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Introduction

The Laboratory for Artificial Intelligence Research (LAIR) at The Ohio State University held

AFOSR grant number 89-0250 (which succeeded a series of earlier grants, the most recent
being 87-0090). LAIR's research program has focused on knowledge based systems, and
AFOSR support has been central in supporting basic scientific research on problem solving
tasks and on organizing and indexing systems for the knowledge utilized by problem solving
tasks. LAIR's research contributions to understanding knowledge-based reasoning variety
of advances and accomplishments. Perhaps the best known accomplishment has been the
development of the generic task approach itself and its development into the broader research

program exploring task specific architectures to which a variety of prominent researchers,
such as W. Clancey, J. McDermott and L. Steels, also contribute[13, 15, 18, 8].

3 LAIR research on knowledge-based problem-solving began by delineating generic infnrma-
tion processing tasks. A generic task is a primitive type of knowledge-based reasoning.
Each generic task is functionally specified by its input and output, and is characterized by

the organization of knowledge and control of problem-solving appropriate for the task. An
important consequence of identitying generic tasks is that they provide a framework to char-
acterize knowledge-based reasoning. Also, generic tasks provide high-level building blocks
for expert system design and prototyping. If a complex real-wnrld task ran be decorriposed
into several generic tasks, and if we know h,-w f, p-rf,,rm --1,11 4 t. . , lh'n 4hcre is
a basis for concluding that the complex task can 1- Z,,,-5,ssf 11lv j1 -rbr,,.,I k\ ;m integrated

system.

LAIR liha- alrn devel-ped a ,.-ct,,ik,, representation language for one organizational scheme

of our Knowledge about the structure and behavior of devices [171. The basic idea, is that
aspects of an agent's model of how a device works can be represented in a way that shows

how an intended function is accomplished as a result of the behaviors of its components,
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leading tc a series of states of the device. The Functional Representation Language has
more recently been used to represent how aspects of plans and programs, with both viewed
as abstract devices. FR representations are being applied to issues of organizing complex I
and ultimately large technical knowledge bases for multifunctional problem solving systems
that can support design, diagnosis, prediction, explanation, and which can also contribute
to tutorial systems.

In our 1989 report on basic research results from the LAIR, we summarized a variety of
results that we have obtained in understanding knowledge based system construction and U
architecture. We summarized three generic task integration that had been pursued in LAIR's
Generic Task Toolset [111, Bill Punch's TIPS system [16], and the ongoing work on abduction
in SOAR [10]. We also reported on the the development of task-oriented methodology [4],
and the general pattern of this method has been applied to the design task in a paper included
with this report. [5] Our 1989 report discussed the systems of Tanner [191 and Keuneke [121
that provided explanatory capability for knowledge based systems. Finally, some work of
Goel [91 on functional representation of device structure and behavior and the development
of indexing schemes for redesign tasks was reviewed. 3
In this final report, we will report on continuations of previous research and also on some
new directions that we have explored as part of our AFOSR grant. I
Extensions

In the present section, recent research results that elaborate and develop previously iden-
tified issues and projects will be described. The major results arise from projects that are
continuations of the following areas of research: theory building for task structures, novel
architectures for integrating problem solving tasks, extensions of the range of domains to
which LAIR task architectures and knowledge representation structures have been applied, 3
improvements in the performance features of knowledge based systems (robustness, correct-
ness, and efficiency). Also some applied theoretical results on the computational complexity
of variants of two important problem solving tasks (abductive assembly and planning) will 3
be described. I

1. A task structure for design has been proposed based upon an analysis of a general
ciass o, methodq called "Propose-Critique-Modify" methods. The task structure is
constructed by identifying a range of mrthods for each task. For each method, the I
knowledge needed and the subtasks that ,f sits u p a, idntifi,-, ii, r tcrive stle
of analysis provides a framework in 11hich w,. ' - I , ,r tiI ; ,,t,,.r T,, par 0cu lr

proposals for design prkl-rn solving as specifi- corn"h'- ,, ,, ., .
subtasks. Most of the subtasks are not really qpecific to design as su(:h. The analysis
shows that there is no one ideal method for drign, a rid good de.sign )r,,hlem solvi ng
is a result of recursively selecting methods based on a number of criteria including I
knowledge avdilability. flow the task analysis can help in knowledge acquisition and
system design is discussed. A copy of the paper is included with this report J5'. 3
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2. Functional representations of program specifications have been combined with gram-
matical and axiomatic semantic knowledge about program implementations to yieldIproblem solving systems that can test implementations and arrive at justifications
for program implementation correctness or at diagnoses of error in impleme,, ations.
1] This work uses the representation of device understanding reported in Semblig-

amoorthy and Chandrasekaran [17] that established the groundwork for representing
understanding of a device by specifying the roles that components of a device play in
its behavior. For non-trivial physical devices, it is often difficult fo nd an appropriate
formal language to describe states of the device. However, when thinking of a computer
program as a dcvicc, though programs share modularity of design with physical devices,
they also have a formal description of their behavior (specified by the formal semantics
of the programming language) with which it is possible to justify conclusions about the
programs. A certain form of mathematical induction can yield a correctness proof for3 the program. In addition to resolving some open problems concerning the consistency
of representations and the semantics of states, it is shown how such a represent a;Cn
of understanding can be used to aut',matically verify and correct programs.

3. In building larger and more complex knowledge base systems, the need has arisen to
be ab!e to identify errors and correct them-a problem of knowledge-base refinement.3 The task of corrective learning is: given a problem solving system that has produced
an answer unacceptably different from the correct answer, identify how the system
made the error (using the difference between the correct and erroneous answers) and
then correct the problem solving system so it does not happen again. Functional
representations have been used in building a system capable of corrective learning.

* [20]

The credit assignment needed for this corrective process is an explanation-based one;
that is, alternative explanations for why the knowledge-based system erred are pro-
posed and the best one is selected. The credit assignment system examines trace
explanations detailing how a knowledge-based system derived its answer. The expla-

Snations examined by the system are of two types: First, the credit assignment system
devises error hypotheses that explain the deviation between the erroneous and real
answer, nd these explanations are examined. Second, the causal stories about what
has happened in the domain themselves provide explanations. The main thesis on
credit assignment is that capturing problem solving primitives at an approprate level
of abstraction for the available explanations guides the search through the space of
potential candidates effectively.

3 The fhi.t step in this task is the identifica ti,, thi ,,t ,,f4 'rr,,r , ,i ' -' e olei. ;

r.n..- :- e ns ake. I s,.g gencric, ", ask w;i architectures for designing knowledge-
based systems greatly simplifies the identiih ijihn of this set. Each task is modeled as
a devic (using the Functional Representatiot). and this representation is used to map
from stcps in the problem solving behavior to knowledge identifying error candidates.
The second step in placing credit for a mistake is to evaluate the proposed error can-
didatCs so that the best set of error candidates accounting for the knowledge-based
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system error is selected. A form of r1 odel-based reasoning is used to map the knowl- I
edge used by the knowledge-based system to a model representing the "complete"
domain theory. One approach for representing this knowiedge is to define a functional I
model of the problem solver and the domain. By relating the knowledge-based sys-
tern's knowledge to the domain model and then by reasoning with this model, the
explanation of the knowledge-based system's answer can be compared with at. expia-
nation of the expert's answer to yield locations for corrections in the system. This work
differs from most work on this type of problem because the search for credit involves
forming justified changes through the use of explanations rather than using statistical I
or heuristic changes; a paper is included with this report that explains how the error
candidates are generated. 3

4. Computational complexity results have been obtained that allow fine discriminations to
be made between tractable (polynomial) and nontractable (usually NP) cases of prob-
lem solving tasks of interest to knowledge based system builders. Abduction construed
as a set covering problem (where hypotheses cover data sets) has been thoroughly char-
acterized. The final paper for these results is included in this report.131 Results have
recently been obtained for planning problems that involve the selection of operators to
get to some goal state from a given initial state, and a paper is included for this result
also [2]. I

5, Soar architectural realizations for Generic Tasks have been constructed for hierarchi-
cal classification and for simple versions of abductive assembly. The theoretical basis
for this mapping of SOAR constructs and generic tasks is discussed in a paper in-
cluded with this report. [101 An initial large explanatory prototype testing the Soar
implementation has been constructed I

New Directions 3
1. The knowledge based system research tradition has generally made use of a variety of

distinctions between "deeper" and "shallower" forms of knowledge that have been of
some use in discussing comparative aspects of performance of systems accessing this I
knowledge. Unfortunately some of the terminology used in these discussions has been
seen to be in need of some clarification. Some needed clarification of the concepts
needed for discussion have been presented in a paper included with this report. [61

2. Multifunctional knowledge based systems will integrate several reasoning capabilities,
some in the service of others at various points in the problem solving process. Pre- Idiction and consequence finding, for exarupl-. , ,Ti I r-' Ti p,,rt irt i T,,i f whether a

design should work, in checking whether p r ,It l agn,5ti, - '%N11ri, ill work,
and so on. Systems for carrying out ihese predictive suibtasks shlidi be able to inte-

grate both quantitative and qualitative pr-dirtiv- tasks. Tn addition, th,- repertoire of
qualitative predictive methods has not been fully elaborated. Visual spatial reasoning
is one problem solving method that can accomplish some qualitative predictive tasks.

44
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3. Finally, both biological and cognitive psychological theorizing has been presumed to
be relevant to the constructive and design portions of artificial intelligence research.5Rational analysis (RA) has been proposed as a methodology that may illuminate how
a mechanistic realization of mental capabilities may be found. I have argued that RA
may be of help 1n drawing the distinction between the content that problem solving

I mechanisms operate upon, but is not necessarily useful in providing guidance about tile
aL.ora iaecitanism! of cognition. These arguments are developed in a paper included
with this report (7J.

Conclusion

AFOSR-sponsored research completed during 1989 and 1990 has advanced the basic under-
standing of the structure of tasks in problem solving and how method selection can occur
within knowledge based problem solving systems. The important notion of task-structure,
providing a means of characterizing the relation of task, method, and subtask, aids in the3 construction of large, complex, and versatile systems. The analysis of the design task pro-
vides a good illustration of task structure methodology. Complexity analyses complement
our understanding of the computational resource requirements of various cascs of central

I problem solving tasks.

Improved ways of understanding how knowledge can be used to guide method selection
h ave become available and have been incorporated in several schemes for building integrated
generic task systems for abduction in a universal subgoaling architecture (SOAR), program
testing and corrective learning. During 1990, integration issues have been combined with3 issues about the organization, indexing, and access of knowledge of devices using the func-
tional representation language. The scope of the FR language has been investigated in both
novel domains and in novel uses (such as in the representation of a system's own task struc-
ture). In other research on multifunctional knowledge base systems, principles fcr handling

the organization of complex device knowledge (including various class hierarchies) have beeng combined with the hierarchical organization of the original FR scheme.
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.4 bstract. 3
I propose a task structure For design by analyzing a general ciass of

,herhods tha: I call Propose-Critique-Modify" methods. The task
structure is constructed by identifying a range of methods for each task.
For each method. the knowledge needed and the subtasks that it sets ":c
are identified. This recursive style of analysis provides a framework in
which we can understand a number of particular proposals for design
problem solving as specific combinations of tasks, methods and subtasks.
Most of the subtasks are not really specific to design as such. The anaivsis
shows that there is no one ideal method for design, and good design
problem solving is a result of recursively selecting methods based on a
number of criteria including knowledge availability. How the task anaivsis
can help in knowledge acquisition and system design is discussed. I

The Task Structure Methodology I
Design problem solving is a complex activity involving a number of
subtasks. and a number of alternative methods potentially available for
each subtask. The structure of tasks has been a key concern of recent I
research in task- oriented methodologies for knowledge-based systems
(Chandrasekaran, 1986: Clancey. 1985: Steels. 1990: McDermott. 1988).
One way to conduct a task analysis is to develop a task.structure

(Chandrasekaran, 1989) that lays out the relation between a task.
applicable methods for it, the knowledge requirements for the methods and
the subtasks set up by them. The major goal of this paper is to develop a
task structure for design as a knowledge-based problem solving activity.

Design as Search in a Space of Subassemblies I
Designing artifacts that are meant to achieve some functions within some U
constraints is an important class of design with characteristic properties

i Goel and Pirolli, 1989). We concentrate on this class of design problems in m
this paper.

I
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For sufficiently complex versions of the design problem a common theme
emerges for design as a process: it involes mappings from the space of
design specifications to the space of devices or components (often referred
to as mapping from behavior to structure), typically conducted by means of
a search or exploration in the space of possible subassemblies of
components. This is in fact the origin of the frequent suggestion that design
is a synthetic task.

The design problem is formally a search problem in a very large space for
objects that satisfy multiple constraints. Only a vanishingly small number
of objects in this space constitute even "satisficing," not to speak of
optimal, solutions. What is needed to make design practical are strategies
that radically shrink the search space.

Set against the view of design as a deliberative problem solving process is
the view of design as an 'intuitive," almost instantaneous, process where a

design solution comes to the mind of the designer. Artistic creations and
scientific theories are often said by their creators to have occurred to them
in this manner. Even when a plausible solution occurs in this way. the
proposal still needs to be evaluated, critiqued and modified by
deliberatively examining alternatives. That is. except in simple cases,
deliberative processes are still essential for real-world design.

Functions, Constraints, Components and
Relations

A designer is charged with specifying an artifact that delivers some
functions and satisfies some constraints. For each design task, the
availability of a (possibly large and generally only implicitly specified) set
of prisitive components can be assumed. The domain also specifies a
repertoire of primitive relations or connections that are possible between
components. An electronics engineer, for example, may assume the
availability of transistors, capacitors, and other electrical components when3 he is designing a waveform generator. Primitive relations in that domain
are serial and parallel connections between components.

Of cour, design is in general recursive: if a certain component that was
assumed to be available is in fact not available, the design of that can be

I3
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indertaken in the next round. However, the vocabulary of primitive

components and relations may be rather different than those for he

original de% ice.

Functions can be expressed as a state or a series of states that we want -.'.e

device to achieve or avoid under specified conditions. Functions may be

explicitly stated as part of problem specifications, or they may be mpl:c'.,.

in the designer's understanding of the domain. An example of an implicit I
function in many engineering devices is safety: e. g. a subsystems roie

may only be explained as something that prevents leakage of a porI-

hazardous substance. and this funtion may never be stated explic-tly as

part of the design specification (Keuneke, 1989).

Usually. design specifications will mention. in addition to desired

functionalities, a number of constraints2 . The distinction between functions
and constraints is hard to pin down formally; functions are constraints on

,he behavior or properties of the device. It is, however, useful to distinguish

functions from other constraints, since the former are the primary reason

whv the device is desired. Design constraints can be on the properties of

,he artifact (e. g., -Should not weigh more than ... '), on the process of

making the artifact from its description (manufacturability constraints), on

the design process itself (e. g.. -[ want a design within a week-) and so on.

Ak computationally effective process of design is to generate a candidate

design based on functions and then to modify it to meet the constraints.

Definition of the Design Task i
Consider the following definition of the design task.

The design problem is specified by:

e a set of functions (explicitly stated by the design consumer

as wel as implicit ones defined by the domain) to be

delivered by an artifact and a set of constraints to be

satisfied, and

IThe constraints that are described as part of the design specification ought to be
distinguished from the term "constraint" that appears in description of design methods.
such as "constraint-directed problem solving

4I



I
I
I

i a -technology", i. e., a repertoire of components
assumed to be available and a vocabulary of relations
between components.

The constraints may pertain to the design parameters
themselves, to the process of making the artifact, or to the
design process. The solution to the design problem consists
of a complete specification of a set of components and their
relations which together describe an artifact that delivers
the functions and satisfies the constraints. The solution Is
expected to satisfy a set of implicit criteria as well, e. g., it
is not much more complex or costly than plausible
alternatives (ruling out Rube Goldberg devices).

The preceding definition also captures the domazn-independent character of
design as a generic activity. Planning. programming and engineering design
all share the above definition, as well as many of the subprocesses. to a
significant degree. Nevertheless, there are versions of the design problem for
which the above definition needs to be modified or extended. Examples are:

* At the start of the design process only a minimal statement of
functions and constraints may be available, and additional ones may
be developed in parallel with the design process itself.

* Some design problems involve extensive trade-off studies, where a
part of the design process is search for ways in which the functions or
the constraints may be relaxed or otherwise modified.

* "Tinkering" is a time-honored method of invention where the design
space is being explored without any specific set of functions in mind.
Functions may be identified for structural configurations that arise
during exploration.

* The world of primitive objects may be very open-ended, and only
implicitly specified.

The design framework that I will be presenting can be extended to cover
these variations.
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The Task-Structure 3
Let us say we have a problem solving task3 T, and let \1 be some method
suzgested for the task. A method can be described in terms of .he operaltor-
it employs, the ob]ects that it operates on, and any additional knowledge
about how to organize operator application to satisfy the goal. At the
knowledge level, the method is characterized by the knowledge the agent
needs to set up and apply the method. Different methods for the same :ask
may call for knowledge of different types.

To take a simple example. for the task of multiplying two multi-digit
numbers, the -logarithmic nethod" consists of the following series of I
operations: eztract the logarithm of each of the input numbers. add the two
,ogarithms. and extract the anti-logarithm of the sum. (The operators are
italicized. Their arguments as well as the results are the objects of this
method.)

Note that one does not typically include, at this level of description of the
logarithmic method. specifications about how to extract the logarithm or I
the anti-logarithm, or how to do the addition. If the computational model
does not provide these capabilities as primitives, performing these
operations can be set up as subtasks of the method. Thus, given a method. I
applying any of the operators of a method can be set up as a subtask-
Some of the objects a method needs may be generic to a class of problems
in a domain. As an example, consider hierarchical classification using a I
malfunction hierarchy, a common method of diagnosis. Operations of
-Establish-Hypothesis" and 4Refine-Hypothesis' are applied to the
hypotheses in the hierarchy. These objects are useful to solve many I
instances of the diagnostic problem in the domain. If the malfunction
hypotheses are not directly available, generation of such hypotheses can be
set up as subtasks. A common method for the generation of such objects :s

compilation from so-called -deep" knowledge. Structure-function models of
the device that is being diagnosed have been proposed and used as deep
models to generate malfunction hypotheses (Chandrasekaran, et al. 1988). I
There is no finite set of mutually distinct methods for a task. since there 3

3Tn this paper, I use the terms "task' and "goal" interchangeably
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can be numerous variants on a method. Nevertheless, the term -method" is

a useful shorthand to refer to a set of related proposals about organizing
i computation.

Types of Methods. One type of method is of particular importance in
knowledge-based systems: methods which can be viewed as a problem space

I search (Newell, 1980). Designer-Soar (Steier, 1989) and AIR-CYL Brown
and Chandrasekaran, 1989) are examples of design systems which explore
search spaces. For example, AIR-CYL can be understood as searching in a

space of parameters for the components of an air-cylinder by using design
plans which propose and modify parameter values.

Another class of methods consists of algorithms which directly produce a

solution without any search in a space of alternativez, e. g., producing a set
of design parameters by nurneri..ay solving a set of simultaneous
equations. SuLh aigorithms are only available for so-called well-structured
problems 4. Most real-world problems are ill-structured, and the role of
domain knowledge is to help set up spaces of alternatives and to help

control the search in those spaces.

A task analysis of this type can be continued recursively until methods
whose operators are all directly achievable (within the analysis framework)
are reached. In the following task analysis for design, I will explicitly

indicate as subtasks only those to which I want to draw specific attention inI my discussion. Other operators may exist which require additional problem
solving as well.

41 subscribe to the view that such algorithms are simply degenerate cases of search
where the agent ha sufficient knowledge to make the correct choice at each choice point.
But, pragmatically speaking, it is best to think of algorithmic method as a separate type.

since implementing them does not require supporting search in general.
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A Task-Structure for Design- I
The Propose-Critique-Modify Family of Methods

The most common top level family of methods for design can be i
characterized as Propose.Citzque.Modify PC.M) methods. These methods
have the subtasks of Proposal of partial or complete design solutions. j
Verification of proposed solutions, Critiquing the proposals by identifying
causes of failure, if any, and Modification of proposals to satisfy design
goals. These subtasks can be combined in fairly complex ways. but the I
following is one straightforward way in which a PCM method may organize
and combine the subtasks.

Example PCM Method:

* Step 1. Given design goal, Propose solution. If no I
proposal. exit with failure.

* Step 2. Verify proposal. If verified, exit with success.

* Step 3. If unsuccessful. Critique proposal to identify
sources of failure. If no useful criticism available, exit with
faiure.

* Step 4. Modify proposal and return to 2.

While all of the PCM methods will need to have some way to achieve the
iteration in Step 4 above, there can be numerous variants on the way the
methods in this class work. For example, a solution may be proposed only
for a part of the design problem, a part deemed to be crucial. This solution
may then be critiqued and modified. This partial solution may generate
additional constraints, leaiing to further design commitments. Thus
subtasks can be scheduled in a fairly complex way, with subgoals from
different methods alternating. It is hard to identify a separate method for
each such variation. The implications of this for a design architecture are
discussed in the concluding sections of the paper.

In this paper most of the attention is devoted to the Proposal subtask, i
since most of the design knowledge, per se, is used in this subtask. Every

Si
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3task has a default method: one which uses compiled knowledge to get a

soiution without any probiem solving. This method is practical only in
simple cases. Because this method is potentially applicable to simple
versions of all tasks, and has no interesting internal structure. I will not
explicitly mention it in my discussion.

A task analysis should provide a framework within which various
approaches to design can be understood. I will use selected examples of
existing Al systems to illustrate the ideas, but there will be no attempt toIprovide a survey of all Al work on design.

Methods For Proposing Design Choices

i Design proposal methods use domain knowledge to map part or all of the
specifications to partial or complete design proposals. Three groups of
methods can be identified:

" Problem decomposition/solution composition. In this class of
methods, domain knowledge is used to map subsets of design
specifications into a set of smaller design problems. Use of design
plans is a special case of decomposition methods.

" Retrieval of cases from memory which correspond to solutions for
design problems which are similar or 'close" to the current problem.

" Family of methods that solve the design problem as a constraint
satisfaction problem and use a variety of quantitative and qualitative
optimization or constraint satisfaction techniques.

Decomposition and case-based methods help reduce the size of the search
spaces, since the knowledge they use can be viewed as the compilation or
chunking of earlier (individual or community) search in the design space.
Conversion of a design problem into one amenable to global optimization
algorithms requires substantial a priori knowledge of the structure of the
design problem.

Decomposition/Solution Composition. I will treat this method in
terms of all the features that an information processing analysis calls for:

19
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types of knowledge and information needed and the inference processes tnat
operate on this form of knowledge.

Knowledge needed is of the form D -> DI, D2.... Dn. where D is a :'.Vn
design problem and Di's are smaller" subproblems , . e.. associated *:A!
smaller search spaces than D). A number of alternate decompositions 'or p

problem may be available, in which case a selection needs to be made. w:.
the attendant possibility of backtracking and making another choice. I
Repeated applications of the decomposition knowledge produce deszgn
Aizerarchies. In well-trodden domains, effective decompositions are known
and little search for decompositions needs to be conducted as part of
routine design activity For example, in automobile design the overall
decomposition has remained largely invariant over several decades. I
Decomposition knowledge in design generally arises when the funct;onal
specifications can be decomposed into a set of subfunctions Freeman and

Newell. 1,971). Design decomposition knowledge may come in the form of I
part-subpart decomposition, if a direct mapping is available between
functions and components. I
The following are two important subgoals of the Decomposition Solution
Composition method. I

* Generating specifications for subproblems. The functional and orter
specifications on D need to get translated into specifications for eacn
of the subprobiems Dl.... Dn.

* Gluing the subproblem solutions ,nto a solution to the original design
problem. a

In most routine design, these subtasks are not explicit: they are either j
solved by compiled knowledge or the problem specification already implies
a solution to these problems. In the general case, however, additional
problem solving is needed.

How a Decomposition/Solution Composition method might actually
organize and use the subgoals is given by the following example.

I
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Example Problem Decomposition; Solution Recomposizion
Method:

* Step I (Search in the space of decompositions.) Choose
from among alternative decompositions for the given
design problem D.

e Step 2. Generate spe,,fications for subproblems in theI chosen decomposition.

* Step 3. Set up each subproblem as a design problem. Solve
-, them in some order determined by control strategies and

other domain knowledge (e.g., progressive deepening)

* Step 4 If subproblems solved, Recompose solutions of
subproblems into solution for D, and exit.

e Step 5. If failure in Steps 3 or 4. go to Step I to make
another choice, or relax specifications and go to Step 2.

A'] the caveats mentioned in connection with the PCM method earlier
apply Spec:ficailv, control of how subproblems are solved may be quite
varable and more complex than indicated above. Some of the sources of
:his complexit axe discussed below.

Given a design problem, it may not always be possible to generate all the
constraints for its subproblems from the original problem's specifications
alone. In many domains, constraint generation for some subproblems
alternates with partial design of others, which in turn provides additional
information for con7traints for yet other subproblems. There may be a
complex process of commitments and backtracking. In extreme cases, most
of design problem iolving may consist of search for parameters that make
all the subproblems solvable. For example, the Propose and Remtse method
SMarcus, 1985) involves making commitments to some subparts of the
design problem (Propose part) and then Revise these when some
constraints for other parts of the problem are violated.

In configuration tasks (Mittal and Frayman, 1989), subproblem solutions

are given as part of the problem (i.e. the desired functions are mapptd into
a set of key components), and the remaining task is dominated by the

_1 tI
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subtasks :f specification generation and solution recomposit;on. In order I
.)r compotients N and B to be connected. certain pre- and post-cond:tiuts

may aeed to be satisfied. If these conditions are not available a priort. "-ey
need to be derived from configuration behaviors. Discovery of connec,:onI
onditions and checking of whether specific configuration proposa',s resiilt
•sisred unctonal behaviors can often use simulation as a problem o'"n

methoa (e.g., Kelly, 1982)). c

There can be complex dependencie, between constraints among
subprobiems. In situations where not only are commitments for DI goin I,
to constrain the specifications for D,.. Dn, but the commitments for the

,atter may further specify constraints for D1 as well, a strategy that Steier
.9 9) has identified as progressive deepening, is & natural strategy to

emerge. This strategy involves making some commitment for each
subproblem it each pass, using these commitments to generate additional
specificat,,ons, undoing eartier commitments as needed, and repeating tnis I
process.

Control Issues. There are two sets of control issues, one dealing with wh:c
sets of decompositions to choose (in Step I in the example
Decomposition/ Recomposition method above), and the other concerned
-with the order in which the subproblems within a given decomposition I
ought to be attacked (Step 3). For the first problem, in th, generai case.
,he decrmposition will produce an AND or an OF, node. The
, ecompoaitions in an AND node will al! need to be solved, while or an OR I
node only one of the decompositions will need to be solved. Finding .he
appropriate decomposition requires search in an AND/OR graph. But as a

ruie such searches are expensive. In domains where multiple decompositions I
are possible but there are no easily formalizable hevristics to choose among
them, the machine may be effective in proposing alternatives while the

human evaluates them and makes a selection.

In routine design extensive searches in the spaces of possible
decompositions are avoided by limiting the number of possibie I
decompositions at each choice point to one or very few This leads to the

availabilhty of a design hierarchy for design in that domain.

Transformation methods Balzer, 1981) for algorithm synthesis are

12
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examples of decomposition methods. In this approach. a set of high-levelaDecifications of an algorithm are converted into a series of programming
ianguage level commitments. This is done by mapping subsets of
specifications into a 'component" for which some implementation level
commitments have been made. Each such commitment will typicaily
constrain other implementation commitments. Because of this, search in
-he space of possible transformations may often be needed. In most
rnmplemented transformation systems, humans choose from a set of
aiternative transformations presented by the design system.

1Regarding the order in which subproblems in a given decomposition are to
be attacked, the main constraint is knowledge about dependencies between
subproblems that I just discussed. When the subproblems are organized in
the form of a design hierarchy, the default control is control top-down, but
actual control c.na be complicated. For example, a component at the leaf
.evei of the design hierarchy may be the most limiting component and
many other components and subsystems can only be designed after that is
chosen. Part of design process in this case will appear to have a bottom up
3avor. In general, appropriate control strategies come about based on the
dependencies between subproblems.

Design Plans. A special case of decomposition knowledge is design plans,
representing a precompiled partial solution to a design goal (Rich I 19Q' 
Johnson ( 1985), Friedland (1979), Mittal (1986), Brown and
Chandrasekaran (1989)). A design plan specifies a sequence of design
actions to take for producing a design or part of a design. Design
commitments made by a design plan may be abstract, i. e., choices are
made not at the level of primitive objects, but rather intermediate level
design abstractions which need to be further refined at the level of primitive
objects. For example, in designing an automobile, a design plan may
commit to choice of diesel engine as the power plant. While this is a design
proposal in the sense that a commitment is being made, the diesel engine

design itself is not specified in detail at this stage, but posed as a subtask
to be solved by any of the available methods.

Thus a design plan D may set up other design problems D1, ... , Dn as
Ssubproblems, and, in this sense, it is decomposition knowledge in a strong

s1t
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,orm: how the main problem goals are transformed into goals to be

allocated to subproblems and how the solutions to the subproblems are p,:t B
back together for obtaining a solution to the original design problem are ail
directly encoded in the plan. 3
Design plans can be indexed in a number of ways. Two possibilities are to

index by design goals (for achieving < goal > use < plan >), or by

components (for designing < part >, use < plan >). Each goal or I
component may have a small number of alternative plans attached to them.

with perhaps some additional knowledge that helps in choosing among
them.

Control and inference issues in the use of plans are similar to those in the

general case of decomposition: alternate plans are possible, and in routine I
design. design plan hierarchies may emerge. The default control strategy
can be characterized as instantzate and ezpand. That is, the plan's steps

specify some of the design parameters. and also specify calls to other design

plans. Choosing an abstract plan and making commitments that are

specific to the problem at hand is the instantiation process, and calling
other plans for specifying details to portions is the expansion part. 1

A number of additional pieces of information may be needed or generated

as this expansion process is undertaken. Information about dependencies

between parts of the plan may need to be generated at runtime te g..
discovering that certain parameters of a piston would need to be chosen

before that of the rod), and some optimizations may be discovered at run

time (e.g., the same base that was used to attach component A can also be

used to attach component B). NOAH (Sacerdoti, 1975) is an early example

of run-time generation of dependencies and optimization.

Design Proposal By Case Retrieval. A major source of design

proposal knowledge is design cases, instances of successful past design

problem solving. Cases can arise from an individual's problem solving

experience or that of an organization such as a design firm Vz a design I
community. Cases can be episodic (i. e., represent one problem solving

episode) or can represent the result of abstraction and generalization over

several episodes. Design plans can be considered to be fairly abstracted

versions of numerous cases.

14
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5,,ussman (1973) proposed that a design strategy is to choose an
already-completed design that satisfies constraints closest to the ones that
apply to the current problem. and modify this design for the current
constraints. Schank (1982) has emphasized the importance of case-based
problem solving in general. Recent work on case-based reasoning in
planning and design (Hammond. 1989; Goel and Chandrasekaran. 1.989'
explores this family of methods. In case-based reasoning, -almost correct
designs" are obtained by searching a memory bank of previous cases for a
design that is similar to the one that is currently being sought.

The heart of case-based design proposal is .iatching: How to choose the
design that is -closest" to the current problem? Clearly some features of
the cases are more important in matching than others. Some notion of
prioritizing over goals or differences, in the sense of means-ends analysis,
may be needed.

Indexing of cases with a rich vocabulary of features of the case and the goals
it satisfies is a key idea in case-based reasoning. Matching and retrieval can
be driven by associative processes on these indices. Much of the work in
case-based planning has used domain-specific goals to index cases. For the
problem of designing engineering artifacts, the design cases need to be
indexed in terms of the output behaviors of interest. For example. Goel and
Chandrasekaran (1989b) propose that design cases be indexed using their
functions. More generally, cases can be indexed by a causal representation
that relates the structure of the device to its function, and show how this
can help in retrieval. Goel (1989) has a proposal for how matching and
retrieval can benefit from a principled representation for design goals and
states for the device and the ,ubstances the device operates with.

Case-based design proposal has a lot in common with the use of analogical
reasoning in design. Maher, Zhao and Gero (1988) propose that analogical
reasoning in design is at the heart of design creativity.

Design Proposal by Constraint Satisfaction. Under fairly strong
assumptions particular classes of design problems can be formulated as
optimization, constraint satisfaction or algebraic equation solving problems.
WVhat is common to all these formulations is that the solution lies in a
space determined by simultaneous constraints, and specific classes of

1 15
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computational algorithms may be available to locate that space directly 1Z. 3
par::cular. when the structure of the design is already specified, but
parameters are determined by the specifics of a design problem ninerlcai'
or symbolic optimization techniques may be useful for design proposai. I
Linear, integer and dynamic programming techniques have been used to
solve design problems formulated in Ii manner. f
Some versions of the cr,,r!t:,aint satisfaction problem can be solved by
constraint propagation. Constraints can be propagated in such a way that
the compnaent parameters are chosen to incrementally converge on a set !
that satisfies all the constraints (Stefik, 1981).

Formally all design can be thought of as constraint satisfaction, and one 3
might be tempted to propose global constraint satisfaction as a universal
solution for design. But unless knowledge is employed to reduce the size of
the space (such as by decomposing problems into smaller problems., design !
by constraint propagation can be computationally intractable. Knowledge
such as decomposition can create subproblems with sufficiently small
problem spaces in which constraint satisfaction methods can work without I
excessive search.

Verification 3
This subtask involves checking that the design proposal satisfies the

functional and other specificaticns. There are two families of methods for
this:

* Attributes of interest can be directly calculated or estimated by
means of domain-specific algorithms or formulae (e.g.. use of algebraic
formula to calculate total weight or cost, or use of finite-element
methods to calculate stress distribution). Direct calculation methods I
are not of much interest from an Al point of view.

e Behaviors of interest can be derived by simulation. These behaviors ft
can be checked against requirements.

Simulation takes as input a description of the structure of the system and I
generates as output the behaviors of interest. The methods used in

16 i
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simulation should mirror the rules by which the behavior of assernolage5 olI components is composed from the properties of the components. There are

quantitative simulation methods which use equations that directly descr:be

the results of this composition. These equations again are domain-specific.

For example, differential equations may be used to describe the behavior of
a reaction in a reaction vessel. The structural description in a proposec3 design of a reaction vessel can be translated into parameters of the

differential equation and the equation simulated to derive behaviors of

Iinterest.
There are generic Al techniques for generating behavior from structure that
could be useful for simulation. Qualitative simulation (see Forbus. 1988. for3 a survey of the current state of the art). consolidation (Bylander. 1988) and
functional simulation (Sticklen. 1989) are examples of Al techniques that
are available for deriving behaviors given structure. A proposed design canI be simulated under various input conditions and the behavior evaluated.
All these techniques take as input a structural description and, using

qualitaive descriptions of component behaviors and rules of composition.

mimic the operation of the device to produce qualitative descriptions of
behavior. Qualitative and quantitative simulation may alternate: a

qualitative simulation may identify behaviors likely to be in unacceptable

ranges and a more focused quantitative procedure may be used to get more
precise values.

£ Visual simulations. Visual simulation of artifacts is widely used by human

designers in verification. Designs are imagined, represented, and
communicated pictorially in domains such as architecture and mechanical
engineering. (See Goel and Pirolli for design protocol studies which show
the prevalence of images during design. It is clear that there is a need for
pictorial representations and symbolic representations to coexist in design

systems. A major use of imaginal representations is in simulation of design
proposals, but they play a role as weil in making design proposals by
analogy with other domains. Little Al research has been done so far on
visual representations that have the qualities needed for pictorial reasoning
and imagination, and that also have the symbolic properties needed for
arbitrary referencing and composition by parts. A beginning in this
direction is proposed in (Chandrasekaran and Narayanan, 1990) and use of

7



such reoresentations for simulation is discussed iNar.-,,.. .

Chandrasekaran, 1990).

Critiquing

Critiquing is the subtask in which causes of failure of a design are analzed.
parts of the structure are identified a.s potentially responsible for the
unacceptable behavior or constraint violation. Critiquing is really a
generalized version of the diagnostic problem, i.e., a problem of mapping
from undesirable behavior to parts of the structure responsible for the
behavior. Modification of design can be directed to these candidates. Of
course localization of responsibility for failure will not always work: the
entire approach to the design may need to be changed.

What is needed for criticism is information about how the structure of the
device contributes to (or is intended to contribute to) the desired overall
behavior. An AI method that is commonly used for this subtask is
dependency analysis (Stallman and Sussman, 1977). This method is
applicable if explicit information is available in the form of dependencies.
i.e., knowledge that explicitly relates types of constraint or specification I
violations to prior design commitments. For examD[e, if tots weight of a
proposed design is higher than the weight limit, domain-specific knowledge
is uqually available which identifies parts whose weights are both sufficient ,l
large and can be adjusted. Dependencies may be discovered by analyzing
pre- and post-conditions of design operators. For example, if a certain

output behavior (say, voltage in an electronic device) of a proposed design
is excessive, the inputs the output stage can be traced back to identify
which of the components upstream may have contributed to the specific

output. This analysis may use simulation as a subtask.

Most of the proposals for critiquing that have been in the case-based

reasoning literature use domain-specific critics and are variations on
pre-compiled patterns of relating output behavior to possible changes. The
approach of Goei (1989) for critiquing a design proposal is based on a
functional analysis of the proposed design. If a design proposal is endowed

with causal indices that explicitly indicate the relation between structure
and intended functions, then it is relatively easy to identify substructures
for modification (Goel and Chandrasekaran. 1989).

IS I
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t iModification

Modification as a subtask takes information about failure of a candidate
design as its input and then changes the design so as to get closer to the
specifications. Basically, what is required is changing a functional subpart
of the proposed design. or adding components to the proposed design. so a~s
to satisfy the design specifications. Depending upon the sophistication
about failure analysis and other forms of knowledge available, a number of
problem-solving processes are applicable. Some of them axe briefly outlined

* in the following paragraphs.

Modification may be driven by a form of means-ends reasoning, where the
differences are -reduced" in order of most to least significant. Especially
useful here is knowledge that relates the desired changes in behavior to
possible structural changes (Goel. 1989).

I A related search approach is one where modification is done by some form
of hill-climbing. In this method. parameters are changed, direction of
improvement noted. and additional changes are made in the direction of
maximal increment in some measure of overall performance. This is
especially applicable where the design problem is viewed as a parameter
choice problem for a predetermined structure (e.g., the Dominic system
Dixon. 1984)).

Modification is straightforward in dependency-directed methods. Once the
dependency point is reached by back-tracking, simply an alternative choice
is made from the list of finite choices available.

Some systems that perform routine design problems have explicit knowledge
about what to do under different kinds of failures. This information can be
attached to the design plans (DSPL. Brown and Chandrasekaran. 1989)

Criticism may reveal the need to add new functions. If these functions can
be added modularly, i.e., by the creation and integration of separate
substructures that deliver the functions, the design of the additional
structures can be viewed simply as new design problems to be solved by all
the methods available for design. The subtasks of generation of
specifications for these additional design problems and integrating their
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solutl.s were discussed in the section on problem decomposition and
solution recomposition. I

Discussion of the Task Structure i

The task-structure for design described in the preceding sections' is 3
summarized in tabular form in Table 1. A task-structure is a description of
the task, proposed methods for it, their internal and external subtasks,
knowledge required for the methods, and any control strategies for the
method. Thus the task analysis provides a clear road map for knowledge
acquisition. How the analysis can be used to integrate the methods and
goals is discussed in the following section.

Choice of methods. How are methods to be chosen for the various tasks?
The following is a set of criteria:

e Properties of the solution. Some methods may produce answers which
are precise. while answers of the others may only be qualitative. Some
of them may produce optimal solutions. while others may produce
satisficing ones.

* Properties of the solution process. Is the, )mputation pragmatically
feasible? How much time does it take" Memorv? a

e Availability of knowledge required for the method to be applied. For
example, a method for design verification might require that we have 5
available a description of the behavior of the device as a system of
differential equations; if this information is not available directly and
if it cannot be generated by additional problem solving, the method i
cannot be used.

A delineation of the methods and their properties helps us to move away 
from abstract arguments about ideal methods for design. Each method in a

sThe task structure described here is inherently incomplete. additional methods may S
be identified for any subtask as a result of further research.

20
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task-structure can be evaluated for appropriateness in a given -it':ation by
asking questions reflecting the above criteria. While some of this evaluat,:,'n

can take place at problem solving time. much of it can be done at the t .e
of design of the knowledge system: this evaluation can be used -o guide a
knowledge system designer in the choice of methods to implement.

Different types of methods may be used for different subtasks. For exam: 'e.
a design system may use a knowledge.based problem solving method :or t:e
subtask of creating a design. but use a quantitative method such as a En:-e
element method for the subtask of evaluating the design.

Implications for an Architecture for Design Problem Solving

Because of the multiplicity of possible methods and subtasks for a task. a
task-specific architecture that is exclusively for design is not likely to be

complete: even though design is a generic activity, there is no one generic
method for it. Further, note that subtasks such as simulation are not

particularly specific to design as a task. Thus if the knowledge for these
modules is embedded within a design architecture, either they will be
unavailable for other tasks which require simulation as a subtask. or the
knowledge for these tasks will need to be replicated. Thus instead of
building monolithic task-specific architectures for such complex tasks. a
more useful architectural approach is one that can invoke different methods
for different subtasks in a flexible way.

Following the ideas in the work on task-specific architectures. we can
support methods by means of special-purpose shells that can help encode
knowledge and control problem solving. This is an immediate extension of
the generic task methodology (Chandrasekaran. 1986). These methods can
then be combined in a domain-specific manner, i. e.. methods for subtasks
can be selected in advance and included as part of the application system.
Or, methods can be chosen at run-time for the tasks recursively, based on
the criteria listed above in the paragraph on choice of methods. For the
latter, what is needed is a task-independent architecture with the capabilitv
of evaluating different methods, choosing one, executing it, setting up
subgoals as they arise from the chosen method and repeating the process.

Soax (Rosenbloom, Laird. and Newell. 1987), BB1 (Haves-Roth. 1987) or
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TIPS (Punch, 1989) are good candidates for such an architecture. This 3
approach combines the advantages of task-specific architectures and the
flexibility of run-time choice of methods. The DSPL-- work of Herman.
1990) is an attempt to do precisely this. 3
Using method-specific knowledge and strategy representations within a
general architecture that helps select methods and set up subgoals is a good
first step in adding flexibility to the advantages of the task-specific
architecture view. However, it can have limitations as well. For many real
world problems, switching between methods may result in control that is 1
too large-grained. In order to see this, consider my earlier description of a
PCM method. The method description calls for a specific sequence of how
the operators of Propose, etc. were to be applied. As pointed out in my j
discussion on the PCM method, numerous variants of the method, with
complex sequencing of the various operators, may be appropriate in
different domains. It would be a hopeless task to try to support all these a
variants of the methods by method-specific architectures or shells. It is

much better in the long run to let the task-method-subtask analysis to
guide us in the identification of the needed task-specific knowledge and let a U
flexible general architecture determine the actual sequence of operator
application by using additional domain-specific knowledge, The subtasks
can then be combined flexibly in response to problem solving needs, a
achieving a much finer-grained control behavior. (See Johnson. Smith &

Chandrasekaran, 1989 for realizing generic task ideas in Soar.) a
The task structure also makes clear how 4AI-like" methods and other
algorithmic or numerical methods can be flexibly combined, much as
human designers alternate between problem solving in their heads and a
formal calculations. For example, a designer may need to make sure that
the maximum current in a proposed circuit is less than the limits for its
components, and at that point, he may set up current and voltage I
equations and solve them. If he finds that the current in one branch of the
circuit is more than the permitted limit, he may go back to critiquing the

design to look for possible places to change the design. The task-structure
view that I have outlined shows how computer-based design systems can

also similarly engage in a flexible integration of problem-solving and other I
forms of algorithmic activity. The key is that the the top-level control is
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zoal-oriented, and it can set up subgoals and choose meth sG that are
appropria:e to -he subgoal If the appropriate rnethod fot a subras,: :s a
numerical algorithm, that method can be invoked and executed, at he -:
of which control reverts to the top-level for pursuing other goals.

Concluding Remarks

Over the last several years. there have been a number of working system.s
which perform some version of the design task in some domain. These
design proposals do not always bring out what is common among the
different tasks of design. There have also been attempts to develop formal
-first principles" algorithms for design that are meant to cover all types of
.esign. Such general algorithms are, however. computationaly intractable,

and are not particularly helpful in identifying the sources of power and
tractability in human design problem solving in most domains. 3
The view elaborated here is that there is a generic vocabulary of tasks anrd
methods that are part of design, and !hat design problems in different 5
domains simply differ in the mixture of subtasks and methods. Expertise.
e., methods. and knowledge and control strategies for them, emerge over a
period in different domains so as to help solve the task in a given domain I
tractably. The key to understanding all this is thus not in a uniform
algorithm for design, but in the structure of the task, showing how the
tasks, methods, subtasks and domain knowledge were related. The analysis I
also clarifies the relationship between task-specific architectures and more

general-purpose architectures for knowledge systems. I
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TASK MErHODS SUBTASKS
3

Design -Propose. Critique. -Propose. Verify
Modify family (PCM) Critique. Modify

Propose -Decomposition methods -Specification generat:cn I
(inct. Destgn Plansi & for subproblems

Transformation methods
-Solution of subproblems
generated by decomposcu-'
(ainther set of Design
tasks)

-Composition of
subproblem soluuors

-Case-based methods -Match & retneve siralz

-Global constraint-
satisfaction methods

-Numerical optimization I
methods

-Numerical or Symbolic
constraint propagation I
methods

Specification generation
for subproblems3

• Constraint propagation tncl. -Simulation to decide
constraint posting how constraints

propagate

Composition of -Configuration methods -Simulation for predict:cn
subproblem solutions behavior of candiate

configurations

Verify -Domain-specific calculations
or simulation

-Qualitatve simulation. Consolidation I
-Visual simulation

Critique -Causal behavioral analysis
techniques to :asign
responsibility

-Dependency-analysis techniques

Modify -Hill-climbing- Like methodswhich tncremen daly Improve parameters.

-Dependency-based changes 5
-Functlon- to-struc ture mapping
knowledge

-Add new functions -Desi new function.
Recompose with candidate
design

Table I For each task. there is a default *Compiled Knowledge' method which has domain-specific knowledge to

achieve it directly & which is not Included above. For subtask3 such as critIquing. we have ony. Indicated

families of generic Al methods, without explicit Indication of their subtasks. a
I
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£Introduction
A common problem with knowledge-based systems is they make mistakes. An
important task is to have systems be able to overcome their shortcomings and
be able to correct themscives. In knowledge-based systems, representations

-L have concentrated on achieving competence on soma task. To this end, many
successful systems have been designed and implemented. Even though many
systems perform their tasks quite well, these systems can still make mistakes.
Errors can result from the system having incomplete or incorrect knowledge.
The focus of this work is to identify structures and mechanism to overcome
these problems.

The problem of identifying and modifying incorrect knowledge is the the-
ory revision problem. The particular version of the problem being considered
is the corrective learning task. In this problem, a system produces an answer
in response to the input data that does not match the expert's answer-i.e.,
it does not match the accepted correct answer-and it must reconcile itself so5it will produce the correct answer the next time this situation is encountered.
More precisely, given a knowledge-based system, a set of data, the system's
answer, and the "correct" answer, the problems are (1) to identify the ele-£ ments in the system's knowledge structure causing the discrepancy between
the two answers and (2) to modify the system such that it will produce the

* correct answer in future similar situations.

I
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Previous Research 3
Research in knowledge aco,,;sition has partially addressM this problem by
asking a domain expert or using statistics to identify where aD error in reason-
ing occurred and how it might be corrected [6, 13, 9, 2, 1, 18]. For example,
Teresias, which serves as a knowledge acquisition tool for Mycin [15], oper-
ates by reviewing a trace of a system execution with an expert. Whenever
the expert feels the behavior (or the knowledge) of the system is wrong in
the context of a given problem, the system tries to elicit knowledge from the
expert that will result in the correct behavior. Thus, Teresias relies upon a
domain expert to understand the trace explanations from the system, and
to identify and modify the incorrect knowledge. The SEEK systems differ 3
because they do not rely upon a domain expert, but instead use statistics of
how often a rule was used to get a correct solution as opposed to an incorrect
one to identify what might be wrong. Correction occurs by proposing modi-
fications and accepting those which most improve the system's behavior over
a set of cases. What SEEK cannot do is produce causal explanations of its
corrections in terms of the domain.

Like Teresias, most of these systems rely heavily upon the domain expert
to interpret and provide corrections. The domain expert extends the sys-
tem's knowledge, and the knowledge acquisition task is to try to focus the
interaction and produce useful (operational) knowledge to be included into
the system. In some sense, the domain expert is playing the role of the do-
main theory described in explanation-based learning (EBL) [12, 8]. Ideally,
a system could learn autonomously if such a theory is represented within the
system-provided this theory is complete, consistent, and tractable. Unfor- I
tunately, a theory that meets these three criteria is generally not possible.
Thus the problem requires that some other information be given. For exam-
ple in the corrective learning task, the correct answer is also supplied. The I
purpose of having this additional information is it helps focus the search for
incorrect knowledge. In the corrective learning task, the learning mechanism
must be able to generate explanations of why the correct answer is right and J
the system's answer is wrong. Traditional EBL requires that the domain
theory have sufficient knowledge to imply the correct answer. But if the do-
main theory is less than ideal (incomplete, intractable, or inconsistent), the I
corrective learning task is to construct plausible explanations of why the cor-
rect answer is right and the system's answer is wrong, and to have sufficient
knowledge to determine the best explanation from those generated.

Credit Assignment as Identifying Subtasks at Fault

i'ne particular problem a system is expected to solve is often quite complex.
These tasks, for example: diagnosis, planning, etc., are solved through a

2 i
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series of subtasks which can be complex in their own right. The system's
failure to produce the "correct" answer results from one of the subtasks pro-
ducing an output that precludes the preferred answer. Each subtask can fail
in a variety of ways, and through an analysis of each subtask the possible
error types can be specified. Each error type can be thought of as an alter-
native hypothesis that can potentially explain the system's deviation from
the preferred answer. The credit assignment problem is to identify the best
set of (performance system) fault hypotheses that explain the deviation from
the better answer. Thus the fault identification problem (credit assignment)
is abductive in nature. In this abductive task, the data to be explained
are the differences between the system's answer and the correct answer and
the hypotheses are assertions about incorrect answers made be the systz,,a's
subtasks [3].

One set of methods that can be used to implement knowledge-based sys-
tems are generic tasks [5]. Each generic task is defined by its input, output,
and the subtasks used to produce the output from the input. Examples of
different generic tasks are hypothesis assembly, classification, and structured
matching. Thus for each generic task, there is a defined set of subtasks that
can be blamed for causing the incorrect answer. Each one of these subtasks
can fail in an enumerable set of ways. By an analysis of how each sub-
task computes its mapping of inputs to outputs, a set of rules delimiting its
possible types of errors can be defined.

If more than one error is applicable in a given situation, the credit assign-S ment system must decide between them and select the error that is the best
candidate for explaining the incorrect answer. To make this choice, there
must be criteria for evaluating the relative plausibility of each hypothesized
error. In our work, this evaluation depends on a partial causal theory of the
domain, i.e., instead of a definitive proof, this kind of domain theory provides5 causal evidence for and against a hypothesis.

*Generating Explanations

The key to this problem is the generation of explanations of different types.3Explanations can be derived from knowledge about the domain and knowl-
edge about the system. A system might have several types of knowledge.
There is control knowledge, associational knowledge, and causal knowledge.
Control knowledge defines the problem solving behavior of a system; that is,
this knowledge defines the knowledge organization and control mechanisms
for searching through this organization. Associational knowledge is derived
from experiences, and causal knowledge represents the principles, forces, and
components existing in a domain. As mentioned, the power to learn comes
from being able to generate plausible explanations. The ability to produce
explanations is dependent upon understanding the types of knowledge and
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problem-solving representations used within the system. In [16], three types 3
of explanations are identified: trace, control, and justification. An under-
standing of the system is the key to providing a method for indexing from
the system's knowledge and structure into the different types of explanations.

Trace explanations relate how the system performed in the particular
case. Control explanations relate the system's actions in terms of its control i
strategy. Previous work, typified by Teresias, centers around these two types
of explanations. In order to automate the learning process, the system needs
to be able to generate justification explanations that provide causal domain I
explanations and how the knowledge used in the system relates to this un-
derstanding. Both aspects are necessary. For example in a knowledge-based
system, the rule base might not perfectly reflect the underlying domain model I
because the operationality criterion used to create these rules allowed some
features of the domain model to be overgeneralized or omitted. I

For an explanation of the knowledge in the system to be generated, an
understanding of this knowledge must be represented. One way to do this
is to treat the domain as a collection of devices that produce a behavior. I
Devices have structure, function, and behavior. Structure defines the com-
ponents and their connections, function defines the use of the device, and
behavior is the particular method (states and transitions) used to achieve a U
function. One representational scheme that captures this notion is the Func-
tional Representation (FR)[!& In an FR, the components, the functions,
and the behaviors of a device are represented as a frame. In an FR, enabling
conditions and important background assumptions are also encoded. Thus,
the FR provides a method for indexing from the problem solving system into
the causal domain knowledge. Thus, an explanation of a problem solving
behavior can be generated from the underlying knowledge, and the level of
the explanation is determined by its use in the system.

Application of These Ideas to QUAWDS f
This idea is being applied to QUAWDS, a system that performs human patho-
logic gait analysis [17]. One goal of gait analysis is to identify the set of mus-
cle faults causing the observed gait motions. QUAWDS uses several different
problem solving activities to form its conclusions. Hypothesis assembly [11]
is used to synthesize composite diagnostic conclusions from a set of known 5
faults. The subtasks of hypothesis assembly QUAWDS uses are finding gener-
ation, hypothesis generation, hypothesis rating, and coverage determination.
Each of these subtasks is assigned to the types of problem solving activity
that can determine the required information efficiently and effectively. In
QtUAWDS, the subtasks are determined by different problem solving activi-

ties: hierarchical classification [4] and qualitative modeling [17, 10, 7]. By I
combining the knowledge of how each task is achieved and how it can err with

4

I



I
a causal understanding of the domain, it is possible to determine plausible
explanations of why the system produced the incorrect answer.

For example, suppose a patient presents with decreased hip flexion and
knee flexion during swing phase.' Further suppose QUAWDS proposed over-
activity of the hamstrings (the muscle on the back part of the thigh) as an
answer, and the domain expert preferred the hypothesis weak hip flexor mus-
cles. From the control explanation, the sequence of steps the system uses to
synthesize an answer is determined. The first step in the processing is to
identify the candidate (muscle) fault hypotheses. From the trace, it can be
determined if the the expert's answer was proposed by the system. If it was
not, the fault hypothesis generation subtask is a candidate for having caused
the wrong answer. Suppose the system considered the expert's answer, but
rejected it because it was not the most plausibly rated hypothesis. The sub-
task that computes this value is the hypothesis rater. It becomes a candidate

mt for explaining why the system erred.

Two candidate reasons for the incorrect preference of the hypotheses are
proposed: the system's answer is overrated and the expert's answer is under-
rated. One heuristic for selecting between which the alternatives to pursue
is to choose the candidate whose fault expectations are best matched in the
data. The hamstrings normally operate directly on the hip by extending it
and directly on the knee by flexing it. Overactivity causes the expectations
increased hip extension (decreased flexion) and increased knee flexion. These
expectations are generated by the qualitative model. In this case, the first
expectation is matched, but the second is not. Lowering a fault hypothesis'
value has the expectation that the hypothesis' expectations should not be
met. The hip flexors act directly on the hip to flex it. In swing phase, the
knee will passively flex secondary to the amount of hip flexion. Weak mus-
cles generate expectations of decreased motions. Thus the weak hip flexorS hypothesis generates the expectations of decreased hip flexion and decreased
knee flexion. Both expectations are found in the data. Raising the hypoth-
esis' value has the expectation that the hypoties' expectations should be
met. As the expert solution's expectations are met and the system solution's
are not, raising the expert's answer is selected as the best candidate. This
process now recurses over the subtasks involved in determining the fault hy-
pothesis' value until an explanation is found for why the weak hip flexor

hypothesis is underrated.l
Summary

I In this paper, we have briefly outlined an abductive model for assigning
blame in a problem solver that makes mistakes. This model depends on

3 'Swing phase is the part of the gait cycle when one leg is swinging forward and the
other leg is on the ground.

£5



B

having represented several different types of knowledge so that various types
of explanations can be built when needed. By modularizing the problem
solver appropriately, the complexity inherent in credit assignment can be
managed. 3
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C Abstract
The problem of abduction can be characterized as finding the best explanation ofU a set of data. In this paper we focus on one type of abduction in which the best
explanation is the most plausible combination of hypotheses that explains all the
data. We then present several computational complexity results demonstratingI that this type of abduction is intractable (NP-hard) in general. In particular,
choosing between incompatible hypotheses, reasoning about cancellation effects
among hypotheses, and satisfying the maximumn plausibility requirement are ma-I jor factors leading to intractability. We also identify a tractable, but restricted,

class of abduction problems.
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1 Introduction U
The problem of abduction can be characterized as finding the best explanation of a set of
data [13). Abduction applies to a wide variety of reasoning tasks [3). For example, in medical I
diagnosis. the final diagnosis explains the signs and symptoms of the patient [23, 251. In
natural language understanding, the intended interpretation of a sentence explains why the
sentence was said [12]. In scientific theory formation, the acceptance of a hypothesis is based
on how well it explains the evidence [31].

What kinds of abduction problems can be solved efficiently? To answer this question.
we must formalize the problem and then consider its computational complexity. However, I
it is not possible to prescribe a specific complexity threshold for all abduction problems.
If the problem is "small," then exponential time might be fast enough. If the problem 3
is sufficiently large, then even 0(n 2 ) might be too slow. However, for the purposes of
analysis, the traditional threshold of intractability, NP-hard, provides a rough measure of
what problems are impractical [10]. Clearly, NP-hard problems will not scale up to larger. I
more complex domains.

Our approach is the following First, we formally characterize abduction as a problem of
finding the most plausible composite hypothesis that explains all the data. Then we consider
several classes of problems of this type, the classes being differentiated by additional con-
straints on how hypotheses interact. We demonstrate that the time complexity of each class
is polynomial (tractable) or NP-hard (intractable), relative to the complexity of computing I
the plausibility of hypotheses and the data explained by hypotheses.

Our results show that this type of abduction faces several obstacles. Choosing between
incompatible hypotheses, reasoning about cancellation effects among hypotheses, and satis- I
fying the maximum plausibility requirement are major factors making abduction intractable
in general.

Some restricted classes of abduction problems are tractable. One kind of class is when
some constraint guarantees a polynomial search space, e.g., the single-fault assumption (more
generally, a limit on the size of composite hypotheses), or if all but a small number of
hypotheses can be ruled out.' This kind of class trivializes complexity analysis because
exhaustive search over the possible composite hypotheses becomes a tractable strategy.

However, we have discovered one class of abduction problems in which hypothesis assem-
bly [13] can find the best explanation without exhaustive search. Informally, the constraints
that define this class are: no incompatibility relationships, no cancellation interactions, the

plausibilities of the individual hypotheses are all different from each other, and one expla- U
nation is qualitatively better than any other explanation. Unfortunately, it is intractable
to determine whether the last condition holds. We consider one abduction system in which

hypothesis assembly was applied, so as to examine the ramifications of these constraints in I
a real world situation.

The remainder of this paper is organized as follows. First, we provide a brief historical
background to abduction. Then, we define our model of abduction problems and show how U
it applies to other theories of abduction. Next, we describe our complexity results, proofs

'The latter constraint is not the same as 'eliminating candidates" in de Kleer & Williams [6] or "incon- 5
sistency" in Reiter (26]. If a hypothesis is insufficient to explain all the observations, the hypothesis is not
ruled out because it can still be in composite hypotheses.
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, f which are given in the appendix. Finally, we consider the relationship of these results 'o

one abduction system.

2 Background

C. S. Peirce. who first described abductive inference [20], provided two intuitive character-
izations: given an observation d and the knowledge that h causes d, it is an abduction to
hypothesize that h occurred; and given a proposition q and the knowledge p - q, it is an
abduction to conclude p. In either case, an abduction is uncertain because something else
might be the actual cause of d, or because the reasoning pattern is the classical fallacy of
-affirming the consequent" and is formally invalid. Additional difficulties can exist because
h might not always cause d, or because p might imply q only by default. In any case, we
shall say that h explams d and p explans q, and we shall refer to h and p as hypotheses and
d and q as data.

Pople pointed out the importance of abduction to Al [231, and he with Miller and Myers
implemented one of the earliest abduction systems, INTERNIST-I, which performed medical
diagnosis in the domain of internal medicine [16, 241. This program contained an explicit
list of diseases and symptoms, explicit causal links between the diseases and the symptoms.
and probabilistic information associated with the links. INTERNIST-I used a form of hill
climbing-once a disease outscored its competitors by a certain threshold. it was permanently
selected as part of the final diagnosis. Hypothesis assembly [131 is a generalization of this
technique. Below, we describe a restricted class of problems for which hypothesis assembly
can efficiently find the best explanation.

Based on similar explicit representations. Pearl [19] and Peng & Reggia [211 find the
most probable composite hypothesis that explains all the data, a task that is known to be
intractable in general [4]. Below we describe additional constraints under which this task
remains intractable.

In contrast to maintaining explicit links between hypotheses and data, Davis & Ham-
scher's model-based diagnosis [5] determines at run-time what data need to be explained
and what hypotheses can explain the data. Much of this work, such as de Kleer & Williams
[6] and Reiter [26], place an emphasis on generating all "minimal" composite hypotheses

that explain all the data. However, there can be n exponential number of such hypotheses.
Current research is investigating how to focus the reasoning on the most relevant composite
hypotheses [7, 8, 30]. However, we show below that it is intractable in general to find a com-
posite hypothesis that explains all the data, and that even if it is easy to find explanations,
generating all the relevant composite hypotheses is still intractable.

Whatever the technique or formulation, certain fundamentals of the abduction task do
not change. In particular, our analysis shows how computational complexity arises from
constraints on the explanatory relationship from hypotheses to data and on plausibility or-
dering among hypotheses. These constraints do not depend on the style of the representation
or reasoning method (causal vs. logical, probabilistic vs. default, explicit vs. model-based,
ATMS or not, etc.). In other words, certain kinds of abduction problems are hard no matter
what representation or reasoning method is chosen.
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3 Notation, Definitions, and Assumptions

We use the following notational conventions and definitions. d stands for a datum, e.g.. I
a svmptom. D stands for a set of data. h stands for an individual hypothesis. e.g., a
hypothesized disease. H stands for a set of individual hypotheses. H can be treated as a
composite hypothesis, i.e., each h E H is hypothesized to be present, and each h 4 H !s
hypothesized to be absent or irrelevant.

3.1 Model of Abduction

An abduct'on problem is a tuple (D 11 , H, e, , pl), where: 3
Du is a finite set of all the data to be explained,

H ,3 is a finite set of all the individual hypotheses, I
e is a map from subsets of H,11 to subsets of D.11 (H explains e(H)), and

pl is a map from subsets of H2, to a partially ordered set (H has plausibility pl(H))

For the purpose of this definition ana the results below, it does not matter whether pl(H)
is a probability, a measure of belief, a fuzzy value, a degree of fit, or a symbolic likelihood.
The only requirement is that the range of pl is partially ordered.

H is complete if e(H) = Dai. That is, H explains all the data.
H is parsimonious if II' C H (e(H) g e(H'"). That is, no proper subset of H explains

all the data that H does.
H is an explanation if it is complete and parsimonious. That is, H explains all the data

and has no explanatorily superfluous elements. Note that an explanation exists if and only
if a complete -omposite hypothesis exists. 2

H is a best explanation if it is an explanation, and if there is no explanation H' such that
pl(H') > pl(H). That is, no other explanation is more plausible than H. It is just "a best"

because pl might not impose a total ordering over composite hypotheses (e.g., because of
probability intervals or qualitative likelihoods). Consequently, several composite hypotheses 3
might satisfy this definition.

3.2 Relation to Other Work I
These definitions are intended to formalize the notion of best explanation in .Josephson et al.
[13]. However, our definitions are not limited to that paper. We consider in detail here how
Reiter's theory of diagnosis [26] and Pearl's theory of belief revision [19] can be mapped to
our model of abduction.

'Composite hypothee that do not explain all the data can still be considered explanations albIt
partial. Nevertheless, because explaining all the data is a goal of the abduction problems we are considring.
for convenience, this goal is incorporated into the definition of "explanation." 5

3
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3.2.1 Reiter's Theory of Diagnosis

Reiter defines a diagnosis problem as a tuple "SD. C'OMPONENTS.OBS), in which SD and OBI are finite sets of first-order sentenes comprising the system description and observations
r-spectivelv COMPONENTS is a finite set of constants: and AB is a distinguished unary predi-
cate, interpreted as abnormal. A diagnosis is defined to be a minimal set . M COMPONENTS

such that:

3 SD '20 BS {ABf c)I c CE L {-AB(c) c E COMPONENTS\,

!s consistent. "Minimal set- means tiat no subset of . satisfies the same condition.
Each iubset of COMPONENTS can be treated as a composite hypothesis. i.e., a conjec-3 turo that certain components are abnormal, and that all other components are normal. A

diagnosis problem can then be mapped into an abduction problem as follows:

3Hi = COMPONENTS

D. = OBS

e H) = a maximal set D C D,, such that3

I SD U D U {AB(h) Ih E H} U {-AB(h) Ih E Hu\H}
is consistent.

A solution for the diagnosis problem then corresponds to an explanation for the abduction
problem, and vice versa. Reiter does not define any criteria for ranking diagn.)ses, so there
is nothing to map to pl.

3.2.2 Pearl's Theory of Belief Revision

A Bayesian belief network [18] is a directed acyclic graph whose nodes W are propositional
variables. The probabilistic dependencies between the variables are described by specifying
P r.) for each value assignment x to a variable X E W and each value assignment s to X'
parents S.4 The intention is that "the arcs signify the existence of direct causal influences
between the linked propositions, and the strengths of the these influeces are quantified by
the conditional probabilities of each variable given the state of its parents" [19, p. 175].

For a particular belief revision problem [19], some subset V of the variables W are
initialized with specific values. Let v be the value assignment to V. The solution to the
problem is the mos* probable value assignment w* to all the variables W. i.e., P(w*lv) is
greater than or eq,ial to P(wjv) for any other value assignment w to the variables W. w-
is called the most probable explanation (MPE).

v can be mapped to the set of data to be explained, i.e., a value assignment x to a
variable X E V is a datum. v can be explained by appropriate value assignments to the
other variables W\ V. Treating value assignments of true as individual hypotheses, a belief
revision problem can be be mapped to an abduction problem as follows:

3There might be more than one maximal subset of observations that satisfies these conditions. If so, then
rt H) selects some preferred subset.

'For belief networks, we use a (boldface) lower case letter to stand for a (set of) value assignment(s) to
a (set of) .ariable(s), which is denoted by a (boldface) upper case letter.
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Ha = W\ V
e(H) = a maximal set D C= D1, such that

P(H= true A H,\H=falsejD) > 0
pl(H) = P(H=true A Ha\H=fasefe(H))

The MPE corresponds to a complete composite hypothesis. If the MPE is also parsimo-
nious, then it corresponds to the best explanation.' However. the MPE might assign true
to more variables than necessary for explanatory purposes. In the context of other value
assignments, X = true might be more likely than X = false even if X = true is superfluous
under the above mapping [21).

This lack of correspondence between the MPE and the best explanation can be rectified

by creating, for each X E W\V, a dummy variable X' and a dummy value assignment that

can be "caused" only if X #4 X'. With this modification, the MPE corresponds to the best

explanation.

Another way of rectifying the situation is to simply ignore the parsimony constraint.
With this in mind, we shall use the mapping given above.

3.2.3 Other Theories of Abduction

These reductions from problems in Reiter's and Pearl's theories to abduction problems
provide strong evidence that our model of abduction is general enough to accommodate I
any theory of abduction, e.g., [6, 15, 21, 221. This is because our model leaves e and pl
virtually unconstrained. We exploit this freedom below by defining and analyzing nat-

ural constraints on e and pl without considering the representations-logical, causal, or
probabilistic-underlying the computation of e and pi. To make the analysis complete, we

also show how some of these constraints can be reduced to problems in Reiter's and Pearl's I
theories.

3.3 Tractability Assumptions i
In our complexity analysis, we assume that e and pi are tractable. We also assume that e and
pl can be represented reasonably, in particular, that the size of their internal representations
is polynomial in ID.u + IH.11.

Clearly, the tractability of these functions is central to abduction, since it is difficult to
find plausible hypotheses explaining the data if it is difficult to compute e and pl. This should
not be taken to imply that the tractability of these functions can be taken for granted. For
example, it can be intractable to determine explanatory coverage of a composite hypothesis

[26] and to calculate the probability that an individual hypothesis is present, ignoring other
hypotheses [4). We make these assumptions to simplify our analysis of abduction problems.
To reflect the complexity of these functions in our tractability results, we denote the time

complexity of e and pl with respect to the size of an abduction problem as C, and Cpi,
respectively, e.g.. nC, indicates n calls to e.

'One difficulty with the more "natural" mapping pl(H) = P(H=truejv) is that even if the MPE is
parsimonious. it might not be the best explanation.

.5 3
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I For convenience, we assume the existence and the tractability of a function that deter-
mines which individual hypotheses can contribute to explaining a datum. Although it is not3 a true inverse, we refer to this function as e - 1, formally defined as:

e-'(d) = {h I 3H C H 1j (d _ e(H) A d E e(HU{h}))}

S Note that h E e-(d) does not imply d E e(h).
The key factors, then, that we consider in the complexity of finding a best explanation

are properties of e and pl that allow or prevent tractable computation given that e,e-

and pl can be computed "easily." That is, given a particular class of abduction problems.
how much of the space of composite hypotheses must be explicitly searched to find a best
explanation? As demonstrated below, intractability is the usual result in classes of problems
that involve significant interaction among the elements of composite hypotheses.

1 3.4 Simplifications

We should note that these definitions and assumptions simplify several aspects of abduction.
I For example, we define composite hypotheses as simple combinations of individual hypothe-

ses. In reality, the relationships among the parts of an abductive answer and the data being
explained can be much more complex, both logically and causally.

Another simplification is that domains are not defined. One way to do this would be
to specify what data are possible (Dpo83 ) and general functions for computing explanatory
coverage and plausibilities based on the data (egen and pIge). Then for a specific abduction
problem, the following constraints would hold: Dc1 C D,,o,,, e(H) = e,,,(H, D. 11). and
pl(H) = pl;,,,(H, D.1j) (cf. Allemang et al. (I)).

The definitions of abduction problems or domains do not mention the data that do
not have to explained, even though they could be important for determining e and pl. For
example, the age of a patient does not have to be explained, but can influence the plausibility
of a disease. We shall assume that e and pi implicitly take into account data that do not
have to be explained, e.g., in the definition of domains above, these data can be an additional
argument to e... and plge,,.

Despite these simplifications, our analysis provides powerful insights concerning the com-
putational complexity of abduction.

3 3.5 An Example

We shall use the following example to facilitate our discussion:

I H.1 = {hi, h2, h3, h4 , hs}
DLL = {di, d2, d3 ,d4 }

e(hi) = {di} pl(h1 ) = superior
e(h 2 ) = {di,d 2} pl(h 2) = excellent
e(h 3 ) = {d2,d3} pl(h 3 ) = good5 e(h 4 ) = (d2,d4 ) pl(h 4) = fair
e(hs) = {d3 , d4} pl(hs) = poor

6
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epl 3
di h, - superior

d2 h2 - excellent

d3 h3 good I
d4 h4 -fair

h 5 ,poor

Figure 1: Example of an Abduction Problem

Figure 1 is a pictorial representation of the example. The values of pl should simply
be interpreted as indicating relative order of plausibility. If e(H) is the union of e(h) for
h e H, then {h2, h3, h5} is complete, but not parsimonious since h3 is superfluous. {h2, h3}
is parsimonious, but not complete since it does not explain d4. Based on the plausibility
ordering criterion defined in Section 5, {h,, h3, h4 } and {h2, hs} would be considered the best

explanations.
Using these definitions, assumptions, and example, we first discuss how properties of e

affect the tractability of finding best explanations, and then consider properties of pl. 3
4 Complexity of Finding Explanations I
4.1 Independent Abduction Problems
In the simplest problems, an individual hypothesis explains a specific set of data regardless 3
of what other individual hypotheses are being considered. This constraint is assumed by
INTERNIST-I [16], Reggia's set covering algorithm [25], Peng & Reggia's parsimonious
covering theory [21], Pearl's belief revision theory if interactions are restricted to noisy-OR I
(an effect can occur only if one or more of its causes are present) [19], and Eshelman's
cover-and-differentiate method [9]. The use of conflict sets [6, 26] also appears to make this
assumption-each conflict set corresponds to a datum to be explained, and the elements of U
the conflict set correspond to the hypotheses that can independently explain the datum.

Formally, an abduction problem is independent if:

VH C H,,, (e(H) U U e(h))
IEH

That is, a composite hypothesis explains a datum if and only if one of its elements explains
the datum. This constraint makes explanatory coverage equivalent to set covering 1251.
Assuming independence, the explanations in our example (refer to Figure 1) are: { hl, h, h}
{h1, h3, h5}, {hi,h4, hs}, {1h 2 , h3 , h4}, and {h 2, h5 }. 

One way to find a best explanation would be to generate all explanations and then sort
them by plausibility. However, it is well-known that there can be an exponential number of I
explanations. It is not surprising then that determining the number of explanations is hard
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W stands for the working composite hypothesis.3 Nil is returned if no explanation exists.

Determine whether an explanation exists.
If e(H.n) # D.1i then

Return nil

3 Find an explanation.
W ,-- H.11

For each h E H.,i3 If e(W\{h}) = D.1 then
W W\{h}

Return W

Algorithm 1: Finding an Explanation in Independent and Monotonic Abduction Problems

Theorem 4.1 For the class of independent abduction problems, it is #P-complete to deter3 mine the number of explanations.

That is, determining the number of explanations for an independent abduction problem is
just as hard as determining the number of solutions to an NP-complete problem.6

- The definition of best explanation, however, does not require that all explanations be

explicitly enumerated. For example, if h is the most plausible individual hypothesis, h

explains D,11, and H C H' implies pl(H) > pl(H'), then h can be declared to be the

best explanation without further search. In general, the task of finding a best explanation
can be divided into two subtasks: (1) find one explanation, and (2) repeatedly find better

explanations until a best one is found. In the remainder of this section then, we shall consider
the complexity of generating one or more explanations. The following section discusses the

complexity of finding better explanations.3 For independent abduction problems, it is tractable to find an explanation. Let n

id~ + JH~iiI.

Theorem 4.2 For the class of independent abduction problems, there is an O(nCe + n')Ialgorithm for finding an explanation, if one exists.

Algorithm 1 performs this task within this order of complexity. The appendix gives a

detailed explanation of this algorithm, but we note several aspects of its operation here.

It is easy to check whether an explanation exists. If UAEMH,, e(h) # D,11, then a union
over any subset of H.11 w'iil not equal Da either.

The loop makes one pass through the individual hypotheses. It examines each individual

hypothesis in turn and removes it if no explanatory coverage is lost. Only one pass is

~'Also, it is #P-complete to determine the number of complete composite hypotheses. The definition of
*P-complete comes from Valiant [32].

Detailed proofs of Theorem 4.1 and other theorems are given in the appendix.
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necessary bticuse if the result W had a superfluous element h, then h would have been
superfluous for any superset of W, and thus, would have been removed by the body of the
ioop. U

If the e function is available (see Section 3.3 for the definition of e-'), then the working

hypothesis W, instead of being initialized to Hu, can be initialized to include only one
element from e-(d) for each d E A,1. This modification has an advantage if e- , is easy to I
compute and the working hypothesis remains "small."

4.2 Monotonic Abduction Problems I
We now consider a more general kind of problem, in which a composite hypothesis can
explain additional data that are not explained by any of its elements. For example., suppose I
the two inputs to an AND-gate are supposed to be 0, and so the output is supposed to be 0.

but the observed output of the AND-gate is 1. If the inputs are produced by components .4
and B, then hypothesizing a single fault in A or B is insufficient to account for the datum. I
but faults in both A and B are sufficient.

This sort of interaction can also occur if two individual hypotheses ha T an additive
interaction. For example, each of the two hypotheses can explain a small value of some

measurement, but together can explain a larger measurement. In this latter case, if h only
partially explains d, then d e(h). Note though that if adding h to a composite hypothesis
can result in completely explaining d, then h E e-(d).

Formally, an abduction problem is monotonic [1] if:

VH, H' C Hat (H g H' --- e(H) g e(H'))

That is, a composite hypothesis does not "lose" any data explained by any of its subsets

and might explain additional data. All independent abduction problems are monotonic, but I
a monotonic abduction problem is not necessarily independent. If, in Figure 1, {h2, h.}

also explained d4, then {h2 , h3} would also be an explanation and {h 2, h3 , h4} would not be.

Monotonic abduction problems from the literature include Josephson's hypothesis assembly
technique [1] and Pearl's belief revision theory if interactions are restricted to noisy-OR and
noisy-AND [19]. £

Because the class of monotonic abduction problems includes the independent class, it is

also hard to determine the number of explanations. In addition, we have shown that it is

hard to enumerate a polynomial number of explanations. 5
Theorem 4.3 For the class of monotonic abduction problems, given a set of explanations,

it is NP-complete to determine whether an additional explanation exists. 3
We have proven this result by a reduction from the class of independent incompatibility

abduction problems, which is described below. The idea of the reduction is that the addition

of an individual hypothesis to a composite hypothesis can explain the rest of the data, make I
nearly all the elements of the composite hypothesis superfluous, and result in a previously

generated explanation. It turns out to be difficult to generate an additional explanation while

avoiding this kind of interaction. Whether a similar result holds for independent abduction

problems is an open question. I
9 I



I

I Although the class of monotonic problems is a superset of the class of independent prob-
lems, it is just as efficient to find an explanation. Again, let n = IDiij + iH~ui.

I Theorem 4.4 For the class of monotonic abduction problems, there is an O(nC, + n') al-
gorithm for finding an explanation, if one exists.

3 Algorithm 1 performs this task within this order of complexity. Because of the monotonic-
ity constraint, H~1 must explain as much or more data than any other composite hypothesis.
The loop in Algorithm 1 works for the same reasons as for independent abduction problems.
Also, it is possible to use e to initialize W, though one must be careful because more than
one element from e-(d) might be needed to explain d.

* 4.3 Incompatibility Abduction Problems

Implicit in the formal model so far is the assumption that any collection of individual hy-
potheses is possible. However, most domains have restrictions that invalidate this assump-
tion. For example, a faulty digital switch cannot simultaneously be stuck-at-I and stuck-at-0.
More generally, the negation of a hypothesis can also be considered a hypothesis.

This kind of problem is neither independent nor monotonic because any composite hy-
pothesis that contains a pair of mutually exclusive hypotheses cannot be an acceptable
hypothesis, while a subset that excludes at least one hypothesis from each pair is acceptable.
We call this kind of problem an incompatibility abduction problem.

Formally, an incompatibility abduction problem is a tuple (D. 11, H.1, e, pl, 1), where D,,,
H , 1, e. and pl are the same as before and 2 is a set of two-element subsets of H.11, indicating
pairs of hypotheses that are incompatible with each other.' For an incompatibility problem:

3 VH C Ha ((31 E I (I C H)) --- e(H) = 0)

By this formal trick, a composite hypothesis containing incompatible hypotheses explains
nothing, preventing such a composite from being complete (except for trivial cases) or a best

I explanation.
An independent incompatibility abduction problem satisfies the formula:

I VH C H1 ((3I E I (I C H)) --- e(H) U e(h))
hEH

That is, except for incompatibilities, the problem is independent. In Figure 1, ifII = {{h,h 2 }, {h 2, h3}, {h 3, h4 }, {h 4 ,hs}}, then only {h,h 3, h5} and {h 2 ,h5 } would be ex-
planations.3 Incompatibility abduction problems ae more complex than monotonic or independent
abduction problems:

Theorem 4.5 For the class of independent incompatibility abduction problems, it is NP-
complete to determine whether an explanation exists.

?lncompatible pairs are the most natural case, e.g., one hypothesis of the pair is the negation of the other
n mutually exclusive hypotheses can be represented as n(n - 1)/2 incompatible pairs. Incompatible triplets
(any two of the three, but not all three) and so on are conceivable, but allowing these possibilities in the
formal definition do not affect the complexity results.

|1
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We have proven this result by reduction from 3SAT [10], which is satisfiability of boolean
expressions in conjunctive normal form, with no more than three literals in any conjunct.
Informally, the reduction works as follows. Each 3SAT literal and its negation corresponds
to an incompatible pair of hypotheses. Each conjunct of the boolean expression corresponds
to a datum to be explained. Satisfying a conjunct corresponds to a hypothesis explaining a
datum. Clearly then, a complete composite hypothesis exists iff the boolean expression is sat-
isfiable. Furthermore, a complete composite hypothesis exists iff an explanation exists. Our
proof shows that only O(IH,1u1) incompatible pairs are needed to give rise to intractability.

The underlying difficulty is that the choice between a pair of incompatible hypotheses
cannot be made locally, but is dependent on the choices from all other incompatible pairs.
It is interesting to note the parsimony constraint plays no role in this result. .Just finding a
complete composite hypothesis is hard in incompatibility abduction problems. 3

It follows that:

Corollary 4.6 For the class of independent incompatibility abduction problems, it is NP-
hard to find a best explanation.

'rhe class of incompatibility abduction problems can be reduced to both Reiter's theory
of diagnosis [261 and Pearl's theory of belief revision [19].

Theorem 4.7 For the class of diagnosis problems, relative to the complexity of determining
whether a composite hypothesis is consistent with SDUOBS, it is NP-complete to determine
whether a diagnosis exists.

For this theorem, a composite hypothesis is a conjecture that certain components are abnor-

mal, and that all other components are normal.
It is easy to translate the explanatory interactions of an independent incompatibility 3

abduction problem into first-order sentences. For example, e-(d) = H can be translated
to MANIFEST(d) -- VheH AB(h). {h, h'} E I can be translated to AB(h) - -AB(h'). It
is interesting that this problem is hard even if it is easy to determine the consistency of a 3
composite hypothesis.

Theorem 4.8 For the class of belief revision problems, it is NP-complete to determine 3
whether there is a value assignment w to the variables W such that P(wlv) > 0.

This theorem directly follows from Cooper's result that it is NP-complete to determine
whether P(X = true) > 0 for a given variable X within a belief network [4]. Also, a reduction
from incompatibility abduction problems can be done as follows. Map each h E H,11 to a
"hypothesis" variable. Map each d E Datl to a "data" variable that can be true only if I
one or more of the hypothesis variables corresponding to e- 1(d) are true (e.g., noisy-OR
interaction). Map each incompatible pair into a data variable that can be true only if at

most one, but not both, of the two corresponding hypothesis variables is true (e.g., NAND) .
Initializing all the data variables to true sets up the problem. I

11 1
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1 4.4 Cancellation Abduction Problems

Another interaction not allowed in independent or monotonic abduction problems is can-
cellation, i.e., when one element of a composite hypothesis "cancels" a datum that another
element would otherwise explain. Cancellation can occur when one hypothesis can have a
subtractive effect on another. This is common in medicine, e.g., in the domain of acid-base
disorders, one disease might explain an increased blood pH, and another might explain a
decreased pH, but together the result might be a normal pH [17]. Different faults in differ-
ent components can result in cancellation, e.g., a stuck-at-1 input into an AND-gate might
account for an output of 1, but not if the other input is stuck-at-0. Cancellation commonly
occurs in the physical world. Newton's second law implies that forces can cancel each other.
Cancellation in the form of feedback control is intentionally designed into devices.

Formally, we define a cancellation abduction problem as a tuple (Du, H,11, epl. e..e
e+ is a map from H,, to subsets of Diu indicating what data each hypothesis "produces." e_
is another map from Haj to subsets of Da1 indicating what data each hypothesis "consumes."
d E e(H) iff the number of hypotheses in H that produce d outnumber the hypotheses that
consume d. That is:

SdE e(H) +-- I{hIhE HA dEe+(h)}I>1{hIhE HA dEe_(h)}I

In Figure 1, if we let e+ = e for individual hypotheses and if e_(hi) = {d 3}, e_(h 2) = {d4},3and e-(h 3) = e_(h 4 ) = e_(hs) = 0, then the only explanations would be {hj,h 3,h5 } and
{h2 , h4, hs}.

Admittedly, this is a simplified model of cancellation effects, in the sense that it captures
only one kind of cancellation interaction. Nevertheless, it is sufficient to derive intractability:

Theorem 4.9 For the class of cancellation abduction problems, it is NP-complete to deter-3 mine whether an explanation exists.

We have proven this by reduction from finding explanations in incompatibility abduc-
tion problems. Informally, the idea of the reduction is based on the following. Suppose
that a datr- _- '- :,rptia1 "r-,r. -" -,id two potential "cnnsumers." Now any corn-
posite hypothesis that contains both consumers cannot explain the datum. In effect, the
two consumers are incompatible. Our reduction ensures that each incompatible pair in the
incompatibility abduction problem is appropriately mapped to such a situation in the cor-
responding cancellation abduction problem. Only O( HauI) "cancellations" are needed for
this result, where ZhH.,, Ie-(h)j gives the number of cancellations.

It follows that:

Corollary 4.10 For the class of cancellation abduction problems, it is NP-hard to find a
best explanation.

One aspect of cancellation abduction problems is more complex than incompatibility3 abduction problems. In an independent incompatibility abduction problem, if a complete
composite hypothesis is found, then it is easy to find a parsimonious subset. However, this
is not true for cancellation abduction problems.

Theorem 4.11 For the class of cancellation abduction problems, it is coNP-complete to
determine whether a complete composite hypothesis is parsimonious.
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Table 1: Computational Complexity of Finding Explanations

class of problems condition to achieve I
finding all finding an finding a best

explanations explanation explanation
independent NP a ?
monotonic NP Pp
incompatibility NP NP NP
cancellation NP NP NP

P = known polynomial algorithm NP = NP-hard

That is, it is NP-complete to determine whether a complete composite hypothesis is not
parsimonious. The idea of our reduction is the following. If a datum has three "producers"
and two "consumers," we can ensure that the datum is explained by including all three pro-
ducers in the composite hypothesis. However, there might be a more parsimonious composite I
hypothesis in which some of the producers are omitted, but finding such a composite hy-
pothesis means that one or both consumers must be omitted as well, making them effectively
incompatible. U

Table 1 summarizes the results of this section. The "?" indicates that we not have
yet described the complexity of finding a best explanation in independent and monotonic

abduction problems.I

5 Complexity of Plausibility

To analyze the complexity of finding a best explanation, we need to define how to compare the
plausibilities of explanations. We consider one plausibility criterion based on comparing the I
plausibilities of the elements of the explanations. Other plausibility criteria are considered
in Bylander et al. [2], but they are less relevant to other theories of abduction. £
5.1 The Best-Small Plausibility Criterion
Everything else being equal, smaller explanations are preferable to larger ones, and more 5
plausible individual hypotheses are preferable to less plausible ones. Thus, in the absence
of other information, it is reasonable to compare the plausibility of explanations based on
their sizes and the relative plausibilities of their elements. When a conflict occurs, e.g.. one
explanation is smaller, but has less plausible elements, no ordering can be imposed without
additional information.

1
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I The best-small plausibility criterion formally characterizes these considerations as follows:

pl(H) > pl(H') .

3m:H--+H'(mis 1-1 A

Vh E H (pl(h) pl(m(h))) A

(IH = IH'I -" 3h E H (pl(h) > pl(m(h)J)))

That is, to be more plausible according to best-small, the elements of H need to be matched
to the elements of H' so that the elements of H are at least as plausible as their matches
in H'. If H and H' are the same size, then in addition some element in H must be more
plausible than its match in H'. Note that if H is larger than H', then pl(H) %; pl(H'). In
Figure 1, {h 1 ,h 3, h4} and {h 2, h5} would be the best explanations.3 We have demonstrated that it is intractable to find best explanations using best-small.

Theorem 5.1 For the class of independent abduction problems using the best-small plaust-3 b~lity criterion, it is NP-hard to find a best explanation.

The simplest proof of this theorem involves a reduction from minimum cover [10]. If each
individual hypothesis is given the same plausibility, then the smallest explanations (the covers
with the smallest sizes) are the best explanations. A more general proof is a reduction from
a special class of independent incompatibility abduction problems in which each individual
hypothesis is in exactly one incompatible pair. In this reduction, each incompatible pair
is mapped into two equally plausible hypotheses, at least one of which must be chosen.
If the incompatibifity abduction problem has any explanations, they turn out to be best
explanations in the best-small problem.I We conjecture that it is possible to reduce from finding a best explanation using best-small
to finding a best explanation using any "theory of belief" in which composite hypotheses
that are smaller or have more plausible elements can have higher belief values. Of course.
standard probability theory is an example of such a theory, as are all its main competitors.
This conjecture is supported by the following theorem.

3I Theorem 5.2 For the class of belief revision problems restricted to OR interactions, it zs
NP-hard to find the MPE.

5The restriction to OR interactions means that each effect can be true only if one or more
of its parents are true. This restriction makes it easy to find a value assignment w such
that P(wlv) > 0. Although this theorem could be demonstrated by adapting the proof for
Theorem 5.1, it is useful to show that the best-small plausibility criterion has a correlate in
probabilistic reasoning.

The reduction from independent abduction problems using best-small works as follows.
Each h E H,.1 is mapped to a "hypothesis" variable. Each d E D,11 is mapped to a "data-
variable that is true if and only if one or more of the hypothesis variables corresponding to
e-'(d) are true, i.e., an OR interaction. The a priori probabilities of the hypothesis variables
being true must be between 0 and .5, and are ordered according to the plausibilities in the
abduction problem. Initializing all the data variables to true sets up the problem. The MPE
for this belief revision problem corresponds to a best explanation for the best-small problem.
Because finding a best explanation is NP-hard, finding the MPE must be NP-hard even for
belief networks that only contain OR interactions.

1 14
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5.2 Ordered Abduction Problems
Our proofs of Theorem 5.1 depend on the fact that some individual hypotheses have similar
plausibilities to other hypotheses. It turns out that finding a best explanation using best-
small is tractable if the plausibilities of individual hypotheses are all different from each
other and if their plausibilities are totally ordered.

Formally, an abduction problem is ordered if:

Vh, h' E H,, (h # h' -. (pl(h) < pl(h') v pl(h) > pl(h'))) 3
Again, let n = iD.11l + JH.1t1.

Theorem 5.3 For the class of ordered monotonic abduction problems using the best-small
plausibility criterion, there is an O(nC, + nC;1 + n2 ) algorithm for finding a best explanation.

Algorithm 2 performs this task within this order of complexity. It is same as Algorithm
1 except that the loop considers the individual hypotheses from least to most plausible. The
explanation that Algorithm 2 finds is a best explanation because no other explanation can
have more plausible individual hypotheses; the algorithm always chooses the least plausible
individual hypotheses to remove. Of course, Algorithm 2 also finds a best explanation for
ordered independent abduction problems.

As with Algorithm 1, it is possible to use e - 1 advantageously. The working hypothesis 3
W can be initialized to include the most plausible individual hypotheses from each e-(d),
i.e., because of monotonic interactions, sufficient hypotheses from e-(d) must be chosen so
that d is explained. I

Algorithm 2 is an adaptation of the hypothesis assembly algorithm described in Josephson
et al. [13], and is a serial version of the parallel parsimony algorithm described in Goel [11].
In Figure 1 assuming the independence constraint, this algorithm would find {hi, h3 , h4}. I
which is one of the two best explanations,

As in our example, there might be more than one explanation because best-small in
general imposes a partial ordering on the plausibilities of composite hypotheses. Suppose I
that an ordered monotonic abduction problem had only one best explanation according to
best-small. Because Algorithm 2 is guaranteed to find a best explanation, then it will find
the one best explanation.

Corollary 5.4 For the class of ordered monotonic abduction problems using the best-small
plausibility criterion, if there is exactly one best explanation, then there is an O(nC, + nC, + I
n') algorithm for finding the best explanation.

This can be informally restated as: In a well-behaved abduction problem, if it is known that 3
some explanation is clearly the best explanation, then it is tractable to find it. Unfortunately.
it is difficult to determine if some explanation is clearly the best explanation.

Theorem 5.5 For the class of ordered independent abduction problems using the best-small
plausibility criterion, given a best explanation, it is NP-complete to determine whether there

is another best explanation.
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W stands for the working composite hypothesis.
Nil is returned if no explanation exists.

Determine whether an explanation exists.
If e(H ,11) ? D.11 then

Return nil

Find a best explanation.
W -- H.11

For each h E H2u from least to most plausible
If e(W\ {h}) = Dt 1 then

W +_ W\{h}
Return W

Algorithm 2: Finding a Best Explanation in Ordered Independent and Monotonic Abduction
Problems Using the Best-Small Plausib;lity Criterion

We have proved this by a reduction from the special class of independent incompatibility
abduction problems in which each individual hypothesis is in exactly one incompatible pair.
Assuming n incompatible pairs, the best-small problem is set up so that one hypothesis out
of each pair must be chosen, and so that extra hypotheses plus the most plausible element
of each pair is a best explanation of size n + 2. In our reduction, any other best-small
best explanation in this reduction must be of size n + 1 and include an explanation for

Sthe incompatibility problem. Thus, even for ordered independent abduction problems, it is
intractable to find all the best explanations, or even enumerate some number of them.

As a consequence, it does not become tractable to find the MPE for ordered abductionIN problems. The proof for the previous theorem can be easily adapted so that any explanation
of size n + I will be more probable than any explanation of size n + 2.

From these theorems, we can describe what kinds of mistakes will be made by Algorithm
2. While the explanation this algorithm finds will match up qualitatively to any other
explanation, there might be other "qualitatively be<," explanations, which might be judged
better based on more precise plausibility information.

Table 2 summarizes the results of this and the previous section.

* 6 A Real-World Application of Abduction-Red Blood
Antibody Identification

6.1 Description of the Domain

The RED expert system performs in the domain of blood bank antibody analysis [28].
One of the jobs done by a blood-bank technologist is to identify antibodies in a patient's

serum that can react to antigens that might appear on red blood cells. This is typically
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Table 2: Computational Complexity of Finding Best Explanations Using the Best-Small
Plausibility Criterion

class of problems condition to achieve
finding a best finding more than
explanation one best explanation

ordered independent /monotonic P NP
unordered independent /monotonic N P N P
incompatibility NP NP
cancellation NP NP

P = known polynomial algorithm NP NP-hard

done by combining, under different test conditions, samples of patient serum with samples
of red blood cells known to express certain antigens. Some of these combinations might
show reactions. The presence of certain antibodies in the patient serum accounts for certain I
reactions. The reactions are additive in the sense that if the presence of one antibody explains
one reaction, and presence of another antibody explains another, then the presence of both
antibodies explains both reactions. If each antibody can account for a weak result in some 1
reaction, then the presence of both can account for a stronger result in that reaction. Also.
some pairs of antibodies cannot occur together. RED's task is to decide which antibodies
are present, given a certain reation pattern. RED take-s into account about 30 of the most I
common antibodies.

I
6.2 Relationship to Classes of Abduction Problems

We now examine how this task can be categorized within the classes of abduction problems I
discussed in this paper.

Independent. The additive nature of the reactions means that for separate reactions and
compatible hypotheses, the independence constraint is met. However, since independent 3
abduction problems do not allow for parts of data to be explained, they cannot describe
additivity of reaction strengths.

.Monotonic. If we view a weak result for some reaction as a separate result from a strong I
result for the saxne reaction, then we can say that the phenomenon of additive reaction
strengths falls into the class of monotonic abduction problems. That is, each of two anti-

bodies alone might explain a weak reaction. Together, they would explain either a weak
reaction or a strong reaction.

ncompatibtitty. In this domain, some antibodies are incompatible with others. Also, for
each antibody, RED distinguishes between two different, incompatible ways that it can react I
Thus, red blood antibody identification is clearly outside of monotonic abduction problems
and within the intractable class of incompatibility abduction problems. Below, we discuss 3
why this is not usually a difficulty in this domain.

Cancellation. No cancellation interactions take place in this domain.

I17
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Ordered. RED rates the plausibility of the presence of an antibody on a 7-point qualitative
scale. Because there are about 60 antibody subtypes, the same plausibility rating is given
to several antibodies. Strictly speaking, this takes the problem out of ordered abduction
problems. but we describe below why this is not usually a problem.

Incompatibility relationships and lack of plausibility ordering do not usually create dif-
ficulties in this domain for the following reasons. One is that most antibodies are usually
ruled out before any composite hypotheses are considered, i.e., the evidence indicates that
the antibodies cannot reasonably be part of any composite hypotheses. The more anti-
bodies that are ruled out, the more likely that the remaining antibodies contain no or few
incompatibi'ities, and resemble an ordered abduction problem.

Another Teason is that the reaction testing is designed to discriminate between the an-
tibodies. Thus, an antibody that is present usually explains some reaction more plausibly
than any other antibody. An antibody that is not present is unlikely to have clear evidence
in its favor and usually superfluous in the context of equally or higher rated antibodies.

A final reason is that it is rare to have more than a few antibodies. Other antibodies
that are rated lower than these antibodies are easily eliminated.

In rare cases, though, these reasons do not apply with the result that RED has difficulties
with incompatible pairs or unordered hypotheses, or that RED selects an explanation with
many antibodies whereas the preferred answer contair 3 a smaller number of individually less
plausible antibodies [27].

7 Discussion

We have discovered one restricted class of abduction problems in whick it is tractable to
find the best explanation. In this class, there can be no incompatibitity relationships or
cancellation interactions, the plausibilities of the individual hypotheses are all different from
each other, and there must be exactly one best explanation according to the best-small
plausibility criterion. Unfortunately, it is intractable to determine whether there is more
than one best explanation in ordered abduction problems. However, it is still tractable to
find one of the best-small best explanations in ordered monotonic abduction problems.

For abduction in general, however, our results are not encouraging. We believe that few
domains satisfy the independent or monotonic property, i.e., they usually have incompati-
bility relationships and cancellation interactions. Requiring the most plausible explanation
appears to guarantee intractability for abduction. It is important to note that these difficul-
ties result from the nature of abduction problems, and not the representations or algorithms
being used to solve the problem. These problems are hcrd no matter what representation or
algorithm is used.

Fortunately, there are several mitigating factors that might hold for specific domains.
One factor is that incompatibility relationships and cancellation interactions might be suf-
ficiently sparse so that it is aot expensive to search for explanations. However, only O(n)
incompatibilities or cancellations are sufficient to lead to intractability, and the maximum
plausibility requirement still remains a difficulty.

Another factor, as discussed in Section 1, is that some constraint might guarantee a
polynomial search space, e.g., a limit on the size of hypotheses or sufficient knowledge to rule
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out most individual hypotheses. For example, if rule-out knowledge can reduce the number I
of individual hypotheses from h to log h, then the problem is tractable. It is important to
note that such factors do not simply call for "more knowledge," but knowledge of the right
type, e.g., rule-out knowledge. Additional knowledge per se does not reduce complexity. For
example, more knowledge about incompatibilities or cancellations makes abduction harder.

The abductive reasoning of the RED expert system works because of these factors. The
size of the right answer is usually small, and rule-out knowledge is able to eliminate man
hypotheses. RED is able to avoid exhaustive search because the non-ruled-out hypotheses
are close to an ordered monotonic abduction problem.

If there are no tractable algorithms for a class of abduction problems. then there is no
choice but do abduction heuristically (unless one is willing to wait for a very long time).
This poses a challenge to researchers who attempt to deal with abductive inference-provide
a characterization that respects the classic criteria of good explanations I parsimony, cover-
age, consistency, and plausibility), but avoids the computational pitfalls that beset solutions
attempting to optimize these criteria. We believe this will lead to the adoption of a more
naturalistic or satisficing conceptualization of abduction [14, 29], in which the final expla-
nation is not guaranteed to be optimal, e.g.., it might not explain some data. Perhaps one
mark of intelligence is being able to act despite the lack of optimal solutions.

Our results show that abduction, characterized as finding the most plausible composite
hypothesis that explains all the data, is generally an intractable problem. Thus, it is futile
to hope for a tractable algorithm that produces optimal answers for all kinds of abduction U
problems. To be solved efficiently, an abduction problem must have certain features that
make it tractable, and a reasoning method that takes advantage of those features. I_'nder-
standing abduction, as for any portion of intelligence, requires a theory of reasoning that
takes care for the practicality of computations.
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A Proofs of Theorems

In this appendix, we provide a proof for each theorem in the paper. We assume that the
functions e and pi are tractable with time complexities O(C,), and O(Cpj) in the size of an
abduction rjolem, respectively (see Section 3). The reader is forewarned that many of
the reduction proofs do not provide direct insight on the intuitive reasons underlying the
complexity results. The proof of Theorem 4.3 is given after Theorem 4.5.

Theorem 4.1 For the class of independent abduction problems, it is #P-complete to detr-
mine the number of explanations. I

This is in #P because each composite hypothesis H C H , can be generated in nonde-
terministic polynomial time, and it is easy to check if H is complete and parsimonious.

It is possible to reduce from determining the number of minimal vertex covers [32] to
determining the number of explanations. Given a graph G with vertices V and edges E, a
ininimal vertex cover is a minimal subset of vertices V' C V such that every edge is connected
to a vertex in V'. An independent abduction problem can be constructed from G as follows:

D.1 = E

H.11 = V
e(H) = {(u,v) E E u E H V v E H}

pl(H) = anything 3
In this construction, H is an explanation iff it corresponds to a minimal vertex cover

Theorem 4.2 For the class of independent abduction problems, there is an O(nC. ni- 3
algorit'. I for finding an explanation, if one exists.
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I Theorem 4.4 For the class of monotonic abduction problems, there is an O(nC, + n') al-
gortthm for finding an explanation, if one exists.

I For these theorems, n = ID u! + IH ,]. Because the monotonic constraint is more general
than the independent constraint, our discussion is oriented for Theorem 4.4. First we consider
the correctness of Algorithm 1, and then consider its complexity.

The first conditional determines whether an explanation exists. Because of the monotonic
constraint, H., must explain as much or more than any other composite hypothesis. Hence.
if H, is not a complete composite hypothesis, then no composite hypothesis is complete.
If H,,1 passes this test, then initializing W to Hal ensures that W starts off as a complete
composite hypothesis.3 Within the loop, W remains a complete composite hypothesis because no element is re-
moved if it leads to explaining less than D,. The fact that the result W is also parsimonious
can be shown by contradiction. Suppose that H C W and e(H) = D,,. Then, because the3 problem is monotonic, H C H' - e(H) = e(H') = e(W). In particular, for each h r W\ H.
e(H) = e(W\ {h}) = e(W). However, the loop would have removed h from W (or any
superset of W) in just this case, implying that h _ W, which is a contradiction. Thus, the
loop produces a complete and parsimonious composite hypothesis, i.e., an explanation.

Now consider the complexity of Algorithm 1. We assume sets are represented as bit
vectors. Let k = iD nI and I = IHniu.

The conditional makes one call to e (O(C.)) and checks whether its answer is equal to
D ,, fO(k) steps). Assigning Hall to W takes 0() steps.

Since IH,,a = 1. the loop iterates I times. The loop performs I evaluations of e (O(C,I each), I set comparisons (O(k) each), and up to I set differences of single elements (0( I)
each). Thus the complexity of algorithm is OlIC. + kl + k + 21). Since both k and I are less3 than n, O(nC, + n 2) clearly bounds the complexity of AlgoritLim 1.

Theorem 4.5 For the class of independent incompatibility abduction problems, It is VP-
complete to determine whether there is an explanation.

I We prove the NP-completeness of this problem by reducing from 3SAT [10]: given a
statement in propositional calculus in conjunctive normal form, in which each term has at
most thrce factors, find an assignment of variables that makes the statement true.

Let S be a statement in propositional calculus in 3SAT form. Let U = {ul,u 2 ,.m..,U,}
be the variables used in S. Let n be the number of terms in S. An equivalent independent3 incompatibility abduction problem P = (D., H ., e, pl, 1) can be constructed by:

Dail = {di,d 2 ,.... d, }
Hall = hihihih . h,,h'

e(h,) = {d, u, is a factor in the jth term}
e(h,') = {d, f -tu, is a factor in the jth term}

p(H) = anything
:r { h1,h'}, {h2,h'J}.. ., {h,,,h' }}

If H is a complete composite hypothesis for P, then S is satisfied by the following3 assignment. ftrue if h, EH

false otherwise
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Consider the ith term in S. Since d, E e(H), there is some i such that either h, or h' is in
H and explains d,. If h, E H and d, E e(h,), then u, is a factor in the jth term of S and by
the assignment above, the term is satisfied. If h' E H and d, E e(h,), then h, r H and -u, is i
a factor in the ith term of S, so by the assignment above, the term is satisfied. Since ) was
arbitrary, it must be the case that all terms in S will be satisfied by the above assignment.

If S is satisfied by a value assignment (" C U indicating:

{ true if u E U'

u1 = false otherwise

then H = {h, I u, E U'} U {h, I u, U'} will be a complete composite hypothesis for P.
An explanation for P exists if and only if a complete composite hypothesis for P exists. I

Thus, 3SAT problems reduce to independent incompatibility abduction problems. Incompat-
ibility abduction problems are clearly in NP since it is easy to guess a composite hypothesis
H and to test whether e(H) = Dail. Thus, it is NP-complete to determine whether an I
independent incompatibility abduction problem has an explanation.

Below, we reduce this class of problems to a number of other classes. For conveninrp,
we shall assume that these abduction problems have the same form as the P constructed
above: the problem is independent except for incompatibilities, each h E Hall is an element
of exactly one I E 1, and le-'(d)l < 3 for each d E D. We refer to this special class of
independent incompatibility abduction problems as 3SAT abduction problems.

Theorem 4.3 For the class of monotonic abduction problems, given a set of explanatzons.
it is NP-complete to determine whether an additional explanation exists.

't his can be reduced from 3SAT abduction problems. Let P = (Dal, Ha, e. pl,Z) be a
3SAT abduction problem, and let P' = (D' 1 , H' , e', pl') be a monotonic abduction problem
constructed from P as follows.

H'11 = HnI

{ Dail if31EI(ICH)
e'( H) = e(H) otherwise

pl'(H) = pl(H)

It turns out that I is a set of explanations for P. Consequently, any other explanation I
can only have at most one hypothesis from each pair I E 1. Thus, it would also be a
explanation for P. 3
Theorem 4.7 For the class of diagnosis problems, relative to the complexity of determining
whether a composite hypothesis is consistent with SDUOBS, it is NP-complete to determine
whether a diagnosis exists.

To determine whether a solution exists for a diagnosis problem, it is sufficient to exhibit
a subset of components A C COMPONENTS such that

SD U OBS U {B(c) Ic E A} U {-AB(c) I c E COMPONENTS'\A}
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I is consistent. Hence, diagnosis problems are in NP relative to the complexity of determining
whether a composite hypothesis is consistent with SDUOBS.

Determining whether a diagnosis exists can be reduced from finding explanations for
3SAT abduction problems. Let P = (D, 1 , Hai, e, pl, I) be a 3SAT abduction problem, and
let 7P' = (SD, OBS, COMPONENTS) be a diagnosis problem constructed from P as follows.I SD = {MANIFEST(d) - AB(h) I d E Dl} u

{AB(h) , -. AB(h') I{h, h'} E I}
OBS = {MANIFEST(d) I d E D 1 1}

COMPONENTS = Hail

An explanation for P exists iff there is a complete composite hypothesis H in P, which3 is equivalent to whether:

SD U OBS U {AB(h) I h E H} U {-AB(h) I h E H,u\H}

is consistent for P'. Clearly, some AB(h) must be true for each observation MANIFEST(d).Also, AB(h) and AB(h') cannot be true at the same time if {h, h'} E I.

Theorem 4.8 For the class of belief revision problems, it is NP-complete to determine
whether there is a value assignment w to the variables W such that P(wlv) > 0.

Cooper [4] showed that it is NP-complete to determine whether P(X = true) > 0 for a
given variable X. To prove the above theorem, simply let V = {X) and v consist of X = true.
Determining whether there is a value assignment w such that P(wlv) > 0 i3 equivalent to3 determining whether P(X = true) > 0.

Theorem 4.9 For the class of cancellation abduction problems, it is NP-complete to deter-
mine whether an explanation exists.

This can be shown by reduction from 3SAT abduction problems. Let P = (D,11 , Hl e, pl. T'
be a 3SAT abduction problem. An equivalent cancellation abduction problem
P' = (D 1 , H', eill pI', e+, e') can be constructed by:

D'i, = D,.1 U {d[ I I E 1183 H.11 = Hu U {h', h"}
(h) e(h) if h E Hau

e {d, lI E } if h E {h',h"}

' (dI I h E I} ifhEHall

e'_( 0 if h E {h', h"}
pl'(H) = pl(H)

Cancellation interactions are created so that each incompatible pair in P effectively be-
come incompatible in P'. For all I E I and H' C H' ,, if I C H', then dj e'(H'). Thus. no
3uch H' can be an explanation. Hence, P' has a complete composite hypothesis iff P has a
complete composite hypothesis. In particular, H C Ha, is a complete composite hypothesis
for P if and only if Hu{h', h"} is a complete composite hypothesis for P'. Consequently. P
has an explanation if and only if P' has an ,'xplanatien.

'This means that D'.1t has a datum corresponding to each I E 1. notated as dt
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Theorem 4.11 For the class of cancellation abduction problems, it is coiVP-complete to
determine whether a complete composite hypothesis is parsimonious.

That is, it is NP-complete to determine whether a complete composite hypothesis is
not parsimonious. This can be shown by reduction from 3SAT abduction problems. Let
P = (D,., H.1, e, pl,I) be a 3SAT abduction problem, and let P' = (D11, H 11 , e', pl'. , e,
be a cancellation abduction problem constructed from P as follows:

H' I,= H u {h', h", h', h"}
DI = D , U {d1 I IE 1} U {dh I h E H.} I

e(h) U d, if h E Hlj
{'h d, I I E 1"} if h E (hl, h"} I
Du u {d, I I E I} ifh=h I
{dh I h E H} if h = h'"

{d lI h E I) if h E H,,l
e'_(h) = {dh Ih E H11} ifh=h*

10 if h{h' ,h", h}
pl'('H) = pl(H) 1

This construction is similar to the previous one except that additional data and hy-
potheses are included so that H'11 is a complete composite hypothesis. However, any other
complete composite hypothesis (which obviously must be a proper subset of H,') cannot
include h' and must satisfy cancellation interactions equivalent to P's incompatibilities. In

particular, H C H,1 is a complete composite hypothesis for P if and only if Hu{ I', V, h} I
is a complete composite hypothesis for P'.

Theorem 5.1 For the class of independent abduction problems using the best-small plausz-
bility criterion, it is NP-hard to find a best explanation.

This can be shown by reduction from 3SAT abduction problems. Let P = (Dcj, H,,,, e. pl. I
be a 3SAT abduction problem, and let P' = (D' H' e',pl') be an independent abduction

problem using best-small constructed from P as follows:
Let f, be a function from I to H.11, such that V1 E I (fi(I) E I), i.e., fj chooses one 1

hypothesis from each pair in 1. Let HI be the set of hypotheses that f, chooses, i.e, HI =

UItr{fI(I)}. Let f2 be another function from I to H,11, sv:h that f2 chooses the other

hypothesis from each pair.in I. Now define P' as:

D1 = D,,, U {d, I I E II U {d'}
H'11 = Ha , U {h', h"} I

e(h) U {dr I h E I} if h E H.1
e'(h) = {d'} U D u\e(Hi) if h= h'

I {d') if h = V
VIE I (pl'(fi(I)) = pl'(fi(I)))
Vh E H,,, (pl'(h) < pl'(h') < pl'(h")) 1

The remaining orderings of pl' do not matter. Let n = I1. Note that one hypothesis
out of each I E I must be chosen to explain all the dj. Either h' or h" must be chosen
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to explain d'. Hence, explanations must be of size n + 1 or larger. Now H = H1u{h'} is
an explanation of size n + 1, where n = I11. Because h' makes h" superfluous, any other
explanation of greater size must include more than n elements of H,,. According to best-
small, this would match h' of H against a lower ranking hypothesis, so H must be better than
any larger explanation. No other explanation can be smaller, so to get a better explanation
according to best-small, h" must be chosen, and only one hypothesis out of each I E I
can be accepted so that they explain D,,, i.e., a solution to the 3SAT abduction problem
P. Such an explanation would be a best explanation and also show that H is not a best
explanation. Hence, finding the best explanation would solve the 3SAT abduction problem.
Thus, finding a best explanation for independent abduction problems using the best-small
plausibility criterion is NP-hard.

I Theorem 5.2 For the class of belief revision problems restricted to OR interactions, it ts
.VP-hard to find the most probable explanation.

I We reduce from finding a best explanation in independent abduction problems using
the best-small plausibility criterion. Let P = (D, 11, H,,, e, pl) be an independent abduction
problem where pl satisfies the best-small plausibility criterion. A belief revision problem P'
that preserves the orderings among complete composite hypotheses determined by pl, but
might create additional orderings, is:

I W- {X=ld E D.1} U {XhI hEH
V = {X d E D. 11}

Id = I ! d E e(h)j

S=

V= {X=true l X E V)
Vs4 ((sd - 3Xh (d E e(h) A Xh = true)) -- P(Xd =truelsd) = 1)
Vsd ((s -- VXh (d E e(h) -- = false)) - P(Xd = truesd) = 0)
VX, (0 < P(Xh = true) < .5)

I VXh, Xh (pl(h) < pl(h') -. P(Xh = true) < P(X, = true))
VAyh, Xh, (pl(h) = pl(h') -- P(Xh = true) = P(Xh, = true))

Note that P(Xd = true) = 1 iff there is some h such that d E e(h) and P(Xh = true) = 1.
The network thus consists solely of OR interactions. As a consequence, the conditional
probabilities can be concisely represented. This ensures that the size of P' is polynomial in

I the size of P.
For convenience, we will use P(HID) to denote the probability that XA is true for h E H

and X,% is false for h E Hu\H, given that Xd is true for d E D and Xh is false for d E D1,\\D.
If a value assignment w to all the variables W assigns true to all Xd and to only XA such
that h E H, it is easy to verify that P(wjv) = P(HID, ).

If H is a complete composite hypothesis for the abduction problem P, then H can be
compared to other complete composite hypotheses in the belief revision problem P' using
the expression:

3 lJP(h) lj (1 - P(h))
h c-H hEH .H
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where P(h) denotes P(XV = true). By Bayes' theorem: I
P(H'D.) = P(H)P(D ..uH)

P(D .1)

Because of the way the conditional probabilities are set up, H implies D,11, so P(D uIH) = 1.
Because PfD,11 ) will always be in the denominator, it is sufficient to compare P(H) with I
Pf H') if H' is another complete composite hypotheses. P(H) is calculated by the expression
given above. Obviously P(HIDi) > 0 if H is a complete composite hypothesis.

If H is not a complete composite hypothesis, then P(D IH) = 0, and so P(HIDnii) = 0.'
Suppose H* is the composite hypothesis that corresponds to the MPE w* for the belief

revision problem. To show that H* is a best explanation, we need to show that H- is
complete. H* is parsimonious, and that no other explanation H is better than H* based on
the best-small plausibility criterion. From the above discussion, it should be clear that H-
is complete.

Now if H* were not parsimonious, then some h E H* is superfluous, i.e., H*\ {h} is
complete. However, because 1 - P(h) > P(h), it would follow that P(H.\{h}) > P(H*),
which contradicts the fact that H* corresponds to the MPE. Thus, it must be the case that
H* is parsimonious. Since H* is also complete, H* is an explanation.

Finally, suppose that another explanation H is better than H* according to the best-
small plausibility criterion. Then there exists a 1-1 function rn from H to H* that satisfies I
the following conditions: for each h E H, P(h) >_ P(m(h)); and either H is smaller than
H*, or there exists an h E H such that P(h) > P(m(h)).

Using the function m, a 1-1 function m' from H,11 to Ha,i can be constructed as follows: I
re(h) if h E H

m'(h) = 'm(h) if h E H*\H A m-(h) E H A rn-( +)(h) does not exist
h otherwise

The domain of m is mapped into the range of m. Whatever is in rn's range, but not in rn's
domain, is inversely mapped into elements in m's domain, but not in m's range. Everything
left over is neither in rn's range nor domain, and is mapped to itself.

Because of the best-small constraint, the following can be shown for in':

P(h) >_ P(m'(h)) if h E H
1 - P(h) > P(m'(h)) if h E H*\H A 3h' E H (m(h') = h)
I - P(h) = 1 - P(m'(h)) otherwise

Since this mapping matches the factors of P(H) to those of P(H*), it shows that P(H) _
P(H*). Furthermore, best-small guarantees that either P(h) > P(m(h)) for some h E H I
or that H is smaller, implying there is some h H such that 1 - P(h) > P(m'(h)). Thus.
P(H) > P(H.).

However, this contradicts the fact that H* is the MPE. Thus, it must be the case that the
MPE for the belief revision problem P' corresponds to a best explanation for the abduction
problem P. Because finding a best explanation is NP-hard, it is also the case that that
finding the MPE is NP-hard, even if the belief network is restricted to OR interactions.

'Or undefined if no complete composite hypothesis exists, in which cam, no explanation or MPE exists

27 I



I

Theorem 5.3 For the class of ordered monotonic abduction problems using the best-small
plausibility criterion, there is an O(nC. +-nCp1 + n2 ) algorithm for finding a best explanatzon.

where n = D 111 + JHil.

Algorithm 2 is different from Algorithm I in only one way: instead of iterating over
elements of 1,i in an arbitrary order in the loop, a specific order is imposed. Thus. by
similar arguments as for Theorem 4.4, Algorithm 2 will also find an explanation. if one
exists. The change to the loop will result in the addition of at most O(JH.,11 ) evaluations
of pl and O(IH,1I log IH ,t1) steps to sort H.11 based on pl. Clearly then, the complexity of
Algorithm 2 conforms to the order of complexity in the theorem. We now show that the
explanation it finds will be a best explanation.

Let W be the explanation it returns. Suppose that, according to the best-small plausibil-
ity criterion, there is a better explanation H. Then JHI _< JWI and there must be a match m
of H's elements to W's elements, such that H's elements are just as or more plausible than
W's. The matching hypotheses from H to W cannot all have the same plausibility-that
would imply that H C W because the abduction problem is ordered. However, because W
is parsimonious, no proper subset of W can be complete. Thus, at least one element of H
must be more plausible than its match in W.

Suppose that the least plausible element h, E H is more plausible than the least plausible
element w, E W. This implies that all elements of H are more plausible than wl. Because
H is an explanation, that would imply that w, is superfluous in the context of higher-rated
hypotheses, and that the loop in Algorithm 2 would have removed w, from the working3 hypothesis, implying that w, % W, a contradiction. It must be the case then, that w1 E H,
otherwise H would not match up with W.

Suppose that the m least plausible elements of H are exactly the same as those of W.
Call this set W,. Further suppose that H and W differ on their m + 1st least plausible
elements. Let h,+ and w'+ 1 be these elements, respectively. Consider the hypotheses
W' C Hl that are more plausible than w,+1. Now by the time that w,+ is considered
for removal in the loop, the working hypothesis must be WU{w,+i}UW'. Since wt,,.1 was
not found to be quporfl,,ous, it must be the case that WmUW' is not complete. Thus, the
m + 1st least plausible element of H cannot be an element of W'. Because h,+i # w,+,,
h,+, must be less plausible than w,+,, which contradicts the supposition that H is a better
explanation than W.

Hence, by mathematical induction, no H can be a better explanation than W according to
the best-small plausibility criterion. Therefore, for ordered monotonic abduction problems.
Algorithm 2 tractably finds a best explanation.

I Theorem 5.5 For the class of ordered independent abduction problems using the best-small
plausibility criterion, given a best explanation, it is VP-complete to determine whether an3 additional best explanation exists.

This reduction is similar to that of Theorem 5.1. Let P = (D~u, H~, e.pl,I) be a 3SAT
abduction problem, and let 79' = (D',1 , H 11, e', pl') be an ordered independent abduction
problem constructed from P as follows:
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Let f, be a function from I" to H,, such that f, chooses one hypothesis from each pair I
in I. Let H, be the set of hypotheses that f, chooses. Let f2 be a function from I to H,,
that chooses the other hypothesis from each pair in I. Now define P' as:

D'., = D,1 u {d, J I E I} U {d', d"}
H'1 = H.11 U {h', h", h-}

e(h) u{dIh E} ifh EH,
e'(h) = {d'1 U D,1\e(HI) if h = h'j {d"} if h = h"

{d', d"} I if h = h"
VIe EI (pl'(fi([)) > pl'(f2([)))

Vh E H,.1 (pl'(h) < pl'(h*) < pl'(h") < pl'(h'))

The remaining orderings for pl' do not matter. Now H = H1U{h', h"} is a best explana-
tion of size n + 2, where n = Ill. Because one hypothesis out of each pair in I (a total of
n hypotheses) is needed to explain {d I I E 1}, and because H includes the more plausible
hypothesis of each pair and the two most plausible hypotheses overall, no other explanation
of size n + 2 or greater can be as good as H. Hence, to construct another best explanation,
h' and h" must be excluded, h" must be included, and only one hypothesis out of each pair
in I can be accepted, i.e., a solution to the 3SAT abduction problem P. Thus, another best
explanation for P' exists only if P has an explanation. 3

2
I
I
I
I
I
I
I
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Abstract

We describe several computational complexity results for planning, four of which identify
tractable planning problems. Our model of planning, called "propositional planning," is
simple-conditions within operators are literals or their negations. We consider different
planning problems, which are defined by different restrictions on the preconditions and post-
conditions of operators. Our main results are: Propositional planning is PSPACE-complete.
even if operators are restricted to two positive (non-negated) preconditions and two post-
conditions. It is NP-complete if operators are restri-ted to positive postconditions, even if
operators are restricted to one precondition and one positive postcondition. It is tractable in
four restricted cases. One case in which propositional planning is tractable is if each opera-
tor is restricted to positive preconditions and one postcondition. The blocks-world problem.
slightly modified, is a subclass of this restricted planning problem.
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1 1 Introduction

f te relationship between intelligence and computation is taken seriously, then intelligence

:annot be explained by intrL -table theories because no intelligent creature has the time

D oerform intractable computations. -Nor can intractable theories provide any guarantees

Aiout the performance of engineered systems. Presumably, robots don't have the time to

3Derform intractable computations either.

Of course, heuristic theories are a valid approach if partial or approximate solutions are

3 acceptable. However, our purpose is not to consider the relative merits of heuristic theories

and tractable theories. Instead, we shall focus on formulating tractable planning problemrrs.

Planning is the reasoning task of finding a sequence of operators that achieve a goal from

3a given initial state. It is well-known that planning is intractable in general, and that several

obstacles stand in the way (Chapman, 1987). However, there are few results that provide

9 clear dividing lines between tractable and intractable planning. Below, we clarify a few of

these dividing lines by analyzing the computational complex''ty of a planning problem and

a variety of restricted versions, four of which turn out to be tractable.

Our moiel of planning: which we call "propositional planning," is impoverished compared

Ito working planners. Preconditions and postconditions of operators are limited to being

gliterals or their negations. An initial state then can be represented as a finite set of literals.

indicating that the corresponding conditions are initially true, and that all other relevant

I conditions are initially false. A goal is represented by two sets ell conditions, i.e., the goal is

to make the first jet of conditions true and the other set false. For convenience, we call these

positive and negative goals, respectively. Operators in this model do not have any variables

or indirect side effects.

IThe kinds of restri-tions we consider are constraints on the number and kind of pre-

3 and postconditions. Figure 1 illustrates our results, showing which planning problems are

PSPACE-complete. NP-hard (at least NP-complete and at most PSPACE-complete), NP-

I
I
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crmpietc:, and polynomial.' These results can be summarized as oilows: J

Propositional plnning is PSPACE-complete even if each operator is limited .o two

posltlve (non-negated) preconditions and two postconditions. I
It is NP-hard if each operator is restricted to one posit;ve precondition and two post- 5
conditions.

It is NP-complete if operators are restricted to positive postconditions. even if operators

are restricted t, one precondition and one positive postcondition.

It is polynomial if each operator is restricted to positive preconditions and one cost- I
condition. The blocks-world problem, slightly modified, is a subclass of this restricted 3
pl nning problem

It is polynomial if each operator is re.tricted to positive preconditions and positive 3
postconditions.

It is polynomial if each operator has one precondition and if the number of goals is

bounded by a constant. 3
It is polynomial if ea :h operator is restricted to Ao preconditions.

Additional boxes in the figure identify some commonalities. I
The remainder of this paper is organized as follows, First, we describe previous results onr

tohe complexty of planning. Then, we define propositional planning. Next, we demon trace

our complexity results, and show how the blocks world is covered by one of our results. 5
Finally, we discuss the impact of these results on the search for tractable planning. I

I

As is -ustomary, we aume that PSPACE-complete problems are harder than NP-complete problems.
which in turn ar, harder than polynomial problems. However. even P 6 PSPACE is not yet proven. I

': I
I
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2 Previous Results 5
The .iterature on planning is voluminous, and no attempt to properlV survev the ianni:. 1, i

,it.erature is attempted here. Instead, the reader is referred to Hendler et al. 1990'. Despite

the large literature, results on computational complexity are sparse. In turn, we discuss 5
previous results from Dean and Boddy (1987), Korf (1987), and Chapman (1987).

Dean and Boddy (1987) analyze the problem of temporal projection-given a partial

ordering of events and causal rules triggered by events, determine what conditions must be

true after all of the events. Dean and Boddy's formalization of the temporal projection a
problem shares many features with planning, e.g., their causal rules contain antecedent

conditions (preconditions) and added and deleted conditions (postconditions). In a sense.

their events correspond to planning operators, especially if each event is associated with 5
one causal rule. However, Dean and Boddy only consider problems of prediction in which

a partial ordering of events is given, whereas the equivalent planning problem would be to 3
find some ordering of events to achieve some set of conditions. Nevertheless, some of their

results are similar to ours, e.g., temporal projection is intractable even if causal rules are 3
limited to one antecedent condition, one added condition, and one deleted condition. Our

notation for propositional planning is mostly borrowed from Dean and Boddy.

Korf 1987) considers how various global properties of planning problems (e.g.. serializable 3
sabgoals, operator decomposability, abstraction) affect the complexity of using problem space

search to find plans. In contrast, we focus exclusively on local properties of operators. 5
Hc-,wever. except for Korf's own analysis of operator decomposability (Korf. 1985), neither he

nor us describe the relationship from these properties of planning problems to the properties

of operators. Clearly, this is a "gap" that future work should address. I
Perhaps the most important complexity results for planning are due to Chapman's anal-

ysis of his planner TWEAK (Chapman, 1987). Because virtually all other planners are as

expre5sive as TWEAK, his results have wide applicability. TWEAK includes the following

representational features. The preconditions and postconditions of an operator schema are

41
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inite sets of "'propositions." A proposition is r resented by a tuple of elements. wnic- .,.av

Ibe constants or variables, and can be negater. A postcondition of an nperator can contain

variables not specified by any precondition of the operator, which in effect allows creation

or- new constants. The initial state is a set of propositions. Each goal is also a proposition.

I A plan is a partial ordering on a set of operator instances: variables can be substituted with

constants. but there is no requirement to do so.

Chapman proved the following the two theorems:

Theorem 1 (First Undecidability Theorem) Any Turing machine with its input can
5e encoded as a planning problem In the TWEAK representation. Therefore. planning is
undecidable, and no upper bound can be put on the amount of time required to solve a

Iproblem.

I Theorem 2 (Second Undecidability Theorem) Planning is undecidable even with a -
rite initial state if the action representation is extended to represent actions whose effects

are a function of their situation.

For Theorem 1, Chapman's proof depends on an infinite initial state to represent an infi-

I nite Turing machine tape. For Theorem 2, allowing increment and decrement functions is

sufficient for proving undecidability.

IThese theorems clearly demonstrate the difficulty of planning in general, but it is not

obvious what features of TWEAK's representation are to blame for the complexity. What

.happens to the complexity, for example, if postconditions cannot introduce new variables'

What happens if the size of states are bounded for any given instance of a planning problem.

-\re there any interesting restricted planning problems that are tractable' By considering

a model of planning with considerably fewer features, our analysis begins to address these

I questions.

!
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1
3 Propositional Planning 5
An instance of propositional planning is specified by a tuple 0,PO, I. 1), where:

P is a finite set of conditions;

0 is a finite set of operators, where each operator has the form ,r( , . I
P P is a set of positive preconditions-,

r P C is a set of negative preconditions- ,

a C P is a set of positive postconditions;

6C P is a set of negative postconditions: and

C,; n = 0 and an = 0.

I C P is the initial state: andI

SK.A,) is the goal:

.- v- p is a set of positive goals

.V C ~P is a set of negative goals; and

,t .\ = .

That is. P is the set of conditions that are relevant. Any state can be specified by a 3
subset S C P, indicating that p E P is true in that state if and only if p E S. 0 is the set I
of the operators that can change one state to another. I specifies what conditions are true

and false in the initial state, i.e., p E P is initially true if p E I and initially false otherwise. 5
g specifies the goals, i.e., S C P is a goal siate if and only if ." C S and S 1) =A

The effect of a finite sequence of operators (ol, o2. o,) on a state S can be formalized I
as follows:

Result(S,()) = S I

N otherwise

Result(S, (a..o 2 ,. .,o))I
= Result(Result(S, (oi)), (o2 .  o,))

In essence, any operator can be applied to a state, but only has an effect if its preconditions I
are satisfied. If its preconditions are satisfied, its positive postconditions are added i,I its

6 3
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.'egative postconditions are deleted. cf. Fikes and Nilsson. P371.. An operatortan appear

I muitipie times in a sequence of operators.

l A finite sequence of operators (ol, o,,. . . o,) is a solution to an instance of propositional

pDanning if Result(, o1 ,o...os)) is a goal state.

1 An instance of a propositional planning problem is satisfiable if it has a soiution. We

define PLANSAT as the decision problem of determining whether an instance of propositional

I pianning is satisfiable. Below, we consider the computational complexity of PLANSAT.

To show how a planning instance can be modeled by propositional planning, consider

I the Sussman anomaly. In this blocks-world instance, there are three blocks A. B. and C.

Initially C is on .4, A is on the table, and B is on the table. The goal is to have 4 on B. B

on the table, and C on the table. Only one block at a time can be moved. The conditions.

5 initial state, and goals can be represented as follows:

P = {,-t-on-B, A-on-C, B-on- 4, B-on-C, C-on-A, C-on-B}
I = {C-on-.4}
AA = {.-4-on-B}
A' = {B-on-.4, B-on-C,C-on-A,C-on-B}

The negative goals A' encodes the fact that B and C are on the table if B and C are

not on top of anything else. The operators will ensure that .4-on-B and A-on-C cannot

I simultaneouslv hold.

The operator to unstack A can be represented as:

= {B-on-AC-on-A}

-=A-on-B,.A-on-C}

That is. 4 can be moved to the table if nothing is on .4. The result is that 4 will not be on

t op of any other block.

I The operator to stack A on B can be represented as:

, = {B-on-.4, C-on-.A, .A-on-B, C-on-B}
a = {.4-on-B}5 = {.4-on C}

U7I
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That is, A can be stacked on B if nothing is on top of .4 or B. The result is that .4 will be

on B and not on top of any other block.

Obviously, any blocks-world instance can be easily modeled as propositional planning .

More generally, any TWEAK planning instance can be polynomially reduced to a proposI-

tional planning instance if each variable in an operator schema is limited to a poly.omia, I
number of values and if each operator schema is limited to a constant number of variables.

An exponential/infinite number of values for a variable would lead to an exponentILdIinfinite

number of propositional planning conditions. A polynomial number of variables in an oper- £
ator schema with more than one possible value for each variable would lead to at least an

exponential number of propositional planning operators. I

4 Complexity Results 5
We now describe and demonstrate our complexity results for propositional planning. As

mentioned above. PLANSAT is the decision problem of determining whether an instance of I
propositional planning is satisfiable. 3
4.1 PSPACE-complete Propositional Planning I
Theorem 3 PLANSAT is PSPA CE-complete.

Proof PLANSAT is in NPSPACE because a sequence of operators can be nondeterministi- I
cally chosen, and the size of a state is bounded by the number of conditions. That is, if there

are n conditions and there is a solution, then the length of the smallest solution path must

be less than 2'. Any solution of length 2n or larger must have "loops," i.e., there must be 5
some state that it visits twice. Such loops can be removed, resulting in a solution of length

less than 2". Hence, no more than 2n nondeterministic choices are required. I
Because NPSPACE = PSPACE, PLANSAT is also in PSPACE. 3
Turing machines whose space is polynomially bounded can be polynomially rf:u dced to

PLANSAT. The PLANSAT conditions can be encoded (and roughly translated' as follows: N
!
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p,.X Tape position i contains symbol x.
P7,3 The Turing machine is in state q and the input tape head is at the zth

tape position.

P,.s.: The Turing machine was in state q and the input tape was at the ith
position, which contained character x.

Paccept The Turing machine accepts the input.

1If qO is the initial state of the Turing machine, its input is zXr 2.... Xk, and the space used

by the Turing machine is bounded by n, then the the initial state and goals for propositional

£planning can be encoded as:

1 =fPo#, PPXl - P2,.r2.Pkxh Pk+i. Pk+-2*' n'

.5 = {p~ccept}

3 I is encoded so that that position I to position k contain the input and the rermn aIr's

positions (position 0 and positions k + I to n - 1) contain a special blank symbol

Suppose that the Turing machine is in state q, the input tape is at the ith position,

j is the character at the ith position, and the transition is to replace z with y. move to the

right, and be in state q'. This can be encoded using three operators:

' p, ,I, , ,, = {p,.,, P,} , = {P.,.,' P',.}

17 =0 77k = 0a = {p,,,,} a {p,,} a = {p ,+}
= {P 7,} 6 = {Pix} = {P,,,}

The first operator "packs" all the information about the current position into a single con-

dition. The second operator changes the symbol. The third operator moves to the next

I position and the new state. Boundary conditions can be easily handled by encoding no

operators for p,_ and p,,,,.

I A Turing machine accepts an input if it is in an accepting state and no transition can

be made from the current symbol. For each such case, an operator to add p,,,,pc can be

Iencoded.
Because there are a polynomial number of (q,i, x) combinations, there will be a poly-

nomial number of conditions and operators. Thus, any PSPACE Turing machine w th its

I input can be polynomially reduced to a propositional planning instance.

9
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Note that none of the above operators requires more than two positive preconditions and

two postconditions. This leads to the following corollary.

Corollary 4 PLANSAT with operators restricted to two positive precondztions and two post-
conditions is PSPACE-cornplete.

4.2 NP-complete and NP-hard Propositional Planning

Let PLANSAT+ be PLANSAT with operators restricted to positive postconditions. Note S
than any PLANSAT instance in which each condition is either never a positive postcondition I
or never a negative postcondition can be reduced to a PLANSAT+ instance.

Theorem 5 PLANSAT+ is NP-complete. U
Proof. PLANSAT+ operators can never negate a condition, so the previous state will always 3
be a subset of succeeding states. Also, operators within an operator sequence that have no

effect can always be removed. Hence, if a solution exists, the length of the smallest solution I
can be no longer than the number of conditions. Thus, PLANSAT+ is in NP because only

a polynomial number of nondeterministic choices is required.

3SAT can be polynomially reduced to PLANSAT+. 3SAT is the problem of satisfying i
a formula in propositional calculus in conjunctive normal form. in which each clause I'as at

most three factors. i

Let F be a formula in propositional calculus in 3SAT form. Let U = {uI, u2 ,... u,} be

the variables used in F. Let n be the number of clauses in F. An equivalent PLANSAT+

instance can be constructed using the following types of conditions.

p , u, = true is selected.
P: u, = false is selected.

PC, The Jth clause is satisfied. I
The initial state and goals can be specified as:

CI Pci.JP~.C,

110 -1 !

lo i



I
Shat is, the goal Is to satisfy each of the clauses.

3 For each variable u,, two operators are needed:

That is. u, = true can be selected only if u, = false is not, and vice versa. In this fashion.

only one of u, = true and U, = false can be selected.

For each case where a clause c, contains a variable u,, the first operator below is needed:

3 for a negated variable U7, the second operator below is needed:

={p7,} =C, =ap , = pc,}
5=0 3=0

Clearly, every pc, can be made true if and only if a satisfying assignment can be found.

3 Thus PLANSAT-t- is NP-hard. Since PLANSAT+ is also in NP, it follows that PLANSAT-

is NP-complete.

3 Note that each operator above only requires one prec rIdition and one positive postcon-

dition. This leads to the following corollary.

Corollary 6 PLA.VSAT with operators restrzcted to one precondition and one positive post-£ condition zs NP-complete.

One additional result will complete the intractability results shown in Figure 1.I
Theorem 7 PLANSAT with operators restricted to one positive precondition and two post-3 conition s NP-hard.

Proof: This can be shown by reduction from 3SAT, similar to that for Theorem .5. One

I additional type of condition is needed:

p , No assignment to u, has been selected.

I
11
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The initial state is {p ,p .... }

Now all that is needed are different operators for selecting an assignment.
{P= ,} - {po,}

o p, p
0 {Pa,} = {P='} mI

Again, both u, = true and u, = false cannot be selected.

The same operators for clauses as in the proof for Theorem .5 can be used. A -dummy"

postcondition can be used to increase the number of postconditions to two.

4.3 Polynomial Propositional Planning

Theorem 8 PLA.VSAT with operators restricted to positive preconditions and one postcon-
dztzon is polynomial.

Proof The difficulty is that some negative goals might need to be temporarily positive to

make some positive goals positive or some negative goals negative. Fortunately, because 3
of the restrictions on the operators, it is sufficient to only consider plans that first make

conditions positive and then make conditions negative. Consider a sequence of operators

So0. o .. o) in which the preconditions of each operator become true. Suppose that there

are adjacent operators o, and oj+1 such that oi makes a condition negative and o,+, makes a

condition positive. Let pi be oi's negative postcondition and Pi+1 be oi+,'s positive postcon- I
dition. If pi = p,+,, then oi can be deleted because oi+1 reverses oi's effect. If p, pi,-4 , then

o, can be switched with oi+i because their postconditions are independent of each other's pre-

conditions. Leaving pi positive cannot cause oi+,'s preconditions to become false. and making

P,_1 positive cannot cause oi's preconditions to become false. Repeating these changes until I
there no such adjacent operators will result in an equivalent sequence of operators that first

makes conditions positive and then makes conditions negative.

Let Tur-non then be a subroutine that inputs a subset of conditions X C P. Turnon 3
determines a maximal state S C P \ X that can be reached from the initial state using

operators with positive preconditions, i.e., result in as many positive conditions as possible I
12 3
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whiie keeping all conditions in X negative. Because all preconditions are positive. I r q

!S polynomial. It is sufficient to keep checking all -he operators with positive postconIIt:ons

3 .until no more conditions can be made positive. It can be shown that there is exactl" one

such maximal state.

Let Turnoff be another subroutine that inputs a subset of conditions S C P. Turno

determines a maximal state S' - S such that S \ A,' can be reached from S' using operators

with negative preconditions. Turnoff is polynomial because it is possible to work backwar.

from S Ak -to dete:mine what conditions in S A could have been positive. 1t can be shown

that there is exactly one such maximal state.

The following algorithm determines if a solution exists by iterating between TJrno2 an'

I Turnoff:

ST ,--
loop

S - Turnon(X)
ifM Z S then reject

S' - TurnofS)
if S = 5' then accept
X - X S \' S')
if X " I 0 O then reject

end loop

I This algorithm is polynomial because Turnon and Turnoff are polynomial, and X grows

3 monotonicailv. The algorithm works because every element of X is a negative goal. that. if

initially positive or made positive, prevents the goal state from being reached.

I Theorem 9 PLANSAT with operators restricted to posztit'e preconditions and positive post-
conditzons is polynomial.I
Proof.- The algorithm is trivial. Simply apply operators that do not make any negative goais

I positive until no more such operators have any effect. If a goal state is reached, then accept.

otherwise reject.I
Theorem 10 PLA.NSAT wzth k goals and operators restricted to one precondition is poly-

I nomniai.

13I
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Proof It s possible to work forward from the initial state. Construct all possible combina-

tions of k conditions. Mark those combinations true of the initial state. For each marked

combination, mark any combinations that can be reached from that combination via an

operator. After all possible combinations are marked, if the combination of conditions or

responding to the goal is marked then accept. otherwise ceject. I
This is why the algorithm works. Consider a solution plan and any one of the k goals.

To reach this goal, there must be a "chain" of operators leading from one condition in the

initial state through cne condition at a time until the goal is reached. Consider now the k 3
chains of operators for the k goals. Consider also any state reached during the execution of

the solution plan. This state will correspond to k nodes on the k chains. Any state that

satisfies the k conditions corresponding to those nodes can reach the goal state. Since this is

true for all states reached by the solution plan, it must be the case that only k conditions at 3
a time need to be considered to determine what combinations of k conditions can be reached. !
Theorem 11 PLANSAT with operators restricted to no preconditions is polynomial.

Proof: It is oossible to work backwards from the goals. First look for operators that do

not clobber any of the goals. Goals that are achieved by these operators can be removed i
from consideration. These operators can also be removed from consideration. Then look

,or operators that do not clobber the remaining goals, and remove from consideration these 3
n)perators and the goals they achieve. This can be repeated until the remaining goals are

true of the initial state (accept) or until no appropriate operators can be found (reject). 5
4.4 The Blocks World 3
Theorem 8 can be used to show that the blocks-world problem is tractable. I
Theorem 12 The blocks-world problem can be solved using operators restricted to positive
preconditions and one postcondition. 3
Proof We note that stacking one block on another can be accomplished by first moving the

former block on the table and then moving it on top of the latter block. Thus, solving any I
14 3
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blocks-world instance only requires operators to move a block to the table and to move a

l bock from the table.

Let {B 1. B 2,.... B.} be the blocks in an instance of the blocks-world problem. The

conditions can be encoded as follows:

SpI. B, is not on top of B,.

I if B, is on the table, then all pi,. will be true. If B, has a clear top, then all pk,, will be true.

If B, is on top of B, then all p,,k except for pi., will be true.

3 For each B, and B,, I # j, the operator to move B, from on top of B, to the table can

be encoded as:

r = {P ,., P2 ....... P., P1 .,. T2.1 ., Pi- . -I, P, .:.... P,.j}
r=0

That is, if nothing is on B, and nothing is on B, except possibly B,, then when this operator

is applied, the result is that B, will not be on top of B,.3 For each B, and B), z# j, the operator to move B, from on the table to on top of B,

can be encoded as:

, = {P 2. . ..... P,,.., , P'2, ...

of

6 = { Pi,

That is, if nothing is on B, and B, then when this operator is applied, the result is that B,

I will be on top of B.

3 Since there are only 0(n') (",j) combinations, only 0(n-) conditions and operators are

needed to encode a blocks-world instance.

3 As required, all preconditions are positive and each operator has only one postcondition.

Thus, Theorem 8, in a sense, explains why the blocks world is tractable.2

'The algorithm for Theorem 9 corresponds to the unimaginative, but robust, strategy of moving all the
blocks to the table, which makes all the conditions positive, and then forming the stacks from the ' . on

Iup.
11
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5 Remarks

P' anning is intra-able even If the size of states are bov.'nded anu operators have no vartables.

- a owing two preconditions and two pos-condhitons for operators gives rise to an

ex re me-v hatr problem. However, operators must have preconditions, postconditions. and

apparently many more 'features" ,o implement any interesting domain ;Chapman. )S7.

Hendler e; al., 1990). While additional features might be good for making a planner more 3
useful as a programming tool. generality has its downside-tractability cannot be guaranteed

Uniess there are sufficient restrictions on th. .peratcrs.

In the context of propositional planning, we have discovered four restricted planning

problems that are tractable. Restricting ope-ators to positive preconditions and one post- I
condition explains the tractability of the blocks-world. Restricting operators to positive

preconditions and positive postconditions, though una-istic, makes the list o5 tractable

problems more complete. Restricting operators to one precondition and limiting he number

of goals is the only case where restricting the number of goals leads to tractability. Rest-ict-

ing operators to no preconditions shows that planning can be done efficiently if preconditions 3
can be ignored, e.g., if preconditions of operators can be easily satisfied without :lobbering

'iradv achieved goals.

However, we expect that many, if not most, planning domains violate these categories.

Thus, these domains cannot be shown to bc tractable based on restrictions on the local U
properties of operators. As mentioned in the section on previous research, IKerf "9,'S7'

lists several global properties of planning problems that lead to efficient sealch for plans

U. nderstanding how these properties are realized a.s restrictions on the set of operators as 3
whole is a promising research approach.

Unfort unately, the prospects for a single domain-independent planning aigoi:.hm are 3
pessimistic. The four tractable problems above appear to require quite different algorithm.

and many other tractable planning probiems are yet to be discovered. We believe t., I
will be more fruitful to adopt different methods for different types of planning problem.-.

16
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Abstract tue advantages as possible of both approaches. We ;vill
be using examples from the Generic Task (GT) approacn

This paper describes ou: research which is an attempt to for building knowledge-based systems in our discussion
retain as many of the advantages as possible of both task- since this approach had its genesis at our Laboratory

specific architectures and the flexibility and generality of where it has further been developed and applied :-or a
more general problem-solving architectures 'Lke Soar. It in- number of problems; however the ideas are applcable to
vestigates how task-specific architectures can be constructed o:her task-specific approaches as well.
in the Soar framework and integrated and used in a flexible
manner. The results of our investigation are a preiminay
step towards unification of general and task-specific problem The GT Paradigm
solving theories and architectures. The GT paradigm is a theory of types of goals and the

problem solving methods needed to achie.'e each type.
Introduction By problem solving method we mean the specification

of behavior to achieve a goal. The paradigm has tnree
Two trends can be discerned in research in problem solv- main parts:
ing architectures in the last few years: On one hand,
interest in taik-spectfic architectures [Claacey, 1985, 1. The problem solving of an intelligent agent car.

be chratrie k-speciifico gal. an
Marcus and McDermott, 1987, Chandrasekaran, 19861 be characterized by generic types of goals. Many
has g:own, wkherein types of problems of general util- problems can be solved using some combination of

ity are identified, and special architectures that support these types.

the development of problem solving systems for those 2. For each type of goal there are one or more problem
types of problems are proposed. These architectures solving methods, any one of which can potentially

help in the acquisition and specification of knowledge be used to achieve the goal.
by providing inference methods that are appropriate for
the type of problem. However, knowledge-based systems 3. Each problem solving method requires certain
which use only one type of problem solving method are kinds of knowledge of the task in order to exe-
very brittle, and adding more types of methods requires cute. These are called the operational demands of
a principled approach to integrating them in a flexible the method "Laird et aL., 19861.
way The term generic task refers to the combination of a

Contrasting with this trend is the proposal for a type of goal with a problem solving method and thetypera arhtetr contine int th probre onvn eho n
flexible, general architecture contained in the work on kinds of knowledge needed to use the method. The GT

Dar 'Laird et al., 19871. Soar has features which make for classification by establish-refine (called the E-R GT)
it attractive for flexible use of all potentially relevant is given as:

knowledge or methods. But as a theory Soar does not
make commitments to specific types of problem solvers Type of Goal Classify a (possibly complex) descrip-

or provide guidance for their construction. '*on of a situation as a class in a set of categories.
In this paper we investigate how task-specific archi- An instance of this goal is the classification of a

tectures can be constructed in Soar to retain as many of medical case description as one of a set of diseases.



Problem Solving Method this is a cai Problems with GT Systems
sinicat:on rmethod -hat works by crea::n g and test-
ing hypotheses about the plausibility that the de- Many fexibility problems arise because a GT arch.:ec-

scription of the situation represents an instance of ture contains assumptions not present in the original GT
one or more of the classes, problem solving method. For example, our archtectureI

for hierarchical classification assumes that hypotheses

1. If there are no initial hypotheses about what are generated from a pre-defined hierarchy. While this

class the description is an instance of, then is a common way to generate refinements, other waIs
try to suggest at least one, exist and might be useful in certain domains. Second,

" the architecture immediately genera.ec refnnereents for
2. Try to confirm or reject any hypothesis that a confirmed hypothesis. An alternative is to test all the

is suggested. hypotheses in the current state before reining an;" tnat

3, If a hvoothesis is confirmed, determine the were confirmed. Third, the architecture assumes tHat

possible refinements of the hypothesis and any problem solver it calls will correctly function. We

suggest them. cannoL easily modify the architecture to gracef l y ha>I
dle these situations.

4. If the goal is not met, go to step 2. Another set of problems involves the integration ot

multiple GT problem solvers. The simplest kind of inte-

Kinds of Knowledge These consist of a refinement ration is when one problem solver calls on another as

hierarchy, hypotheses aboat the presence of a d.- !ct means to achieve a subgoal. This is easily done
classes, confirmation/rule-out knowledge for these using our current architectures by directly invoking the
hypotheses, and knowledge to "etermine when the method and domain knowledge needed to achieve a sub- i
goal of classification has bee. chie-ed. goal. However, sometimes we require more interacton

between the problem solvers For example, in our med-
In addition to classification by esta'lish-refine, GT's ical diagnosis systems the hypothesis assembly problem
have been created for pattern directed ,ivpothesis match- solver has knowledge about those diseases that can oc-

ing 'Johnson et al., 19881, object synthesis by plan selec- cur together and those that are mutually exclusive. This

tion and refinement [Brown and Chandrasekaran, 1985I, knowledge can be used help guide the classification of

and assembly of explanatory hypotheses diseases; however, it is difficult to implement because
iosephson et al., 1987'. the classification architecture has no place for repre ent-

ing or using this knowledge. Our only solution was to 3
specially modify both architectures so that they could

GT Systems interact in the desired way.

Finally, new methods are difficult to add to existing
rsecialized architecture or shell has been constructed problem solvers; each problem solver must be modified
for each CT Each architecture is a combination of an to recognize and use a new method. We would like to

inference engine with a knowledge base. The inference have the system automatically consider methods based

engine is a procedural representation of a GT's problem on the type of goal a method is designed to achieve.

solving method The knowledge base provides primitives I
for encoding the domain specific knowledge needed to in-

stantiate the procedure. We refer to the combination of Hovi can Soar Help?
the encoding of the domain knowledge in the knowledge

base and the method that can use it as a problem-solver. In Soar, all problem solving is viewed as search for a goal

This system building approach offers a number of ad- state in a problem space. Operators are used to move

vantages: First, it is easy to decide when a GT architec- from state to state. Knowledge in the form of produc-

ture can be used because the knowledge operationally tions is used to select problem spaces, states, and op-

demanded by the method is explicit in the definition erators. Productions generate preferences for an object

of the GT Second, knowledge acquisition is facilitated (i. a problem space, state, or operator) that indicate

because the representational primitives of the knowl- how the object relates to the current situation or other

edge base directly correspond to the kinds of domain objects. Whenever the directly available knowledge is

knowledge that must be gathered. Third, explanation insufficient to make progress Soar automatically gener-

basec on a run-time trace can be couched in terms of ates a subgoal. Therefore, every decision that needs to

the method and knowledge being used to apply it. be made can become a goal to be achieved by search-

2



.ng a proonem space. Th:s 's cai'Ied uzverlal s'6goalnj. generate-refinements <hyp2, Gene-a-e ccc to ::e

In knoviege 'ean si:uations Soar can make progress by stateI tnose hypotheses hat o.ce ;:nsceec

using an appropriate weak method. The weak methods as a Lcnement of <',p>.

are not explicitly programmed in Soar, but arise from
the knowledge avadlable to solve a problem. If the pro- Operator Instantation An establish operator s ce-

cessing in a subgoal is no longer needed, Soar will au- ated for any hypothesis In the current state that has not

tomatically terminate the subgoal and resume probiem yet been judged. A genera~c-fefinements operator is cre-

solving in a higher level goal. This is called automatic ated for any hypothesis that is confirmed but not refined.

goal e-nn4;oz. A suggest-initial-hypotheses operator is created if there

Each of these features directly relate to one or more are no hypotheses in the current state.
of the limitations with GT systems. The selection of al-

ternatives via preferences allows new options and knowl- Domain knowied6, To use the E-R strategy in a

edge to be easily added to existing systems. Brittleness particular domain, knowledge to perform the foilowing

is decreased because of Soar's ability to automatically functions must be added to the Soar implementation.
r1eate subgoals to overcome failures and its ability to fall

bdk on ,,M ,Leihods. Finally, automatic goal termina- 0 Create the initial state containing one or more i-

tion eliminates unnecessary computation and provides a tial hypotheses.

more natural flow of control.
* Detect when classification is complete.

Mapping GT's to Soar a Implement the three operators.

We have begun to map GT's to the Soar architecture Operator Implementation There are many ways

in a straight-forward manner. Each GT is implemented o implement the operators used in the classify space.

as a problem space; the states represent the developing To make ER-Soar easy to use we have impiemented a

solution and the operators and operator suggestion rules method for generating refinements from a pre-definec hi-implement the problem solving method. The required erarchy and a method for establishing hypotheses based

kinds of knowledge can either be represented directly by on a confidence value.
produc'it;n or generated at run-time using additional

problem spaces. Discussion
To illustrate, we present ER.Soar, an implementation ER-Soar combines the advantages of the GT approach

of the E-R GT in Soar. We use a single problem space with the advantages of the Soar architecture. Knowi-

with three operators: suggest-initial-hypotheses, estab- e a e olish andgenraterefnemetsedge acquisition, ease of use, and explanation are aill

facilitated in ER-Soar because subgoals of the problem

solving method and the kinds of knowledge needed to

State Representation The state contains those hy- use the method are explicitly represented in the impie-

potheses that have been considered and those that are mentation. The subgoais of the method are directi-;

worth immediately considering. Any hypotheses in the represented as problem space operators. The kinds of

state that are refinements of other hypotheses (also in knowledge needed to use the method are either encoded

the state) are linked together to form a refinement hier- in productions or computed in a subgoal. The same ad-
arch' Each hypothesis also has an indication of whether vantages apply to the supplied methods for achievir.g

it has been confirmed, rejected, or not yet judged, and subgoals. Finally, the implementation mirrors the GT

whether it has been refined or not. specification quite closely making ER-Scar easy to un-

derstand and use.

Operators The classify problem-space uses 3 opera- ER-Soar overcomes many of the problems sufered

tors: by previous GT systems. Automatic subgoaling allows

unanticipated situations to be detected and handled. If

suggest-initial-hypotheses Determine one or more no specific method for handling the situation is available,

itiai hypotneses. an appropriate weak method can be used. Whenever a

goal needs to be achieved it is done by first suggest:,ng

establish <hyp> Determine whether the hypothesis, problem-spaces and then selecting one to use. This ai-
<h yp>, should be confirmed or rejected. lows new methods in the form rif prohlem-spaces to he

3



easily arded to existing problem sclvers. If no specific Johnson et al., 1988', Johr.son. T. R.. _mrith,. Jr. J.
"echntque exists to determine which method to use, Soar , Byla-ider, T. (1988). HYPER: Hypothes's ma:cn-
will try to pick one using a weak method. Automatic ing using compiled knowledge. Technical report, Lab

goal termination provides an integration functionality for Al Research, CIS Dept., The Ohio State U1niver-
not available in previous GT architectures. In general, sity, Columbus, Ohio.
the integration capabilities of ER-Soar are greatly en-
hanced. Bccause of preferences and the additive nature [Josephson et al., 19871 Josephson, J. R., Chandra- -
of productions, new knowledge can be added to integrate sekaran, B., Smith, J. W., and Tanner, M. C. (1987) Ioructions, new knowledge canou bemaddftongntestg A mechanism for forming composite explanatory hy-
E R-Soar with other methods without modifying existing pohss IEETascin nSses ln ncontr-ol knowlede, potheses. IEEE Trarnsact-oni on Systems, Man, and

Cybernetics, SMC-17(3):445-454.

[Laird et al., 19861 Laird, J., Rosenbloom, P., and
Conclusion Newtll, A. (1986). Universal Subgoaling and Chunk-

in. Kuwer Academic Publishers, Massachusets. •

ER-Soar illustrates how the advantages of task-specific

architectures can be combined with the advantages of [Laird et al., 1987] Laird, J. E., Newell, A., and Rosen-

a general architecture. The approach used to create bloom, P. S. (1987). SOAR: An architecture for gen-

ER-Soar is simple and can easily be applied to other eral intelligence. Aritificial Intelliqence, 33:1-64. I
task-specific architectures. We are currently using this 1Marcus and McDermott, 19873 Marcus, S and McDer-
approach to create Soar versions of the GT's for hypoth- t"mott, 1. (1987). Sk a n tool 3

Mott, J. (1987). Salt: A knowledge acquisition tool
esis matching and hypothesis assembly. Following this, for propose and revise systems. Technical report,

we will investigate various ways of integrating the three Carnegie-Mellon University.
methods. I
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Models vs Rules, Deep vs Compiled,
Content vs Form: Some Distinctions in

Knowledge' Systems Research

B. Chandrasekaran

October 2, 1990. Revised January 7, 1991

1 Goal of Contribution

In this contribution, I want to discuss a number of distinctions that have been
made in the literature on knowledge system design that require further careful
analysis: model-based vs rule-based Droblem solving, models vs experiential
or associational knowledge, deep vs compiled knowledge, and content vs form.
I will focus on the diagnostic task in my discussion, since these distinctions
have most often been debated in the context of this problem, but the issues
are of relevance to knowledge systems in general.

2 Models and Rules

The "model-based vs rule-based" distinction mixes categories and hence does
not set up genuine alternatives. All descriptions of any aspect of reality
are models. Thus Mycin [1), MDX [2], Neomycin [3], MDX-2 [4] are all

model-based systems for diagnosis, i.e., they all use bodies of knowledge that
describe their domain, but the vocabularies in which the models are described
in these systems are different. The concepts used in the description of these

models ought to be distinguished from their symbol-level representations [5].

"Rules" are one symbol-level commitment to represent the models.
Almost invariably, the term "model" has been used to refer one particular

type of model: one which is intended for the task of diagnosis, and in which

I I "rll".... I I 1 r., .-.1



the device under diagnosis is described in terms of components, relations
between components, and some sort of a behavioral description of the com-
ponents. In the rest of the discussion I want to call thil. class of models SBF
models, to indicate that their content deals with structure/behavior/function
of the components of the device.

Three distinct senses of the phrase rule-based were rolled into one in early
discussions in the field of knowledge-based systems.

* i. Rule systems as general-purpose programming languages. Computer
science has generated A family of rule-based programming languages
(e.g., Post Production Systems, Markov Algorithms). The OPS family
and Emycin were additional entrants to this family of symbol-level pro-
posals. These rule languages are especially useful to support a declara-
tive style of knowledge representation. Many expert systems built using
rules were simply algorithms implemented using a rule-programming
language, without a commitment to any specific view about intelli-
gence, human or artificial, or even knowledge.

* ii. Rule systems as human cognitive architecture. Newell and Simon
[6] proposed a type of rule-based architecture as a model for human
cognition. This is a model at the computational level, that is, it lays
out the data structures and operations by which computation proceeds.
Ruie-based systems in AI derived some of their aura from this implied
connection to cognitive architectures. However, to take a well-!nown
system as an example, Mycin owes its success less to the use of the
rule system as a cognitive model, and more to its use as a knowledge
programming language to implement a classification strategy.

* iii. Rules as "rules of thumb," heuristic associations. The rule-based
expert system movement also had a theory of expertise, that it was in
fact a collection of heuristic associations. Mycin rules were supposedly
of this type. It was additionally proposed often that the origin of the
heuristic associations was empirical problem solving experiece. Exper-
tise of this type was contrasted to so-called theory-based knowledge,
which was supposed to be based on scientific principles underlying the
domain, but not yet in a form useful for problem solving. Use of rules
in this sense is really a statement about the origin and character of
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the knowledge represented, not about rule systems as programming
languages or cognitive architectures.

There is quite a potential for confusion when all these senses of rules
are not distinguished. In discussions on the model-based versus rule-
based distinction, for example, it is generally not made clear when rules
are used as symbol-level representational ideas and when as empirical
associations.

Because of the equation of rules with empirical associations, suggestions
began to be made that perhaps we need "models" as opposed to "rules,"
where models were supposed to stand for "first principles," which were
then equated with "scientific laws." Another sequence of conflations
came about. Thus, in parallel with identifying rules with empirical
associations, there was this association of "models" with physics or
first principles.

Consider a piece of knowledge that a diagnostician might use, "exces-
sive temperature at the outlet valve indicates that Valve A might be
blocked." He might actually have derived it by generating an account
of the consequences of the broken valve, or he might have stumbled on
it by association. Thus the fact that the diagnostician has this knowl-
edge and uses it for diagnosis does not say anything about the origin
of this knowledge, whether it was obtained associationally, experien-
tially or whatever. Conversely, representing E = MC2 as a rule does
not suddenly make it "experiential" or "associational." This common,
but erroneous, identification of knowledge in rule form with its origin
as experiential or associational is a conflation of the role or origin of
knowledge with its symbol level representation. Equating expertise with
rules and in turn with empirical association continues to be a source of
confusion.

The diagnostic task requires knowledge that helps to map from obser-
vations to diagnostic hypotheses. The piece of knowledge relating a
certain temperature to a valve blockage is thus directly usable in the
diagnostic task. It relates an observation to a malfunction hypothesis
directly, and during diagnostic problem solving the causal pathway by
means of which the blockage causes the high temperature need not be
gener.ted z. accessed. Thic ?eint_ fo the importance of understand-



ing the relation between tasks, methods and types of knowledge. In
[71, 1 discussed the nature of task-specific knowledge for diagnosis and
how chat knowledae might be related to domain knowledge in other
forms. Are there other sources of knowledge from which knowledge in
a form directly usable for diagnosis can be derived, or "compiled"? I
suggested that such a knowledge source is likely to contain knowledge
of the structure of the svstem that is being diagnosed. That paper also
made the connection between tasks and types of knowledge needed for
accomplishing them, and thus suggested that the idea of compilation
was closely connected with the abstract task to be accomplished.

3 The Diagnostic Task

For the purpose of this discussion, we can identify a restricted class
of diagnostic problems as follows. I need to emphasize the word "re-
stricted," since many important diagnostic problems are not covered by
the definition that follows. We have a device which can be described as
a set of components connected in a certain fashion. Information, energy
or physical fluids may flow through the device in a manner determined
by the behavioral properties of the components and the connections.
T he cotnpontaz might be recursively defined as devices themselves
down to some level that is convenient or sufficient for tne purpose at
hand. A set S of state variables is defined. (To avoid cumbersomeness,
I will use the term "state" in further discussion, when i really mean
a partial state, often described by using a state variable.) A subset
0 of S is directly observable and yield observations. A subset Of of
0 is defined such that for observations in this set, expected or normal
values are known or can be inferred immediately. Deviations from the
expected values of observations trigger the diagnostic process.

A class of diagnostic problems for the device is specified by 0, Of
along with specification of expected values for observations in Of, and
a set C of causes of interest. For the restricted diagnostic problem
under discussion, causes are normally components that maLfunction,
relations between components that are out of specifications, or input
information or fluids that are out of soecification.



An instance of the diagnostic problem in this c '

of observations, some of whi'h deviate from exoecteu va.c. e
The goal is to determine the subset of C that is the n, : >he"; t .
caused th , observations.

Note t1I at 0 is in Lenera! a ST Ul, suoset 'I te se t f s aLte:ao s
of the device. We need to reason about othier, u-si-.... tates
rJm the observations.

4 Compiled and Deep Knowledge

4.1 Tasks, Methods and Knowledge

For concreteness of discussion, I will use tie oanfua~e A sea 1.r1:n
problem spaces to discuss tasks and methods. Similar onts can
be made for viewing problem solving as inference-making, constraint-
satisfaction, best-match retrieval, or other alternative :ormularions.
Different tasks/methods need different kinds of kno.vledge. If the knowl-
edge needed for for a task/method is directly available, we Will say that
the system has compiled knowledge.

Task: A problem solving task, or simply a task. is defined by ch'aracter-
izing the starting and desired enu ztatE: cf .... l dg, of the problem
solving process.

For the diagnostic problem described abo-, the task can be stated as:

Starting state: includes a set of observations of the system under diacg-
nosis, where some of the observations deviate from the expected:

Desired end state: includes a subset of causes (e.g., maitttnctioning
components or incorrect relations between components) which together
caused the observations.

Method: A method is a proposal about how to organize inform ation
processing to achieve the goal. A method can be thought of as a col-
lection of problem spaces that are made available to achieve the task.
A method can be desc 1 b-eU i. teri-,z of the spaces of alternative partial
solutions, the operators in each space that help generate candidate so-
lutions, the objects that the operators operate on, and any additional
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know>V about how to orgzanize operator 7ip!::caticon to ac'. -'ee

vak rIee m-ay be many methods available to ach""eve a L~e-

A o ~~nanu simple methodi fo-r the above version -t-, th
az9K aKpcab)e w henl the malf!-,nction causes Jo not interac,&;:v

.Suo In this mthod., the observatiorns are mnapped onto the not of

mnalfunction causes C. om:sort of likelihood of eacii e,,erent ,n (- iS
wmpnuted. and hypotheses wxhose likelihood-s are over a. threshoi ar,.
proposedI as the answer. Two didtict types of problemn solving go on.
In one. the space of m alfunctions is e.,ploredl. Determining the lieli-
H.ood: of. and the explanatoryv coverage by, eacn malfuInction cons:'te

__n ot 'Ir type of PDroblem soling.71

I\~O :~ otr thie AMst : In order to appl; methnodi M for task T. the

agenn needs knowledge of certa-in types. This knowledge, say IK, TAIM.
iused to set up the problem 5paces ano. apply the operators to cnang e

now~oge sates.

For the classicaton method for the version of the diaanostic task that
Ihave been issinwe needi the following tvzsof knowledge:

--Thie set (7' of maflfuniction hypotheises.

-How obevtosand maluncton hvpothes are reated, so that
:kolnoo~ls of varios c:auses can be computed.

4.2 Depth of Knowledge Is Relative

If the knowledge XiT-M ) needed by method MI for task T is directly
available to a knowledge system, we say that the knowledge system
haz the needed knowledge available in a compiled form. Here the word

~cmied" is being used in the ordinary English sense of "colcte
together."

If kuowledge eAmeno k in P~ TM) can be derived from another type
of knowlei'g K' by additional reaoning or problIem solving ariivities.
'hen K' is deep re:2eto k. Knowledge elements of EK' itself might
bcer~a~ fromn vet another bo&; of knowledge K" by add,-itional
problem 5oling. Nhether or not to retain the knowledge element k



.. a 't ,1 l e"e-- i r 1_ ni e ied,' s a D nar a e

Pur " 7 .- lne -S x-a.. ,Pe.e a "-1owe,!4e e nt * , -

'e .: , '. at i -cate. U an observation 0 coUo h'' e .

,av. e rv a : i'' -. k , n,,,- n in C. Most first Le- nera-'-.q c,'az-
s 'c S VS ems . -e oe veson o- tne class'hcatorv method and :r

k .o w e n ases '-ad tn,,s incrnaton in some form in tneir 1 now
bases. For examp:_ %Pvcin had rules which connected observations anI

pvnotheses xith egrees ,.)t certainty. If k,,h.o) is not directly available.
i rnt t be der:vable from other types of knowledge. I will consider two
examnpes: causa. sequ:ences of states and SBF models of components.

(L. 0:)oc - CCO1L, t o; rrzt'or h. Consider knowledge in the f orm ot

S.ca-a.a account of malfunction h. that is, a sequence of states of in-
Lerest ' ina'1n stZte and its causal consequence as the malfunction h

,-c Daates. ome of the states in the causal sequence might be ob-
servab.es. The causal account can have branches conditioned on other
.evice pararmeters and inputs. This causal account can be traced to

see if it includes observational states of interest. The functional rep-
esentation 8" orzanizes causal sequences by explicitly indicating the

.oles plaved by components and domain laws. These causal accounts of
Malfunctions (or functions, for that matter) can themselves be derived
from other sources of knowledge.

Str-ucture-Furnctzot Description of Comporents. Consider what I have
tabeled an SBF model for a device, that is, one which contains a de-
scription of components of the device, the input/output specifications
of the components, and composition knowledge that enables one to de-
rive input/output properties of various configurations of components. If
malfunction h is a specific component violating its input-output specifi-
cations in a particular way, then a causal account (or parts of it) might
be derived by using :imulation methods that use the SBF specification
of components, and k(h.o) can be derived from this causal sequence.
As I said earlier, use of SBF models in this manner for diagnosis has

been called, somewhat imprecisely, model-based rensoning in diagnosis.

It is worth restating that the notion of depth of knowledge is relative,
and there is no one body of knowledge that can be said to be deep
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relative to a knowledge element k. In the above example, causal ac-
counts and SBF models are both deep relative to k(h.o). A somewhat
different definition of depth is given in f91. but, it can be argued that,
at least for the case of device diagnosis, the underlying senses of depth
converge.

A brief comparison with an aspect of SOAR [10] is relevant. When
SOAR is missing knowledge needed to apply an operator in a problem
space, it sets up a new problem space in which the needed knowledge
may be generated. in the diagnosis example. the diagnostic hypothesis
space is the original prob>em space, k(h.o) is part of the knowledge
needed to esablish or reject a hypothesis h, and the causal knowledge
structures are candidates for additional problem spaces to generate this
knowledge.

4.3 Deep Models are More Robust
Suppose a piece of knowledge k can be derived from another piece of

knowledge k' and vice versa. In this case, k and k' are deep models
relative to each other, but that is not very interesting. In general,
however, there is a loss of information when one compiles a knowledge
element from a deep model. Except in trivial problem spaces, discard-
ing those portions of the space which do not help in the achievement
of the current goal involves loss of information. In my examples, the
causal account of malfunction contains information about internal de-
vice states, which is missing in k(h,o). SBF models contain information
about normal functioning of different components which is missing in
the causal accounts of malfunctions. It is this uni-directionality of infor-
mation retention that makes some knowledge types deep with respect
to others.

Deep models are more robust in the sense that they are potentially ap-3 plicable for a larger variety of problems than knowledge that is tuned for
% task oe a particular version of it. Because of changes in domain tech-
nology, e.g., difference in probes, suppose some internal states which
were not observable have been made observable and vice versa. The
device is the same, the malfunctions are still the same, but the diag-
nostic task is now different. K(T,M) needed for this new version of
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the task is correspondingly different. However, the causal accounts of
malfunctions can be re-processed to obtain k(ho)'s for building up the
new K(T,M).

Suppose the device remains the same, but the purposes for which it is

being (i.e., its functions) used have changed. The set of malfunctions
is no longer the same. Again, there is a change in the diagnostic task.
and consequently K(T.M,) is different as well. The causal accounts
that had been generated for the previous set of malfunctions are no
longer useful. However, the SBF models of the components and the
simulation process can still be used to derive the causal accounts for
the new malfunctions. and consequently to derive the elements of the
new K(T,M).

4.4 Other Senses of Compilation

UCompilation has been an especially difficult term, since it has techni-
cal connotations in computer science as well as common linguistic use.
My sense of compilation as generating knowledge required to support
a method for a task is related to the common meaning of "gathering"
or "collecting." In computer science usage in the context of program-

ming languages, compilation is a form of translation, and no loss of
information is implied. Also, compilation is often contrasted to "inter-
pretation," a run-time translation of only a local portion of the pro-
gram. My use of the term compilation does not involve these senses
and implications.

4.5 When to Build Compiled Knowledge Struc-
tures?

Whether knowledge needed for a task is generated at run-time on an as-
needed basis by accessing only portions of the deep knowledge structure

that are relevant to the current problem, or a large store of such task-
specific pie.es is built a priori and made available, is an issue that is
separate from the idea that tasks and methods determine the type of
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knowledge needed. which in turn can be derived from more general
knowledge structures.

Nevertheless, when to compile and store a knowledge element is an
important question. This is really an instance of the more general
question of when to "cache" the result of any problem solving. Three
criteria spring to mind for caching:

The problem solving activity in the generation of the knowledge

element involved an exponential amount of computation, e.g., ex-
ponential search.

- The knowledge element generated is likely to be needed sufficiently
often.

- The knowledge element can be generalized and indexed properly
by the situations for which it is appropriate.

As I mentioned, a good vocabulary of tasks, methods and the knowledge
needed to support them eases the indexing problem. In the remainder
of this section, I want to investigate the nature of search in compilation.
I will continue to use the diagnostic task for my discussion.

In Section 4.1, 1 identified two types' of knowledge needed for the clas-
sification method: malfunction hypotheses and knowledge of relations
between observations and hypotheses. SBF models can help gener-
ate both these types of knowledge. However, in what follows, I con-
fine my attention to just one specific part of the knowledge required,
namely, the knowledge element k(h,o), defined earlier as information
about whether hypothesis h can cause observation o.

Case 1. Linear causal accounts.

Consider a causal simulation of the type represented in Figure 1. In the
figure sl,.. sn, are unobservable internal states of the device, and each
state gives rise to only one relevant successor causal state. Whether to
store "h -- o" depends on the value of n. The savings here are linear.

[Figure I about here]

Case 2. Multiple consequences.



Suppose each cycle of propagation produces more than one relevant suc-
cessor state, e.g., "leaky valve - reduced cooling water," and -leaky
valve - shorting of controller circuit." Figure 2 is an example of a
causal representation of this type. In the figure some of the simulation
paths converge on o, while others go to states which are not obser-
vationallv significant. At run-time, that is, at the time of diagnostic
problem solving, starting with h, the problem solver will have to do a
search to determine if h cuses o. Depending upon the how branching
at one node is related to branching choices taken at other nodes, the
search process may be combinatorial, but it will be at least polynomial.
Compiling the knowledge -h -, o" here can produce considerable sav-
ing during run-time in either case.

[Figure 2 about here]

For suffciently complex systems, there is no guarantee that causal
paths leading to the observation of interest, even if they exist, would

be found within a fixed time. This is because a priori we don't know
if additional propagation of consequences might result in observational
states of interest.

The complexity of search in the SBF model space is especially high

when the device has a number of complex subsystems at different lev-
els of abstraction any one of which might be chosen for propagating
effects. My favorite simple example is from the medical domain. One
of the functions of the liver is to produce bile which is deposited in
the duodenum where it is broken down as it is used in the digestive
process. When there is obstruction in the bile duct, one cycle of simu-
lation leads to "bile duct obstruction (h) - no bile in the duodenum
(ol) and bile retained in the liver (o2)." However, neither ol nor o2
is easily observable. But, as it happens, due to complex interactions
between liver and renal systems, "o2 -o direct bilirubin in urine (o3),"
where o3 is observable. Even when SBF models for the various physio-

logical subsystems are available, identifying causal paths such as "bile
duct obstruction - bilirubin in urine" is in the nature of a small
medical discovery. Such discoveries are prize possessions of the diag-
nostic community. Any physician who does not have access to such
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compiled diagnostic knowledge and who routinely attempts to perform
simulations based on SBF models is unlikely to be very successful.

Case 3. Interaction of Causes.

* A combination of malfunctions can cause a different set of observations
than the union of their individual effects. This is in fact a fundamen-
tal source of the complexity ot diagnostic reasoning for multiple faults.
Since in theory we need to consider all combinations of malfunctions,
the total amount of work in the simulation space can be substantial. In
fact, most Al diagnostic systems make arbitrary cut-offs in the num-

PA ber of malfunctions that would be jointly considered, the single fault
assumption being the most common.

If medicine is any guide, human problem solvers in fact have a rich
-- pre-compiled store of lists of malfunction combinations which can po-

tentially interact or be causally related. During diagnostic reasoning,
the problem solver might first try to explain the data by only consid-
ering combinations in this list.

4.6 Combination of Models

There is a dual message that comes out of the analysis in the previ-
ous section. On one hand, diagnostic knowledge that helps map from
observations to causes often requires extensive search in the space of
causal states generated from SBF models, so caching those relations is
a good idea. On the other hand, especially in cases 2 and 3 above, there
can be no guarantee that any body of compiled diagnostic knowledge

can be regarded as complete, except in the case of simple devices, due
to the fact that the simulator does not know a priori whether or not
additional propagation will result in an observation of interest. In fact,
SBF models of devices are themselves unlikely to be complete. Be-
fore a structure/behavior model is constructed of a device, an a priori
choice is made about the behaviors of interest that would be repre-
sented, and a particular diagnostic problem might have observations
that require simulation of additional modalities of behavior not explic-

itly represented.
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This situation is at the root of the empirical fact that almost all nontriv-
ial human diagnostic reasoning uses a combination of access to compiled
diagnostic knowledge and resort to a variety of SBF and other models.
Diagnostic strategies usually combine compiled knowledge and SBF
and other models in a number of ways. Here are some examples.

1. When knowledge for evaluating a hypothesis is missing, an appro-
priate version of an SBF model might be accessed selectively -
selectively in the sense that only parts thought relevant to current
hypothesis are invoked - to derive the needed knowledge. The
.MDX-2 system of Sticklen [4] uses functional models of physio-
logical subsystems to compile elements of knowledge needed for
specific diagnostic hypotheses.

2. A common diagnostic strategy starts by using reasonably complete
diagnostic knowledge structures to perform diagnosis. If all the
data are explained satisfactorily, the process stops. If not, SBF or
other models are selectively accessed to look for causal pathways
by which the current set of hypotheses can explain the unexplained
data as well, or other hypotheses can be identified. A variant of
this strategy occurs when the hypotheses explain all the data, but
nevertheless it is thought that there may exist causal connections
between the hypotheses that might result in a more satisfying and
parsimonious diagnosis. SBF models, especially those that are
richly indexed with information about function and behaviors at
different levels of abstraction, can then be searched in a selective
manner to try to establish causal connections. This is the strategy
adopted by Punch [11].

3. Human diagnosticians often attempt to convince themselves that
a diagnosis that they have arrived at makes sense by construct-
ing causal stories to support the diagnosis. A knowledge system
might first perform a diagnosis by means of a compiled knowl-
edge structure, and then attempt to build a detailed causal ex-
planation from the diagnoses to the observations by using SBF or
other causal models. This is exactly tbe strategy adopted by Ke-
uneke's research [121 on generating diagnostic explanations from
functional representations of process systems. Note that the fact
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that a causal path has been strongly hypothesized and its direc-
tions are also given by the diagnosis radically reduces the search
in the simulation space.

5 Form and Content in Knowledge-Based
Problem Solving

Does compilation change the content of a knowledge base? if one iearns
a fact that is simply a logical consequence of other facts, has there been
a change in the content of one's knowledge? The distinction between
form and content is a subject of on-going debate in Al, but the terms
are themselves poorly defined or understood. In one sense of the word
"content," a set of axioms has the same content as the set of all theo-
rems that are derivable from it. But that is scant comfort for a problem
solver who is trying to prove theorems in that axiom system. No in-
ferential or problem solving activity adds content in this sense; in fact,
throwing away details of the search and retaining only the successes
loses content. But just as having an appropriate lemma might make
proving theorems easier, directly having access to diagnostic knowledge
will help in diagnostic problem solving. This is a form of operationaliz-

ing knowledge as has been discussed in research on Explanation-Based
Learning.

In discussions on knowledge systems, two different senses of the word
"form" are often conflated. One sense of it has to do with the vocab-
ulary in which the knowledge needs to be expressed for a certain task.
For example, we say that the classification method for the diagnostic
task needs knowledge in a form that relates malfunctions to observa-
tions. This sense of form actually refers to the kinds of knowledge
needed, that is, the kinds of things represented. For example, knowl-
edge of could-be-caused-by relationships is needed for many methods
for diagnosis. Form in this sense is thus, paradoxically, a statement
about content of knowledge. The other sense of "form" has to do with
the symbol-level representation adopted: whether the knowledge is rep-
resented in the form of rules, frames, sentences in predicate calculus,
or whatever. I have argued for a number of years that there has been
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entire-y too much concern with form in the latter sense, and not enoughpon form in the former sense.

I6 Concluding Remarks

There has been a certain confusion caused by the somewhat different
senses of meaning different researchers have brought to terms such as
"deep," "'compilation," and so on. As one of the early particioantq in
the discussion on this set of issues, I have attempted in this contribution
to give the senses in which I have used the terms. The terms themselves
are not in the long run as important as the distinctions that they are
attempting to capture. The intuitions that underlie my work relate
to the idea that there is a close relation between tasks, methods and
types of knowledge needed for the methods. Knowledge needed for
some types of tasks are themselves the result of problem solving using
other types of knowledge. These intuitions have been the basis of the
work by me and my colleagues on generic task architectures (13], and

more recently, on task structures [14]. These intuitions also motivate
my notions of depth and compilation.

In my view, the important research issues have to do with how a prob-
lem solver can flexibly move from one model to another in the pursuit

of its goals. In Section 4.6 I discussed some examples of integration of
different types of models for diagnosis. In [14] I discuss the role of a

task structure in providing for a flecible integration of models.
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Abstract

In this paper we discuss how diagrams can be used for reasoning about spatial

interactions of rigid objects. Our purpose is to provide a computational approach that

emulates the human capability of predicting interactions of simple objects depicted

on two dimensional diagrams. Three core aspects of our approach are a dual

representation scheme that has symbolic and imaginal parts, the use of visual

operations such as scanning on the imaginal part to extract spatial information, and

visual cases that encode experiential knowledge and play a central role in the

generation of spatial inferences. We first illustrate the approach with a detailed

example. Next, we discuss related work which indicates that reasoning with images

is an emerging and promising area of research. Finally, the significance of this work

is discussed.

Major area: cognitive modeling. Subarea: qualitative spatial reasoning
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1. Introduction

Humans quite often make use of spatial information implicit in diagrams to make

Inferences. For example, consider the cross-sectional of a simple pressure gauge that i
works by balancing air pressure against a spring-loaded piston inside a cylinder, as

shown in figure 1. Reasoning about the functioning of this device from the diagram

involves reasoning about spatial processes constrained by the cavity of the device. In 3
this case particularly, Lt requires an ability to comprehend the constrained motion of

the piston inside the cylinder. Similarly, anyone familiar with the operation of gears 5
will be able to solve the problem posed in figure 2 by imagining the rotary motion of

gearl being transmitted to the rod through gear2, resulting in the horizontal

translation of the rod until it hits the wail. In such situations humans reason about

spatial interactions not only by using conceptual knowledge, but also by extracting

constraints on such interactions from a perceived image. This integrated use of I
visual knowledge (about spatial configurations) from the diagram and conceptual

knowledge (such as the rigidity or plasticity of objects involved) is a very interesting U
phenomenon. In this paper we illustrate a computational approach that emulates this

capability for solving simple motion prediction problems. 6
2. The Approach

2.1 Motion Prediction Problems 5
The class of problems we address is the following. Given a two dimensional

diagram of a rigid body configuration along with one or more initial motions of

objects, predict the subsequent dynamics of the configuration. Figure 3 shows a U
prototypical example. I

I
I



2.2 Cognitive Inspiration

Introspective reports of people, when given diagrams like figure 3 and asked to

predict motions, indicated that by looking at the diagram they were able to visualize

the motion of one object causing that of another through physical contact. They

appeared to be using the image of the diagram in front of them directly to simulate

motions in their minds. There is also considerable evidence in cognitive psychology

for the use of mental images by people when solving spatial problems (Kosslyn,

198 1. The reports exhibited the following characteristics.

(i) Given a diagram depicting the problem, humans quize rapidly focus on localities

of potential interactions.

(2) People also seem to simulate or project the motion to determine the nature of

interactions that will occur.

(3) For reasoning about the dynamics (e.g., how will motion be transmitted after a

collision?) humans bring conceptual knowledge (e.g., gears are rigid objects) and

experiential knowledge (e.g., if an object collides with another, it typically transmits

motion in the same direction) to bear or, the problem.

We have developed an approach that exhibits these capabilities.

1
2.3 Representation

A motion prediction problem is specified by a scene depicting the spatial

configuration of the objects involved, and information about their properties. The

scene itself is represented as a hierarchical multi-level description in which all but the

lowest levels are symbolic and the lowest level is imaginal. Thus it is a dual

representation. The resolution increases with levels, so the top level contains the

I
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coarsest description. Each level of the representation contains descriptions of shapes 3
of objects in the scene being represented and their relative spatial configurations

using parametrized descriptors. At a level of low resolution an object may be I
represented by a single shape descriptor while at a level of high resolution it may be

represented in terms of shapes of its delineative parts. The imaginal part of the I
representation is a 2-dimensional pixel array of fixed width and height in which a 3
scene is depicted by the boundaries of objects in the scene. Thus the "image" is a

boundary-based rendering and is implemented as a bitmap. An interesting property 5
of this representation is that it directly captures, in its imaginal part, spatial

information such as the restriction of motion freedom of an object due to obstacles. I
This representation has been inspired by Marr's work (Marr & Nishihara, 1978) and g
by a representation for mental images, called an image symbol structure, that we

proposed previously (Chandrasekaran & Narayanan, 1990). Figure 4 shows a part 3
of the representation of the motion prediction problem in figure 3.

2.4 Reascning

Figure 5 shows a process description of our approach. One key component of this

process is the application of visual methods to retrieve spatial information from the I
image and to modify it. Visual methods are composed from a set of basic visual

operations such as scanning and boundary-following. Process steps such as 5
detecting interesting regions, locating surfaces of potential interaction, and reasoning

about the dynamics of object configurations are all done through visual methods I
operating on the dual representation. The following example will illustrate the role of

visual methods, For more details on these, see (Narayanan, forthcoming). Applying

I
I
I
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visual methods to determine the next deliberative st-..e corresponds to "imagining"

steps in introspective reports. Once a deliberative state is determined, however,

3experiential knowledge becomes relevant. A deliberative state is a decision making

state in which deliberate reasoning (in case of humans) or knowledge-based

Ireasoning (in case :f computers) is employed to guide following steps by

3determining subsequent dynamics of the object configuration. A configuration in

which two objects are colliding or one in which a previous contact between two

3 objects has been removed due to motion are examples of deliberative states.

3 Experiential knowledge has a central role in deciding how to proceed from a

deliberative state. We believe that the knowledge humans use in such situations is

mostly acquired through experience. Experiential memory is considered to be an

organized and indexed collection of cases (Schank, 1982). Therefore,

representational structures called "visual cases" have been developed to encode

experiential knowledge in the computer. Each case represents a typical spatial event.

These are called "visual" because the configurational information encoded in a case

I is imaginal in nature and this information is the "key" by which relevant cases get

3 selected during reasoning. Since cases are acquired from experience, they may not

be logically parsimonious or mutually exclusive. A visual case has three parts. One

j is the visual information. The second is non-visual knowledge that qualifies the

visual part further and it is used for deciding the applicability of a case to a particular

3 situation. The third part is a predicted event affecting objects in the spatial

configuration represented by the case. This event may specify a state change (e.g., a

directional force being applied on an object), a continuous change (e.g., an object

I
I
I
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moving in a particular direction), etc. The intent of visual cases is to encode simple

chunks of experiential knowledge about typical spatial events that humans have. An 3
example of this is "a rigid object resting on a rigid flat surface, when collided by a

moving rigid object, will tend to slide in the same direction". A corresponding visual 3
case is shown in figure 6.

The knowledge-based reasoning step in the process description thus 3
involves the selection and application of visual cases to predict events that follow a

deliberative state. After a deliberative state is computed, the next action is retrieving 3
relevant cases using the visual parts of cases as indices. From among these,

applicable cases are selected by using conceptual knowledge to verify the non-visual I
parts of the cases. Events predicted by the applicable cases are further pruned by

using current configurational information from the image. The remaining events

serve to guide subsequent steps of reasoning. Thus a visual case application results 3
in a spatial inference being made, based on the current configuration as depicted on

the image as well as other knowledge. A visual case brings conceptual knowledge to I
bear on spatial reasoning and is a computational analog of Pylyshyn's cognitive

penetrability argument (Pylyshyn, 1981) concerning the influence of tacit knowledge I
on mental imagery. 5

Now we illustrate this process in operation for the problem in figure 3. 5
Reasoning proceeds by generating goals and subgoals, selecting methods, and

applying them in accordance with the process description. Figures 7 - 11 illustrate U
various stages and results of reasoning. Each figure is a snapshot that shows a

I
I
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I
I partial execution trace in terms of goals/subgoals generated and methods applied,

with the last applied method appearing in boldface, and its effect on the bitmap.

3 Figure 11 depicts a stage at which one iteration of the process is complete. After this

execution returns to the step of locating surfaces of potential interaction. This

I process continues until no more changes occur in the configuration. The cumulative

result is given in figure 12 which shows the final configuration of objects.

5 3. Related Work

Research on mental imagery (Shepard & Cooper, 1982) provides support to our

belief that reasoning with imaginal as well as symbolic representations can be a

promising paradigm for intelligent systems. Despite intuitively compelling evidence

I for the use of imagery by humans, there has not been much work in artificial

7 Iintelligence toward endowing machines with a similar capability. Existing work on

kinematics, for example, (Faltings, 1987; Nielsen, 1988) takes the approach of

using algebraic descriptions and configuration spaces for solving problems like

reasoning about the motion of interlocked gear pairs. However, the visual approach

is applicable to the same class of problems (Narayanan & Chandrasekaran, 1990)

and can provide approximate solutions quickly. An early program that utilized

diagrams was WHISPER (Funt, 1977) which addressed rotation, sliding, and

j stability of blocks-world structures. More recently, work on using pictorial or

"analogical" representations for simulating the behavior of strings and liquids in

3 space has been reported (Gardin & Meltzer, 1989). Luc Steels (1988) has also

suggested the use of analogical representations for reasoning about the physical

world. The promise of pictorial representations is evident in Shrager's (1990) work

I
I
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on commonsense perception as well. He casts theory formation as an act of

reinterpretation of knowledge grounded in imagery and describes a computational

model ci theorizing about lasers in which propositional descriptions are grounded in i
an :conic memory. The instantiation of process views and the resulting mental

imagery-like animation in this laser model is similar to the application of visual

cases. 3

4. Concluding Remarks 3
We have illustrated a novel approach to reasoning about spatial interactions. The

advantages of using diagrams in this approach arise from the property that spatial I
information such as obstacles to motion or pathways that guide motion are directly I
evident in images. Therefore this approach can provide approximate solutions

quickly. Our approach is not only intuitive, but flexible as well. Objects which have 3
irregular shapes that will make their algebraic representations complex can be

represented and reasoned about in the same way as regular objects if diagrams are U
used. Reasoning visually can provide initial approximate solutions that can guide the

application of mcre quantitative methods to spatially localized regions where more

precision is required. As Forbus and colleagues rightly point out (Forbus, Nielsen & 3
Faltings, 1987), there can be no purely qualitative method for spatial reasoning.

What is required is to develop qualitative and quantitative methods and integrate 5
them so that qualitative ones provide approximate solutions that serve to focus the

application of computation-intensive quantitative methods to only those aspects of I
the initial solutions that require more precision or further refinement. We believe that

systems capable of reasoning about motion transferring devices such as gear trains

I

I
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and acquiring models of simple mechanical devices from their cross-sectional

diagrams can be developed using the visual approach. This has great significance to

engineering applications of artificial intelligence in terms of diagnostic and design

systems capable of reasoning with diagrammatic representations of devices.
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Evolution is more likely a "satisficer" than an optimizer. With that proviso, it. deapp'a
fr,,m Anderson's paper that a surprising amount of the details of human cognitive hehavi,,r
can be explained as a satisficing, if not an optimal, response to the structure f the en',in

iTien t B ut what consequences follow for various research programs is not quite clear. ['In a It
.Al person, not a traditional cognitive psychologist. In addition to whatever explariat, ry p,,-
ers psychologists want from their theories, I want the theories to have *design-prescript iv,

powers as well, that is. I want theories to tell me how to *create* mind-like entities. [li
torically, the route for this sort of progress has come from mechanistic explanation i l F
accounts of mental phenomena. Thus I read the target article from the perspective f what

rational analysis (RA) has to say about ME.

\nderson's views on this range from his belief, in "overenthusiatic moments, that P A caiI

supplant M E, to a more sober suggestion that RA accounts place constraints on ME acc)mits.
Finally, he actually displays an ME account for categorization which actually *iupleniew s
his ItA in the sense that it can, be thought of as literally estimating the various proahili! i,'
involved.

Given a cognitive agent in an environment engaging in a certain hehavi,,r, how t, all ,at,
an explanation of the behavior between the strictir,,4 th ,f E i ! ..... re T- , ,'h

environment is an issue that has beon discliss-l 1''fr' , ,',' ,I, . .. ' T, :ar l,'.

consider Sinon's ant (Simon. i982): It pr,!, Ic',5 a path ,,f -ra ,, p),.i' ' t le b a, ).
but a great deal of this complexity is explained IY the, pr,,prti-s of ti, ,-vir,,,ni n .t' h,1 11 s
the shape of the sandhills on the beach. In this as,. a r-1boticist char , ,vith pr,1!i1ji an

artificial ant would be making a mistake if he thought that the ant had an internri t ructurt,
that somehow had an encoding of the path. He would not only be wrong in allocati,on f



I

explanations, but he would be constructing an ant that doesn't work right.

But the sort of problems that Anderson is concerned with are not of this type. Here the
explanations are not necessarily allocated between the internal structure of the agent and
the structure of the external environment; *both* simultaneously account for the behavior,
albeit in different ways. We need to define some notations in order to help with the discussion
of this idea.

U Let E stand for the environment and Si and bi for structure of an agent and its behavior at
time i. Let M stand for any body of mechanisms within the agent which takes as input Si, bi
and the response of the environment and produces as output S(i+l), that is, it is some sort
of learning or structure-modifying function. Let us assume for the purposes of this discussion
that the structure of E is invariant in time, and that we are interested in the steady state
properties of S and b, that is, for i = infinity.

M itself may be a complex co'lection of mechanisms with different time constants: one in
the scale of biological evolution, perhaps another one in the scale of cultural evolution and
finally yet another one in the scale of learning by an individual.

For the question "Why is b the way it is?" we have two types of answers. One is that b
is the way it is because S of such-and-such type produces it (traditional ME). The other is
that b is the way it is because it is optimal for E (RA), but this story has a sub-plot: M
modified S such that S was optimal for E, i.e., it could produce an optimal b. Both answers
involve S, sooner or later.

I If our aim is to make agents which display behavior b, we either need to know Sinf, or we
need to know M, Sinit and have enough time in which to let M shape the S into Sinf. For
the latter alternative, depending upon whether Sinit reflects the situation at the beginning

of the individual, the culture, or some point in biological evolution, we are talking of a more
or less practical program.

Of course, in the above, I have accepted the RA hypothesis that b is optimal. But, as
Anderson acknowledges in the concluding section of the target article, some b's may not be
optimal after all. It seems to me that whether b is optimal depends on the following things:

i. The presumed goal of the agent. If a behavior b is not optimal for goal g, perhaps it is

optimal for goal g'. In some sense we can go shopping for goals. (Anderson is admirably
careful about this issue in the examples that he has stiiljd. th t is. hiq Oatft,'rnrit of goals
does not seem problematic, but it is not clear O t'm this frt,, ;,1 ;o- 4 affairs will
last. For example, Marr assumes that a goal of the human visal rytem Is t,, produce an
account of 3-d shapes of the objects in the scene. h.,t why is that not a re-asonable goal for
the frog's visual system as well? In general why wouldn't't any goals that we would ascribe

to the human visual system not be appropriate goals for the frog's as well? In order to get
RA off the ground, we will have to make additional assumptions, some of them about the

* 2



I *structure* of the respective visual systems.)

ii. The properties of Sinit and M relative to the search space in which the specifications for
optimal Sinf lie. Perhaps S will never get to the optimal Sinf. Thus for a specific cognitive
function, we will not know until after RA and data analysis are complete, whether in fact b
is optimal. In this sense, as a general research program, RA is asserting that b is optimal
whenever it is.

I My points in the above have been that ME and RA are complementary analyses, not alter-
natives, and that the RA program is not unambiguous in its methodology. Now I want to3 examine the claim that RA places strong constraints on ME.

Optimality of an agent's behavior does not imply that the agent is using explicit optimization
to produce the behavior. This has been a pet peeve of mine about quite a bit of work in Al
which assumes (i) that the job of an intelligence is to produce correct or optimal answers,
and (ii) the mechanisms for production of intelligent behavior should implement normative3 methods of producing optimal answers, most commonly some form of logic or Bayesian
analysis. On the contrary, it seems to me that it is neither necessary nor desirable that the
mechanisms of behavior production are explicit implementations of normative behavior.

I need to clarify some terms before I proceed. The word "structure" of cognition is a bit
too vague. We can assume that what is meant by that word is, in information processing
language, two things: a mechanism and some content that has been put into the mecha-
nism. To use some concrete examples, one proposal for a cognitive mechanism is a search3 engine, the latest example of the proposal being the SOAR architecture of Rosenbloom, et
al (Rosenbloom, Laird and Newell, 1987). Such a mechanism corresponds to a language in
which specific programs with specific content can be written. Thus Soar can be programmed
to have knowledge about some domain and methods. A Soar machine, so programmed, can
actually work on problems in that domain. The metaphor of a programming language does
not restrict the above idca to, symbofic mechanisms. The PDP style connectionist research
similarly specifies an abstract mechanism, but that mechanism itself needs to be given con-
tent to solve specific prc'blems. For example, when one designs a PDP style network to solve
word recognition, one has in fact used the abstract "programming language" of PDP style
conitectionist mechanism to produce a specific "program" of that type.

In my view what is interesting about both these (and many other) mechanisms that have
been proposed for cognition is that they can be used to impienent both optimal and non-
optimal methods for specific goals. In fact this Tr'-p-rfv .'r,--M n ,, h' I I 1... -ialy desirable,

.since the agent can adapt itself to changes in t lvr,,'1,11'mr t wit h,1 I, i algirig the basicI mechanism, because it is neutral with respect to optimal and non-optimal algorithms. I want
to give two examples of this.

UI am told that frogs' visual systems are so organized that on danger they jump towards
color blue and away from color green. It has been proposed that this is in fact optimal3 behavior: blue represents a body of water and safer for the frog, and green represents

* 3
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laid, full of predators. The neural mechanisms that implement this strategy could' just

as easily implement some other strategy of color preference. The RA that suggests that
the optimal behavior is "Jump to blue" is putting no constraints whatsoever on the basic
neural mechanisms. Of course, such an RA *is* placing a constraint on the *content* of the
nechanism, namely, that it should be programmed to prefer blue to green.

Similarly, I am told that during the plague in mediev'al Europe, some villages, on hearing of
the breakout of the disease in a nearby village, engaged in a ritual of dancing at night near
the village dump, making loud noises with pots and pans. As it happened, such villages
had a smaller chance of catching the infection. A modern-day RA would show that this
was actually optimal behavior, since the ritual kept the rats away from the dumps and
consequently from the village. Many cognitive mechanisms can implement this strategy,
including tihe following pair: a more or less random behavior generating mechanism that
first conceiveu of some version of the ritual, and a cognitive mechanism that in some way
remembered and passed on the ritual. Villages that survived were more likely to pass the
ritual on. The same mechanisms could be used to implement relatively ineffective strategies.

U Depending upon what is meant by the word "structure," RA can be thought of as giving clues
about the structure of cognition. If by structure is meant abstract mechanisms, in general
the case is less compelling. If by structure is meant the totality of abstract mechanism plus
content, it seems quite reasonable to say that RA can give clues about structure, since, as
seen in the above examples, it gives clues abcut the content.

This brings me to the relation of Anderson-style RA to Marr's approach. Anderson proposes
I that RA is similar to Marr's computational level. It is true that Marr, in his work on vision,

proposes that we should start by asking "What are the goals of computation?" and "What is
available in the image?," the latter question, in its generalization, being construed as "What
is the nature of the environment?". However, while Marr uses his analysis of what is in an

image to constrain what he could plausibly expect the visual system to be computing, his
computational level account of vision is really a proposal about the *structure* of the visual
system. Marr did not infer the existence of a level called "2 1/2-d sketch" purely from the

properties of the image and the hypothesized goal of the visual system. It was a *hypothesis*
by him, inspired by the analysis of the image no doubt, but nevertheless a hypothesis. The
computational level, to use Newell's term, avoids symbol-level commitment to how the com-
putation is implemented, but remains nevertheless a partial specification of a structure. The
spirit behind Marr's levels is close to that behind Newell's distinctions between knowledge
and symbol levels (Newell, 1982) in that both are attempts to develop a way" of talking about
structure without being tied down to the incidental apct, ,f im-pfr,,,, t ),, ut neither
is am attempt to avoid specifying the structhire t,.,',I, f,.r '':.plaiia ,,

I have tried to clarify the relationship of Marr's cmpItational level and Anderson's RA.
because I think the former still hews to the ME program. I can actually try to implementI Narr's 3 stages (using additional commitments of course) to make a vision machine. I can't
in general implement an RA to make the corresponding cognitive machine. Anderson's
classification net is not really a counterexample, since as I have argued, in general we do not
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want to be committed to literal implementations of optimizing methods to achieve optim;zing
behavior.

In summary, I have supported that side of Anderson that believes that RA and ME are
complementary. I have also argued that in general RA may give guidance, not about the
abstract mechanisms of cognition, but about their content.

Before concluding, I'd like to express my admiration of Anderson's piece as a tour de force of
analysis and writing that illuminates the relation between behavior, structure of the agent
and the environment. I think RA also helps provide arguments for why Al should worry about
natural (i.e., human) intelligence. Often Al people make a fairly strong distinction between
human and machine intelligence, and claim that there is no reason to base our mechanically
intelligent agents on the structure of human cognition. If we want our machines to share our
goals and operate intelligently in the sort of environments we operate in, we had better look
to the structure of human intelligence for inspiration, since according to RA, it is probably
pretty optimal for the task.

Acknowledgment: Support provided by AFOSR Grant 89-0250 in the preparation of this
note is gratefully acknowledged.
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