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18. 1 INTRODUCTION

18. 1.1 THE DATA FUSION PROBLEM

Classical signal processing has always relied on the data available from one

sensor, which is then utilized for tasks such as detection, classification, identifica-

tion, estimation and situation assessment. However, more recently, increasing

awareness of the use of passive, low-observable sensors supporting active systems

such as radar and Increased availablility resulting from a remarkable decrease in

the cost of the associated hardware has given rise to a trend towards the employ-

ment of multiple sensors. Using a variety of methods, such as radio frequency,

infrared, and electro-optics which utilize almost the entire range of the electromag-

netic spectrum, these sensors can detect, identify and classify objects.

18. 1. 1. 1 PROBLEM BACKGROUND

The merging of diverse data, available as a result of employment of a variety

of sensors, into a single sensible representation has emerged as an important issue

in today's C31 systems. Data fusion includes the collection, association, aggrega-

tion, and merging of data to create and display a coherent representation of current

and prior situations. In a sensitive environment, the most crucial aspect is thc

ability to assess and anticipate an evolving situation. The perception of the situ-

ation is a prerequisite for an appropriate response. The resulting increasc in the
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quantity, quality and rate of information in such systems has dictated the move

towards the development of efficient multisensor integration or data fusion ap-

proaches.

This move has placed certain requirements on the fusion system. A fusion

process should be able to accommodate real world sensors which respond at differ-

ent intervals and in quite different event spaces. The sensors may be similar or

dissimilar, they may provide different types of data, they may have different de-

grees of accuracy and perception. The information fusion system would need to

take into account the quantitative, qualitative or subjective results being provided

by the sensors. It must also be able to provide the fused result in more than one

output class or event space and in a proper form of representation where the num-

ber of different output classes is dependent on the requirements of the user com-

munity.

There are a number of advantages of multiple -sensor information fusion

These are better performance, survivability, quicker response, reliability, increased

dimensionality etc. Figure 1 lists the major benefits of multiple-sensor data fusion

systems over single-sensor systems [11.

18. 1. 1. 2 POSSIBLE APPROACHES

Three main options which one could consider for a satisfactory solution to the

problems encountered by the growing need for accurate and timely perceptions

(detection and classification) are discussed below.
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AdvantagesrofoData Fusion)

Extended spatial coverage improved detection, tracking, Reduced vulnerability: the system
identification when data is inte- would be less vulnerable to en-provided by multiple, over- grated from multiple looks at the emy action or natural phenome-

lapping sensor fields, target non because it is employing

Reduced ambiguity in data: broader range of the electromag-

set of hypotheses about the Increased detection probability netic spectrum.

object is reduced. due to the merger of informa-
tion from multiple sensors. Ef- Robust performance is achieved

Multiple sensors can geomet- fective integration and coherent because if some of the sensors

rically form a synthetic aper- representation of the object in- are unavailable or jammed or

ture capable of greater resolu- creases the surety of detection. lack coverage for physical or op-
erational reasons, the remaining

tion than a single sensor can

form. System reliability can be im- sensors can contribute informa-

proved because there is an inher- tion.

ent redundancy with multiple

sensors. Sensor subsets can be used to re-
duce observability or conserve re-

sources etc.

Figure 1 BENEFITS OF MULTIPLE-SENSOR DATA FUSION SYSTEMS

OVER SINGLE-SENSOR SYSTEMS
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'he first possibility could be a system that lets a human operator control and

monitor data from the sensor bank, and draw appropriate conclusions. The pri-

mary advantage of this approach is that the operator or system operator can inter-

pret sensor data in the context of a broad range of situations and experience,

which allows him to anticipate certain threats, and ignore those areas which do not

seem to be of immediate concern. The drawback is that operator workload quickly

becomes unmanageable.

Another approach [2] is to make a hard-wired semiautomatic system by tailor-

ing special-purpose combinations of sensors into "super-sensors." These provide

information about a narrow range of situations but lack both the scope and the

flexibility to be of more general use.

The third approach could be to build an automatic system that can operate a

variety of sensors, and employs artificial intelligence(AI) based techniques to de-

tect objects of interest, integrate, interpret and classify their data, and have the

flexibility to adapt to changing situations. The Al based technique would provide

means for integrating knowledge and techniques of multiple expert systems, those

which have different but possibly overlapping expertise, thereby enabling the solu-

tion of problems whose domains are outside that of any one expert system or

knowledge source. This approach would combine at least two avenues, a classical

statistical approach, and an approach comprising the elements of probability the-
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ory and symbolic inference mechanisms. This report is devoted to the description

of the development of one such system.

18. 1. 1. 3 LITERATURE REVIEW

An approach to interpret sensor data in the context of a priori models was

employed by Garvey and Fischler[21. Their method can be loosely characterized

as the following three step process: anticipat probable threats, W= a sensor utili-

zation strategy and interprCt the data returned by the sensors. Techniques for inte-

gration of data derived from a collection of sensors, and prior knowledge, in order

to assess a hostile air-defense situation[2] can be used to provide up-to-date in-

formation about potential ground-based threats to a flight of aircraft attempting to

penetrate hostile airspace.

Aircraft ID fusion has been discussed by Vannicola and Mineo[3]. The objec-

tive of the program is to develop and demonstrate multisensor aircraft identifica-

tion fusion processes. It consists of:

i) the a priori data base,

ii) the Source Probability Matrix(SPM) for each of the data sources which meas-

ures event characteristics and,

iii) the processing logic which develops and employs the mapping matrices, per-

forms the "fusion" of all single events into a joint event and employs Bayes Theo-

rem for the joint event thereby developing the posterior probability distributions

over each of the selected output target classes.
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A Bayesian approach has shortcomings in that: no adequate representation of

ignorance is allowed within a Bayesian framework. For example, if no information

is available concerning two initially exclusive and exhaustive possibilities, in a

Bayesian framework, they are usually assigned a probability of 0.5. This is quite

different from specifying that nothing is known regarding such propositions. An-

other problem with a Bayesian approach is the difficulty of ensuring and maintain-

ing consistency in a collection of interrelated propositions. This is because the

underlying models from which the point probability values are derived are incapa-

ble of supplying such precise data. In these situations, a formal method for inte-

grating knowledge derived from a variety of sources makes use of Shafer's[4]

mathematical theory of evidence and is called 'evidential propositional calculus.'

Bayesian approach is a special case of this more general methodology. It has the

capability of providing for Bayesian inferencing when the appropriate information

is available.

Shafer-Dempster logic has been discussed and described by Bogler[5] while

placing emphasis on providing realistic examples from the field of multisensor

target identification systems and on simulating its operation. His paper and the

references contained therein address the questions such as, how evidential infor-

mation furnished by a knowledge source in the form of a probability distribution

can be converted into a form suitable for an application of Shafer-Dempster the-

ory? How multiple bodies of evidential information can be pooled?

-6-



A lack of knowledge of the exact conditional probability distributions for the

various possible states of evidence and the fact that successful inference networks

cannot usually be developed directly from Bayes' rule has also led to the develop-

ment of another approach, where a hierarchy of "fuzzy" assertions or hypotheses

has been developed and used. See Tanimoto [6: Chapter 7] for a very good discus-

sion of the Probabilistic Inference Networks using fuzzy inference rules. These

fuzzy inference rules are used to obtain probabilities for other hypotheses, given

the evidence.These rules are functions for propagating probability values. The gen-

eral form is:

f: [0, 1]' -- [0, 1].

Thus, a fuzzy inference rule takes n probabilities as arguments and returns a single

probability. The choice of f for a particular situation is a modeling decision that

requires some understanding of the relationship among the phenomena described

by the hypotheses. He also discusses the updating in inference networks using

Subjective-Bayesian updating rules and handling uncertain evidence and the

Dempster-Shafer calculus. The emphasis in his discussion is on the practical as-

pects of the data integration problems.

On the other hand, work on the analytical issues of data fusion[7-9] with

emphasis on the detection and estimation problem has addressed the hypothesis

testing problem in distributed systems with data fusion, optimal decision rules at

the detectors, optimal fusion rules for the distributed hypothesis testing problems

-7-



using the Neyman-Pearson criterion, the general Bayesian criterion, and the mini-

mum equivocation criterion, to name a few. For details, the reader is referred to

the above mentioned reports[7-9] and the references contained therein.

Finally, a highly automated, low-cost, intelligent, distributed sensor network

(DSN)[101 might need to address questions like, "What computer network organ-

izational structures are best suited to the situation assessment task?" Two general

DSN organizations were tested by the authors; the first was hierarchical and the

second was an "anarchic committee" whose nodes could each send messages to

one, some, or all other nodes. The performance of the committee organization

consistently surpassed the hierarchical one. This indicates that distributed sensor

networks should emphasize the cooperative aspects of problem-solving.

In this report, we shall discuss the application of data fusion to the object

classification problem which is discussed next.
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18.1.2 OBJECT CLASSIFICATION PROBLEMS

18.1.2.1 INTRODUCTION

In the data fusion problems discussed in the previous section, it is desirable to

not only detect an object in the field of illumination of a sensor, but also to know

something more about the object than its mere presence e.g., the identity of the

object may be required. This is where object identification and classification tasks

move in. Classification which also appears to be a powerful human strategy for

organizing knowledge for comprehension and action is our topic for discussion in

this section.

Classification, also sometimes called categorization, as an information proc-

essing task is one in which the input is a collection of data about some specific

entity e.g., an object, a state, a case, or a situation, and the output is the general

category or categories pertaining to the entity. This mapping could be accom-

plished in a number of ways. The computational complexity of the classification

task increases with the increase of the amount of data about the entity to be classi-

fied and the number of classification categories.

18. 1. 2.2 LITERATURE REVIEW

Most of the literature on pattern classification deals with simple (no context)

Bayes classifiers. For a broad understanding of various pattern recognition tech-

niques, readers may refer to the books by Duda and Hart[1], Chen[12],

-9-



Fukunaga[13], Meisel[14]. For multispectral pattern recognition and classification

problems, a very complete survey is given by Nagy[15].

Wu[16] has presented a multistage classification strategy called the decision

tree classifier. The decision tree classifier is characterized by the fact that an un-

known sample is classified into a class using one or several decision functions in a

sequential manner. To achieve the best possible performance with a classifier of

this type, the design of the decision stages is of considerable importance. The

choice of tree structure and the choice of appropriate feature subsets used at every

'node' will be reflected in the performance (classification accuracy) and efficiency

(computation time used). Wu used a maximum likelihood decision rule at each stage

of the tree.

Sands and Garber[17] evaluate a syntactic pattern recognition system for ap-

plications to radar signal identification. Three different level-crossing based pat-

tern representation algorithms are considered. The utility of resulting symbolic

pattern representations is assessed by evaluating the performance of a maximum-

likelihood classifier when the observed symbol strings are used as inputs to the

decision algorithm. A syntax analysis algorithm is derived from the likelihood

function classifier. Performance results of simulated classification experiments for

both maximum-likelihood and language-theoretic classifiers are presented.

The Wald sequential probability ratio test to the discrimination of targets ob-

served by a radar or other sensors was applied by Therrien[18] and a form for the

-10-



classifier involving linear predictive filtering was developed.The classifier is based

on some well-known results in mean-square filtering theory and has a simple

intuitive interpretation. The classifier structure can also be related to auto regres-

sive time series analysis and innovations process concepts and has an interpreta-

tion in the frequency domain in terms of the maximum entropy and maximum

likelihood spectral estimates for the object signatures. In his sequential approach, a

target is illuminated with consecutive pulses until a classification of the target can

be made within a prescribed probability of error. Because of the linear-predictive

formulation, the computation and storage requirements for the classifier are re-

lated only to the number of returns necessary to predict the target signatures and

not to the length of signature observed. A classifier with modest storage and com-

putational requirements can be employed to process signatures consisting of an

arbitrarily large number of returns.

Ezquerra and Harkness [19] suggested that the simplest classification algo-

rithm is the linear machine, based on Fisher's linear discriminant (FLD) function

[11]. In this procedure, the feature vector is reduced from a multidimensional

vector to a one-dimensional quantity by summing the weighted features to form

one variable; the resultant variable is then compared with a threshold value which

determines the classification decision. A second approach is based on the Ncarest

Neighbor (NN) rule by Duda and Hart [11]. In this approach, feature vectors are

stored such that the distances between these stored prototypes and feature vector

-11-



of an unknown origin can be calculated. The FLD classifier is faster and simpler

that. the NN technique. In addition, the latter requires more memory in order to

store the prototypes for later comparison. However, the NN technique retains the

full dimensionality of the data, thereby allowing the classifier to exploit the charac-

teristics of the underlying probability density functions in the feature space.

Classification of more than two radar targets simultaneously can be accom-

plished by extending the linear discriminant analysis to the multiple-category case.

For a set of R categories: a set of R discriminant functions are constructed, thereby

irtitioning the feature space into R decision regions. The resulting classifier is a

piecewise linear discriminant (PWLD) function, and an unknown feature vector is

assigned to the class corresponding to the largest discriminant function. Clustering

techniques provide a valuable aid in investigating the inherent characteristics and

structure of the object classes. A good discussion of the clustering techniques has

been provided in [19].

Rosenfeld[20] has suggested computational techniques that could serve as a

basis for object recognition and classification. He has also discussed traditional

paradigms for characterizing and recognizing complex classes of objects, and

points out some of their serious limitations. Attempt has been made through con-

jectures at the human way of characterizing object classes and use of parallel

hardware has been suggested for rapid recognition of objects. His approach con-

-12-



sists of three stages: part segmentation and property value computation, broadcast-

ing and constraint checking.

Welch and Salter[21] laid the basic foundation for contextual pattern classifi-

cation. They used compound decision theory to introduce contextual information

into the decision scheme. Fu and Yu[221 have discussed the compound decision

approach to contextual classification and proposed a spatial stochastic model for

contextual classification. Interested reader is referred to the book[22] and the ref.

erences contained therein.

Finally, a very exhaustive review of classification task from the perspective of

the knowledge-based reasoning, pattern recognition, and connectionist paradigms

in artificial intelligence has been done by Chandrasekaran and Goel [23]

18.1.3 REPORT ORGANIZATION

In this report, a blackboard based Distributed Artificial Intelligence(DAI) system

is described. Our aim is to describe and demonstrate an artificial intelligence

based technique as an answer to today's growing need for automation of informa-

tion fusion and object classification.

in section. 18. 2 we discuss DAI and why it is suitable for the present day needs of

multisensor integration systems. Implementation languages and systems along with

blackboard architectures have also been discussed.

-13-



Sect ion 18. 3 presents the overall system architecture of our DAI system. Use of

sensed information as three levels of expert reasoning is discussed. Finally, the

organization and operation of the system is presented.

Section 18.4 is devoted to the validation of our system. The concepts and the

system presented in the previous chapter are demonstrated by using two knowledge

sources which model corresponding sensors supplying the data. Use is made of the

data base, generated at the Ohio State University, which consists of calibrated

complex (coherent) radar returns measured at various azimuth angles, frequencies

and polarizations, along with the ellipticity data. Finally, sample implementation is

presented.

To conclude the report the summary of the work done and the possible exten.

sions are presented in section 18. S.

-14-



18.2 DISTRIBUTED ARTIFICIAL INTELLIGENCE

18. 2. 1 INTRODUCTION

Distributed Artificial Intelligence (DAI) is the subfield of artificial intelligence

(Al) concerned with concurrency and distribution in Al computations, at many

levels. Several recent developments have provoked an interest in DAI: the develop-

ment of powerful concurrent computers, the widely prevalent computer networks,

and the recognition that much human problem solving and activity involves groups

of people, schools of thought, and varying degrees of expertise or knowledge.

Elements of an artificial intelligence system are said to be distributed if there

is some distancel between them [241. In some domains where Al is being applied,

e.g., distributed sensing, medical diagnosis, air-traffic control, knowledge activity

in the problem domain is inherently distributed and a DAI solution is highly appro-

priate. Since information fusion and object classification belong to this domain,

after discussing uses and issues related to DAI we shall investigate the possibilities

of its application to our problem.

The following are typical rationales for using distribution in artificial intelli-

gence systems.

Adaptability: Logical, temporal, semantic, and spatial distribution allows a

It is meant to be conceptual distance, with respect 1o some frame such as time, space, semantics, etc.
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DAI system to provide alternative perspectives on emerging situations, and greater

adaptive power.

Development ease: Each part of the intelligent system could be developed

separately by an expert in a particular type of knowledge or domain.

Cost: A DAI system could be cost effective because each unit would be made

of components which are simpler and smaller and hence low cost computer sys-

tems However, communication and computing tradeoff has to be considered here,

which is discussed later.

Operational speed: Concurrency can increase the speed of computation and

reasoning. It may also open up the arena of parallelism.

Ability to treat specialized and dynamic knowledge: Knowledge or action may

be collected in specialized, and bounded contexts. It may be represented by ex-

perts who have partial view of the entire problem. Addition of specialists for

changing situations is no difficult task and hence the system as a whole would be

capable of handling dynamic knowledge.

Closeness to the human way of problem solving and management: It is very

natural for humans to attack a problem in a distributed form. Most of the organiza-

tional structures in the human society also incorporate this principle.

Reliability: Distributed AT systems may be more reliable than are centralized

systems because they provide redundancy, cross-checking, and triangulation of

results [251.
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The major issues involved in the construction of a DAI system can be summa-

rized as follows:

1) the appropriate distribution of subproblems among the processing nodes,

2) the choice of the control strategy in such a way that global coherence is main-

tained during the problem solving, the knowledge sources are utilized efficiently

and optimum performance is achieved.

3) the specification of the communication policies for easy interaction among proc-

essing nodes. The processing nodes should cooperate when none of them has suffi-

cient information to solve the entire problem, i.e., each has a partial view of the

problem. The sharing of information becomes crucial when the system as a whole

is to produce consistent results.

The use of DAI usually reduces the communication bandwidth needed in a

distributed processing system, because the nodes communicate only higher-level,

which is not so data intensive and is in a more abstract form. The tradeoff between

communication and computation should be considered at the time of system de-

sign. This is because costs of communication are expensive compared to the costs

of computing elements at present.

18.2.2. IMPLEMENTATION FRAMEWORKS & TOOLS

A variety of software tools and frameworks have been developed by the DAI

researchers to express solutions to the basic questions of DAI and to enable experi-

mentation with different approaches in different domains. The reasons why we are
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concerned with the particular tools currently being used are:

a) research tools help verify theoretical insights through hard, real-world experi-

mentation. So the difficulty of constructing complete theoretical analysis is

avoided.

b) the research issues which cannot practically be theoretically modeled due to

their complexity can be handled.

c) some tools are designed to express ideas important to the domain and,

d) experimentation is a useful way of getting sometimes surprising results.

An overview of available implementation languages and systems and the black-

board architectures is in order.

18. 2. 2. lmplementation Languages and Systems

Any discussion of implementation frameworks and ideas for DAI systems

should include the integrative systems and distributed languages which offer great

flexibility in problem solving styles and inter-node or inter-agent organization.

These provide a way to handle the important area of description and diagnostic

mechanisms for DAI systems.

Tokoro and Ishikawa's[26] OREENT84/K system supplies a language for pro-

gramming using concurrent objects. In the modeling method proposed by them

called DKOM (Distributed Knowledge Object Modeling) a knowledge system con-

sists of a behavior part, a knowledge part, and a monitor part. They have discussed
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an expert system built using ORIENT84/K and its performance is compared with

some other programming languages/systems.

MACE (Multi-Agent Computing Environment) [271 is a generic testbed allow-

ing the integrated representation of problem solving and communication structures

of different grain size and interaction style. MACE "agents" are concurrent ob-

jects, consisting of a user-definable procedural part called an engine, along with a

collection of databases. Designed for experimentation and implementation in a

heterogeneous multicomputer environment, the MACE system includes user-con-

trolled tracing and monitoring facilities.

The AGORA environment[28] has been designed as a part of a large speech

recognition project. It allows the integration of multiple languages and highly paral-

lel computations. Another architecture, ABE [291 supports the integration of col-

lections of independent cooperating problem solving components of several differ-

ent grain sizes and problem-solving styles. ABE processors can manage resources

locally, because resources are passed with control flow among modules.

A family of languages known as distributed, object oriented languages (DOO

languages)[24] is a natural framework for implementing concurrent DAI systems.

Message communication allows interobject interaction in these languages. The ob-

jects are the building blocks with data and procedural abstractions of objects being

described. Language processors and underlying kernels implement allocation, load

balancing, addressing and message-routing schemes invisible to the programmers.
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18. 2 , 2. 2 Blackboard Architectures

Blackboard architectures have become a popular paradigm for developing

knowledge-based systems and are becoming a mainstay of many projects in DAL

Conventional blackboard architectures incorporate a shared common data area or

blackboard as the common medium for memory and interaction among a collection

of knowledge sources. A blackboard architecture instantiates a three step process:

1) Identify the set of permissible next computations

2) Select the next computation from among the permissible computations

3) Execute the selected computation.

The collection of knowledge sources may read and write on one or more levels,

under the supervision of a control system. Control in typical blackboard systems is

sequential and organized by a centralized scheduler, but the knowledge sources

work with semantically disparate rules or procedures. It may also be a system of

concurrency locks, or a collection of integrated control-knowledge sources.

The use of blackboard based architectures for the implementations of DAI

systems has been quite widespread. The blackboard architectures were introduced

for the first time in Hearsay Speech Understanding System[30]. The functional

independence of knowledge sources, flexibility in the choice of control strategy,

and the structuring of blackboard information make blackboard architectures a

powerful yet flexible framework for a knowledge-based application. The interest in

the generic control architecture of BBI[31] and GBB[32] are examples of increas-
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ing popularity of blackboard architectures. The blackboard paradigm may be sim-

ple to describe but is difficult to implement effectively for a particular application.

Nii [331 has noted that the blackboard model with its knowledge sources (KSs),

global blackboard database, and control components doesn't specify a methodol-

ogy for designing and implementing a blackboard system for a particular applica-

tion. A more detailed discussion of the blackboard structures implemented todate

along with their features and operational details follows.

18.2.3 BLACKBOARD STRUCTURES: A LITERATURE REVIEW

The speech understanding system, Hearsay Hl[30], developed at the Carnegie

Mellon University(CMU), was the first ever system to employ blackboard based

architecture. In this system, the KSs have been developed to perform a variety of

functions, such as extraction of acoustic parameters, classification of acoustic seg-

ments into phonetic classes, recognition of words, parsing of phrases, and genera-

tion and evaluation of predictions for undetected words or syllables. The black-

board is subdivided into a set of information levels corresponding to the intermedi-

ate representation levels of the decoding processes (phrase, word, syllable, etc.).

Each hypothesis resides on the blackboard at one of the levels and bears a defining

label chosen from a set appropriate to that level e.g., the word FLYING, the sylla-

ble ING, or the phoneme NG. The hypothesis contains additional information, in-

cluding its time coordinates within the spoken utterance and a credibility rating.

The sequence of levels on the blackboard forms a loose hierarchical structure,
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hypotheses at each level aggregate or abstract elements at the adjacent lower level.

The possible hypotheses at a level form a search space for KSs operating at that

level. Top down and bottom up problem solving behaviors can be accommodated

simultaneously by a HEARSAY HI KS.

At the start of each cycle, the scheduler, in accordance with the global state

information, calculates a priority for each activity (KS condition program or action

program) in the scheduling queues. The highest priority activity is removed from

the queues and executed. If the activity is a KS condition program, it may insert

new instances of KS action program, the blackboard monitor notices the black-

board changes it makes. Whenever a change occurs that is of interest to a KS

condition program, the monitor creates an activity in the scheduling queues for that

program. The monitor also updates the global state information to reflect the

blackboard modifications.

Yang and Huhns[34] say that establishing a problem solving hierarchy in a

distributed environment requires that planning and problem solving be combined

with internode communications. Problem solving by their system occurs as an it.

erative refinement of several mechanisms, including problem decomposition, ker-

nel-subproblem solving, and result synthesis. They suggest the following capabili-

ties at the processing node:

i) Intranode communication facility that allows different processes at the

same processing node to share information.
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ii) Dynamic planning ability, which adjusts the problem solving (PS) plan

and guides it by either actual calculations or estimation, in the most promising

direction based on the latest PS status.

iii) An internode communication facility that permits the different processing

nodes to share tasks and results.

iv) Problem deduction ability that solves tasks by invoking required knowl-

edge sources.

v) A learning ability that enables the system to change its organization and

improve its performance as more PS 'experience is obtained.

Their black board is chiefly used for internode communication. It is an active

data structure located at each processing node and it allows information sharing by

storing tasks, plans and partial results and transmitting them at appropriate times

in the PS process. Also, a means for sharing information about different PS proc-

esses within the node.

In her paper, Hayes-Roth[31] looks into the "blackboard control architec-

ture". Her work has explicated and provided mechanisms for solving control prob-

lems such as independent generation of desirable and feasible actions and recon-

ciliation, the prioritization of action, and the dynamical planning of useful se-

quences of actions.

A blackboard architecture designed for the distributed environment of a net-

work of heterogeneous computers, COPS[35], has rule-based blackboard proc-
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esses which are also internally sequential. They can be notified of remote events

on each other's blackboards using "ambassadors," which are simply local rules

that represent the interests of remote processes.

The GBB (Generic Blackboard) [321 is a high-level implementation tool de-

signed to provide an application builder with both speed and flexibility in imple-

menting a blackboard-based application as well as an efficient execution capabil-

ity. GBB contains two distinct subsystems: a high-level blackboard database com-

piler and a set of generic control shells. The blackboard architectures have suf-

fered from limitations such as difficulty in implementation, lack of portability and

generality and clumsy information placement and retrieval schemes. The effort

made at the University of Massachusetts at Amherst is to overcome these short-

comings and is noteworthy in this regard. The organization of GBB is shown in

Figure 2. The blackboard database compiler defines the blackboard and blackboard

objects as well as the insertion retrieval and storage structure. The generic control

shells define the KSs, and also create other control objects such as goals or plans.

Three different control schemes are available in the GBB, simple shell control

shell, KS and execution shell and the Knowledge Base(KB) shell where the latter

two are based on the BB1 model of control. As noted earlier, the compiler and

control shell are two distinct subsystems with the blackboard events signifying any

change in the situation.
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18.2.4 SUMMARY

Distributed Artificial Intelligence (DAI) can potentially solve problems that are

too large for a centralized system because of resource limitations induced by a

given level of technology. Limiting factors such as communication bandwidths,

computing speed, and reliability result in classes of problems that can be solved

only by a distributed system. It can provide means for interconnecting multiple

expert systems that have different, but possibly overlapping expertise, thereby ena-

bling the solution of problems whose domains are outside that of any one expert

system or knowledge source. DAI is the most appropriate solution when the prob-

lem itself is inherently distributed, such as in distributed sensor nets, distributed

information retrieval and knowledge acquisition, because it is easier to find experts

in narrow domains. Many problem domains are already partitioned or hierarchical

as in the object detection case, and that is why DAI lends itself easily to it. Our

research is aimed at using DAI for the solution of object classification problem in a

data fusion system with distributed sensors.
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18.3 OVERALL SYSTEM ARCHITECTURE

In the first chapter, we talked about the need for automation of the multisensor

data fusion with emphasis on the object classification problem. This need has pro-

vided the fuel for the investigation of the DAI techniques which could be applied

for the implementation of such systems. The present chapter is devoted to the

description of the system architecture proposed in this research.

18.3.1 BACKGROUND

The purpose of the system is the processing of sensed data available from

multiple sensors about a single object. The main goals are to:

1) Combine it into a single useful report or, in other words, a coherent representa-

tion of the situation, and

2) Perform classification by its features into disjoint sets (object classes). Our sys-

tem is fairly general to incorporate any kinds of objects and classification schemes

as well as categories.

Figure 3 shows the sensor input model to the data fusion center. As illustrated

many sensors and distributed sensor networks feed in the information in the form

of reports to the data grouping and compaction unit, which also receives the contex-

tual information and intelligence data. The different kinds of information and

measurements form the basis of expert system reasoning, which is discussed later
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In section 10. 3. 2 The detailed description of data grouping and compaction unit is

beyond the present scope, but for the present discussion it would be sufficient to

say that it eliminates the redundant or unimportant data and groups the data in the

form of packets with each scan. In other words, it defines the boundaries between

the scans, and maintains some form of organization. It also maintains data about

the events which do not require immediate attention and can wait or those that are

expected to happen. These events are called simple events and expected events re-

spectively. The ones which require immediate attention are called clock events. The

situation data base exchanges the data with the data grouping and compaction unit

with the highest priority to the clock events.

The DAI system extracts the information from the situation data base and

outputs the object identification theory to the user/system operator who, in turn,

performs sensor management. As noted earlier, in a fully automated system the

flow of action would not include the user/system operator except for the purpose of

informing him of the decision and the chosen course of action.

In general, for a data fusion problem three criteria drive the design of any

"reasonably intelligent" object identification/classification system. These include

the following.

1) Sensor Modeling: Each sensor is unique to itself so it is likely to be contributing

information to the situation data base in its own sensor-specific level of abstrac-

tion. The system should be capable of accurately modeling the information pro-
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vided by each sensor source.

2) Data Fusion and interaction with the user: The system must be capable of:

i) fusing the information provided,

ii) computing a statistical or probabilistic or fuzzy measure for the resultant

ID and classification quality, and

iii) accurately displaying the information to the user. This information should

be explicit and there must be provisions to the user/system bperator/battle

commander to specify his own set of parameters which guide the operation of

the system. This is to provide the system with the maximum amount of situ-

ation and contextual knowledge along with the common sense and experience

which is so exclusively human!

3) Conflict Resolution: The system should be capable of resolving any potential

sensor conflicts or failures. In other words, the combining mechanism should be

capable of giving a decision and issuing a warning (if necessary) to the user or

system operator that the confidence in the object identification theory is not

enough, and it might be dangerous to pursue it any further.

18.3. 2 USE OF SENSED INFORMATION

The process of data fusion uses a combination of sensors and sources to col-

lect information of the tactical situation. This information might include: reports of
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object detections, related events, tracks, or factual information. This data is used to

detect, locate, and classify the objects and events.

Figure 4 shows the three levels of expert reasoning which are used to obtain

discrimination between objects of similar type or discrimination between objects of

different types (i.e., identification). This can be achieved by any one or a combina-

tion of sensed variables. The discrimination process can infer the identity by meas-

ured object attributes, object behavior, or contextual clues provided by multiple

sensors.

Directly measured features[I] include attributes of the object e.g., spectral signa-

tures: radar, IR etc., spatial characteristics, or of the phenomena that can be asso-

ciated with the object e.g., effects on the environment, secondary effects, or events

linked to the object. These attributes are measured by the sensor directly or result

from preprocessing operations (filtering, integration, clustering), which refine and

combine the raw measurements into a single attribute.

Behavioral/Derived measurements of the object include temporal behavior (ye.

locity, acceleration, maneuvering, direction of travel, etc.), tactical activities (emit-

ter status/mode, and hostile or friendly acts such as jamming, deceptive, or en-

gagement actions) and ellipticity measurements. Doctrinal procedures can be es-

tablished to permit behavior to be independent of object performance and to allow

unique object discrimination. Examples are air corridors and restricted zones,

which provide discrimination of foes by restricting the behavior of friends.
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Contextual interpretation implies the total spatial, spectral, and temporal situ-

ation in which the object is found. The location and relationship to other objects;

and the background information constitutes the spatial context e.g., priority zone

assessment and pattern for attack intention. The spectral context includes sensed

attributes e.g., communication, countermeasure activities, levels of noise. Tempo-

ral context information includes the relative timing of sensed events or object ac-

tivities and their implications of coordinated group behavior.

18.3.3. THE SYSTEM ORGANIZATION & OPERATION

The combination/classification mechanism of our system combines heuristic

and statistical pattern recognition technique. It requires parametric knowledge of

apriori probabilities for the combination scheme and assumes independence of

measured values.

The key functions of generating, interacting with the user and posting hypothe-

ses on the blackboard are performed by diverse and independent programs called

knowledge sources (KSs). Each KS can be roughly schematized as a condition-ac-

tion pair. The condition component prescribes the situations in which the KS may

contribute to the problem-solving act-vity, and action component specifies what

that contribution is and how to integrate it into the current situation. KSs have been

developed to perform a variety of functions and are capable of accounting for

inaccurate or insufficient data. If one of the KS is not able to post a hypothesis

then the PS activity continues on the basis of the other KS only and the system
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warns the user that the object identification theory might be unreliable and should

not be pursued any further, since the results would not help the system operator

but instead they might lead to decisions which might not be suitable.

KSs communicate with each other through a blackboard as shown in Figure 5.

It is a global database, which records the hypotheses generated by KSs, combines

them and has a confidence KS built into it that informs the user of the overall

confidence in the object identification theory and whether it should be pursued any

flrther. Refer to the section on the probability basis for more about the scheme

employed for the combination mechanism in the sample implementation. Any KS

can generate a hypothesis and post it on the blackboard. These actions, in turn,

may produce structures that satisfy the applicability condition of the other KSs. In

our framework, the blackboard serves four functions: it performs KS initiation,

represents intermediate states of problem-solving activity in the form of levels with

the posted hypothesis of each KS, it communicates messages from one KS that

activate other KSs and it combines the hypothesis from the KSs to report a best

explanation or refined hypothesis which then is tested for the overall confidence

before being reported to the outside world as an object identification theory.

The system which we have described in this section is implemented on a serial

machine, Symbolics 3645, but it simulates the concurrent communication and

processing of a distributed system.

-34-



E......... . Report To The Outside Worldi • ............
,Ii conextueal rler- * Interface / Response

* pretatlon KS 3 LGenerator
Fact based

* rtalnK prttnKSContextual Inter- Contextual Inter- z ~

*Piority Zones Attack Intention OBJECT IDENTIFICATION

.. . . . . . . .. . . . .. . . .... THEORY

shaviorel I Do- Confidence
*rived Measure- * *

monto KS 3:
Sitici

ohaviorel~~~~~ I o hvoa g EINED HYPOTHESIS of
e o I: sf I IBEST EXPLANATION Inference

" r ived M easur. - riv.d M asoure- LE E INFOR M R

"O mnto KS I- mente KS 2: * LVLI~OMTO ue

.............................. * POSTED HYPOTHESIS pe

LEVEL I * LEVEL INFORMATION spec

Direct Measure. Direct Masure. . * POSTED HYPOTHESIS

*merits KS 1: merits KS 2: * * KS INITIATION A'

inatures EfcsDirection Qf

..................................... O R j*4

KNOWLEDGE IOURCES QQEVL NORATO

data t

pat hvoei

FROK SITUATION

DATABASE

(ir in our 2nre )

Figure 5 A BLOCK DIAGRAM OF SYSTEM ORGANIZATION

-35-



It accepts all the data from the user at one time, in one scan, thus modeling

many sensors pouring in the information together. Each knowledge source picks up

the relevant data or posted guess and performs the necessary computations. If it

cannot generate a satisfactory hypothesis, it keeps on interacting with the user till a

guess can be made or the user declares that he doesn't have sufficient data. This

delay in posting the hypothesis on the blackboard, is to delay the communication

till computation has been performed to a satisfactory level, hence minimizing the

cost.

A unique feature of our system is that KSs at one level 'can know' the hypothe-

ses, posted on the blackboard, by other KSs of the same level. In other words, they

can read it from the blackboard. However, to avoid any bias towards the decision

of object identification theory, KSs at different levels (except the contextual inter-

pretation KSs) will proceed independently to generate and post their hypotheses.

The combination and decision making is left on the knowledge built into the black-

board.

The contextual interpretation KSs shall only be able to add or subtract confi-

dence in object identification theory and inform the user/system operator of its

significance, consequence and implications. They cannot modify or delete it.

The system implementation and validation of our system is discussed next.
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18.4 SYSTEM VALIDATION

To solve object identification and classification problem, using the system pre-

sented earlier we utilized five commercial ACs as objects and modeled the sensors

using two Knowledge Sources(KSs), for aspect angle with polarization and the

ellipticity information. In the present chapter, we demonstrate the feasibility of our

architecture using a data base which is a subset of the expert reasoning mentioned

earlier. The description of this data base is the topic of the following sections.

18.4.1 BACKGROUND

The objects to be identified and classified in our system are Aircrafts(ACs).

The category of the ACs is commercial and they belong to one of the five classes:

Boeing 747, DC10, Boeing 707, Concord, and Boeing 727. The knowledge sources

of our system utilize the data in the form of tables which was gathered through

experimentation at The Ohio State University (OSU). OSU ElectroScience Labora-

tory (ESL) has developed various methods for solving the Radar Target Identifica-

tion (RTI) problem [36]. Areas of research have included the investigation of opti-

mal frequency ranges [371, where wavelengths extend from the Rayleigh region to

the optical region, and polarization studies [381 involving various linear and non-

linear combinations of the radar scattering coefficients.
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Before discussing the KSs of our system, some electromagnetic theory back-

ground is in order.

The optimal frequency range for radar target identification should lie in the

Rayleigh - resonance frequency range where the wavelength is about the same size

or larger than the size of the target (we shall call it object henceforth) [39]. So in

this region the scattered field is descriptive of the shape and volume of the object.

In the resonance region the scattered field is due to re-radiating surface currents

set up on the object body and also gives the object shape and size information. The

desired features for object identification are found; the character of the radar re-

turn is not influenced appreciably by the shape and size information and small

changes in aspects.

However, in the optical region, where the wavelength is small compared to the

object size, small changes in aspects can cause significant changes in the scattering

characteristics. The scattering mechanism in the optical region are related to the

interaction of the specular points and contain information on the finer details of

the object. Small changes in aspects cause significant changes in the scattering

characteristics, if the separation of the specular points is large compared to the

incident wavelength.

18.4.2 MODELING THE SENSORS

The ESL has developed a multi-frequency data base [36] consisting of ocean

ship, aircraft, and ground vehicle radar signatures, and has explored radar detec-
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tion methods and various classification methods for each class of objects. We are

utilizing this data base as tables for each kind of sensor, which is being modeled

by a .Z,. Il a real uife situation, these entries would be extracted from the situation

data base, replacing the user who is currently responsible for supplying the data to

the system.

The feature space contains the information available in the electromagnetic

energy return from the scattered object. Information available from this energy

spectrum depends on both the transmitter and the scatterer. Features such as

transmitted frequency, received amplitude, transmitted polarization, received po-

larization, and object range, are available to most radar systems. There can be

other features too, such as received phase, object speed, object direction etc. The

reader is referred to the three levels of expert knowledge; direct measurements

(DM), behavioral/derived measurements (BM), and contextual interpretation (CI)

described earlier.

The two measurements which we utilize are the direct measurements (aspect

angle, polarization data) and the derived measurements (ellipticity data). The de-

scription of the features of the data utilized and how they were obtained are the

contents of the following discussion.

18. 4. 2. lAspect angle, polarization data

The data base we use consists of calibrated complex monostatic radar returns

from five metallic coated scale model aircraft: Concord, DCI0, Boeing707,
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Boeing727, and Boeing747 [36]. The silhouettes and the full-scale dimensions of

these commercial aircraft are shown in Figures 6-10. The data base consists of

calibrat.-d con.pl-x (coherent) monostatic radar returns measured at various azi-

muth angles, frequencies, and polarizations, at an elevation and roll angle of 0

degree. The data was taken at the OSU ESL compact range facility [40] over the

frequency bands of I to 12 GHz. The polarization schemes measured are listed

below as polarization types:

(I-IN)D Transmitting Horizontal polarization, Receiving Horizontal polarization.

(VV) Transmitting Vertical polarization, Receiving Vertical polarization.

(HV) Transmitting Horizontal polarization, Receiving Vertical polarization.

The polarization types HH, VV are commonly referred to a co-pol polariza-

tions, and the polarization type HV is referred to as the cross-pol polarization.

Note that by the electromagnetic theorem of reciprocity, the polarization types VH

(Transmitting Vertical polarization, Receiving Horizontal polarization) and HV are

equal. Additional steps[41] are required to obtain the "low-error" signature. The

purpose is to remove unwanted background clutter from the object measurement

and provide a scale correction factor based on a mathematical representation of a

reference object. Calibration equations are used and to ensure the best results in

the calibration process, background and reference object measurements are made

after every five object measurements. Additional signal processing techniques are

employed to achieve the final form of the low-error object backscattered signature.
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Finally, a computer program called DATABASE [42] allows the storage of

frequency formatted data strings at many different aspect angles and the three

base line polarization types HH, W, and HV, into one single random-accessed

data file. Listings from the DATABASE computer program characterizing the RTI

aircraft data bases as shown in Table 1-5 are used as the knowledge base for the

Aspect angle Polarization (ASPOL) KS.

18. 4 .2. 2 Elliptical Features

The concept of transient polarization impulse response (TPIR) is used [43]. It

could possibly be used to identify radar objects based on a decomposition of the

return signature into portions that correspond to object substructures, such as

wings, tails, or engine inlets. Conceptually, the TPIR can be envisioned as the

result of transmitting a short circularly polarized (CP) pulse toward the radar ob-

ject, and then measuring the back-scattered response with (wide band) vertically

and horizontally polarized antennas. If the outputs of the vertical and horizontal

antennas were connected to the y and x plates of an oscilloscope, the TPIR would

be observed.

There are possibly many ways of parameterizing the polarimetric information

contained in TPIR in a form usable by the pattern recognition components of an

object identification system. An effective parameterization technique is known as

the "ellipse fitting"[43]. From Figure 11 it may be observed that subsections of the

"end view" of the TPR closely resemble ellipses or partial
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The Ohio State UnLveuity ElectroSclence Laboratory
Co::pct Range Experimental Data 1984
$ factor - Elevation angle - 0 degrees

LOW FREQUZNCY FORHATTED DATA BASE (GHz)

ASPECT (Deg) POLARIZATION

0 1-12 1-12 1-12
10 1-12 1-12 1-12
1s 1-12 1-12 1-12

C 1-12 1-12 1-12
30 1-12 1-12 1-12
40 1-12 1-12 1-12
45 1-12 1-12 1-12
s0 1-12 1-12 1-12
60 1-12 1-12 1-12
70 1-12 1-12 1-12
75 1-12 1-12 1-12
80 1-12 1-12- 1-12
90 1-12 1-12 1-12

100 1-12 1-12 1-12
105 1-12 1-12 1-12
110 1-12 1-12 1-12
120 1-12 1-12 1-12
130 1-12 1-12 1-12
135 1-12 1-12 1-12
140 1-12 1-12 1-12
IS0 1-12 1-12 1-12
160 1-12 1-12 1-12
165 1-12 1-12 1-12
170 1-12 1-12 1-12
180 1-12 1-12 1-12
270 1-12 1-12 1-12

Figure 1 727 Low-Frequency Data Base Map
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The Ohio State Univesity ElectroScience Laboratory
Cocpact Range Experimental Data 1984
Scafe factor - Elevation angle - 0 degrees

LOW FREQUENCY FORMATTED DATA BASE (GHz)

ASPECT (Deg) POLARIZATION

0 1-S-12 1-12 1-12
10 1.5-12 1-12 NULL
iS 6-12 1-12 1-12
20 1.S-12 1-12 NULL
25 6-12 NULL NULL
30 1.S-12 1-12 1-12
35 6-12 NULL NULL
40 1.5-12 1-12 NULL
4S 1.5-12 1-12 1-12
s0 1.5-12 1-12 NULL
SS 6-12 NULL NULL
60 1.S-12 1-12 1-12
65 6-12 NULL NULL
70 1.S-12 1-12 NULL
75 6-12 1-12 1-12
s0 1.5-12 1-12 NULL
90 1.S-12 1-22 1-12
95 6-12 NULL NULL

100 1.5-12 1-12 NULL
10S 6-12 1-12 1-12
110 1.S-12 1-12 NULL
1is 6-12 HULL NULL

120 1.S-12 1-12 1-12
125 6-12 NULL NULL
130 1.5-12 1-12 NULL
135 6-12 1-12 1-12
140 1.5-12 1-12 NULL
145 6-12 NULL NULL
150 1.5-12 1-12 1-12
1SS 6-12 NULL NULL
160 1.5-12 1-12 NULL
165 6-12 1-12 1-12
170 1.S-12 1-12 NULL
180 1.5-12 1-12 1-12

Figure 2 747 Low-Frequency Data Base Map
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The Ohio State Univesity ZlectroScience Laboratory
Compact Range Experimental Data 1984
Scale factor - EZevation angle - 0 degrees

LOW TrEQUENCY F OPA"TED DATA SASE MGHz)

ASPECT (Deg) POLARIZATION
an s f IV 4

0 1-12 1-12 1-12
10 1-12 KULL 1-1215 1-12 1-12 1-12
20 1-12 1-12 1-12
25 6-12 KULL 6-1230 1-12 1-12 1-6.3
35 6-12 NUL, 6-1240 1-12 1-12 1-12
45 1-12 1-12 1-12s0 1-12 1-12 1-12
55 6-12 NULL 6-1260 1-12 1 -12 1-1265 6-12 NULL 6-1270 1-12 I-i2 1-127s 1-12 1-12 1-1280 1-12 1-12 1-12
as 6-12 NULL 6-12
90 1-12 1-12 1-1295 6-12 NULL 6-12

100 1-12 1-12 1-12
105 1-12 1-12 1-12110 1-12 1-12 1-12
115 6-12 NULL 6-12
120 1-12 1-12 1-12125 6-12 NULL 6-12130 1-12 1-12 1-12
135 1-12 1-12 1-12
140 1-12 1-12 1-12145 6-12 NULL 6-12
,s0 1-12 1-12 1-12I55 6-12 NULL 6-12
160 1-12 1-12 1-12165 1-12 1-12 1-12
170 1-12 1-12 1-12*7S 6-12 NULL 6-12
180 1-12 1-12 1-12

6-12 NULL 1-12

TaW 3 707 Low-Frequency Data Base 'tap
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The Ohio State Univesity ZlectroScience Laboratory
Cospact Range ixpeciaental Data 1964
Scale facto: a Elevation angle - 0 degrees

UM ZEr.CUE.CY TORMATZZ DATA BASE (GMz)

ASPfCT (Deg) POLAIRZATION

0 1-12 1-12 1-12
10 1-12 1-12 1-12
20 1-12 1-12 1-12
20 1-12 1-12 1-12

30 1-12 1-12 1-12

40 1-12 1-12 1-12
4s 1-12 1-12 1-12

60 1-12 1-12 1-'2

70 1-12 1-12 1-12
70 1-12 1-12 1-12
7S 1-12 1-12 1-12

90 1-12 1-12 1-12
90 1-12 1-12 I_..

100 1-12 1-12' 1-1
105 1-12 1-12 1-12

110 1-12 1-12 1-12

120 1-12 NU3LL 1-12

130 1-12 KUL. 1-12
13S 1-12 M",JVp 1-12
140 1-12 1-12 1-12

150 1-12 1-12 1-12
160 1-12 1-12 1-12

165 1-12 1-12 1-12
170 1-12 1-12 1-12
183 1-12 1-12 1-12
270 1-12 1-12 1-12

TabtL 4 DC10 Low-Frequency Data Base Map
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The Ohio State Univesity glectroScience Laboratory
Coapact Range Ziperimental Data 1984
Scale factor - Elevation angle a 0 degrees

LOW FREQUENCY FORLATTED DATA SASE (GCS)

ASPECT (Dog) POLARIZATION
SO 0 xv U3vv

0 1-12 1-12 1-12
10 1-12 1-12 1-12
1s 1-12 NULL 1-12
20 1-12 1-12 1-12
25 6-12 NULL 6-12
30 1-12 1-12 1-12
35 6-12 NULL 6-12
40 1-12 1-12 1-12
45 1-12 1-12 1-12
s0 1-12 1-12 1-12
55 6-12 MULL 6-12
60 1-12 1-12 1-12
65 6-12 MULL 6-12
70 1-12 1-12 1-12
75 1-12 1-12 1-12
s0 1-12 1-12 1-12
Is 6-12 NULL 6-12
90 1-12 1-12 1-12
9S 6-12 NULL 6-12

100 1-12 1-12 1-12
105 1-12 1-12 1-12
110 1-12 1-12 1-12
115 4-L2 NULL 6-12
120 1-12 1-12 1-12
125 6-12 NULL 6-12
130 1-12 1-12 1-12
135 1-12 1-12 1-12
140 1-12 1-12 1-12
145 6-12 NULL 6-12
150 1-12 1-12 1-12
155 6-12 NULL 6-12
160 1-12 1-12 1-12
165 1-12. 1-12 1-12
170 1-12 1-12 1-12
175 6-12 NULL 6-12
160 1-12 1-12 1-12

"T8Wt 5 Concord Low-Frequency Data Base Map
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Figure 1: TPIR for the Concord at 00 viewed from the direction of propagation,
showiung £ field locus.
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ellipses. This, in turn, suggests that largest amplitude portions of the TPIR which

correspond to the major scattering centers, can be represented by an elliptical

parameterization.

The parameterization of the portions of the TPIR corresponding to the major

scattering centers is accomplished by a best-fit ellipse approximation using a

least-squares fitting algorithm. The set of features derived from this parameteriza-

tion are the ellipticity e, the tilt angle r', and the amplitude A of the fitted ellipse.

These three parameters describe object substructure geometries in a natural way.

The overall size (cross-section) of the substructure determines the amplitude, the

shape of the substructure is strongly related to the ellipticity, and the orientation

determines the tilt angle.

18. 4. 2. 3TPIR Features for Commercial AC's

In Table 6 we have the sets of features representing the engine inlet and tail

derived from the TPR's for the set of five commercial AC's which we have chosen

to demonstrate our system. In this table, the amplitude A, the ellipticity e and the

tilt angle 'r, are displayed along with the parameters ts and to which are the times

(in nanoseconds) marking the start and end of the corresponding response subsec-

tion[43J. The accurate values are shown and so are the intervals or ranges of

values which account for any error in the measurements of the sensors. In other

words, the ranges account for the possible inaccuracies in the observations.
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AC's . A , , . Component
i* * a o a a

-0.065 0.125 'Aj 1-5 '2 a 33-39 , , .48-68 Engine Inlet
Concord ( a (2.731) ' (36) ( a (58)

, , 5-9 ,a 24- 94-114
0.940 1.135 , A2 (7.08) ( , (5) , , (104) Tail

-0.272 -0.130 Aj 14-18 ' 9-15 ' • 38-58 Engine Inlet
* 1 (15.908) ' (12) (48)DC-10 a aS

0.580 0.746 A2 , 12-16 ,a 6-12 v •, 81-101
* (. (13.622) (9) (91) Tail

-0.120 0.095 Aj 18-22 a • :1-7 * • , 169-189 Engine Inlet

Boeing (20.265) , , (3) , , (179)
707. .. '70-0.950 1.136 , 4 6-12 * 1= 81-101 Tail0.__116_,A_, (6.405) , , (9) ( , (91) Tail

-0.230 -0.108 : 1 , -5 , 13-19 a , :157-177 Engine Inlet

Boeing (3.366) ( , (16) (167)

727 0.360 0.477 A2, 44 , ,26-32 , ,3-23
a a (5.96) a , (29) a a (13) Tail

-0.300 -0.139 , Ai , 19-23 , 26-32 v a Engine inlet
Boeing (21.24) , , (29) , (59)747 a ' 11-15 2-8 a 4a 89-109

1.320 1.471 A2 * (12.59) (5) (_'_99) Tail

Not The 8ilwm ds Mckuk r,!s to d w m.om munnsmu md d in likea "I amrml to mdi. rug. or dw obwsuon mmi• .
A.9 a d I , p f tn wrin, uilallzpdcsy wd tM ug.ls of tlw teiim.

Table 6 SET OF EATURES RF1P ENTING TLLPTTrTY DATA
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18.4.3 SAMPLE IMPLEMENTATION

In Figure 5, the KSs marked with asterisks are the ones used for the sample

implementation. The user supplies the data to our system instead of the situation

data base. In a real life situation, an input program would extract it directly from

the situation data base. The present simulation2 performs classification of an AC,

after identifying it by its features, into disjoint sets (object classes) comprising of

the five commercial ACs (Boeing 747, Boeing 707, DC10, Concord and Boeing

727).

The two KSs in our system are ASPOL and ELLIFT the theoretical basis of

which has been briefly discussed above. For more details, the interested reader is

referred to the references presented in the above discussion. Each KS is imple-

mented as a condition-action pair. Both of the KSs have been developed to per-

form a variety of functions and are capable of accounting for inaccurate or insuffi-

cient data. KSs communicate with each other through the blackboard, a global

database, which records the hypotheses generated by KSs, combines them and has

a confidence KS built into it. If either ASPOL or ELLIFT is not able to post its

hypothesis then the PS activity continues on the basis of the other KS only and the

system warns the user that the object identification theory might be unreliable and

should not be pursued any further.

2 refer to the appendices A and B for the Lisp program code and sample runs respectively.
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18.4.4 THE PROBABILITY BASIS

Our system is employed in domains where conclusions are rarely certain.

Thus, we have to build some sort of certainty-computing procedure on top of the

basic antecedent-consequent apparatus. Our certainty/confidence computation pro-

cedure associates a number between 0 and I with each fact. This number, called a

certainty factor, is intended to reflect how much confidence we have in the fact or

how much certain the fact is, with 0 indicating that a fact is definitely false and 1

indicating that a fact is definitely true.

18.4.4.1. The blackboard

In the blackboard, a fact's certainty is to be determined when the consequents

of several aszced•nt-consequent rules argue for it, requiring the computation of a

multiply argued certainty[44J. To calculate multiply argued certainties, certainty ra-

.9 Certainty factors

9 X 1/3 = 3
Certainty ratios

Figure 12 TiR INF"RENCE NET PROCEDIJR FOR COM MINING CERTAINTY

tios are used. Certainty factor, c, and a certainty ratio, r, are related as follows:
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C rr z---- CZ-

1-c r+1

The certainty of a multiply argued consequent is determined by transforming to

certainty ratios, multiplying, and transforming back to certainty factors. This is

shown in the Figure 12.

After certainties are transformed into certainty ratios, the certainty ratio of a

multiply argued consequent is given by the following formula:

where ro is the certainty ratio corresponding to the a priori certainty of the conse-

quent, and the n are the certainty ratios corresponding to the certainties read from

the input-output functions of the contributing rules. Note that the formula reduces

to the product of certainty ratios in the special case when the a priori certainty

ratio is 1. This corresponds to the case when the a priori certainty of the conse-

quent is .5. In this special situation, the prior evidence does not indicate whether

the hypothesis is true or false.Transforming certainties into certainty ratios to com-

pute the certainty of multiply argued consequents is a powerful technique for

knowledge based systems. For a detailed discussion of this subjective Bayesian

inference method, the reader is referred to Duda et. al.[45].
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18.4.4.2 The ELLIPT knowledge source

ELLIFT knowledge source shown in Figure 13 first checks against the entries of

Table 6 for the available ranges for the identification of the object as belonging to

one of the classes of ACs. It then uses heuristics to assign the confidence values to

the remaining ACs in the decreasing order of priority based on the "closeness"

which they exhibit to the identified AC, see Table 7. The degree of closeness of a

particular AC to the identified AC is the amount of features that they have in

common. In other words, what is the confidence in the hypothesis that it "could

have been" some other AC if it was not the one that has been identified.

The hypothesis posted by the ELLIPI' KS is a list comprising of the confi-

dences which it assigns to each of the five ACs. The confidence in the identified

AC being equal to the overall confidence in the KS itself, which is assigned by the

operator depending on the kind of measurement (derived measurement in the pre-

sent case), the confidence in the sensor which is being modeled by the KS and

various other factors. In Table 7 weights assigned to all the entries of the table are

equal.
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matrix form

Figure 13 THE ELLIPT KNOWLEDGE SOURCE TN OUR SYSTEM
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C C OR 72 C OR 74 C OR 70 C OR DC

A, I - 5 X X X
As 5- 81 X 5-8 X

et X X X X

as X 2-8 6-8 6-8

TS X 48-68 X 48-58

T', X 94-101 1 94-101 94- 101

DC DCORC DCOR72 DCOR74 DCOR79

A, X X X X
As X X 12-15 X

at X 13-1S X X

6-6 X 6-8 6- 12
r 48 -58 X X X

q 94- 101 X 89 - 101 81 - 101

747 740RC 74 OR72 74OR70 74 ORDC

A, X X 19-22 X
As X X X 12-15

at X X X X

48 2-8 X 6-8 6-8

To 48-68 X X X

t 94%-101 X 9-101 19-101

727 72ORC 72OR74 72OR70 72ORDC
A, 1 -5 X X X
As 5- 8 X $-8 X

41 X X X 13- 15

SX X X X

1, X X 169 - 177 X
SX X X X

707 70oRC 70OR74 70OR72 7OR DC
A, X 19-22 X X
As 5-8 X. 5-8 X

6, X X X X

40 6-8 6-8 X 6-12

I., X X 169 - 177 X
'la94 -101l 89 - 101l X 81 -101

Table 7 THE KNOWLEDGE BANE FOR ELLTPTICAL FEATURES N THE PATR MATRIX FORM

NOTATION: The entries marked X stand for the features which are not common amongst the pair of ACs. The values

stand for the feature overlap, and are also Indicative of the range of error allowable for the corresponding sensor. C, DC,

707 etc. correspond to Concord. DCI10, Boeing 707 ACs respectively. The featur A,, As etc. have already been explained

In the table of elliptic features. Each of them carries equal weight and they are equally determinable.



18.4.4.3 The ASPOL knowledge source

The ASPOL knowledge source models the system's aspect angle and polariza-

tion sensors. It receives/accepts the data from the user as a list with the aspect

angle followed by the HH, HV and W polarizations. It checks for each of the ACs

in the following sequence: Boeing-747, DC10, Concord, Boeing-727 and

Boeing-707. It interacts with the user/system operator for getting more data, thus,

facilitating the generation of a hypothesis if it is so required. It also has provisions

for checking if the data is out of bounds at any stage and asks the user to re-enter

it. In other words, it delays communication with the blackboard until it is able to

generate a satisfactory hypothesis. The user/ system operator has the option of

specifying that he does not have sufficient data in which case the equivalent of no

hypothesis is posted on the blackboard and the problem solving activity continues

by the hypotheses posted by remaining KSs. As we can see, in a real life situation,

a key feature of the ASPOL KS would be that it would be able to request more

data from the data grouping unit and hence the sensor, if it suspects an object but

has less than the information needed to generate and post a hypothesis. The confi-

dence values it assigns to the ACs is solely dependent on the values suggested by

the system operator thus taking into account the effect of experience and the hu-

man reasoning.
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Figure 14 THE ASPOL KNOWLEDGE -SOURCEF IN OUTR SY97EM
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18.4.5 SUMMARY

To demonstrate the framework presented above, the data base which we utilize

in our implementation is a subset of the expert reasoning mentioned in the earlier

chapters. It is in the form of table entries for each kind of sensor. Each sensor is

being modeled by a KS. In real life situation, these entries would be extracted from

the situation data base, replacing the user who is currently responsible for supl.'y-

ing the data to the system.The data base consists of calibrated complex (coherent)

monostatic radar returns measured at various azimuth angles, frequencies, and

polarizations, at an elevation and roll angle of 0 degree and the ellipticity data. The

two KSs, ASPOL and ELLIPT in our system stand for the aspect angle, polariza-

tion information (direct measurements) and ellipticity information (derived meas-

urements).
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18. s SUMMARY & POSSIBLE EXTENSIONS

18.5.1 SUMMARY AND DISCUSSION

Our approach utilizes the blackboard for information management and hy-

potheses combination. The blackboard is used by knowledge. sources (KSs) for

sharing information and posting their hypotheses on, just as experts sitting around

a round table would do. A situation data base is characterized by experimental

data available from the three levels of expert reasoning. These are direct measure-

ments (polarization, signatures & effects etc.), derived and behavioral measurements

(temporal, act based, ellipticity and classification based on frequencies etc.) and

contextual interpretation (contextual threat, priority zone assignment, pattern for

attack intention and fact based information from military intelligence). These KSs

generate intermediate hypotheses and all these hypotheses appear at different lev-

els of abstraction on the blackboard. The posted hypothesis is refined and confi-

dence level of the best explanation is checked to determine if it meets the require-

ments for being an object identification/classification theory.

It should be pointed out that such considerations as the enhancement of the

signal with respect to noise, or the suppression of other forms of background inter-

ference sources e.g., what is commonly referred to as 'clutter', were not discussed

since it fell outside the scope of this report.
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18.5.2 POSSIBLE EXTENSIONS
The directions of possible extensions are many, however we shall discuss only

the ones which seem to hold the most promise. Addition of the contextual interpre-

tation knowledge sources to take into account "human like" decision making could

be the first avenue that can be tried. The two different kinds of informations for

the contextual interpretation knowledge sources are described below. These could

be entered in the form of simple question answer sessions of the system and the

user/system operator/battle commander. An important thing to note is that these do

not affect the identification task or the classification performed. Their effect is

limited to adding weights or confidence to the object identification theory. How-

ever, it could have its effect on the decision taken by advising or guiding the system

operator of the context of the situation and its implications. Application of Object

Oriented Programming techniques to the identification and classification task in

multiple sensor data fusion problems is another avenue which could be explored.

These are discussed in the following sections.

18.5.2. lContextual Interpretation

The contextual interpretation has been discussed in the expert reasoning in the

earlier chapters. The two types of contextual knowledges which we could utilize are

the priority zone information and pattern for attack intention. These are the topics

of discussion which follows.
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Priorit zones

Priority zones [3] are regions of the radar's observation volume having the

likeliihood of serious threats appearing in them and of the corresponding degree of

desire to maintain high quality detection and tracking. It is presently assumed that

the operator will assign these priorities, although automated situation assessment

and priority assignment is being considered. The five priority ratings to be used are

high threat, medium threat, low threat, friendly, and unoccupied. Three situations

can be considered in priority assignment : protection of the radar, protection of the

forward edge of the battle area (FEBA), and protection of a point behind FEBA.

The present intention could be to deal only with situations that can be recognized

from a single scan of the radar, so zone definitions are restricted to simple range

and azimuth limits as in Figure 15.

Pattern for Attack Intention

Ben-Bassat and Freedy [46] discuss pattern for attack intention, which can be

used as another form of Contextual Interpretation KS. The Table 8 discusses the

probability basis of the class: attack intention.

18.5.2.3. . Object Oriented Programming

Another possible extension could be making use of the Object Oriented Pro-

gramming techniques using the A= macros in Common LISP. The Figure 16

shows the organization of a system making use of flavor macros and object ori-

ented programming. Representation of the objects (ACs for our case) could be

done using the defflavor form, which defines a flavor that represents ACs. As
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LOW THREAT

MEDIUM THREAT

HIGH THREAT

FRIENDLY

UNOCCUPIED

Figure 15 ZONE ASSTGNMENTS FOR 'PROTECTION OF THE RADAR, FOR

THE ZONE PRIORMTYZATION

Now: oN could similarly defm tinhe so asmatmSt for thM pIMOectUoN of FA under zoM pfioriorttiton.

Table 8

A Pattern for Attack Intention:

Class: Attack Intention

Features I p -p
------- ---------------------

o massing of mechanized elements 0.8 0.3
"extensive artillery preparation 0.8 0.4

artillery position concentrated 0.8 0.2

" concentration of mass toward either or

both flanks 0.7 0.3

0 location of enemy troops in forward assembly area 0.8 0.3
"0 location of supply and evacuation installations

well forward 1 0.7 1 0.3

"o increased air reconnaissance 1 0.8 1 0.4

o movement of additional troops toward the front 0.8 0.4
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shown, each real world object is represented by a Lisp object and the inherent

structure of objects is called flavor. The output of the generic functions, unlike nor-

mal functions, is different for objects of different flavors for the same input. Meth-

ods is a piece of code which implements the Generic functions on the lisp objects.

The AC flavor is a framework, and we could fit many ACs into that framework.

We represent each real-life AC as an instance of the AC flavor. Each instance

would store information about one particular AC in its instance variables. To cre.

ate or simulate instances we could use, mak-insance. Querying the instance for

its values would also be possible because of a function that was automatically

generated. New operations (generic functions) for instances of the AC flavor could

be defined using defteined.

As it is seen from the above discussion, object oriented technique, which pro-

vides a means of configuring everything in a system around objects, could be in-

vestigated more for dealing with the object classification problems.
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Figure 16 POSSIBLE USE OF OnJitECT ORNTED PROGRAMMING FOR OUR CASE.
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APPENDIX

A
COMMON LISP PROGRAM CODES

A-1

THE ASPOL AND EIPT IDOOGE SOURP.CE6
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This is the LEVEL 1 KS. Name ASPOL Knowledge source. A few things to

;;; be noted here, This is an interactive program. The user

;; shall be replaced by another piece of code which

;;; does the dam input directly from the SITUATION

;; DATA BASE in the real life situation.

;;; SYNTAX COMMON LISP

Created By Digvijay Sikka for SUDAI System.

,,, Created Sept. 20, 1988

;;; Modified Nov. 3, 1988: Dec. 23,1988.

;;; This function begins by cbeckIng if the object is a Boeing-747,

;; It calls confirm, confin= and check if the data is out of bounds,

;;; in which case it prompts the user to enter a new list.

(defvar *a* nil)

(defvar *b* nil)

(defvar c* nil)

(defvar *r* nil)

(defvar *d* nil)

(defvar "e* nil)

(de "ar *aWnp nil)

(defbar "ap1* nil)

(defkm chec-AC (lis l)

(Ofm"

* Level I KS: ASPOL***"***** "

It Is possible that data out of bounds might have been given

at this stage, but it is not of significant interest to m%:. .. ce no
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decision about the proof of identity of the object has yet been taken.

However very soon the identity of the Object shall be established.")

(cond
((equalp (cadr *listl*) '112)

(dclO))

(t
(contim *l1t~l*))))

(deAf confirm (*Usl*)

(cond

((or (equalp (cdr *listl*) '(612 null 612))

(equalp (cdr *Ustl*) '(612 null 112)))

(dclO))

(t

(confin2 *listl*))))

(deflm conflrm2 (*IIstl*)

(cond

((or (equalp (cdr isti*) "(1.512 112 null))

(equalp (cdr *listl*) '(612 112 112))

(equalp (cdr listl*) '(1.512 112 112))

(equalp (cdr *listl*) '(612 null null)))
(prm"

"°Object is a Boeing-74700

(pint "These are the confidence values

of the AC's in the following order (Concorde Boeing727 BoeingVO7 DC10 Boeing747):")

(stW74))

(t

Wat 0

ERROR, possiblity of being my other AC is low, and data out of bounds
for Boeing 747, give another value")

(check-AC (accept '(lis))))))
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(defun 1ist74 0

(setq "ASPOLPROB* (list 0.2 0.2 0.2 0.3 0.9))

(prim ASPOLPROB*))

;;; This Amction checks for the possibility of the Aircraft being

; mything other than Boeing747 since it has almady confirmed that

;f It is not Boeing-747. It prompts the user to input values for aspect

;;; angles 120, 130, 135.

(defun dclO 0

(print"
01 ** * 1**. ISlll ** *5eIl. ,11,,,*,5li *5** *5* *5

*7The Object is not a Boeing-747**

**Please enter the Polarization

Values (120 hh hv vy) for Aspect angle 120.")

(Stq *a* (read))

(print "Now enter those for Aspect angle 130 (130 hh hv vv):")

(setq *b* (mad))

(print "Now enter those for Aspect angle 135 (135 hh hv vv):")

(setq *c* (rad))

(if (and (equalp (car *a*) '120)

(equalp (car *b*) '130)

(equalp (car *c*) '135)) (conrmdcl0 *a* "b* 0) (print"

There appean to be some inconsistency with the Aspect

angle values, I am going over it again:")

(001)))

, Ti function checks If the object is a DC-10, If It ncounter data out of

;; bouWs it notifies the user and expects new values. It also calls confimnconc

;• to check for the object being one of Boein -707,727 or Concorde.
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(defun conflrmdclO (*a* b *c*)

(cond
.(and (equalp (cdr *a*) '(112 null 112))

(equalp (cdr *b*) '(112 null 112))

(equalp (cdr *c*) '(112 null 112)))

* ******* * * ** * **.***** *

"*The Object is a DC-1000

These are the confidence values of the ACs, their order is,

(Concord Boeing727 Boeing7O7 DCl0 Boeing747):")

(setq *ASPOLPROB* (list 0.2 0.2 0.2 0.9 0.3))

(print *ASPOLPROB*))

(t

(if (and (equalp (cdr *a*) '(112 112 112))

(equalp (cdr *b*) '(112 112 112))

(equalp (cdr *c*) '(112 112 112))) (conflzmconc) (print"

ERROR, Data out of Bounds

MESSAGE:

This Knowledge source would not be able to generate and post a

hypothesis based on the data you have supplied. If you do no have

sufficient data please reply a YES to the following question (and the

idetificat•on and classification shall proceed only on the basis of

the rmaining KS's) however, if you want to reenter data correctly,

after answering a NO to the question, please entr it again. ") (modaspol)))))

(ddei modaspol 0

(Print"

Message:

Do you have insufficient or inaccurate data?")
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(seiq "ainp* (read))

(cond ((eq *ainp* 'no)
(dc10))

(t

(seaq *ASPOLPROB* (list 0.01 0.01 0.11 0.01 0.01)))))

;;; This funAcon first calls ask-YorN to ask the user if he has

Data for die Aspect angles 10 and 15, if he doesn't then the

the Progra mrms the mesage "Insufficient information" and

outputs partial list, because it needs other measum for coming

;;; to a decision.

(defun confirmconc 0

(print"

** The Object is not a DC-10 OR BOEING-747 *

***But I shall try checking if it is one of BOEING-707, BOEING-727 and CONCORDE***")

(ask-YorN)

(cond ((eq *r" 'yes)

(conc))

(t

(setq *ASPOLPROB* (list 0.01 0.01 0.01 0.01 0.01)))))

(defun ask-YorN 0

MESSAGE,

Is Polarization data avilable for aspect angles 10 and 15?

If any one or none of them is available I have insufficient data. The

idenicaion and classification shall then proceed on the basis of

other KS's. Answer a NO for that case. Please answer YES if polarization

values for both of them ame available:")

(=q "r (read)))

;1 The user is prompted to enter values of polarization for the

;;;aspect•angles 10 and 15. It calls concorde if the data is not out of
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;;; bounds in which case it calls itself.

(defun conc 0

(print"

*This is to check if it is a Boeing-707 or Boeing-727

or Concorde., Please enter the values of polarization for Aspect
Ingle 15, e.g (15 hh by w):")

(3q *d* (read))
(prin "Now enter those for Aspect 10, e.g (10 h hv vv):")

(setq *e* (read))

(cona

((and (equalp (car *d*) '15)

(equalp (car *e*) '10))

(concorde *d*))

(t

(print"

ERROR,

Aspect angle data out of boands, Please give it again:")

(conc))))

(defum concorde (*d*)

(cond ((equalp (cdr *d*) '(112 112 112))

(print"

MESSAGE,

** The Object is not a DC-10 or BOEING-747 or CONCORDE **

Checking if it is either BOEING-727 OR 707 ...............................

-9)

(com'rm727 *e*))

(t

(if (and (equalp (caddr ,&') 'null)

(equalp (cdr *e-)'(112 112 112))) (listconcd)

(print"
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ERROR, Data out of Bounds

MESSAGE:

This Knowledge source would not bW able. o gcnerat and post a

hypothesis based on the data you have supplied. If you do not have

rfficient data please reply a YES to the following question (and tde

identification and classification shall proceed only on the basis of

the remaining KS's) however, if you want to reenter data correctly,

after answering a NO to the question, please enter it again. ") (modaspoll)))))

(defun modaspoll 0

(print"

Message:

Do you have insufficient or inaccurate data?")

(setq *ainpl* (mad))

(cond ((eq "aipl* 'no)

(conc))

(t

(setq *ASPOLPROB* (list 0.01 0.01 0.01 0.01 0.01)))))

(defun Ilstconcd 0
(print

* ** * .** * *l ** * * I , =l l * *l*** *** *I *I11 I I I * * *

" The Object is a CONCORDE so

These are the Confidence values of the AC's In the following order (Concord

Boeing727 Boeing7O7 DC1O Boeing 747 ):")

setq *ASPOLPROB* (ist 0.9 0.3 0.3 0.2 0.1))

(print ASPOLPROB*))

;;; This function checks for if the object is a Boeing- 727 or Boeing-707

;;; it also prompts the user if the values given am not appropriate.
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;;; the user migi' Aish to quit by hitting Abort at the Keybomrd.

(defun confirm727 (*e*)
(co!nd ((equalp (cdr *e*) '(112 112 112))

(prim"

Mr lb Object is a BOEING-727
****************************~*") (pin"

These are the Confidence factors of the

AC's. their order being (Concord Boeing727 Boeing707 DC10 Boeing747):") (ist727))

(t

(if (equalp (cdr *e*) '(i2 null 112)) (0ist77)
(print"

ERROR,

lbe values given are not appop ate, please check them

and enter them again if you wish to continue at this stage,

or else hit Abort, to start all over again.")
(con)))))

(defun list7O7 0

(print"

"0 The Object is a BOEING-707 "

lbs confidence factors of the ACs are u following, their order being

(Concord Boeing727 Boeing707 DC1O Boeing747):")

(setq *ASPOLPROB* (list 0.4 0.6 0.9 0.1 0.1))

(print *ASPOLPROB*))

(defu t1M27 0

(euiq 'ASPOLPROB M(t 0.4 0.9 0.6 0.1 0.1))

(print ASPOLPROB*))

;,;*S**"*********** End Of File for IV Level (CheckAC *
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• Mode: LISP--

,;; This is LEVEL 2 KS. Name: ELLIPT Knowledge Source (Derived measurements).

,,; The ellipt function checks the input given by the user to see if it belongs to the

;;; range of any of the AC's. If it does not theon it exits.If a user doesnot seem

;;; to have sufficient data then it doesnot post any hypothesis on the blackboard

;;; and the decision making proceeds without Ellipt ks.

;;; Created November 30 '88 by Digvijay Sikka.

;;; Last modified Jan 08 '89.

(defvar -AI" nil)

(defvar -A2 * nil)

(defvar *el* nil)

(defvar "e2" nil)

(defvar "tl" nil)

(defvar "t2" nil)

(defvar loi" nil)

(defun ellrpt (lut2" "H,3')

(setq "A1" (caddr list2"))

(setq A2 (caddr .W*st3))

(setq *el* (cadddr *Ust21))

(setq "e2" (cadddr "1ist3))

(setq "tl* (fifth "ist2"))
(setq "bt2" (fifth " W 0))

(ELLCONC))

(defun ELLCONC 0

(if (and (cuI A*i 5)

(<= 33 "e1" 39)

(<= 48 'tlP 68)

( 5 "A2 0 9)

(<= 2 "e2" 8)

(<= 94 "t2- 114)) (ELLCHKC) (ELLDC10)))

(defun ELLDCIO 0
(if (and (<= 14 "AI" 18)

(<= 9 "e01 15)
(<= 38 OtW 58)
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(Cm 12 "A2" 16)

(<= 6 "e2" 12)
(<= 81 "t2 101)) (ELLCHKDC) (ELLB707)))

(defun ELLB707 0
(if (and (<= 18 "AI" 22)

(<=mI el1 7)

(<c 169 "t1" 189)
(cm 4 "A2 8)

(<- 6 "e2" 12)

(<-81 t2" 101)) (ELLCHK70) (ELLB727)))

(defun ELLB727 0

(if (and ( I= 1 5A S)
(<= 13 *el* 19)

(<= 157 "t1" 177)

(<= 4 -A2- 8)

(<= 26 "e2" 32)

( 3= 3 U" 23)) (ELLCHK72) (ELLB747)))

(defun ELLB747.0

(if (and (= 19 -At' 23)

(<= 26 "el" 32)

(<= 49 Ot 69)

( 11 A2 - 15)

(<= 2 "e2" 8)

(<= 89 "t2" 109)) (ELLCHK74) (messp) (modeulipt "list2 list3)))

(defun messge 0

(print

Ei~pt Knowledge Source has not been able to generate and post a HYPOTHESIS

based on the data you have supplied. If you do not have the data please reply

a YES to the following question (and the identification and classification

shall proceed only on the basis of the existing HYPOTHESIS posted by ASPOL KS)

however, if you want to reenter data correctly, after answering
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a NO to the question. please enter it again.

gde..... modCeCi gee..... a..acecgegeeei...es... ses.* ee.)

(print*

MESSAGE,

Do you have insufficiene or inaccurate data?*)
(setq IOi (read))
(cond ((eq "o1 'no)

(nuinput))

(t

(setq -ELLPROB' (list .01 .01 0.01 0.01 0.01)))))

(defun nuinput 0
(print " I

Enter the data for ENGINE INLET:*)

(setq "WOt (read))

(Print"

Now enter the data for TAIL:")

(uetq OWsz (read))

(ellipt ellst2o OWist0))

(defunf ELLCHKC 0
(setq OELLPROB* (list (cprobconc) (cprob727) (cprob707) (cprobdcl0) (cprob747)))

(print"w

The confidence in the CONCORDE is the highest and is: 0.7. The confidence in each of

the remaining AC's is the following, their order being

(Concorde Boeing727 Boeing7O7 DC1O and Docing747):

(print -ELLPROB-)

-------------------------------------------------------------- U)

(defun ELLCHKDC 0
(setq IELLPROB* (list (cprobdc 10) (dcprob727) (dcprob707) (dcprobdc 10)

(dcprob747)))

(print"
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The confidence in the DCJO is the highest and is: 0.7. The confidence in each of the

remaining AC's is the following, their order being (Concorde Boeing727 Boeing707 DC10

and Boeing747):

-)

(print ELLPROBD)

(print"
S.. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . .. . .----------------------------- ------------ ))

(defun ELLCHK74 0

(setq "ELLPROBO (list (cprob747) (72prob747) (74prob707) (dcprob747) (74prob747)))

(print "

------------------m~ m -----------------o ----------- -mm m - m------- -------- m

The confidence in the BOEING 747 is the highest and is: 0.7. The confidence in

each of the remaining AC's is the following, their order being

(Concorde Boeing727 Boeing707 DC10 and Boeing747):

-)

(print ELLPROB)

(print"
------------------------------------------------ m-----------------------U))

(defun ELLCHK70 0

(setq ELLPROB* (list (cprob707) (72prob707) (70prob7O7) (dcprob707) (74prob707)))
(print"

The confidence in the BOEING 707 is the highest and is: 0.7. The confidence in

each of the remaining AC's is the following, their order being

(Concorde Boeing727 Boeing707 DC10 and Boeing747):

-)

(print ELLPROB)
(print

))----------------------- U)

(defun ELLCHK72 0

(setq *ELLPROB" (list (cprob727) (72prob727) (72prob707) (dcprob727) (72prob747)))

(print "
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The confidence in the BOEING 727 is the high~est and is: 0.7. The confidence in
each of the remaining AC's is the following, their order being
(Concorde Boeing727 Boeing7O7 DC10 and Boeing747):

(pirint ELLPROB)

........................................... ............. U)

(defui cprcbconc 0
0.7)

(defun dcprobdclO 0
0.7)

(de~un 72prob727 0
0.7)

(defun 74prob747 0
0.7)

(defun 70prob7O7 0
0.7)

(defun cprob727 0
(float (+ (genprobA 11) (genprobA2 1))))

(defun cprob707 0
(float (+ (genprobA2l) (gonprob.22) (gonprobt2l))))

(defun cprob747 0
(float (+ (genprobe2 1) (genprobti 1) (Senprobt2 1))))

(defun cprobdcl0 0
(float (+ (genprobe22) (genprobt 12) (genprobt2 1))))

(defun dcprob727 0
(float (genprob. 1)))

(defun dcprob747 0
(float (+ (gsnprobA22) (genprob*22) (genprobt22))))

(defun dcprob707 0
(float (+ (genprobe23) (Senprobt2 3))))



(defun 74prob70.7 0
(float (+ (genprobAl2) (genprobe22) (genprobt22))))

(defun 72prob707 0
(float (+ (genprobA2 1) (genprobt 13))))

(defun 72prob747 0
0.01)

(defun penprobtl3 0
(cond ((m169 *~tI* 177) .116)

.01)))

(defun genprobel 0
(cond ((<- 13 *el 15) .116)

(t

.01)))

(defun genprobAl 1 0
(cond ((< 1 'Al' 5) .116)

.01)))

(defun genprobA2l 0
(cond ((5 S A20 8) .116)

.01)))

(defun genprobe2l 0
(cond ((m2 OW 8) .116)

.01)))

(defun genprobe22 0
(cond ((m6 e2- 8) .116)

001)))

(defun genprobtil 0
(cond ((m48 vt1 68) .116)

001)))
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(defun genprobtl2 0
(cond (. 48 -t1 58) .116)

(t

.01)))

(defun genprobA2 1 0
(Cond ((<- 94 s 2 1015) .116)

(t

.001)))

(defun gsnprobA22 0
(cond ((<- 12 t2* 151) .116)

.0 1)))

(defun genprobe23 0
(cond ((c 89 *e2 101) .116)

.01)))

(defun genprob.23 0
(Cond ((<m 61 t2s 121) .116)

.0 1)))

(defun genprobt23 0

(cond ((<m 19 *A2@ 22) .116)

(t

;;ae**eeeeeeeeeeeof file dffior ELLJPKS040sesesseseess.......
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APPENDIX 16.2
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-- Mode: LISP -

;;; Syntax: Common Lisp. Base: 10

,;; This is the premilinary Blackboard writen prtmarily for

;;; combining the ASPOL and ELLPTr KS's hypothesis, along with their

;; confidence factorst has a built in confidence check which prompts

;;;he user that the object identification theory might be unreliable

;a md sIhuld not be pusued futher if the confidence ofdte output

• is dmagemsly low.

Syntax Common Lisp

,;; By Digvijay I Sikka for the Distributed Artificial Inelligence

;;; System.

;; created Dec 17, '88.

;; last modified Jan 7, '88.

I,'

(defvar *ASPOLPROB* nil)

(detvar *ELLPROB* nil)
(defvar *flstcom* nil)

(detfvar *secndcom* nil)

(defar *thirdcom* nil)

(defvar *fonhcom* nil)

(defvar *fifthcom* nil)

(detvar *1st1 nil)

defvar *st2* nil)

(defvar *liW* nil)

(defvar *confldence* nil)

(defve *prdal* nil)

(devar *prd2* nil)

(defvar Oprd3* nil)

(detvar *pr* nil)

(defvar *I nil)

(defar Ousrconfo nil)
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(defun presentation 0

(print"

THIS IS THE DA/ SYSTEM FOR THE IDENTIFICATION AND CLASSIFICATION

OF AIRCAFJS (ACs).

The ACs which we sha be classfut belong to one of thefollowingflJe cateories,

Concorde, Boeing 747, Boeing 727, Boeing 707 and DC1O.

You as a User are simulating the situation data base where the sensors shall feed in the

data, and a Program shall extract it in real life situation. The tables available from the work

done at OSU ESL comprise of the Knowledge base in our case. We have two Knowledge

sources (KSs) for the expert system reasoning. They are ASPOL and ELLIPT.

Please enter the aspect angle polarization data in the following format

(especthlh h v p):

e.g ( 120 112 112 112) 3")

(setq *listl* (read))

(print "Now enter Engine inlet values for the elliptical KS, in the following

format. FOR ENGINE INLET: (ts te Al e1 tl):

e.g (-0.065 0.125 2.731 36 58)")

(setq *Jist2* (read))

(print "Now enter the Tail values for the elliptical KS, in the following

format, FOR TAIL : (ts te A2 e2 t2):

e.g (0.940 1.135 7.08 5 104)")

(seq "s93" (read))
(rdrin)

(check-AC *HlUIl)

Qevelinfol)

(ellipt *Ust2* *st3*)

(levelinfo2)

(combine1))
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(defun levellno 1 0
(print"

LEVEL 1 THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY

ASPOL KS:

KS Name: ASPOL
Features measured Aspect angle A polariation

Kind:- Direst Measurements

Overall Crnmfldece:........ 0.9

(print OASPOLPROB*))

(defun levelinfo2 0
(pprint "

LEVEL 2 THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY

ELLIPT KS:

KS Name: EWLPT

Features measured: Elliptcal Features

Kind: Derived Measurements

Overall Confldence:.......... 0.7

(prnt *ELLPROB*))

(defun combne 1 0
(setj *prd1 (funcail certratos (car *ASPOLPROB*))

(funcall 'cemtazos (car *ELLPROB*))))

(setj prdl2 (funcail 'ceirnatos (second *A.*,?C1.PROB*))

(funcail 'certratios (second *ELLPROB*))))

(seult pd3( (fimea 'cemazos (third 0ASPOLPROB*))

(faw~Af 'ceirazioe (third *ELL.PROB0))))

(seq "pW (h(lncal 'cerzraios (fourth *ASPOLPROB*))

(fizncail 'cexraiios (fourth *ELLPROB*))))

(setq *poS ( (f',mcall 'cemazios (fifth *ASP'OLPROB*))
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(fwicall 'Certatos (fifth *ELLPROB*))))

(combine2))

(defun comblne2 0
(sctq *flrscom (Aurcal 'certainties "prl*))'
(setq swdcwm* (fimcall 'certainties *prd2*))

(uetq Odthlzic (flumcall 'certainties *prd3*))

(seq *fbnbcom* (fluncall 'certainties 'prd4*))

(setq *fifth=*m (funcail 'certaintiespzS)

(defun certmazos ( inpt)

U/inpct (-1I inpt)))

(defun certainties (inpa)

(t inpim (+ 1 input)))

(defim urinp 0

MESSAGE:

Please spec~fY Mhe corgldnce level for the Object-Idenafcation dheovy

to be acceptable to youa: ")

(seq useon (mad)))

(defun confidence-level 0
(setq *confidence* (max Oflrstcom* secdcom* tOlzlcom *forbcm* *flfthcom*))

(if ('= *confidence* %serconf*)

MESSAGE:

Thje coMI¶dence in the Most Probable Expulnaimaon was uiftient enough for

die clazft~cadon task to be pursued Hence die clau#¶cxiox

bgormadon of the AC was output to the USER. '

WARNING:

-88-



The confidence in the Most Probable Explainason was NOT sifficient enough for

the ClassifiCation task to be pursued further. Hence even though

classification in~formation was output, the USER, is warned tha the

theory might be unreliable. So it should not be pursued any fiuther."

(defun test=m 10
(cond ((> *fhrcm* Osecndcom*)

(if (> *flncom* thirdcom*) (testfirstl) (testhirdl)))

(if (> *secndcomn *thirdcom*) (testseend!) (r!estthiLrd 1)N)))

(defun tesrfizstl 0
(cond (C fixstco *forthom*)

(if C> Ofimcom *ffthcom) (puiccno) (prinb747)))

(t

(esdonh))))

(defun testihirdl 0
(cond ((> *tjhjrdcom* *forthcom*)

(Cif (> thirdcom* *fftfIcm*) (prinb7O7) (prinb747)))

(t

(testforth))))

(defun tessecndl 0
(cond ((> Osecndcom* fonthcom*)

(if (> Osecndcom* OfiflIcom*) (prinb727) (prinb747)))

(t

(defun tcsdbrtb 0
(if (> !Ofbrdc= *fifbcm*) (pulndc 10) (prinb747)))

(defun prnczonco 0
(print
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The Identified AC Is a CONCORDE
8**8********* ******************.*

The confidence value is:")

(print "flrscom*)

(confldence-,evel))

(defkm pulnb747 0

(pqi"

The identified AC Is a BOEING-747

The confidence value is:")

(Prit *fftcom*)

(confidence-•evel))

(delbn prindclO 0

(prim"

**************** **** ***** * *

The identified AC Is a DC-1O

The confidence value is:")

(prim "forthcom*)

(confidence-evel))

(defum prinb7O7 0

(prim"

The Identified AC Is a BOEING-707

The confidence value is:")

(print "Wrdeom)

(confidence-level))
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(defun prinb727 0
(print"

The idetfled AC is a BOEING-727
** ***.* ***** ******** **** **** *

'Ta conafdence value is:")

(pfit useaidcom*)

(confidence-level))

";;; ***********************End of Me for Bco**************************
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-92-



Sampale nin

THIS IS THE DAI -CYSTEA FOR THE IDENTIFCATION AND CLASSIFICATION

OF AIRCRAT's (ACs).

The ACs which we shall be classoying belong to-one of the following five categories,

Concode, Boeing 747, Boeing 727, Boeing 707 and DCIO.

You as a User are simulating the situation data base where the sensors shall feed in the

data, and a Program shall extract it in real life situation. The tables available from the work

done at OSU ESL comprise of the Knowledge base in our case. We have two Knowledge

sources (KSs) for the expert system reasoning. They are ASPOL and ELLIFT.

Please eater the aspect angle polarization data in the oWowing format

(aspect hh h viw):

e.g ( 120 112 112 112)

(125 612 nun 612)

"Now amer Engine inlet values for the elliptical KS, in the following

format, FOR ENGINE INLET: (ts te Al el tl) :

e.g (-0.065 0.125 2.731 36 58)")

(-A -. 139 771 26.7 50)

"Now enter the Tail values for the elliptical KS, in the following

format FOR TAIL : (ts te A2 e2 t2):

e.g (0.940 1.135 7.08 5 104)"

(1-3 1-47 14M A 911

MESSAGE:

Please spec•fy the co,1e*""'e level foi 4e ObJect-4dentcation theory
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to be acceptabl to you:"

1120.9

* Level I KS: ASPOL.************

It is possible that data out of bounds might have been given

at this stage, but it is not of signiflcam interest to me since no

decisioa about the Frrof .f !denty of an object has yet been utken.

However very soon the identity of the Object shaU be esablshedL."

0'Tbe Object is not a Boeing-747**

**Please enter the Polarization

Values (120 hh hv vv) for Aspect angle 120:"

(120 112 112 112)

"Now ef hose for Aspect angle 130 (130 hh hv vv):"
(130 112 112 112)

"Now enter those for Aspect angle 135 (135 hh iv vv):"
(135 112 113 112)

ERROR. Data out of Bounds

MESSAGE:

This Knowledge source would not be able t generate and post a

hypothesis based on the data you have supplied. If you do nt have

sumicent data please reply a YES to the fMliowing question (and the

identification and asification shal proceed only on the bads of

the remaining KS's) however, if you want to reenter data correctly,

after answering a NO to the question, please enter it again."
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Message:

Do you have insufficient or inaccurate data?"
Da

$*The Object is not a Boelng-747*0

**Please enter the Polarization

Values (120 hh hv w) for Aspect angle 120:."
(120 112 112 112)

"Now enter those for Aspect angle 130 (130 hh hv vv):"

(130 112 112 112)

"Now enter those for Aspect angle 135 (135 hh hv vv):"

(135 112 112 112)

** The Object is not a DC-10 OR BOEING-747 *

***But I shall try checking if It Is one of BOEING-707, BOEING--27 and

CONCORDE***"
9'

MESSAGE,

Is Polarization data available for aspect angles 10 and 15?

If any one or none of them is available I have insufficiem data. The

identification and classification shall then proceed on the basis of

other KS's. Answer a NO for that case. Please answer YES if polarization

values for both of ther.4Az available:"

W*This to check lilt ii a Boeing-707 or Boeing-727

or Qmcorde, Phe enter the values of polarization for Aspect
angle 15, e.g (15 hh hv w):"

(15 112 null 112)

-95-



"Now enter those for Aspect 10, e.g (10 hh hv vv):"
(1 11211.3.111)
#9

ERROR, Data out of Bounds

MESSAGE:
This Knowledge source would not be able to generate and post a

hypothesis based on the data you have supplied. If you do not have

sufficient data please reply a YES to the following question (and the

identification and classification shall proceed only on the basis of

the remaining KS's) however, if you want to reenter data correctly,

after answering a NO to the question, please enter it again."

Message:

Do you have insufficient or inaccurate data?"

LEVEL 1 THE FOLLOWING HYPOTESIS HAS BEEN POSTED BY

ASPOL KS:

KS Name: ASPOL

Feame meared. Aspect ange & polarimaon

Ki. Dbre Mewwretentu

Overall Co:fl--ce-.-. 0.9

Tbe confidence in the BOFING 747 is the highest an is: 0.7. The confidence in

each of the remaining AC's is the following, thelr order teing

(Concorde Boeing727 Boeing707 DC10 and Boeig747):
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(0.242 0.01 0.13599999 0.242 0.7)
S.

LEVEL 2 THE FOLIJ OWING HYPOTHESIS HAS BEEN POSTED BY

EUJPT KS:

KS Name: ELLIPT

Features measured: Ellpdcal Features

Kind: Derived Measurements

Overail Cofemnce:.............. 0.7

(0.242 0.01 0.13599999 0.242 0.7)

The identified AC Is a BOEING-747
*O~so.00000000000000olie~o~oooloo.

The confidence vale is:"

0.023026315

WARNING:

The coMl dnce in the Most Probable E.planation was NOT sadcient enough for

the cl¢jaflon task to be pursued fuher. Hence even though

a Iuon rmatio was output, tMe USER LI warned that the

teory might be unreliable. So it should not be pursued any further."
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TIIS IS THE DAI SYSTEM FOR THE IDENTIFICATION AND CLASSIFICATION

OF AIRCRAFTS (ACs).
The AC: which we shall be class*4ng belong to one of the foflowlg flye categories,

Concorde, Boeing 747, Boeing 727, Boeing 707 and DCIO.

You as a User an simulating the situation data base where thc sensors shall feed in the

data, and a Program shall extract it n real life situation. The tables available fmm the work

done at OSU ESL comprise of the Knowledge base in our case. We have two Knowledge

sources (KSs) for the expert system mauoning. They am ASPOL and ELLIPT.

Please enter the aspect angle polarization data in the following format

(aspect hh hv vv):

e.g ( 120 112 112 112)"

(10A12A112 12)

"Now enter Engine inlet values for the elliptical KS, in the following

format, FOR ENGINE INLET: (ts te A el tl) :

e.g (-0.065 0.125 2.731 36 58)")

(--12 095 21 4 176-9)

"Now e the Tail value: for the ellipical KS. in the following

format FOR TAIL : (ts te A2 e2 t):

e.g (0.940 1.135 7.08 5 104)"
(-95 113 65-58 96)
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MESSAGE:

Please specify the confidence level for the Object-identification theory

o be acceptable to you:"

*Level I KS: ASPOk=*******

It is possible that data out of bounds might have been given

at this stage, out it is not of significant interest to me since no

decision about the proof of identity of the object has yet been taken.

Howe,,- very soon the identity of the Object shall oe established."
I'

"*The Object is not a Boeing-747"*

"Please enter the Polarization

Values (120 hh hv vv) for Aspect angle 120:"

(120 112 Dull 112)

"Now enter those for Aspect angle 130 (130 hh hv vv):"

(130 112 null 112)

"Now enter those for Aspect angle 135 (135 hh hv vv):"

(135 112 null 12)

ERROR, Data out of Bounds

MESSAGE:

This Knowledge source would not be able to geerae and post a

hypotsis based on the data you have supplied. If you do no have

sufflcient data please reply a YES lo the following question (and the

identification and classification shall Frbceed only on the basis of
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the remaining KS's) however, if you want to reenter data corretly,

after answering a NO to the question, please enter it again."

Message:

Do you have insufficient or inaccurate data?"

Ohibe Object is not a Boeing-747*"

**Please enter the Polarization

Values (120 l.h by vv) for Aspect angle 120:"

(120 112 null 112)

"Now enter those for Aspect angle 130 (130 hh IY vv):"

(110 112 null 112)

"Now enter those for Aspect angle 135 (135 hh hv vv):"

(135 112 null 112)

**The Object is a DC-10**

These are the confidence values of the ACs, their order is,

(Concord Boeing727 Boeing7O7 DC10 Boeing747):"

(02 0.2 0.2 0.9 0.3)

LEVEL 1 THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY

ASPOL KS:

UE Name: ASPOL

Feuwes imew&* Aspect angle & peakdmauon

Kbid: Dinest Mfeewemema.ý
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Overall Cofl/denc:....--.. 0.9

(0.2 0.2 0.2 0.9 0.3)

The confidence in the BOEING 707 is the highest and is: 0.7. The confidence in

each of the remaining AC's is the following. their order being

(CcAconle BoeinM Boeing7O7 DC1 xo d Boeg47):

(0.348 0.232 0.7 0.232 0.242)

LEVEL 2 THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY

ELLIPT KS:

£S Name: ELWPT

Features measured: Efipdcal Features

Kind: Derived Measurement:

Overall ConJdnce:......- 0.7

(0.348 0.232 0.7 0.232 0.242)

The Identified AC Is a DC-1O

The confidence value is:"

0.7310924

WARNING:

The cor¶dence in tie Most Probable Explanation was NOT sufcient enough for

-101-



the ciass#aftcaon task to be pursuedfrther. Hence even though

classoicadon i4formaton was output, he USER is warned that the

theory might be unreliable. So it should not be pursued any further.
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MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and

selected acquisition programs in support of Command, Control,

Communications and Intelligence (C31) activities. Technical and

engineering support within areas of competence is provided to

ESD Program Offices (POs) and other ESD elements to

perform effective acquisition of C3I systems. The areas of

technical competence include communications, command and

control, battle management information processing, surveillance

sensors, intelligence data collection and handling, solid state

sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.


