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Chapter 1

Introduction

This is the final report on a study of intelligent signal processing techniques
for multi-sensor surveillance systems. The project was carried out under the
RADC Northeast Artificial Intelligence Consortium under contract F30602-
85-C-0008. The study was done during the period May 1989 through De-
cember 1989.

1.1 Participants

The work reported in this document was done at the Rochester Institute of
Technology and coordinated with related work at the University of Buffalo
and the Rensselaer Polytechnic Institute. A previous study under the RADC
Expert Scientist and Engineering Program included all three institutions
within the same effort.

1.2 Background

Current surveillance systems must perform a variety of tasks within a com-
plex real-time environment. Artificial intelligence (Al) techniques which have
been developed for modern signal processing applications such as vision, im-
age understanding and speech understanding combined with other AI tech-
niques such as expert systems, knowledge representation, plan recognition,
search and control offer ways to improve the performance of the next gener-
ation of surveillance systems.



Current surveillance systems make use of extensive signal processing for
target detection, tracking and recognition. The signal processing has been
optimized for the given target/sensor combinations. It is likely that the next
generation of systems will make use of these sensors and their processing
algorithms but that the information will be used in a different way. The
iniormation from a number of sensors will be combined by a higher-level
system to provide enhanced detection, tracking and recognition as well as the
ability to recognize threats and characteristic or uncharacteristic behavior in
complexes of targets.

The next generation of systems are likely to make use of a distributed set
of sensors and processors. This approach offers the greatest modularity and
flexibility in system development, deployment and maintenance. If effective
custom systems can be constructed from a set of generic modules then there
will be a very substantial savings over the cost of individual custom systems
for a variety of applications.

Intelligent systems offer systematic processes to address problems such as
sensor fusion, sensor coordination, threat assessment, decision analysis and
resource allocation. All such tasks require that information be handled at a
high level so that symbolic reasoning can be supported.

The behavior of distributed systems with significant numbers of interact-
ing components is difficult to analyze and predict. Even if the individual
system elements are well-understood, a system composed of many of them
may exhibit new and unexpected modes. The inclusion of nonlinear pro-
cesses, as decision processes must be, makes the theoretical analysis of such
systems essentially impractical. Therefore the behavior and performance of
distributed systems can be best evaluated by the use of prototypes and sirm-
ulations.

The purpose of this project is to extend the framework of the modern
multi-target, multi-sensor surveillance environment and to investigate the
adaptation of intelligent signal processing algorithms to that application.

A system to simulate the radar environment, including transmitters, sen-
sors, targets, noise and stationary objects has been designed and a proto-
type has been cunstructed. This system has been constructed as a discrete
event simulator, which permits maximum flexibility and efficiency in run-time
computation. It has the potential to be extended to concurrent networked
operation.

Tle prototype implementation is called ESSPRiT, and is wvciten io Lisp
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using Flavors for TI Explorer computers. The implementation is described
in Appendix A, and the technical details are contained in Appendix B. The
system uses a window-oriented environment to construct and operate sim-
ulations. It is a general-purpose system that will permit simulations to be
constructed for many kinds of applications.

A simulation system consists of the basic environment which allows ob-
jects to be created, to interact over time, to be observed and reports to be
created. These elements have been created and a basic set of radar simulation
objects (signals, sensors, targets) have been implemented and tested. The
details of the implementation, construction of a simulation, and operation
are contained in the appendices.
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Chapter 2

Discrete Object-Oriented
Simulation

Discrete event simulation (DES) is a computerized technique for experiment-
ing with models of physical systems. It allows one to investigate the impact
that changes in individual systems elements have on the performance of th"'
total system. If the simulation system is sufficiently flexible and powerful, it
may also promote investigations of different system structures. Both kinds
of investigation will be promoted by a simulator tool which makes it easy to
model and interconnect system elements.

As an example, consider an investigation of the ability of an automatic
pilot to control an airplane in a terrain avoidance application. A basic sim-
ulator would require a model of the terrain, the dynamic behavior of the
airplane, the senors and the control system. The behavior of the total sys-
tem would be determined by the interaction of these modules. An improved
control system could be tested by substituting its model for the existing con-
trol system model in the simulator. So long as the system protocols were
met, the simulator should continue to function properly and thereby provide
insight about the performance improvement gained by the new controller.
One could test the performance of the controller with different aircraft or
different terrain by changing those modules and observing the new behavior.
Object-oriented tools make it possible to assure that the simulator protocols
are met.

In somc cases performance can be improved more effectively by changing
the system structure than by improving individual elements. As an exam-
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pie, it may be possible to improve the detection and tracking capability of
a surveillance system either by improving the performance of the existing
sensors or by changing the structure of the system so input from other kinds
of sensors can be used. Some information that is gathered in another form,
perhaps in another time or location, may be available at a much lower piice
than the cost of improving and retrofitting the existing sensors. The diversity
of information sources may provide more useful information and may offer
better system performance. However, with a new system would come some
new design issues. In particular, it would be necessary to provide ways to in-
tegrate the new information into the system control structure. It is therefore
necessary to understand the information fusion task and the system restruc-
turing that will achieve that fusion. It would be very useful to be able to add
modules to the system and investigate various information fusion and control
structures. Object-oriented modeling and simulation offers that capability.

Simulation permits one to investigate the impact of changes in the struc-
ture or parameters of a system without the expense or danger of constructing
or modifying a physical manifestation of such a system. However, it would
be possible to substitute physical elements for some of the modules of the
simulation if the proper physical support and interfacing were provided. This
would be made easier by using object-oriented modeling and simulation, as
discussed below.

Through the use of simulation one may learn about reliability, throughput
rates, bottle-necks, response times, and other aspects of system behavior.
Simulation can help designers to decide where to reduce or reallocate scarce
resources while maintaining or even improving overall system performance.

A general goal for a simulator is to provide an environment and the
tools for building and evaluating prototypes of large heterogeneous software
and hardware systems. This capability can be used either to evaluate-and
understand-existing systems or to design new systems. The designer should
be able to quickly build a prototype of a system and evaluate its perfor-
mance. The tool will then be a tool for creating designs by evolving proto-
types. The prototype evolves through successive stages of refinement as the
designer gains insight. At any particular stage, the current prototype is an
embodiment of the current design. Design by prototyping is a sound, well-
understood and cost-effective method. It is being used in modern software
engineering tasks to increase both productivity and quality.
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2.1 Object-Oriented Programming

Considered by many to be one of the most significant advances in com-
puter science in many years, Object-Oriented Programming (OOP) provides
a methodology and the associated programming language support for pro-
gramming "in the large." The methodology has existed for several years
and is the one recommended for Ada system development. Several exist-
ing languages support OOP to one degree or another: the oldest language
to be considered an OOP language is Simula67, an Algol derivative meant
primarily for simulation; newer languages include Ada, C++, Lisp-Flavors
and Smalltalk. Other experimental or research languages exist specifically
to study OOP include Act1 and Act2.

In an OOP system, the components are considered to be independent
objects that interact by sending and receiving messages. An object is an
integrated unit of data and procedures, which are called methods, that act on
the data. The object is described by state variables, called instance variables,
and the data values are used to specify the state by giving values to the state
variables. Because objects can interact only by sending messages, the data is
encapsulated and protected. A message can contain any kind of information,
including data and methods, and may be sent to any number of objects.
Messages themselves are objects. Thus, objects may create other objects.

Upon receiving a message an object may process it and take a number
of actions. These include modifying its state-which may include "dying,"
sending one or more messages to other objects and creating new objects.
The new objects are created as instances of types of objects that have been
described to the system by the programmer. To create an object a message
is sent to the system with the specifications for the object and its state.

Objects are grouped into classes which describe the behavior of a kind
of object, an instance of the class. This description includes the nature of
the internal data and the methods which can be executed. Subclasses may
inherit the structure and methods of a class. Object-oriented classes are
polymorphic; i.e. the same message can be sent to both a class and its
subclasses. For example, if there was a polyhedra class and cube, prism and
tetrahedron were subclasses, all the classes could receive a standard message
'print volume' and respond correctly according to the appropriate method
for their geometry.

Objects are grouped together in hierarchical classes which can then be put
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into separate modules, Parts of the program outside a given class or module
can only interact in specified ways with the class or module and thus does
not need to know how given methods are executed, variables changed or
classes structured. More primitive ideas can be encapsulated in the super
classes and thus reduce the level of complexity visible in the subclasses.
Information about a particular structure or implementation can be hidden
within an object or class.

Programs in object-oriented languages can be readable and comprehensi-
ble. The capacity for multi-level reading of simulation programs, focusing on
different levels of the class hierarchy or modules, can give new users a quick
overview and more experienced users a in-depth look.

The ESSPRIT system (Appendices A and B) provides program visual-
ization in the form of a system block diagram. The blocks are icons which
represent simulation objects on the computer screen. Objects can be added
to a prototype by selecting them from a menu, placing them on the screen,
specifying their initial parameters and connecting them with other objects.
The connections define the paths for messages. Groups of objects can be
merged into new icons which represent the complex, so that a hierarchical
representation of the system can be built. Various dials, gauges, reports and
graphs can be selected to provide reports of activity of any objects in the
system.

Such a modular structure can ease modification since one module can be
altered without affecting others. This can lead to more flexible and extensible
programs. It encourages software reuse since modules from different simula-
tion programs can be pulled in when constructing a new program. A user
can easily make changes "on the fly;" new methods can be defined or new
classes and objects added. Subroutines and utilities from other languages can
also be utilized. This modularity gives the user the ability to pull desirable
features into an object-oriented simulation program. Large programs can be
broken into many small, independently functioning units.

The hierarchical structure allows the prototype to be developed from top-
down. High-level objects, representing major subsystems, can be constructed
so that the top-level performance can be evaluated. Once the characteristics
of the major subsystems have been stabilized, each of them can be proto-
typed in terms of its internal building blocks. Particular subsystems can be
modeled to lower levels than others an action which may bc useful where
some subsystems are taken to be fairly standard while others are more novel.
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Once the prototype is complete it represents a design for an actual physical
system.

The use of messages and objects seems to be a natural model for many
systems. This style of programming parallels the way one intuitively thinks
of processes in dynamic systems. Behaviors are attached to specific objects
just as the real world entities exhibit different behaviors. Such a software
design can also correlate programming objects on a one-to-one basis with
real-world objects. It specifies in one place all the data associated with an
object and the routines or methods which can manipulate that data. Such
structure can allow both naive and experienced users to quickly understand
a model.

The object-oriented design is well-suited for concurrent computing on
distributed computers. Objects or modules can be placed on different pro-
cessors and communicate via message passing. The computing environment
can contain different kinds of computers and the actual application code on
each computer can be in different languages. The only absolute requirement
is that the computers respond to messages in the appropriate way, so that
there must be a communication and message-handling interface. Existing
simulation code or existing data structures can be wrapped in appropriate
message-handling shells and used in a simulation environment. This makes
it possible, in some cases, to even use existing machine code-a useful option
when the source code no longer exists.

The distributed environment can be extended to non-traditional "com-
puters." Physical hardware can be used for particular components in the sim-
ulation by providing the hardware and software interfaces to the computer.
This makes it possible to use special processors or existing components of
systems to speed-up a simulation or to make it work with some real compo-
nents. The major consideration in using physical devices is their ability to
respond appropriately in simulator time rather than in real time.

A special non-traditional "computer" that can be brought into an object-
oriented simulation is a human participant. Messages can be sent to the
human through the screen and by sound and replies can be sent to the system
by the keyboard and mouse. As far as the system is concerned, the human is
just another object in the process. This makes it convenient to communicate
with the operator, but also allows people to be actual participants in the
simulation. The traditional Macintosh display using icons and windows is one
special form of object-oriented progranuing that facilitates communications
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between the operator and the computer.
The interactive nature of many object-oriented languages facilitates intel-

ligent exploration. The program can be interrupted while it is running, the
state of the system can be modified-even by adding or deleting components-
and the simulation resumed. The state of the system at the time of inter-
ruption can be stored so that it can be restarted from that point to explore
a variety of options.

Typical systems that are modeled and simulated will consist of several
directly and indirectly interacting components. In the real system-the one
being modeled-these components are independent; in the simulation the com-
ponents should be concurrent or operate in parallel if the computer technol-
ogy supports it. The control system of the DES model allows each model
component to proceed whenever its input is ready. One concern that shows
up in the simulation environment but not in the real world is that of time
management; a component needs to treat as part of its input the fact that
the simulated time is correct in order for that component to proceed.

One of the most important problems with traditional computer programs
is their inflexibility. Programs need to be changed-this is their most uni-
versal aspect. The older languages and methodologies simply enforce this
rigidity, often building highly restrictive descriptions int the functional sys-
tem requirements. Object-oriented programming directly counteracts that
aspect of systems, encouraging early prototyping, with a concomitant lack of
details. A broad-brush structure or skeleton is constructed easily and details
are added later. When the details change, as they are sure to do, they can be
easily modified. In contrast, in traditional programming it is the decisions
that are made the earliest that are hardest to change since their affects ripple
through the rest of the system.

Since object-oriented programming addresses the problems of structuring
a large system- programming in the large-it is a particularly good candidate
for scaling up to simulate very large systems.

2.2 Discrete Event Simulation

Discrete Event Simulation is particularly valuable in the design of both hard-
ware and software systems. As noted above, Discrete event simulation (DES)
is a computerized technique for experimenting with models of physical sys-
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tems. It allows one to investigate the impact that changes in individual sys-
tems elements have on the performance of the total system. If the simulation
system is sufficiently flexible and powerful, it may also promote investigations
of difFerent system structures. Both kinds of investigation will be promoted
by a simulator tool which makes it easy to model and interconnect system
elements.

The ESSPRIT tool discussed in Appendices A and B is intended to pro-
vide this kind of environment. It is a simulation shell that permits many
different kinds of systems to be simulated. As a part of this project it is
being modified to provide a test-bed for multi-sensor radar systems for a
multi-target environment.

The multi-sensor multi-target radar environment consists of many directly
and indirectly interacting components, as described in Chapter 3. In the real
system being modeled these components act independently; in the simula-
tion, then, the components should be concurrent (or operate in parallel if the
computer technology supports it). The control system (operating system or
run-time system) that directs the overall operation of a DES model permits
a component to "run" whenever its input is ready and the simulated time
is correct. The concern of time management does not show up in the real
world but must be dealt with in the simulated world. A component must
treat time as a part of its input so that it may not proceed incorrectly. No
component can be allowed to modify the past of any other component.

Object-oriented programming naturally lends itself to Discrete Event
Simulation. The objects are the components of the system being simulated.
The OOP notion must be modified but slightly: objects send time stamped
messages to other objects, and the messages must be processed in time-
stamped order so that an object can be prevented from modifying the past
of another object.

2.2.1 Time Management

In DES there is generally a global clock that gives the simulated time of
the system. The primary control is to iteratively wait until the system is
quiet ("quiescent"), determine the least time value for the components that
are prepared to work, advance the global clock to that time, and start the
corresponding process. This is a contrast with continuous simulation in which
the clock is stepped by uniform amounts At and the simulator integrates
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systems of differential equations equations.
In simulations such as a radar environment, different components may

operate on widely-varying time scales, from microseconds to hours or days.
This wide range makes it difficult to run such simulations with continuous
simulators since all equations must be stepped by the smallest time step
needed by any component. In DES it is possible to allow only those elements
which require processing at each time to proceed, so that there can be a gain
in efficiency by orders of magnitude.

Continuous simulation systems put the dependencies between compo-
nents in the model and DES puts them in the component descriptions by
describing component behaviors. In that way DES is much more flexible and
modular.

A typical operation in DES may go as follows:

1. A client seizes a resource

2. The client uses the resource for N seconds

3. The client releases the resource

The second step causes the particular process to be "put to sleep" for N
simulated time tics; i.e., a wakeup is scheduled for time = currenttime + N.
(The choice of N often depends upon a pseudo-random number generator to
express the analyst's choice of a statistical distribution.)

The wakeup manager plays a role similar to an operating system scheduler
or a dataflow system monitor (or imagine a hotel's wake-up service). The
principal data structure, which operates like a priority queue, is called the
"(future) events queue." This events queue is a set of pairs, (time, event);
elements can be added to this set without any particular discipline (except
that the time component can not be less than the current simulated time),
but every time a pair is removed, it is the pair with the lowest time. One
may picture this as either a linked list or as a sorted array.

When a system component "goes to sleep," one imagines the ordered pair,
above, "waiting" as a surrogate for the component in the wakeup manager's
queue. (In a similar arrangement a surrogate for a process will wait in a
queue-waiting, say, to use a particular resource.)
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2.2.2 Miscellaneous Issues for DES

2.2.2.1 Queues

Whenever a client attempts to seize a resource that resource may be in use.
The client may be able to test for that possibility, but often there are no
alternative actions possible (or planned), so the client must "wait" in a queue.
Such queues can be either explicit, with names and having statistics gathered
and reported, or implicit components of the resources, simply managed by the
system but otherwise invisible. In the latter case, the clients may keep track
by themselves of the amount of valuable work accomplished over a period
of time an the time lost waiting in queues. Generally queues are FIFO, but
other structures are possible as well:

1. Priorities of the clients may affect waiting orders.

2. Queues may have a limited capacity and be unable to accept entries
beyond a specified limit.

3. Clients may be able to exit from a queue after waiting but being unable
to get the service (imagine a client having a finite amount of patience).

4. A queue itself may throw out clients that have waited too long.

5. A queue may time out.

2.2.2.2 Reports Generated

A simulation is run in order to gain some insight into the behavior patterns of
a system, so there must be some well-planned output. ESSPRIT provides
for a range of screen dials, charts, graphs and reports as well as the capability
to generate archival reports of the activities of all objects in the system. This
capability is being included in the radar simulator.

2.2.2.3 Random Numbers

Pseudo-random number generators that are tunable and trustworthy need
to be used. Unfortunately, these are not easily available off-the-shelf. Not
only do horror stories abound (one random number generator was found
that only output zero, for instance) but there are constantly articles in the

12



professional literature about how bad they are and how to do it right. The
ESSPRIT simulator provides the capability to easily incorporate a suite of
random number generators and to add a new generator whenever another
may be required.

2.2.3 Scaling Up: Time Management

When small systems are scaled up to larger ones, there are bound to be
surprises; nonlinearities abound. The problem that often hits simulation
systems badly is the management of future event queues. These queues must
support an ordered set so that whenever an item is removed from the set it is
the one with the smallest time value. The obvious way to do this is to keep the
list sorted and use an internal form such as a linked list or an array. The cost
to enter an item into such a list whose size is M items is proportional to M-
it is of time complexity O(M). The cost to remove an item is independent
of M-it is of order 0(1). Alternatively, one could keep the internal data
structure unorganized, but then the cost to enter would be 0(1) and the
cost to remove would be O(M). The data structure that we suggest here is
that used in the algorithm "heap sort." It is an array that is sorted only
according to a very sparse constraint rule; namely, instead of requiring that
Ai > Ai- 1 for all i such that the expressions are valid subscripts, we require
only that Ai > Ai/ 2 . The heap sort idea, with its fewer constraints, is much
easier to maintain. If M denotes the set's current population, then the cost
to add a new element to the set is only 0(log2 M), and the cost to remove an
item is also O(log2 M). This is particularly striking in its effect: log2 1,000)
is approximately 10 and log2 1,000,000 is approximately 20.

2.2.4 Scaling Up Using Multiple Processors

As computers are reaching their ultimate limits as imposed by the speed of
light and quantum mechanics, the obvious approach is to employ systems
designed to do many things at the same time. Simplistically, N computers
should be able to solve a problem in 1/N of the time a single computer would
take. This is simplistic because N systems must generally cooperate, and the
cost of coordination and communication can be prohibitive. As we shall see
below, the problems involved in distributing discrete event simulation seem
to as challenging as any in current computer science research. Several good
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ideas are currently under investigation, but the general problem is far from
solved.

There are two simple, quick and dirty suggestions to scale simulation
systems up using multiple processors. The first is to use the observation that
perhaps 80% of the time spent in typical large simulations involves what
we have called the "miscellaneous" issues of simulation: time management,
statistics gathering and reporting, and pseudo random number generation.
These system components have very clear interactions with all the other
components of a simulation, and separating them to other processors can
easily be accomplished. The issues involved are the same as any other easy
decomposition of a problem into parallel components.

The second easy approach is to design a systems simulation as a con-
tinuous event system. In this way, a global clock can broadcast the current
simulated time to all components, the components can perform an increment
of work, and parallelism can be achieved.

To distribute the objects of a simulated system over several processors,
the current research suggests that the system needs to lose its global clock,
and that every component (or processor) maintain its own local clock. The
clocks can then be advanced, each independently of the others. The problem
that must be avoided is for one component to change another's past. This
is interpreted, in the local-clocks approach, as prohibiting a message of the
form (in, t), where t is the time stamp, directed to component C in case
component C has already issued a message of the form (in', t' where t' > t.

Several methods have been suggested by researchers to avoid the problems
associated with local clock coordination: roll-back, massive time messages,
and (possibly) restricted time messages.

In case the system reaches a state where the violation of the time order-
ing of messages must occur, as when a component does receive a message "in
its past," a message whose time stamp has a lower time than one that had
been sent out by the receiver, then the receiver must initiate work to modify
the advances made by the system in the time after the time stamp on the
offending message. The simplest way to achieve this roll-back is via a check-
point-restart procedure (familiar from the attempts to keep a computation
going well beyond the mean-time-to-failure for a system.) This entails writing
the entire state of the system to sa disk file periodically with the expectation
that the system may have to revert to that state and make alternative de-
cisions. An alternative to this sort of overhead is a more selective roll-back
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wherein the component, whose past was detected to have been changed by
the message with the low time stamp, attempts to revoke messages that are
still in the unsent queue (like catching the mailman before he delivers some-
thing you wish you had not sent) and sending retraction messages to those
recipients that had received the messages that it had tried to cancel. Such
a effort could obviously get out of hand, with an ever increasing circle of
messages and processes trying to back out of a contradictory situation.

Alternatively, a system monitor could try to detect the occurrence of such
problems and keep them from occurring. The research in this direction seems
to indicate an equally unacceptable amount of system overhead. One still
does not gain substantial advantage from the parallelism.

The final method suggested is for system components to broadcast time
coordination messages to the other components regarding its intention to
update its local clock. This method also indicates a huge amount of message
traffic, but it has suggested in its wake the following method: whenever a
component wants to update its clock, it sends messages to the components
that can send messages directly to it, essentially requesting permission to
update the time. The requesting component elicits promises from those who
send it messages that they will not send a message time stamped before a
certain time. In order to answer such a request, these other components need
to propagate the request backwards through the system to the components
that might send messages to the .. Although this leads to interesting prob-
lems dealing with loops and parallel paths in the message graph, there seems
to be a glimmer of hope that the overhead might not cancel out the multiple-
processor gains.
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Chapter 3

Model of the Radar
Environment

A model of the radar environment was developed in the previous report
[Radar-89. An overview of the environment and the philosophy of the
system will be reviewed here.

A radar environment can be simulated by providing models of four enti-
ties:

e Radar Module

* Environmental Module

* Target Module

* Environment

The modules can be described in object-oriented software, which permits
as many radar transmitters, receivers and targets as desired to interact within
the environment. The environment, itself an object, makes its presence felt
through its modification of the signals used by the radar system to detect,
track, classify and identify the targets.

The environment influences signals through statistical and geometric af-
fects. The statistical effects include the multipath scatter off objects as well
as the addition of random noise. The geometrical effects include attenuation
through distance as well as scatter off particular point targets. All multi-
path effccts could be handled geometrically, but the computational overhead
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would slow the simulation. A statistical multipath effect combined with the
effects of a few isolated point scatters will provide the same effects with a
much smaller impact on simulation speed. Other geometric effects include
distributed obstructions, such as clouds, which may provide an increased at-
tenuation, and large reflecting surfaces. We have provided a mechanism to
model the effects of clouds but have not modeled large reflectors.

In this system targets are aircraft or other flying objects which are to be
detected, tracked, classified and identified by the radar system. The target
models interact with the system by modifying the signals which arrive at their
locations. The signals themselves are objects in the simulation, which permits
them to be described in a variety of terms. The usual description includes
their geometric origin (transmitter), amplitude, envelope function of time,
carrier frequency and the phase function of time. These can be translated
into other descriptions, such as in-phase and quadrature components. When
a signal arrives at a target it is modified in a manner that is characteristic
of the target and transmitted as a new signal. This signal eventually arrives
at one or more receivers, where it can be processed and combined with other
information for detection, tracking, etc.

The targets can also have geometric behavior which controls their flight
paths. Speed, maneuverability, tactics and coordination with other targets
can be modeled by defining the characteristics of the targets in the object-
oriented simulation framework. In the long run, we expect that a large variety
of target modules will be developed and stored in the system target library
so that many scenarios can be modeled in an interactive simulation.

The radar module is made of transmitter, receiver and display modules.
The transmitter and receiver modules are involved in the signal simulation
process, but the display module is a passive module that is used only for the
visual display of the simulated signal.

3.0.5 Transmitter and Receiver

Fig. 3.1 shows the overall structure of the radar module. As can be seen from
the figure the transmitter and receiver modules receive input from two dif-
ferent sou.yces, viz. Radar specifications module, and the Environment. The
input specifications module provides system parameters such as frequency,
peak and average power, polarization of the transmitted signal, coordinates,
orientation and band-width of receiving and transmitting antennas, receiving
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antenna temperature, and the synchronous time to synchronize the receiver
and the transmitter. The input from the environmental module is the signals
back-scattered from targets and various environmental clutter sources, along
with motion induced Doppler shifts.

The receiver and transmitter modules are isolated. Fig. 3.2, shows a
schematic diagram of the radar module with separate receiver and trans-
mitter modules. The transmitter channels all its input information to the
environment, in the form of signal objects. The internal structure of a signal
object is described later in this report.

The display module simulates the visual feel of signal modifications caused
by various specified environmental and target conditions. The display is very
flexible and can show a wide range of parameters in geometric, statistical and
other graphical formats.

3.1 Signal Objects

Signals are the active objects used to sense the presence of targets in a radar
environment. There are so many possible signal designs and patterns of
signals that it is impossible to provide a complete catalog. However, it is
possible to approach the problem of signal design by using signal modeling
tool that has sufficient flexibility to allow almost any signal that could be of
interest to be described.

A general formulation of the signal waveform can be given as

s(t) = AoE(t - to) cos[27rf,(t - to) + 0(t - to))]

The parameters are items in the description of the signal object:

* Carrier frequency f,

* Signal Amplitude Ao

* Envelope function of time, E(t)

* Phase function of time, 0(t)

* Time of origination, to

* Place of origination
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Figure 3.1: The radar module
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Figure 3.2: Schematic diagram of the radar module with separate receiver
and transmitter modules.
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The signal object may also carry other information, such as the identity of

the transmitter and targets with which it has interacted.

The current implementation permits signal objects to be created by build-

ing new descriptions through the process of inheritance and specialization.

The system has been tested using a basic set of pulse signal objects and

the process of extending them to other more complicated signals has been

illustrated by examples within the ESSPRIT simulation system.
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Chapter 4

Status

The previous phases of the contract accomplished the following tasks:

1. Describe the multi-sensor surveillance environment in a manner which
facilitates the transfer of techniques developed in other applications to
its domain.

2. Identify the intelligent signal processing techniques which may be ap-
plied to the tasks of identification, sensor fusion for multiple targets
and multiple sensors and intelligent tracking.

3. Identify concepts and techniques from other areas of artificial intelli-
gence that will be required to provide the desired system performance.

4. Provide a road map for the development of system elements and a plan
for integrating them into a functional body.

The current effort has extended this work to provide a model of the signal
objects. Additional work is required in several additional areas. This can
be carried out in a modular fashion and used to produce object descriptions
or prototypes within the simulator environment. In this way systems can
be compared and improved by competitive refinement and theory can be
evaluated in an experimental domain. Some particular investigations include:

1. Develop a general model for signal' objects.

2. Develop models for selected types of sensors.
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3. Develop models for clutter and noise.

4. Develop models for jammers and ECM devices.

5. Develop models for knowledge structures which support sensor fusion
by implementing the detection/correlation processor function.

6. Develop methods to maintain target track knowledge in a multi-sensor
environment with multiple targets.

7. Investigate the effects of finite bandwidth between sensors in multi-
sensor fusion systems.

8. Investigate knowledge structures for sensor fusion in a noisy, uncertain
environment for target identification or target tracking.

9. Investigate methods to scale up parallel processing systems to achieve
maximum performance.

10. Investigate methods to combine non-sensor knowledge or information,
such as knowledge of tactics or intelligence reports of enemy activity.

11. Investigate methods to provide real-time situation assessment to field
officers in a tactical environment.

The above list is only partial, but it illustrates the range of investigations
that can be supported by combining Al techniques with modern simulation
and prototyping tools. The combination will permit the results of diverse
investigations to be built into a framework which can be used to carry out
experiments and further investigations. The approach provides an open-
ended tool for system modeling, analysis, and design.

4.1 Unix Implementation

The current system is constructed on a Texas Instruments Explorer Lisp
computing framework. This provides an attractive development environ-
ment. However, the general lack of availability of this computer equipment
makes it less than desirable for use in many research laboratories. We have
recently developed a plan which would allow the system to be ported to a
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Unix environment by using C++ and X-Windows. This system would have
simulation features equivalent to those of ESSPRIT, but in a more common
framework.

The porting of ESSPRIT to the Unix environment will enable the simula-
tion system to be operated in a common signls lab environment. This project
would be a logical step in the development of the simulation capability.
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Appendix A

The ESSPRIT Simulation
Environment

The ESSPRIT (Explorer Simulation and Signal Processing system from the
Rochester Institute of Technology) system developed at RIT Research Corpo-
ration is a software package written for the Texas Instruments Explorer Lisp
Machine. ESSPRIT combines an object-oriented approach to simulation
with a visual programming interface to provide high-level design capabili-
ties along with the capacity for intelligent exploration of complex systems.
Models which contain a large number and variety of interacting entities can
be'rapidly prototyped using this tool. ESSPRIT is presently being used at
RIT Research Corporation to develop simulations in manufacturing, system
dynamics, and radar design.

A.1 Visual Simulation

Traditional simulation languages require programmers to write large amounts
of procedural code to model systems. Typically, an analyst using one of these
languages develops a conceptual model of a system, which is passed on to
a programmer who writes a program to implement the model. The analyst
then receives the results of the simulation execution in the form of reams of
statistics. The ESSPRIT system allows an ant lvst who is not an expert
in simulation to interactively design, execute ane analyze models of com-
plex systems using a graphical interface. The topology of the objects and
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transactions involved in a simulation is described using graphical tools. Dur-
ing execution, transactions are animated and selected statistics are displayed
in graphs and gauges. At any time the simulation can be interrupted and
altered. The result is a highly interactive system which allows an analyst
to consider alternative hypotheses, modify models, and visually observe the
dynamic behavior of a simulation.

A.2 Object-Oriented Framework

ESSPRIT is implemented using an object-oriented programming system.
All data, programs, commands, and even the user are viewed as objects. Each
object is an instance of a class, and each class has an associated collection of
operations which can be applied to the object. The classes are arranged in
a hierarchy so that subclasses can inherit properties of their parents. This
approach provides for a high degree of code reusability and encourages the
use of data and control abstraction.

A.3 System Architecture

ESSPRIT is composed of three major components: a graphical configu-
ration editor, for designing simulations; a simulation executive, for running
simulations; and libraries of simulation objects.

A.3.1 Configuration Editor
An ESSPRIT simulation is specified by drawing a block diagram of the sys-
tem. Icons which represent instances of simulation objects are placed on the
screen. An object can be constrained to communicate with another object
by drawing an arrow to indicate a message path, or it may communicate
with other objects in the simulation in a more generic manner. Each object
contains parameters which may be adjusted before or during execution of
the simulation. A variety of displays and gauges which monitor the state
of the system or individual objects can be selected interactively. Any ES-
SPRIT diagram may be composed into a single object, which can then be
used within another diagram. This allows a complex simulation to be con-
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structed in a modular, hierarchical fashion, and provides the user with a way
of investigating the behavior of a system at different levels of complexity.

A.3.2 Simulation Executive

ESSPRIT uses a process interaction approach to discrete-event simulation.
Each object has a process which describes the sequence of operations through
which the object passes during its life within the system. An object can be
delayed either unconditionally for a certain period of time, or condition-
ally until a certain condition exists. The actual computation in an object's
process may range in complexity from a simple Lisp expression to a large
database query or expert system. The simulation executive allows objects to
be run either sequentially or concurrently, and controls any animation and
displays which are selected.

A.3.3 Simulation Object Libraries

The ESSPRIT configuration editor and simulation executive together form
a "shell" which contains generic knowledge about simulation, but no spe-
cific knowledge about any applications. This domain-specific knowledge is
contained in separate application libraries of objects and rules. In this way,
a non-expert can build models composed of pre-defined parts while more
sophisticated users can create their own objects or modify existing objects.

A.4 Hardware

Currently, ESSPRIT simulations run on a TI Explorer Lisp machine, which
is a dedicated single-user system intended primarily for use in developing
artificial intelligence applications. These computers are typically configured
with 8-32MB of memory and a pair of 140 MB disk drives, and cost around
$50K. The ESSPRIT executive is in the process of being modified to run
simulations on a network of Explorers. Each object in a simulation will
then be able to exist on any machine on the network. In addition, display
and control interfaces to simulation objects may be spread over multiple
machines. The ESSPRIT system is also being ported to a Macintosh II
using Allegro Common Lisp.
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Appendix B

ESSPRIT Technical Reference

The ESSPRIT Technical Reference was prepared as a separate document. Is
included as a part of this report to provide technical information about the
simulation prototype.

The ESSPRIT Technical Reference is also available as a separate docu-
ment.

29



Appendix B. ESSPRIT Technical Reference

B.1 Introduction

This appendix provides details on the implementation of the simulation
system developed for this project. First, the enhancements made to the
Explorer window system are described. Second, the general simulation
system is covered. Finally, the specific objects used in the radar simulation
are described. Each section contains a description of the principal
components involved, followed by a listing of the flavors, functions and
methods which need to be understood by a programmer who wishes to
develop new simulations or new applications which are similar to ESSPRIT.

B.2 The PX Window System

The standard windowing package supplied on the TI Explorer is designed
for frame-based, non-overlapping windows. This approach is fine for an
application with a fixed number of displays, such as an editor, but is
inadequate for a more dynamic, graphically based application such as
ESSPRIT. Thus, a number of additions were made to the Explorer window
system to support the overlapping, resizable windows needed for the
ESSPRIT system.

B.2.1 PX-Frame

The PX window system is activated by creating and selecting an instance of
the flavor px-frame. If the PX system is loaded, this can be accomplished
by entering SYSTEM-Z. Figure Al shows a typical PX screen. A px-frame
can contain any number of windows. All the windows which are visible at
any given time belong to a particular application. An application is an
instance of a system, such as an ESSPRIT simulation, which contains a
collection of related objects. In this way a large number of windows can be
managed with a minimum of clutter. In addition, multiple instances of an
application can be executed simultaneously.

B.2.2 PX Applications

A PX application is a window-based interface to a particular collection of
Lisp flavors, functions and objects. To utilize the PX window system with a
particular system (such as ESSPRIT), the px:application flavor must be
used. Once installed, a system which inherits from px-application will
appear in the top half of the Application menu of a px-frame, and all
instances of it will appear on the bottom half of the Application menu.
Commands for a px-application can be defined using either the standard

ESSPRIT Technical Reference 30



Explorer ucl interface, or through px-menus (B.2.4). All windows used by a
px-application should inherit the basic-px-window flavor to allow them to
be accessed within the px-world.

B.2.3 PX Windows

Windows in the PX system can be moved, resized, closed, and zoomed.
When a window is selected (by clicking anywhere in the wind3w), highlight
bars will appear in the window label. Only one window is the selected
window at any given time. The selected window may be moved by clicking
in the label, holding the mouse down, and dragging it to a new location.
Clicking on the close icon in the upper left corner of the window will cause
the window to be removed. Similarly, clicking on the zoom icon in the
upper right corner will toggle the size of the window between its default
size and its expanded size. The window can be resized arbitrarily by
dragging the lower right corner cf the window, which contains an invisible
grow box. This will expand or snrink the window to the desired size.
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for use in applications. The basic-px-window flavor provides the essential
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hooks to a PX application to enable window selection, window movement
and command enabling. Each PX window may modify an application's
rcienus when it is selected. Typically, a window will enable the commands
which apply to the window, and disable those which do not. The
button-mixin, px-label-mixin, close-box-mixin, zoom-box-mixin,
grow-box-mixin and collapse-box-mixin flavors provide window
manipulation capabilities in any desired combination. A large number of
graphical objects and functions are available with the px-graphics-window
flavor. The standard graphical objects include lines, rectangles, circles, arcs,
text, and so on. Standard functions include object insertion, deletion and
selection; rubberbanding, dragging and resizing; and rasterizing. For
dealing with regular text, the px-scroli-window flavor provides a scrolling
window which displays a list of text items.

B.2.4 The PX Menu Bar

Commands for a px-application can be organized into a collection of menus,
which will appear on the PX menu bar. Clicking on the title of a menu in
the menu bar will pop up the menu. Although the Explorer is equipped
with a three button mouse, in the PX system all mouse clicks are
interpreted as a left click. A menu item can be chosen by sliding the cursor
down the menu and clicking again on the desired item. Keystrokes can also
be assigned to menu commands by assigning the ucl keystroke as an item's
action in either the function define-menu or the function make-menu-ite'".

B.2.5 Flavors, Functions and Methods

This section outlines the principle flavors, functions and methods used in
the PX window system.

B.2.5.1 Basic PX Flavors and Functions

px:px-frame [flavor]

This is the top-level window created by the PX window system. An
instance of px-frame can be created using the system key SYSTEM-Z,
through the System Menu, or by the function px:make-px-frame.

px:make-px-frame [function)

Creates and selects an instance of px:px-frame.
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px:application [flavor]

Each package designed to work within the PX window system must
include a flavor which inherits from px:application. This flavor should
provide the principle application menus as the default initialization.

px:find-application application-name [function]

Locates an existing application with the given name (a string).
Normally, applications are given enumerated names in order of their
creation, such as "Simulation#1". Note: when using remote
simulations, the full simulation name, such as "Simulation#1@clark",
must be parsed before using find-application.

B.2.5.2 PX Window Flavors and Methods

basic-px-window [flavor]

Provides essential window selection, menu enabling and disabling, and
mouse handling.

px-label-mixin [flavor]

Draws a centered label at the top of a window, surrounded by selection
bars when the window is the selected window.

close-box-mixin [flavor]

Places a close box (in the form of a small RIT logo) near the left edge of
the label area. A mouse click on this box will cause the window to be
removed.

zoom-box-mixin [flavor]

Puts a small circle near the right edge of the label area. A mouse click
on this circle will expand the window to the full screen, or contract it
dowr to its original size and location.

grow-box-mixin [flavor]

Provides window resizability. The box is invisibie, but occupies a small
square region in the lower right corncr of the window. When the
mouse is held down over this box and then moved, the window boundary
changes size to follow the mouse. When the mouse is released, the
window is redrawn to the new size.

collapse-box-mixin fflavorI

Puts a small zoom icon at the right edge of the label area. When the
mouse is clicked over this icon, the window will collapse down to its
label. The collapsed window then can be moved off to the side where it
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won't interfere with other windows. When the collapse box is cl,.- d

again, the window will expan%. to its original size and position.

px-graphics-window [flavor]

Provides a variety of graphical objects and operations.

:cut [method of px.graphics-window]

Removes the currently selected objects and places them on the
clipboard.

:copy [method of px-graphics-window

Places a copy of the selected objects onto the clipboard.

:paste [method of px-graphics-window]

Inserts the objects on the clipboard into the window.

:selected-objects [method of rx-graphics-window]

Returns a list of the objects which are currently selected in the window.

standard-px-window [flavor]

This flavor combines px-graphics-window with close-box-mixin, label-
mixin, grow-box-mixin and collapse-box-mixin to provide a standard
window with graphical capabilities.

px-scroll-window [flavor]

Provides a text pane which displays a scrolling list of text items.

:add-item item-text [method of px-scroll-window]

Appends a string to the end of the list, and updates the window to make
this item visible.

:set-items items [method of px-scroll-windowl

Sets the window item-list to items, which should be a list of strings, and
updates the window to display the head of the list.

:clear [method of px-scroll-window]

Removes a!! items in the list, and refreshes the window.
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B.2.5.2 Menu Flavors and Functions

command-menu (flavor]

Basic flavor for menus which pop up from the menu bar. New instances
are created with the define-menu function.

menu-item (flavor]

Flavor for elements of a menu; created with the make-menu-item

function.

define-menu menu-name &key title items [function]

menu-name a symbol
title a string, which will appear in the menu bar
items a list of menu item descriptors which specify the

string to appear in the menu and the corresponding
action

make-menu-item name &key value font label keystroke segment-number [function]

name a symbol
value the value to be returned
font the font in which the label is displayed
label a string
keystroke keystroke equivalent
segment-number which part of the menu the item should appear in;

segments are separated by lines

remove-menu-item menu-name item-name [function)

Removes the item named item-name from the menu named menu-name.

add-menu-item menu-name item (function)

Adds an item to the menu named menu-name.

enable-menu-item item-name (function]
disable-menu-item item-name [function]

Enables or disables the item with the given name.
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B.3 The ESSPRIT System

The simulation system developed for this project, ESSPRIT, is a general
purpose discrete event object-oriented simulation system written in Lisp
with Flavors.

B.3.1 Introduction

A ESSPRIT simulation consists of a collection of objects which interact over
time by sending messages and creating new objects. The simulation is
specified by graphically constructing the objects and illustrating their
relationships via arrows. A simple simulation is shown in Figure A2 below.

Applications File Edit ChJ ar.ts Tools Settings Run Window

Diagram 1Journal of Teller#2

Teller#1

Console
E': Rcded #<Entr'nce111

TAdded #Teller#l>

@.g Added #<Teller#1>

..................

Figure A2 Simple ESSPRIT Simulation
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B.3.2 ESSPRIT Objects

ESSPRIT objects may be permanent or temporary. In addition, an object
can create other objects, and an object can die. The actions which an object
performs over its lifespan are described in a method (:run) which is
repeated until the simulation is terminated or the object dies. Each object
runs in its own process. On a sequential machine, such as an Explorer, this
means that the objects are sharing a single processor. However, this
architecture makes it easier to take advantage of multiple processors,
either on a single machine or over a network. Each object contains a
message queue, into which come messages from other objects.

The flavor sim:basic-object provides all of the essential operations
which an object needs to perform in a simulation, including message-
passing, queue management, parameter editing, process management,
history and statistics collection, reporting, and image displays. In addition,
common types of objects such as sources, sinks, servers and routers are
provided. Thus, new classes of objects need only to describe the parts of
their behavior which are unique.

Each object has a unique name, determined by its flavor name and
the time at which it was created. For example, Teller#2 would be the
second teller object created in a simulation. In a networked simulation, the
extended contact-name also contains the host machine name and simulation
name. For example, Teller#2.Simulation#3@clark would be the second
teller created in Simulation#3 on the machine named clark.

B.3.3 The ESSPRIT Executive

Each simulation is controlled by a simulation executive, which is an
instance of the flavor sim:simulation. A simulation is also a PX application,
which means that it handles the command interface for the windows it
contains (see B.3.12 for a listing of the command menus). The executive is
responsible for managing the clock, locating objects, inserting and deleting
objects, handling errors, and gathering statistics. In addition, in a
networked simulation the executive directs all messages between server
objects and client objects.

The ESSPRIT executive is process-oriented. To begin, the executive
notifies each active object that the simulation has started. It waits until all
of the objects have stopped, and then determines the next clock time by
examining each object's wake-up time. It advances the clock to the lowest
time, and repeats the process until a maximum time is reached or the
simulation is interrupted with a pause or abort.

Each object in a simulation executives its :run method in a separate
process. Typically, an object will perform some action and then wait for
either a specified length of time, until some time, until some condition
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becomes true, or until it receives a message. This synchronization is
provided by the set of wait macros, which include wait-for-time,
wait-until-time, wait-for-message, wait-for-any-message and
wait-for-condition.

B.3.4 Creating a Simulation

A simulation in the ESSPRIT system is constructed using a set of windows
which collectively described the initial objects together with their
relationships. Typically, a diagram-editor is opened to begin defining the
simulation. The domain and object library are then specified through the
Settings Menu. The objects which are desired can then be chosen off of the
Object Menu. When an object is chosen, an icon representing an instance of
the specified class appears in the diagram-editor. This icon can then be
moved around within the window.

To modify the parameters of an object, just double-click on its icon.
A standard Lisp edit-parameters dialog will then appear. Some of the
parameters may be of simple type, such as strings or numbers. These can
be edited by keyboard input. Other parameters, such as those which
require a random distribution, may be constrained to a menu selection.

To indicate a message path from one object to another, first pick the
path tool. The cursor will change to a pencil to indicate the mode change.
Now click on the sender object, and drag the path line to the receiver. The
exact meaning of this path may vary depending on the types of objects
involved, but in general it means that the receiver will get any messages
generated by the sender.

B.3.5 Running a Simulation

A simulation is started via the menu command Start. While executing, each
object may output messages to its journal or to the console, and animate
itself using one or more of its images in a graphics window. A simulation
can be temporarily interrupted with the Pause command. At this point,
objects can be inspected or modified, or new objects can even be added.
After pausing, the simulation can be started up again where it left off via
the Continue command. At any point the Stop command can be used to
reset the simulation.

B.3.6 Object Communications and Queues

ESSPRIT objects communicate by sending messages using the send-message
macro. When a message is sent to an object, the message is put into the
object's message queue (an instance of the message-queue flavor). It is the
responsibility of the recipient to periodically check its message queue and
handle any messages which have entered. A queue management strategy,

ESSPRIT Technical Reference 38



such as LIFO or FIFO, can be specified for the message queue. When an
object wishes to examine the next message in its queue, the :next-message
method should be used to insure that the proper strategy is always used.

In a simulation in which all the objects exist on a single machine,
messages are passed directly from the sender to the receiver. In a
networked simulation, messages between two objects which are on the
same machine are handling directly. If the receiver of a message is on a
different machine, the message passes through the objects' simulations in
intermediate steps.

B.3.7 Standard ESSPRIT Windows

A number of different types of windows are provided in ESSPRIT for
creating, executing and analyzing simulations. A diagram-editor is a
window in which object icons can be moved around, edited and connected
with paths to other objects. The paths in a diagram-editor indicate how
objects are related, and how messages (and dynamic objects) are to flow in
the simulation. In a map-editor, the placement of icons determines the
physical location of the objects. In a plot-editor, the placement of object
icons determines the values of some common parameter or pair of
parameters.

During execution, the console displays system-level output which
describes primarily the operation of the executive. A clock-window can be
displayed to show the progression of the clock during the simulation. Each
object can display its actions textually in a journal-window or graphically in
a dial-window. In a networked simulation, each client can be monitored
with a remote-console window.

After a simulation has been completed or interrupted, statistics can
be viewed textually in a statistics-window, or graphically in a plot-window.

B.3.8 Random Distributions

Random number generation is an important component of a simulation
package. In ESSPRIT, any parameter which is to be drawn from a random
distribution can be described through the edit-parameters dialog. In this
dialog the distribution can be chosen from a menu, and the parameters to
the distribution can be entered as well. The distributions which are
provided in the ESSPRIT package include the following:

o uniform
o normal
o triangular
o exponential
o poisson
o erlang
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o lognormal
0 gamma
o beta
o weibull

B.3.9 Statistics

Each simulation object has the ability to maintain a variety of statistics
about itself throughout the course of a simulation. An object's message
queue can keep simple statistics concerning its length and waiting time. An
object can also place entries into its history list. A particular variable
within an object may be specified for detailed report. In this case, each
time this variable changes an entry is added to the history list. When the
simulation is done or interrupted, a statistics window or plot can be opened
to display this accumulated information.

B.3.10 Networked Simulations

A host machine can be specified for each ESSPRIT object. The machine on
which the simulation is created is referred to as the server, and other
machines which are involved in the simulation are referred to as clients.
The simulation on the server is called the main simulation, and those on
clients are referred to as remote simulations. When a networked
simulation is started, an instance of sim:remote-simulation is created on
each client. The remote objects are then created on the remote simulations,
and all of the simulations are started. Each remote simulation will run
independently until its objects have stopped. It then waits for the main
simulation to notify it of the next time. The main simulation waits until its
own objects and all the remote simulations have stopped before advancing
the clock.

The main simulation also serves as the conduit for all messages
which pass between objects which are on different machines. A remote
message first goes to the object's simulation, then on to the main
simulation, then to the receiver's simulation, and finally to the receiver.

B.3.11 Object Libraries

Two facilities are provided to help organize the various objects which can
be used in ESSPRIT. A library of objects can be defined using the
define-library macro. The Object Menu contains the objects which are in
the current library. A collection of libraries in turn can be grouped into a
domain. The current domain can be set using the Settings Menu.
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B.3.12 Menus

This section contains a summary of the menus which appear on the menu
bar in the ESSPRIT system.

B.3.12.1 File Menu

N-

save OhgAbm

Print brfl

Quit

Open - opens a diagram or simulation which has been saved to disk
Close - closes the selected window
Collapse - collapses the selected window to its label
Expand - expands a collapsed window to its original size and position
Save Diagram - saves a diagram to disk
Save Simulation - saves the current simulation to disk
Print Screen - sends a screen dump to the printer
Quit - exits from the PX system

B.3.12.2 Edit Menu

Cut - deletes the selected objects in the current window, and places them on
the clipboard

Copy - places a copy of the selected objects on the clipboard
Paste - inserts the contents of the clipboard into the selected window

B.3.12.3 Tools Menu

Arrow - for selection
Pencil - for drawing paths
Text - for inserting text

B.3.12.4 Object Menu (variable)

T Th R n
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This menu contains the objects which are contained in the current library.
Selecting an item on this menu will insert an instance of the chosen class
into the current window.

B.3.12.5 Settings Menu

Ia -... I
InbmtAon IIPrf-uszatI
Edit Dknalm ...

Change Library - allows the current library to be selected from a menu of
libraries in the current domain

Change Domain - allows the current domain to be selected from a menu of
all domains

Animation - provides a menu of animation types for the current window
Preferences allows assorted user preferences to be modified
Edit Dimensions - for a map window; allows x and y intervals to be modified

B.3.12.6 Run Menu

stwt

Start - begins the simulation
Stop aborts the simulation (cannot be resumed)
Pause - interrupts the simulation
Continue - enabled after pausing; resumes the simulation
Backup (not yet implemented) - backs up the simulation to the specified

time

B.3.12.7 Window Menu

This window contains commands to create new windows of several
different types together with a list of the existing windows.

New Diagram
New Map
Console
Remote Console
Journal
Statistics

B.3.13 ESSPRIT Flavors, Functions and Methods

This sections contains a brief description of the principal flavors, methods
and functions used in the ESSPRIT system.
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B.3.13.1 Basic Flavors and Functions

sim:simulation [ flavor I

Manages all the objects in a simulation, keeps track of the time and
handles error conditions

sim:clock [ flavor I

Maintains the current simulation time.

B.3.13.2 Object Flavors and Functions

sim:basic-object [ flavor I

The fundamental flavor which should be inherited by every ESSPRIT
object. It is composed of the following flavors.

sim:journal-mixin [ flavor ]

Provides the ability of an object to display text messages in a journal
window.

:report format-string &rest args [method of journal-mix in]

This method is used to display a text message in a journal window. The
formatted string will be added to the end of the list of items in the
journal.

sim:slot-mixin [ flavor I
Manages the parameters and variables of an object. Parameters are
instance variables are constant for the duration of a simulation, while
variables are instance variables whose values are expected to change.
Both types can be modified when the edit-parameters dialog for an
object is displayed.

sim:sim-process-mixin [ flavor I

Allows an object to run in a separate. process.

sim:image-mixin [ flavor I

Provides the ability of an object to display itself in different graphical
forms in different types of windows. For example, most objects will
display themselves as a block-image in a diagram, and as small circles in
a plot-diagram.

sim:message-queue-mixin [ flavor I

Manages the message queue of an object according to a specified
protocol, and maintains statistics about its activities.
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sim:history-mixin [ flavor

Maintains a list of history items for analysis and gcnciation of statistics.

sim:network-mixin [ flavor

Provides an extended naming mechanism for objects in a networked
simulation.

B.3.13.3 Synchronization Macros

wait wait-list [ macro

The basic wait macro, which is Used by all other wait macros. The
wait-list is either a primitive wait-list or a list of primitive wait-lists. A
primitive wait-list is a list of two items. The first item is a keyword
which describes the type of waiting to perform; this can be either :time,
:object or :message. The second item is an argument to the first.

wait-until-time wake-up-time [ macro ]

Causes the object to wait until the simulation clock time becomes
wake-up-time.

wait-for-time elapsed-time [ macro ]

Causes the object to wait for a specified length of time.

wait-for-message message [ macro I

Causes the object to wait until the specified message has been received
in the message-queue.

wait-for-any-message [ macro I

Causes the object to wait until any message has been received.

wait-for-condition condition [ macro]

Causes the object to wait until the given condition becomes true.

ESSPRIT Technical Reference 44



B.3.13.4 Communication Flavors and Functions

sim:message-queue [ flavor I

Contains a list of messages ordered according to a given management
strategy, such as LIFO or FIFO.

sim:message [ flavor ]

Contains info'mation about a message, including the sender, receiver,
method and arguments. The sender and receiver can either be
instances of objects or contact-paths.

sim:send-message recipient message [ macro ]

Creates an instance of sim:message and routes it to the recipient.

B.3.13.4 Networking Flavors and Functions

sim:remote-simulation [ flavor l

The executive for the portion of a simulation which is run on a client
machine. A remote-simulation manages its local objects just as the main
simulation does, except that it gets the next clock time from the main
simulation.

sin: remote-connection [ flavor I

Contains the eval-streams which provide the low-level network
connections between the main simulation and its clients.

sim:contact-name [ flavor ]

Contains the name of an object, the simulation it is running in, and the
host machine.

sim:find-simulation simulation-name [ function I

Locates the simulation with the spec:fied name on the local machine.

B.3.13.5 Window Flavors and Functions

sim:basic-editor [ flavor
sim:diagram-editor [ flavor
sim:map-editor [ flavor ]
sim:plot-editor [ flavor ]
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These windows are used to create a simulation. When an instance of one
of these windows is selected and an object flavor is chosen from the
Object Menu, an instance of the object flavor will be created and its
image will appear in the window. This image can then be dragged to a
position within the window. In a map-editor or plot-editor, this position
corresponds to variables within the object. In a diagram-editor, paths
can be drawn between objects to indicate message paths.

sim:journal [ flavor ]

A kind of px-scroll-window which is used by an object to display text
messages about its activity while a simulation is running.

sim:console [ flavor ]

Similar to a journal, but used by the main simulation for reporting

system messages.

sire:remote-console [ flavor ]

A journal for displaying messages from a remote simulation.

sim:statistics-window [ flavor

Displays a collection of statistics in text form for a given object after a
simulation has been completed or interrupted.

sim:clock-window [ flavor I

Displays the current simulation time.

sim:plot-window [ flavor

Displays a plot of a selected variable for an object or collection of objects
over the course of a simulation. This can be created either during a
simulation, in which case the plots are generated as the simulation
progresses, or after the simulation has stopped.

B.3.13.6 Domain and Library Flavors and Functions

sim:domain I flavor ]

Allows simulation object flavors to be grouped, and special windows to
be defined. A domain con.ains a set of libraries and a list of window
specifications.

sim:define-domain name &key parameters window-specs [ macro ]

name a string
parameters a list of common parameter or variable names

which can be used in a plot
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window-specs a list of items which describe the special windows
associated with a domain; each item is a list of the
form (window-name window-flavor label x y width
height)

sim:library [ flavor I

Contains a collection of object flavors. The flavors in the current
library will appear on the Object Menu.

sim:define-library name &key domain flavors documentation [ macro ]

name a string
domain the domain containing the library
flavors a list of object flavors
documentation a string

B.4 Radar Simulation in the ESSPRIT System

A prototype of a multi-sensor, multi-target radar simulation has
been implemented in the ESSPRIT system. Any configuration of
radar transmitters, receivers and targets can be created using
ESSPRIT diagrams and maps. Special graphical output has been
provided for animating the radar simulation and displaying the
signals which are generated, modified and processed.

B.4.1 Creating a Radar Simulation

An ESSPRIT radar simulation is created like other ESSPRIT
simulations, using a collection of windows to describe the basic
objects involved. For radar, the objects available are transmitters,
receivers and targets. The initial physical arrangement of the chosen
objects can be described (in 2D form) in a map-editor, and journals
and other displays can be selected. An example of a simple radar
simulation is shown in Figure A2.

B.4.2 Radar Displays

A radar simulation can make use of the standard ESSPRIT simulation
wndo',S, including journals, consoles, plots, and so on. in addition,
there are three windows which are specific to radar: radar-top-view,
radar-waveform-window, and radar-signal-window.
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The radar-top-view window provides a 2D view of the objects
in the simulation. As signals are generated by transmitters and
travel outward, they are animated as either rays or arcs (see Figure
A2). Targets are also animated as they move, but at a much slower
rate. A radar-waveform-window can be opened for a given
transmitter or receiver. This window will display a waveform plot of
the signals which are generated or received. A radar-signal-window
is similar, except that it displays in textual form the parameters
which define the signals.

B.4.3 Executing a Radar Simulation

A radar simulation is executed like other ESSPRIT simulations. After
configuring the initial transmitters, receivers and targets, the
simulation is initiated wi.th the Start command. The simulation can
be paused, and parameters of the receivers, transmitters or targets
can be modified if desired. After a simulation -has been completed,
statistics from each of the objects can be examined and displayed.

B.4.4 Radar Objects

This section describes the principal flavors and methods used in the
ESSPRIT radar simulation.

radar-signal flavor ]

Radar signals are the active objects used to sense the presence of targets
in a radar environment. Signals are represented in a parametric
fashion, and include the following information:

carrier-frequency
signal-amplitude
envelope-f unction
phase-function
time-of-origination
place-of-origination

A radar signal is generated by a transmitter according to the
transmitter's attributes. It then determines

:find-hit [ method of radar-signal I

Examines the radar environment and locates the closest object that the
signal will hit.
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•hit-object [ method of radar-signal I

Moves the signal to the object, showing the movement with animation
in the graphics window, and notifies the object of the impact.

:compute-samples [ methods of radar-signal ]

Generates a sequence of sample points from the parametric description
for display in a radar waveform window.

radar-waveform-window [ flavor ]
radar-signal-window [ flavor ]

Used to display the radar signals which are generated by a transmitter
or received by a receiver. A waveform displays a sampled version of the
signal, while a signal window displays the parameters of the signal in
text form.

radar-transmitter [flavor ]

A transmitter is an originator of radar signals. A transmitter
periodically emits a signal whose characteristics are deternined by the
transmitter's parameter settings. These parameters include frequency,
peak and average power, polarization, orientation and bandwidth.

:send-signal [ method of radar-transmitter I

Generates a radar signal with the specified properties, and sends it into
the radar environment.

radar-receiver [flavor]

Contains a processing function which is applied to incoming signals. In
addition, environmental influences such as multipath effects, clouds
and attenuation can be incorporated in the receiver.

:receive-sigr~al [ method of radar-receiver ]

Process,.& a signal according to the processing-function parameter.
Note: in the fuiturc, the processing will be specified with a data-flow
diagram as in the ESPRIT speech processing system.

target [ flavor ]

Targets are aircraft or other flying o"jects which are to be detected,
tracked, O.lassified and identified by the radar system. A target creates
new signals when hit by radar signals. It conlains a description of how
it will interact with signals, which includes the amplitude, envelope
function, carrier frequency and phase function. In addition, a target
has geometric attributes which control its flight path.
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'ef eet-signal [ method of target I

Creates a new signal based on the interaction of the target and the
incoming signal. The baseline :reflect-signal method attenuates the
signal by a specified amount, and adds noise. Flavors which inherit
from target, such as flavors for particular aircraft or classes of aircraft,
will modify this method to return a signal consistent with the target's
radar signature.
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MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability /maintaina bility and compatibility.


