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Chapter 1

Overview

1.1 Introduction

The research described in this report concerns the following fundamental issues in control
system design:

1. Selection of meaningful yet analytically tractable performance criteria,

2. Sensitivity of closed loop stability and performance to both structured and unstruc-
tured plant uncertainty and model errors, and

3. Approximation of ideal compensators with implementable ones.

Since the seminal work in this area 1521, there has been very substantial progress. [211
contains a good survey and a comprehensive bibliography for the field up to the time of writ-
ing in 1983. Since then developments for linear lumped parameter systems have focussed on
computational techniques and applications. Although [52] suggests applicability to systems
with irrational transfer functions, actual development of a theory taking into account the
characteristics of infinite dimensional plants began with the mutually independent work [9]
and [19].

During the last five years there has been significant progress on results for distributed
parameter systems. However, the progress has not matched that of the results lumped
parameter systems over a comparable period. This is partly because the research related
to HO* control of distributed parameter systems has generally appeared in a very abstract,
highly mathematical form, in which the connection to real problems is made only in a much-
used simple delay example.

In the work we describe here, we have focussed our theoretical work on issues which arise
in applying the theory to non-trivial examples. These examples can serve as archetypes of
distributed parameter systems of interest to the Air Force.

This research is intended to develop both theory and algorithms capable of providing
realistic control systems for physical plants which are appropriately modeled as infinite di-
mensional linear systems. Typical physical plants would be large orbiting radar antennas,
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large robot arms such es the shuttle Remote Manipulator System, and high precision or-
biting optical systems such as surveillance satellites. We hypothesize that maintaining an
infinite dimensional model as long as possible during the design process will lead to designs
which better capture intrinsic infinite dimensional characteristics, at lower computational
cost and with greater analytica certainty, than alternative procedures which employ finite
dimensional approximations as a precursor to design. However, we must ultimately check
this hypothesis by comparing designs.

In pursuing this program, our approach is twofold: First, we must examine sufficienly
realistic models of typical prototype plants to see what characteristics models for theoretical
analysis should have in order to yield useful results. Our work to date along this line indicates
that much existing theoretical work makes overly strong assumptions, which prevent the work
from being applicable to even basic plants of interest. Having distilled from such prototype
plants what we consider to be essential characteristics, we must derive theoretical procedures
for obtaining a solution.

Secondly, we recognize two facts about infinite dimensional models, and direct our re-
search to deal with these realities: One fact is that even infinite dimensional models will
themselves only be approximations, and the other is that infinite dimensional models which
have the fidelity we seek to any complex physical system will probably not be tractable ana-
lytically (in the sense of our being able to compute explicit expressions as we can for simple
delay systems). Thus, having an explicit inner/outer factorization as we allow ourselves to
assume in order to develop theoretical results, is not a realistic assumption, even for some-
thing so relatively simple as a damped Timoshenko beam model (compared to the shuttle
Remote Manipulator System).

1.2 Summary

Our main results are as follows:
1. (Chapter 2) We have also calculated and analyzed transfer functions for certain beam
models [11], [31], for use as testbeds of our theoretical results. We now have five transfer
function models of differing complexity, derived from physically motivated plants, which
have led us to the different issues we are studying. These are: the delay (with rational

factor), the damped Euler-Bernoulli beam, the damped Timoshenko beam, the two-delay

multivariable plant (with rational factors), and the multivariable damped Euler-Bernoulli
beam with torsion.
2. (Chapter 3) We have extended outer factor absorption results to cover certain irrational
outer factors [12]. This ensures that this critical step (which is frequently ignored in the lit-

erature) has a sound basis. The method of proof may yield a useful computational technique
for implementation, as well.
3. (Chapter 4) We have solved the scalar mixed sensitivity problem with irrational outer
factors and rational weighting functions [13], [14]. In [12] we explicitly calculated a standard
transformation of this criterion, leading us to the observation that in the case of plants with

poles in the closed left half plane, for independently determined weighting functions the
infimal norm is independent of the outer factor of the plant. On the other hand, we also
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observe that the choice of weighting functions should depend on the outer factor of the plant,
and in fact this reasoning leads to a need to extend results further to the case of irrational
complementary sensitivity weigbting.
4. (Chapter 5) We have successfully solved a mixed sensitivity problem for a non-trivial
multi-input/multi-output system [47]. We believe this is the first such example solved. (In
[34] results are presented which appear quite general, but in fact implicitly assume the
satisfaction of a certain special commutativity property which does not usually hold, as in
our example.)
5. (Chapter 6) We have developed a technique for numerically computing the infimal norm
of the mixed sensitivity criterion without an explicit inner/outer factorization of the plant
[16].

1.3 Papers and Reports

The following is a list of publications written using the support of this contract. The results
in these documents have been incorporated into the present report.

1. D. S. Flamm, "A Model of a Damped Flexible Beam," ISS Report No. 54, June 14,
1990, Department of Electrical Engineering, Princeton University.

2. D. S. Flamm, "Outer Factor 'Absorption' for H' Control Problems," ISS Report
No. 55, July 31, 1990, Department of Electrical Engineering, Princeton University.
(Submitted to The International Journal of Robust and Nonlinear Control.)

3. D. S. Flamm and H. Yang, "Some Comments on the H~o-Optimal Scalar Mixed Sen-
sitivity Problem," ISS Report No. 56, August 16, 1990, Department of Electrical
Engineering, Princeton University.

4. D. S. Flamm and H. Yang, "H*-Optimal Mixed Sensitivity for General Distributed
Plants," ISS Report No. 57, August 31, 1990, Department of Electrical Engineering,
Princeton University. (Submitted to IEEE Trans. Automatic Control.)

5. D. S. Flamm and H. Yang, "H°-Optimal Mixed Sensitivity for General Distributed
Plants," Proc. 1990 Conference on Decision and Control, Dec. 5-7, 1990, pp. 134-139,
Honolulu, HI. (ccndensed version of ISS Reports 56 and 57.)

6. D. S. Flamm, H. Yang, Q. Ren and K. Klipec, "Numerical Computation of Inner
Factors," ISS Report No. 58, August 8, 1990, Department of Electrical Engineering,
Princeton University.

7. H. Yang and D.S. Flamm, "Mixed Sensitivity Design for a Real Multivariable Delay
Problem," ISS Report No. 60, Sept. 7, 1990, Department of Electrical Engineering,
Princeton University. To appear in Proc. American Control Conference, June 26-28,
1991, Boston, MA.
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1.4 Notation

H 2 , H': Hardy spaces on the right half plane.

L', L 2 , L-: Lebesgue spaces on the real axis R or imaginary axis jR.

H 2 : the orthogonal complement of H2 in L 2 , so L 2 = H2 e H 2 .

L2x, (H2xI)_ , etc.: matrices with entries in the corresponding spaces.

C: tLe subspace of LO consisting of bounded continuous functions.

fl+: the projection L2 
- H2 .

I-_: the projection L2 -- H_.

IK: the projection L 2 -+K, where K is a closed subspace.

rIK: the projection from L2 onto a subspace K.

x*(s): the involution of z(s), i.e., zx(s) A i(-). Here the bar denotes the complex conju-
gate.

S. (s)z(s).

xi, z,: inner and outer factors, respectively, of z E H'.
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Chapter 2

Models

In this chapter we present four models which we have been examining in order to motivate
and guide oui investigation.

Since one of the main applications in which we are interested is the control of large space
structures, three of the models are of flexible beams. We think of these = building blocks
from which we well construct more complex and more realistic space structure models as
the theory of design with them matures. The simplest model is a Euler-Bernoulli beam
with viscous damping. We also present here a damped Timoshenko beam model, and beam
model with two degrees of freedom. The Euler-Bernoulli beam is a single-input/single-output
model which we h ,7 , lv".A ;-q ,,bsta.til d-tail and -ts chmracteristiro have influenced
several of our directions of research. The Timoshenko beam is also a SISO model, but it is
substantially more difficult to analyze, mainly because an explicit expression for a transfer
function does not seem to be available. We present it here to illustrate the complexity
involved, and as an object of future study. Similarly, the transfer funcion for the two-degree-
of-freedom beam is intractable analyticaily, but we intend it ae an ini 'i ni.t . ,
study for multi-input/multi-output space structure models.

The fourth model is a multivariable delay model for an automotive system. This is of
interest for several reasons: it is a realistic MIMO irrational transfer function, it was an
intractable problem in its exact form (prior to the current work), and it has been examined
by means of approximation by other researchers, so that computational results are available
for comparision purposes.

2.1 A Damped Euler-Bernoulli Beam

The model we present in this section is relatively tractable by analytical means. We are
able to find exact singularities and approximate zeros, and to characterize the asymptotic
behavior for high frequency.
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2.1.1 Model Derivation

With the addition of two tractable types of viscous damping to the classical Euler-Bernoulli
beam model, one obtains for the partial differential equation [Clough and Penzien, p. 302],

a2  192V 03 a 2.js av-- EI - + cI 't + m- + c - =p (2.1)

ax,\ ( 92 ax~ot ) 8t2  ~

where v(x, t) is the lateral displacement of the beam, p(x, t) is the external load on the beam,

c is the resistance to transverse velocity and c. is the resistance to strain velocity. c has the

interpretation of external damping, and c, has the interpretation of internal damping. We

are interested in the case of no external load, (p(x, t) = 0), and we assume a beam of length
I with free boundary conditions at both ends.

With the intent of computing the transfer function from - torque applied at one end to

the displacement at the other end, we take Laplace transforms, obtaining

(EI + cI3)v(4)(x, .) + (ms2 + c,)v(x, ) = 0. (2.2)

The problem is separable, and setting

v(xs) = W(X). w(s) (2.3)

we obtain
ma(4)(X) 4 = 2 + C3 42.4

'o(x) EI + c.13

The solution is of the form

v(Z, a) = (k1 cos (ax) + k2 sin (ax) + k3 cosh (ax) + k4 sinh (aX))w(a) (2.5)

where w(3) and the constants k are determined by the boundary conditions. The boundary

conditions at each end are related to the constants k, by the equations

fv(0,a ' (1 0 1k
,S'(o,) 0 2 a 0 A/ W(k ) (2.6)

V"(0,3) -a 0 a k
V'"..(0,3s) 0 -a 3  0 a3  k4

and

(L a) 3 cos (aL) sin (aL) cosh (aL) sinh(aL) k

v" (L, 3) -a 2 cos(aL) -a 2 sin(aL) a2 cosh(aL) a2 sinh(aL) k3

v L, ) as sin (aL) -a 3 cos (aL) a3 sinh (aL) a 3 cosh (aL) k
(2,7)

The relation between the boundary conditions at either end can be expressed as
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v(Ls)
v'(Ls) 1 1v"(L,) 

cos (aL) + cosh (aL) ,nh(aL)+,in(aL) coah(L L)- (aL) , (aL)--,n(aL)

a(sinh (aL) - sin (aL)) cos (aL) + coash (aL) zinh(aL)+in(aL) coahsaL Co (aL)C a(cosh (aL) - cos (aL)) a(sinh (aL) - sin (aL)) cos (aL) + cosh (aL) a
a3 (sinh (aL) + sin(aL)) a2(cosh (aL) - cos(aL)) a(sinh (aL) - sin(aL)) cos(aL) -- cosh (aL)

/v(O )
V,(0, 3)
V "(0, 3)

V"...(0,3)
(2.8)

Free boundary conditons at both ends, plus a torque T(s) at the x = L end, result in
v"(O, a) = 0

=0

EIv"(L,s) = T(3) (2.9)

"(L, 3) =0

Solving these simultaneous equations for v(L, 3) and T(3) gives us the transfer function from
a torque T(a) at the x = L end to the displacement at x = 0. Taking L = 1 we obtain

v(0,S) cos (a) - cosh (a)
P(S) - T(3) EIa2 (cos(a)cosh(a) - 1) (2.10)

where
s2 + S-sa4 = -_. i+,,, (2.11)

2.1.2 Essential Singularities

The appearance is that the functions appearing in the numerator and denominator of (2.10)
may have essential singularities both in the left half plane and on the imaginary axis, because
the arguments to these functions are roots of a rational function of s.

We shall show that we can factor the transfer function as the quotient of two functions,
each of which is the composition of a holomorphic function with a rational transformation of
the complex plane. Still, numerator and denominator are not analytic functions of a. This
rational transformation has a pole in the left half plane, and we shall show that the pole
becomes an essential singularity. Although the essential singularities for both the numerator
and denominator are at the same point in the complex plane there is not cancellation.

Using power series expansions we find that

( a 2 a 6  a 1
cos (a) - cosh (a) = -2 + + .+ (2.12)
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and 22 24  26 1

cos (a) cosh (a) - 1 - a + 2as 2a +... (2.13)
4! 8! 12

Thus
N(a) = cos(a) - cosh (a) (2.14)

a2

is a holomorphic function of a4 , and a4 is in turn a rational function of s, as claimed. Similarly
for D(a) = FI(cos (a) cosh (a) - 1).

This allows us to express the transfer function in the form

- 2 1 + 8 t + )o 2 "

P(S) = )(2.15)

EI( a -'aU2 +ia2± 24 (2 +4! 8! +2

Since numerator and denominator are holomorphic functions of a4 , an essential singularity
could only occur at infinity, and it is easy to see that this in fact occurs. Furthermore, this
essential singularity of numerator and denominator is not a removable singularity of the
transfer function, i.e., there is not cancellation between numerator and denominator. One
can see this by observing that (2.10) has no limit as a--+oo, say along the real axis. One
can check that a-.oo for values of s in the right half plane: a4 becomes unbounded only
as s---'oo, and, if c, $ 0, as s--+ - - . These are the essential singularities of the transfer' C.

function.
Figure 2.1 shows the behavior of (2.10) as s-*±oo along the real axis.

102

10-6 A

10-14 . .

10-22
-1500 -1000 -500 0 500 1000

Figure 2.1: IP(s)l as s-oo along the real axis. (m = 1, E = .1, I .1, c .001, c, = .001)

2.1.3 Analysis of Poles and Zeros

The analysis continues by finding the zeros and singularities of the numerator and denomina-
tor of the plant transfer function. For this purpose we shall first regard the transfer function

11



as a function of a. So we factor the beam transfer function as P(s) = with N(a) and

D(a) as above.
The zeros of N(a) are given by a = (1 ±j)nw, for n = 1,2,..., or a4 = -4(nr) 4 . Notice

that the zero corresponding to n = 0 is cancelled by the denominator in (2.14). Taking
a,, = -4(nr) 4, we note that the values of a, are real and negative.

Let n be the values which a4 assumes at the zeros of D(a). We can show that the values

are all real and positive, and asymptotically approach the values 2(2n+)#) Obviously

a4 = 0 is also a zero.
In terms of the Laplace transform variable ., using (2.11) we find that the numerator

zeros are given by

z2 -(cicI + c)±:(a,,coI + c) 2 - 4mca,EI (2.16)
z2f+ 2m

for n = 1, 2.
The denominator is zero at . = 0, and at the points a = - - and

P2n --(3"cI+c)±V(/'3nc'h+c)2 -4mo,"EI )n= 2,... (2.17)
P2n+1 I 2m

which are all in the left half plane. Both numerator and denominator are unbounded in every

neighborhood of the point = - - and have zeros dense at that point. This is consistent
with the fact that the point is an essential singularity of the transfer function as mentioned
above. Figure 2.2 shows a typical pattern of poles and zeros of the transfer function, with
E = 100.
C.

100 , X
x x

50 .... X..

0 ..... -X.. X-U10 .+Q 0 a -G.. 0 0

5 0 ........ ... . .... ...... .

., X x

-100 1X
-800 -600 -400 -200 0 200 400 600

Figure 2.2: Poles ard Zeros of Beam Transfer Function (m = 1, E= .1, 1 .1, c= .00l, ca = .001)

2.1.4 Factorization of the Transfer Function

Since tP(s) E H, nl C, the inner factor must be the product of a Blaschke product

and possibly an exponential of the form e-'* with ax>0. But e" 8'1 P(-3) is unbounded on

12



the positive real axis, so a = 0. Thus the transfer function can be factored as P(s) =
P,(s)P(s)Po(s), where Pa(s) = +

Pi(s)= [I . _-(2.18)

and Pa(s) E LI n C. Po has essential singularities at the points s = oo and s = _. Thus

the outer part of the beam transfer function is indeed irrational, incorporating the essential
singularities.

Following the technique in [Callier and Desoer, p. 655], we can readily compute a coprime
factorization of this plant as

P(s) - P1 (s)Po(s) (2.19)

and
1 • P,(s)P°(s) + 2..... (s + 1) - (o+1)Pd()P.(,)Pi+ Pi(O)e.(o) =1(2.20)

P,(0)P(0) a + 1 

2.1.5 Asymptotic Behavior of the Transfer Function

We now examine the behavior of the transfer function at infinity, i.e., whether the transfe-
function is strictly proper. Our main point here is to show that it decreases at infinity in
the closed right half plane faster than any polynomial.

The demonstration of this fact follows two observations:

1. The image of the right half plane under the map

S-- a = + c.Is (2.21)

satisfies IIm(a)I<Re(a) and approaches the cone 1 <1 arg(a) 1< 1 in the right half
plane uniformly in arg(s) for large IaI. As Iat--*oo, lal*o.

2. Leta=z+jy withz,y ER. Then

(8cos(z + V)cosh(z + y) + 8cos(z - y)cosh(z - y)
I2 - 4 cosh (2y) - 4 cos (2y) - 4 cosh (2z) - 4cos (2z))

pE)) ( = (cosh(2z + 2y) + cos (2z + 2y) + cosh (2x - 2y,) + cos (2Z - 2y))

- 8 cos (z - y) cosh (z + y) - 8 cos (z + y) cosh (z - y) I
+ 2 coo (2y) cosh (2y) + 2 cos (2z) cosh (2:) + 8 )

(2.22)

From observation (1) any a in the image of the right half plane satisfies y = r~z, with
r. < 1. Again by observation (1), for sufficiently large I3, r. is bounded from zero. Then
using observation (2) it is easy to check that for a sufficiently large in the right half plane

13



IP(s(a)) 2 is bounded above by a positive constant times e- 2'* for some fixed r > 0. This
implies that any polynomial in Isl times JP(s)j goes to zero at infinity in the right half plane.
Withoat much more work one can in fact check that fP (jw)I is asymptotically equal to

T m C V_ (2.23)

where k = sin . This can be checked in the plots in Figures 2.3 and 2.4 (which use the

same parameters for the beam model as above).

10Q5

10-92 -
10-2 10-1 100 101 102 103  104  10s  106 107

Figure 2.3: IP (s)1 along the imaginary axis.

101

1 0 1 .. ... .. .. ... .~ i :i~ ............ . ....... .....: .I : . :..... .. ..... .....:..~~ii :! : ii.ii2:... .. ... ..i. iil :. :.

S o o : ! ! ! .Z: Z ;.ii i : : :::,:.z: ! ! !!
102 ,10 104  105 106 107

Figure 2.4: log IP(s)l along the imaginary aids.

2.2 A Damped Two-Degree-of-Freedom Beam

The model for a flexible beam with a tip body, including both bending and torsional vi-
brations consists of a pair of decoupled partial differential equations with coupled boundary
equations. The partial differential equations are [41]:

aY(_, ) +26E1'y(z,t) EIt 'y(, t)a2 + 2 -+ = -xo"(t) (2.24)
at2  p ataX 4  p 19X4
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a2o(z, t) _ 26GJ aO(, t) GJ a2o(X, t) = 0 (2.25)
0-t2 Tpr 2 &at2 P-C2 a2 0

where y(x,t) represents the transverse displacement of the beam and O(x, t) represents the
angle of twist of the beam. The angle of rotation of the motor is given by 0(t), consequently
0"(t) represents the angular acceleration of the motor.

Taking Laplace transforms of each equation and using zero initial conditions (since the
transfer function is derived from a zero resting state) yields:

s2Y(x, s) + EI (26s + 1)Y(4 )(x, s) = -xs 2e(a) (2.26)
P

-2,(x s) - -J( 2 6 , + 1).t(2)(X,s) = 0 (2.27)

Both equations are separable and therefore have solutions of the form:

Y(z,.S) = w(S)V(z)

(z, s) = 3(j)aZ(Z)

Using these relationships in equations 2.26 and 2.27 yields:

1' = -()= - - (2.28)
v(x) EI(26s + 1)

2I = _()( ) = - ' ; (2.29)
a(x) GJ(26s + 1)

Note: the solution given is for the associated homogeneous equation to equation 2.26; equation
2.27 is already homogeneous
Solutions to the equations 2.26 and 2.27 are therefore of the form:

Y(x, s) = (k, cos(Aix) + k2 sin(Aix) + k3 cosh(Aix) + k4 sinh Ax)),,(3) + yp(x, s) (2.30)

-§(z, s) = (aleA23 + a2e-,x)/3(s) (2.31)

where yp(x, 3) is a particular solution of the nonhomogeneous equation 2.26. A solution to
equation 2.26 is given by y,(z, s) = -xe(s) so we have:

Y(x, 3) = (k cos(Aiz) + k2 sin(Aiz) + k3 cosh(Alx) + k4 sinh(Ajx))w(,) - xE(s) (2.32)

The boundary conditions are related to the k and a, by:(Y(0, 3) \ (1 0 1 0 (i 0~
Y'(O, s) 0 A, 0 A, k2  (2.33)
y"(O,s ) 0 -A 0 A3 ) o W:.) o( ( )(3)

Y/"(0,s) o -_A 0 A3 k4 0
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and

f ( 13 cos(Al L) sin(AIL) cosh(A1 L) sinh(AL)
YI (,_s -A, sin(AIL) A, cos(AIL) A1 sinh(AIL) A1 cosh(AL)
Yf(L~s)) -A~cos(AIL) _A~sin(AIL) A'cosh(AIL) A'sinh(AIL)

Y)(L'9 sin(Xx L) X,) cos(Xx L) 1~ sinh(X1, L) 1~ cosh(Ai L)

( ~Os))-( k~-2 W) (: 1 ) () (2.35)

( 4(L,.s) ' e( A2L e ~~a, (2.3()

k $(L,s)) \ A2 A2L A2e-.XL a2 )0(2.36
for the angle of twist.

Next we combine equations 2.33 and 2.34 to eliminate the k, and tv(s), resulting in:

Y(L uinX4AiL)+sinfiL) - L7 2AiY'(L, 1
I costAi & L)a(AL) - 2

I 2

\Y"'(L,sa ACOsh(AiL)-co*(AjL)
2

C o(.%I L) + co* (AI L) s 
LinjohL 

L 

%,Lj 

n~

AI(sinh(AIL) - uin(-%IL)) co.(Ax L) + co.iL) !~i~?1

A (~co*ah(1 L) - com(A tL)) AI(uinh(AIL) - uin(AitL)) cos(AIL) + coab(AIL) su(ijsn~L

A3,(sinh(AiL) + in(AijL)) A2(coeh(AiL) -cos(AiL)) Aij(ainh(AiL) -ain(AiL)) c*sAiL) +cosb(A 1 L)/

fY(07,s)
Y'(O, 3) I(2.37)

.1Y"(0, 3)

Similarly, combining equations 2.35 and 2.36 to eliminate the Gj and 83(s) we obtain:

-t(L,sj) 1 ( e A2L + e-A2L ±L(e.2L _ e-A2L IO( O(s)(C '(s) ) 2 kA 2(e.XL _ e-A2L) A2 eAaL + e.A2 L V l\'(0, s)) (2.38)

The simple boundary conditions are given by:

Y(0,s5) = 01
Y'(0,s3) = 0 j(2.39)
4 (O'.s) = 0
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while the coupled boundary conditions are (41]:

0 = ms2 [(L + c)e(s) + Y(L, j) + cY'(L, 3) + e'1(L, 3)] - EI(1 + 26s)Y.'(L, 3X2.40)
0 = Mc92[(L + c)9(s) + Y(L,a) + cY'(L, a) + e4(L, a)]

+ Jos 2[9(s) + Y'(L, s)] + EI(1 + 265)Y"(L,s) (2.41)

0 = me 2 [(L + c)1(3) + Y(LIa) + cY'(L, 3) + e4(L, 3)]
+ j.' 2 4(L, s) + GJ(1 + 26s)V'(L, 3) (2.42)

Now, using equations 2.37 and 2.38 with the boundary conditions given above, we have
9 equations in 10 unknowns. All that remains to be done to find the transfer function is to
eliminate 8 of the variables. There are in fact two transfer functions of interest in this system.
One is the transfer function from 0(3), the angle of rotation of the motor, to Y(L, a), the
transverse displacement at the end of the beam; the other is the transfer function from 0(a)
to 4(L, 3), the angle of twist at the end of the beam.

Using Macsyma, these transfer functions were found to be:

Y(L,s.) N(3)

E (3) - - ---9 (2.43)

4O(L,s) N2 (3)
() - D(s)2.44)

where NI(s), N2(3) and D(s) are given by:

Ni(s) = -[32j. sinh(A2L) + A2GJ(26s + 1) cosh(A2L)]{A, E2 2 (26s + 1) 2[sinh(A\L) + sin(AIL) -
AiL(cos(AiL) cosh(A1 L) + 1)] - 2AEIL(26s + 1)Mcs 2(sin(AiL) sinh(AIL)) +
AIEI(26s + 1)mc 2(sinh(AL) - sin(AL)) + AIEIL(26s + 1)ms2 (cos(AL) sinh(AL) -
cosh(AL) sin(AL)) + A2 I(26s + 1)s 2 (Mc2 + Jo)(cosh(A1L) - cos(L)) -

I,1EIL(26s + i)s2 (mc2 + Jo)(cos(AIL) sinh(AIL) + coah(AIL) sin(AIL)) +

JoLm.S4 (Cos(AIL) cosh(AL) - 1)} - A2EIsinh(A2 L)S (26. + 1)me2 f{ Jo[cosh(AL) -
Cos(A 1 L) - AIL(cos(AL) sinh(AIL) + cosh(A1L) sin(AL))] + A1EI(2Ss + 1)(sinh(AL) +
sin(Al L) - Al L(cos(Al L) cosh(Ai L) + 1)]}

(2.45)

N12(3) = '\2EIsinh(A 2L)MeS2(26a + 1){Jos 2 (cosh(AiL) - cos(AIL)) + (26s + 1)A1EI .
[sinh(AIL) + sin(AIL) + Aic(coah(A1 L) + cos(A1L))]}

(2.46)
D(3) = [aJ. inh(A2 L) + A\2GJ(26s + 1) cosh(A-2 L)]{ma4 Jo(cos(AIL) cosh(A1L) - 1) -

(26s + 1))4E2I 2 (cog(AiL) cosh(AIL) + 1) + ma2 AiEI(26s + 1)[cos(AL)sinh(AiL) -
cosh(AIL) sin(AL) - 2AIcsin(A L)sinh(AIL)]- (mc 2 + Jo)A-EIs2 (26s + 1).
(cos(A L) sinh(AL) + cosh(A1L) sin(AIL))} - me2 

2 sinh(' 2 L)A3EI(263 + 1).
[AIEI(26a + 1)(i + cos(AiL)cosh(AIL)) + J0S2 (cos(AIL)sinh(A1L) + cosh(AxL)sin(A1 L))]

(2.47)

17



2.3 A Damped Timoshenko Beam

The partial differential equation model, including damping terms, for the Timoshenko beam
is given by:

c9v c. 895v (K p ) 8x28t 8 p ____p 8'v+E- -  
C Ea - - + 4V - + p atV + p2 t4 = 0 (2.48)

let

=C, - + , C = -3 = C4 ' C5E kKG El EK,2 KEG

By taking the Laplace transform of the equation we obtain:

(1 + c,3)V(,) + C232V(2) + (C53 4 + C432 + C3 )v = 0 (2.49)

where v = v(z, a) and primes denote differentiation with respect to z. This is an ordinary
differential equation. Making the usual assumption that the solutions have the form c(s)e' (°)M
and applying the differential operator we have:

(1 + cs)A4 + c2s2 A2 + (c53' + c432 + c3s) = 0

where the roots of this fourth order equation yield four possible values of A(s). Solving this,
we discover that the solutions take the form:

v(z,s) = k,(s) cosh Aix + k2(s) sinh Aix + k3(s) cosh A2z + k4(s) sinh A2 z (2.50)

where

At =-- [C2'2 +- (-4cisS +- (c - 4 c)34 - 4(ciC4)S3 - 4(c 4 + ClC 3 S
2 - 4C3 3) 21 (2.51)

A1 = [2 s + (c~c~s 5 + ~ - 2(1 + cis) ~.1

A2 = "- C23 - (-4c csi s + (c - 4cs 4 - 4(cc 4 )s3 - 4(c 4 + clc3 )s3 - 4c3s)2
A 2(1 + cis) ]

The boundary conditions at each end of the beam (z = 0, z = L) are related to ki(s)... k4(s)
by:

v,(0,3) 1 0 1 0 k,(j)
V'(Os) 0 At 0 A2  k.(S)

V"(0,s) A 2 0 A 0(s)
... (0,j) 0 A 3 0 A 3 A(s)

and

v(L,s) coshA, L sinhAL cosh A2L sinh A2L ki(3)
V'(L,) AcsnhAiL AnA, coshAIL A2sinhA2L A~coshA 2L k2(s)
v"(Ls) = A coshAIL A2sinhAL A2cosh A2 L k(s)
v'(L,s) AsinhAIL At coshAIL A~sinhA2L A~coshA 2L k4(s)
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The relationship between boundary coditions at either end is:

v (L,3) I V"(O,s),V'(L,3) -- f '(O,.S)
v"(L, s) T ,"(O, a)
v"'(L; S) ] LV111(O, s)J

T= (2 2

A coshA,L -A cosh A2 L A sinhAL - sinh A2L

AA cohAL AA~cshAL AAlsrth:L-A A snhALEA,A2 sinhA, L- AAsinhA2L A coshA, L-Al coshA L

snhn h2 L_ 2 A AsiAL

cosh A2 L -cosh AL 2 jL -i1hA2Lsinh AL
A2 sinh A 2L - A sinh A 1 L cosh A 2L -cosh AL
A cosh A2L - A cosh AL A2 sinh A 2L - Asinh A,L
A sinh A3L - Asinh AL AIcosh A2L- cosh AL

The boundary conditions considered are:

v 1(O,s3) - 7 j-2V(O, .) = l{ 0, ) - i + _ 2 '(0,9) = 0
" )L, .)- P j2V (L, 9) =

v ., - I+ S js2u'(L s) = 0

The relationship between the boundary conditions given by the matrix T along with the
boundary conditions themselves define a system of eight equations in nine unknowns. If we
solve these equations to get v(0, 3) in terms of the torque T(s), then we have the transfer
function from the torque applied at one end to the displacement at the other end. The
solution was performed on Macsyma, and yielded the transfer function:

P() = '(0,9) = N(s)
T(s) D(s)

where:

N(s) = -GK((K + EG)(GK + E)((A' + A')sinh(AiL)sinh(A2L) +

2A, A2(1 - cosh(AiL) cosh(A2 L)))p-3s + K(-A3 + A3)EG(K + EG)•
(A2 sinh2 (A2 L) + Al sinh2 (AIL)) - (2A'A2G 2K(K + EG) + (A: + A2).

(- AA 2 + A2)EGK - A1A2(A2 - Aj) 2E2G2 + (E4 + AI)E 2) •

sinh(AL) sinh(A2 L) + AIA 2 (A2 + A2)(G(K + EG)(GK + 2E) +
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E(GK + E))(cosh(A, L)cosh(A2 L) - 1) + AlA 2(A2 - A2)G(K + EG).
(GK + E)(cosh(A2 L) - cosh(AIL)))P 2 s' + EGK2 ((A3 + A3)E.
(A3 Sinh2(AL + A3sin 2(A1  + A2A2((A2 + A)2K GA2L)~~~ ~ 1 sin A )) 12 )G(2K +EG)+

(A2 - AI) 2 E)sinh(AiL)sinh(A2L) + AIA 2(-E(A cosh(A2 L) + A" cosh(A L)) +
EG(A' cosh(A2 L) + A4 cosh(AIL)) + A2A2E(1 - G2 )(cosh(A2 L) + cosh(AL)) +

(A' - A4)GK(cosh(AIL) - cosh(A2 L))) - AjA 2((A + A2) 2GK +

(A4 + A4)EG2 + 4A2A2E)cosh(AiL)cosh(A2 L) + AA 2((A2 + A2)4(GK + E) +
2A2A2EG 2))p. 2 + AAE 2G 2K 3(-(A + A4) sinh(AL) sinh(A2 L) + AA2 .

(A2 + A2)(cosh(AIL)cosh(A2 L)- 1) + AA 2(A2 - A2)(cosh(A2 L) - cosh(AIL))))

D(s) EI((K + EG)(GK + E)((A2 + A2) sinh(AiL) sinh(A2 L) +

2AjA 2(1 - cosh(A 1L)cosh(A2L)))P's + K(-(A3 + A3)EG(K + EG).

(AP2 sinh2 (A2 L) + A, siah2(A,L)) + (-(A4 + A 4)E(GK + E) -

4A2A2G 2K(K + EG) + AA 2(A2 - 4AA 2 + A2)EG(K + EG))

sinh(AL) sinh(A2 L) + AA 2(A2 + A2)(2G 2K(K + EG) +

4EGK + 3E 2 G2 + E 2 )(cosh(AL)cosh(A2 L) - 1))p 3s 6 + GK'((A3 + A3).

E(E(A'sinh'(A2 L) + A,3 sinh2 (AIL)) + A1A 2G(K + EG) .

(A, sinh 2(A2L) + A2 sinh2 (AL))) + AiA 2(AA 2(A2 + A)G 2K(K + EG) -

(A42 - 4AIA2(A 2 + A2) + A4)EGK - (A4 - 2AA - 2A3A2 + A 4 )E2G2

+2AIA2( A2 - A1A2 + A2 )E 2)sinh(Al L) sinh(A 2L) + A, A2(2A 2A G 2K(K + EG) +
2(A4 + 3A2 A2 + A4)EGK + (A + 4AA, + 2( 2 + 1)).

(1 - cosh(AL)cosh(A2L)))P2. 4 + AEG2 K 3(-(A3 + A3)E-
(A2 sinh 2 (A2L) + A, sinh2 (A1L)) - (2A2 A2G(2K + EG) +

A~ ~~ 4 3 +A
2A - AIA2 + 2AIA2 - A1A 2 +A)E) sinh(AIL) sinh(A2 L) + AIA 2(A2 + A 1.

(G(2K + EG) + 3E)(cosh(AL) cosh(A2 L) - 1))ps2 + AAE 2G 3K 4

((A2 + A2)sinh(AIL)sinh(A 2 L) + 2AA 2(1 - cosh(AL) cosh(A2 L))))

If we use the relationship between A, and A2, some further simplification is possible. For
example, if we write A, = (u(s) + w(3)),6, we have A2 = (u(s) - w(3)),2. Then we observe:

A, + A2 = 2u(s)
A- 2 = 2w(3)

AA, = U2(.) - w2(3)

A4 = U2 (3) +W 2 (3)

AIA2 + AIA 2 = A2A (A^ + A2) = 2U3(3) - 2UW 2(s)

These substitutions can be made to simplify N(s) and D(s) as functions of J. However, such
simplification would introduce complicated functions of s into the equation so we prefer to
leave the representation in terms of A, and A2.
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valve input [ (-9 + It.1 )(3 +; Ir.) +

engine speed

spar k advance + +'"

torque load s+ .AS+a2

Figure 2.5: Engine Model Structure

2.4 A Multivariable Delay Problem

In [46], the idle speed control of a typical V6 fuel-injected engine with computer controlled
management system was considered. The model structure consists of delays and second
order dynamics. The vahbe-to-rpm transfer function contains no zeros. The spark-to-rpm
transfer function has one zero. The system is described by Figure 2.5.

From Figure 2.5 we see

0 10)( U P)p= 0 0 1 PH P12

PI P2 P

where
8 ( S + G ) 8 , ... _ / .(s + G ) -

P= - Xp P
(9+7..)(3+1.2) .(+-.i(j+ (,2)+e P.)(s+.2)+

We primarily will be interested in the transfer function from d to e, which we denote by

f . , (o. I + P12K(.-P2Ky1 P2, ( +I kK
21P + p - - P~kI + P
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Chapter 3

Outer Factor Absorption

3.1 Introduction

A crucial step in the derivation of the solution to H' optimal control problems is to show
that the outer factor of the plant can be ignored at a certain point in the calculation of the
infimal norm of the H0* control criterion. Specifically, given the expressions

inf I[W- FMQ0 *QEHQ"

and
=inf IW- MQII**

with W E L', M E H' inner and F E H** outer, the assumpton is made that A, = Au, and
computation proceeds to find sj.

The validity of this step has been demonstrated for rational plants [49] and for plants
with irrational inner part but rational outer and unstable parts [10],[18].

Our recent study of an example [11] has lead us to be concerned with plants having
irrational outer part. In the present work we extend the results in [10],[181 to the case of
irrational outer factors for the plant.

The organization of this chapter is as follows:
In Section 3.2 we review how the HO optimal weighted sensitivity problem for unsta-

ble plants can be reduced to a minimization problem which is affine in a free (functional)
parameter, via the so-called "Q-parametrization." When the outer and unstable factors of
the plant and the weighting function are rational, is known that under additional neces-
sary assumptions on the weighting function a sequence of approximating solutions can be
constructed by first solving a simpler problem in which an outer outer function has been
"absorbed" into the free parameter, and then approximately "extracting" the outer factor.
Proposition 1 summarizes these previously known necessary and sufficient conditions. For
the beam model of Section 2.1 the outer factor of the plant is irrational. In this case the
standard construction is [18] does not apply. In order to be able to treat still more general
plants, we next define a general zero of a function, and proceed to prove corresponding
necessary conditions in Lemma I of Section 3.3.
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In Section 3.3 we present the main result of this chapter, Proposition 2, showing that the
conditions of Lemma 1 are also sufficient under reasonable assumptions on the plant. The
key ideas behind this extension of previous results are a construction to approximately invert
irrational outer functions, and a definition of a generalized zero of a function which allows
us to formulate satisfactory necessary and sufficient conditions for outer factor absorption.

3.2 Problem Definition and Background

Our main result here forms one step in the solution of H' problems. For clarity's sake we
first define the overall H problem which forms the setting of our result. This is the basic
problem set forth in [521.
BASIC PROBLEM: Given a proper transfer function P(s) (the plant), and a weighting
function W1(s) E H', find the infimal norm over all weighted stable disturbance sensitivity
transfer functions attainable by stabilizing proper feedback, i.e.,

inf IIW,(s) s(s)ll.,

where C = {stabilizing and proper feedback compensators}.
In Figure 3.1, feedback connection for the problem is illustrated. S(s) = (1 + PC)-' is

the transfer function from a disturbance d(s) at the output of the plant to the closed loop
output y(s). The transfer function of the feedback compensator, C(s), is constrained to be
proper and stabilizing for the closed loop.

Figure 3.1: General Feedback System

Remark 1 Since IIM. Xll = IIXII.t for any inner function M and X E H', we assume
(as usual) without loss of generality that W is outer.

As is well known, this problem has been solved under various additional assumptions.
Here we separate the additional assumptions into two versions of the basic problem:

PROBLEM R (rational): Assume, in addition to the assumptions of Basic Problem, that
P(3) and W 1(s) are rational functions.

PROBLEM I (general inner): Assume, in addition to the assumptions of Basic Problem,
that W,(s) is a rational function, and P(s) = 4(3)p(s)P,(s), where
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" O(s) is a general inner function,

" P,(s) is rational

* p(s) is a general outer function in H" with inverse in H-.

Remark 2 In each of these problems, as a consequence of our assumptions one can factor
the plant as P(s) = P,(s). P(s)- Ps(3), an inner-outer-unstable factorization of the plant,
where the unstable factor P,, is rational, analytic in the open left half plane, and bounded from
zero in the open right half plane. We can assume without loss of generality that P, = D - 1,

unth rational D E H'. Analyticity of D in the open left half plane implies that D has no
zeros there, i.e., D = DiDo, where Di is inner and D0 is outer unth zeros (as a function on
C) only on the (extended) imaginary azis.

The (standard) first step in the solution involves the parametrization of all attainable
disturbance sensitivity functions, which is as follows:

Theorem 1 Given a plant P as above (Problems R or I) with factorization as in Remark
2, there exists an H- function V(s) such that, if the compensator C is proper and stabilizes

the closed loop, then Q c satisfies
I +PCQ E Hoc

and
(1 - PC)-' = D(V - PPQ),

unth P,, P and D as in Remark 2 above. Conversely, if Q E Hm then (1-PC)-' = D( V-
P,P.Q) E Hoc, and C = '2 is a proper stabilizing compensator. Defining C =a {proper1+PQ
stabilizing feedback compensators}, we use this parametrization to conclude

inf 1JW1(1 + PC)-'If* = iaf IIWDV - WDPP0QtI., (3.1)eEC QEHa

- inf IIWD.(V - PPOQ)IOO (3.2)
QEH"

Proof: See, for example, [23, p. 101. V is the coefficient function in the Bezout identity
giving a coprime factorization of P: PPU + DV = 1, and P = PPo/D. I

As is well known, this theorem allows us to simplify notation, since (3.1) shows that
finding a solution is equivalent to finding a solution to a related ahne minimization problem.
With this simplification, taking

W = WDV
M = D,P, (3.3)
F = WDoPo

the problems become equivalent to

inf }W- FMQII. (3.4)
QEH.

where,
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" for Problem R, W, F and M are rational;

" for Problem I, W and M are not necessarily rational, and F is the product of a
rational outer function with a stably invertible irrational outer function. In this case
we can assume without loss of generality that F is rational, since the invertibility of
the irrational outer factor of F allows us to ignore it in the minimization.

Previously known results can be summarized as follows

Proposition 1 Let W be rational and outer, and let P = OWP, with V) inner, o an outer
function in H' invertible in H', and P, rational. Define

= inf IIW1(s) (1 + P(s)C(s))-'II.
C

= inf IW(s)Do(s)(V(s)- P(3)Po(s)Q(3))[J-

= inf 11W(s) - F(s)M(s)Q(s)f.

and

= infIIW(s) - M(s)Q(s)I*

- inf IIW(s)Do(s)V(s) - P(s)Q(s)I=.
QEH*

Let V(F)= {z E jR: F(z) =-O}. Then

1A, >_ W(z) for all z E V(F) (3.5)

if and only if
0o= .Ai(3.6)

Proof: This is a special case of Proposition 2 below. I

Remark 3 (3.5) is obviously a necessary condition for (3.6), so the essence of Proposition
1 as the sufficiency of (3.5) for (3.6). However, for more general F and W, the necessity
of (3.5) is not certain: If P. is discontinuous we first need to generalize the notion of zero.
Then one might consider the case of W and F both beign discontinuous at a generalized zero
of F. Other possible pathological cases are mentioned in the conclusion. In Lemma 1 below
we proved the necessity for the relatively straightforward case of P. continuoa u at its zeros.

In considering H' problems for distributed parameter systems, it has become clear that
the assumptions of Problem I are too restrictive.

EXAMPLE: For the damped Euler-Bernoulli beam model of Section 2.1 the outer part
has an essential singularity at infinity, and the transfer function rolls off faster than
any rational function. (This is not just a result of poles clustering at oo, since, for
example, an infinite Blaschke product may have such a cluster point of poles, but does
not roll off.)
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In mixed sensitivity problems with irrational outer factors [13], it is also desirable to allow
irrational weighting functions, which yields a problem equivalent to taking W irrational in
the present "pure" sensitivity case. Referring to (3.3), we see that for this example, W, M

and F are all irrational. If these irrational functions were continuous and bounded from zero
on the imaginary axis, there would be no need for further developments. However, irrational
zeros require a different construction to prove sufficiency of (3.5), and the possibility of
discontinuity of the outer factor (which does not occur in this beam example) makes it
necessary to use a different condition than (3.5), since W(z) will not be defined at a point
of discontinuity. With this motivation, we shall consider the following generalization of
Problem I:

PROBLEM G (general inner and outer): Assume, in addition to the assumptions of the

Basic Problem, that P(s)= 4(s) (s)P7 (s), where

" 0(s) is a general inner function.

" W(.s) and W, are general outer functions which have only finitely many "generalized
zeros" (defined below) on the (extended) imag'nary axis jR. For technical reasons, we
also assume that -.(s) and W, are continuous at their own zeros on the (extended)
imaginary axis.

* P,(s) is rational.

In order tc give the necessary conditions which are the natural extension of (3.5), we

define a general zero of f to be a point on the imaginary axis for which If I is not essentially
bounded from 0 on any neighborhood of the point. We make this precise as follows:

Definition: Let f be a Lebesgue measurable function on jR. For z E jR U {oo} and E > 0

take N,(z) to be the open interval (z-ie, z + ie). ( If z = oo, take N.(z) = ( , oo) U (-oo,
Define

ess ran(f, z) - n>o { essential range of If(z)j restricted to N,(z)}

(the essential range of f at z). We say that z is a general zero of f if

inf R 1 (z) = 0,

and we write
V(f) = {z E jR U {oo}j inf Rf (z) = 0}.

Remark 4 V(f) consists of zeros of finite order and certain singularities off. It must have

Lebesgue measure zero for f to be a boundary value function of a function in H' .

EXAMPLE: f(jw) = e-4V- has a general zero at oo (taking the square root to have a

branch cut on the negative real axis). f(jw) is the boundary value of the II function

f(s) = e-41 , which is continuous on jR and has an essential singularity at co.
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Remark 5 In this third problem as well, as a consequence of our assumptions one can factor
the plant as P(s) = P,(s). P.(s) • Pu(s) as in Remark 2.

As indicated in Proposition 1, solutions to the first two problems (R and I via (3.4)) can
proceed by first neglecting the factor F(s) and solving the following:

= i IW - MQll0.. (3.7)
QEHM

The transformation of (3.4) to (3.7) we call "outer factor absorption" because of the
construction used to obtain an approximate solution to (3.4) from a solution to (3.7). This
idea first appeared in [49, p. 591], where a construction was given for the case of P a rational
function. For the case of P having rational outer and unstable parts but general inner part
[10, p. 69] gave the first such construction. In the latter case it is also shown in [101,[18]
that a sequence of approximate solutions {Q,} to (3.4) can be constructed from a solution
to (3.7) such that they are rational functions.

Remark 6 The infimum in (3. 7) is actually a minimum [24, p. 135].

Now we can proceed to develop parallel results for Problem G.

3.3 Results

We first state the necessary condition for outer factor absorption in Problem G.

Lemma 1 Let W E L*(jR), let F be continuous at each point of V(F) . Take

ll = inf JIW- FMQII**. (3.8)
QEH

Ther.
i. > sup Rw(z) for every z E V(F).

Proof: Let z E V(F). For each E > 0 by continuity of F at z there is an intervalN = (z-j-y,
z + - ) with -y > 0 such that IF(w) < e for every w E N.. Take

a = sup Rw(z).

Suppose, contrary to the conclusion of the lemma,

p. =a-aforsome a>0, (3.9)

and take Q,. E HO* to satisfy

11W - FMQ.IIo. < Po + .
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Of course we always have

inf 1IW - FMQIIO =p/o < 11W - FMQIIOO.
Q

Take e = a / 811MQ.lI*. Then for w E N.,

IW(jw) - F(jw)M(jw)Q(jw)l > IW(jw)l - JF(jw)M(jw)Q,(jw)i

> IW(w)l - a.e.
8

By definition of a, there is a set of non-zero Lebesgue measure S, _ N, such that
IW(w)I a -! for each w E S.. Thus for w E S.

+ - > IW - FMQ.Io.

> IW(jw) - F(Jw)M(jw)Q.(jw)[ a.e.

> a-- a.e.,
4

and we conclude that of
/4o > a---- 2

This contradiction with (3.9) establishes that p. > a. I

Remark 7 When W(jw) is continuous at z, IW(z)I = sup Rw(z).

We next show that the conditions of Lemma 1 are also sufficient for outer factor absorp-
tion in Problem G. To motivate our development, we review the ideas behind the proof of
sufficiency in Proposition 1 as presented in [10],[18] . The proof is by construction, which
consists of two steps:

1. find a sequence {T} C H- such that

pis. --* as k --*o o, (3.10)

where

AA = 1IW - TklI.,

and

Tk(z) = 0 for all z E V(F),

2. find a sequence f, such that

(a) f,, = Fx. for some xn E H' (F divides f,. in H*)

(b) IIfI - 1 as n --# oo
(c) 11 - fI --+ 0 uniformly on finite intervals of the imaginary axis which exclude

zeros of F.
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We leave the details to the proof of Proposition 2 below, but here we give the ideas
behind these two steps to motivate the proof.

Given a solution Q to (3.7), we would like to factor F out of it, and still have F-'Q E H'
so that F-'Q gives a solution to (3.8). However F-' has poles at the points of V(F), and Q
will not generally have zeros at these points, so this does not give a solution. Our approach
is to find a sequence Q,, such that

1JW - FMQ,.I .--,a,. (3.11)

A naive approach is multiply Q by another function so that the product is very close to
Q over some union of intervals which excludes V(F), and then has zeros of the appropriate
order at the points of V(F). The natural way to attempt this is the following: Assuming

the desired zero is at o and has order m, simply multiply Q by (A '). Letting n - oo,

the interval on which the product is close to Q grows. This works for Problem R, but fails
for Problem I.

The difficulty is as follows: In Problem I (W - MQ)(s) has constant magnitude on the
imaginary axis, and so (W- MQ)(jw) describes a circle. In general, the locus will continue to
revolve indefinitely as J1w increases. Assuming for simplicity that W(jw) approaches a con-
stant as wI -. oo, we conclude that MQ(jw) approaches a circle with center W(ioo). Simply
reducing the magnitude of Q (multiplying by the "roll-off" function (A)n) as frequency
increases without regard to phase, can result in the sensitivity locus leaving the asymptotic
circle. For a roll-off function having only poles the minimal phase versus frequency charac-
teristic is that of a one-pole roll-off. To obtain less phase but still get infinite attenuation at
oo one must roll-off more slowly. That is the motivation for the roll-off functions h,, below
which accomplish Step 1. This shows us how to modify Q so as to introduce zeros at the
points of V(F) yet approach arbitrarily closely to Iii.

The essential point is that in the rational plant case, at high frequency the product PQ
approaches a real constant. Roll-off can therefore be introduced into the feedback loop at
high frequency without regard for the phase, whereas in the case of general inner factors PQ
has unbounded phase.

In order to factor F out, the zero we introduce by roll-off must be at least as steep as the
zero of F. However Step 1 introduces only very slow roll off, with vanishing phase change as
n -+ oo, in order to allow for the presence of general inner factors. As a consequence, we will
have zeros of fractional order, and so the order of the zeros will still result in F-'T,, HOO.
The roll-off could be fast after a frequency at which the loop gain has decreased sufficiently.
However one must be careful that the fast roll-off does not introduce excessive additional
phase at lower frequencies.

The idea of Step 2 is that after the gain of T, is sufficiently small, we can tolerate the
introduction of large phase change by the roll-off function. The problem then becomes one
of introducing the zero of appropriate order while constraining phase change to be small
outside the interval where Q has not been rolled off sufficiently. In Problem I this can be

accomplished using the same functions (- A)" in the naive approach above, but just taking
the pole to be sufficiently large. In the more general case of irrational F, it is not necessarily
obvious how to find a function which has zeros having order at least that of the zeros of
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F (these latter zeros will generally be singularities), yet which is close to 1 on a specified
interval excluding zeros. This construction for the irrational case, and the measure-theoretic
arguments to accomodate general zeros, are the keys to the generalizations in this report.

Remark 8 The sequence { Q,,} satisfying (3.11) directly gives a sequence of stabilizing com-
pensators via C,, = "I +PQ."

For simplicity of exposition, we start with the case of a single irrational zero on the
extended imaginary axis. Without loss of generality we assume this zero is at oo. (Use a
conformal map to move the zero to any finite point.) In parallel to [18], our construction
here consists of two steps, which we state here as lemmas. Step 1 is accomplished using the
following:

Lemma 2 Suppose

vj = inf 1W- MQII. = 11W - MQ1OA, (3.12)QEHco

with Q E Ho, and
Iii > sup Rw(oo). (3.13)

Let h =(s) with a > 0, -y > 0 . Then the sequence T, = hQ satisfies An -- + ,

where 1 1 JW - MT.II-.

Proof: See appendix. A simpler version which is suitable for treating Problem I is given in
[10, pp. 69-71] and [18, pp. 519-521]. In these references it is shown that T, can be taken
to be rational functions. The parallel result is also true in the present case, but we do not
prove it here. In Problem G we do not assume continuity of W at the zeros of Po, and so
the proof is more involved. I

Corollary 1 Assume
{z'7_ C jR U {oo}.

Suppose (3.13) holds, and that Q solves (3.12). Let

hn~ (J) a 11 with a >0,y >O0.
j=1 L-

Then the sequence T, = h,.Q satisfies p,, --- si where An = 11W - MTIIO*.

Proof: The proof differs from that of Lemma 2 only in the details of the estimates. h," here
is the h,, function in Lemma 2 composed with conformal maps which take the points of V
to oo. 1

For Step 2, in [10, pp. 69-71] and [18, pp. 521-522] we use the obvious construction
for the rational case: we can easily find the order of the zero at infinity, and construct a
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sequence satisfying the conditions in Step 2. For example, suppose that F - (;-) m . Then

we can take f,, -and x_, - nf -

However, in the case of general irrational P it is not necessarily obvious how to construct
a sequence {f,} to have sufficient roll-off at the irrational zeros on the imaginary axis as P,
and yet approach 1 in the desired manner.

From Lemma 2, each T, goes to zero at infinity, as desired, but the roll-off of the con-
structed zero at infinity will not generally be fast enough to make F'T an element of H0.
The issue addressed next is how to construct fn (and z,) so that the zero rolls off at least
as fast as that of P, and yet have Qn = zT satisfy (3.11).

Lemma 3 For any outer funct'-"n p(s) E H' there exists a sequence {X,} in H ' such that:

(a) IIPznI as Gf-oo,

and
(b) 11 - p(jw)z,(jw) -* 0 uniformly a.e on compact subsets of the imaginary axis which
exclude zeros of p(i.e., such that R,(jw) is bounded from 0 at every point on the interval).

Proof. We need the following theorem [24, p. 85] which we quote here transformed from
the unit disk to the imaginary axis and with a change of notation:

Theorem 2 Let p(s) be an outer function. Then there are functions {z,} in H' such that

Ix'(s)p(s)] <
Xn(jW)p(jW)-- 1 almost everywhere. I

We will not prove this theorem here, but we will use the fact that in the proof of this
theorem, X, is defined as follows: Let

un(jw) = min(A, - log Ip(iw)I)

where each A, 0 < A < oo, is taken to be large enough so that

z(1-p~1).e~[1 Uft(jw~l~) < 00.

One then takes

Xn(s) = exp 1 00 wWs+ 1 dwI.Lwr "'o W -. 1+ 2

This {Xz} satisfies the theorem.
This theorem directly gives us (a), and for (b) we need only show the uniformity of the

convergence 1 - f,,I --. 0 on finite intervals of the imaginary axis which exclude zeros of p,
with f,, = x, .p. For this, we check that on any closed finite interval !Q C jR such that
V nfQ = 0, for n sufficiently large, IfI = 1 and arg(f,,) < - a.e. on the interval.
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Let Sn {sIs E jR and n < - log Ip(s)[ }. Then S,+, C S, and we take , A closure(Sn\
(fl Sn)). Using the assumption that R. is bounded from 0 on fl, we can take nn sufficiently
large so that for every n > nn, meas(fl fl S,,) = 0 and fl n Sn. = 0. Then for s E Q,

I/,(s)l = IF(s)l" Ix,(s)l
= IF(s)l exp [un(s)]
= 1 a.e.

The phase of f,, is given a.e. on the imaginary axis by:

arg(f.(yw)) 1 f 1 t

+ log Iff(it)ldt.

Then

arg(f(jW)) f( wt+1 ) log f,,(it)idt a.e.
T( S - (1 + t 2)(w - t)

If w E Q, we can write a.e.

aIg(f,(jw))l <_ 1 ess sup wt + 1 flogf,(t)l dt

Sr tws, ) 1 + t2

Now, E L1 because fn E H' [24, p. 661, and fl and S.n are disjoint by choice of
n, so the ess sup is finite. This provides a uniform bound on I arg(fn(jw))J for w C fQ. Also,
fs 1 og1+0)l dt - 0 as n -+ oo, since meas(Sn) - 0 and I log If.(it)lI is non-increasing as a

function of n for fixed t. Finally, SUPtEA. ,E",~ I±is non-increasing as n increases. Thus,
as n --+ oo, arg(fn) --+ 0 uniformly on any closed interval which excludes zeros of pl. I

Remark 9 The key step is separating S,. from f0 with closed sets, except for a set of measure
zero, so that the essential distance between the two is bounded from zero. This 13 what allows
us to bound the phase of f,,.

Now we can pro-,ve the following:

Proposition 2 Let
]AO= inf .IW-FMQI11,

QEH
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where W, F and M E H', and F is outer and M is inner. Let

= inf.I W- MQII.•QEH m

Assume that V(F) is finite, and that F is continuous at each point of V(F) . Then

/p. > sup Rw(z) for all z E V(F), (3.14)

if and only if
S= • (3.15)

Proof: By Lemma 1 (3.14) is a necessary condition for (3.15). For the converse, it is obvious
that A. 2! i. We shall construct a sequence Q,, such that < I 1W - FMQjII --+ A, and
therefore conclude that < 1. Suppose first that V(F) = {oo}. Let Wo. = sup Rw(oo),

and assume h W.. Take h,(3)A [a-]j' with a > 0, -y > 0 and T = hnQ as in

Lemma 2, where Q solves (9) . Let {z,} be the sequence resulting from substituting F for
p in Lemma 3, and we take Qn = XnTn. We shall show that 11W - FMQII -- j, by finding
conditions on n so that

LW - FMQ.II < Ai + . (3.16)

For f > 0, for each n we claim we can take w. > 0 to satisfy for lwl > w,. both

IW(jw)I < W. + e a.e. (3.17)

and
Ihn(jW)l < /A - IW(jw)t + e(-8

Ai + IW(jW)I
To verify this claim, note that (3.17) will hold by definition of W*. and by hypothesis on

p , for IwI sufficiently large independently of n. For (3.18) to hoid it is easy to check that a
sufficient condition is

IA1 a Iv;j.7n - -Y a.e. on (wn, oo).-- IW(jWJ)I + C C

This will always hold for large enough n because IW(jw)I is essentially bounded at oo, and
IW(Iw)I - e is essentially bounded from j4 at oo.

Let {f,,} be a subsrquence of {Fz,} such that

I
1 - A(jw)l < -a.e. for lwI <w,,. (3.19)

The way we pick n will be to pick it large enough so that for IwI <_ w,,(13) holds. This
works because for IwI > w,,, our definition of wn will ensure (13) holds. We see this as follows:

We know that 0 satisfies the condition that (W - P) is all-pass, say

je = (W - MQ)(jw)a.e. (3.20)
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Recalling the definition X,,(jw) W(jw) - P(jw)T(jw), assuming we have chosen w,

to satisfy (3.17) and (3.18), and taking .sj and a(w) as in (3.20), we have

j - IW(jw)l + c > Ih.(jw)l • (jsj + IW(jw))a.e.

If(Jw)l < 1 a.e., so

If(jw)h,(jw)(jei'a(w) - W(jw)I < Ih,(Jw)l . 1 1ie" ( ) - W(jw)

< Ih,(jw,)l(,, + IW(jw)I)
< Asi-IW(jw)l+ e a.e.

But

(W(jw) - F(jw)M(jw)z,,(jw)T,,(jw)) = W(jw) + f,(jw)h,(jw)(te ' ( a) - W(jw)) a.e.,

so

I(W(Jw)- F(jw)M(jw)x,(jw)T(jw)) :5 IW(jw)l + lf.(jw)h.(Jw)(1~ei"( ) - W(jW))I

< 1j+ e a.e.

So now we treat the case Iwl _< w., essentially repeating the argument in Lemma 2. Let

Y(jw) A W(jw) - M(jw)f,(jw)T(jw)

and g,,(Jw) A= f ,(jw)h,,(jw).

= W(jw) + gW()Iet(w) - w(jw)l12 a.e.

Set w,, E [0, w,,] to a frequency at which

ess sup IY,,(.w)G E Ry(wm).

w E (0, -. 1

Now let -y = arg(g,) and define

g = sup R,(w,), 6 = sup R,(w,), W. = sup Rw(w,,), and a = a(w,).

These are functions of n, as is w,. One can see from (3.19) that Iarg[f,(jw,)]l < 1I/n 2 ,

and from the definition of h,,(s) that 0 < arg[h,,(jw,)] _ 27r/n. Therefore -1/r. 2 < S <

27r/n + 1/n2 .

Now we show that we can pick n as a function of e > 0 such that IBYII < k, + E. As in

the proof of Lemma 2, IY(iw)I2 < [W,,,(1 - g) + g L,]2 + 2gj, W6 a.e. Given n, there are

two possibilities:
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case (i). (w,. > n) Exactly as in the proof of Lemma 2 we find IY(jw)l2 < 1 + e a.e.
for sufficiently large n.

case (ii). (w,. < n) Then since IIW(jw)lII, > W, and g < 1, as before we have

(sup Ry(w.)) 2 < A2 + (1 - g). 211W(jw)IIj.p + 4J 1IlW(jw)ll° + (1 - g)2flW(jw)lt£ a.e.

n

and
1 - g <_ I - g.(jw=)I = 1l - fn(jwin)h,t(jw=)I

Using the estimate of (1 - h) from the proof of Lemma 2 along with (3.18) we find
1 - g --+ 0, and we conclude that A - IX, Ho --+ 0 as n -- oo.

To handle the case of V(F) finite with more than one point, note that Corollary 1 and
Lemma 3 already apply to this case. Use the above to find conditions on n for each element
of V after transforming it to oo, as in Corollary 1, and take the maximum of the resulting
values. I

This proposition extends readily to the case of mixed sensitivity, which amounts to the
following problem [14]: Solve

A [ inf (3.21):1 ZEH*e V"

with
W(s) A W(s)w)(s)W2(i)-'R(s) - W2(s)R(s)-'N(s)X(s),

M(s) A= N,(s)D,(s),

F(s) A No(s)Do(s)W2(s)R_1 (s),

V(3) A= W, (a) Rs),

and R E H' and outer satisfies
w; (s)W2(s)

w()w(s) + w;(s)w(s) R()R().

Here N,, D, E H' are inner, N., D. and W1 E H* are outer, and W2 is outer (but not
necessarily in H').

Corollary 2 Let F, M, W, and V be as above. Assume W is continuous JR, and F is
continuous on V(F), which has finite cardinality. Define

AS A inf W-M
ZEHa o

Assume further that
A, > sup{VI_, IWI(jw)i : jw E a,(M)}. (3.22)
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Take
Take inf J[W - M F Z ] .AOZE HO

Then
A0o = As

if and only if
? > sup Rw.w+v.v(z).

zEV(F)

Proof: The assumption (3.22) allows one to transform the mixed sensitivity problem to a
sensitivity problem [44]. The calculation is as follows: For Z E H'

i (W(jw) - M(jw)Z(jw))'(W(jw) - M(jw)Z(jw)) + V*(jw)V(jw) a.e.

From (3.22) /A& - V*(jw)V(jw) > 0, so we can find an outer spectral factor T such t'at

T*(jw)T(jw) =* - v(jw)V(jw).

Then we have
1 > IT-1 (iw)(W(jw) - M(jw)Z(jw))I.

Of course, we must have

I = inf IT-'(W - MZ)O*ZEhVO

- inf IT-'W - MZII*

Under the assumption (3.22) it follows that there exists a unique Z E H' satisfying

1 = IT-1W - M21 a.e.

From Proposition (2) we have that the condition

1 > sup Rw-LT(z)
SEV(F)

is necessary and sufficient for

1 = inf 1T-1W - MFZII[*.
ZEHB

But we know then that for every e > 0 we can find Z. E H' such that

1 + f > IT- 1 (jw)(W(jw) - M(jw)Z.(jw))l a.e.

or
(1 + e)IT(jw) > IW(jw) - M(jw)Z.(jw) a.e.

which implies
IT1[ > inf [IW - MZII.ZEHM

Thus, after some more algebra, we obtain the desired conclusion.

The assumption (3.22) corresponds to the case in which the norm of the corresponding
"Hankel plus T'-eplitz" operator [50], [14] corresponds to an eigenvalue.
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3.4 Conclusions

We have established the validity of "outer factor absorption" as a step in the solution of HO
sensitivity and mixed sensitivity problems for a wide class of distributed parameter plants.
In the process, we have presented a constructive approach for "re-inserting" the outer factor
into, or "extracting" it from, a solution. Although we know of no physical plants not covered
by the class treated, it is far from general: The reader may wish to consider such pathological
cases as W and F both being discontinuous at a zero of F, F a continuous function with
zeros dense a some point, or F having zeros dense on some segment of the imaginary axis.
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Chapter 4

SISO Mixed Sensitivity

4.1 Introduction

The objective in this chapter is to solve as explicitly as possible the HW-infimal mixed sen-
sitivity problem for linear time-invariant single/input - single/output distributed parameter
systems.

Our motivation for considering distributed parameter H' problems comes from work
intended to address infinite dimensional models (irrational transfer function) of large space
structures. The model motivating our departure from existing results is the damped flexible
beam of Section 2.1.

In all previous work (e.g. [9],[10],[19],[51],[50],[34j), the authors assume rational proper
weighting functions, plant outer factors which are invertible, and finite dimensional instabili-
ties. Our assumptions here are more general in each regard, although in the mixed sensitivity
computations we do not treat irrational weighting fun-tions.

(50] assumes certain operators to be continuous on the imaginary axis, and this assump-
tion was used to compute the essential spectrum of an operator. In the unstable plant case
with general inner factor this is no longer true. In this report we show that the operator aris-
ing from the possibly discontinuous function differs from continuous operator by a compact
operator, and therefore has the same essential spectrum. This idea is really an application
of the same technique which has been used in the distributed-plant Ho problem from the
start [9], [19], [10].

At one point, computations of certain basis functions become complicated by the pres-
ence of irrational functions, and the dimension of a related subspace is increased by the
introduction of an extra finite Blaschke product. Below we present calculations treating this
case.

Finally, we present the application of these calculations to the model of a damped flexible
beam of Section 2.1. This model has an irrational and non-invertible outer factor, and this
fact has motivated us to develop the general solution for that case.

ve would like to -ention that the paper [341 treats a similar problem, although only
rational outer factors are allowed there. Even in that rational case, we believe that the
present work indicates the connection with previous results in a more transparent manner.
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4.2 The Mixed Sensitivity Problem

The general setup is indicated in the block diagram below.
d

U . .+ e P so Y

+ d'

Figure 4.1: General Feedback System
The sensitivity S(s) is the transfer function from the disturbance d(s) to the output

y(s). The complementary sensitivity I - S(s) is the transfer function from the disturbance
d'(s) to y(s), which is the same as the transfer function from d(s) to y'(s). Obviously a
small sensitivity over a frequency range of interest means good disturbance rejection, and it
is known that a small complementary sensitivity means good stability margin. [6], [40].

The H" mixed sensitivity problem is the following [32]: find a stabilizing feedback com-
pensator which minimizes

sup (IW, (W)S(jW) 12 + 1W2(jco)[1 - S~i )]1)

where Wi(s) and W 2(s) are frequency-dependent weighting functions which serve to empha-
size or deemphasize the importance we attach to the magnitude of S or (I - S) at different
frequencies. This problem is equivalent to the following: choose a stabilizing feedback com-
pensator C(s) to solve

inf JJT(s)J[., (4.1)
C(A)

where we regard

T(s) = [ Wi(')S(s)w2(3)(l - s(J))

as an operator from the Hardy space H2 to H2 x H2.

4.2.1 Assumptions about the Plant

We first describe the structure of our plant model. We assume that the plant has trans-
fer function P(s), with the following further assumptions: (See [13] and [12] for further
explanation.)

Assumption A: P(s) has a coprime factorization P(s) = N(s)/D(s) satisfying

N(s)X(s) + D(s)Y(s) = 1, (4.2)

where N(s), D(s), X(s) and Y(s) are all functions in H'.
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Assumption B: Let N(s) = N,(s)No(s) and D(s) = D,(s)Do(s) be the inner-outer factor-
izations of these functions. We assume:

B.1: ID,(s)1 is bounded away from 0 at oo in the right half plane Re(s) > 0.

B.2: Di is a finite Blaschke product.

B.3: Let S,, denote the subset of the extended imaginary axis iR U {oo} on which
W 2NoD,, vanishes essentially. Then W2N,,D,, is continuous at each point of So.

Assumption C:

C.1: W(s) E H, n C is outer;
C.:W1(s)W (s) E H-, W2(s)N(s)X(s) EH*O;

C.3: W,(s) and W2 (s) are rational functions of s.

Remark 10 It seems to have been known that stabilizability is equivalent to the existence
of a coprime factorization (see, for example, [Zames and Francis P. 590]), but the first
published demonstratinis of this, for the case of plants which are ratios of H' functions,
appear to be [28] and [42]. However the plants considered by these authors do not further
restrict the denominators, and so non-causal plants are allowed. As a consequence of this
setup , non-causa" systems may arise as "stabilizing" compensators. Our assumptions B.1
and B.2 eliminate this possibility.

Remark 11 Assumptions B. I and B.2 together guarantee that P(s) is analytic and bounded
in some right half plane. Thus P(s) is a shifted version of an element of H00, and so is the
Laplace transform of a growing exponential times the (distributional) impulse response of a
causal stable linear time invariant system. Assumption B.2 is not necessary for this (we
could have simply assumed D(s) is bounded away from 0 at oo in the right half plane), but
it is satisfied by all physically motivated problems we have seen.

Remark 12 Assumption B.3 we use to prove that we really can "absorb No,,D into the free
parameter," as we explain below. (We shall also need some assumptions on the weighting
functions.)

Remark 13 We know of no plants arising from models of real problems which violate any
of these assumptions. In the introduction we presented an example consisting of a damped
flexible beam which has irrational N0.

Remark 14 We use Assumption C.3 to prove Lemma 4 in Section 4.4.2 and successive
results. We would like to eliminate this assumption for the reason alluded to in Section 2.2:
in order to obtain a proper compensator by using an improper weighting function W 2, As-
sumption C.2 would be sufficient. However, our proof of Lemma 4 requires that the function
(W 1 W 2 /W)* be meromorphic in the right half plane, which will not hold for some irrational
W 2 which satisfy C.2. C.1 and C.2 imply W ; " is analytic in C+ and outer.)
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Remark 15 We allow W 2(s) to be an improper function. In practice one would pick W2

based upon one's knowledge of P(s). Fr-om this perspective, we are allowing W 2 to have poles
at the zeros of P(s) on the imaginary axis, if the designer wishes. Actually, we not only allow
W2 to be improper, we recommend it for the following reason: If W2P is not strictly proper,
then when we find a solution to the mixed sensitivity problem, the optimal complementary
sensitivity will be strictly proper, in fact enough s i to make the resulting compensator proper.
This can also be accomplished as in [44] by considering W2P-'(1 - S) instead of W2(1 - S),
but the latter technique is less general. (Our assumptions encompass the case of [44] because
[44] assume W2 and P both have no poles or zeros on the imaginary axis.)

4.2.2 Transformation to Standard Form

In this section we review results from [13] which show how to find an operator

T1 : H 2 -- H 2 x H"

having structure
G(3 - TA()Z(s)1

Ti(s) A [G( ) F(s)

such that T'(s)T(s) = T,"(s)T(s). These calculations may be considered a clarification and
extension of the calculations in [8], where the assumptions about the plant and weighting
functions were less general, and the results slightly less explicit.

Proposition 3 We can write

W;(s)W 2(s) = R(,)R(s) (4.3)
W1(s) Wi(s) + W2(s)W 2(s)

with R E H0* and outer. Furthermore, R - E H

Proof: Obviously .W", j-)wl-) is non-negative. Thus

W;(jw)W2(jw) -W(jw)Wi(jw)

W*(jw)Wi(jW) + W2(jw)W 2 (jw) - W(jw)W2(jw) R

Now from [Hoffman, p. 53] (translated from HO" of the disk to the half-plane) we know
then that a necessary and sufficient condition to factor a function f(jw) E LO*(R) with

f > 0 a.e. as f = h'h, with h E HO*, is that log[f(jw)]/(1 + w2 ) E L1 (R). So we check:

+' +
lg W2 log W+ (jw)W21(jW)(W*j)1j)+ W;*(jW)W 2(jW)) I og( W2~) 2 j)

< log (1 + IDW(iw)W •(iW)II2
This gives (4.3) by using the result cited from [26]. Taking an inner- outer factorization,
it is obvious that R can always be chosen to be outer. That R -' E H' follows from

E L4
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Remark 16 R(s) E H' is outer since R - 1 E H'.

Remark 17 This result does not require Assumption C.3, i.e., rationality of the weighting
functions is not required for the factorization in (4.3).

Now taking
W(s)MaW2(9)R-1(i) (4.4)

G(s) S= Wj(s)Wi(s)W'(s) - - W(s)N(s)X(s), (4.5)
-H(s) - N~s)D(s)w2 cs)R-'Cs), (4.6)

and
F(s) A Wi(s)R(s), (4.7)

it is easy to check that

T'(s)T(s) = (G(s) - M(s)Z(s))*(G(s) - M(s)Z(s)) + F*(s)F(s).

Since [[T(s)II = iIT'(s)T(s)IJ. , we can find IITJI, by finding

lI F Z~

Thus

,,,G- MZ
/ inf (4.8)

ZEH F i

- z 0 F-N.D1DW 2R Z " (4.9)
ZEH- F G

R is invertible in H', so we can immediately write ("absorbing" R -1 into the free parameter
Z)

gi~n [G- NN.DD.0 W 2 Z] (4.10)
ZEHII F I "

4.2.3 Absorption of the Outer Factor

To reduce (4.10) to the desired form, we need Proposition 2 of Chapter 3. The point is that
we can absorb the outer factor of NDW into the "free parameter", just as in the rational
[49] and rational-with-delay cases for pure sensitivity [10], [18].

The following is simply a translation of Proposition 2 of Chapter 3 to the present context:
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Corollary 3 Let 14 be as in (4.8) above, and take

inf - F oZ

Suppose V(NoDoW 2) is a finite set consisting only of ordinary zeros. Then p = A, if and
only if

p > sup U essran(G'G + F*F,z) (4.11)
sEV(N.D.W,)

is satisfied. U

Remark 18 V(ND,W2) is the set S, defined in Assumption B.S.

Remark 19 It is obviously the case that pj < ji, so this proposition asserts necessary and
sufficient conditions for p <j when S. contains only ordinary zeros.

4.3 Implications for Design

In the case of stable plants, one can take X = 0 in (4.2), and assuming the outer factor
can be absorbed into the parameter "Z" as described above, we see that the infimal mixed
sensitivity is independent of the outer factor of the plant.

In greater generality, suppose Di = 1. This means that any unstable poles of the plant are
on the imaginary axis. Then using Corollary 3, Proposition 2 and the fact that R-1X E H =,
we have

SW,'W1 (W,;)- 1 w - W2 R'NX - NDW2Z1ZH W1R JZEH- 1111 ile
- f W;W1(W;)-1 R - W 2R- 1NX - iZ1ZE III.,R 10

- F WI*W(W2*) 1 Rs - W2R-1 NX - W2N.NSZ1
zen- [ WR J

-inf W,*W(W2*)-'R* - W2N(R-1X - Z)]
ZEHO 1 WIR 1110

- inf [W,W(W;)-R ' - W2NZ1I
Z H 1 WR J1CO

in 1 W,*W(Wl'Rs - NiZ]
ZEHe W11? J10

Thus the infimal mixed sensitivity is independent of the outer factor of the plant, No/Do.
An interesting application of this observation in the stable plant case is an explanation of

some previous numerical experiments. In the "Integrated Structural Analysis and Control"
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project at Aerospace Corp. [1], the goal was to produce a computational methodology for
improving the performance of large space structures by simultaneously designing the struc-
ture and control systems. We used a simple idealized satellite example, where we imposed
mass and cross-sectional area constraints on structural members and a complementary sen-
sitivity constraint to provide stability margins, and we applied a general-purpose non-linear
programming package to minimize the weighted sensitivity subject to these constraints.

In this case, we found there to be essentially no benefit in simultaneous design over
separately computed structural and control designs. In [29] we presented the hypothesis
that this "separability" was due to the absence of right half plane zeros in the plant model.
The conjecture was heuristically justified by appealing to the well-known fact that for the
pure sensitivity problem it is the inner part of the plant which limits performance. Thus
the idea was that whatever the structure was, so long as the plant had a trivial inner factor,
the limiting norm of the sensitivity transfer function did not depend upon the plant, and
amounted to whatever the complementary sensitivity constraint dictated. Previously, it was
not clear why the limit which the complementary sensitivity constraint imposed should have
been independent of the plant. The present result provides the explanation, since for the
problem considered, the structural design constraints present preserved the lack of inner and
unstable factors.

4.4 Optimal HOO Mixed Sensitivity

We employ Corollary 3 by making the additional assumption

Assumption D: Ai > sup U essran(G'G + F'F, z).
SESO

Accordingly, we shall treat the problem

p = min , G-FMZ), (4.12)

where R, G, and F are as in (4.3), (4.5) and (4.7), and M is given by

M ! N Di. (4.13)

Let
TA=(I1+MG'LM'G+ '+F'F): H --, H.

As pointed out in [44],u2= jT11". This is the starting point for the development in [50].
Now we parallel the developments in [50]. The basic idea is that if T has an eigenvalue

larger than the essential spectral radius of T, then JIT1I is equal to the largest eigenvalue of
T. So one computes the eassential spectral radius, and searches for the largest eigenvalue.
Since

44



we know an upper bound for the largest eigenvalue. Therefore a search can be confined to a
known finite interval.

There are two complications in applying [50] directly. First, in [50] the operators G
and F were assumed to be continuous on the imaginary axis. This allowed the authors of
[50] to apply a theorem in [33, p. 125] to the continuous (on jR) function G*G + F*F to
determine the essential spectrum of rIK(G°G + F*F)IK (the compression of G*G + F*F
to K), where K _ H2 e MH 2 (after showing that T differs from rIx(GG + F*F)K by a
compact operator). In the present work G is not continuous (in the general, unstable case),
due (at least) to the term W(s)N(s)X(s) in which N(s)X(s) may be 2iscontinuous on the
imaginary axis. However, since we assume that Di is a finite Blaschke product we are able
to show below that IIK(G*G+ F*F)IK differs from the compression of a continuous function
by a finite rank operator, and therefore the essential spectrum is the same as that of the
compression of the continuous function. Alternatively, one can say that T differs from an
operator to which we can directly apply the [501 computations by a finite rank operator, so
the essential spectra are the same.

This is essentially the same idea used in [50] (as mentioned above) to show that the
essential spectra of (the equivalent there of our) T and rIK(G*G + F*F)IK are the same.
This, in turn, is the same idea which was used in [9, p. 16] and [51] for the pure sensitivity
problem.

The second complication comes in computing the eigenvalues of ', because G can be an
irrational function. This we resolve by means of some additional computations as explained
below.

In [50] the idea is to note that T differs from the multiplication operator (GsG+ FsF)IK
by a finite rank operator. Then the condition that zx is an eigenfunction with eigenvalue A2

implies that the image of zx under the multiplication operator A2 - (G*G + F*F) lies in a
certain finite dimensional subspace of L2 . Computing residues of the image of ZA under the
action of the finite rank operator at certain points in the complex plane allows one to find
necessary conditions for A2 to be an eigenvalue. This computational procedure was also used
in [51] in the pure sensitivity case. Here we follow the same approach, with differing details
to account for both more general assumptions and the particulars of the mixed sensitivity
problem.

4.4.1 Essential Spectrum of T

By definition,
T = [fl+(A" + B')l_(A + B) + fI+F'F] : H -- H2 , (4.14)

where
A - WW, ( W')-N2D:, B A - WNoXD'. (4.15)

Note that by Assumption C, W2R-NoX E H'.
Now we expand the first half of the right-hand side of (4.14) to obtain

nI+(A" + B')II_(A + B) = 1+4'A _A + nI+A'IB + nl+B'L_(A + B).
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I.::Zang Assuinp.ion B.2 tlia. D, is f- finite Blaascne product, we see (see Appendix A)
that

rIB:H2 -+H 2 andrI+B*:H 2-- H2

are finite rank operators, so
II+A BIIB: H 2 --* H2

and
II+BfH_(A + B) : H 2 - H 2

are finite rank operators. This means that T is a finite rank perturbation of the operator

T = II+A'ILA + II+F'F.

Upon observing this property of T, we have

Theorem 3 The essential spectrum of T is

a,(T) = {I W(jw) 12: jw E o,.(ND)} U {if I F(jw) 12, sup I F(jw) 12}.

Proof: Since T is a finite rank perturbation of To, we have

o,.(T) = o,(T).

Furthermore,

A-A + F-F = W W(W )-'R(Wt(,W 1W()-R) + W1R(W1 R)

= W0W,. (4.16)

W1 E H' is continuous on the imaginary axis since it is rational, so the conclusion follows
from (the proof of) Theorem 3 in [50]. I

Remark 20 A priori, we might wish to assume that A*A + F*F E C in order to apply the
essential spectral mapping theorem [33, p. 125], as in [50]. However, because of (4.16), we
only need the continuity of W1.

4.4.2 Eigenvalues of T

Now, in parallel to the developments in [50], we show how to compute the eigenvalues of T.
The idea in [50] translated to the present context consists of the following steps:

1. If g' ib an eigenvalue of T, then the eigenspace K,, of T associated with the eigenvalue
A2 satisfies K,, C ($H2)!, where $ is an inner function to be defined below.

2. T IK,= W'W + A,, where A,, is a finite rank operator.
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3. Tlue vadition for IA' ou, L an eigeviuue is A -2 -Z Tx,, or

(A, _ W- WI)X. = .Zo. (4.17)

4. Since A. has finite rank, we can find a finite basis for the range of A, which allows
us to write a matrix representation of A. By identifying finitely many A-dependent
points in C at which we know AxZ,, we can find necessary and sufficient conditions
for A to be an eigenvalue.

5. Since we are looking only for eigenvalues which may correspond to the norm of T, we

need only search for the largest eigenvalue on the interval (p.(T), ( ) IF )

The foUowing lemma is a modification of [50, Lemma 1]; the proof is basically the same.
The only difference is that here we use the finite Blaschke product Bw to "absorb" the
unstable poles of W,*(W2")- 1R*.

Remark 21 By Assumption C.3, W1, W2 and (therefore) R are rational. The ezistence of
Bw and B, in the following lemma depend upon this.

Lemma 4 Let Bw be the finite Blaschke product which satisfies BwW(W)-R * E H'.
Also, let B;, be the Blaschke product whose zeros are those zeros of (14 - F*F) lying in
Re(s) > 0.

If A2 is an eigenvalue of T, and z a corresponding eigenfunction, then

ZE E (BBwMH_) n H 2 ,

Proof: Since IA2Z, = Tx,, we have

(A 2 - F*F)x = (l+MGIM'G - LF'F)x.

Multiplying the above equation by (As2 - FF)-BB; ,M, we get

'B M*z# = (i 2 - FF)-1 B*BM(+MGrIMG - l-F*F)z,,. (4.18)

For any h E H 2 ,

< B;,M*(II+MGtI_M*G - II_F*F): , h >

= < II+MG'*flM*Gz,,, BwMh >

= < MG*I_MGZM,, BwMh >

= < I_M*Gz,, M*GBwMh >

= < IM'Gz, w1W:(W;)-'R'Bwh - BwWNoXNh >

= 0.
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So

B ,M'(1+MG'II_M'G - rI_F"F)x, E H.

Note also that if z is a zero of ( -2 F'F), so is -1. By the construction of B,., we see
that (,2 - F*F)-,B* is analytic on the left half plane. Therefore

(/2 - FF)1 B,BwM (I+MGrI_MG - IF'F)z, E H2

and combining this with (4.18) we get

BB;,M'-, E H_.

Therefore
Z. E (BMBwMH ) n H2 -(B.BwMH2)-.

The next step is to show that T differs from the multiplication operator W W by a
finite rank operator when restricted to the subspace K, = (B.BwMH2 )1. Continuing the
parallel to [50], we present this as:

Lemma 5 TIK. is a finite rank perturbation of the multiplication operator W*W 1 IK,,:

TIK. = W*WlIK - Ap

where

A A= -I_(A'A + F-F) - A'iA + L-Afl+A + +AOIIB + fi+B'II_(A + 19)

and rank(A,,) = 2[order(W 1) + order(D,)] + order(B,) (see Appendix B).

Proof: We first expand T:

T = [II+(A" + B')IL(A + B) + fl+F'F] I.,
= II+AIA + II+ArlB + I+BII_(A + B) + II+FF. (4.20)

Now we note

rI+AILA = (A* - ILA')(A - rI+A)

= A'A - A'II+A - II_A'A + HLA'II+A,

II+FF = F'F- II_F*F (4.21)

Using Lemma 4 we see that II+A has finite rank on K,, and we saw in the discussion be-
fore Theorem 3 that I_B and rl+B" have finite rank on H 2 and H 2, respectively. Therefore
we conclude that A. has finite rank on K,,.

Combining (4.20) with (4.19), (4.16) and (4.21), we can write

T = W;Wi + A,. (4.22)
To compute the rank of A,, we find a basis for the range of A,: see Appendix B. U
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4.4.3 Computational Details

In this section, we shall give further details for computing the optimal performance P, fol-
lowing the ideas of [50]. We take into account the explicit formulas above as well as the
complications mentioned before.

Applying (4.22) to an eigenvector x.A, r-e can write

(it2 - WlW1)x = [1_A*fl+A - A'I+A - K_W!W 1

+(A* - IIA*)rB + 1I+BII_A + l+BS1__B]x. (4.23)

In order to use the condition (4.17) to find eigenvalues, we express A,, in terms cf a
basis for its range when restricted to an eigenspace of T. From Lemma (4) we know that
x, E (BBwMH2 )', so we need only examine the image of K,, under A,,,. A direct
dppliication of the technique in [50] leads to expressions for a basis in terms of rational
functions and M.

The calculations here are an extension of those in [501, so [50] is covered as a special case.
Note th . i th1 tble plant case which [50] implicitly treats, B = 0 and G is rational.

In [50], the authors state that rank(A,,) < 2N, where (translating to our notation)
N = order(G) + order(F). They go on to treat in their calculations the "generic" case in
which the poles and zeros of G, G*, F, F ° and M are all distinct, stating that in this case
rank(A,) = 2N. The simplification (4.16) shows that for the mixed sensitivity problem
the "non-generic" case rank(A,,) < 2N is in fact generic! This observation shows that
the equation (18) in [50] gives insufficiently many equations to solve the problem. Part of
the solution is to reduce the required number of basis elements, and this is the point of
Proposition 4 below, which shows that the Laurent series coefficients of x. at each pole of
Bw are zero.

In the following calculation, we shall use Rf(p) to denote the (-n)th coefficient in the
Laurent expansion of the meromorphic function f at its pole p. We shall also use Rf(p) to
denote the residue ((-1)"t coefficient in the Laurent expansion) of f at p. Also, P(f) and
Z(f) mean, respectively, the poles and zeros of f. (Since we assume f to be meromorphic
here, there is no concern about non-ordinary zeros such as may occur on the boundary of a
region of analyticity.)

Remark 22 Since W(s) is outer by construction, we have Z(W*) C (right half plane).

Lemma 6 The poles of -w are in the left half plane and P(W') = P(W. Bw) = P(Bw).

Proof: We know that P(1- -*) C Z(W) U -P(Wf). If p E P(W 1*), since Wi E H O , we
have p E(right half plane). Similarly, Z(W °) C (right half plane), since W(s) is outer by
construction. Furthermore, since W°W = WtW + W2W 2, if W W,(jw) > 0, we have
W°W(jw) > 0, and so W(s) has no zeros on the imaginary axis. So P(W) C (right half

plane). Noting that Bw is the Blaschke product such that -. Bw E HOO, and using the

notation -P = {p: -E c P}, we see that the poles of wBW are in the left half plane and

P(.Bw) -Pw-) Therefore P(-) -P(-w.) =P(-.Bw) = 'P(Bw). I
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Remark 23 We note that (WI/W 2)*R" = (WI/W)" and that WIW is an outer spectral
factor of 1 The pole. of W1 /W are the zeros of W, and therefore the right-half-

plane poles of ww 1- are the zeros of W', which are the zeros of Bw. Thus the poles
of Bw are the poles of R. If W, and W2 have no common zeros, zeros(W) n zeros(W) =
In general, poles(Bw) = zeros(W) \ (zeros(WI) n zeros(W 2 )).

Proposition 4 For any pole 17 E P(Bw), if 77 P(D) U P(N,), then

:'(7) =0.

for allm > 1.

Proof: From (4.23) we can write

(/2 - WoW,)X,. = -AOII+Az, + A'b_ + II+B c_ + a.,

wvhere

a- = rll(-W;W - A'rIB + A'H+A)xm
b_. = IrBZ,

c-= I(A+B)zx.

From Lemma 5 and the definition of A, if 7 is an n'h order pole of Bw, it also is a pole
of AO of order I > n. Then

lim(s - i7)'Ah(s) = RIA(i/)h(?) Vh E H!. (4.24)

Furthermore,
!im (s - q)'+' A'b_ = lir(s - n)RA*(n) = 0

since b- is analytic in the left half plane. We have

li( s - n/-"'II+B" = 0

since H+B'c_ can have poles only at the poles of Di. Now

lim(s - 7)n+,(, - W'Wl)M = 0

since W, and Bw have no poles in common, and therefore

lim(s - 7)1+'A'II+A,, = 0 (4.25)

for every m > 1. Since 7 is an na'-order pole of Bw, and Bw has no poles in common with
A, we have

WAz. = -- (7)NM(q)D,(_) E -) + a(s), (4.26)
50 nl ( n
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a.) is a.nalyt., at a = TI. So aum (4.24), (4.25) and (4.26) (taking m n in (4.25))
we have

W" WW
Rr* (1) W- (. )Nj*(q)n* -(n ) = 0.

Therefore R:-(i7 ) = 0. But then
I PVOWn-1

+A = ()N n()D-(i) (-) + a(s),

and R;C',(7) = 0. Similarly we see RP-() = 0 for each m > 1.

By Lemma 4, zx = BPBWNDih_ for some h- E H 2_. Using this, in Appendix B we
explicitly compute the terms in the right side of the expansion (4.23) for A.

4.5 Example: The Damped Flexible Beam
We next illustrate the technique developed in the previous sections using the transfer function
model of a damped flexible beam presented in Section 2.1.

For simplicity, we shall use the following sensitivity and complementary sensitivity weight-
ing functions, W, = ., W = e(b + :), where a, b > 0. We note that these weighting func-
tions emphasize low and high frequency, respectively, as good design practice would dictate
(see, e.g., [27], [40]).

Taking 42 and 2 to be the zeros of

w'w A w;w, + w;w21

a2 -32 + e2(j - 2)

we can write

WW E(C -3 )(C2 - S)(Cl + 3)(62 + 1)

(a-s)(a+s)
We note that + (12 - s2)(G2 - s2) has real coefficients. Since it cannot have pure imaginary
roots, we see that it has exactly two roots with positive real parts. We can assume that
Ree1 > 0, Ref 2 > 0. If e1 is complex, then C2 = 11

Thus for this example we can explicitly write

W (42 + -)(M, +'9)W -

a+s
WI* 1We (41 -SM( - )
B(V - 3)(2 - J)

Bw = +
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F*F 
V

C 5), -95)(6. + +.) 5
F - b+sF = .

(s+ G.(J + -2)

1 C(9 + )(3 + 6) N(3)
e(.9 + a)(s - )(s -,) (5 +a) N(O)

M = N,(s)

A 1(.3 + ,a,)(3, - 1)(., - ,
B E(3 + &.)(3 + 62) N(3)

(3+a) N(O)

4.5.1 Essential Spectrum

ND, has no essential singularity on jR, so by Theorem 1, we find that the essential spectral
radius is given by

p.(T) - sup IF(jw)I'{ __ , if 1 -b 2 <0= +,__) if 1 -b 2 > 0

following a simple calculation to determine the zeros of A I F(jW) 12.

4.5.2 Eigenvalues

Assume j4 > a.(T) = sup. IF(jw)12, So A2 - F*F(jw) > 0. This means that 12 - F'F 0
does not have pure imaginary solutions, and so it has exactly 2 roots with positive real parts
which we shall denote as 31 and 32.

B. = (s - 31)(s - s2)
(3 + 32)(S + 31)'

where we can write

1.&2e'(3 - 31)(3 - 32)(3 + 31)(3 + 32) = 1[l + C2 (bl - 2)(a' - q2) - e2(b2 - q2)

= JA2 e 2 (f, - 3)( 2 - )( + S)(#2 + 3) - e(b 2 _ )

In this case, for any h E H2 and any h- E H_, lI_Bh = 0 and I+Bh_= 0, so (4.23)
becomes

(,2 - W'W1 )z,, = (ILA'rI+A - AII+A - lWIWl)Z,,, (4.27)

where A = W 'W" "', - ,((h-)(b-)(a+a)"

52



From Appendix B, we see that k = 1,m = 2 and n = 0, and the corr'-sponding 0,,, =

1,2,3,4 are
1 A* A* As

s-a' s+a s+sl s+s2

So we can write down the matrix A(li) easily as

i A*(C))
C-0 C+a C+8 C+82

_ ILO I ~LSI A'(-C I
A(1) = - C+G -C+°I - +j0 1 - 1

Q-(I - 1 +6 -82+1
G 11 1

Q-(2 -8t+(3 -12+6

Then det[A(14)] = 0 is equivalent to

I 1 1 1 1
sC aI -C 52 -C G +C it+C a-1+CN1(-C) det a E - = det( 1 i

(6 - )(2-C) -(i + )(2 + ) (I 1 "- )
;--42 ai 6 a-( G2 #1 -6 82

We solve the above equation for the largest ; 2 E (a.(T), a).

Remark 24 In the stable plant case, if 1 J, then C = 0, so As = is a solution to

(4.28). The open loop case (i.e., with compensator C = 0) corresponds to this solution.

Remark 25 In the present case, Di = 1. Since the optimal performance of the weighted

mized sensitivity doesn't depend on the outer part of the denominator of the plant, so we see

that (4.28) doesn't depend on the instability of the plant at all! In other words, with a stable

plant P. = Ni, the corresponding equation (4.28) will be identical with that of the present

case, so the optimal performances for both cases will be the same. We know that for the

stable plant case the optimal performance p. E (a.(T), ' ), so the optimal performance for

the present unstable case A = p. E (o.(1), ;).

Remark 26 If N (-a) = 0, repeating the above procedure we have

Rw / (-s2) -,

where

B a 1
A 1 U,1A LU fz

o1 +CI #I +C3 o12 +t CI 8+(2

In order to have nontrivial solution, we require that

rank(BI) = 1.

First

det['] = 0 W=( 2-1)(s - s2)= 0
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So either 2 = 4 or s, = s2.
It is easy./ to see that

4 = 4I - (a2 - b2)2 = 4
C

2

31 = 32 = (b2 - a 2 + 1- -2 4

if s1 = 32 we can see that in fact in this case rank(B1 ) = 1, so we can solve

1 2 = 4
(b-a 2 + -E) -

for j.

If 6 = , then rank(BI) = 1, if and only if

N( 1)N( 2)
+ C) 2 det [2 (4 + =)2 det l -t .2

I +t ¢+)* 82+(t+C2+ *.I + C

4.6 Conclusion

We have shown that the results and techniques of [50] can be modified to solve the H'
optimal mixed sensitivity problem for a very general SISO unstable plants. Part of the
extension is needed to treat the model of a damped flexible beam [11], which has irrational
outer part. It is also the case that when N is rational and D general inner, we can solve
the problem by the same techniques given in the previous sections. We have observed that
the complementary sensitivity weighting function should be taken to be as improper as the
plant is strictly proper. Because of this, an important area of continuing work is the case of
irrational complementary sensitivity weighting function.
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Chapter 5

MIMO Mixed Sensitivity

5.1 Introduction

The problem of computing the optimal performance for infinite dimensional MIMO systems
is different from that of the SISO case mainly because we no longer enjoy the commutativity
of scalars. Under some commutation conditions, [35] studied the computation of the optimal
performance of a class of infinite dimensional MIMO systems.

In this chapter, we consider Ho-optimal mixed sensitivity design for an idle speed control
model posed in [46]. This is a three-input four-output system, and the infinite dimensional
parts of the system are time delays with different delay parameters. In [46], two first order
lags were used to approximate these two delays. Following now-standard transformation
of the problem to an operator norm problem, in order to solve this design problem without
using rational approximation of any kind, first we have to be able to compute the inner-outer
factorization explicitly for an irrational Hoc matrix. Also in this case, the commutation
conditions of [35] can not be satisfied due to the two different time delays, so that the
the techniques and results developed there cannot be applied to this design problem. We
resolve this difficulty by a more detailed characterization of the eigenspace of a certain
operator. This characterization enables us to compute the eigenvalues and eigenfunctions of
the operator explicitly. Also, by using a result proved in [50], we decompose the operator on
three orthogonal subspaces of H2 and compute the essential spectra explicitly.

Although in this chapter we restrict ourselves to H--optimal mixed sensitivity design of
this particular model, the method itself applies more generally.

5.2 Problem Description

In Section 2.4 we presented a model of idle speed control for a fuel injected engine. This model
involved a system having two incommensurate delays, and multiple inputs and outputs.

Our goal is to design a feedback compensator controlling the valve input and spark
advance to minimize the effect of the torque load disturbance, and at the same time guarantee
a good stability margin. First we can transform the problem into the standard compensation
configuration shown if Figure 5.1. d is a disturbance at the plant output, u is the control
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Figure 5.1: Standard Compensation Configuration

input, which consists of two components: idle valve setting and ignition timing setting, y
is the speed output, e combines the three signals ( the two control inputs u and the speed
output y ) to be constrained.

We want to design a compensator K = (k1, k2 )T for the closed-loop shown in Figure 5.1

so that 11 w3f." 11. achieves a minimum under the constraint of the closed-loop internal
stailiy.(to3f-ftad)

stability. We shall denote this minimum by A. and call it the optimal performance. W1, w2
and w 3 are weighting functions with w, a high-pass filter and W2, W3 low-pass filters. We
shall use the following weighting functions as in [461:

cli s+G C3= C-~-1 3 = -
a + 1= s+t2  + r3 *

5.3 Standard Formulation of the Problem

In this section we transform the problem into a problem of computing an operator norm.
The basic ideas of the transformation procedure we use here is by now standard: First
we parameterize ([5], [48]) all stabilizing compensators and transform the problem into an
infimal norm problem of the form:

where X E L' 1 and C G H'. In the course of this transformation, an inner-outer factor-
ization of a H' matrix is needed. Although the existence of the inner-outer factorization
has been proven theoretically [43], explicity writing down the inner-outer factorization is in
general di'cult even in the scalar case. We observe that for a quite general case[47], we only
need an inner-outer factorisation of an upper (or lower) triangular or a Hermitian matrix.
In the present case, for example, what we need is to explicitly calculate the inner and outer
factors of a two-by-two upper triangular H" matrix. In this section we also show how to
get this factorisation explicitly.

The next step is to use a well-known result of [36] to further transform this minimization
problem into an operator norm problem. Since the disturbance d is a scalar in this case, we
shall see that the operator we get is a scalar operator on H 2.

56



5.3.1 A Preliminary Transformation

Since P is stable, using [21, pp.822-824], with a stabilizing compensator K we have

f.d = P1 1 - P1 2Q P21 0 0 P 1 I

P'I P (P2 P3 )Z

where Z E H .xI .

So the problem becomes

(in 0 0UW2PI CaI,,, = ra n II I - 0 o ,. j Z ll0 ,
ZE H2tx I w 3p1P2  W3PP 3

where w, is a high-pass filter, w2 and w3 are low-pass filters. IA. is the optimal performance.
Without loss of generality we can assume r. > -r, as in the present case, and let r = r,, -r.

Then

,o = minII 0 0 W2P Zl.
ZEH2 1  wI 3P1P2 W3P1P3 1 0)

0 0 WIPI
=minl 0 W2P ) 0 0

Let 1 = 0 ( 0 We wish to find A = (aj) 2xl and

W3,PI 1'3P3 W3 2
B = (bi,) 2x2 satisfying

SA*B =T,*T2,
B(')T (5.1)

Solving (5.1) we get . (.)*(+
b~~C. C.)+W

11 P(*)( 11

.(.).(.)f..b'12 = b 1* ,

ag P P(., (.) ..

a2 = -,:)p 
s), jb1)

S= 8,Xt,(s + .)(el - 3)... (e4 - 3)
(,. + s)2(7.2 +.9)2(r2 + s)(,- + J)'

= .#,,,C.,,(q. - S2)(,. - 3)
(r3 + ,s)(Wi., + s)(ir,2 + s)('r~, + 3)(,2 + ,)(el1 + s)... (e4 + ,)
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b2 =O0,
b22= (0. + 3)(h, +.9)...(hs + 3)

(we, + 3)(7,2 + ,)(v,, + 3)(1rV2 + 3)(r, + S)(r3 + 3)(el + 3)... (e4 + s)'

where el, ... , e4 are the four roots of
2(92 2 1.82 PC 9!2

C20 - _9)(r- j2)(Ir2 - .3)(Irl - 31) + c3 (6o - 31)(d -02) = 0

with positive real parts. and hl, ..., hs are the eight roots of

-C1.2r _ 2) - -?s( 2 s.2)(72~ _ .12)(wr!2 _ 32)1(e2 $ 2). ... (el '-)

2 2 -_2 )(r2 2 2 2) o

with positive real parts.
Further let CM = T ( ' ) - A(-) = w(')"(') - A(').
It is easy to check that (T - T2Z)(*) = (A - BZ)(*) + C(*). Noting that

and 2 E H' , we have

where ()

-- 0 1 "

5.3.2 Inner-Outer Factorization of D

In the following, we explain how to get the inner-outer factorization of D. The key here
is that we observe that each element of the outer factor for this matrix takes the form
Qi + Q2e- "', where Qi and Q2 are rational.

Let

D = =V UV (5.2)
'U3 U4 V3 V74

be the inner-outer factorization of D. Since det(D) = d= det(U)det(V), and d1i is inner,
we know [39] det(U) =cd,,,det(V) = a, where Ij = 1. Of course we can set a = 1. So
from (5.2) and U() = I we have

U=(djjvj* d,, )

and
,(" + ' 1 (5.3)

d1 (Vju 2 + Vv;4) = d12 (5.4)

VV?4 - V2V3 = 1 (5.5)
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Let vi = P., + Q,,e-",i = 1,... ,4,7 = - r. Then from (5.3) we have

=t 11()+Q. (5.6)PL)+ Q(O) + P '2 + V3 (
P1,Q,, + P,Q-3 = 0 (5.7)

From (5.4) we have

P,, P,,, + Q,, Q,,, + P,P, + QQ,= 0 (5.8)

Q ,P., + Q .P,= 0 (5.9)
di,(P, Q,, + P ,Q,) = R (5.10)

where R is defined by d1 2 = Re-' .From (5.5) we have

P-1Q,, + P,,Q,1 = P1,Q,1 + P,Q,, (5.11)
Q,,Q,, = Q,,,Q, (5.12)

P, P.4 - P,,,A,,= 1 (5.13)

Now from (5.7), (5.9) and (5.13), we get Q,, = Q, = 0. So (5.6), (5.8) and (5.13) become{ (- F~+ P(- 1,
PP + P,P4 =0,
P,,1 P,,4 - 3P,,,P

and weget P, - ,-1 P =P -, whereA P(')+P(4). But * = = P()+P()
A A As :A+ +-"l

1, so A = 1. Therefore P, P*,P, =-P . From (5.10) and (5.11) we have

PQ,, + P;Q., = d,
-Ps Q-. + P, Q,4 =0

So Q, = d, RPQ,,, = d 1 RP,, .
Now the problem becomes to find P, and P,, such that

m~e  P(.') + P(') = l-

PP,,, E H H, (5.14)v4, = P, + dhsP., e-r E HOO,

V2 = P , + d1 P,, Re E HO.If dii = (=''" ' d ,g*-).. °' , - (6i ,. ,)

(+). ) we define Pr() P= - ) where

fMs) = 6.3 + ,-i."-1 +"" + C,

g'() = Gkok + Ck-1sk-  + Co.

In (5.14) we have

V2 g*L*L + RMW'E Hoc.
= (5_,)..( _°) (61-8)...(6A-)
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So we require

f'(6) + R(6,)e-6"g(6) = 0 (5.15)

-g(6i) + R(6)e-if(6,) = 0 (5.16)

S= 1,... , k. Now we show that P,() + P,() = 1 is satisfied provided that

0= I14l, + I14l, = 1. (5.17)

In fact, multiply (5.15) by f(6,), (5.16) by -g(6,), and add them up, we see

f)(6,) + gO-6,) = 0.

By the definition of involution *, we also see

)(_ + gC)(,) = 0.

So f(*)(,) + g()(,) = 1( - s) ... (,, - -)(,1 + ).. (. + S), and therefore

P.) + = f()(s) + g(o)(s)P"((8) + P-q) = ( - (S. - .9)(31 + .9)-... (5, + s

In summary, we solve (5.15), (5.16) and (9) to get f(s) and g(s), and

f(a - -o...(&Mo)

V = (11+8) ... (J,+,) (61-) ... (6h-0)

U= ((1+0.+ ) 7' 1 (f(s) g(s)

-,).) cf'+ ') = (A+ +)..(6 +,) k-g() f(,)(71+o) ... ('.+,) (91+8)... V.+o)

Since (A - DZ)(0) + C(-) = (U'A - VZ)(') + G(() and noting that V is invertible in HC,
we have ,.0= min U8A- Z 10
where C E H-.

5.3.3 Transformation to an Operator Norm
In the following, the above infimal norm problem is transformed into an operator norm
problem in a standard way using a well-known result of [36].

Let T:H2 -- , ((HH)2- E(H ) be defined as

Tf (~f = ( 3 A!) + (IHxxUAf) ,for anyf E H2 .
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Here (H22.)- = L'. 1 e H2.. Then we have [36, Theorem 1]

(A= 11T 1K. II,

where Ko = HX)-H 2

Let C = flKT: H2 -. Ko, then j = 11="" 12K. 112 = IlCC C1 = IIC'II= I1C1l2 = IIC*C1.
Since C = (II(--,)UA) H- C' = (K 0  H 2.

For any X E (H]1 )_ , Y E H 2,

< ((H22.,_U*A)*xV y>=< ZI1(H2).,)_UoAy >=

=< X, U*Ay >=< A'Uz, y >=< HH2A*UZy >

and for any y, z E H 2

< C*j, z >=< HHC*Y, Z >

so (II(H3.,)_U*A)* = HH2A*U and C" = HH2C" and thus

C'C = (IIH2A'UIIH2C') ( H _)

= ITH2A*UrI(H,)_U*A+IH2C*C (5.18)

We conclude that

2

,A. = sup spec(C'C) (5.19)
Remark: By [30, Theorem 21, we know if /. > 11CII.* then

oA. = sup SPec(UI.AHUA + Tc.c).

Here hU.A and Tc.c denote Hankel and Toeplitz operators. It is easy to see that 7.A =
IIH2A*U, so (5.19) follows.

5.4 Computation of the Optimal Performance ,uo
From the previous section we know that the optimal performance u. is equal to the square
root of the norm of the operator C*C. In this section we shall show how to compute the
discrete and essential spectra of this operator. From (5.19), these two computations allow
us to find AS. (as in [51] and [50]). Note that all the operations in theorems 1 and 2 are
explicitly computable using the expressions in section 4.
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5.4.1 Discrete Spectrum of C(*)

Let E = e-o .•- j,0 then A = E*A, where A, is rational. Since in general -r, 0 r., the

multiplication of E" and A1 is not commutative, so the techniques used in scalar case [50]
to cancel the infinite dimentional parts of the plant no longer work for us. [35] assumes the
following commutation condition:

E-A1 = ObM,

where f4b is rational and Mb is inner (possibly infinite dimensional), so that the cancellation
of the infinite dimensional part works as it does for the scalar case. It is easy to see that this
commutation condition can not be satisfied in the present case. The difficulty of the present
problem, of course, is mainly due to the noncommutativity of the matrix multiplication.

Since the multiplication of E* and A, is not commutative, for an eigenvector z,, of C(O)
associated with the eigenvalue a 2 , our idea here is to characterize A 1:,, instead of x, as
[50] does. The proof of the following lemma is basically the same as Lemma I in [50].
The rationality of A, and U allows us just to introduce an extra finite Blaschke product to
"absorb" the unstable poles of U*AIA*.

Lemma 7 If i' is an eigenvalue of C(*) and z,, is an associated eigenfunction, then

AlZA E bobfd,(H22XI)-,

where
bA is a finite Blaschke product such that b. [(A2 - C('))- 1]" E H;
b, is a finite Blaschke product such that bU*AA E H' 2 ;
d. is an inner function such that d.E" E H'U2 .

Proof. Since j 2 X,. = C(')z,,, we have

(/42 - C(.))zj,. = (IIH2A.UII(H2 )_U.A - HH2C(.))Z,.

Multiply the above equation by (;42 - C(.))- 1 bb.d:A1 , we get

b*,bcAA. = ( - cAl(nH2Asu(H2,)_U'A - i. Cc'))x, (5.20)

For any h E HUD<H b--, rHAUI1q,

<bA( _H AUf(,)U'A - HI C('))x,, h >=

=< (rIH A'UI(H,*)_U A - 1jgpC(a'1z, b dAl h >=

=< A'Url(Hx, )_U*A., b~d. Ah >=< rI(H3 U*A., U*Abd.Ah >=

=< rI(H2J )-U*Ax,, b.d.U*E"AIAI6h >= 0.
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This means b. cCAj(r 2A*UrI(n,)- U*A - C(*))z. E (H2x,2_. By the definition of

bA and (5.20),
b,*b.d.Alxo E (H22,)- ,

therefore the lemma. U

Remark. b., b. and d. can be chosen as follows:
(1) bM can be chosen as the Blaschke product whose zeros are those zeros of j&' - C(*)

lying in Re(s) > 0.
(2) b.. can be chosen as the Blaschke product whose zeros are those poles of U*AA lying

in Re(s) > 0.
(3) d. can be chosen as detE or =

Note that we can rewrite (5.18) as

C (') = rIH 2A'U(I - rIH,.)U'A + rH2c (')

= H1H2(A() + C (*)) - IHA*UIIH:,U*A
= 1H,(A(') + C(')) - (A'U - HIA'U)fH3LUA (521)

It is not difficult to see that Lemma 7 does not provide enough information about the
eigenspace of C(*) for us to conclude that C(-) - (A(*) + C(")) is of finite rank on the eigenspace
because e-" H_ C e-" IH_. The following lemma provides us further information on the
eigenspace so that we can show that CM - (A(*) + C(*)) is indeed of finite rank on the
eigenspace.

Lemma 8 If zx is an eigenfrnction of C(), then

z. E F(H 2 ) + Rie-lr'H,

where F is of finite rank, R, is rational.

Proof: Since C(*)z, = 2z, from (5.21) we have

0= C(*)X" _ A2X"

= (A(.) + C(') - - H11(A( ' ) + C¢'))xM - (A*U - W A*U)11l2 U'Ax,

= (A( ' ) + C( ) - A2):., - riH,_(A(*) + C(*))z - A*UIH2 U*Az + IIHA*UI-IH U*Ax

(5.22)

Noting that both IIHI(A(*) + C(*)) 1H, and IIjH, AU [H2 are of finite rank, we rewrite

(5.22) as
0 - (A( ' ) + C (.) - 2)zM - A*UIIH2 U*Az . + F (5.23)

where F, is of finite rank.
In Lemma 7, if we choose d. = e-'", we have

HIR . U A, = IIH. U E Ajz, = IHf. U 'E bjb~d. h _-
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=1 H ( 0~a ( H 1 1 c ) (h2- 2 ~ =-

= 1: 1 bmb.U' (fH2e,hi-. + 1'IH:2x 6b-aaU*(H2.i)- (e-hi..

+llHxI 2 h2-~(H

b= oer~er, b- 0 n(fH e 01 himcj ) + 2  (5.24)
where 22 iso0iit ak

Her A) -r, -r. bA (h2- h) + FH2

Ma- + *A = b,,2)z - rbaleH e h1... + F (5.25)

where Al~(n nF 1 -AF2 is of finite rank.
NoComg Lemm3)an (5we4have have ~du:,s 525 eoe

0 = ( (A(' -) _ ')z. I -b, b..A * efHHe 0brhd- ) z+ F 3

- (A(') + -) P2 ) - b .A j- fl H2 0 olle ) + F3

(A(') + C- ) Ps 
2 ) - + ~,*e"@I~e'j + F3  (5.26)

hs cop, te th proof. aU) 3=F * 2i ffnt ak

Now from themm seon wequaleity o .4 ,s (5.26) anbem ecet

0+ A* C-' -M2)Zx, -bbeaal,bba eIIH( 2 e -"6*b*, al x .-I +

+I = +J (, -A(' - C( ))fl))balexM'FF

+(#2 + a(().27)

11 -() (-)'b,~a*e-'I~f b*.64e A



Noting that fllm2a()(p 2 + a( ) - A(*) - C(s))-' JH2 is of finite rank, we see that actually the
right hand side of (5.27) is of finite rank. So we have

Theorem 4 Let E be the eigenspace of an eigenvalue IA2 of C(), then

A -A C(-) - (A(') + C('))

is of finite rank on E.

Proof: From the above derivation we have that A(') + C(*) - C(*) equals the right hand side
of (19), which is of finite rank on E.

Now if IA2 is an eigenvalue of C(*) and z a corresponding eigenfunction, then

C(*)$A= / 2 Z ,.

From Theorem 1, we have
[;2 - (A(*) + C('))l = A .

Since the operator A is of finite rank, we can calculate the eigenvalue 42 and the corre-
sponding eigenfunctions as in [50] and [14].

5.4.2 Essential Spectrum of C(*)
In this section, we shall show how to compute the essential spectrum of C(*). We shall
consider the following more general form of A:

A=( rO  O )A

where m, and M 2 are arbitrary inner functions and m, divides M 2 in H'. In fact, we have

Theorem 5 The essential spectrum of C(*) is

a.(cC.))= {A')(jw) + C(')(jw) : jw E u.(mn1 )} U {inf [a((jw) + C(')(jw)],

sup (0;)(j, O) + C(*)(jW)]} U { inf C(*)(j,iw), sup C(')(jw)}
W W W

Prior to proving this theorem, we give some preliminary results. We make the following
decompositions

H2 = H1 e H2 ,
H1 = H11 @ H 1 2,

where H; = m 2H 2, H11 = (m 1 1P)- = (mH'.) fn H 2 . For any operators X, Y in a Hilbert
space, by X - Y we mean that X - Y is compact. First, we shall prove some projection
properties.
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Proposition 5 For any rational R E L', any inner fAnctions m, M 3 , and m divides M2 in
HO, m2 divides M3 in H-

(a) HIH,mRIH2

(b) Ilm3RfH-

are both finite rank operators.

Prnof: Let m2 = mmo, since HH2RIH - is a finite rank operator, we have

IIHmRIR- = IIHRm.2(ilI + IIH2)Rm*lHa -- [iI2M2llH RmIH2 =0.

This proves (a).
Similarly, let M3 = rn2M4. Since IIH2 RIH2 is of finite rank, we have

[Ifm3RIH2 = IIH, m2(IIa2 + lIHa2)Rm41H - II2HTmn2HH2Rm4-H2- 0

This proves (b).

Proposition 6 For any rational R E L, the following operators

IIH1 R1H,, IIH,RIH,, IIHHR1H1,, IIHRH1,
are of finite rank.

Proof" Since H- -. T12 by Proposition 5(b)

ITRIH, = IIE tRm21n,

is of finite rank.
Let H = m H . Similarly we know that

. IIH,,RIH = IIH,,RmIII,

is of finite rank. Since H12 = Hn H, C H, so 11n11RIH 12 is of finite rank. By observing that

IIH,RIH = (IIHR*IH,)" , IIHLRIHI, = (IIH 1 R*H 2)*

we also see that IIE,RIH, and IIh3,RIHu are of finite rank. U

The following lemma is a result in the proof of Theorem 1 of [50].

Lemma 9 ([50]) For a self-adjoint operator X on a Hilbert space H, let S be a subspace of
H. If

X'Is - IIsXIIs

is compact, then
a,(nIsXIs) = a.(X).
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Proof of Theorem 2:
Let

Al = HH2A*UI(H]g 1 ? -U*A,

A2  IIH A*UpH2. U*AIIHI,
A3  HH2(l U21)aGijmj llH2. lmlIH

Then= H1 (u,

A, = flH2A[Uf(H2) U*A(IIH, + IIH2 ) - lH2AUII(H 1 )-U*AIIHL

= (17H, + IIH2 )A*UI(H2 .)U*ArH.

By Proposition 5(a),

rIHA*UUI(HE[.)U*A ~- 0

and therefore

= IIHI AjA1IH 1  A 2  (5.28)

We now comnpute A2. First we have

UJA = (', ~I*2 MI 0 at,, u* _l7, + Ua12( Uk 4 U;2 0 M a1 U21 U u 2 2 m

So

A*U= (U.L1, U21)a1 1jmj + (u12 , U22)a 12 M2

It is easy to see that 11Hg2. (";3)a12M;IIH, is of finite rank since (~:a12 is rational. Also
by Proposition 5(b), flH,(U,2, U22)a 2 m21H2 -0. So we have

A2  -IIHI(U1I,u2,)aG;,mlllH: U101, allm:11H,

= (riB 1 , + 1 IH1 2 )(UtSI1a2,lmi HH~x ('4l') aj,,( 1 H,, + 1 1H 12)

A3 (5.29)

The last equivalence -is because that 11Hzx ( U;I am IIH1 is of finite rank and also by
Proposition 5(b) IIH ,1,U'2,)a1,jm1H 1 I 0.

Further, since H12 C mH 2 , we see that II(H3, 1 ) ('i')aujmj*IIH, is of finite rank, so

A 3  -- 
1 H 1 2 (Ul II 21)a 1 l, a~I - flH1 2 (UI1;u21)a~jjmj l(H~x1 ) (I*')ajmrIH, 2

(U21)a1 a(U21)1  (5.30)
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here ul1u11 + U;1 ts2i = I sinlce U*U = 1.
Combining (5.18), (5.28), (5.29) and (5.30) we have

-()= li AHI)rH - fEg1 2a11If
1 H12 + rIH2C.

By Proposition 6, we further have

C()= ±I,(A" C())IH, + 11-1 2 (A(*) + C' - a(W))11g 1 2 + 11~flH 2H

and therefore

0',C*) .rIj()+ C()1g) 12 + C(*)IIlH, 2 ) U Oe(IIH 2C(*)flH 2)

Noting that

a 12 HH12 (a(*) + C(.))llH1 2 = rI- +a*) r

+(IIHa - IIH1 2 )(a12~ + C(*))r12 - (rIH2- rH 12)(al2 + C(*))1H, 2 =

- H 1±(al;2 + C(e))1IIH,+ rlH 2(aI 2~ + C(*))IH12 - IH 2 (a12~ + C(*)rIH 2

By Proposition 6, lH, (a(*) + C('))IIH, ~-0 and since H12 C H1, so

rIE(2 (aI2 + C(*))1H1 2  0

and therefore
(a~~+ C))r 01 2 - rIH1 2(a(') + C())1IH2 - 0

So by Lemma 9, a'.(flH12 (a(.) + C(*'))IIH,,) = ca(a2+

Similarly, by Proposition 6,

c()I2- IIHC(*)rIH,-

rIH 2 C(*)rIH2 + (1 1 H2 - rIH2 )C(*)flH2 - rHLc~o~H. 0.

So by Lemma 9, T(HC11)=
Note for any rational R E Lo*, RrIH2 = HIH2RrIH2 + IIH3 RrIH2 - rlH2RHIH2. SO

a()= a.rI7HR). By [38, Theorem 6.2 (i), p. 551 we have

a'e(a()+ C(')) = { inf~a(*2)(jw) +C(-)(jw)J, sup[a -(W) + C(*)(jWJ}I

a,(C(-) = {inf C~()J-W), sup C(*)(j*W)}

By [33, Corollary 1, p.125) we have

,(l1H 11 (A(*) + C('))rIH11 ) = {A~(J'w) + C(*)(jw) :w Ju E .(mi)}
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5.5 Optimal Compensators

After obtaining the optimal performance /i, one can compute the suboptimal compensators
using the rational approximation techniques. In the multivariate case, even for rational
plants, there is more than one optimal compensator in general [221. However, in the present
case, we observe that our problem is a "vector" problem rather than a general "matrix"
problem, and the operator we get in the previous section is a scalar operator. This makes
it possible for us to find an eigenfunction corresponding to the largest eigenvalue/, of the
operator, and then we can find the optimal compensator as in the scalar case.

Assume that bA. > IICIUy. Using the technique described in [301, we can transfer the
original mixed sensitivity problem into the following pure sensitivity problem (with the
optimal performance 1Ao = 1):

min IIH - 211,. = 1,

where M(*) A  - C(*), M, M -1 E H0, H A UAM-1 E Lao.
This is a infinite dimensional pure sensitivity problem with two different time delays. The

method developed in the previous section can be used to find the maximal eigenfunctions
(corresponding to the largest eigenvalue 14. = 1) of the corresponding Hankel operator and
the minimal sensitivity can be found as described in [51].

5.6 Conclusion

In this chapter we have shown how to compute the infimal mixed sensitivity for the full
infinite dimensional model of multivariable p1:-nt considered in [46], without resorting to
finite dimensional approximation. We are presently preparing to compute numerical values
for comparison with the results in [461. The procedure presented here is readily generalizable
to a class of MIMO plants [47].
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Chapter 6

Numerical Inner/Outer Factorization

6.1 Introduction

The motivation for the developments in this chapter is interest in explicitly computing solu-
tions to H'-optimal control problems for distributed parameter systems, such as the damped
flexible beam in Section 2.1. In this case one has an irrational transfer function

P(s) = N(s)/D(s) (6.1)

where N and D are both functions in H'. The solution to the mixed sensitivity problem
[50],[151 involves finding the largest solution po on an interval [a, b] C R to an equation of
the form

N(j((j))R,(p) = N,(-j((A))R2 (A) (6.2)

where N is the inner factor of N (see Example 1 below for further details), and C, R1 , and
R 2 are certain functions of j&. (po is the largest eigenvalue of an operator which is related
to the mixed sensitivity operator. See [50].) If we search for /0 by numerically computing
solutions to this equation, computation of the infimal values for H'-control criteria will
involve the numerical evaluation of the term N,(jw) for different values of w.

For general transfer functions, one will not be able to explicitly write down an inner-outer
factorization, and so the evaluation of the term N,(jw) is not simply a matter of substituting
a number into a formula. In this chapter we present a numerical technique for this evaluation
without explicitly finding the inner factor.

We present three examples of irrational inner factors on which we will test our numerical
technique. In Example 1 below, the inner factor of the transfer function is an infinite
Blaschke product. In this case we can explicitly find the right half plane zeros, but there
are infinitely many. For Example 2, the transfer function has a singular inner factor, yet an
explicit factorization and formula is available. In Example 3, the inner factor appears to be
an infinite Blaschke product, but the alternative of taking a continued product of separately
computed zeros is not attractive since the implicit nature of the expression for the transfer
function and lack of further information on the location of the right half plane zeros make
their computation difficult.
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6.2 Mathematical Framework

The outer factor of an H' function is given in the open right half plane by [26, p. 133]

f.(s) =ep7z t + j3 1 + tfo()-exp [ log If(it)I" ts+il dti

On the imaginary axis the boundary value function of f. exists almost everywhere and
is equal to

lim exp log if(it)I •R&()-o 7 cc t + %iSl + t2 "

Taking s = o + iw, with o, w E R, we have

f 0Iw= lim exp 11 r j aj(l ~+ t2 ) ' t (W (- t)(1 +t 2 )\ 1 dt

f(i) '_0 1j1-M I-a 0k( t2+ ) (W + )J logIf(*t)I 1 1 ft
We know the limit of the real part of the integral, since

Ifo(iw)t = If(iw)l a.e.

The limit of the imaginary part of the integral in the last expression is defined as an integral
on the imaginary axis in the sense of a Cauchy principal value, which we can simplify as
follows:

t )(I +t)d
arg(f.(iw)) = t ) 2 + o ) f i~ } t

Swt1 + 1-olgg ff(it)idt

1 /_** l , If!dt) og it)I t) dt}
= -a (1 + t2)(W - t) f(1w) dt +ogIJI1)l (l+t2)(W )

Considering the last term, we have:

(I + t2)(W - (y+ t W - t

= l 2 d t + li m li r -- + -- +

+ t--2 1 .0 +, W - t + -RW- t - t

f= t2)+ dimi m  R J d +f ,--1 + t 2  R-* C-o +

= 0+ lim lim -log(t - W) R _log(w + -+

R-00 '-0 I'dR- -0o -

- 0.
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Now we note that

Wt + 1 f(it)

-- log I I
has a removable singularity at t = w, and that since

log If(it) I
1 +t2

(because f(.) E H- [26, p. 511),

Wt + 1 of(t) EL_(I + t2)(W - t) log E

Thus
Wt + 1 log f(it) dt

i-ac (1 + t2)( _ t) fiw)
is finite as an ordinary (Lebesgue) integral. Therefore, we can compute

1 fcc Wt + 1 gf()targ(f(iw)) -a. (1 + t2)(W t) log f(it

by evaluating the integral numerically as an ordinary integral.

6.3 Discussion of Numerical Techniques

Four problems arise in the numerical computation:

1. the integration has infinite range,

2. the integrand has a removable singularities at t = w, and possibly other points which
may be due to the formula for the transfer function,

3. the integrand will have integrable singularities at the (possibly non-rational) zeros of
f(iw), and

4. the presence of the logarithm in the kernel may lead to intrinsic computer word-length
problems.

The first three are standard problems in numerical quadrature, and our approach is to
assemble standard solutions, as we discuss below. The fourth problem is more serious, as we
discuss in some detail below.

To complete the numerical computation of the inner factor of f, After finding the nu-
merical value of arg(fo(iw)), we can simply compute

f (ita)f/ (%W) = If(iw)I exp(i , arg(f.(iw))

f f(iW)= f(iW)I exp[-i- arg(f(iW))]

72



We now discuss the numerical problems mentioned above, and describe our approach in
their solution. The basic reference we have used for a discussion of the issues and techniques
in quadrature is [37]. (For the actual computer programs we obtained updated versions of
the programs in [37] via electronic mail ("netlib") from Oak Ridge National Laboratories.)

1. Infinite range of integration. There are basically two standard approaches: either
(a) transform the range to a finite interval, or else (b) approximate the infinite integral by
integration over a finite range. Method (b) is recommended in [37, p. 80] for the case in
which the integrand decays "rapidly" to zero at oo, and this is the method we have adopted.
We remark that we have also tried method (a), and this approach can generate an additional
problem: if the integrand does not decay sufficiently quickly at oo, then when transformed to
the finite interval the integrand may be unbounded at the image of oo, leading to inefficient
stepsize selection for an a.pti--v quadrature program. We encountered this problem in
Example 1 discussed below, and the difficulty is compounded by the wordlength problems
in evaluating the integrand in the vicinity of o, which we discuss further below.

2. Removable singularities. For finite removable singularities this is easily handled by
using a polynomial approximation in a neighborhood of the singularity. In our Example
1, we have a removable singularity at 0 due to the expression for the transfer function.
Here we used a linear approximation to the integrand over a neighborhood which yields a
variation in the function two orders of magnitude less than the estimated absolute accuracy
requested of the adaptive quadrature program. For the singularity at w one could use a
similar approach, although in our tests we simply avoided values of w which were likely
abscissae in the quadrature (by taking logarithmically spaced points at which to evaluate
the outer factor).

3. Integrable singularities. Since the integrand is in L', of course all singularities on
the imaginary axis will be integrable. So far we have only considered an example with an
irrational zero at o. We expect most finite zeros to be easier to treat, for the following reason:
A finite zero of the transfer function will lead to an unbounded but integrable integrand at
the zero, due to the log function. Such singularities are treated in [37). The idea is to break
up the interval of integration into subintervals, with the origin as an endpoint, and then use
a specialized routine.

In the case of the zero at o, integrand must vanish at infinity, so this behaviour occurs
by means of the quotient of two large numbers vanishing. This can, and does, in Example
1, lead to intrinsic numerical problems, as we discuss next.

4. For large t, the integrand essentially looks like +,, . Assuming f has a zero at
infinity, the numerator becomes unbounded (and negative) for large t, and the integrand is
a quotient of two large numbers. Our ability to integrate this numerically depends upon a
critical balance between two effects: on the one hand the quotient is getting small, while on
the other hand the denominator is getting large. If the rate of increase of the numerator is
sufficiently less than that of the denominator, then we can start neglecting the integrand for
numerical purposes (setting it to be zero overall) before the size of the denominator exceeds
the value allowed by machine wordlength. In Example 1, we see a case in which this balance
is at a marginally acceptable level. In the other examples, there is no problem.
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6.4 Examples

Example 1. Our first example is a transfer function model for the damped Euler-Bernoulli
model presented in Section 2.1. We performed the computations for this model, and com-
pared the accuracy against the phase of the inner factor computed by forming the Blaschke
product from the first 100 right-half-plane zeros. (By adding zeros, it is easy to check the
latter estimate of the phase has essentially no error.) In Figure 6.1 we plot the error in
computed phase of the inner factor as a function of frequency.

10-2

100 101 102

Frequency in radians
Figure 6.1I: Error in inner factor phase for beam.

In order to attempt to reduce the error in the quadrature procedure it is necessary to
examine the source of the error. The infinite integral is approximated using a finite interval,
so there is an error contribution from the "tails" of the integral. Since the integrand is
smooth, the adaptive quadrature routine easily computes the integral over the finite range,
so long as the integrand can be evaluated. Using the asymptotic behavior (2.23) above, the
tal looks Like

L~r~ 0 i) 4[(IR+/-Z) (-log i -9.2 ('I {i -' 1/i-)) dt]-(.3)

....... C . -9.2 dt (6.4)

which explains the linear error behavior seen in Figure 6.1. From the expression (6.4), it
is clear (as it is intuitively) that we should lengthen the interval of integration in order to
reduce the error.

Unfortunately, the interval [-10', 10') used in this computation is roughly the largest
interval we can use with the double precision computer program employed here, without
replacing the integrand by an approximation. The reason is that the smallest non-zero
number representable on the computer used is roughly 2 x 10 a° . Using the approximation
(2.23), we see that at roughly wa = 3 x i0z the magnitude of the transfer function saturates
machine precision. In practice the problem manifests itself not as an underfiow but as an
error in the compiler's logarithm computation, when the program is unable to normalize a
floating point number due to a saturated exponent.
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Actually, the naive approach to computing the integrand has problems with an even
smaller quadrature interval, since, in the formula (6.1) for the transfer function, the denom-
inator is roughly the square of reciprocal of the transfer function at high frequency. It is
only by carefull decomposition and normalization of the integrand that we are able to attain
the full interval. We have not explored the use of the asymptotic behavior (2.23) as a direct
approximation in order to extend the interval of integration.

Example 2. Consider the case of a pure time delay cascaded with a rational outer factor
which is non-zero on the imaginary axis.

1
T(s) = .g+1

In this case we can directly find the phase of the inner factor, and in fact the quadrature
technique can also attain an essentially perfect result.

Example 3. We consider the transfer function of Section 2.2 of a flexible beam having
a tip mass at one end and a motor at the other, taking into account both bending and
torsion. Inspection of equations (2.45 - 2.47) quickly leads one to conclude that an explicit
inner-outer factorization will not be possible. We have not yet performed computations for
this model, but it seems clear that there is little hope checking the results by taking a finite
Blacshke product.

6.5 Conclusions

We have presented a numerical technique for the computation of the inner factor of a stable
transfer function, intended for use in solving HOO problems when an explicit factorization is
not available. Preliminary computational results show that the technique works, although
it is also clear that when the zeros of an infinite Blaschke product are readily computable,
this is not the method of choice. Work on applying this method to the beam in Example
3, among other models, is in progress, along with the integration of this computation into a
solution for the overall problem addressed by (6.2).
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Chapter 7

Conclusions

We believe that our work to date has shown that there is a reasonable prospect that direct
Hw design of feedback controls for distributed parameter systems will develop into a practical
procedure. The work reported here shows some of the potential, both for computing actual
designs and for finding the limits of attainable performance. We have also been able to
obtain some insight into the nature of the optimality criteria considered by examining exact
solutions. Obviously much remains to be done, in terms of increasing generality of the theory
(to cover, for example, more complex SISO systems, MIMO systems, and more realistic
and comprehensive design criteria) and in terms of developing numerical procedures for
computing solutions.

76



Appendix A

Some Projection Formulas

Here we shall prove some projection formulas used in Chapter 4. These projection formulas
show how to compute the projections of 1I+ and II- for some classes of L2 functions by
means of residue theorem.

We shall use C to denote the complex plane, C+ and C- to denote the open right and left
half planes. H 2 , H 2 , H' and H' are Hardy spaces on the half plane.

Lemma 10 For a rational function Q(s) on C with Q(jw) E L°(jR),

IQ(z + jw) - Q(Iw)I --+ 0 uniformly in w

as x --+ 0.

Proof: Since Q is proper, limo_.. Q(s) = q exists. So for any c > 0, there exists an L > 0
such that for Isi > L,

IQ(s) - q <.
2*

So for Iwf > L, we have

IQ(X + jw) - Q(JW) < IQ(z + iw) - qi + IQ(jw) - qi < + <c.

Since Q E L-(jR), Q has no poles on jR, so it is continuous on jR. For sufficiently small
77 > 0, Q(s) is continuous on [-,q, 77] x [-jL,jL], so it is uniformly continuous on this closed
rectangle. Therefore there exists a 6 > 0 such that for Izx = I(z + jw) - jwI < 6 we have

IQ(X + 1W) - Q(JW)1 < C.

Lemma 11 For Q as in Lemma 10 and g E Hi.

lirn I (Qg)(x + Jw) - (Qg)(jw)dw =0.
lim- 0.
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Proof: Note

(Qg)(x + jw) - (Qg)(jw)ldw <_ IQ(x + jw)ltg(x + jw) - g(jw)ldw+

+ 0 g(jw)IQ(x + jw) - Q(jw)ldw < IIQIIL-f Lg(x + jw) - g(jw)ldw+

+ sup iQ(x + jw) - Q(jw) fj0 Ig(jw)[dw = {1} + 21.

The first term tends to 0 by a result for H P spaces [26, p. 1281. The second term tends
to 0 by Lemma 10. 1

Lemma 12 For f(jw) E L2 ,

1 f (jw) _ (II+f)(s),s E C-)
-7 oojw I.W- (H-f)(s), sE C.

Proof: See (7, p.195].

Formula Al: For a function f = Qh_ with Q E RHOO and h- E H 2 ,

(H+f ) ( S) f (z) dz  for sEC',

where -y is a contour in C- and encircles the poles of Q.
Proof: From Lemma 12 we only need to show J, fzdz = J ffo f(")dw.

a-z a-Jw

Let A be the region encircled by -y. Since fU' is analytic on C- \ A for s E C+ , we see
for any R > 0 sufficiently large and 8 > 0 sufficiently small,

sf-z. f-z ds-R f(-6+ u) d, f(Rej9 ) Re'0 d9
,,: Rej-,f Z z--)dz = ______

5 -z I RS-(-+ W) + s43-e
where! <z< < "

For R large enough we have I < 1. We know h_(Rei ) - 0 uniformly as R - 0o for

2 < < I [26, p. 12 5]. So

s - Re/ h- R-9)- 1 -

as R - oo. So we have

f (z) dz = j s-(-S + J w

Also notice that for h- E H2 , h_(jw) E L2, so h-(iw) E L1 . By Lemma 11,

lim-10 f (-8 + j'W)  00 = f(jw) dw.

S- - (-8 + J) 1 s' 37
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Therefore

f -z 3-3W

This proves Formula (Al).

By Formula Al and the residue theorem, we have
Formula Al': If Q has poles P1,P2, ...,p,n in C-, then

(2+f)(s)- - z i--1 s - pi '

where RQ(pi) denotes the residue of Q at pi.
Similarly, we have corresponding formulas for a function f = Qh+ with Q r RH_' and

h+ E H2 . We state them explicitly as follows:
Formula A2: For a function f = Qh4 with Q E RH- and h+ E H2 ,

1 = f(z) dz for s E C-
(2rlf)(s) , o- z

where -y is a contour in C+ and encircles the poles of Q.
Formula A2': If Q has poles PP2,...,pn in C+, then

1 f(z) dz RQ(pi)h-(Pi)
(If)(s) = z =1 - P

where RQ(p,) denotes the residue of Q at pi.
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Appendix B

Computation of the Eigenvalues and
Eigenfunctions of T

In this appendix, we shall use the projection formulas developed in Appendix A to provide
explicit formulas for the computation of the eigenvalues and eigenfunctions of T.

Recall that for an eigenvalue js2 and an associated eigenfunction x,, we have

( 2 - WjW)x. = A"X" (B.1)

and

AA = r_A*(I+A - 1_B) - ArI+A - rLWW + A*TIB + rI+B*[I_(A + B)] (B.2)

where
A- WW, N-D

B = -WN,,XD*,

w*w = w:w + w;w2* .
Further we explicitly write out W1 and D, as follows

= )E Ho ,

( + Wi)...(s + Wk)

where F(s) is a polynomial in s, wj E C+,j = 1,..., k, and

jot (d, 5 ).. (d. - 9)
=(d, + s) ..(d. + s)'

where d, E C+,j = 1,...,n.

Remark 27 1. By the definition of A, it is easy to see that the left half plane poles of A
are {-W1 , ... , -WkJ = P(W 1 ).
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2. Since Bw is a Blaschke product such that

Bw-1 E H'W

and 3. is a Blaschke product such that

Bm(A 2 -F*F) - ' E H0 ,

order(Bw) = number of poles of - on the right half plane = order(B). We see that

order(Bw) = order(B).

3. By the definition of Bw, we know that the right half plane poles of -'. are {_pBw

= 1, ... ,m}, or equivalently, the left half plane poles of -W are {p W ' 1, ... ,m}.

There are five terms in (B.2). By Proposition 2, R'"(p B) = 0,= 1,...,m. In the
generic case, we write down the basis functions for the range of each term as an operator on
K. as follows:
1st term:

1 1

5-w 1  3 - WI "

2nd term: (i)
11

A* - * A I
ws + +wk

(ii)
1

3rd term:

W1 - w k

4th term: 11

d,1 '' s-,

5th term:
s + dl's +

We shall use ,, = 1, .. ,2k + m + 2n to denote the above 2k + m + 2n basis functions
of AA.

So we see that the rank of AJ, is

rank(A.) = 2k + m + 2n = 2[order(W 1) + order(D,)] + order(B.).
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Remark 28 In [50, Lemma 3], the authors consider the stable plant case and state that
rank(A,) = 2[order(G) + order(F)] in the generic case. In the stable plant case G reduces
to W'. . In fact in [50] G is also assumed to be in H . Therefore, in that context BwG
is substituted for G, and BwM for M. Of course, BwG has the same order as G, which
is order(W-') = order(F). By :he definition of B,, B,(ji - F*F)-' E H ' , so order(F)
order(B,). But we show that rank(A,) = 2order(W 1) + order(B,). (In the stable plant case
D, = 1 so order(D,) = 0.) Since order(W - 1) =order(W1) + order(W2) in the generic case,
we conclude that the generic order of the mixed sensitivity problem is lower than that in the
abstract problem considered in [50] by 2 order(W 2).

Let

cj = [(II+A - IIB)x,](w,)

= (1+Ax,)(wj) - (LL.Bx,,)(wj),j 1,...,k,
Ck+1 .. C2k, C2k+l1 "- C2k+rn,

c2k+m+j = E(dj)RD(d)x,(d 3 ),, = 1,...,n, (B.3)

C2k+,m+.+, = E*RD{[HL(A + B)Z,](-d,),j = 1,..., n. (B.4)

From (B. 1) we have

(,a' - WiW)x - Ax
2k+m+2n

j c,€,. (B.5)
3=1

In Lhe following, we shall show how to get a system of 2k + m + 2n homogeneous linear
equations in c1 , c2k4.n+2,,.

1. Solve
z - w w1 = o

to get 2k roots rl, ...r2k. So

2k+rn+2nE C, O,(r,) = 0, 1 -- 1, ..., 2k.
j=1

2. By Proposition 2, RZ(pt) 0 ,= 1, ... , m. So we have

0 lim (pB s - ( -W*W,)XBw

- im - s)Az,,x, for I 1,...,m,
3-P11

which are

k kj M c2k+j _2k"n' Ifr

E - - E =0 for
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3.
2k+m+2n

[(2 -1W),(i E cj~,(dJ), for I ,**n
j=1

4.

[(p -1 W i R M (~ d ) = ur (d, + 3)(,12 _- jW J X

= ur (d1 + i)(Ax)

lrn (d, ± s)A* C4k~1'd , Cip k+d

E~~n+ + ck,.( for I = ,..n.
j=1 di + di

From (B.3) we get

_ C2kc+m+i frI n
-E(d 1 )RD~d) o

Since x,, E BpBwNIDH?. we see that

Ax.( -di) = i ( ,N xA (d) for I=1,..n.W. D

So

(I-AxM)(-di) =(Ax,)(-di) - (l+AxM,)(-di)

W s ( W NR Di Ck+3d E ~ , for I ,..n.

Also

(I-BxM)(-di) n ZC2+m+3 for I 1..n.
1=1 d3+d

From (B.4) we have

RZMdi (w.i~i".N)(-di)[C2k+m+n+i + (E-~RD)(-d)(Z Ck+, -

. 11 w 1 -dj ,=1pj dj

+ E C2 for I1 n

Summarizing the results from above, we have the following procedure to find eigenvalues:
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1 .-S o lv eA 
2 - l w = 0

to get 2k roots rl,...r 2 l.-

Let
ai= Oj(T,), for = 1,...,2k,]*= 1,...,2k+mi-2n.

2. For i* 1, ... , m, let

a2k+i,k+, = W 1BW'I for k;=

a2k+i,2k+I - B,1 B for ,.,;

p3  -pA

a2k+i,2k+m+I = -- I BW for ~' 1, ... , n

3. ForiZ'1, ... , n,let

a2k+mn+ 1 3 = ,(i) for j=1, 2. 2k + m;

DT for 2 , .
a2k+m+,2k+m+, ERI

1 0 2 +M+.?(d), for Z' 5, n,
a2k+mn+i,2k+m+n+, = 02k+m+n+,(d,), for j=1, ... , n

where E =-WN,0 X.

4. For Z' = 1, ... , n, let

a2Ic+m+n+isk+, (A W*WI)W R D.](_d 1) - R A'(-d,)}

for J = 1 .,k

a~k~~n+%2k{[AO WI*W1)WO R Di] (d,) - R A'(d 1 )} P

for J = 1 .,m

W- W N* d) +

for n;

f ~_ -1, for n ,;
a2k-4.m+n+s,2k+m+n+i = 0*foE.$Xj

5. Let all other a, = 0 for 1 < I-, )- 2k + m+2n.

We form the matrix
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0o . 0 a2h+1h+l a~k+1,2k+m+n 0 ..

0 0o 2&+,~ a2k+m,2h+.1 C .. 0

a~k+ +I~ ... ... ... ... .. .. 2k+.+1,2h+.+2,

G2k+m+,l.. ... k+ .2k - ,

0o . 0 a2h+,,+n+l1k+1 a2k+m+nl,2h+m+n a2k+m+Th+1,24+m+,n+1 .

0o . 0 a2k+m+2,,Is+1 .. Gkm22h m n0 ... a2k+m+2n,2h+-,+2,.

and we can then write
A~iC= 0, (B.6)

where C= (C1 , ... , C2k+m+2n )T.

In order for (B.6) to have nontrivial solutions, we set

det[A((A)] = 0, (B. 7)

and solve (B. 7) for A2 to be an eigenvalue.
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Appendix C

Proof of Lemma 2

Define
XA=W-MQ.

Let
X,(Jw) a= W(jw) - M(jw)T(jw).

We now consider the magnitude squared of X,,(jw),

IX,(jw)l2 = IW(jw) - M(jw)T(jw)l = IW(jw) + h,,(jw)[ls,e (W) - W(jw) 12

using the definitions in (3.20). Noting the assumption (3.13) we take

W, -A sup Rw(oo),

and so for any v > 0 we can take n(v) large enough so that

IW(JW)I < W. + V a.e. for Iwl > n(v). (C.1)

Now we fix v, assume that n satisfies (C.1), and later determine how to pick v as a
function of E to satisfy

IIX-II A i + 1. (C.2)

Suppose wn is a frequency (possibly oo) at which IIXII E Rx(,(w). If wn is finite, define

W, = sup Rw(w,), h = Ih,(jw,)j, 6 = arg[h,,(jw,)] and a = a(w,).

Otherwise we know that IIX,,j = j,, and we define

W -h,h-A0,6A-0and a=0.

Note that these are functions of n, as is w,,. We also note for later use that 6 satisfies
0 < 6 < 2r/n.

Now we show that the norm of X, approaches the infimal value a, as n increases. For
E> 0 let B,(w,) = (w, - cw, + c). Then for all w
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X,,(jw)l2  < linm ess sup IW(i'C) + h,,(j()(X(j() - W(j())12

IW(C)(Xi)-W2 C) 2

= Ur ess sup ( %w+ig 2R *(l+

= C s su N.WR)l - 2Re {A(()} IW(iC)12+

2Re {Wih(C)i)}+ jh.(i() 121X(Z() -W(iC)1
2

= urn ess sup (IWmiC) 2 - 2Re {h.(()} I W(iC)12 + Ih, (1C)1 21W (z(1 2

C-O C E N(.

+ Ih1.(iC)1 21(iZC)12 + 2Re{Wih.(4Xi}-

For n > 4, 0 < arg (hn(iC()) ir/2, and we write

IXn(.jw)I2  < lrn ess sup (IW(io)I2 - 2Ihn(i()lI 1W(i()12 + Ihn()I 2It'(C)12±

2(Ih.(i()I - Re {hn(i()}) IW(i()12 + h.Z12gz) +

2Re {h,,(iC)} Re { W(i()X(((C)} -21m {hn(i()}IIM{W.(i)X()} -

21hn(C)I12 Re {X(C)W.(iC)}

= i esrn u (IW(%C)1 2 [(I - Ihn()I)2 + 2(Ih.(iCI - Ref nK))

±I~i)2 Xi) 2 + R Wi)~C}[Re {hn(i()} -

I hn (iC)jI'] - Im f{hn(~ IM { i)zC) z

Using continuity of h,~ and the definition of Wn we get

IXn(j U)f12  < Wn2 - [(1 - h)2 + 2h(1 - cos6)] + MY? 2W 1  {(-h)+hi6

[Wn(1 - h) + h~j12 + 2h62Wn2 + 2WnpsjhS

Given ni, there are two possibilities:

case (i). (Wn > n) In this case we shall use the fact that W,, - W, as w,1 - 0.

Xn ( W)I12  < [(W. + v)(1 -h) ± h~t,]' + 2h62(W, .i _tV± 2hA,8(W. + v)
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< [(i, + v)(1 - h) + hAj 12 + 2hS2 (A, + V)2 + 2hs,6(A + v)
< [A, + V] + 2ts,6(A. + v) + 26 2(1, + V)2

= , + v. 21L,(l + 8) + 2A + + 26 )

< i + v. 2,,i(l + n) + 4rj,?/n + 2 ( , + V).

Now we simply state how to pick n, and v(e) such that n > n, and 0 < v < v/(,E)
guarantees that the right hand side of the last inequality gives

IX,( W)12 < + C.

Assuming 0 < e < 1, we take

0 < v(e) <_ ' and n, > 27r such that IW(j'w) < IWj + E for IwI > n,, (C.3)
-16,ai 16pi

which gives v 2Aj(1 + f) < e/4. Taking

16rA
n, > (C.4)

gives 7rlS?/n < f/4 for n > n,. Taking

V,(C) < (C.5)

gives V2 < f/4. Finally, using (22) with 0 < v, < L,(E) and taking

n, > 87r(Aj + 1) (C.6)

allows us to conclude that 8 (1)2 (ji, + V)2 < e/4,
Thus (C.3) - (C.6) together will ensure IfX-ll' < si? + e in this case.
case (ii). (wn < n) The idea in this case is that h -+ 1 sincew,, < n. Since IIWIK[ > W,

and h < 1,

lXn(j ,) 2 < [W.(1 - h) + hAlj 2 + 2h62 W + 2Wlz, h6
< ,? + (1 - h). 211WII.A, + IIW112(1 - h)2 + 4ir,,llWll../n

+2 (21)2 IIWll2 (C.7)

We proceed to satisfy (C.2) by bounding each of the last four terms of the right hand
side of (C.7) to be individually bounded by e/4. Now since w, <n n in this case,

1 > h2 = h(iw,,)I
S[ 

2 /(_y 2 + .2)]I/"

> [a 2/(.y 2 + n2)],/n
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It is easy to check that limr,. [a'/(-2 + n2 )]1/n = 1, so h 2 --+ 1 as n --+ oo, and therefore
(1 - h) --+ 0. In order to estimate the required n,, we want (1 - h) 211Wf[it < E/4. It is
sufficient to take

1 C < [cz,( 2' + n 2 )]' 1 ,8 11W 1i
or

orlog(1- 1
8HWtu) < 1 log[, 2/(_y 2 + n2 )].

For n > -y
a2/(y2 + n 2) > a 2/2n 2,

so a sufficient condition is

log( - f <2 log(a) - 2 log(n) - log(2)
811W~l~i2n

Assuming n > max(2, 1/a 2), a sufficient condition is then

log(1 - E 2log(n) (C.8)811Wilui n , c8

Similarly, IIIW11(1 - h) 2 < E/4 can be assured by requiring

V < 2log(n) (C.9)
lo9(l2iwji) < ,(.)

47ir,, lWII,/n < E/4 will be obtained by assuming

n , > 167rllWII

and 2) 2 _W 1< e/4 by

, > 87rilWIl~/!. (C.10)

Thus using (C.3)-(C.10) we pick n, to satisfy:

n{ > max ( 2r, 8--', , ,' ,,,,", ,8,r11WI1 -2/c)
IW(j)I < IW. I + for I,, > n.e

Jlog(n.) > max (log(1 - e ), log(1 -

to obtain I1X"I 2 -2 _< I
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