
REPORT DOCUMENTATION PAGE FOrm No 074-18

li -4 ng this burden estimate or any other aspect of this collction of Ifrmton.~r wxcx*V suggestins for redcig this burdff, to Waafwrgeti

P D)- A Z 4 914 1215 Jefferson Davis Higtmay. Suite 1204, "rigon, VA 22202-4302. and to the Office of Intormatlort and Regulatoy Alan, Office ofIIIIIII IllI'~ ~II'II REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final: Nov 30 1990 to Mar 1, 1993

5. FUNUING NUMBERS

Ada Compiler Validation Summary Report: DDC InternatkiaI A/S, DACS VAX/VMS
to 80386 PM Bare Ada Cross Compiler System with Rate Monotonic Scheduling,
Version 4.6 (Host) to VAX 8530 running VMS Version 5.3(Target), 901129S1.1 178

6. AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST900DC500_7_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E1 14
Washington, D.C. 20301 -3081

11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTION/AVAILABILITY STATEM ENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT ('Maximum 200 words)
DDC International A/S, DACS VAX/VMS to 80386 PM Bare Ada Corss Compiler System with Rate Monotonic Scheduling,1
Version 4.6. Gaithersburh, M D, VAX 8530 (Host) !o Bare Board iSBICJ 386/21 (Target), ACVC 1. 11.

14SBECT TERMS 15. NUMBER OF PAGES

Aaporamming language, Ada Compiler Val Summary Report, Ada Compiler Val. 16.___PRICE__CODE_

'.1apaoiiiy, vdt. testing, Ada Val. Office, Ad- Val. F~~,ANSI/MIIl 'QTD 1815A, AJPO. 1.PIECD

17 SECURITY CLASSIFICATION 18~ SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED IUNCLASSIFIED__________
iN5N 7540 0' 280 550 Form 298. (Rev 2 89)

91 4 01 () 9Prescribed by ANSI Std 239-128

AVF Control Number: NIST90DDC500_7_1.11
DATE COMPLETED

BEFORE ON-SITE: October 30, 1990
AFTER ON-SITE: November 30, 1990
REVISIONS:

Ada COMPILER
VALIDATION SUMWARY REPORT:

Certificate Number: 901129S1.1178
DDC International A/S

DACS VAX/V MS to 80386 PM Bare Ada Cross Compiler System
with Rate Monotonic Scheduling, Version 4.6

VAX 8530 => Bare Board iSBC 386/21

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

AVF Control Number: NIST90DDC500_71.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on November 29, 1990.

Compiler Name and Version: DACS VAX/VMS to 80386 PM Bare Ada
Cross Compiler System with Rate
Monotonic Scheduling, Version 4.6

Host Computer System: VAX 8530 running VMS Version 5.3

Target Computer System: Bare Board iSBC 386/21

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
901129S1.1178 is awarded to DDC International A/S. This
certificate expires on March 01, 1993.

This report has been reviewed and is approved.

Ada Validation Fa ;.li Ada Vilidatiop/Fa'cility
Dr. David K. Jef 0so Mr. L. ArnldJh,,l
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group
National Computer Systems National Computer Systems
Laboratory (NCSL) Laboratory (NCSL)

National Institute of National Institute of
Standards and Technology Standards and Technology
Building 225, Room A26C Building 225, Room A266
Gaithersburg, MD 20899 Gaithersburg, MD 20899

Ada Validation Organization Ada Joint Program Office
..-,'Director, Computer & Software Dr. John Solomond

Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer and Certificate Awardee: DDC International A/S

Ada Validation Facility: National Institute of Standards and
Technology

Natlional Computer Systems Laboratory
(NCSL)

Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 11!

Ada Implementation:

Compiler Name and Version: DACS VAX/VMS to 80386 PM Bare Ada
Cross Compiler System with Rate
Monotonic Scheduling, Version 4.6

Host Computer System: VAX 8530 running VMS Version 5.3

Target Computer System: Bare Board iSBC 386/21

Declaration:

[I/we] the undersigned, declare that [I/we] have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

Cust.:%ier Signature Date
Company
Title

TABLE OF CONTENTS

CHAPTER 1..............................-1
INTRODUCTION...................................1-1

1.2. USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES..........................-1
1.3 ACVC TEST CLASSES...............1-2
1.4 DEFINITION OF TERMS..............1-3

CHAPTER 2...........................2-1
IMPLEMENTATION DEPENDENCIES...............2-1

2.1 WITHDRAWN TESTS................2-1
2.2 INAPPLICABLE TESTS................. 2-1
2.3 TEST MODIFICATIONS...................2-3

CHAPTER 3.............................3-1
PROCESSING INFORMATION......................3-1

3.1 TESTING ENVIRONMENT..............3-1
3.2 SUMM'ARY OF TEST RESULTS............3-2
3.3 TEST EXECUTION.......................3-3

APPENDIX A..........................A-1
MACRO PARAMETERS...........................A-i

APPENDIX B...B-i
COMPILATION SYSTEM OPTIONS......................B-i
LINKER OPTIONS........................B-2

APPENDIX C..............................C-i
APPENDIX F OF THE Ada STANDARD..................C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #T552). The results
of this validation apply only to the computers, operuting systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.2 RErERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada C-:.;iler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

1-1

lUG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC cdta±ins " collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal
by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution
is attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristi-s. The modifications required for this
implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced
by the AVF. This customization consists of making the
modifications described in the preceding paragraph, removing
withdrawn tests (see section 2.1) and, possibly some inapplicable

1-2

tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process or service of
all requirements specified.

1-3

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 81 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026A
B83026B C83041N B85001L C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A AD1B08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explaind in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)

2-1

C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 TESTS) USE A L117E LENGTH IN THE INPUT FILE WHICH
EXCEEDS 126 CHARACTERS.

C35702A, C35713B, C45423B, B86001T, AND C86006H CHECK FOR THE

PREDEFINED TYPE SHORTFLOAT.

C35713D AND B86001Z CHECK FOR A PREDEFINED FLOATING-POINT TYPE
WITH A NAME OTHER THAN FLOAT, LONGFLOAT, OR SHORTFLOAT.

C35404D, C45231D, B86001X, C86006E, AND CD7101G CHECK FOR A

PREDEFINED INTEGER TYPE WITH A NAME OTHER THAN INTEER,
LONGINTEGER, OR SHORTINTEGER.

C45531M, C45531N, C45531O, C45531P, C45532M, C45532N, C455320,
AND C45532P CHECK FIXED-POINT OPEPATIONS FOR TYPES THAT REQUIRE
A SYSTEM.MAXMANTISSA OF 47 OR GREATER.

C45624A CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINE OVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
5. FOR THIS IMPLEMENTATION, MACHINEOVERFLOWS IS TRUE.

C45624B CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINE OVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS

6. FOR THIS IMPLEMENTATION, MACHINEOVERFLOWS IS TRUE.

C4A013B CONTAINS THE EVALUATION OF AN EXPRESSION INVOLVING
'MACHINE RADIX APPLIED TO THE MOST PRECISE FLOATING-POINT TYPE.

THIS EXPRESSION WOULD RAISE AN EXCEPTION. SINCE THE EXPRESSION
MUST BE STATIC, IT IS REJECTED AT COMPILE TIME.

D56001B USES 65 LEVELS OF BLOCK NESTING WHICH EXCEEDS THE
CAPACITY OF THE COMPILER.

C86001F RECOMPILES PACKAGE SYSTEM, MAKING PACKAGE TEXTIO, AND

HENCE PACKAGE REPORT, OBSOLETE. FOR THIS IMPLEMENTATION, THE
PACKAGE TEXTIO IS DEPENDENT UPON PACKAGE SYSTEM.

B86001Y CHECKS FOR A PREDEFINED FIXED-POINT TYPE OTHER THAN

DURATION.

C96005B CHECKS FOR VALUES OF TYPE DURATION'BASE THAT ARE OUTSIDE

THE RANGE OF DURATION. THERE ARE NO SUCH VALUES FOR THIS
IMPLEMENTATION.

CA2009C, CA2009F, BC3204C, AND BC3205D THESE TESTS INSTANTIATE

GENERIC UNITS BEFORE THEIR BODIES ARE COMPILED. THIS
IMPLEMENTATION CREATES A DEPENDENCE ON GENERIC UNIT AS ALLOWED

BY AI-00408 & AI-00530 SUCH THAT A THE COMPILATION OF THE GENERIC
UNIT BODIES MAKES THE INSTANTIATING UNITS OBSOLETE.

2-2

Cl1009C USES A REPRESENTATION CLAUSE SPECIFYING A NON-DEFAULT
SIZE FOR A FLOATING-POINT TYPE.

CD2A84A, CD2A84E, CD2A84I..J (2 TESTS), AND CD2A840 USE
REPRESENTATION CLAUSES SPECIFYING NON-DEFAULT SIZES FOR ACCESS
TYPES.

The following 265 tests check for sequential, text, and direct
access files:

CE2102A..? (3) CE-102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B 2)

CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2)
CE2120A.. 7 (2) CE2201A..C (3) EE2201D..E (2) CE2201F..N (9)
CE2203A CE2204A..D (4) CE2205A CE2206A
CE2208B CE240IA..C (3) EE2401D CE240IE..F (2)
EE2401G CE2401H..L (5) CE2403A CE2404A..B (2)
CE2405B CE24C6k CE2407A..B(2) CE2408A..B (2)
CE2409A..B (2) C-24±OA..B (2) CE2411A CE3102A..C (3)
CE3102F. H (3) CE3102J..K (2) CE3103A CE3104A..C (3)
CE3106A..B (2) CE3107B CE3108A..B (2) CE3109A

CE3110A CE3111A..B (2) CE3111D..E (2) CE3112A..D (4)
CE3114A..B (2) CE3115A CE3116A CE3119A
EE3203A EE3204A CE3207A CE3208A
CE3301A EE3301B CZ3302A C-3304A
CE3305A CE3401A CE3402A EE3402B
CE3402C. D 2) CE3403A..C (3) CE3403E..F (2) CE3404B..D (3)
CE3405A LE3405B CE3405C..D (2) CE3406A..D (4)

CE3407A..C (3) CE3408A.oC (3) CE3409A CE3409C..E (3)
EE3409F CE3410A CE3410C..E (3) EE341OF
CE3411A CE3411C CE3412A EE3412C
CE3413A..C (3) CE3414A CE3602A..D (4) CE3603A
CE3604A..B (2) CE3605A..E (5) CE3606A..B (2)
CE3704A..F (6) CE3704M..O (3) CE3705A..E (5) CE3706D
CE3706F..G (2) CE3804A..P (16) CE3805A..B (2) CE3806A. .B (2)
CE3806D..E (2) CE3806G..H (2) CE3904A..B (2) CE3905A..C (3)
CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A..B and CE3107A EXPECT THAT NAMEERROR IS RAISED WHEN AN
ATTEMPT IS MADE TO CREATE A FILE WITH AN ILLEGAL NAAE; THIS
IMPLEMENTATION DOES NOT SUPPORT THE CREATION OF EXTERNAL FILES
AND SO RAISES USEERROR.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 67 tests.

The following tests were split into two or more tests because this

2-3

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The executable files were prepared on the VAX host computer
chapter by chapter. When a chapter was completely processed, the
executables were transferred via ethernet to a personal computer
(COMPAQ 386 running MS-DOS Version 3.3) acting as a host for an
In Circuit Emulation tool (i2ICE). The target was connected via
RS232C to second personal computer (COMPAQ 286 running MS-DOS
Version 3.3) which acted as a capture device. The second
personal computer was connected via ethernet to the VAX.

The DACS VAX/VMS to 80386 PM Bare Ada Cross Compiler System,
Version 4.6 was executed on the target board with the following:

Bare Board iSBC 386/21
80387
One internal timer
One serial port
1MB RAM

For each chapter, a command file was generated that loaded and
executed every program.

For a point of contact for technical information about this Ada
implementation system, see:

Mr. Thorkil B. Rasmussen
DDC International A/S
GI. Lundtoftevej lB

DK-2800 Lyngby
DENMARK

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

For a point of contact for sales information about this Ada
implementation system, see:

In the U.S.A.:

Mr. Mike Turner
DDC-I, Inc.

9630 North 25th Avenue

3-1

9630 North 25th Avenue
Suite #118

Phoenix, Arizona 85021

Mailing address:
P.O. Box 37767

Phoenix, Arizona 85069-7767
Telephone: 602-944-1883
Telefax: 602-944-3253

In the rest of the world:

Mr. Palle Andersson
DDC International A/S
Gl. Lundtoftevej lB

DK-2800 LYNGBY
Denmark

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

Fwr all processed tests (inapplicable and applicable), a result
was obtained that conforms to the Ada Programming Language
Standard.

a) Total Number of Applicable Tests 3580

b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 509
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 509 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

3-2

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 509
tests were inapplicable to this implementation. All inapplicable
tests were processed during validation testing. In addition, the
modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing.
The tests were compiled and linked on the host computer system,
as appropriate. The executable images were transferred to the
target computer system by the communications link described
above, and run. The results were captured on the host computer
system using the communications link described above.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

/LIST /NOSAVESOURCE

The options invoked by default for validation testing during this
test were:

/CHECK /CONFIGURATION FILE = <default file>
/NOTARGET DEBUG /LIBRARY /NOOPTOMIZE
/NOPROGRESS /NOXREF

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in
terms nf the maximum input-line length, which is 126 the value
for $MAX IN LEN--also listed here. These values are expressed
here as Ada-string aggregates, where 'IV" represents the maximum
input-line length.

Macro Parameter Macro Value

$MAXINLEN 126

$BIGIDI (1..V-1 => 'A, V => 'I')

$BIGID2 (l..V-i => 'A, V => '2')

$BIGID3 (1..V/2 => 'A) & '3' & (1..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A) & '4' & (1..V-I-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (1..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (1..V-l-V/2 => 'A') & 'I' & '"'

$BLANKS (l..V-20 => '

SMAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAXLENREAL BASED LITERAL
-"16:" & (1..V-7 => '0') & "F.E:"

$MAX STRING LITERAL '"' & (1..V-2 => 'A') & '"'

A-1

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

ACC SIZE : 48
ALIGNMENT : 2
COUNT LAST : 2 147 483 647
DEFAULT MEM SIZE : 16#i_000-0000#
DEFAULTSTOR UNIT : 16
DEFAULTSYS NAME : IAPX386 PM
DELTA DOC : 2#1.0#E-31
ENTRY ADDRESS : (140,0)
ENTRYADDRESS1 : (141,0)
ENTRY ADDRESS2 : (142,0)
FIELD LAST : 35
FILE TERMINATOR : ASCII.SUB
FIXED NAME : NO SUCH FIXED TYPE
FLOAT NAME : SHORTSHORTFLOAT
FORM STRING : ""

FORM-STRING2
"CANNOT RESTRICT FILE CAPACITY"

GREATER THAN DURATION : 75 000.0
GREATER-THAN-DURATIONBASELAST : 131_073.0
GREATER THAN FLOAT BASE LAST : 16#1.0#E+32
GREATER THAN FLOAT SAFE LARGE : 16#5.FFFF FO#E+31
GREATER ITHAN -SHORT-FLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 31
ILLEGAL EXTERNAL FILE NAME1 \NODIRECTORY\FILENAME
ILLEGAL-EXTERNALFILE-NAME2

THIS-FILE-NAME-IS-TOO-LONG-FOR-MY-SYSTEM
INAPPROPRIATE LINE LENGTH : -1
INAPPROPRIATE PAGELENGTH
INCLUDE PRAGMAI

PRAGMA INCLUDE ("A28006DI.TST")
INCLUDE PRAGMA2

PRAGMA INCLUDE ("B28006E1.TST")
INTEGER FIRST -2147483648
INTEGER LAST 2147483647
INTEGER LAST PLUS 1 : 2 147 483_648
INTERFACE LANGUAGE : ASM86-
LESS THAN DURATION -75 000.0
LESS THAN DURATIONBASEFIRST : -131 073.0
LINE-TERMINATOR : ASCII.CR
LOW PRIORITY : 0
MACHINE CODE STATEMENT

MACHINE INSTRUCTION'(NONE,mRETN);
MACHINE CODE TYPE : REGISTERTYPE
MANTISSADOC : 31

A-2

MAX DIGITS : 15
MAX INT : 9223372036854775807
MAX INT PLUS_1 : 9223372036854775808
MIN INT : -9223372036854775808
NAME : SHORT SHORTINTEGER
NAME LIST : IAPX386_PM
NAME SPECIFICATION1

DISK$AWC_2:[CROCKETTL.ACVC11.DEVELOPMENT]X2120A.;1
NAME SPECIFICATION2

DISK$AWC_2:[CROCKETTL.ACVC11.DEVELOPMENT]X2120B.;1
NAME SPECIFICATION3

DISK$AWC 2:[CROCKETTL.ACVC11.DEVELOPMENT]X2120C.;1
NEG BASEDINT : 16#FFFF FFFF FFFF FFFF#
NEW -MEM SIZE : 16#1 0000_0000#
NEW STOR UNIT : 16 -
NEW SYS NAME : IAPX386 PM
PAGE TERMINATOR : ASCII.FF
RECORD DEFINITION : RECORD NULL;END RECORD;
RECORD NAME : NO SUCHMACHINECODETYPE
TASK SIZE : 32
TASKSTORAGESIZE : 1024
TICK : 0.000 000_062 5
VARIABLEADDRESS : (16#0#,16#4c#)
VARIABLEADDRESS1 : (16#4#,16#4c#)
VARIABLE ADDRESS2 : (16#8#,16#4c#)
YOURPRAGMA : EXPORTOBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appen'lix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

QUALIFIER DESCRIPTION

/CHECK Generates run-time constraint checks.
/NOCHECK
/CONFIGURATIONFILE Specifies the file used by the compiler.
/DEBUG Includes symbolic debugging in program

library.
/NODEBUG Does not include symbolic information.
/EXCEPTION TABLES Includes/excludes exception handler
/NOEXCEPTION_TABLES tables from the generated code.
/LIBRARY Specifies program library used.
/LIST Writes a source listing on the list file.
/NOLIST
/OPTIMIZE Specifies compiler optimization.
/NOOPTIMIZE
/PROGESS Displays compiler progress.
/NOPROGRESS
/SAVESOURCE Copies source to program library.
/NOSAVESOURCE
/TARGET DEBUG Includes Intel debug information.
/NOTARGETDEBUG Does not include Intel debug information.
/XREF Creates a cross reference listing.
/NOXREF
/UNIT Assigns a specific unit number to the

compilation (must be free and in a
sublibrary).

B-1

LINKER OPTIONS

The linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to linker
documentation and not to this report.

QUALIFIER DESCRIPTION

/OPTIONS Specifies target link options.
/LIBRARY The library used in the link.
/LOG Specifies creation of a log file.
/NOLOG
/ROOT EXTRACT Using non-DDC-I units in the root library.
/NOROOTEXTRACT
<unit-name> Main program to be linked.
[<recompilation-spec>] Hypothetical recompilation units.
/DEBUG Links an application for use with
/NODEBUG the DACS-80x86 Cross Debugger.
/RTS Includes or excludes the run-time system.
/NORTS
/NPX Use of the 80x87 numeric coprocessor.
/NONPX
/TASK Maximum number of tasks or non-tasking
/NOTASKS application.
/PRIORITY Default task priority.
/TIME SLICE Task time slicing.
/NOTIMESLICE
/TIMER Timer resolution.
/RESERVE STACK Size of reserve stack.
/NORESERVE STACK
/LTSTACK SIZE Library task default stack size.
/LTSEGMENTSIZE Library task default segment size.
/MP STACK SIZE Main program stack size.
/MPSEGMENTSIZE Main program segment size.
/SEARCHLIB Target libraries or object modules to

include in target link.
/STOP BEFORE LINK Performs Ada link only.
/TASK STORAGE SIZE Tasks default storage size.
/INTERRUPT ENTRY TABLE Range of interrupt entries.
/ENABLE_TASK_TRACE Enables trace when a task terminates in

unhandled exception.
/SIZE OPTIMIZE Forces the linker to remove units that are
/NOSIZEOPTIMIZE not used.
/FLEX Uses the flexible linker to define the
/NOFLEX target system link environment.

B-2

The qualifiers listed below are only recognized when /FLEX is
specified: (/FLEX is default; to avoid FLEX-linking, use /NOFLEX)

QUALIFIER DESCRIPTION

/EXTRACT Extracts Ada Object modules.
/NOEXTRACT
/ELAB Generates elaboration code.
/NOELAB
/UCD Generates User Configurable Data.
/NOUCD
/TEMPLATE Specifies template file.

B-3

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada
implementation, as described in this Appendix, are provided by
the customer. Unless specifically noted otherwise, references
in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

tve SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type LONGINTEGER is range
-16#8000_0000_0000_0000# .. 16#7FFFFFFFFFFFFFFF#;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONGFLOAT is digits 15
range -16#0.FFFF FFFF FFFF F8#E256

16#0.FFFF FFFF FFFF F8#E256;
type DURATION is delta 2#1.0#E-14 range -131 072.0 .. 131_071.0;

end STANDARD;

C-1

APPENDIX F
IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implementation-dependent characteris-
tics of DACS-80X86a as required in Appendix F of the Ada
Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Dependent Pragmas

This section describes all implementation defined pragmas.

F.1.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose
name contains characters that would be an invalid Ada subprogram
identifier. This pragma must be used in conjunction with pragma
INTERFACE, i.e., pragma INTERFACE must be specified for the non-
Ada subprogram name prior to using pragma INTERFACESPELLING.

The pragma has the format:

pragma INTERFACESPELLING (subprogram name,
string literal);

where the subprogram name is that of one previously given in
pragma INTERFACE and the string literal is the exact spelling of
the interfaced subprogram in its native language. This pragma is
only required when the subprogram name contains invalid charac-
ters for Ada identifiers.

Example:

function RTSGetDataSegment return Integer;

pragma INTERFACE (ASM86, RTS GetDataSegment);
pragma INTERFACE SPELLING (RTS GetDataSegment,

"RlSMGSGetDataSegment");

Page F-1

User's Guide
Implementation-Dependent Characteristics

F.1.2 Pragma LTSEGMENTSIZE

This pragma sets the size of a library task stack segment.
The pragma has the format:

pragma LT SEGMENT SIZE (T, N);

where T denotes either a task object or task type and N desig-
nates the size of the library task stack segment in words.

The library task's stack segment defaults to the size of the
library task stack. The size of the library task stack is nor-
mally specified via the representation clause (note that T muZ
be a task type)

for T'STORAGESIZE use N;

The size of the library task stack segment determines how many
tasks can be created which are nested within the library task.
All tasks created within a library task will have their stacks
allocated from the same segment as the library task stack. Thus,
pragma LTSEGMENT SIZE must be specified to reserve space within
the library task stack segment so that nested tasks' stacks may
be allocated.

The following restrictions are places on the use of
LTSEGMENTSIZE:

1) It must be used only for library tasks.

2) It must be placed immediately after the task object or
type name declaration.

3) The library task stack segment size (N) must be greater
than or equal to the library task stack size.

F.1.3 Pragma EXTERNAL-NAME

F.1.3.1 Function

The pragma EXTERNAL NAME is designed to make permanent Ada ob-
jects and subprograms externally available using names supplied
by the user.

Page F-2

User's Guide
Implementation-Dependent Characteristics

F.1.3.2 Format

The format of the pragma is:

pragma EXTERNAL NAME(<adaentity>,<external name>)

where <adaentity> should be the name of:

- a permanent object, i.e. an object placed in the permanent
pool of the compilation unit - such
objects originate in package
specifications and bodies only,

- a constant object, i.e. an object placed in the constant
pool of the compilation unit -
please note that scalar constants
are embedded in the code, and com-
posite constants are not always
placed in the constant pool, because
the constant is not considered con-
stant by the compiler,

- a subprogram name, i.e. a name of a subprogram defined in
this compilation unit - please
notice that separate subprogram
specifications cannot be used, the
code for the subprogram MUST be
present in the compilation unit
code,

and where the <external name> is a string specifying the external
name associated the <ada entity>. The <external names> should be
unique. Specifying identical spellings for different
<ada entities> will generate errors at compile and/or link time,
and the responsibility for this is left to the user. Also the
user should avoid spellings similar to the spellings generated by
the compiler, e.g. Exxxxx_yyyyy, P xxxxx, Cxxxxx and other in-
ternal identifications. The target debug type information
associated with such external names is the null type.

F.1.3.3 Restrictions

Objects that are local variables to subprograms or blocks cannot
have external names associated. The entity being made external
("public") MUST be defined in the compilation unit itself.
Attempts to name entities from other compilation units will be
rejected with a warning.

When an entity is an object the value associated with the symbol
will be the relocatable address of the first byte assigned to the
object.

Page F-3

User's Guide
Implementation-Dependent Characteristics

F.1.3.4 Example

Consider the following package body fragment:

package body example is

subtype stringlO is string(l..10);

type s is
record

len : integer;
val : stringlO;

end record;

global s : s;
const s : constant stringlO := "1234567890";

pragma EXTERNALNAME(globals, "GLOBALSOBJECT");
pragma EXTERNALNAME(const s, "CONST S");

procedure handle(..) is

end handle;

pragma EXTERNALNAME(handle, "HANDLEPROC");

end example;

The objects GLOBAL S and CONST S will have associated the names
"GLOBAL S OBJECT" and "CONST S". The procedure HANDLE is now also
known as "HANDLE PROC". It is allowable to assign more than one
external name to an Ada entity.

F.1.3.5 Object Layouts

Scalar objects are laid out as described n Chapter 9. For arrays
the object is described by the address of the first element; the
array constraint(s) are NOT passed, and therefore it is recom-
mended only to use arrays with known constraints. Non-
discriminated records take a consecutive number of bytes, whereas
discriminated records may contain pointers to the heap. Such com-
plex objects should be made externally visible, only if the user
has thorough knowledge about the layout.

Page F-4

User's Guide
Implementation-Dependent Characteristics

F.l.3.6 Parameter Passing

The following section describes briefly the fundamentals regard-
ing parameter passing in connection with Ada subprograms. For
more detail, refer to Chapter 9.

Scalar objects are always passed by value. For OUT or IN OUT
scalars, code is generated to move the modified scalar to its
destination. In this case the stack space for parameters is not
removed by the procedure itself, but by the caller.

Composite objects are passed by reference. Records are passed via
the address of the first byte of the record. Constrained arrays
are passed via the address of the first byte (plus a bitoffset
when a packed array). Unconstrained arrays are passed as con-
strained arrays plus a pointer to the constraints for each index
in the array. These constraints consist of lower and upper
bounds, plus the size in words or bits of each element depending
if the value is positive or negative respectively. The user
should study an appropriate disassembler listing to thoroughly
understand the -ompiler calling conventions.

A function (which can only have IN parameters) returns its result
in register(s). Scalar results are registers/float registers
only; composite results leave an address in some registers and
the rest, if any, are placed on the stack top. The stack still
contains the parameters in this case (since the function result
is likely to be on the stack), so the caller must restore the
stack pointer to a suitable value, when the function call is
dealt with. Again, disassemblies may guide the user to see how a
particular function call is to be handled.

F.1.4 Pragma INTERRUPT-HANDLER

This pragma will cause the compiler to generate fast interrupt
handler entries instead of the normal task calls for the entries
in the task in which it is specified. It has the format:

pragma INTERRUPTHANDLER;

The pragma must appear as the first thing in the specification of
the task object. The task i,,ust be specified in a package and not
a procedure. See Section F.6.2.3 for more details and restric-
tions on specifying address clauses for task entries.

Page F-5

User's Guide
Implementation-Dependent Characteristics

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F.3 Package SYSTEM

The specifications of package SYSTEM for all DACS-80x86 in Real
Address Mode and DACS-80286PM systems are identical except that
type Name and constant SystemName vary:

Compiler System SystemName

DACS-8086 iAPX86
DACS-80186 iAPXI86
DACS-80286 Real Mode iAPX286
DACS-80286 P-otected Mode iAPX286 PM
DACS-80386 Real Mode iAPX386

Below is package system for DACS-8086.

package System is

type Word is new Integer;
type DWord is new Longinteger;

type UnsignedWord is rAn7.e 0..65535;
for UnsignedWord'SIZE use 16;

type byte is range 0..255;
for byte'SIZE use 8;

subtype SegmentId is UnsignedWord;

type Address is
record

offset : UnsignedWord;
segment : Segmentld;

end record;

subtype Priority is Integer range 0..31;

type Name is (iAPX86);

SYSTEM NAME constant Name := iAPX86;

Page F-6

User's Guide
Implementation-Dependent Characteristics

STORAGE UNIT : constant 16;
MEMORY SIZE : constant 1 048 576;
MIN INT : constant -2 147 483 647-1;
MAX INT : constant 2 147 483 647;
MAX DIGITS : constant 15;
MAX MANTISSA : constant 31;
FINE DELTA : constant 2#1.0#E-31;
TICK : constant 0.000_000_125;

type Interfacelanguage is
(ASM86, PLM86, C86, C86 REVERSE,
ASM ACF, PLMACF, CACF, CREVERSE ACF,
ASMNOACF, PLMNOACF, C_NOACF, CREVERSENOACF);

type ExceptionId is record
unitnumber : UnsignedWord;
unique_number : UnsignedWord;

end record;

type TaskValue is new Integer;
type AccTaskValue is access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore is record
counter : Integer;
first : TaskValue;
last : TaskValue;
SQNext : SemaphoreValue;

-- only used in HDS.
end record;

InitSemaphore constant Semaphore Semaphore'(l,0,0,0);

end System;

Page F-7

IUser's Guide
Implementation-Dependent Characteristics

The package SYSTEM specification for DACS-80386PM package system

is:

package System is

type Word is new ShortInteger;
type DWord is new Integer;
type QWord is new Long_Integer;

type UnsignedWord is range 0..65535;
for UnsignedWord'SIZE use 16;
type UnsignedDWord is range 0..16#fiFFF FFFF#;
for UnsignedDWord'SIZE use 32;
type Byte is range 0..255,
for Byte'SIZE use 8;

subtype Segment. is UnsignedWord;

type Address is
record

offset : UnsignedDWord;
segment : SegmentId;

end record;

for Address use
record

offset at 0 range 0..31;
segment at 2 range 0..15;

end record;

subtype Priority is Integer range 0..31;

type Name is (iAPX386_Pr:);

SYSTEM NAME : constant Name := iAPX386 PM;
STORAGE UNIT : constant := 16;
MEMORY SIZE : constant := 16#1 0000 0000#;
MIN INT : constant := -16#8000 0000 0000 0000#;
MAXINT : constant 16#7FFFFFFF FFFF FFFF#;
MAXDIGITS : constant := 15;
MAX-MANTISSA : constant := 31;

FINE DELTA : constant := 2#1.0#E-31;
TICK : constant 0.000_000_062_5;

type Interface language is
(ASM86, PLM86, C86, C86 REVERSE,
ASMACF, PLM ACF, CACF, C REVERSE ACF,
ASMNOACF, PLMNOACF, C NOACF, C REVERSENOACF);

Page F-8

S User's GuideImplementation-Dependent Characteristics

type ExceptionId is record
unitnumber : UnsignedDWord;
uniquenumber : UnsignedDWord;

end record;

type TaskValup is new Integer;
type AccTaskValue is access TaskValue;
type SemaphoreValue is new Integer;

type Semaphore is record
counter : Integer;
first, last : TaskValue;
SQNext : SemaphoreValue;

-- only used in HDS.
end record;

InitSemaphore constant Semaphore := Semaphore'(l,O,O,0);

end System;

Page F-9

SUser's Guide
Implementation-Dependent Characteristics

F.4 Representation Clauses

The representation clauses that are accepted are described below.
Note that representation specifications can be given on derived
types too.

Throughout this subsection, r-ferences are he Lhe size of
objects. This number may depend on the compiler variant; in such
cases two figures are quoted, ie. 16/32. The first figure refers
to all versions of DACS-80x86 except DACS-80386 PM, to which tha
last figure refers.

F.4.1 Length Clause

Four kinds of length clauses are accepted.

Size specifications:

The size attribute for a type T is accepted in the following
cases:

- If T is a discrete type then the specified size must be
greater than or equal to the number of bits needed to repre-
sent a value of the type, and less than or equal to 16/32.
Note that when the number of bits needed to hold any value of
the type is calculated, the range is extended to include 0 if
necessary, i.e. the range 3..4 cannot be represented in 1 bit,
but needs 3 bits.

- If T is a fixed point type, then the specified size must be
greater than or equal to the smallest number of bits needed to
hold any value of the fixed point type, and less than 16/32
bits. Note that the Reference Manual permits a representation,
where the lower bound and the upper bound is not representable
in the type. Thus the type

type FIX is delta 1.0 range -1.0 .. 7.0;

is representable in 3 bits. As for discrete types, the number
of bits needed for a fixed point type is calculated using the
range of the fixed point type possibly extended to include
0.0.

- If T is a floating point type, an access type or a task type
the specified size must be equal to the number of bits used to
represent values of the type (floating points: 32 or 64, ac-
cess types : 32/48 bits and task types : 16/32 bits).

- If T is a record type the specified size must be greater than
or equal to the minimal number of bits used to represent
values of the type per default.

Page F-10

User's Guide
Implementation-Dependent Characteristics

If T -is an array type the size of the array must be static,
i.e. known at compile time and the specified size must be
equal to the minimal number of bits used to represent values
of the type per default.

Furthermore, the size attribute has only effect if the type is
part of a composite type.

type BYTE is range 0..255;
for BYTE'size use 8;
SIXTEEN : BYTE -- one word allocated
EIGHT : array(l.4) of BYTE -- one byte per element

Collection size specifications:-

Using the STORAGE SIZE attribute on an access type will set an
upper limit on the total size of objects allocated in the collec-
tion allocated for the access type. If further allocation is
attempted, the exception STORAGE ERROR is raised. The specified
storage size must be less than or equal to INTEGER'LAST.

Task storage size :

When the STORAGE SIZE attribute is given on a task type, the task
stack area will be of the specified size.

Small specifications :

Any value of the SMALL attribute less than the specified delta
for the fixed point type can be given.

Page F-il

SUser's Guide

Implementation-Dependent Characteristics

F.4.2 Enumeration Representation Clauses

Enumeration representation clauses may specify repzesentations in
the range of -16#7FFF# .. 16#7FFE#. An enumeration representation
clause may be combined with a length clause. If an enumeration
representation clause has been given for a type the repre-
sentational values are considered when the number of bits needed
to hold any value of the type is evaluated. Thus the type

type ENUM is (A,B,C);
for ENUM use (1,3,5);

needs 3 bits not 2 bits to represent any value of the type.

F.4.3 Record Representation Clauses

When component clauses are applied to a record type the following
restrictions and interpretations are imposed :

- All values of the component type must be representable within
the specified number of bits in the component clause.

- If the component type is either a discrete type a fixed point
type, or an array type with a discrete type other than
LONGINTEGER, or a fixed point type as element type, then the
component is packed into the specified number of bits (see
however the restriction in the paragraph above), and the com-
ponent may start at any bit boundary.

- If the component type is not one of the types specified in
the paragraph above, it must start at a storage unit bound-
ary, a storage unit being 16 b±ts, and the default size
calculated by the compiler must be given as the bit width,
i.e. the component must be specified as

component at N range 0 .. 16 * M-1

where N specifies the relative storage unit number (0,1,...)
from the beginning of the record, and M the required number
of storage units (1,2,...).

- The maximum bit width for components of scalar types is
16/32.

- A record occupies an integral number of storage units (even
though a record may have fields that only define an odd num-
ber of bytes)

- A record may take up a maximum of 32 Kbits

Page F-12

TUser's Guide
Implementation-Dependent Characteristics

- If the component type is an array type with a discrete type
other than LONG INTEGER or a fixed point type as element
type, the given bit width must be divisible by the length of
the array, i.e. each array element will occupy the same num-
ber of bits.

If the record type contains components which are not covered by a
component clause, they are allocated consecutively after the com-
ponent with the value. Allocation of a record component without a
component clause is always aligned on a storage unit boundary.
Holes created because of component clauses are not otherwise
utilized by the compiler.

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following
characteristics:

- If the declaration of the record type is done at the
outermost level in a library package, any alignment is
accepted.

- If the record declaration is done at a given static
lev6~[5-igher than the outermost library level, i.e.,
the permanent area), only word alignments are accepted.

- Any record object declared at the outermost level in a
library package will be aligned according to the align-
ment clause specified for the type. Record objects
declared elsewhere can only be aligned on a word
boundary. If the record type is associated with a
different alignment, an error message will be issued.

- If a record type with an associated alignment clause is
used in a composite type, the alignment is zequired to
be one word; an error message is issued if this is not
the case.

F.5 Implementation-Dependent Names for Implementation
-Dependent Components

None defined by the compiler.

Page F-13

User's Guide

Implementation-Dependent Characteristics

F.6 Address Clauses

This section describes the implementation of address clauses and
what types of entities may have their address specified by the
user.

F.6.1 Objects

Address clauses are supported for scalar and composite objects
whose size can be determined at compile time. The address value
must be static. The given address is the virtual address.

F.6.2 Task Entries

The implementation supports two methods to equate a task entry to
a hardware interrupt through an address clause:

1) Direct transfer of control to a task accept statement
when an interrupt occurs bypassing the DMS/OS kernel.
This form requires the use of pragma INTERRUPT HANDLER.
These handlers are called fast interrupt handlers.

2) Mapping of a signal onto a normal conditional entry call.
This form allows the interrupt entry to be called from
other tasks (without special actions), as well as being
called when a signal occurs.

F.6.2.1 Fast Interrupt Tasks

Directly transferring control to an accept statement when an in-
terrupt occurs requires the implementation dependent pragma
INTERRUPT HANDLER to tell the compiler that the task is an inter-
rupt handler.

F.6.2.2 Features

Fast interrupt tasks provide the following features:

1) Provide the fastest possible response time to an inter-
rupt.

2) Allow entry calls to other tasks during interrupt servic-
ing.

Page F-14

User's Guide
Implementation-Dependent Characteristics

3) Allow procedure and function calls during interrupt ser-
vicing.

4) Does not require its own stack to be allocated.

5) Can be coded in packages with other declarations so that
desired visiblity to appropriate parts of the program can
be achieved.

6) May have multiple accept statements in a single fast in-
terrupt task, each mapped to a different interrupt. If
more than one interrupt is to be serviced by a single
fast interrupt task, the accept statements should simply
be coded consecutively. See example 2 to show how this
is done. Note that no code outside the accept statements
will ever be executed.

F.6.2.3 Limitations

By using the fast interrupt feature, the user is agreeing to
place certain restrictions on the task in order to speed up the
software response to the interrupt. Consequently, use of this
method to capture interrupts is much faster than the normal
method.

The following limitations are placed on a fast interrupt task:

1) It must be a task object, not a task type.

2) The pragma must appear first in the specification of the
task object.

3) All entries of the task object must be single entries (no
families) with no parameters.

4) The entries must not be called from any task.

5) The body of the task must not contain any statements out-
side the accept statement(s). A loop statement may be
used to enclose the accept(s), but this is meaningless
because no code outside the accept statements will be ex-
ecuted.

6) The task may make one entry call to another task for
every handled interrupt, but the call must be single and
parameterless and must be made to a normal tasks, not
another fast interrupt task.

7) The task may only reference global variables; no data lo-
cal to the task may be defined.

Page F-15

User's Guide
Implementation-Dependent Characteristics

8) The task must be declared in a library package, i.e., at
the outermost level of some package.

9) Explicit saving of NPX state must be performed by the
user within the accept statement if such state saving is
required.

F.6.2.4 Making Entry Calls to Other Tasks

Fast interrupt tasks can make entry calls to other normal tasks
as long as the entries are single (no indexes) and parameterless.

If such an entry call is made and there is a possibility of the
normal task not being ready to accept the call, the entry call
can be queued to the normal task's entry queue. This can be
forced by using the normal Ada conditional entry call construct
shown below:

accept E do
select

T.E;
else

null;
end select;

end E;

Normally, this code sequence means make the call and if the task
is not waiting to accept it immediately, cancel the call and con-
tinue. In the context of a fast interrupt task, however, the
semantics of this construct are modified slightly to force the
queuing of the entry call.

If an unconditional entry call is made and the called task is not
waiting at the corresponding accept statement, then the interrupt
task will wait at the entry call. Alternatively, if a timed
entry call is made and the called task does not accept the call
before the delay expires, then the call will be dropped. The
conditional entry call is the preferred method of making task
entry calls from fast interrupt handlers because it allows the
interrupt service routine to complete straight through and it
guarantees queueing of the entry call if the called task is not
waiting.

When using this method, make sure that the interrupt is included
in the /INTERRUPT ENTRY TABLE specified at link time. See
Section 7.2.15 for more details.

Page F-16

User's Guide

Implementation-Dependent CharactEristics

F.6.2.5 Implementation of Fast Interrupts

Fast interrupt tasks are not actually implemented as true Ada
tasks. Rather, they can be viewed as procedures that consist of
code simply waiting to be executed when an interrupt occurs.
They do not have a state, priority, or a task control block as-
sociated with them, and are not scheduled to "run" by the run-
time system.

Since a fast interrupt handler is not really a task, to code it
in a loop of somekind is meaningless because the task will never
loop; it will simply execute the body of the accept statement
whenever the interrupt occurs. However, a loop construct could
make the source code more easily understood and has no side ef-
fects except for the generation of the executable code to
implement to loop construct.

F.6.2.6 Flow of Control

When an interrupt occurs, control of the CPU is transferred
directly to the accept statement of the task. This means that
the appropriate slot in the interrupt vector table is modified to
contain the address of the corresponding fast interrupt accept
statement.

Associated with the code for the accept statement is

at the very beginning:
code that saves registers

at the very end:
code that restores registers followed by an IRET in-
struction.

Note that if the interrupt handler makes an entry call to another
task, the interrupt handler is completed through the IRET before
the rendezvous is actually completed. After the rendezvous com-
pletes, normal Ada task priority rules will be obeyed, and a task
context switch may occur.

Normally, the interrupting device must be reenabled by receiving
End-Of-Interrupt mecsages. These can be sent from machine code
insertion statements as demonstrated in Example 7.

F.6.2.7 Saving NPX State

If the interrupt handler will perform floating point calculations
and the state of the NPX must be saved because other tasks also
use the numeric coprocessor, calls to the appropriate

Page F-17

00User's Guide
Implementation-Dependent Characteristics

save/restore routines must be made in the statement list of the
accept :tatement. These routines are located in package
RTSEntry.-oints and are called RTS Store NPX State and
RTS ReAtr NQX £tate. See example 6 for more information.

6.2.3 Storage Useu

. Iis section details th- storage requirements of fast interrupt
h.and. ers.

Stack Space

A faz,- interrupt hardV~r executes off the stack of the task ex-
ecutin. a;: the time of the interrupt. Since a fast interrupt
handler Ls n_ a te;k it does not have its own stack.

Since no local aata or parameters are permitted, use of stack
space is limited to procedure and function calls from within the
interrupt handler.

F.6.2.10 Run-Time System Data

No task control block (TCB) is created for a fast interrupt hand-
ler.

If the fast interrupt handler makes a task entry call, an entry
in the CDINTERRUPTVECTOR must be made to allocate storage for
the queuing mechanism. This table is a run-time system data
structure used for queuing interrupts to normal tasks. Each
entry is only 10 words for 80386 protected mode compilers and 5
words for all other compiler sys+ems. This table is created by
the linker and is constrained by the user through the linker
qualifier /INTERRUPT ENTRY TABLE. For more information, see
Section F.6.2.1 on linking an application with fast interrupts.

If the state of the NPX is saved by user code (see Section
F.6.2.7), it is done so in the NPX save area of the TCB of the
task executing at the time of the interrupt. This is appropriate
because it is that task whose NPX state is being saved.

F.6.3 Building an Application with Fast Interrupt Tasks

This section describes certain steps that m-st be followed to
build an application using one or more fast interrupt handlers.

Page F-18

IUser's Guide
Implementation-Dependent Characteristics

F.6.3.1 Source Code

rhe pragma INTERRUPT HANDLER which indicates that the interrupt
handler is the fast form of interrupt handling and not the normal
type, must be placed in the task specification as the first
statement.

When specifying an address clause for a fast interrupt handler,
the offset should be the interrupt number, not the offset of the
interrupt in the interrupt vector. The segment is not applicable
(although a zero value must be specified) as it is not used by
the compiler for interrupt addresses. The compiler will place
the interrupt vector into the INTERRUPTVECTORTABLE segment. For
real address mode programs, the interrupt vector must always be
in segment 0 at execution time (see *). For protected mode
programs, the user specifies the interrupt vector location at
build time.

Calls to RTS Store NPX State and RTS Restore NPX State must be
included if the state-of the numeric-coprocessor-must be saved
when the fast interrupt occrus. These routines are located in
package RTS_EntryPoints in the root library. See example 6 for
more information.

F.6.3.2 Compiling the Program

No special compilation options are required.

F.6.3.3 Linking the Program

Since fast interrupt tasks are not real tasks, they do not have
to be accounted for when using the /TASKS qualifier at link time.
In fact, if there are no normal tasks in tie application, the
program can be linked without /TASKS.

This also means that the linker options /LT STACK SIZE,
/LTSEGMENT SIZE, /MPSEGMENTSIZE, and /TASKSTORAGESIZE do not
apply to fast interrupt tasks, except to note that a fast inter-
rupt task will execute off the stack of the task running at the
time of the interrupt.

* This placement can be accomplished at locate time by specifying
the address to locate the INTERRUPTVECTORTABLE segments with
the LOC86 command, or at run time, by having the startup code
routine of the UCC copy down the INTERRUPTVECTORTABLE segment
to segment 0.

Page F-19

OUser's Guide
Implementation-Dependent Characteristics

If an entry call is made by a f,.st interrupt handler the inter-
rupt number must be included in the /INTERRUPT ENTRY TABLE
qualifier at link time. This qualifier builds a table in the
run-time system data segment to handle entry calls of interrupt
handlers. The table is indexed by the interrupt number, which is
bounded by the low and high interrupt numbers specified at link
time.

F.6.3.4 Locating/Building the Program

For real-address mode programs, no special actions need be per-
formed at locate-time; the compiler creates the appropriate entry
in the INTERRUPTVECTORTABLE segment. This segment must be at
segment 0 before the first interrupt can occur.

For protected mode programs, an interrupt gate must be added and
a table entry must be added to the interrupt descriptor table
(IDT) for each interrupt serviced by a fast interrupt handler.
The value to be put into the build file is the address of the
routine that is to be vectored to when the interrupt occurs.
This is specified by a label produced by the code generator which
can be discerned by disassembling the package specification that
contains the interrupt task. For an interrupt handler servicing
decimal interrupt 10, the label would be _AIH_00010. "AIH" means
Ada Interrupt Handler. An example of creating a fast interrupt
handler for a protected mode program is shown in example 5.

F.6.4 Examples

These examples illustrate how to write fast interrupt tasks and
then how to build the application using the fast interrupt tasks.

F.6.4.1 Example 1

This example shows how to code a fast interrupt handler that does
not make any task entry calls, but simply performs some interrupt
handling code in the accept body.

Page F-20

OUser's Guide

Implementation-Dependent Characteristics

Ada source:

with System;
pacKage P is

<potentially other declarations>

task FastInterrupt Handler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 10);

end;

<potentially other declarations>

end P;

package body P is

<potentially other declarations>

task body FastInterruptHandler is
begin

accept E do
<handle interrupt>

end E;
end;

<potentially other declarations>

end P;

with P;
procedure Example_l is
begin

<main program>
end Example_1;

Compilation and Linking:

$ ada Example 1
S ada/link Example_1 1 Note: no other tasks in the

system in this example

F.6.4.2 Example 2

This example shows how to write a fast interrupt handler that
services more than one interrupt.

Page F-21

User's Guide

Implementation-Dependent Characteristics

Ada source:

with System;
package P is

task Fast Interrupt Handler is
pragma INTERRUPT-HANDLER;

entry El;
entry E2;
entry E3;

for El use at (segment => 0, offset => 5);
for E2 use at (segment => 0, offset => 9);
for E3 use at (segment => 0, offset => 11);

end;

end P;

package body P is

task body FastInterrupt_Handler is
begin

accept El do
<service interrupt 5>

end El;

accept E2 do
<service interrupt 9>

end E2;

accept E3 do
<service interrupt 11>

end E3;
end;

end P;

Compilation and Linking:

S ada Example_2
$ ada/link/tasks Example_2 ! assumes application also

! has normal tasks (not
! shown)

Page F-22

IUsei's Guide

Implementation-Dependent Characteristics

F.6.4.3 Example 3

This example shows how to access global data and make a procedure
call from within a fast interrupt handler.

Ada source:

with System;
package P is

A : Integer;

task FastInterruptHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 16#127#);

end;

end P;

package body P is

B : Integer;

procedure P (X : in out Integer) is
begin

X :=X + 1;
end;

task body FastInterruptHandler is
begin

accept E do
A := A + B;
P (A);

end E;
end;

end P;

Compilation and Linking:

$ ada Example_3
$ ada/link Example_3

Page F-23

SUser's Guide
Implementation-Dependent Characteristics

F.6.4.4 Example 4

This example shows how to make a task entry call and force it to
be queued if the called task is not waiting at the accept at the
time of the call.

Note that the application is linked with /TASKS=2, where the
tasks are T and the main program. Since the fast interrupt hand-
ler is making an entry call to T, ths techniques used guarantee
that it will be queued, if necessary. This is accomplished by
using the conditional call construct in the accept body of the
fast interrupt handler and by including the interrupt in the
/INTERRUPTENTRYTABLE at link time.

Ada source:

with System;
package P is

task FastInterruptHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 8);

end;

task T is
entry E;

end;

end P;

package body P is

task body FastInterruptHandler is
begin

accept E do
select

T.E;

else
null;

end select;
end E;

end;

Page F-24

IUser's Guide
Implementation-Dependent Characteristics

task body T is
begin

loop
select

accept E;
or

delay 3.0;
end select;

end loop;
end;

end P;

Compilation and Linking:

$ ada Example_4
$ ada/link/tasks=2/interrupt_entry_table=(8,8) Example_4

F.6.4.5 Example 5

This example shows how to build an application for 80386
protected mode programs using fast interrupt handlers.

For protected mode programs, special entries must be made in the
build file to modify the interrupt vector.

Ada source:

with System;
package P is

task FastInterruptHandler is
pragma INTERRUPTHANDLER;
entry E;
for E use at (segment => 0, offset => 17);

end;

end P;

package body P is

task body FastInterrupt_Handler is
begin

accept E do
null;

end E;
end;

end P;

Page F-25

0# User's Guide
Implementation-Dependent Characteristics

Build File (partial):

gate
D1HWIN?NMlhandler (interrupt, dpl=0),
DlHWIN?SingleSteplnt (interrupt, dpl=O),
DlHWIN?Breakpoint (interrupt, dpl=0),
DlHWIN?InvalidOpcode (interrupt, dpl=0),
DlHWIN?DevNotAvailable (interrupt, dpl=0),
DlHWIN?DoubleFau.t (interrupt, dpl=0),
DlHWIN?SegoverRun (interrupt, dpl=O),
DlHWIN?InvalidTSS (interrupt, dpl=0),
DlHWIN?SegmentFault (interrupt, dpl=0),
D1HWIN?StackFault (interrupt, dpl=Q),
DlHWIN?ProtFault (interrupt, dpl=0),
DlTINT?Timerlnterrupt (interrupt, dpl=0),
DlIPUT?Transmit (interrupt, dpl=O),
DlIGET?Receive (interrupt, dpl=0),
RlEHNE?RaiseNumericError (interrupt, dpl=0),
R1EHCE?RaiseConstraintError (interrupt, dpl=O),

-> _AIH_00017 (interrupt,dpl=0);

table
IDT(-- Vector Id
entry =(0: RlEHNE?RaiseNumericError, -- 0

1: DlHWIN?SingleSteplnt, -- 1

2: DlHWIN?NMlhandler, -- 2
3: DlHWIN?Breakpoint, -- 3
4: RlEHNE?RaiseNumericError, -- 4
5: RlEHCE?RaiseConstraintError, -5
6: D1HWIN?Invalid~pCode, -- 6
7: DlHWIN?DevNotAvailable, -- 7

8: DlHWIN?DoubleFault, -- 8
9: DlHWIN?SegOverRun, -- 9
10: D1HWIN?InvalidTSS, --10
11: DlHWIN?SegmentFault, -1
12: DlHWIN?stackFault, -1
13: DlHWIN?ProtFault, -1
16: R1EHNE?RaiseNurnericError, -1

-- > 17: _AIH_00017, -1
80h: DlTINT?Tirnerlnterrupt,-12
86h: D1IGET?Receive,-13
87h: DlIPUT?Transmit));-13

end

Page F-26

AUser's Guide

Implementation-Dependent Characteristics

Compilation, Linking, and Building:

$ ada Example_5
$ ada/link/tasks Example_5
$ bld386/build=Example.BLD Example_5.OBJ

F.6.4.6 Example 6

This example shows how to save and restore the state of the
numeric coprocessor from within a fast interrupt handler. This
would be required if other tasks are using the coprocessor to
perform floating point calculations and the fast interrupt hand-
ler also will use the coprocessor.

Note that the state of the NPX is saved in the task control block
of the task executing at the time of the interrupt.

Ada source:

with System;
package P is

task FastInterrupt_Handler is
pragma INTERRUPT HANDLER;
entry E;
for E use at (segment => 0, offset => 25);

end;

end P;

with RTS EntryPoints;
package body P is

task body Fast_Interrupt_Handler is
begin

accept E do
RTS_EntryPoints.StoreNPXState;

<user code>

RTS_EntryPoints.RestoreNPXState;
end E;

end;

end P;

Compilation and Linking:

$ ada Example_6
$ ada/link/npx/tasks Example_6

Page F-27

User's Guide

Implementation-Dependent Characteristics

F.6.4.7 Example 7

This example shows how to send an End-Of-Interrupt message as the
last step in servicing the interrupt.

Ada source:

with System;
package P is

task FastInterrupt_Handler is
pragma INTERRUPT-HANDLER;
entry E;
for E use at (segment => 0, offset => 5);

end;

end P;

with MachineCode; use MachineCode;
package body P is

procedure SendEOI is
begin
machine-instruction'

(registerimmediate, mMOV, AL, 16#66#);
machine instruction'

(immediate_register, mOUT, 16#OeO#, AL);
end;
pragma inline (SendEOI);

task body FastInterruptHandler is
begin

accept E do
<user code>
Send EOI;

end E;
end;

end P;

Page F-28

SUser's Guide

Implementation-Dependent Characteristics

Compilation and Linking:

$ ada Example_7
$ ada/link/tasks Example_7

F.6.5 Normal Interrupt Tasks

"Normal" interrupt tasks are the standard method of servicing in-
terrupts. In this case the interrupt causes a conditional entry
call to be made to a normal task.

F.6.5.1 Features

Normal interrupt tasks provide the following features:

1) Local data may be defined and used by the interrupt task.

2) May be called by other tasks with no restrictions.

3) Can call other normal tasks with no restrictions.

4) May be declared anywhere in the Ada program where a nor-
mal task declaration is allowed.

F.6.5.2 Limitations

Mapping of an interrupt onto a normal conditional entry call puts
the following constraints on the involved entries and tasks:

1) The affected entries must be defined in a task object
only, not a task type.

2) The entries must be single and parameterless.

F.6.5.3 Implementation of Normal Interrupt Tasks

Normal interrupt tasks are standard Ada tasks. The task is given
a priority and runs as any other task, obeying the normal
priority rules and any time-slice as configured by the user.

Page F-29

6User's Guide

Implementation-Dependent Characteristics

F.6.5.4 Flow of Control

When an interrupt occurs, control of the CPU is transferred to an
interrupt service routine generated by the specification of the
interrupt task. This routine preserves the registers and calls
the run-time system, where the appropriate interrupt task and
entry are determined from the information in the
CDINTERRUPTVECTOR table and a conditional entry call is made.

If the interrupt task is waiting at the accept statement that
corresponds to the interrupt, then the interrupt task is sched-
uled for execution upon return from the interrupt service routine
and the call to the run-time system is completed. The interrupt
service routine will execute an IRET, which reenables interrupts,
and execution Will continue with the interrupt task.

If the interrupt task is not waiting at the accept statement that
corresponds to the interrupt, and the interrupt task is not in
the body of the accept statement that corresponds to the inter-
rupt, then the entry call is automatically queued to the task,
and the call to the run-time system is completed.

If the interrupt task is not waiting at the accept statement that
corresponds to the interrupt, and the interrupt task is executing
in the body of the accept statement that corresponds to the in-
terrupt, then the interrupt service routine will NOT complete
until the interrupt task has exited the body of the accept state-
ment. During this period, the interrupt will not be serviced,
and execution in the accept body will continue with interrupts
disabled. Users are cautioned that if from within the body of
the accept statement corresponding to an interrupt, an uncondi-
tional entry call is made, a delay statement is executed, or some
other non-deterministic action is invoked, the result will be er-
ratic and will cause non-deterministic interrupt response.

Example 4 shows how End-Of-Interrupt messages may be sent to the
interrupting device.

F.6.5.5 Saving NPX State

Because normal interrupt tasks are standard tasks, the state of
the NPX numeric coprocessor is saved automatically by the run-
time system when the task executes. Therefore, no special
actions are necessary by the user to save the state.

Page F-30

IUser's Guide

Implementation-Dependent Characteristics

F.6.5.6 Storage Used

This section describes the storage requirements of standard in-
terrupt tasks.

F.6.5.7 Stack Space

A normal interrupt task is allocated its own stack and executes
off that stack while servicing an interrupt. See the appropriate
sections of this User's Guide on how to set task stack sizes.

F.6.5.8 Run-Time System Data

A task control block is allocated for each normal interrupt task
via the /TASKS qualifier at link time.

During task elaboration, an entry is made in the run-time system
CD INTERRUPTVECTOR table to "define" the standard interrupt.

This mechanism is used by the run-time system to make the condi-
tional entry call when the interrupt occurs. This means that the
user is responsible to include all interrupts serviced by normal
interrupt tasks in the /INTERRUPTENTRYTABLE qualifier at link
time.

F.6.6 Building an Application with Normal Interrupt Tasks

This section describes how to build an application that uses
standard Ada tasks to service interrupts.

F.6.6.1 Source Code

No special pragmas or other such directives are required to
specify that a task is a normal interrupt task. If it contains
interrupt entries, then it is a normal interrupt task by default.

When specifying an address clause for a normal intterrupt handler,
the offset should be the interrupt number, not the offset of the
interrupt in the interrupt vector. The segment is not applicable
(although some value must be specified) because it is not used by
the compiler for interrupt addresses. The compiler will place
the interrupt vector into the INTERRUPTVECTORTABLE segment. For
real address mode programs, the interrupt vector must always be
in segment 0 at execution time. This placement can be ac-
complished by specifying the address to locate the
INTERRUPTVECTORTABLE segment with the loc86 command, or at run

Page F-31

User's Guide
Implementation-Dependent Characteristics

time, by having the startup code routine of the UCC copy down the
INTERRUPTVECTORTAPLE segment to segment 0 and the compiler will
put it there automatically. For protected mode programs, the
user specifies the interrupt vector location at build time.

F.6.6.2 Compiling the Program

No special compilation options are required.

F.6.6.3 Linking the Program

The interrupt task must be included in the /TASKS qualifier. The
link options /LT STACKSIZE, /LTSEGMENTSIZE, /MPSEGMENTSIZE,
and /TASK STORAGE SIZE apply to normal interrupt tasks and must
be set to appropriate values for your application.

Every normal interrupt task must be accounted for in the
/INTERRUPT ENTRY TABLE qualifier. This qualifier causes a table
to be built in the run-time system data segment to handle inter-
rupt entries. In the case of standard interrupt tasks, this
table is used to map the interrupt onto a normal conditional
entry call to another task.

F.6.6.4 Locating/Building the Prograw

For real-address mode programs, no special actions need be per-
formed at locate-time; the compiler creates the appropriate entry
in the INTERRUPTVECTORTABLE segment. This segment must be lo-
cated at segment 0 before the occurrence of the first interrupt.

For protected mode programs, an intezrupt gate must be added and
a table entry must be added to the interrupt duscriptor table
(IDT) for each interrupt serviced by a fast interrupt handler.
The value to be put into the build file is the place in the code
that is to be vectored to when the interrupt occurs. This is
specified by a label produced by the code generator which can be
discerned by disassembling the package specification that con-
tains the interrupt task. For an interrupt handler servicing
decimal interrupt 12, the label would be _AIH 00012. "AIH" means
Ada Interrupt Handler. An example of creating a normal interrupt
handler for a protected mode program is shown in example 3.

Page F-32

User's Guide

Implementation-Dependent Characteristics

F.6.7 Examples

These examples illustrate how to write normal interrupt tasks and
then how to build the application using them.

F.6.7.1 Example 1

This example shows how to code a simple normal interrupt handler.

Ada source:

with System;
package P is

task NormalInterruptHandler is
entry E;
for E use at (segment => 0, offset => 10);

end;

end P;

package body P is

task body NormalInterrupt_Handler is
begin

accept E do
<handle interrupt>

end E;
end;

end P;

with P;
procedure Example_1 is
begin

<main program>
end Example_1;

Compilation and Linking:

$ ada Example 1
$ ada/link/tasks=2/interruptentrytable=(10,10) Example-1

Page F-33

User's Guide

Implementation-Dependent Characteristics

F.6.7.2 Example 2

This example shows how to write a normal interrupt handler that
services more than one interrupt and has other standard task
entries.

Ada source:

with System;
package P is

task NormalTask is

entry El;
entry E2; standard entry
entry E3;

for El use at (segment => 0, offset => 7);

for E3 use at (segment => 0, offset => 9);

end;

end P;

package body P is

task body NormalTask is
begin

loop
select

accept El do
<service interrupt 7>

end El;
or

accept E2 do
<standard rendezvous>

end E2;
or

accept E3 do
<service interrupt 9>

end E3;
end select;

end loop;
end NormalTask;

end P;

Compilation and Linking:

$ ada Example_2
$ ada/link/tasks/interrupt entry table=(7,9) Example_2

Page F-34

User's Guide

Implementation-Dependent Characteristics

F.6.7.3 Example 3

This example shows how to build an application for 80386
protected mode programs using normal interrupt handlers.

For protected mode programs, special entries must be made in the
build file to modify the interrupt vector.

Ada source:

with System;
package P is

task NormalTInterruptHandler is
entry E;
for E use at (segment => 0, offset => 20);

end;

end P;

package body P is

task body NormalInterrupt_Handler is
begin

accept E do
null;

end E;
end;

end P;

Build File (partial):

gate
DlHWIN?NMlhandler (interrupt, dpl=0),
DlHWIN?SingleSteplnt (interrupt, dpl=0),
D1HWIN?Breakpoint (interrupt, dpl=0),
DlHWIN?InvalidOpcode (interrupt, dpl=0),
DlHWIN?DevNotAvailable (interrupt, dpl=0),
DlHWIN?DoubleFault (interrupt, dpl=0),
DlHWIN?SegOverRun (interrupt, dpl=0),
DlHWIN?InvalidTSS (interrupt, dpl=0),
DlHWIN?SegmentFault (interrupt, dpl=0),
DlHWIN?StackFault (interrupt, dpl=0),
DlHWIN?ProtFault (interrupt, dpl=0),
DlTINT?Timerlnterrupt (interrupt, dpl=0),
DlIPUT?Transmit (interrupt, dpl=0),
DlIGET?Receive (interrupt, dpl=0),
R1EHNE?RaiseNumericError (interrupt, dpl=0),
RlEHCE?RaiseConstraintError (interrupt, dpl=0),

-> -AIH 00020 (interrupt,dpl=0);

Page F-35

user's Guide
Implementation-Dependent Characteristics

table
IDT(-- Vector Id

entry =(0: RlEH-NE?RaiseNumericError, -- 0
1: DlHWIN?SingleSteplnt, -- 1
2: DlHWIN?NMlhandler, -- 2
3: DlHWIN?Breakpoint, -- 3
4: RlEHNE?RaiseNumericError, -- 4
5: R1EHCE?RaiseConstraintError, -- 5
6: DIHWIN?InvalidOpCode, -- 6
7: D1HWIN?DevNotAvailable, -- 7
8: DlHWIN?DoubleFault, -- 8
9: DlHWIN?SegOverRun, -- 9
10: DlHWIN?InvalidTSS, --10
11: DlHWIN?SegmentFault, -1
12: DlHWIN?stackFault, -1
13: D1HWIN?ProtFault, -1
16: RlEHNE?RaiseNumericError, -1

> 20: AIH_00020, -2
80h: 15lTINT?Timerlnterrupt,-12
86h: DlIGET?Receive,-13
87h: DlIPUT?Transnit));-13
end

Compilation, Linking, and Building:

$ ada Example_3
$ ada/link/tasks/interrupt_entry_Table=(20,20) Example_3
$ bld386/build=Example.BLD Example_3.OBJ

F.6.7.4 Example 4

This example shows how an End-Of-Interrupt message may be sent to
the interrupting device.

Ada source:

with System;

package P is

task Normal_-InterruptHandler is
entry E;
for E use at (segment => 0, offset => 7);

end;

end P;

with Machinp _Code; use Machine-Code;
package body P is

Page F-36

TUser's Guide
Implementation-Dependent Characteristics

procedure SendEOI is
begin

machine instrilction'
(register immediate, mMOV, AL, 16#66#);

machine-instruction'
(immediateregister, mOUT, 16#OeO#, AL);

end;
pragma inline (SendEOI);

task body NormalInterrupt_Handler is
begin

accept E do
<user code>
Send EOI;

end E;
end;

end P;

Compilation and Linking:

$ ada Example_4
$ ada/link/tasks/interrupt_entry_table=(7,7) Example_4

F.6.8 Interrupt Queuing

DDC-I provides a useful feature that allows task entry calls made
by interrupt handlers (fast and normal variant) to be queued if
the called task is not waiting to accept the call, enabling the
interrupt handler to complete to the IRET. What may not be clear
is that the same interrupt may be queued only once at any given
time in DDC-I's implementation. We have made this choice for two
reasons:

a) Queuing does not come for free, and queuing an inter-
rupt more than once is considerably more expensive
than queuing just one. DDC-I feels that most customers
prefer their interrupt handlers to be as fast as pos-
sible and that we have chosen an implementation that
balances performance with functionality.

b) In most applications, if the servicing of an interrupt
is not performed in a relatively short period of time,
there is an unacceptable and potentially dangerous
situation. Queuing the same interrupt more than once
represents this situation.

Page F-37

User's Guide
Implementation-Dependent Characteristics

Note that this note refers to queuing of the same interrupt more
than once at the same time. Different interrupts may be queued at
the same time as well as the same interrupt may be queued in a
sequential manner as long as there is never a situation where the
queuing overlaps in time.

If it is acceptable for your application to queue the same inter-
rupt more than once, it is a relatively simple procedure to
implement the mechanism yourself. Simply implement a high
priority agent task that is called from the interrupt handler.
The agent task accepts calls from the interrupt task and makes
the call on behalf of the interrupt handler to the originally
called task. By careful design, the agent task can be made to ac-
cept all calls from the interrupt task when they are made, but at
the very least, must guarantee that at most one will be queued at
a time.

F.6.9 Recurrence of Interrupts

DDC-I recommends the following techniques to ensure that an in-
terrupt is completely handled before the same interrupt recurs.
There are two cases to consider, i.e. the case of fast interrupt
handlers and the case of normal interrupt handlers.

F.6.9.1 Fast Interrupt Handler

If the fast interrupt handler makes an entry call to a normal
task, tnen place the code that reenables the interrupt at the end
of the accept body of the called task. When this is done, the in-
terrupt will not be reenabled before the rendezvous is actually
completed between the fast interrupt handler and the called task
even if the call was queued. Note that the interrupt task ex-
ecutes all the way through the IRET before the rendezvous is
completed if the entry call was queued.

Normally, end-of-interrupt code using Low LevelIO will be
present in the accept body of the fast interrupt handler. This
implies that the end-of-interrupt code will be executed before
the rendezvous is completed, possibly allowing the interrupt to
come in again before the application is ready to handle it.

If the fast interrupt handler does not make an entry call tc
another task, then placing the end-of-interrupt code in the ac-
cept body of the fast interrupt task will guarantee that the
interrupt is completely serviced before another interrupt hap-
pens.

Page F-38

0User's Guide
Implementation-Dependent Characteristics

F.6.9.2 Normal Interrupt Handler

Place the code that reenables the interrupt at the end of the ac-
cept body of the normal interrupt task. When this is done, the
interrupt will not be reenabled before the rendezvous is actually
completed between the normal interrupt handler and the called
task even if the call was queued. Even though the interrupt
"completes" in the sense that the IREI is executed, the interrupt
is not yet reenabled because the rendezvous with the normal
task's interrupt entry has not been made.

If these techniques are used for either variant of interrupt
handlers, caution must be taken that other tasks do not call the
task entry which reenables interrupts if this can cause adverse
side effects.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same
"size". However, if scalar type has different sizes (packed and
unpacked), unchecked conversion between such a type and another
type is accepted if either the packed or the unpacked size fits
the other type.

F.8 Input/Output Packages

In many embedded systems, there is no need for a traditional I/O
system, but in order to support testing and validation, DDC-I has
developed a small terminal oriented I/O system. This I/O system
consists essentially of TEXT 10 adapted with respect to handling
only a terminal and not file I/O (file I/O will cause a USE error
to be raised) and a low level package called TERMINAL DRIVER. A
BASICIO package has been provided for convenience purposes,
forming an interface between TEXT 10 and TERMINAL-DRIVER as il-
lustrated in the following figure.

Page F-39

SUser's Guide
Implementation-Dependent Characteristics

TEXT IO
BASICIO

TERMINAL DRIVER
(H/W interface)

The TERMINAL DRIVER package is the only package that is target
dependent, i.e., it is the only package that need be changed when
changing communications controllers. The actual body of the
TERMINAL DRIVER is written in assembly language, but an Ada in-
terface to this body is provided. A user can also call the
terminal driver routines directly, i.e. from an assembly language
routine. TEXT 10 and BASICIO are written completely in Ada and
need not be changed.

BASIC 10 provides a mapping between TEXT IO control characters

and ASCII as follows:

TEXTIO ASCII Character

LINE TERMINATOR ASCII.CR
PAGE TERMINATOR ASCII.FF
FILE TERMINATOR ASCII.EM (CTRL/Z)
NEWLINE ASCII.LF

The services provided by the terminal driver are:

1) Reading a character from the communications port.

2) Writing a character to the communications port.

Page F-40

User's Guide

Implementation-Dependent Characteristics

.1 Package TEXTIO

specification of package TEXTIO:

;ma page;

i BASICIO;

1 10 EXCEPTIONS;
tage TEXTIO is

:ype FILETYPE is limited private;

:ype FILEMODE is (INFILE, OUTFILE);

ype COUNT is range 0 .. INTEGER'LAST;
;ubt-pe POSITIVE COUNT is COUNT range 1 .. COUNT'LAST;
INBOUNDED: constant COUNT:= 0; -- line and page length

.max. size of an integer output field 2# #

;ubtype FIELD is INTEGER range 0 .. 35;

!ubtype NUMBERBASE is INTEGER range 2 .. 16;

:ype TYPESET is (LOWERCASE, UPPERCASE);

ma PAGE;
- File Management

irocedure CREATE (FILE : in out FILE TYPE;
MODE : in FILE MODE :=OUT FILE;
NAME : in STRING
FORM : in STRING

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING =""

procedure CLOSE (FILE : in out FILE TYPE);
procedure DELETE (FILE : in out FILETYPE);
procedure RESET (FILE : in out FILETYPE;

MODE : in FILE MODE);
procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE TYPE) return FILE MODE;
function NAME (FILE : in FILE TYPE) return STRING;
function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILETYPE return BOOLEAN;

Page F-41

0User's Guide
Implementation-Dependent Characteristics

pragma PAGE;
-- control of default input and output files

procedure SET INPUT (FILE : in FILE TYPE);
procedure SETOUTPUT (FILE : in FILETYPE);

function STANDARD INPUT return FILE TYPE;
function STANDARD OUTPUT return FILE TYPE;

function CURRENT INPUT return FILETYPE;
function CURRENTOUTPUT return FILETYPE;

pragma PAGE;
-- specification of line and page lengths

procedure SETLINELENGTH (FILE : in FILE TYPE;
TO : in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILE TYPE;
TO : in COUNT);

procedure SETPAGELENGTH (TO : in COUNT);

function LINELENGTH (FILE : in FILETYPE)
return CCUNT;

function LINELENGTH return COUNT;

function PAGE LENGTH (FILE : in FILE TYPE)
return COUNT;

function PAGELENGTH return COUNT;

pragma PAGE;
-- Column, Line, and Page Control

procedure NEW LINE (FILE : in FILE TYPE;

SPACING : in POSITIVE COUNT 1);
procedure NEWLINE (SPACING : in POSITIVECOUNT 1);

procedure SKIPLINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT 1);

procedure SKIPLINE (SPACING : in POSITIVECOUNT 1);

function END OF LINE (FILE : in FILE TYPE) return BOOLEAN;
function END-OF-LINE return BOOLEAN;

procedure NEW PAGE (FILE : in FILETYPE);
procedure NEWPAGE;

procedure SKIP PAGE (FILE : in FILETYPE);
procedure SKIP PAGE;

Page F-42

SUser's Guide
Implementation-Dependent Characteristics

function END OF PAGE (FILE : in FILE TYPE) return BOOLEAN;
function ENDOFPAGE return BOOLEAN;

function END OF FILE (FILE : in FILETYPE) return BOOLEAN;
function ENDOFFILE return BOOLEAN;

procedure SETCOL (FILE : in FILE TYPE;
TO : in POSITIVE COUNT);

procedure SET COL (TO : in POSITIVECOUNT);

procedure SETLINE (FILE : in FILE TYPE;
TO : in POSITIVE COUNT);

procedure SETLINE (TO : in POSITIVECOUNT);

function COL (FILE : in FILE TYPE)
return POSITIVECOUNT;

function COL return POSITIVE-COUNT;

function LINE (FILE : in FILE TYPE)
return POSITIVECOUNT;

function LINE return POSITIVECOUNT;

function PAGE (FILE : in FILE TYPE)
return POSITIVE COUNT;

function PAGE return POSITIVECOUNT;

pragma PAGE;
-- Character Input-Output

procedure GET (FILE : in FILETYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILETYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILETYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILETYPE; ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

procedure GET LINE (FILE : in FILE TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GETLINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUTLINE (FILE : in FILE TYPE;
ITEM : in STRING);

procedure PUT LINE (ITEM : in STRING);

Page F-43

6User's Guide

Implementation-Dependent Characteristics

pragma PAGE;
-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGERIO is

DEFAULT WIDTH : FIELD NUM'WIDTH;
DEFAULT-BASE : NUMBERBASE 10;

procedure GET (FILE : in FILETYPE;
ITEM : out NUM;
WIDTH : in FIELD 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILE TYPE;
ITEM in NUM;
WIDTH in FIELD := DEFAULT WIDTH;
BASE in NUMBER BASE := DEFAULTBASE);

procedure PUT (ITEM in NUM;
WIDTH in FIELD := DEFAULT WIDTH;
BASE in NUMBERBASE DEFAULTBASE);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
BASE : in NUMBER BASE DEFAULTBASE);

end INTEGER 10;

pragma PAGE;

Page F-44

User's Guide
Implementation-Dependent Characteristics

-- Generic Packages for Input-Output of Real Types

generic
type NUM " digits <>;

package FLOATIO is

DEFAULT FORE : FIELD 2;
DEFAULT AFT : FIELD NUM'DIGITS - 1;
DEFAULTEXP : FIELD 3;

procedure GET (FILE in FILE TYPE;
ITEM out NUM;
WIDTH : in FIELD 0);

procedure GET (ITEM : out NUM;
WIDTH in FIELD 0);

procedure PUT (FILE in FILETYPE;
ITEM in NUM;
FORE in FIELD DEFAULT FORE;
AFT in FIELD DEFAULT AFT;
EXP in FIELD DEFAULTEXP);

procedure PUT (ITEM in NUM7
FORE in FIELD DEFAULT FORE;
AFT in FIELD DEFAULT AFT;
EXP in FIELD DEFAULTEXP);

procedure GET (FROM in STRING;
ITEM out NUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in NUM;
AFT in FIELD DEFAULT AFT;
EXP in FIELD DEFAULTEXP);

end FLOATIO;

pragma PAGE;

Page F-45

SUser's Guide
ImplementaLton-Dependent Characteristics

generic
type NUM is delta <>;

package FIXEDIO is

DEFAULT FORE : FIELD NUM'FORE;
DEFAULT AFT : FIELD NUM'AFT;
DEFAULTEXP : FIELD 0;

procedure GET (FILE in FILE TYPE;
ITEM out NUM;
WIDTH : in FIELD 0);

proceduru GET (ITEM : out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULT EXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULT EXP);

end FIXEDIO;

pragma PAGE;

Page F-46

S User's Guide
Implementation-Dependent Characteristics

-- Generic Package for Input-Output of Enumeration Types

generic

type ENUM is (<>);
package ENUMERATION IO is

DEFAULT WIDTH : FIELD 0;
DEFAULT-SETTING : TYPESET UPPERCASE;

procedure GET (FILE in FILE TYPE; ITEM : out ENUM);
procedure GET (ITEM : out ENUM);

procedure PUT (FILE FILE TYPE;
ITEM in ENUM;
WIDTH in FIELD DEFAULTWIDTH;
SET in TYPE SET DEFAULTSETTING);

procedure PUT (ITEM in ENUM;
WIDTH in FIELD DEFAULT WIDTH;
SET in TYPESET DEFAULT SETTING);

procedure GET (FROM in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPESET := DEFAULTSETTING);

end ENUMERATION10;

pragma PAGE;

-- Exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames 10_EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames 10 EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames IO-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames 10_EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames 10 EXCEPTIONS.END ERROR;
DATA ERROR : exception renames 10_EXCEPTIONS.DATA ERROR;
LAYOUT ERROR : exception renames IO-EXCEPTIONS.LAYOUT ERROR;

pragma page;
private

type FILE TYPE is
record

FT : INTEGER := -1;
end record;

end TEXT IO;

Page F-47

IN User's Guide
Implementation-Dppendent Characteristics

F.8.2 Package IOEXCEPTIONS

The specification of the package IOEXCEPTIONS:

package IOEXCEPTIONS is

STATUS ERROR : exception;
MODE ERROR : exception;
NAME ERROR : exception;
USE ERROR : exception;
DEVICE ERROR : exception;
END ERROR : exception;
DATA ERROR : exception;
LAYOUTERROR : exception;

end IOEXCEPTIONS;

Page F-48

User's Guide
Smplcmentation-Dependent Cia.Lacterist.,-s

F.P.2 Package BASICIO

The specification of package BASICIO:

with IOEXCEPTIONS;

package BASICIO is

type count is range 0 .. integer'last;

subtype positivecount is count range 1 .. count'last;

function getinteger return string;

-- Skips any leading blanks, line terminators or page
-- terminators. Then reads a plus or a minus sign if
-- present, then reads according to the syntax of an
-- integer literal, which may be based. Stores in item
-- a string containing an optional sign and an integer
-- literal.

-- The exception DATA ERROR is raised if the sequence
-- of characters does not correspond to the syntax
-- described above.

-- The exception END ERROR is raised if the file terminator
-- is read. This means that the starting sequence of an
-- integer has not been met.

-- Note that the character terminating the operation must
-- be available for the next get operation.

function get_real return string;

-- Corresponds to get_integer except that it reads according
-- to the syntax of a real literal, which may be based.

function getenumeration return string;

-- Corresponds to getinteger except that it reads according
-- to the syntax of an identifier, where upper and lower
-- case letters are equivalent to a character literal
-- including the apostrophes.

Page F-49

S User's GuideImplementation-Dependent Characteristics

function getitem (length : in integer) return string;

-- Reads a string from the current line and stores it in
-- item. If the remaining number of characters on the
-- current line is less than length then only these
-- characters are returned. The line terminator is not
-- skipped.

procedure putitem (item : in string);

-- If the length of the string is greater than the current
-- maximum line (linelength), the exception LAYOUTERROR
-- is raised.

-- If the string does not fit on the current line a line
-- terminator is output, then the item is output.

-- Line and page lengths - ARM 14.3.3.

procedure setline_length (to : in count);

procedure setpage_length (to : in count);

function linelength return count;

function pagelength return count;

-- Operations on columns, lines and pages - ARM 14.3.4.

procedure new-line;

procedure skipline;

function end of line return boolean;

procedure newpage;

procedure skippage;

function end of page return boolean;

Page F-50

User's Guide

Implementation-Dependent Characteristics

function end of file return boolean;

procedure set col (to in positive-count);

procedure setline (to in positive count);

function col return positivecount;

function line return positive-count;

function page return positive count;

-- Character and string procedures.
-- Corresponds to the procedures defined in ARM 14.3.6.

procedure getcharacter (item out character);

procedure getstring (item out string);

procedure getline (item : out string;
last : out natural);

procedure put_character (item : in character);

procedure put_string (item : in string);

procedure put_line (item : in string);

-- exceptions:

USE ERROR : exception renames 10 EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames 10 EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO EXCEPTIONS.END ERROR;
DATA ERROR : exception renames IO EXCEPTIONS.DATA ERROR;
LAYOUTERROR : exception renames IO-EXCEPTIONS.LAYOUTERROR;

end BASICIO;

Page F-51

TUser's Guide
Implementation-Dependent Characteristics

F.8.4 Package LOWLEVELIO

The specification of LOWLEVEL IO (16 bits) is:

with System;

package LOW LEVEL 10 is

subtype portaddress is System.UnsignedWord;

type 11_io_8 is new integer range -128..127;
type 11_io_16 is new integer;

procedure sendcontrol(device : in portaddress;
data : in System.Byte);

-- unsigned 8 bit entity

procedure sendcontrol(device : in port_address;
data : in System.UnsignedWord);

-- unsigned 16 bit entity

procedure sendcontrol(device : in port_address;
data : in 11_io_8);

-- signed 8 bit entity

procedure sendcontrol(device : in port_address;
data : in 11_io_16);

-- signed 16 bit entity

procedure receivecontrol(device : in portaddress;
data : out System.Byte);

-- unsigned 8 bit entity

procedure receivecontrol(device : in portaddress;
data : out System.UnsignedWord);

-- unsigned 16 bit entity

procedure receivecontrol(device : in portaddress;
data : out ii io_8);

-- signed 8 bit entity

procedure receive control(device : in portaddress;
data : out 11 io_16);

-- signed 16 bit entity

private

pragma inline(send control, receive-control);

end LOWLEVEL 10;

Page F-52

0User's Guide
Implementation-Dependent Characteristics

The specification of LOW LEVEL IO (32 bits) is:

with SYSTEM;

package LOWLEVELIO is

subtype portaddress is System.UnsignedWord;

type 1iio 8 is new short integer range -128..127;
type iiio 16 is new shortinteger;
type 11_io_32 is new integer;

procedure sendcontrol(device : in port_address;
data : in System.Byte);

-- unsigned 8 bit entity

procedure sendcontrol(device : in port_address;
data : in System.UnsignedWord);

-- unsigned 16 bit entity

procedure sendcontrol(device : in port_address;
data : in System.UnsignedDWord);

-- unsigned 32 bit entity

procedure sendcontrol(device : in port_address;
data : in 11_io_8);

-- signed 8 bit entity

procedure sendcontrol(device : in portaddress;
data : in 11_io_16);

-- signed 16 bit entity

procedure sendcontrol(device : in portaddress;
data : in 11_io_32);

-- signed 32 bit entity

procedure receivecontrol(device : in portaddress;
data : out System.Byte);

-- unsigned 8 bit entity

procedure receivecontrol(device : in portaddress;
data : out System.UnsignedWord);

-- unsigned 16 bit entity

procedure receivecontrol(device : in portaddress;
data : out System.UnsignedDWord);

-- unsigned 32 bit entity

procedure receivecontrol(device : in portaddress;
data : out 1i io_8);

-- signed 8 bit entity

Page F-53

IUser's Guide
Implementation-Dependent Characteristics

procedure receivecontrol(device : in port-address;
data : out 11 io_16);

-- signed 16 bit entity

procedure receivecontrol(device : in portaddress;
data : out 11 io_32);

-- signed 32 bit entity

private

pragma inline(send control, receive-control);

end LOWLEVELIO;

F.8.5 Package TERMINAL DRIVER

The specification of package TERMINALDRIVER:

package TERMINALDRIVER is

procedure put character (ch : in character);

procedure getcharacter (ch : out character);

private

pragma interface (ASM86. putcharacter);
pragma interface spelling(putcharacter,"DlIPUT?putcharacter");

pragma interface (ASM86, getcharacter);
pragma interfacespelling(getcharacter,"DlIGET?getcharacter");

end TERMINAL DRIVER;

Page F-54

8User's Guide
Implementation-Dependent Characteristics

F.8.6 Package SEQUENTIALIO

-- Source code for SEQUENTIALIO

pragma PAGE;

with IOEXCEPTIONS;

generic

type ELEMENTTYPE is private;

package SEQUENTIALIO is

type FILETYPE is limited private;

type FILE-MODE is (INFILE, OUTFILI);

pragma PAGE;
-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE OUTFILE;
NAME : in STRING "";

FORM : in STRING

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE : in out FILE TYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILETYPE) return FILEMODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

Page F-55

8User's Guide
Implementation-Dependent Characteristics

pragma PAGE;
-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE);

function ENDOFFILE(FILE : in FILETYPE) return BOOLEAN;

pragma PAGE;
-- exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO-EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames 10 EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames 10_EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames 10_EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames 10_EXCEPTIONS.END ERROR;
DATAERROR : exception renames IO-EXCEPTIONS.DATAERROR;

pragma PAGE;
private

type FILETYPE is new INTEGER;

end SEQUENTIAL IO;

Page F-56

OUser's Guide
Implementation-Dependent Characteristics

F.9 Machine Code Insertions

The reader should be familiar with the code generation strategy
and the 80x86 instruction set to fully benefit from this section.

As described in chapter 13.8 of the ARM [DoD 83] it is possible
to write procedures containing only code statements using the
predefined package MACHINE CODE. The package MACHINECODE
defines the type MACHINE INSTRUCTION which, used as a record ag-
gregate, defines a machine code insertion. The following
sections list the type MACHINE INSTRUCTION and types on which it
depends, give the restrictions, and show an example of how to use
the package MACHINECODE.

F.9.1 Predefined Types for Machine Code Insertions

The following types are defined for use when making machine code
insertions (their type declarations are given on the following
pages):

type opcodetype
type operand_type
type register_type
type segment_register
type machine-instruction

The type REGISTER TYPE defines registers. The registers STi
describe registers on the floating stack. (ST is the top of the
floating stack).

The type MACHINE INSTRUCTION is a discriminant record type with
which every kind of instruction can be described. Symbolic names
may be used in the form

name'ADDRESS

Restrictions as to symbolic names can be found in section F.9.2.
It should be mentioned that addresses are specified as 80386 ad-
dresses. In case of other targets, the scale factor should be set
to "scale I".

Page F-57

User's Guide
Implementation-Dependent Characteristics

type opcode_type is
-8086 instructions:

m -AAA, m -AAD, m -AAM, mAAS,
m_-ADC, m_-ADD, mAND,
mCALL, mCALLN,
mCBW, m_-CLC, m_CLD, mCLI,
mCMC, m_-CMP, M_CMPS, m CWD,
mDAA, mDAS,
mDEC, mDIV, mHLT,
mIDly, mIMUL, mIN, mINC,
mINT, mINTO, mIRET,
m JA, m JAE, m JB, m JBE,
M JC, M JCXZ, m JE, m JG,
mJGE, mJL, mJLE, rn JNA,
m JNAE, mJNB, mJNBE, m JNC,
mJNE, mJNG, mJNGE, mJNL,
mJNLE, mJNO, m_JNP, mJNS,
m JNZ, MJO, mJP, m JPE,
M JPO, mJS, M -JZ, MJMP,
mLAHF, m_ LDS, mLES, m -LEA,
m LOCK, mLODS,
m -LOOP, mLOOPE, m_LOOPNE, mLOOPNZ,
m_-LOOPZ, M My, MMOVS, mMUL,
m -NEG, m NOP, m-NOT, m OR,
m_-OUT, MPOP, m POPF, m PUSH,
mPUSHF,
mRCL, m_ RCR, mROL, mROR,
mREP, mREPE, m REPNE,
mRET, mRETP, m-RETN, mRETNP,
mSAHF,
mSAL, mSAR, mSHL, mSHR,
mSBB, mSCAS,
mSTC, mSTD, m_STI, m -STOS,
mSUB, mTEST, mWAIT, m-XCHG,
mXLAT, m_XOR,

Page F-58

SO* User's Guide
Implementation-Dependent Characteristics

-- 8087/80187/80287 Floating Point Processor instructions:

in FABS, inFADD, in FADDD, mFADDP,
mnFBLD, inFBSTP, mnFCHS, in FNCLEX,
mn FCOM, in FCOMD, in FCOMP, mnFCOMPD,
mnFCOMPP, inFDECSTP, mnFDIV, in FDIVD,
mnFDIVP, mFDIVR, inFDIVRD, mnFDIVRP,
mn FFREE, inFIADD, mFIADDD, minFICOM,
m FICOMD, minFICOMP, minFICOMPD, inFIDIV,
mnFIDIVD, inFIDIVR, inFIDIVRD,
inFILD, in FILDD, mnFILDL, inFIMUL,
in FIMULD, m FINCSTP, m FNINIT, in FIST,
mnFISTD, inFISTP, mnFISTPD, m-FISTPL,
mnFISUB,
m FISUBD, inFISUBR, in FISUBRD, in FLD,
in FLDD, inFLDCW, mFLDENV, mnFLDLG2,
mn FLDLN2, inFLDL2E, inFLDL2T, inFLDPI,
inFLDZ, inFLDl, in FMUL, in FMULD,
mnFMULP, in_FNOP, inFPATAN, minFPREM,
in FPTAN, n, FRNDINT, inFRSTOR, in_FSAVE,
mnFSCALE, inFSETPM, inFSQRT,
inFST, mnFSTD, in FSTCW,
in FSTENV, inFSTP, mnFSTPD, mn FSTSW,
mnFSTSWAX, m._FSUB, m-FSUBD, mnFSUBP,
m FSUBR, inFSUBRD, in FSU1RPP, mnFTST,
inFWAIT, inFXAM, inFXCH, in FXTRACT,
m-FYL2X, inFYL2XPI, mF2XMl,

-80186/80286/80386 instructions:
-Notice that some immediate rersions of the 8086
-instructions only exist on these targets
-- (shifts,rotates,push,inul,....)

in BOUND, inC"TS, in ENTER, inINS,
mnLAR, mnLEAVE, m LGDT, inLIDT,
mnLSL, inOUTS, inPOPA, inPUSHA,
m-SGDT, inSIDT,
inARPL, inLLDT, inLMSW, inLTR,
._- 16 bit always...

mn SLDT, in SMSW, in STR, in VERR,
rnVERW,

Page F-59

660 User's Guide
Implementation-Dependent Characterikstics

-- the 80386 specific instructions:
m_-SETA, mSETAE, mSETB, m SETBE,
m S"TTC, mSETE, m SETG, m SETGE,
m SETL, m SETLE, m SETNA, m SETNAE,
m SETNB, m SETNBE, m SETNC, m SETNE,
mSETNG, m SETNGE, mSETNL, m SEVhL .,

m SETNO, m SETNP, mSETNS, m SETN?.,
m SETO, m SETP, mSETPE, m-SETPO,
mnSETS, m SETZ,
mnBSF, inBSR,
m BT, m BTC, minBTR, inBTS,
m LFS, mLGS, in_LSS,
m MOVZX, in MOVSX,
mMOVCR, inMOVDB, mMOVTR,
in SHLD, in SHRD,

-- the 80387 spec -'ic instructions:
in_ FUCOM, in_ FUCOMP, inFUCOMPP,
inFPREM1, inFSIN, m_FCOS,
inFSINCOS,

-byte/word/dwcr'd variants (to be used, when not
-deductible from context):

in ADCB, mnADCW, in ADCD,
mnADDB, inADDW, m ADDD,
inANDB, inANDW, m-ANDD,

inBTW, in BTD,
inBTCW, inBTCD,
in BTRW, in BTRD,
inBTSW, m-BTSD,
inCBWW, in CWDE,
inCWDW, inCDQ,

inCMPB, inCMPW, inCMPD,
inCMPSB, inCMPSW, inCMPSD,
in DECB, inDECW, inDECD,
mnDIVB, in DIVW, m DIVD,
m IDIVB, m IDIVW, mnIDIVD,
in EMULB, mnIMULW, inIMULD,
m INCB, inINCW, inINCD,
mnINSB, inINSW, in INSD,
mnLODSB, mnLODSW, m LODSD,
mnMOVB, in MOVW, in MO VD,
mnMOVSB, inMOVSW, inMOVSD,
m MOVSXB, mnMOVSXW,
mnMOVZXB, inMOVZXW,
m MULB, in MIJLW, inMULu,
mnNEGB, inNEGW, in NEGD,
mnNOTB, m NOTW, mnNOTD,
m ORB, in ORW, m ORD,
mnOUTSB, in OUTSW, m.OUTSD,

inPOPW, inPOPD,
inPUSHW, in PUSHD.

rn. , inRCLW, inRCLD,

Page F-60

TUser's Guide
Implementation-Dependent Characteristics

mRCRB, mRCRW, m RCRD,
m ROLB, m ROLW, mROLD,
mRORB, mRORW, mRORD,
m_SALB, m SALW, mSALD,

m SARB, mSARW, mSARD,
m_SHLB, mSHLW, mSHLDW,
m SHRB, mSHRW, mSHRDW,
m SBBB, mSBBW, mSBBD,
mSCASB, mSCASW, mSCASD,
mSTOSB, m STOSW, mSTOSD,
m_SUBB, m SUBW, mSUBD,
m_TESTB, mTESTW, m TESTD,
m_XORB, m_XORW, mXORD,
m_DATAB, mDATAW, mDATAD,

-- Special 'instructions':
m_label, mreset,

-- 8087 temp real load/storeandpop:
mFLDT, mFSTPT);

pragma page;
type operandtype is (none, -- no operands

immediate, -- one immediate operand
register, -- one register operand
address, -- one address operand
system_address, -- one 'address operand
name, -- CALL name
register-immediate, -- two operands

-- destination is
-- register
-- source is immediate

registerregister, -- two register operands
register address, -- two operands :

-- destination is
-- register
-- source is address

addressregister, -- two operands :
-- destination is
-- address
-- source is register

register system address, -- two operands :
-- destination is
-- register
-- source is 'address

systemaddressregister, -- two operands :
-- destination is
-- 'address
-- source is register

Page F-61

User's Guide
Implementation-Dependent Characteristics

address immediate, -- two operands
-- destination is
-- address

-- source is immediate
systemaddressimmediate, -- two operands :

-- destination is
-- 'address

-- source is immediate
immediate-register, -- only allowed for OUT

-- port is immediate
-- source is register

immediate-immediate, -- only allowed for
-- ENTER

registerregister immediate, -- allowed for IMULimm,
-- SHRDimm, SHLDimm

registeraddress immediate, -- allowed for IMULimm
registersystemaddress immediate, -- allowed for IMULimm
addressregister_immediate, -- allowed for SHRDimm,

-- SHLDimm
systemaddressregister immediate -- allowed for SHRDimm,

-- SHLDimm

type registertype is (AX, CX, DX, BX, SP, BP, SI, DI, -- word regs
AL, CL, DL, BL, AH, CH, DH, BH, -- byte regs
EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI,-- dword regs
ES, CS, SS, DS, FS, GS, -- selectors

BX SI, BX DI, BP SI, BPDI, -- 8086/80186/80286 combinations
ST. ST1, §T2, ST3, -- floating registers (stack)
ST4, ST5, S176, ST7,
nil);

-- the extended registers (EAX EDI) plus FS and GS are only
-- allowed in 80386 targets

type scale-type is (scale_1, scale_2, scale_4, scale_8);

subtype machine-string is string(l..100);

pragma page;

Page F-62

Us, r's Guide
Implementation- pendent Characteristics

type machine-instruction (operandkind : operand_type) is
record

opcode opcodetype;

case operand kind is
when immediate =>

immediatel : integer; -- immediate

when register =>
r_register : register_type; -- source and/or destination

when address =>
a_segment : register_type; -- source and/or destination
a address base : register_type;
a address index : register_type;
a address scale : scale_type;
a address offset : integer;

when systemaddress =>
sa address system.address; -- destination

when name =>
n_string machine-string; -- CALL destination

when register immediate =>
r i registerto : register_type; -- destination
r i immediate : integer; -- source

when register_register =>
r r register_to : register_type; -- destination
r r register_from : register_type; -- source

when registeraddress =>
r_a_registerto : register_type; -- destination
r a segment : register_type; -- source
r a address base : register_type;
r a address index : register_type;
r a address scale : scaletype;
r a address-offset : integer;

when address_register =>
a r segment : register_type; -- destination
a r address base : register_type;
a r address-index : register_type;
a r address-scale : scale_type;
a r address offset : integer;
a r register_from : register_type; -- source

when register system address =>
r_saregister_to registertype; -- destination
r sa address system.address; -- source

when system address register =>

Page F-63

IUser's Guide
Implementation-Dependent Characteristics

sa r address : system.address; -- destination
sa r reg_from : register_type; -- source

when address immediate =>
a_i_segment : register_type; -- destination

a i address base : registertype;
a i address index : registertype;
a i addressscale : scaletype;
a i address offset : integer;
a i immediate : integer; -- source

when systemaddress-immediate =>
sa i address : system.address; -- destination
sa i immediate : integer; -- source

when immediate_register =>
i r immediate : integer; -- destination
i r register : register_type; -- source

when immediate immediate =>
i i immediatel : integer; -- immediatel
i i immediate2 : integer; -- immediate2

when register registerimmediate =>
r r i registeri : registertype; -- destination
r r i register2 : registertype; -- sourcel
r riimmediate : integer; -- source2

when register address-immediate =>
r a i register : register_type; -- destination
r a i segment : registertype; -- sourcel
r a i addressbase : registertype;
r a i addressindex : register_type;
r a i address scale : scale_type;
r a i address-offset: integer;
r a i immediate integer; -- source2

when registersystem address immediate =>
r sa i register : registertype; -- destination
addrlO : system.address; -- sourcel
r sa i immediate : integer; -- source2

when addressregister immediate =>
a r i segment : register_type; -- destination
a r i addressbase : register_type;
a r i addressindex : register_type;
a r i addressscale : scale_type;
a r i address offset: integer;
a r i register : registertype; -- sourcel
a r i immediate : integer; -- source2

when systemaddress_registerimmediate =>
sa-r i address : system.address; -- destination

Page F-64

TUser's Guide
Implementation-Dependent Characteristics

sa r i register : register type; -- sourcel
sa r i immediate : integer; -- source2

when others =>
null;

end case;
end record;

end machine code;

Page F-65

User's Guide
Implementation-Dependent Characteristics

F.9.2 Restrictions

Only procedures, and not functions, may contain machine code in-
sertions.

Symbolic names in the f rm x'ADDRESS can only be used in the fol-
lowing cases:

1) x is an object of scalar type or access type declared
as an object, a formal parameter, or by static rericdling.

2) x is an array with static constraints declared as an
object (not as a formal parameter or by renaming).

3) x is a record declared as an object (not a formal
parameter or by renaming).

The mCALL can be used with "name" to call (for) a routine.

Two opcodes to handle labels have been defined:

m label: defines a label. The label number must be in the
range 1 <= x <= 25 and is put in the offset field
in the first operand of the MACHINEINSTRUCTION.

m reset: used to enable use of more than 25 labels. The
label number after a m RESET must be in the range
1<= x <=25. To avoid errors you must make sure
that all used labels have been defined before a reset,
since the reset operation clears all used labels.

All floating instructions have at most one operand which can be
any of the following:

- a memory address
- a register or an immediate value
- an entry in the floating stack

Page F-66

IUser's Guide
Implementation-Dependent Characteristics

F.9.3 Examples

The following section contains examples of how to use the machine
code insertions and lists the generated code.

F.9.4 Example Using Labels

The following assembler code can be described by machine code in-
sertions as shown:

MOV AX,7
MOV CX,4
CMP AX,CX
JG 1
JE 2
MOV CX,AX

1: ADD AX,CX
2: MOV SS: [BP+DI], AX

package exampleMC is

procedure test labels;
pragma inline (test labels);

end exampleMC;

with MACHINE CODE; use MACHINE CODE;
package body exampleMC is

procedure test-labels is

begin

MACHINE INSTRUCTION'(register immediate, m MOV, AX, 7);
MACHINE INSTRUCTION'(register immediate, m MOV, CX, 4);
MACHINE INSTRUCTION'(register register, m CMP, AX, CX);
MACHINE INSTRUCTION'(immediate, m JG, 1);
MACHINE INSTRUCTION'(immediate, m JE, 2);
MACHINE INSTRUCTION'(registerregister, m_MOV, CX, AX);
MACHINE INSTRUCTION'(immediate, m label, 1);
MACHINE INSTRUCTION'(registerregister, mADD, AX, CX);
MACHINE INSTRUCTION'(immediate, m label, 2);
MACHINEINSTRUCTION'(address_register, mMOV, SS, BP,

DI, scale_1, 0, AX);

end test-labels;

end exampleMC;

Page F-67

8User's Guide

Implementation-Dependent Characteristics

F.9.5 Advanced Topics

This section describes some of the more intricate details of
the workings of the machine code insertion facility. Special at-
tention is paid to the way the Ada objects are referenced in
the machine code body, and various alternatives are shown.

F.9.5.1 Address Specifications

Package MACHINE CODE provides two alternative ways of specify-
ing an address for an instruction. The first way is
referred to as SYSTEM ADDRESS and the parameter associated this
one must be specified via OBJECT'ADDRESS in the actual
MACHINE CODE insertion. The second way closely relates to the ad-
dressing which the 80x86 machines employ: an address has the
general form

segment:[base+index*scale+offset]

The ADDRESS type expects the machine insertion to contain values
for ALL these fields. The default value NIL for segment, base,
and index may be selected (however, if base is NIL, so should in-
dex be). Scale MUST always be specified as scale 1, scale_2,
scale 4, or scale_8. For 16 bit targets, scale 1 is the only
legal scale choice. The offset value must be in the range of
-32768 .. 32767.

F.9.5.2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine
code insertions may be referenced by the machine insertions
using the SYSTEM ADDRESS or ADDRESS formats explained above.
However, there is a great difference in the way in which they may
be specified; whether the procedure is specified as INLINE or
not.

INLINE machine insertions can deal with the parameters (and
other visible variables) using the SYSTEM ADDRESS farm. This will
be dealt with correctly even if the actual values are constants.
Using the ADDRESS form in this context will be the user's respon-
sibility since the user obviously attempts to address using
register values obtained via other machine insertions. It is in
general not possible to load the address of a parameter because
an 'address' is a two component structure (selector and offset),
and the only instruction to load an immediate address is the LEA,
which will only give the offset. If coding requires access to
addresses like this, one cannot INLINE expand the machine inser-
tions. Care should be taken with references to objects outside
the current block since the code generator in order to calculate

Page F-68

IUser's Guide
Implementation-Dependent Characteristics

the proper frame value (using the display in each frame) will ap-
ply extra registers. The parameter addresses will, however, be
calculated at the entry to the INLINE expanded routine to mini-
mize this problem. INLINE expanded routines should NOT employ
any RET instructions.

Pure procedure machine insertions need to know the layout of the
parameters presented to, in this case, the called procedure. In
particular, careful knowledge about the way parameters are passed
is required to achieve a succesful machine procedure. Again there
are two alternatives:

The first assumes that the user takes over the responsibility
for parameter addressing. With this method, the SYSTEM ADDRESS
format does not make sense (since it expects a procedural setup
that is not set up in a machine procedure). The user must code
the exit from the procedure and is also responsible for taking
off parameters if so is required. The rules of Ada procedure
calls must be followed. The calling conventions are summarized
below.

The second alternative assumes that a specific abstract A-code
insertion is present in the beginning and end of the machine
procedure. Abstract A-code insertions are not generally available
to an Ada user since they require extensive knowledge about the
compiler intermediate text called abstract A-code. Thus, they
will not be explained further here except for the below use.

These insertions enable the user to setup the procedural frame as
expected by Ada and then allow the form SYSTEM ADDRESS in ac-
cesses to parameters and variables. Again it is required to know
the calling conventions to some extent; mainly to the extent that
the access method for variables is clear. A record is, for ex-
ample, transferred via its address, so access to record fields
must first employ an LES-instruction and then use ADDRESS form
using the read registers.

The insertions to apply in the beginning are:

pragma abstract acode insertions(true);
aa instr'(aaCreate Block,x,y,O,0,O);
aa-instr'(aa-End of-declpart,0,0,O,0,0);

pragma abstract acode insertions(false);

and at the end:

pragma abstract acode insertions(true);
aa instr'(aa Exit subprarm,x,O,x,nilarg,nil_arg); -- (1)
aa instr'(aaSet block-level,y-l,0,0,0,0);

pragma abstract acode insertions(false);

Page F-69

0User's Guide
Implementation-Dependent Characteristics

where the x value represents the number of words taken by the
parameters, and y is the lexical block level of the machine pro-
cedure. However, if the procedure should leave the parameters on
the stack (scalar IN OUT or OUT parameters), then the
Exit_subprgrm insertion should read:

aa_instr'(aaExitsubprgrm,0,0,O,nil_arg,nil arg); -- (2)

In this case, the caller moves the updated scalar values from the
stack to their destinations after the call.

The NILARG should be defined as :

nilarg : constant := -32768;

WARNING: When using the AA INSTR insertions, great care must be
taken to assure that the x and y values are specified correctly.
Failure to do this may lead to unpredictable crashes in compiler
pass8.

F.9.5.3 Parameter Transfer

It may be a problema to figure out the correct number of words
which the parameters take up on the stack (the x value). The fol-
lowing is a short description of the transfer method:

INTEGER types take up at least 1 storage unit. 32 bit integer
types take up 2 words, and 64 bit integer types take up 4 words.
In 32 bit targets, 16 bit integer types take up 2 words the low
word being the value and the high word being an alignment word.
TASKs are transferred as INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats and 4 words for
64 bit floats.

ACCESS types are considered scalar values and consist of a 16
bit segment value and a 16 or 32 bit offset value. When 32 bit
offset value, the segment value takes up 2 words the high
word being the aligment word. The offset word(s) are the
lowest, and the segment word(s) are the highest.

RECORD types are always transferred by address. A record is
never a scalar value (so no post-procedure action is carried out
when the record parameter is OUT or IN OUT). The repre-
sentation is as for ACCESS types.

Page F-70

User's Guide
Implementation-Dependent Characteristics

ARRAY values are transferred as one or two ACCESS values. If
the array is constrained, only the array data address is
transferred in the same manner as an ACCESS value. If the
array is unconstrained below, the data address will be pushed by
the address of the constraint. In this case, the two ACCESS
values will NOT have any alignment words in 32 bit targets.

Packed ARRAY values (e.g. STRING types) are transferred as
ARRAY values with the addition of an INTEGER bit offset as the
highest word(s):

+H: BIT OFFSET
+L: DATA ADDRESS
+0: CONSTRAINTADDRESS -- may be missing

The values L and H depend on the presence/absence of the
constraint address and the sizes of constraint and data
addresses.

In the two latter cases, the form parameter'address will
always yield the address of the data. If access is required to
constraint or bit offset, the instructions must use the ADDRESS
form.

F.9.5.4 Example

A small example is shown below (16 bit target):

procedure unsigned_add
(opl : in integer;
op2 : in integer;
res : out integer);

Notice that machine subprograms cannot be functions.

The parameters take up:
opl : integer : 1 word
op2 : integer : 1 word
res : integer : 1 word
Total : 3 words

The body of the procedure might then be the following assum-
ing that the procedure is defined at outermost package level:

procedure unsignedadd
(opl : in integer;
op2 : in integer;
res : out integer) is

begin

Page F-71

TUser's Guide
Implementation-Dependent Characteristics

pragma abstract acode insertions(true);
aa instr'(aaCreate Block,3,1,0,0,0); -- x = 3, y = 1
aainstr'(aaEnd of declpart,0,0,O,O,O);
pragma abstract acode insertions(false);

machine instruction'(register_systemaddress, mMOV,
AX, opl'address);

machineinstruction'(register_systemaddress, mADD,
AX, op2'address);

machineinstruction'(immediate, mJNC, 1);
machineinstruction'(immediate, mINT, 5);
machineinstruction'(immediate, mlabel,1);
machineinstruction'(system_addressregister, mMOV,

res'address, AX);

pragma abstract acode insertions(true);
aa instr'(aaExit_subprgrm,0,0,O,nil_arg,nil_arg);-- (2)
aainstr'(aaSetblocklevel,O,O,0,O,0); -- y-i = 0

pragma abstract acodeInsertions(false);
end unsigned_add;

A routine of this complexity is a candidate for INLINE expan-
sion. In this case, no changes to the above
'machine instruction' statements are required. Please notice
that there is a difference between addressing record fields
when the routine is INLINE and when it is not:

type rec is
record

low : integer;
high : integer;

end record;

procedure add_32 is
(opl : in integer;
op2 : in integer;
res : out rec);

The parameters take up 1 + 1 + 2 words = 4 words. The
RES parameter will be addressed directly when INLINE expanded,
i.e. it is possible to write:

machine instruction'(system addressregister, mMOV,
res'address, AX);

This would, in the not INLINED version, be the same as updating
that place on the stack where the address of RES is placed. In
this case, the insertion must read:

machine instruction'(register systemaddress, mLES,
SI, res'address);

-- LES SI,[BP+...]
machine instruction'(addressregister, mMOV,

Page F-72

OUser's Guide
Implementation-Dependent Characteristics

ES, SI, nil, scale 1, 0, AX);
-- MOV ES: [SI+O],AX

As may be seen, great care must be taken to ensure correct

machine code insertions. A help could be to fi--st write the

routine in Ada, then disassemble to see the involved address-

ings, and finally write the machine procedure using the

collected knowledge.

Please notice that INLINED machine insertions also generate

code for the procedure itself. This code will be removed when

the /NOCHECK qualifier is applied to the compilation. Also not

INLINED procedures using the AA INSTR insertion, which is ex-

plained above, will automatically get a storagecheck call (as
do all Ada subprograms). On top of that, 8 bytes are set aside
in the created frame, which may freely be used by the routine
as temporary space. The 8 bytes are iccated just below the dis-
play vector of the frame (from SP and up). The storagecheck
call will not be generated when the compiler is invoked
with /NOCHECK.

The user also has the option NOT to create any blocks at all,
but then he should be certain that the return from the routine
is made in the proper way (use the RETP instruction (return and
pop) or the RET). Again it will help first to do an Ada version
and see what the compiler expects to be done.

Page F-73

User's Guide
Implementation-Dcependunt Characteristics

F.10 ?ackage Tasktypes

Tile TaskTypes packages defines the TaskControlBlock type. This
data structure could be useful in debugging a tasking program.
The followi.-g package Tasktypes is for all DACS-80x86 Real
Address Mode compilers, except for DACS-80386PM.

with System;

package TaskTypes is

subt.-:e Offset is System.U-IsignedWord;
subtype Blockld is System.lnsignedWord;

type TaskEntry is new System.Unsig-.edWord;
type EntryIndex is new System.UrisignedWord;
type Alternativeld is new System.UnsignedWord;
type Ticks is new System.DWord;
type Boot is new Boolean;
for Boci' ize use 8;
type Ulntg is new System.UnsignedWord;

type TaskState is (Init al,
-TY- task is created, but activation
-has not started yet.

Engaged,
-The task has called an entry, and the
call iq now accepted, ie. the rendezvous

-is in rogress.

running,
-- Covers~ all other states.

Delayeccl,
-- The task aw !ts a tiffiout to expire.

EntryCall1ingTimed,
The task h-3 called an entry which

-is not yet accepted.

EntryCallirgUrconditionial,
-The task has called an entry
-- uncuriditionaliy,
-which is not yet -ccepted.

SelectinqTimed,
The task is waiting in a select statement

-- with an 'opc idelay alter7.I-ive.

SelectingUnconditional,
-The task waits in a select statement
-entirely with accept statements.

Page F-74

AUser's Guide
Implementation-Dependent Characteristics

SelectingTerminable,
-- The task waits in a select statement
-- with an open terminz.te alternative.

Accepting,
-- The task waits in an accept statement.

Synchronizing,
-- The task waits in an accept statement
-- with no statement list.

Completed,
-- The task has completed the execution of
-- its statement list, but not all dependent
-- tasks are terminated.

Terminated);
-- The task and all its descendants
-- are terminated.

for TaskState use (Initial => 16#00#
Engaged => 16#08#
Running => 16#10#
Delayed => 16#18#
EntryCallingTimed => 16#20#
EntryCallingUnconditional => 16#28#
SelectingTimed => 16#31# ,
SelectingUnconditional => 16#3Q#
SelectingTerminable => 16#41#
Accepting => 16#4A#
Synchronizing => 16#53#
Completed => 16#5C# ,
Terminated => 16#64#);

for TaskState'size use 8;

type TaskTypeDescriptor is
reccrd

priority : System.Priority;
entrycount : UIntg;
block id : BlockId;
first own address : System.Address;
module number : UIntg;
entrynumber : UIntg;
code address : System.Address;
stack size : System.DWord;
dummy : Integer;
stack_segmentsize: UIntg;

end record;

type AccTaskTypeDescriptor is access TaskTypeDescriptor;

type NPXSaveArea is array(l..48) of System.UnsignedWord;

Page F-75

TONS User's Guide
Implementation-Dependent Characteristics

type FlagsType is
record

NPXFlag :Bool;
InterruptFlag :Bool;

end record;
pragma pack(FlagsType);

type StatesType is
record

state :TaskState;
is abnor'al :Bool;
is activated :Bool;
failure :Bool;

end record;
pragma pack(StatesType),

type ACF_type is
record

bp :offset;
addr :System.Address;

end record;
pragma pack(ACF-type),

type TaskContrulBlock is
record

sem System.Semaphore;

-Delay queue handling

dnext :System.TaskValue;
dprev :System.TaskValue;
ddelay :Ticks;

-Saved registers

SS5 System.UnsignedWord
SP :Offset;

-Ready queue handling

next :System.TaskValue ;

-Semaphore handling

semnext :System.TaskValue;

-Priority fields

priority :System.Priority;
saved_priority : 'ysLm.Priority;

-Miscelleanous fields

Page F-76

®R 60user's Guide
Implementation-Dependent Characteristics

time slice : System.UnsignedWord;
flags :FlagsType;
ReadyCount :System.Word;

-Stack Specification

stack start :Offset;
stack-end : Offset;

-State fields

states :StatesType;

-Activation handling fields

activator System.TaskValue;
act chain System.TaskValue;
next chain System.TaskValue;
no not act :System-Word;
act-block Blockld;

-Acc-ept queue fields

partner :System.TaskValue;
next_partner :System.TaskValue;

-Entry queue fields

next-caller :System.TaskValue;

-Rendezvous fields

called task :System.TaskValue;
task_entry : TaskEntry;
entry_index : EntryIndex;
entry_assoc :System.Address;
call params :System.Address;
alt id :Alternativeld;
excp-id :System.Exceptionld;

-Dependency fields

parent task : System.TaskValue;
parent block : Blockld;
child task : System.TaskValue;
next child :System. TaskValue;
first child :System.TaskValue;
prey child :System.TaskValue;
child 9-t : System.Word;
block act :System.Word;
terminated-task: System. TaskValue;

-Abortion handling fields

Page F-77

~'it Implementation-Dependent Characteristics

busy :System.Word;

-Auxiliary fields

ttd : AccTaskTypeDescriptor;
FirstCaller :System.TaskValue;

-Run-Time System fieldc

ACF : ACF_type; -- cf. section 9.4.2
SQFirst :Tnteger: cnl-; YU c--d I'n11
SemFirst :Integer; -- Only used in HDS
TBlockingTask :System.TaskValue; -- Only used in HDS
PBlockingTask :System.TaskValue; -- Only used in HDS
collection :System.Address;
partition : Integer;

-NPX save area

-When the application is linked with /NPX, a special
-save area for the NPX is allocated at the very end
-of every TCB.
-- ie:

-- case NPXPresent is
-- when TRUE => NPXsave NPXSaveArea;
-- when FALSE => null;

-- end case;

end record;

-The following is to assure that the TCB has the expected size:

TCB size constant INTEGER := TaskControlBlock'size / 8;

-subtype TCB ok value is INTEGER range 214 .. 214;
-TCB-ok :constant TCB-ok-value := TaskControlBlock'size / 8;

end TaskTypes;

For DACS-80386PM package TaskTypes is as above except for the below

declarations:

subtype Offset is System.UnsignedDWord;
subtype Blockld is System.UnsignedDWord;

type TaskEntry is new System.UnsignedDWord;
type EntryIndex is new Systein.UnsignedlWord;
type Alternativeld is new System.UnsignedDWord;
type Ticks is new System.UnslgnedDWorI;
type UIlntg is new System.UnsignedDword;

type NPXSaveArea is array(l. .51.' of System.UnsignedWord;

Page F-78

Usar's Guide

Implementation-Dependent Characteristics

F.1l HDS Tasking (OPTIONAL)

The DACS-80x86 systems may run tasking applications by means of HARD
DEADLINE SCHEDULING (RDS). HDS capability is purchased separately
from the standard system, so it may not be included in a specific
system. Please contact DDC-I for more information regarding HDS and
your system.

HDS allows the programmer to guarantee properties of a tasking sys-
tem, i.e. that some tasks will be scheduled to run within a specific
time period. The HDS tasking is selected by specifying /HDS to the
Ada link command.

Page F-79

