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15.1. INTRODUCTION TO COUPLED SYSTEMS

It is widely recognized that coupling symbolic and numerical methods is an effective

means of solving many problems in science, engineering and business. In order to solve

various problems, both iasight and precision are very frequently needed. Coupled systems

guarantee the integration of the precision of traditional numerical computing with the prob-

lem solving and result explaining capabilities of symbolic processing. A second major rea-

son for coupling is the need for more powerful and useful tools capable of overcoming the

limitations of traditional tools, which are not coupled systems. Integrating formal numerical

methods with methods based on symbolic knowledge is believed to be the key to the develop-

ment of computing tools that can solve some of the problems currently known to be difficult

to solve. Coupled systems link symbolic and numerical computing in a manner not found in

conventional expert or knowledge-based systems. For coupled systems, effective problem

solving must have some knowledge of the numerical processes embedded within them and

must be able to reason about the application or results of those numerical processes. In

general, the symbolic process of a coupled system is the top-level process controlling the

numerical processes. However, the possibility of a numerical process controlling symbolic

processes cannot be neglected, although, numerical algorithms are only abie to procedurally

invoke symbolic processes.



15.1.1. Phases of Coupling in a Typical Problem-Solving Mechanism

15.1.1.1. Layers of Coupling

A typical knowledge-based system can be described in terms of four major compo-

nent modules as shown in Figure 1. These modules are the following:

1) Domain independent or weak heuristics.

2) Model-directed heuristics guided by a qualitative model.

3) Quantitative model of the problem domain.

4,) Planner which controls the problem-solving process.

In this section we describe the nature of coupling between various component mod-

ules. The interaction between modules occurs during specific phases of the problem-solving

process. By decomposing the coupling process into its component layers we effectively study

the nature of coupling during each problem-solving phase.

15.1.1.2. Coupling of Weak Heuristics with a Qualitative Modei

In most knowledge based systems the initial phase of problem solving is largely data-

directed. The system does not know which model or set of models to invoke a priori.

In such a situation the system resorts to weak heuristics, i.e. heuristics which do not make

strong assumptions about the problem domain. During the course of problem solving the

system notices certain "interesting patterns" in the data, giving the system clues as to which

model or set of models to invoke in order to speed up the problem-solving process.

In a typical searching problem the system could, in the initial phase, use weak tech-

niques such as A* or means-ends analysis and during the course of problem solving switch

to more powerful domain-specific techniques for guiding the search process. In such

- 2-
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systems this phase of coupling could be described -As the coupling of weak heuristics with a

qualitative model of the problem domain. In such systems it is not feasible to couple the

weak heuristics directly with a detailed quantitative model. Some qualitative understanding

of the model is necessary. This qualitative understanding of the quantitative model is repre-

sented in the form of a qualitative model.

15.1.1.3. Coupling of a Qualitative Model with a Quantitative Model

In many scientific/engineering applications a mere qualitative understanding of the

problem is not enough. A detailed quantitative model has to be invoked for the precise

computation of certain parameters associated with the problem under consideration. The

invocation of the model has to be done based on some evidence gathered by the qualitative

model. In most applications the most intensive phase of the problem-solving process, in

terms of computational resources, follows the invocation of a quantitative model. It is im-

portant, therefore, that the appropriate quantitative model be invoked. The efficacy of cou-

pling in this phase is largely governed by how closely the qualitative model reflects the

underlying quantitative model. The qualitative model should thus represent just enough

knowledge about the quantitative model so as to ensure that the quantitative model is appro-

priately and unambiguously invoked. The coupling of qualitative model with a detailed

quantitative model thus represents that phase of problem solving which involves precise

computation of numerical parameters.

15.1.1.4. Coupling of the Quantitative Model with the Result Analyzer

In most engineering and scientific applications it is necessary to not only obtain pre-

cise results but also interpret them intelligently and offer qualitative explanations. Further.
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it is necessary to detect cases where the quantitative model has failed to give a satisfactory

solution and suggest alternatives. Thus, the function of the result analyzer is to interpret the

results of the numerical procedures, offer qualitative expla.iations, and guide the problem-

,o lvi ng process through possible alternatives in the event of failure. Control of the pro-

blem-solving process is thus highly dependent on the result analyzer.

In this section we have considered the various layers of coupling. Each layer of cou-

piing- represents a definite phase in the problem-solving process and greatly affects the

overall system performance.

15.1.2. Coupling Strategies

The control of the problem-solving process is an essential feature of every knowl-

edze based system. The coupling strategy employed directly affects the flow of control in the

%arious phases of the problem-solving process. Opportunistic coupling and model-driven

,trategv are t\u major coupling strategies found in most knowledge-based systems.

15.1.2.1. Opportunistic Coupling ( Data-directed or Bottom-up

In a purely data-directed mode of coupling, the flow of control is strictly bottom-up

through t,,e various phases of problem solving. Each phase of problem solving is in% oked in

'equence until a solution has been reached. A typical data-directed coupling stratev could

be described in the following manner:

1) 1l potheses are formed based on initial evidence present in the data.

2) Hypotheses aggregation is done based on certain rules of inference.

3) Appropriate qualitative model is invoked when there is enough evidence.
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4) Based on the qualitative explanation offered by the qualitative model, appropriate

mathematical model is invoked.

5) The results are verified. If successful, stop. Else go to (2) and use an alternative set o

rules or go to (1) to consider alternative hypotheses.

15.1.2.2. Model-driven Strategy ('fop-down )

The model-driven strategy is essentially a hypothcsize-and-test strategy. Blind hy-

pothesize-and-test strategies do not use the daca intelligently. When the number of possible

models is very i.. -ge, this method tends to get exhaustive. Model-driven strategies could be

refined to a certain extent b

1) Employing a hierarchical matching procedare in which the models are hierarchically

confieured from coarse to finer levels of detail.

2) lodels could be invoked in an orderly fashion depending on cost, likelihood and

importance.

3) Hypothesize-anu-test strategies could be carried out in parallel as recommended by

Fishier I1].

However, this refinement does not overcome the basic shortcoming of a purely

model-driven strategy completely, i.e the need to make intelligent use of the available data.

Both model-driven and data-directed strategies in their simplistic forms do not pose

challenging issues from the point of view of a formal study of coupling. Apart from being

practically unfeasible for many problems, the nature of interaction between the various

phases of problem-solving is predetermined. Thus, in order to achieve more meaningful

control over the l.roblem-solving process, hybrid strategies for coupling are needed. A hv-

la aallII I l b l b Il n l i i m I 6-



brid strategy that combines both data-directed and model-driven strategies w;ouIJ have to

intelligently use both sources of knowledge: knowledge present in the raw data and knowl-

edge present in the stored models (or rules). The coupled systems WXI[2j, STAR-

PLAN[31, PMS-1 [41 are good examples of hybrid systems which can be classified broadly

as deep-coupled systems.
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15.2. CATEGORIZATION OF COUPLED SYSTEMS

15.2.1. Categorization based on Shallow vs. Deep Coupling

Coupled systems are generally categorized into shallow and deep coupled systems

according to the amount of their knowledge about the involved numerical processes. Shal-

low-coupled systems have limited knowledge of the involved numerical processes and treat

numerical routines as black boxes. Deep-coupled systems utilize extensive knowledge of

each numerical process and provide an intelligent interface to numerical routines. The

knowledge of each process is integrated with other information and used directly by the

knowledge-based system, i.e. the symbolic processes, during problem solving.

In distributed problem solving, the strategies for coupling could be cooperative or

competitive, i.e. the numerical processes could exhibit cooperative or competitive behavior.

In a competitive mode, several numerical processes solve the same problem independently

of each other. In a cooperative environment they are coupled in a manner such that they

solve the same problem more efficiently as compared to a single numerical process. Coop-

erative coupling in a distributed environment enhances the overall performance, especially

when complex problems are being solved. In order to achieve deep coupling, the involved

processes must be coupled cooperatively, i.e. they should be capable of solving a sub-

problem and communicating with each other to share raw or processed data. The coupled

system thus needs to incorporate a deep understanding of the interacting processes in order

to achieve deep coupling which in turn provides robustness and good performance.

Deep-coupled systems however, entail a substantial overhead in terms of design

since the knowledge about the interacting processes has to be carefully engineered. In the

absence of this knowledge one has to resort to a competitive mode of coupling in which each

process solves the problem independently hoping that one of the processes will come up with
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a solution in a reasonable length of time. Competitive modes of coupling tend to be wasteful

in terms of resource consumption.

15.2.2. Categorization based on Architectures for Coupling

Architectures for coupling could be broadly classified into two categories, centralized

and distributed architectures.

15.2.2.1. Centralized Architecture

In a centralized architecture, the control of problem solving is done exclusively by a

centralized planner. The planner decides on the mode of coupling between the problem-

solving modules during various phases of the problem-solving process. The centralized

architecture is easy to design and analyze since all the control information is located in a

single module. However, since each problem-solving module needs to interact with the

planner, communication with the planner proves to be a major bottleneck. The failure of the

planner would thus be catastrophic, making the system less robust.

It is also possible for the centralized architecture to be hierarchically configured. This

means :

') The planner is a hierarchical planner.

2) The numerical processes could be structured in a hierarchical manner in an increasing

magnitude of precision or sophistication.

3) The symbolic processes are hierarchically structured in an increasing magnitude of detail.

Typically, a hierarchical architecture would give the planner a better control of the

problem-solving process since problem solving can then proceed in stages of coarse to fine

-9-



degrees of refinement.

15.2.2.2. Distributed Architecture

As opposed to the centralized approach, the problem-solving system could also be

configured as a society of distributed independent agents, each agent with an independent

planner. The qualitative models and also the quantitative models could be treated as inde-

pendent agents with local planning capabilities. Such a distribution would be an object-cen-

tered distribution.

The choice of architecture is ultimately governed by the overall goals of the system

designer. Centralized architectures are easier to design and analyze. However since the

control information is localized within a single planner module, the other problem-solving

modules need to interact with the planner very heavily. This could cause a communication

bottleneck. In a distributed architecture, the design issues such as

1) nature of interactions between agents

2) the means of communication between agents and

3) stability of the system and guaranteed convergence to a solution

have to be dealt with. The advantages of a distributed architecture are greater fault tolerance

to failure and exploitation of parallelism in the problem. In some problems, however, the

nature of distribution is decided by the very definition of the problem.

- 10 -



15.3. MODELING COUPLED SYSTEMS

In this section a general model of coupled systems is described. This model would

help to analyze and understand the structure of coupled systems. This model is fairly gen-

eral and can be used in building new systems. It also allows incremental development since

the structure of a coupled system is organized into three distinct units having their own

intrinsic characteristics. We will focus on the modeling of deep-coupled systems. since the

coupling mechanism in shallow-coupled systems is fairly straightforward.

15.3.1. A General Model of Coupled Systems

The proposed model consists of three parts, a Numerical Processing Unit (NPU), a

Symbolic Processing Unit (SPU) as shown in Figure 1 and a Coupling Unit (CU), which is

not shown explicitly in Figure 1.

The Numerical Processing Unit consists of a set of numericdl processes which ac-

complish specific tasks via numerical means. The Symbolic Processing Unit consists of a set

of symbolic processes needed for problem solving as well as to reason about the application

of results of numerical processes. Four major component modules of a coupled system are

mentioned in the previous sections. Two of those components, the domain independent

heuristics and the qualitative model, are parts of the SPU. The quantitative model of the

problem domain is in the NPU. The inclusion of the planner in a specific unit is case depend-

ent. In a distributed architecture, the planner is a part of the SPU and each agent ( which in

most cases, is an expert system ) has its own planner. In most cases of centralized architec-

tures the planner is also included in the SPU, irrespective of whether the problem-solving

strategy is top-down or bottom-up. When the SPU consists of an expert system, the planner
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which controls the problem-solving process, is in the knowledge base of the expert system

( in most cases a rule-based expert system ). The example that the planner belongs to CU

can be seen in "Incremental Construction of Coupled Systems" in section 15.4.1.3.

15.3.2. The Basic Functions of the Coupling Unit

The coupling or interaction between the NPU and the SPU is controlled by the Cou-

pling Unit (CU). Four basic functions of the CU are described below.

(1) Management of Communication

The communication between processes needs to be fully asynchronous since numeri-

cal and symbolic processes need to exchange information with each other and to invoke each

other during the problem-solving process. For example, symbolic processes need to transfer

the information about the selected numerical process, transfer problem specification, and

send requests for invocation with the requisite parameters to the numerical processes.

Similarly, numerical processes need to transfer the result of computation to symbolic proc-

esses. In the case of distributed problem solving, a big complex problem would be divided

into several subtasks. The processes, especially in the SPU, need to exchange information to

solve their own subtasks. Therefore, it is important for the CU to fully control the asynchro-

nous communication between SPU and the NPU, and between communication agents in the

SPU or the NPU.

J.S. Kowalik 1381 mentions the blackboard architecture as being a very popular choice

for the overall system architecture for coupled systems [3-61. Among the advantages of this

approach is the ability to stratify the problem solving and process knowledge. This allows all

problem solving and other meta-level information to be uniformly represented in the black-

- 12-
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board monitor. Individual symbolic and numerical processes can be incorporated as sepa-

rate multi-level knowledge sources. All information specific to an individual process is

represented within the corresponding knowledge source. The blackboard monitor manages

communication and is a part of the Coupling Unit. Figure 2 shows a good example of the

blackboard architecture in COPS [5].

(2) Scheduling

The scheduling task includes allocation/deallocation of the subtasks to the numerical

and symbolic processes, activation of the processes selected by the SPU. collection of the

results from the processes and initiation of user interfacing or external system interfacing.

(3) Translating

The CU translates messages from different processes if necessary and converts high-

level specification to low-level specifications and vice versa. When the coupling strategy is

model-driven, a high-level specification means a symbolic representation of information

whereas a low-level specification means numerical representation of parameters extracted

from the high-level specification necessary for numerical analysis. In coupled systems

adopting data-directed strategies, the high-level specification is the description of a higher

level object, which is formed by combining lower-level objects in a bottom-up approach.

The lower-level objects can be characterized by low-level specification from numerical

processing of raw data.

- 14-



(4) User Interface

The CU provides the user interface by receiving the problem specification as its

input. It also provides means for explaining the results or reporting current processing

status to the user with linguistic/graphic descriptors. It helps to make the system transparent

to the users.

15.3.3. Communication between SPU and NPU

Communication between processes in a coupled system is considered an important

problem because problem solving proceeds by exchanging messages between symbolic

processes and numerical processes. As it has been shown before, the' symboiic processing

unit and the numerical processing unit communicate with each other generally by fully asyn-

chrotous message passing. These messages can be requests for some processes to initiate

the processing of the data, parameters necessary for the processing of data and results

returned after the processing. In most cases symbolic processes are more active and mainly

ask for number crunching jobs or for some information which they need during the pro-

blem-solving process from the numerical processes. It is the symbolic processes which usu-

ally control the communication in a coupled system.

A coupled system is generally implemented on a heterogeneous environment. For

example, the coupled system can be composed of two different environments - a LISP

machine and a general purpose computer. This causes somewhat serious difficulties in

communication between processes implemented in a heterogeneous environment.
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15.3.3.1. Simple Coupling

Most simple coupled systems are composed of one symbolic process and several

numerical processes. In simple coupling, the message passing scheme is a kind of remote

procedure call. The content of a message is a set of parameters. The symbolic process

which issues a message becomes a client and waits for a reply from the numerical processes.

The numerical processes act like servers.

Simple coupling takes place when the symbolic process calls the numerical processes

and receives replies during the course of either bottom-up or top-down problem solving.

Even if the simple system is implemented in an heterogeneous environment, for example an

expert system and a general purpose computer, these remote procedure calls could still be

simple because the content of the message is limited to parameter passing between the

symbolic process as a client and the numerical processes as servers.

15.3.3.2. Coupling in the Distributed System

As the size of the coupled system increases, the number of numerical processes and

symbolic processes increases. Some numerical processes serve a typical symbolic process

or all numerical processes can be invoked by any symbolic process. This is not a major

problem since simple messages have to be communicated. However communication can

also take place between the symbolic processes. If a coupled system is implemented as a

heterogeneous distributed system, then a link has to be provided between every pair of

systems within the distributed system. This link should translate the data structures of the

sending process to that of the receiving process if the two processes are incompatible. The

-igh cost of links makes this approach expensive to implement.
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An inexpensive alternative is to build a central facility for collecting and distributing

messages. The central facility can be a blackboard. The sending process writes messages

on the blackboard and the receiving process reads message from it. Thus only a link between

each system and the blackboard is necessary. Each link has to provide just the means to

translate the data structure of each system to that of the blackboard data base. This black-

board architecture is shown in Figure 3.

15.3.4. Desirable Environment for Implementation of Coupled Sys-

tems

The present coupled systems implemented in heterogeneous environments work

slowly because messages have to be translated into the common data structure. For exam-

ple, in the SJIPOP coupled system 171, the NPU is implemented in Fortran-77 while the

SPU is implemented in another environment using Prism. Prism is compatible with Franz

LISP but incompatible with Fortran. As a result message passing is routed via a user inter-

face. The implementation uses disK files which provide the common data structure. This

process of translating the data structure via diskfiles needs frequent intervention of the

operating system thereby slowing the system considerably.

It is considered a good strategy to use conventional expert systems to implement

coupled systems rather than to build new symbolic processing systems. The systems imple-

mented in either a LISP or a Prolog environment can be used for symbolic processing.

Languages like Fortran or C, which have functional properties, could be used for numerical

processing. Interfacing dissimilar languages in a coupled system composed of different

languages, however, is a very complex problem from an implementation point of view.
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15.3.4.1. Abstract Data Types

If the system requires that the data be shared by several sub-systems implemented in

different languages, abstract data types are needed because they provide data hiding and

relieve the user from implementation details. Object-Oriented Programm'ng (O.O.P.) lan-

guages provide the abstract data types that can be shared by sub-systems implemented in

different languages.

There are two ways by which coupled systems can be implemented more easily with

O.O.P. languages than with conventional procedural languages and functional languages.

One approach is to implement the entire coupled system in one O.O.P. language that sup-

ports abstract data types in order to avoid frequent intervention of the operating system. The

other way is to have as many identical abstract data types as the languages used. In the case

abstract data types talk to each other during communication between different processes

implemented with different languages. It is important to maintain coherence among the

abstract data types.

15.3.4.2. Concurrence

If the coupled system was implemented in one O.O.P. environment, then concur-

rence in the environment would be desirable. If there are many distributed processes, some

processes can run concurrently in order to reduce running time or others siould run concur-

rently because of their interrelationships. Ideally, an O.O.P. language with the properties of

a concurrent programming language is desirable in this case.

Message passing is an important aspect of concurrent programming. There are two

kinds of message passing schemes --- asynchronous communication and synchronous

communication. When using asynchronous communication, a process can send a message

- 19-



and continue. This message may be picked up by another process at a later time. In con-

trast, when using synchronous communication the two processes must send and receive the

messages simultaneously. If the sender waits only until the message is received before

resuming, this is referred to as a synchronous send. While a synchronous send greatly

simplifies the requirements for message buffering, it is difficult to be justified from a

practical point of view. Although, on resumption, the sender can assume the message has

been received, this does not guarantee that the transmitted information will be correctly

processed, i.e. a process does not know whether a message has arrived at its destination

after the send operation is completed. If a guarantee of reception is required, the sender

must continuc to wait for a separate acknowledgment explicitly sent Oy the receiver. If the

guarantee is not required, the sender need not wait for the message to be received. This

leads to the other form of communication, the asynchronous send, in which the sender

resumes immediately after sending the message. Communication based on an asynchro-

nous send is referred to as asynchronous message passing.

Another important aspect of the communication structure of a programming lan-

guage for distributed systems is the technique used for dentifying the sender/receiver of a

message. This can be done explicitly by both processes (symmetric naming). More com-

monly, the sender names the receiver while the receiver is willing to communicate with any

sender (asynchronous naming). This anonymous sender approach is suitable for a client/

server relationship, particularly in the context of a remote procedure call where the identity

of the caller is implicitly retained for the return. The se:-ver simply performs a function: it

does not have to know who the client is.
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15.3.4.3. System Integration

Implementing deep-coupled systems needs integration of processes which have if-

ferent characteristics even in the same software system. As the system is expanded integra-

tion of several different runtime environments arising due to different programming lan-

guages has to be considered. One has also to handle the diversity problems when imple-

menting coupling systems by integrating several different environments.

15.3.4.4. Incremental Development

Coupled systems need to keep up with the state of the art, which means they need to

be incremented. For example, sometimes one may need to expand the problem domain,

come up with new numerical algorithms and new A.I. techniques, and increment the knowl-

edge-base in the symbolic processing unit. Thus the implementation of the coupled system

has to guarantee incremental development so that the system can be easily expanded.

15.3.4.5. Overview of Object-Oriented Programming

Nc,,t programming languages support the "data-procedure" paradigm. Active proce-

dures act on the passive data that is passed on to them. Object-oriented languages employ a

data or ohjcct-ccntered approach to programming. Instead of passing data to procedures, one

asks objects ( data ) to perform operations on themselves.

Object-oriented programming exhibits four characteristics 181.

(1) Information Hiding: The state of a software module is contained in private variables,

visible only from within the scope of the module.

(2) Data .4bstraction: A programmer defines an abstract data type consisting of an internal

representation plus a set of procedures used to access and manipulate the data.
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(3) Dynamic Binding: The object-oriented approach pushes the responsibility for some

operation onto the objects themselves. This is known as "Polymorphism" since the same

message can elicit a different response depending on the receiver ( object ) j91.

(4) Inheritance: It enables the programmer to create new classes of objects by specifying

the differences betwecn an existing class and a new class instead of starting from scratch

each time. It thus reuses the existing code.

15.3.4.6. Advantages of O.O.P. for Implementing Coupling Systems

(1) Integration on Single Software System

In the object-oriented programming paradigm, we can map both symbolic and numeri-

cal programs to classes of objects. These classes can communicate via message passing.

Therefore using object-oriented programming paradigm is very helpful for implementing cou-

pled systems.

(2) Dealing with Diversity f10]

In object-oriented programming one can perform operations by passing messages to

the object. Thus there exists a great advantage for coupling several different types of envi-

ronments implemented in different languages. This is so because one can treat them as

separate objects, essentially at least one object per programming language, one needs to

consider just a message-passing protocol between them. This is a very important problem.

Powell and Cole [111 alleviate this problem by using LISP for numerical processing unit and

MRS 112] for symbolic representation because the underlying data representation scheme

for both LISP and MRS are the same.
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(3) Reliability and Modularity

Information hiding ensures reliability and modularity of software systems by reduc-

ing interdependencies among software components. Data abstraction, a way of information

hiding, is a frame-like structure which is advantageous for implementing the control

schemes for particular coupled systems which use frames for knowledge representation.

(4) Incremental Development

All four characteristics of object-oriented programming give modularity to the software

system, which is a necessary condition for incrementing the system. Dynamic binding en-

ables one to develop an incremental software system. One can increment the system just by

adding a new type of object which requires writing new procedures while not modifying the

existing software. During that process, inheritance makes it possible to reuse the existing

code and reduce the redundancy.
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15.4. CASE STUDIES & IMPLEMENTATION EXAMPLES

15.4.1. The Case Studies of Coupled Systems

To justify the general model of coupling developed in section 15.3.1., we have exam-

ined several deep coupling systems and come up with four kinds of generic structures which

can represent almost all coupling systems. The structures will be called prototype classes in

the remainder of this report. The coupled systems can be classified into one of these four

prototypes, based on the role and the internal structure of the SPU. Although the first two

prototypes can be merged into one based on the system-level decision, they are however

distinct since coupling strategies employed ar: different, i.e the roles and the internal struc-

tures of the SPUs are also different. The first one mainly employs a top-down ( model-

driven ) approach wh'eceas the second mainly employs a bottom-up ( data-directed ) ap-

proach. These prototype classes are explained in sections 15.4.1.1. through 15.4.1.4.

15.4.1.1. Prototype Class based on the Hypothesize-and-Test Paradigm (Top-down)

A typical example of this prototype class is a system composed of a rule-based

expert system and a numerical analysis unit for test simulation.

The rule-based expert system receives the problem specification from the user

through the coupler and it hypothesizes the cause of the problem. The coupler translates

high-level description of the hypothesis to lower-level specification and transfers it to the

numerical analysis unit. This activates the selected numerical process. It also extracts the

necessary parameters for the expert system from the results of numerical analysis. The

expert system makes another hypothesis according to the results from the numerical proc-
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esses. Through this simple feed-back process, the expert system can identify the cause of

the problem.

In this system, the rule-based expert system is the symbolic processing unit and the

numerical analysis part is a numerical processing unit. We examined the systems mentioned

in [131 and [141 and categorized them as belonging to this prototype as shown in the block

diagram of Figure 4.

15.4.1.2. Coupling Expert Systems and Numerical Processing Units ( Bottom-up )

As an example of this prototype class, a system is composed of a numerical process-

ing unit ( especially an image processing unit ) and an expert system or distributed expert

system as a symbolic processing unit.

In WX1 [21, the image processing unit gets low-level information from an external

doppler radar. The image processing unit segments the image and creates an image data-

base. This is essentially a bottom-up process. The expert system has a symbolic representa-

tion of the image and its features in its working memory, and production rules necessary for

identifying the goal-object using a bottom-up approach in its production nomory. The

expert system requests the image processing unit for detailed information, i.e. properties of

features and relationships between features. It then responds to the requests and creates a

new higher-level feature by combining two or several features. This procedure creates a

feature database both in the image processing unit and in a symbolic representation data-

base in the working memory.

The coupler's role in this system is simply that of a user interface which shows the

user its goal object identified through the procedure of fully asynchronous message passing

between the image processing unit, an NPU, and the production-rule expert system, a SPU.
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In the case of coupling distributed expert systems with an image processing unit [151,

the symbolic processing unit is composed of vertically ( different levels ) and horizontally (at

the same level ) distributed expert systems. These expert systems communicate with each

other through a blackboard. The image processing unit provides segmented image to the

expert systems which can identify an object at several levels such as the class level and the

object level. The reasoning level receives the results from these levels and reasons about the

object. If the reasoning level can explain the result without contradiction then the coupler

describes it to the user by a linguistic descriptor, otherwise it feeds back the cause of the

contradiction to the image processing unit. In this feed-back process, the coupler also

translates the information to a low-level specification and activates the selected numerical

process ( segmentation scheme ) in order for the image processing unit to resegment the

image.

The coupler, therefore, has the characteristics of a communication manager between

the distributed expert systems, a scheduler which activates the selected segmentation mod-

ules ( namely, knowledge-driven segmentation ), a translator between reasoning level and

the image processing unit, and a user interface which provides linguistic descriptions.

We also examined the SIMPOP system [7] that uses a simulation model with machine

intelligence. It incorporates problem solving through heuristics and employs both qualita-

tive and quantitative modeling. The system integrates mathematical simulation that imitates

demo-graphic mechanics of biological populations, with rule-based reasoning that contains

procedural knowledge and induces the simulations for examples and analysis. Either of

them can access a statistical database. Those portions of the expert systems which deal with

qualitative representation contain information of how to link to the existing numerical mod-

els as well as how to choose parameters for the particular module. Results of simulations are

presented graphically, and the system requires operator intervention for guidance and con-
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trol. The global architecture is composed of an object-oriented message passing architecture

and a blackboard architecture. The structure of SIMPOP is shown in Figure 5. The Floor

Plan Generator [111 can also be categorized as belonging to this prototype class which is

shown in Figure 6.

15.4.1.3. Incremental Construction of Coupled systems [16]

This prototype class represents the smooth upgrade of a shallow coupled, rapid

prototyped system to a more intelligent, and more widely applicable, deep coupled system,

without being subjected to frequent modification.

KI!M ( Knowledge-based Integration Manager ) couples shallow coupled systems.

KIM has frames about the type of modules - each module represents a shallow coupled

system - and information about the translation between various classes of modules. It also

has a blackboard for communication between modules and between modules and the sched-

uler, and a scheduler for monitoring the blackboard and scheduling modules. An explana-

tory component included in KIM provides system transparency to the user through a sched-

uler.

As shown in Figure 7, the scheduler and the explanatory component of KIM are the

coupler which manages communication, user interface, and activates the selected modules.

The remaining part of KIM, that is, the frame work of deep information about the shallow

coupled systems, and modules which can activate them, is the symbolic processing unit. It

also includes the symbolic processing parts of shallow coupled systems. The numerical

processing unit is the global set of numerical processes which are coupled in the shallow

coupled systems.
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15.4.1.4. Coupling with Autonomous Communication Objects [171

An example of this prototype class was implemented by Janos Sztidanovits and

Byron Purves[17] at the Vanderbilt University. They define an Autonomous Communication

Object ( ACO ) to be an extension of the "object" concept of object-oriented languages.

ACOs are fully autonomous systems that can run, virtually or physically, in parallel. They

can be dynamically allocated and may compete for the same resources. They communicate

with each other by means of a fully asynchronous message passing protocol. They have also

classified ACOs into two classes, Rule Network Object ( RNO ) and Procedural Network

Object ( PNO ).

The RNOs can perform rule-based reasoning and can be allocated to the tasks which

need symbolic processing. The PNO can be looked upon as a shallow-coupled system since

it has selection rules, numerical processing units ( especially for signal processing ) and

interface to the external systems. It can also perform numerical procedures. The message

transfer and allocation/deallocation of ACOs to tasks are controlled by a communication

manager.

As can be seen from Figure 8, this structure can also be mapped on the general

model of a coupled system. The RNOs can be mapped to the symbolic processing unit, the

selection rules part of the PNOs and communication manager to the coupler and the remain-

ing part of PNOs can be seen as the numerical processing units.

15.4.2. Example: Coupled System in Computer Vision

In this section we illustrate the concept of coupling with an example from image

understanding for two primary reasons:
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1, Image understanding is a fairly important research topic in its own right with several

aspects of both theoretical and practical interest.

2) A typical image understanaing system is a fairly complex knowledge-based system where

the coupling process occurs ii several stages of problem solving. The interaction between

the various stages oi c-roblem solving is not yet well understood.

We illustrate t*'e applicability of the model by cnc,)sing an image understanding

example, namely 3-dimensional object recognition. The coupled system has hybrid cou-

pling strategy, distribute,t architecture and various stages of coupling.

15.4.2.1. Scope of the Problem

The problem that we have chosen to illustrate our idea is that of 3-D object recogni-

tion. This problem basically involves the recognition of a 3-D object from its 2-D projectior.

in a scene. In a typical scene that we consider, there are instances of multiple objects ( i.e.

objects of different types ) and also multiple instances of a single object. The objects that we

have considered are polyhedral ( i.e. bound by planar surfaces ). Each object is described in

its local coordinate reference frame in terms of a 3-D wire-frame model. The recognition

process essentially involves computing of coordinates, that would cause the 3-D wire-frame

model of the object to project onto the 2-D scene, as actually observed. The coordinate-

frame transformation is characterized by six parameters namely thrt, degrees of transla-

tion, one along each coordinate axis and three degrees of rotation, one about each coordi-

nate axis. Solving tor these six parameters is what is commonly referred to as camera

viewpoint determination. The block diagram of typical 3-D object recognition system is

shown in Figure 9.
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15.4.2.2. Coupling of Weak Heuristics with a Qualitative Model

For the specific problem that we have considered, the data-directed weak heuristics

would mainly consist of perceptual clusters in the form of junctions, parallel lines and collin-

ear lines. Perceptual clustering of image primitives has evoked a fair deal of interest in the

image understanding community recently. Lowe [18] and Walters [191 have noted that

perceptual clustering of visual cues is an important aspect of low level vision. Perceptual

clustering techniques are weak because they have no a priori knowledge about the objects in

the scene but rely mainly on locally observable patterns in the image. Perceptual clustering

processes are included in the NPU.

The qualitative model is supposed to capture in some sense a certain qualitative

understanding of the detailed quantitative model under consideration. In our example the

qualitative model of the object is represented by an attribute-relation graph which describes

node-adjacencies and instances of parallel lines and collinear lines. This qualitative model

is a qualitative description of the 3-dimensional topology of the object. The qualitative

model is stored in the knowledge base in the SPU.

The coupling process in this case is basically an instantiation of the nodes and arcs of

the model graph of the object with instances of certain perceptual clusters in the scene. The

perceptual clusters belong to a single object from a projection graph. The NPU provides the

result of perceptual clustering process to the SPU, which is represented by labels. In the

SPU the instantiation process amounts to detecting a subgraph in the model graph that is

isomorphic to the projected graph ( subgraph isomorphism ).

At various stages during the clustering process, there exist several choices regarding

how to group perceptual clusters. Our chief objective is to ensure that clusters within a

single group should have arisen from the projection of a single object. Such an unambigu-
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ous grouping of perceptual clusters is not possible without using some knowledge about the

object in question. It is therefore necessary at some stage to use the qualitative model to

guide the grouping process. Using the qualitative model to guide the grouping process,

namely model-driven clustering, its two clear advantages in terms of

1) Resolution of ambiguities during the grouping process

2) Pruning the number of groupings to be considered.

During the process, the CU translates symbolic information from SPU to low-level specifi-

cation for the NPU and invokes numerical processes necessary to perform perceptual clus-

tering guided by the qualitative model.

15.4.2.3. Coupling of a Qualitative Model with a Quantitative Model

The invocation of the appropriate quantitative model in NPU involves:

(1) Instantiating the 3-dimensional CAD model of the object.

(2) Invocation of the appropriate model for projection geometry, i.e. perspective, affine,

orthographic, etc.

(3) Choice of appropriate algorithms for camera viewpoint determination.

The qualitative model reflects the 3-D topology of the object in terms of collinear

lines, parallel lines and junctions. These are the qualitative aspects of the quantitative

model which are invariant over a large range of viewing orientations and subsequent projec-

tion. Other aspects of the quantitative model, such as lengths of lines, angles between lines,

etc., are not represented in the qualitative model since they vary greatly with viewing orien-

tation and, hence, are of little use in the first phase of coupling. The qualitative model in the

SPU should thus represent just enough knowledge about the quantitative model so that quan-
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titative model is appropriately and unambiguously invoked by the SPU, when the situation

arises. In this case the CU activates the selected numerical processes which reflect the

invoked quantitative model. In our problem the computation of view point parameters rep-

resents the precise recognition of an object in a scene. An instance of an object is sai1 to be

present in a scene if and only if there exists a set of viewpoint parameters that project the

3-D model of the object to match the scene data to a given degree of accuracy.

15.4.2.4. Coupling of the Quantitative Model with the Result Analyzer

The result analyzer in the SPU will get the computed result from the NPU and verifies

the view point parameters by checking whether these parameters lie within the prespecified

bounds and whether the projected 3-D model matches the image data within reasonable

bounds. If computed viewpoint parameters fail to give a reasonable match then the result

analyzer has to reason about the cause of failure and suggests suitable alternatives. Typi-

cally the result analyzer would have to take into consideration the following factors:

(1) If the algorithm for viewpoint determination is an iterative one, such as Newton-

Ralphson, then convergence properties, initial viewpoint estimates and possibility of the

solution being trapped in a local minima have to be considered.

(2) Selection of an alternative solution to the subgraph isomorphism determination process

in the first phase of the problem solving process.

(3) Check for the presence of occluding objects in the vicinity of the objects being verified.

Occlusion could cause degradation in the quality of the match.
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The final phase of the problem-solving process is thus a very crucial one. The pro-

blem-solving strategy depends heavily on the analysis done by the result analyzer.

15.4.2.5. Hybrid Control Strategy for Coupling

In our problem of 3-D object recognition, the goal of the problem-solving process

should be unambiguous recognition of objects in the scene. Our weak heuristics in the form

of perceptual clusters do not guarantee that in any way. There is no way one can fully

determine whether a certain cluster or a group of clusters has arisen from a particular object

unless one takes recourse to some sort of knowledge about the models present in memory.

We propose a coupling scheme based on evidential reasoning for coupling weak

heuristics with a qualitative model. The scheme could be briefly described as follows:

(1) Each cluster is assigned a measure of belief based on the premise that it has not arisen by

accident.

(2) Each group of clusters is assigned a belief measure based on the belief measures of the

participating clusters and the premise that these clusters belong to a single object ( with-

out knowledge about the exact object ).

Both (1) and (2) necessitate the formulation of a belief measure and the formulation of an

appropriate combining function [20][21]. This phase of the clustering process is purely

data-directed and is carried out entirely in the absence of any knowledge about the objects

present in memory.

Every cluster generated in the data-directed phase is simultaneously evaluated by

models based on

1) The ability of the cluster to constrain the qualitative model,

2) The discriminating ability of the cluster.
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The model-centered evaluation can be expressed in the form of a goodness measure such as

max(quality of match)/sum(quality of match). Thus each cluster has an effective belief

measure which is the combination of the data-directed belief measure and the model-cen-

tered belief measure. As soon as the belief measure exceeds a prespecified threshold, the

qualitative model in question guides the clustering process. This brings about a transition

from the use of data-directed heuristics to model-directed heuristics. This sort of coupling

scheme naturally implies an object-centered distribution of the qualitative models wherein

each model is treated as an independent agent. Such a distribution encourages the model-

centered belief evaluation process to be carried out in parallel by the models in question.

15.4.2.6. Distributed Architecture

The clustering heuristics could be distributed as heuristics for parallel lines, heuris-

tics for junctions and heuristics for collinear lines. Such a distribution would be a functional

distribution. The strategies for distribution could be either cooperative or competitive. For

example, in the clustering shown in Figure 10, 11, L2 and L3 form a junction whereas L2

and L4 constitute parallel lines. If the clustering process were competitive then the arbitra-

tion could be done on the following basis:

(1) Li and L3 forms a junction cluster whereas L2 and L4 form a cluster of parallel lines.

(2) L1, L2 and L3 form a junction cluster and L4 is not assigned to any cluster.

If the clustering process were cooperative then L1, L2, L3 and L4 would form a complex

cluster. Such a complex cluster would be desirable since it would add greater constraint

than either cluster having been considered independently.

There exist iterative algorithms for the determination of camera viewpoint parame-

ters. Typical examples are Newton-Ralphson and Simulated Annealing. Both techniques

- 40-



Li

L2

LA

FIGURE 10. A Typical Clustering Example

are based on the principle of minimizing the sum of squared error between the projected

model and the image data. Newton-Ralphson converges quickly in the vicinity of the solu-

tion but also tends to get trapped in local minima. Simulated Annealing is slow but robust.

If there is doubt about the initial estimates for the viewpoint parameters then it is wiser to

use Simulated Annealing until one is in the vicinity of the absolute minima and then pass the

results on to the Newton-Ralphson routine. In most cases a cooperative mode of coupling is

preferable to a competitive mode since in a cooperative mode more effective use is made of

the available resources.

In a distributed architecture, communication between agents is very important to

perform a cooperative mode operation. The CU has to deal with complex issues such as:

1) nature of interactions between agents

2) the means of communication between agents

3) stability of the system and guaranteed convergence to a solution.
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KIM, as explained in the section 15.4.1.3. is a good example of the CU dealing with these

complex issues.

15.4.3. Implementation Example in O.O.P. Paradigm

3-D MOSAIC by Herman and Kanade [22] is a well-known computer vision system

which extracts symbolic descriptions from the multiple view of urbane scenes. It has many

symbolic and numerical procedures, and can be constructed as a coupling system. Since it

is a large system, only a portion of the system is used for our coupling example: only the

scene model handling part. Figure 11 shows a flow chart of 3-D MOSAIC.

The scene model handling part can be further divided into 4 levels. The lowest level

is the actual data description. 3-D Mosaic has a unique scene model called the "structure

graph". It is a symbolic description of the scene model and can be updated as needed. It

has a graph structure which has part-of and constraint links and its nodes can be dots, line,

planes, vertices, edges and faces. Dots, lines and planes are geometrical primitives and

vertices edges and faces are topological primitives.

The next level is the constraint handler. It propagates constraints throughout the

graph to make it consistent. Constraint can be introduced by adding/deleting nodes or links.

Changes in nodes and links can generate geometrical or topological constraints, or both.

There are several rules for constraint propagation. This level should have a rule-base and

some method with which to apply it.

The upper level is for merging structure graphs. It merges partially completed struc-

ture graphs or raw data from lower processes into one object. It has its own rules to solve

inconsistency and ambiguities.
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The fourth level is for combining new views. It combines a new view to an existing

scene model. The following table shows these levels and their symbolic and numerical pro-

cedures.

Level Symbolic processes Numerical processes

Structure Graphs . Add & delete links
• Add & delete nodes

Constraints Handler . Rules of constraints . Equations for dots
propagation (geometric lines and planes
and topological) . Inclusion relations be-
. Redundancy removal tween them

Merging Structure . Rules from knowledge . Weighted average of
graphs of planar-faced objects two edges

and urbane scenes. . Intersection points
. Hypothesize new . Least-square fittings
edges and vertices of planes

• Distances between ob-
jects
• Detecting parallelism
between lines

Combining new . Matching . Scale and coordinate
view . Rules for discrepan- transformations

cies . Inclusion relations
Rules for merging . weighted average

detecting Parallelism

Table. Symbolic and numerical processes in
Model Handling

When these procedures are implemented in an object-oriented paradigm, each level

can be a big object and numerical and symbolic procedures can be treated as objects which

receive messages from other objects. One advantage of using the object-oriented approach

is that its modules can be used elsewhere because their interfaces are well-defined. In this

example some numerical procedures can be shared with different levels of objects and they
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also can be used in lower level processing like stereo analysis. Couplings between symbolic

and numerical procedures are accomplished in the form of messages. This gives a great

freedom to programmers. Since the interface between modules is well-defined, a program-

mer does not need to wait for modules to finish their tasks before sending more messages.

This also enhances the quality of the modules.
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15.5. NEED FOR COUPLING IN VISION SYSTEMS FOR

.- D SCENE INTERPRETATION

Owing to the vast amount of literature focused on three-dimensional scene inter-

pretation, it would not be possible to enumerate every existing three-dimensional scene

interpretation system. A categorization of existing three-dimensional scene interpretation

systems based on (a) Choice of representation and (b) Choice of control, would be far more

illuminating.

15.5.1. Choice of Representation

The issue of representation deals with (i) Choice of image features and (ii)

Choice of model features. The choice of image features is often tuned to the nature of the

application domain and nature of the sensor used. The choice of representation for the

object models is also dependent on the application domain. For the purpose of matching, the

representation of the object models is closely tied to the representation chosen for the image

features.

The choice of object model representation is based on (i) Surface descriptions or

(ii) Volumetric descriptions. Surface descriptions are used extensively in constrained envi-

ronments where it is possible to extract surface features from active range sensors, stereo

imaging or photometric stereo. Volumetric descriptions based on generalized cylinders were

first used by Brooks in ACRONYM[23].

Both surface and volumetric descriptions could be either local or global. Local

surface descriptions are typically based on local curvature properties of the surface. Besl
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and Jain[241, Fan et. al.[251. Brady and Ponce[26] and Vemuri and Aggarwal[27j have

described segmentation schemes based on surface curvature properties. Faugeras and Her-

bert1281 describe a surface segmentation and surface matching scheme based on segmenta-

tion of the surface into planar and quadric surface patches. Global surface descriptors are

based on describing the surface in terms of a few global parameters such as super-quadrics.

Bajcsy and Solina[291 describe an iterative surface fitting technique for extracting the global

shape parameters for super-quadrics. The surface normal distribution such as the Ex-

tended Gaussian Image (EGO which is a global surface descriptor has also been used by a

few researchers[301. Generalized cylinders are examples of global volumetric descriptors

whereas voxel-based oct-tree representations[31] are local volumetric descriptions. Local

features are well suited for recognition in the presence of occlusion whereas global features

enable rapid recognition in those situations where the image data is unoccluded.

Features could also be classified as generic or distinctive. Generic features cover

a broad range of objects under the domain of interest. Distinctive features on the other hand

make specific assumptions about the objects in question such as in the 3-DPO vision sys-

tem[32J. Distinctive features sacrifice generality for recognition speed whereas generic fea-

tures sacrifice recognition speed for generality.

15.5.2. Choice of Control Strategy

A scene interpretation hypothesis can be looked upon as a solution to a constraint

satisfaction problem. The approach for arriving at a consistent scene interpretation is there-

fore a constraint-directed search through the space of possible scene interpretations. 3-D

object recognition systems can be classified according to the search strategy used

(1) Top-down or model-driven search is commonly used in the recognition via localization

technique for object recognition. The features used are primitive and matching takes place
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very early in the recognition process. The primitive geometric features are matched against

similar features in the object model. Matches are checked for local consistency using simple

geometric constraints such as distance and angle measurements. A set of locally consistent

matches is used to compute a global transformati3n from the model coordinate system to the

scene coordinate system. The Interpretation Tree (IT) approach[33] matches a scene feature

with a model featu- at evtrv stage in the recognition/localization process as shown in

Figure 12. Locally consistent matches are represented by a path in the IT. Local geometric

constraints are used to prune paths in the IT thereby restricting the possible interpretations.

When a path of sufficient length is found, a global transformation is computed. The control

structure of the algorithm is that of sequential hypothesize-and-test with backtracking. The

Hough (pose) clustering approach[34] matches each scene feature to each possible model

feature. The matches are constrained by local geometric constraints based on angle and

distance measurements. Each match enables one to compute a point in the Hough (parame-

ter) space. Clustering of points in the Hough space yields a globally consistent hypothesis

regarding the pose of the object (Figure 13). Model-driven approaches are useful when one

is faced with noisy or occluded data which precludes a higher-level abstraction of the data.

(2) Bottom-up or data-driven driven search seek to obtain a higher level semantic description.

Matching takes place fairly late in the recognition stage. A high-level scc-ie description is

matched against a high-level semantic description of the object. The recognition phase is

typically based on paradigms such as graph-matching, subgraph isomorphism and maximal

clique detection. Recognition is followed by localization for which highly object-specific

shape descriptors are used. The advantage of such an approach is that since a higher level

description of the data is used, the number of hypotheses generated in the matching phase

are fewer in number. The disadvantage is that since this approach requires extensive
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FIGURE 12. Searching through an Interpetation Tree

preprocessing of image data, it requires that the quality of the data be good, i.e. unoccluded

and unambiguous.

(3) Interpretive search strategy uses the object model interpretively, that is, the knowledge is

extracted from the model and transformed into an execution strategy at run time. The sys-

tem relies on a generic reasoning mechanism such as numerical optimization of some

matching criterion, constraint satisfaction by symbolic reasoning, or tree search by hypo-
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FIGURE 13. Hough (Pose) Clustering

thesize-and-test. The system may not be the most efficient for the particular object in the

scene. An interpretive system sacrifices speed for generality and flexibility. ACRONYM is

an example of an interpretive system.

(4) Precompiled search strategy embeds the relevant control knowledge into the object model

and compiles it into a recognition strategy off-line. As a result, little computation is done

during the process of recognition. The work by Goad[35] and Ikeuchit361 are examples of
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this approach. The advantage of precompilation is that recognition is fast but at the cost of

loss of generality.

It is possible to further categorize search strategies into distributed vs. centralized

search strategies. In distributed search several processes cooperate to come up with an

interpretation whereas in centralized search the control strategy is located within a central-

ized control module. Most of the 3-D object recognition systems to date employ a central-

ized search strategy.

15.5.3. Shortcomings of 3-D Scene Interpretation Systems

Our study of the state-of-the-art brings out certain fundamental shortcomings of

existing computer vision systems especially those that deal with three dimensional scene

interpretation. Of these, the two most important ones are : (i) Inadequacy of any one single

level of representation and (ii) Inadequacy of a constraint propagation technique based on any one

single level of representation. There are two broad categories of representation: (i) Graph-

theoretic representations which typically use global features and (ii) Representations which

use local, primitive geometric features. Graph-theoretic constraint propagation and con-

straint satisfaction techniques such as subgraph isomorphism and maximal clique detection

are well suited for graph-theoretic representations. On the other hand, for representations

which use local, primitive geometric features, constraint propagation/constraint satisfaction

techniques that rely on propagation of geometric constraints that arise out of the matching of

local geometric features are used. Both have their advantages and disadvantages. Graph-

theoretic representation and constraint propagation techniques based on global features

enable fast and efficient recognition but are not robust to occlusion. Representations based
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on local geometric features are robust to occlusion but the corresponding constraint satisfac-

tion techniques are computationally intensive. State-of-the-art 3-D scene interpretation

systems are committed to one or the other level of representation and constraint propaga-

tion. For both robustness and efficiency in 3-D scene interpretation, both levels of represen-

tation and constraint propagation need to be effectively integrated into a single framework.

Since graph-theoretic representations require extensive preprocessing of the image data,

the control strategy could be said to be largely data-driven. Recognition and localization

techniques which rely on representation, and constraint propagation techniques based on

primitive geometric features, have a model-driven control strategy since the preprocessing of

image data is minimal and matcning takes place very early in the recognition and localiza-

tion process. State-of-the-art 3-D scene interpretation systems, due to commitment to one

or the other level of representation or constraint propagation, are also committed to one or

the other form of control strategy. Thus, integration of both levels of representation and

constraint propagation also entails integration of both model-driven and data-driven control

strategies.

Another shortcoming of existing 3-D scene interpretation systems is the lack of

effective integration of symbolic and numerical processing. Feature extraction and constraint

propagation techniques which operate on low-level image representations deal with largely

numerical data whereas constraint propagation techniques which deal with high-level image

representations deal with symbolic data. Thus, an effective integration of multiple levels of

representation and constraint satisfaction also entails an effective integration of symbolic

and numerical processing.

Another shortcoming of existing 3-D scene interpretation systems is the fact that the

scope for parallelism has not been fully exploited. Low-level processes such as edge extraction,

surface fitting, and region growing are easily amenable to parallelism and have been well-
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discussed in the literature. On the other hand, parallelization of high-level vision processes

has received much less attention and needs to be explored.

A coupled systems approach to problem-solving in 3-D scene interpretation and com-

puter vision in general would alleviate most of the shortcomings of existing 3-D vision

systems. We propose the use of object-oriented techniques for integrating symbolic and nu-

merical processing in computer vision. Object-oriented programming techniques have sev-

eral features of interest which can be exploited in the context of computer vision:

(1) Representation at multiple levels of granularity : By use of object-oriented tech-

niques for representation, objects can be represented at multiple levels of granular-

ity. Organization of the representation into PART/SUBPART and CLASS/SUB-

CLASS hierarchies makes the choice of appropriate granularity of representation

possible.

(2) The constraint propagation technique is made to be part of the representation : This

enables the problem-solving mechanism to choose the constraint propagation

mechanism best suited for a particular granularity of representation. Constraint

propagation and constraint satisfaction can be achieved at multiple levels of abstrac-

tion. Representation of both geometric primitives and geometric constraints as ob-

jects makes this possible.

(3) Flexibility of control structure : Since the constraint propagation/constraint satisfac-

tion mechanism is a part of the representation, aspects of control which are specific

to a particular representation are encapsulated within the object definition. There are

two aspects of control: (i) Strict top-down planning, in which the sequence of opera-

tions are known a-priori. This is typical of a precompiled control strategy; And (ii)

Searching, in which the sequence of operations are obtained by searching through a
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search tree of alternatives using a hypothesize-and-test procedure. This is typical of

an interpretive control strategy. One could envisage a control strategy in which the

overall control strategy is organized as a search through precompiled plans. By treat-

ing precompiled plans as components of an object-oriented representation, one can

achieve both speed of precompilation and the flexibility of an interpretive control

scheme.

15.5.4. Implementation Issues

Practical implementation of an object-oriented system for coupling symbolic and

numerical processes in 3-D scene interpretation systems would involve (a) choice of ob-

jects, (b) choice of descriptors which would form the indexing criteria for the objects, (c)

choice of methods to be associated with each object, and (d) design of control schemes

suited for an object-oriented environment

Choice of Objects :

The object types that we have in mind are : (1) Primitive objects, (2) Composite

objects, (3) Constraint objects, (4) Class objects, and (5) Matched objects.

(1) Primitive objects : As pointed out by Ramamoorthy and Sheu[371, the choice of

primitive objects and the choice of representation granularity for these primitive ob-

jects is crucial to the design of any object-oriented system. A choice of representa-

tion that is very coarse-grained may lead to loss of detail whereas very fine-grained

representation for objects may lead to excessive overhead in inter-object communi-

cation. For our specific problem, we have a natural hierarchy of primitive objects.

These are: (a) points, (b) boundary segments which are a collection of adjacent

boundary points and which satisfy a certain smoothness or continuity criteria, (c)
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boundaries which are a collection of boundary segments linked together (Boundary

segments are linked together at points of discontinuity, i.e. corners or cusps), (d)

surface regions which are a collection of surface points, and (e) surface patches

which are made up of surface regions bound by surface boundaries. For our purpose,

we will initially choose surface regions and surface boundary segments as the primi-

tive objects for the purpose of recognition. Points will be treatcd as implicit compo-

nents of the representation for surface regions and surface boundary segments rather

than as independent objects.

(2) Composite objects : Composite objects will be created from primitive objects.

The process of composition creates a PART-OF hierarchy. Composite objects con-

tain a list of their component parts and constraints between their component parts.

Creation of composite objects is necessary for: (a) data abstraction, i.e. generating a

higher level description of scene data, and (b) representing complex object models in

terms of their simpler constituent component parts.

(3) Constraint objects : Constraints between objects will be represented explicitly as

objects. Each constraint object contains slots for: (a) The constraint type, (b) The list

of object types that qualify for the constraint, and (c) Symbolic/Numerical represen-

tation of the constraint.

(4) Class objects : All of the previously mentioned objects could be arranged in a

CLASS-SUBCLASS hierarchy. A typical class object contains slots for: (a) Object

type, (b) Constraints on the object type which provide the class definition, and (c)

Slots for class specialization/generalization. Class objects will be used to classify

primitive objects into object classes. The approach that we will pursue for the classifi-

cation of primitive objects is as follows: For surface regions the classification is done
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based on the signs of the Mean and Gaussian curvature. The Mean and Gaussian

curvature values are used to classify surfaces into eight basic qualitative surface

region types. This classification is further refined based on metrical values of the

Mean, Gaussian and principal curvature values. For surface boundary segments, the

classification is done based on qualitative attributes such as boundary edge type, i.e.

step, roof or crease, and boundary geometry, i.e. straight, curved, closed, etc. These

qualitative attributes are further refined based on metrical properties of curvature.

Object models are classified based on: (i) number and orientation of subparts, and

(ii) dimension of the object models and/or dimension of their subparts etc. Con-

straints are classified either relational or transformational. Relational constraints

constrain the relative geometry of two objects whereas transformational constraints

compute the relative coordinate transformation between two objects. Relational con-

straints are classified based on qualitative properties such as adjacency and contain-

ment. These constraints are further refined based on distance between centroids,

relative orientations based on curvature values, length of the common boundary, etc.

These classifications need not be a strict tree-based hierarchy in many cases. A

lattice-based hierarchy with multiple inheritance would be allowed.

(5) Matched objects : Matches between objects generated from the scene description

and prestored objects will be represented as objects. The matched objects contain

slots for: (a) describing the objects matched, and (b) constraints imposed by the

matching process. The constraints imposed by the matching process serve two pur-

poses: (i) to refine the classification of the objects by propagation of constraints

through the CLASS-SUBCLASS hierarchy, and (ii) to determine or refine the pose

of the object with respect to the viewer.
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Choice of Descriptors for Objects :

The descriptors for objects will be used to form the indexing criteria by which the

objects should be accessed. These descriptors will be qualitative at coarse levels of descrip-

tion. For surface regions the signs of the Mean and Gaussian curvature may serve as qualita-

tive indexing criteria whereas for boundary segments qualitative attributes such as step,

roof, straight and curved may serve as qualitative indexing criteria. These qualitative de-

scriptors will be further refined to more quantitative or metrical descriptions based on cur-

vatu're properties.

Representation of Methods associated with each Object

In object-oriented approaches the numerical procedures (or methods) should be

encapsulated along with the symbolic description of the objects they act upon. For our prob-

lem the important procedures to be represented are: (i) low-level algorithms such as seg-

mentation and feature extraction, and (ii) control procedures such as constraint propagation

and precompiled recognition strategies.

In object-oriented approaches the numerical procedures (or methods) should be

encapsulated along with the symbolic description of the objects they act upon. For our prob-

lem the important procedures to be represented are: (i) low-level algorithms such as seg-

mentation and feature extraction, and (ii) control procedures such as constraint propagation

and precompiled recognition strategies.

The methods associated with each object are

(1) Algorithms for image segmentation associated with a certain object type : Most

image segmentation algorithms are fine-tuned for a certain object type. For example

detection of step edges needs a different set of operations as compared to detection
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of roof or crease edges. Segmentation algorithms can be also be refined based on the

object type. Segmentation algorithms for general surfaces incorporate weak criteria

based on qualitative properties for clustering such as continuity, adjacency, and con-

tainment. Segmentation algorithms for specific surfaces do incorporate clustering

criteria based on very specific assumptions about the surface type. For example,

clustering of surfaces based on assumption of cylindrical surfaces would incorporate

the assumption of zero Gaussian curvature.

(2) Algorithms for feature extraction associated with a certain object type : These

feature extraction algorithms are tuned for a certain granularity of representation of

that particular object type. A point-wise surface normal and surface curvature repre-

sentation is the most general representation for the object-type surface. Thus feature

extraction algorithms for extraction of point-wise surface curvatures and surface

normals are encapsulated in the object-type surface. For cylindrical surfaces, a rep-

resentation based on the length and direction of axis and radius of curvature would

be more appropriate. Likewise, feature extraction algorithms for the extraction of

the magnitude and direction of the axis is made part of the object cylindrical-surface.

(3) Algorithms for constraint propagation and constraint satisfaction suited for a

certain granularity of representation of that object type : Constraint propagation and

constraint satisfaction techniques for matching are well suited for a certain granular-

ity of representation. Hough clustering techniques are well suited for fine-grained

representation whereas graph-theoretic techniques such as sub-graph isomorphism

and maximal clique finding are better suited for symbolic representations. These

constraint propagation and constraint satisfaction techniques should be made a part

of the representation of the appropriate object.
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(4) Precompiled recognition strategies : Precompiling recognition strategies for ob-

ject recognition in a bin-picking scenario has already been addressed by Goad[35I

and Ikeuchi[361. The bin-picking scenario is a rather simplified one compared to the

one we are addressing. The bin-picking problem is simplified by the fact that one is

only interested in the topmost object in a pile of objects and the identity of the object

is known a priori. In a general object-recognition scenario such as ours, precompiled

recognition strategies would have to be triggered when there is sufficient evidence

available for the presence of a certain object. These precompiled recognition strate-

gies would be a part of the representation of object model in question along with the

criteria for triggering them.

Design of Control Schemes suited for an Object-Oriented Environment : The following

issues have to be dealt with in the design of control schemes :

Embedding Semantics : Object-oriented techniques, though well suited for represen-

tation, are weak and incomplete when it comes to making inferences. Object-ori-

ented representations need to be augmented by semantics which would form a part of

the control structure. The incorporation of semantics (such as rule-based semantics)

should greatly enhance object-oriented representation by saving the need for explicit

representation in many cases. The following type of semantics will be embedded in

our framework:

(1) Semantics for method specialization : Since the objects are arranged along sev-

eral hierarchies such as CLASS-SUBCLASS and PART-SUBPART it is necessary to

come up %ith semantics for method/specialization and method generalization. By the

use of semantics one should be able to generalize/specialize methods by traversal of

the object hierarchy.

- 59 -



(2) Semantics for multiple inheritance : As mentioned earlier, it is possible for ob-

jects to inherit properties from more than one class. Thus it is necessary to develop

semantics for method specialization/generalization which would take into account

multiple inheritance.

(3) Design of message passing protocols between objects : Design of message pass-

ing between objects should take into account: (i) method selection, (ii) argument

passing to the appropriate method, and (iii) propagation of the result.

How this semantic knowledge is to be represented is a difficult problem. Our first

attempt at this problem will be to embed the semantics for specialization in the most

general object category possible. The problem of multiple inheritance is more diffi-

cult and requires a careful study. Our aim is to keep the control as simple as possible.

Our policy would be to encapsulate much of the semantics which is specific to a

particular object type along with the definition of that particular object.

Control of problem-solving in multi-layered constraint nets : At any stage in the

recognition process, the state of problem-solving will be expressed as a network of

constraints. The nodes in the network correspond to objects, and links in the network

correspond to constraints between the objects. Both objects and constraints between

objects will be expressed at multiple levels of resolution and multiple levels of refine-

ment along CLASS-SUBCLASS and PART-SUBPART hierarchies. Control of prob-

lem solving in multi-layered constraint nets is therefore an important issue that will

have to be studied.

In order to keep the overall control of problem solving as simple as possible, we plan

to organize the top-level control as a simple search process through multiple hierar-

chies coupled with Waltz filtering to improve efficiency. Control strategies which are
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specific to a certain object definition are made a part of the representation of that

object. Since the descriptions of objtcts and constraints at a coarse level of resolution

are qualitative, qualitative reasoning will play an important role in pruning the space

of possible interpretations. The search process through multiple hierarchies could be

organized as :

(1) Data-driven Search : Searching upwards through the PART-OF hierarchies for

combining hypotheses. This is an essential part of data abstraction.

(2) Model-driven Search : Searching downwards through the PART-OF hierarchies

to search for missing objects. Feature extraction and segmentation techniques associ-

ated with those objects are invoked during the downward search. This is an essential

aspect of model-guided segmentation.

(3) Goal-directed Search : Searching downwards through the CLASS-SUBCLASS

hierarchy in order to refine the classification.

(4) Failure-directed search : Assuming that objects in the same level of the hierarchy

are connected by similarity links, a sideways traversal across the similarity links in the

event of failure would constitute a failure-driven search.

All the above-mentioned issues need to be addressed in the practical implementa-

tion.
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15.6. STATUS OF CURRENT I.2LEMENTATION

In order to study coupled systems in the context of computer vision, the problem

of 3-D object recognition from range data in a multiple-object scene with partial occlusion

was considered. This problem is of considerable theoretical and practical interest. It is en-

countered in several scenarios such as robot bin-picking, automated industrial inspection,

autonomous navigation, etc. The two main problems encountered when diealing with a multi-

ple-object scene are: (i) combinatorial explosion of the search space of scene interpreta-

tions, and (ii) generation of spurious scene interpretations. Thus, the issues of representation

and constraint propagation/satisfaction were dealt with primarily with the following objectives

in mind: (a) reducing the combinatorial complexity of the search space of possible scene

interpretations, and (b) ensuring robustness agair-t occlusion.

Our work thus far has brought out the advantages ot using qualitative features to

achieve these objectives. With Hough clustering as the chosen constraint propagation/satis-

faction technique, three problem scenarios of increasing complexity were used to demon-

strate the effectiveness of using qualitative features for recognition and localization: (i)

recognition of polyhedral objects, (ii) recognition of curved surfaces, in particular, conical,

cylindrical and spherical surfaces, and (iii) complex objects made up of piecewise combina-

tions of conical, cylindrical, spherical and planar surfaces. The results are analyzed both in

terms of accuracy and robustness against occlusion. The choice of Hough clustering as the

constraint propagation/ constraint satisfaction technique was governed by the fact that it is

easily amenable to parallelism.

This research clearly shows the role of qualitative features in recognition and

localization. Qualitative teatures provide :

(1) An effective means of reducing the combinatorial complexity of the search space of
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possible scene interpretations. In the context of Hough clustering this translates to being

able to suppress spurious peaks in the Hough space.

(2) An effective criteria for choosing the appropriate representation for the image data

(scene features), object models (model features) and constraints resulting from matching

scene features to model features. In the context of Hough clustering this translates to choos-

ing the appropriate parameter space in which to compute the object pose.

The advantage of using qualitative features for recognition and localization was

brought out through our experiments in all three aforementioned problem scenarios. The

use of qualitative features was shown to greatly enhance the performance of conventional

Hough clustering in terms of both: (i) robustness of the recognition process, and (ii) accu-

racy of the localization process.

The use of qualitative features can be seen as a criteria for selection of the appropri-

ate granularity of representation and constraint propagation. Thus qualitative features

would serve as an indexing criteria in a coupled systems approach to problem-solving in

computer vision.
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15.7. FUTURE DIRECTIONS

The work done so far has brought out the advantages of using qualitative features

as a means for indexing into appropriate representations and method selection for three-

dimensional object recognition. The fu'ure directions can be briefly outlined as follows

(1) Implementation of an object-oriented framework for 3-D object recognition in C++ or

CLOS.

(2) Tackling other vision problems in the framework of coupled systems namely motion,

texture and stereo.

(3) Parallel implementation of constraint propagation / constraint satisfaction algorithms

for vision problems.
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