are two-level of size 16x16. These shape images are
shown in Figure 17. An important aspect is that the shapes do not fill a large
fraction of the total image area (62 pixels out of 256.) For all the experiments
described below the same network parameters where used. These parameters
are given in Table 2.
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Figure 17: The three aircralt silhouettes used to train the Neocognitron.
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S-plane C-plane S-rec. C-rec. S-col.

Level No. Planes  Size Size Area Area r q Size
1 6  14x14 12x12  5x5 3Ix3 20 2 X7
2 6 10x10 8x8 5x5 3x3 15 16 5x5
3 6 6x6 4x4 5x5 3x3 10 16 3x3
4 6 2x2 1x1 3x3 3x3 10 20 2x2

Table 2: Neocognitron network parameters for three aircraft silhouettes.

8.9.1 Initial Training

The three image of the aircraft were used to train the network. The initial
variable weights are shown in Figure 18.

This is accomplished by sequential applying each image to the input layer.
Representative cells from the first S-layer are selected automatically and
the corresponding receptive fields from the input layer used to update the
variable weights. Training of the first layer variable weights is performed
before learning is begun on the second layer. This is the case for layers three
and four as well. Training is completed at the lower layers before training
occurs at the next layer. After ten cycles of training, the variable weights
have stabilized. The final values of the excitatory variable weights are shown
in Figure 19.

After the learning of the receptive fields had stabilized, the image of
each aircraft maximally excited a unique cell in the output layer. This is
summarized in Table 3.

The processing of the F104 aircraft silhouette image through each of the -
four levels is shown in Figures 20 - 23.

Considerable effort was required to adjust the network parameters to as-
sign unique categories to the three aircraft and provide some invariance to
translation, and noise as described in the experiments below. The v.-cell
fixed inhibitory weights, ¢;(¢), are described by Fukushima to be peaked at
the center of the receptive field. During the course of this investigation, ad-
justment of the network parameters clearly indicates that the peaked fixed
receptive field weights caused a reduction in the network’s capability to dis-
criminate among spatially distributed patterns. For this reason, the v.-cell
fixed weights were constant over the receptive field. This implies then that
the S-columns should be of at least the size of the variable receptive field

37




LEOTOOL vERSID . L Foel 1y gp

Dir: «se/graduate/ Jjohnson/nec/data
File: w.g° :S.",

*Eveighte 1cased. ' floating-Point Prograsmer’s: Gutde.

'z-
-
.

[ —"

JE-SUNRY \SRPNRIPAY FUNPRNEVITAT SRTON PS4
; {
s

PN SAe

%

it

|

'Please note: MCESNO1 upgrade to ABIN mask sy be sdvisable.

-~

i
i
-
%
4

e ea

Figure 18: Neocognitron:
fer all four layers.

e
ndng. final e

Initial variable excitatory receptive field weights

38




File i8]

I'r. e=e 3Taduate/ Jjonnson/nec/dats

Panel frame

Plesse note: MC68881 upgrade to AS3N mask may be advisable.

virgris "caced.

Iratn Level
.. pvel

o Flosting-Point Programmer’s Guide.

Input Image

\

. eve])

sz veighis

Save ve'ohis
3

Eatcn iravn

" FDCOSS

Layer § S-plane Receptive Fields

—
what

R S

AT < - S
i d e B T kel
O LN YT Al

%

A
€

FET )

A

sy
~:

RPN
PN 2o ryts
LR TNENS At
PR AR

M N 7l

;

WdE e g

S s

U S s .
N * X Ao P . 4
5 WS {’\:t;’ 3\’4‘-\;:\ ;
: l\:"’.‘.\, S z';
N £
PR T .:{ < ~p
LR . A b 2
e . '\. . ~ -
LT % Sl
. A% 1
. . %
ORSTI Layer 4 S-plane Recoptive Fislde RS
- H 3
s
i g
b4

onson

703 screendump u:-
1% screendump scrndmp_final w

inttw

Figure 19: Neocognitron: Final variable excitatory receptive field weights for
all four layers.

39




NEOTDOL VERSION 2.} Pane) Frome B R R A R
. 03, «mesg-asuste/§jonason/nec/dsta . ] Plesse note: MCEBESI ShR N
Filer w.p'if.7 se Flosting-Point Pr {rioaks AREE R
S Wab eSaf ax on plane 4 ot (3, AR
§ v Pax on plane 4 st (3,3) level lUc-cel)
H B \:
. % Bl
¥ flevelr i
; Input Image ’ . s

22 R prse AN

sve ve'onts Present leve) S-plane Receptive Flalds
Batcn Frocess

S S e

LY
<
£

DR S-plane output .

ki s

.

Present level C-plane output

e R T e

g

Figure 20: Neocognitron: Processing of the F104 silhouette through the first
laver of cells.

40




NEOTOOL VERSION 2

File: «_2716.7

.1
Crar: eme g-aduate/j)onnson/nec/dets

') flooting-PointvPr
ax on plane 4 ot (3,
ax on plane 4 st (3,3) level iUc-cel)

Lovel: 2

ax on plane S at (2,1) level 2Uc-ce)}

P

6% !'sc

LCas .rage

Jni1t1aliZe veights 4578 screendump scrndep_lev.2

Protecs Level
Trar- _evel
-evel
e 0.0)

Previous Leve! C-plane Dutput

creendump scrndep, lov 1

\

Py =y A% T m——

Loac veirohts

Save veronts

Present level S-plane Receptive Fields 1 %

Batch =rocess

Bater raan

[

- Present level C-plane output
% 3
6
N
N S A, 2o ST v Sl Y2 N VN N F ISy S v A FORY SRS TR

S-plane output

Figure 21: Neocognitron: Processing of the F104 silhouette through the
second laver of cells.




HEQIOOL VEASIOM 2.1

0ir

(]

ame/ 3-8=oate/ § Johnson/neo/data
File: w_p":3.7

Panel Frame

on plane 4 at (3,
on plane 4 st (3,3) level fUc-cel?
on plane S st (2,1) Yevel ic-cell

SNy

Y
b

on plane # at (0,8) leve! Nc-cel)

A&

Level:

3

Canvas Frame

L030 .~ade

Taitialize ve'onts

Process .evel
Train Level

Previous Level C-pline Output

~Love "

sLove

Lo30 Ve z-ts

Save verz-t

Present level S-plane Receptive Fislde

Batch Frocess

. ~
Ny -

oo
I

B P R

«
2

N
7

S VL
a A

.

sy e LN

N w
S Tue
H .
VN [NERNN
\ v
N
N w P
WS, A NS
< e N
et et
~ % B
R LI N
NERS s
N Y
RN
FESEE

s

vc Inhibitory Input from previous level C-plane to present level S-plane
L]

e e A M e P AR AT A L A Seren Tatn S

S-plane output r

3

;) . ;
3

o :
. Present level C-plane output f
]

&

4

Figure 22: Neocognitron: Processing of the F104 silhouette through the third
layer of cells.

42




10700t VERZION 2.1

Cir:
File: w.p?

«me/3-adJste/ §Jonnson/neo/dats

€.,

Pane] brone «
sx on plane 4 et (3,3) level luc-ceil
x on plane S at (2,1) level 2Uc-cell

7 ax on plane @ at (6,0) Yeve! c-cell

sx on plane § st (9,0) leve! 4Uc-cell

Canvas Fr ,me

Previous Level C-plane Output

Present level S-plane Receptive Fields

5

o
LORNELY

s

o X
RPRSHS HE 5] P
. » N

b

Ve Inhibitory Input from previous tevel C-plane to present level S-pllne

S-plane output

Present level C-plane output

Figure 23: Neocognitron: Processing of the F104 silhouette through the

fourth layer of cells.

43




Output C-plane with

Aircraft Image Max Response
B57 A 0
F104 1
Phantom 3

Table 3: Self-organized categorization of three aircraft images by Neocogni-
tron.

weights do not learn overlapping local spatial features.

8.9.2 Translation Invariance

An experiment was performed to test the translation invariance of the net-
work. Translated version of the three aircraft images were applied to the
network that had been previously organized using: the original three aircraft
images. These translated shapes are shown in Figure 24. The results of
this experiment are summarized in Table 4. below. The translated F104.
aircraft shape assigned to the same category as the B57. The Neocognitron
is. reported in the literature to be translation invariant. However, even with
our numerous attempts at adjusting the network parameters we were unable
to uniquely categorize the shapes the same in both the untranslated and
translated images. After casefully scrutinizing the model behavioral descrip-
tion, it becomes evident that there is a trade-off in the network’s ability to
discriminate and to provide translation. invariance. The profile of the C-cell
plane fixed receptive field weights control the ability to recognize shifted pat-
terns in the previous layer. The flatter (and larger in spatial:extent) of these
fixed weights the better the translation detection ability. However, this has
a unfortunate side-effect. It also causes a blurring of that C-cell response.
This results in the next layer being force to work with quite indistinct fea-
tures, and thereby reducing the discriminability of the network overall. For
the aireraft shapes, at a (less than) 16x16 resolution, the shape are already
very similar. The network is unable to simultaneously provide the necessary
discriminability and translation invariance. Menon and Heinemann mention
this problem [30], but the two vehicle shapes (a tank and a truck at a reso-
lution of approximately 64x64 were already quite different and posed much
less a difficulty. They reported that they could shift tne shapes 50 percent
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Figure 24: The three translated aircraft silhoucttes used to test the Neocog-
nitron.
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Output C-plane with Original Output C-plane

Aircraft Image Max Response with Max Response
B57 o 0 0
F104 0 1
Phantom 3 - 3

Table 4: Self-organized categorization of the three translated aircraft images
by the Neocognitron.

Output C-plane with Original Qutput C-plane

Aircraft Image Max Response with Max Response
B57 5 0
F104 0 1
Phantom 0 3

Table 5: Self-organized categorization of the three rotated aircraft images by
the Neocognitron.

of the total image size.

8.9.3 Rotation

Next an experiment was desjgned to test the ability of the network to catego-
rize rotated shapes. The rotated shapes were not used to train the network.
Fukushima [6] has reported results of good categorization of distorted shapes,
in particular handprinted (strokes) characters. The network has not been re-
ported to perform rotation invariant categorization. The three aircraft shapes
were rotated 10 degrees in the plane of the image. The rotated silhouettes
are shown in Figure 25. These rotated shape images were then categorized
by the previously trained network. The results are summerized in Table 5.

The rotated B57 is assigned to a completely new category. The F104 and
the Phantom are assigned to the category previously assigned to the B57. It
is clear that some other preprocessing of the original image is necessary to
provide the capability of rotation invariant categorization.
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Figure 25: The three rotated aircraft silhoucttes used to test the Neocogni-
tron.
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Output C-plane with Original OQutput C-plane

Aircraft Image Max Response with Max Response
B57 s 0 0
F104 1 1
Phantom 1 3

Table 6: Self-organized categorization by thé Neocognitron of the three noisy
aircraft images, Pr(0 — 1) = 1/256.

Output C-plane with Original Qutput C-plane

Aircraft Image Max Response with Max Response
B57 0 0
F104 1 1
Phantom 3 3 .

Table 7: Self-organized categorization by the Neocognitron of the three noisy
aircraft images, Pr(0 — 1) = 4/256.

8.9.4 Noise

An experiment was performed to investigate the sensitivity of the network
to noisy patterns. Noisy two-level images were synthesized by adding noise
and then thresholding in such a way to change random background pixels
into foreground pixels. The noise levels are described as the probability of
a background pixel changing to a foreground pixel (0 — 1). The noisy B57
silhouette shapes are shown in Figure 26. The results are summarized in
Tables 6 - 8.

At all three noise levels, the B57 and F104 are assigned their original

Output C-plane with Original Output C-plane

Aircraft Image Max Response with Max Response
B57 0 0
F104 1 1
Phantom 2 3

Table 8: Self-organized categorization by the Neocognitron of the three noisy
aircraft images, Pr(0 — 1) = 39/256.
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Figure 26: The B57 aircraft silhouette shown at the three noise levels.
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shape category. The Phantom assigned the same category at the lowest, the
original category at the middle, and a unique category at the highest noise
level. N

9 Conclusions

The experimental data described in this report indicates that if the input
patterns have already labels of known significance, then supervised learning
neural network paradyms should be utilized in place those network employing
an unsupervised learning technique. The unsupervised networks should be
used in those situations where no informative label is available and it is the
task of the system to organize or to induce an order on the input patterns.

Both the Neocognitron and the ART networks would be more useful in
organizing spatial patterns if preceded by processing making the patterns
invariant to rigid geometric transformations. The Neocognitron can be made
invariant to translation, but only at the cost of reduced sensitivity to pattern
shape variability. The on-line learning property of the ART network could
then be used in those scenarios where adaptability to a changing pattern
environment was important. Most of the supervised learning networks must
be retrained on all the original training data set as well as the new patterns
or the old patterns will be forgotten.

One of the authors at the time of this final report has implement a three-
layer error back-propagation supervised learning network. Network training
is being carried for the identification of three aircraft from arbitrary viewing
angles. _

This study indicates that for the task of aircraft identification and ori-
entation estimation unsupervised learning does not offer the required per-
formance. However, the self-organizing systems might be useful for feature -
extraction or reduction. However, some information content is lost in the cat-
egorization process. Care must therefore be taken to insure that information
pertinent to the ultimate recognition task is not eliminated.
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