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18.

1

INTRODUCTION

18.1.1 THE DATA FUSION PROBLEM

Classical signal processing has always relied on the data available from one
sensor, which is then utilized for tasks such as detection, classification, identifica-
tion, estimation and situation assessment. However, more recently, increasing
awareness of the use of passive, low-observable sensors supporting active systems
such as radar and increased availablility resulting from a remarkable decrease in
the cost of the associated hardware has given rise to a trend towards the employ-
meni of multiple sensors. Using a variety of methods, such as radio frequency,
infrared, and electro-optics which utilize almost the entire range of the electromag-

netic spectrum, these sensors can detect, identify and classify objects.

18.1.1.1 PROBLEM BACKGROUND
The merging of diverse data, available as a result of employment of a variety
of sensors, into a single sensible representation has emerged as an important issue
in today’s C3I systems. Data fusion includes the collection, association, aggrega-
tion, and merging of data to create and display a coherent representation of current
and prior situations. In a sensitive environment, the most crucial aspect is thc
ability to assess and anticipate an evolving situation. The perception of the situ-

ation is a prerequisite for an appropriate response. The resulting increasc in the




quantity, quality and rate of information in such systems has dictated the move
towards the development of efficient multisensor integration or data fusion ap-

proaches.

This move has placed certain requirements on the fusion system. A fusion
process should be able to accommodate real world sensors which respond at differ-
ent intervals and in quite different event spaces. The sensors may be similar or
dissimilar, they may provids different types of data, they may have different de-
grees of accuracy and perception. The information fusion system would need to
take into account the quantitative, qualitative or subjective results being provided
by the sensors. It must also be able to provide the fused result in more than one
output class or event space and in a proper form of representation where the num-
ber of different output classes is dependent on the requirements of the user com-

munity.

There are a number of advantages of multiple -sensor information fusion
These are better performance, survivability, quicker response, reliability, increased
dimensionality etc. Figure 1 lists the major benefits of multiple-sensor data fusion

systems over single-sensor systems [1].

18.1.1.2POSSIBLE APPROACHES
Three main options which one could consider for a satisfactory solution to the
problems encountered by the growing need for accurate and timely perceptions

(detection and classification) are discussed below.




Advantages of Data Fusion

Performance

Robustaess

Extended
provided by multiple, over-

spatial coverage

lapping sensor fields.

improved detection, tracking,
identification when data is inte-
grated from multiple looks at the
target

Reduced ambiguity in data:
set of hypotheses about the
object is reduced.

Multiple sensors can geomet-
rically form a synthetic aper-
ture capable of greater resolu-
tion than a single sensor can
form.

Increased detection probability
due to the merger of informa-
tion from multiple sensors. Ef-
fective integration and coherent
representation of the object in-
creases the surety of detection.

Reduced vulnerability: the sysiem
would be less vulnerable to en-
emy action or natural phenome-
non because it is emploving
broader range of the electromag-
netic spectrum.

System reliability can be im-
proved because there is an inher-
ent redundancy with multiple
Sensors.

Robust performance is achieved
because if some of the sensors
are unavailable or jammed or
lack coverage for physical or op-
erational reasons, the remaining
sensors can contribute informa-
tion.

Sensor subsets can be used to re-
duce observability or conserve re-
sources etc.

Figure 1 BENEFITS OF MULTIPLE-SENSOR DATA FUSION SYSTEMS

OVER SINGLE-SENSOR SYSTEMS




The first possibility could be a system that lets a human operator control and
monitor data from the sensor bank, and draw appropriate conclusions. The pri-
mary advantage of this approach is that the operator or system operator can inter-
pret sensor data in the context of a broad range of situations and experience,
which allows him to anticipate certain threats, and igncre those areas which do not
seem to be of immediate concern. The drawback is that operator workload quickly

becomes unmanageable.

Another approach [2] is to make a hard-wired semiautomatic system by tailor-
ing special-purpose combinations of sensors into ‘‘super-sensors.’’ These provide
information about a narrow range of situations but lack both the scope and the

flexibility to be of more general use.

The third approach could be to build an automatic system that can operate a
variety of sensors, and employs artificial intelligence(AI) based techniques to de-
tect objects of interest, integrate, interpret and classify their data, and have the
ﬂexibility. to adapt to changing situations. The Al based technique would provide
means for integrating knowledge and techniques of multiple expert systems, those
which have different but possibly overlapping expertise, thereby enabling the solu-
tion of problems whose domains are outside that of any one expert system or
knowledge source. This approach would combine at least two avenues, a classical

statistical approach, and an approach comprising the elements of probability the-




ory and symbolic inference mechanisms. This report is devoted to the description

of the development of one such system.

18.1.1.3 LITERATURE REVIEW

An approach to interpret sensor data in the context of a priori models was
employed by Garvey and Fischler[2]. Their method can be loosely characterized
as the following three step process: anticipate probable threats, plan a sensor utili-
zation strategy and jnterpret the data returned by the sensors. Techniques for inte-
gration of data derived from a collection of sensors, and prior knowledge, in order
to assess a hostile air-defense situation[2] can be used to provide up-to-date in-
formation about potential ground-based threats -to a flight of aircraft attempting to

penetrate hostile airspace.

Aircraft ID fusion has been discussed by Vannicola and Mineo[3]. The objec-
tive of the program is to develop and demonstrate multisensor aircraft identifica-
tion fusion processes. It consists of:

i) the a priori data base,

ii) the Source Probability Matrix(SPM) for each of the data sources which meas-
ures event characteristics and,

iii) the processing logic which develops and employs the mapping matrices, per-
forms the ‘‘fusion’’ of all single events into a joint event and employs Bayes Theo-
rem for the joint event thereby developing the posterior probability distributions

over each of the selected output target classes.




A Bayesian approach has shortcomings in that: no adequate representation of
ignorance is allowed within a Bayesian framework. For example, if no information
is available concerning two initially exclusive and exhaustive possibilities, in a
Bayesian framework, they are usually assigned a probability of 0.5. This is quite
different from specifying that nothing is known regarding such propositions. An-
other problem with a Bayesian approach is the difficulty of ensuring and maintain-
ing consistency in a collection of interrelated propositions. This is because the
underlying models from which the point probability values are derived are incapa-
ble of supplying such precise data. In these situatlions, a formal method for inte-
grating knowledge derived from a variety of sources makes use of Shafer’s[4]
mathematical theory of evidence and is called ‘evidential propositional calculus.’
Bayesian approach is a special case of this more general methodology. It has the
capability of providing for Bayesian inferencing when the appropriate information

is available.

Shafer-Dempster logic has been discussed and described by Bogler[S] while
placing emphasis on providing realistic examples from the field of multisensor
target identification systems and on simulating its operation. His paper and the
references contained therein address the questions such as, how evidential infor-
mation furnished by a knowledge source in the form of a probability distribution
can be converted into a form suitable for an application of Shafer-Dempster the-

ory? How multiple bodies of evidential information can be pooled?




A lack of knowledge of the exact conditional probability distributions for the
various possible states of evidence and the fact that successful inference networks
cannot usually be developed directly from Bayes’ rule has also led to the develop-
ment of another approach, where a hierarchy of *‘fuzzy’ assertions or hypotheses
has been developed and used. See Tanimoto [6: Chapter 7] for a very good discus-
sion of the Probabilistic Inference Networks using fuzzy inference rules. These
fuzzy inference rules are used to obtain probabilities for other hypotheses, given
the evidence.These rules are functions for propagating probability values. The gen-
eral form is:

f:10,1]" = [0,1].
Thus, a fuzzy inference rule takes n probabilities as arguments and returns a single
probability. The choice of f for a particular situation is a modeling decision that
requires some understanding of the relationship among the phenomena described
by the hypotheses. He also discusses the updating in inference networks using
Subjective-Bayesian updating rules and handling uncertain evidence and the
Dempster-Shafer calculus. The emphasis in his discussion is on the practical as-

pects of the data integration problems.

On the other hand, work on the analytical issues of data fusion[7-9] with
emphasis on the detection and estimation problem has addressed the hypothesis
testing problem in distributed systems with data fusion, optimal decision rules at

the detectors, optimal fusion rules for the distributed hypothesis testing problems




using the Neyman-Pearson criterion, the general Bayesian criterion, and the mini-
mum equivocation criterion, to name a few. For details, the reader is referred to

the above mentioned reports[7-9] and the references contained therein.

Finally, a highly automated, low-cost, intelligent, distributed sensor network
(DSN)[10] might need to address questions like, ‘“What computer network organ-
izational structures are best suited to the situation assessment task?’ Two general
DSN organizations were tested by the authors; the first was hierarchical and the
second was an ‘‘anarchic committee’’ whose nodes could each send messages to
one, some, or all other nodes. The performance of the committee organization
consistently surpassed the hierarchical one. This indicates that distributed sensor

networks should emphasize the cooperative aspects of problem-solving.

In this report, we shall discuss the application of data fusion to the object

classification problem which is discussed next.




18.1.2 OBJECT CLASSIFICATION PROBLEMS

18.1.2.1 INTRODUCTION

In the data fusion problems discussed in the previous section, it is desirable to
not only detect an object in the field of illumination of a sensor, but also to know
something more about the object than its mere presence e.g., the identity of the
object may be required. This is where object identification and classification tasks
move in. Classification which also appears to be a powerful human strategy for
organizing knowledge for comprehension and action is our topic for discussion in

this section.

Classification, also sometimes called categorization, as an information proc-
essing task is one in which the input is a collection of data about some specific
entity e.g., an object, a state, a case, or a situation, and the output is the general
category or categories pertaining to the entity. This mapping could be accom-
plished in a number of ways. The computational complexity of the classification
task increases with the increase of the amount of data about the entity to be classi-

fied and the number of classification categories.

18.1.2.2 LITERATURE REVIEW

Most of the literature on pattern classification deals with simple (no context)
Bayes classifiers. For a broad understanding of various pattern recognition tech-

niques, readers may refer to the books by Duda and Hart[11], Chen[12],




Fukunaga[13], Meisel{14]. For multispectral pattern recognition and classification

problems, a very complete survey is given by Nagy[15].

Wu[16] has presented a multistage classification strategy called the decision
tree classifier. The decision tree classifier is characterized by the fact that an un-
known sample is classified into a class using one or several decision functions in a
sequential manner. To achieve the best possible performance with a classifier of
this type, the design of the decision stages is of considerable importance. The
choice of tree structure and the choice of apprbpriate feature subsets used at every
‘node’ will be reflected in the performance (classification accuracy) and efficiency
(computation time used). Wu used a maximum likelihood decision rule at each stage

of the tree.

Sands and Garber([17] evaluate a syntactic pattern recognition system for ap-
plications to radar signal identification. Three different level-crossing based pat-
tern representation algorithms are considered. The utility of resulting symbolic
pattern representations is assessed by evaluating the performance of a maximum-
likelihood classifier when the observed symbol strings are used as inputs to the
decision algorithm. A syntax analysis algorithm is derived from the likelihood
function classifier. Performance results of simulated classification experiments for

both maximum-likelihood and language-theoretic classifiers are presented.

The Wald sequential probability ratio test to the discrimination of targets ob-

served by a radar or other sensors was applied by Therrien[18] and a form for the

-10-




classifier involving linear predictive filtering was developed.The classifier is based
on some well-known results in mean-square filtering thecry and has a simple
intuitive interpretation. The classifier structure can also be related to auto regres-
sive time series analysis and innovations process concepts and has an interpreta-
tion in the frequency domain in terms of the maximum entropy and maximum
likelihood spectral estimates for the object signatures. In his sequential approach, a
target is illuminated with consecutive pulses until a classification of the target can
be made within a prescribed probability of error. Because of the linear-predictive
formulation, the computation and storage requirements for the classifier are re-
lated only to the number of returns necessary to predict the target signatures and
not to the length of signature observed. A classifier with modest storage and com-
putational requirements can be employed to process signatures consisting of an

arbitrarily large number of returns.

Ezquerra and Harkness [19] suggested that the simplest classification algo-
rithm is the linear machine, based on Fisher’s linear discriminant (FLD) function
[11]. In this procedure, the feature vector is reduced from a multidimensional
vector to a one-dimensional quantity by summing the weighted features to form
one variable; the resultant variable is then compared with a threshold value which
determines the classification decision. A second approach is based on the Ncarest
Neighbor (NN) rule by Duda and Hart [11]. In this approach, feature vectors are

stored such that the distances between these stored prototypes and feature vector

-11-




of an unknown origin can be calculated. The FLD classifier is faster and simpler
thar the NN technique. In addition, the latter requires more memory in order to
store the prototypes for later comparison. However, the NN technique retains the
full dimensionality of the data, thereby allowing the classifier to exploit the charac-

teristics of the underlying probability density functions in the feature space.

Classification of more than two radar targets simultaneously can be accom-
plished by extending the linear discriminant analysis to the multiple-category case.
For a set of R categories: a set of R discriminant functions are constructed, thereby
partitioning the feature space into R decision regions. The resulting classifier is a
piecewise linear discriminant (PWLD) function, and an unknown feature vector is
assigned to the class correspoﬁding to the largest discriminant function. Clustering
techniques provide a valuable aid in investigating the inherent characteristics and
structure of the object classes. A good discussion of the clustering techniques has

been provided in [19].

Rosenfeld[20] has suggested computational techniques that could serve as a
basis for object recognition and classification. He has also discussed traditional
paradigms for characterizing and recognizing complex classes of objects, and
points out some of their serious limitations. Attempt has been made through con-
jectures at the human way of characterizing object classes and use of parallel

hardware has been suggested for rapid recognition of objects. His approach con-

-12-




in

sists of three stages: part segmentation and property value computation, broadcast-

ing and constraint checking.

Welch and Salter[21] laid the basic foundation for contextual pattern classifi-
cation. They used compound decision theory to introduce contextual information
into the decision scheme. Fu and Yu[22] have discussed the compound decision
approach to contextual classification and proposed a spatial stochastic model for
contextual classification. Interested reader is referred to the book[22)] and the ref.-

erences contained therein.

Finally, a very exhaustive review of classification task from the perspective of
the knowledge-based reasoning, pattern recognition, and connectionist paradigms

in artificial intelligence has been done by Chandrasekaran and Goel [23]

18.1.3 REPORT ORGANIZATION

In this report, a blackboard based Distributed Artificial Intelligence(DAI) system
is described. Our aim is to describe and demonstrate an artificial intelligence
based technique as an answer to today's growing need for automation of informa-

tion fusion and object classification.

section.18.2we discuss DAI and why it is suitable for the present day needs of
multisensor integration systems. Implementation languages and systems along with

blackboard architectures have also been discussed.

~-13-




Section 18.3presents the overall system architecture of our DAI system. Use of
sensed information as three levels of expert reasoning is discussed. Finally, the

organization and operation of the system is presented.

Section 18.4is devoted to the validation of our system. The concepts and the
system presented in the previous chapter are demonstrated by using two knowledge
sources which model corresponding sensors supplying the data. Use is made of the
data base, generated at the Ohio State University, which consists of calibrated
complex (coherent) radar returns measured at various azimuth angles, frequencies
and polarizations, along with the ellipticity data. Finally, sample implementation is

presented.

To conclude the report the summary of the work done and the possible exten-

sions are presented in section 18.5.

-14-




18.2  DISTRIBUTED ARTIFICIAL INTELLIGENCE

18.2.1  INTRODUCTION

Distributed Artificial Intelligence (DAI) is the subfield of artificial intelligence
(AD) concerned with concurrency and distribution in Al computations, at many
levels. Several recent developments have provoked an interest in DAI: the develop-
ment of powerful concurrent computers, the widely prevalent computer networks,
and the recognition that much human problem solving and activity involves groups

of people, schools of thought, and varying degrees of expertise or knowledge.

Elements of an artificial intelligence system are said to be distributed if there
is some distance! between them [24]. In some domains where Al is being applied,
e.g., distributed sensing, medical diagnosis, air-traffic control, knowledge activity
in the problem domain is inherent!y distributed and a DAI solution is highly appro-
priate. Since information fusion and object classification belong to this domain,
after discussing uses and issues related to DAI we shall investigate the possibilities

of its application to our problem.

The following are typical rationales for using distribution in artificial intelli-
gence systems.

Adaptability: Logical, temporal, semantic, and spatial distribution allows a

11t is meant to be conceptual distance, with respect to some frame such as time, space, semantics, etc.

-15§5-




DAI system to provide alternative perspectives on emerging situations, and greater
adaptive power.

Development ease: Each part of the intelligent system could be developed
separately by an expert in a particular type of knowledge or domain.

Cost: A DAI system could be cost effective because each unit would be made
of components which are simpler and smaller and hence low cost computer sys-
tems. However, communication and computing tradeoff has to be considered here,
which is discussed later.

Operational speed: Concurrency can increase the speed of computation and
reasoning. It may also open up the arena of parallelism.

Ability to treat specialized and dynamic knowledge: Knowledge or action may
be collected in specialized, and bounded contexts. It may be represented by ex-
perts who have partial view of the entire problem. Addition of specialists for
changing situations is no difficult task and hence the system as a whole would be
capable of handling dynamic knowledge.

Closeness to the human way of problem solving and management: It is very
natural for humans to attack a problem in a distributed form. Most of the organiza-
tional structures in the human society also incorporate this principle.

Reliability: Distributed Al systems may be more reliable than are centralized
systems because they provide redundancy, cross-checking, and triangulation of

results [25].
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The major issues involved in the construction of a DAI system can be summa-
rized as follows:
1) the appropriate distribution of subproblems among the processing nodes,
2) the choice of the control strategy in such a way that global coherence is main-
tained during the problem solving, the knowledge sources are utilized efficiently
and optimum performance is achieved.
3) the specification of the communication policies for easy interaction among proc-
essing nodes. The processing nodes should cooperate when none of them has suffi-
cient information to solve the entire problem, i.e., each has a partial view of the
problem. The sharing of information becomes crucial when the system as a whole

is to produce consistent results.

The use of DAI usually reduces the communication bandwidth needed in a
distributed processing system, because the nodes communicate only higher-level,
which is not so data intensive and is in a more abstract form. The tradeoff between
communication and computation should be considered at the time of system de-
sign. This is because costs of communication are expensive compared to the costs

of computing elements at presen:.

18.2.2. IMPLEMENTATION FRAMEWORKS & TOOLS

A variety of software tools and frameworks have been developed by the DAI
researchers to express solutions to the basic questions of DAI and to enable experi-

mentation with different approaches in difierent domains. The reasons why we are
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18.

concerned with the particular tools currently being used are:

a) research tools help verify theoretical insights through hard, real-world experi-
mentation. So the difficulty of constructing complete theoretical analysis is
avoided.

b) the research issues which cannot practically be theoretically modeled due to
their complexity can be handled.

c) some tools are designed to express ideas important to the domain and,

d) experimentation is a useful way of getting sometimes surprising results.

An overview of available implementation languages and systems and the black-

board architectures is in order.

Z.71.1lImplementation Languages and Systems

Any discussion of implementation frameworks and ideas for DAI systems
should include the integrative systems and distributed languages which offer great
flexibility in problem solving styles and inter-node or inter-agent organization.
These provide a way to handle the important area of description and diagnostic

mechanisms for DAI systems.

Tokoro and Ishikawa's{26] ORIENT84/K system supplies a language for pro-
gramming using concurrent objects. In the modeling method proposed by them
called DKOM (Distributed Knowledge Object Modeling) a knowledge system con-

sists of a behavior part, a knowledge part, and a monitor part. They have discussed
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an expert system built using ORIENT84/K and its performance is compared with

some other programming languages/systems.

MACE (Multi-Agent Computing Environment)[27] is a generic testbed allow-
ing the integrated representation of problem solving and communication structures
of different grain size and interaction style. MACE ‘‘agents’’ are concurrent ob-
jects, consisting of a user-definable procedural part called an engine, along with a
collection of databases. Designed for experimentation and implementation in a
heterogeneous multicomputer environment, the MACE system includes user-con-

trolled tracing and monitoring facilities.

The AGORA environment[28] has been designed as a part of a large speech
recognition project. It allows the integration of multiple languages and highly paral-
lel computations. Another architecture, ABE [29] supports the integration of col-
lections of independent cooperating problem solving components of several differ-
ent grain sizes and problem-solving styles. ABE processors can manage resources

locally, because resources are passed with control flow among modules.

A family of languages known as distributed, object oriented languages (DOO
languages)[24] is a natural framework for implementing concurrent DAI systems.
Message communication allows interobject interaction in these languages. The ob-
jects are the building blocks with data and procedural abstractions of objects being
described. Language processors and underlying kernels implement allocation, load

balancing, addressing and message-routing schemes invisible to the programmers.
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18.2,2.2Blackboard Architectures

Blackboard architectures have become a popular paradigm for developing
knowledge-based systems and are becoming a mainstay of many projects in DAL
Conventional blackboard architectures incorporate a shared common data area or
blackboard as the common medium for memory and interaction among a collection
of knowledge sources. A blackboard architecture instantiates a three step process:
1) Identify the set of permissible next computations |
2) Select the next computation from among the permissible computations

3) Execute the selected computation.

The collection of knowledge sources may read and write on one or more levels,
under the supervision of a control system. Control in typical blackboard systems is
sequential and organized by a centralized scheduler, but the knowledge sources
work with semantically disparate rules or procedures. It mayv also be a system of

concurrency locks, or a collection of integrated control-knowledge sources.

The use of blackboard based architectures for the implementations of DAI
systems has been quite widespread. The blackboard architectures were introduced
for the first time in Hearsay Speech Understanding System[30]. The functional
independence of knowledge sources, flexibility in the choice of control strategy,
and the structuring of blackboard information make blackboard architectures a
powerful yet flexible framework for a knowledge-based application. The interest in

the generic control architecture of BB1[31] and GBB[32] are examples of increas-
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ing popularity of blackboard architectures. The blackboard paradigm may be sim-
ple to describe but is difficult to implement effectively for a particular application.
Nii [33] has noted that the blackboard model with its knowledge sources (KSs),
global blackboard database, and control components doesn’t specify a methodol-
ogy for designing and implementing a blackboard system for a particular applica-
tion. A more detailed discussion of the blackboard structures implemented todate

along with their features and operational details follows.

18.2.3 BLACKBOARD STRUCTURES: A LITERATURE REVIEW

The speech understanding system, Hearsay II[30], developed at the Carnegie
Mellon University(CMU), was the first ever system to employ blackboard based
architecture. In this system, the KSs have been developed to perform a variety of
functions, such as extraction of acoustic parameters, classification of acoustic seg-
ments into phonetic classes, recognition of words, parsing of phrases, and genera-
tion and evaluation of predictions for undetected words or syllables. The black-
board is subdivided into a set of information levels corresponding to the intermedi-
ate representation levels of the decoding processes (phrase, word, syllable, etc.).
Each hypothesis resides on the blackboard at one of the levels and bears a defining
label chosen from a set appropriate to that level e.g., the word FLYING, the sylla-
ble ING, or the phoneme NG. The hypothesis contains additional information, in-
cluding its time coordinates within the spoken utterance and a credibility rating.

The sequence of levels on the blackboard forms a loose hierarchical structure,
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hypotheses at each level aggregate or abstract elements at the adjacent lower level.
The possible hypotheses at a level form a search space for KSs operating at that
level. Top down and bottom up problem solving behaviors can be accommodated

simultaneously by a HEARSAY II KS.

At the start of each cycle, the scheduler, in accordance with the global state
information, calculates a priority for each activity (KS condition program or action
program) in the scheduling queues. The highest priority activity is removed from
the queues and executed. If the activity is a KS condition program, it may insert
new instances of KS action program, the blackboard monitor notices the black-
board changes it makes. Whenever a change occurs that is of interest to a KS
condition program, the monitor creates an activity in the scheduling queues for that
program. The monitor also updates the global state information to reflect the

blackboard modifications.

Yang and Huhns[34] say that establishing a problem solving hierarchy in a
distributed environment requires that planning and problem solving be combined
with internode communications. Problem solving by their system occurs as an it.
erative refinement of several mechanisms, including problem decomposition, ker-
nel-subproblem solving, and result synthesis. They suggest the following capabili-
ties at the processing node:

i) Intranode communication facility that allows different processes at the

same processing node to share information.
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ii)  Dynamic planning ability, which adjusts the problem solving (PS) plan
and guides it by either actual calculations or estimation, in the most promising
direction based on the latest PS status.

iii)  An internode communication facility that permits the different processing
nodes to share tasks and results.

iv)  Problem deduction ability that solves tasks by invoking required knowl-
edge sources.

v) A learning ability that enables the system to change its organization and

improve its performance as more PS ‘experience is obtained.

Their black board is chiefly used for internode communication. It is an active
data structure located at each processing node and it allows information sharing by
storing tasks, plans and partial results and transmitting them at appropriate times
in the PS process. Also, a means for sharing information about different PS proc-

esses within the node.

In her paper, Hayes-Roth[31] looks into the ‘‘blackboard control architec-
ture’’. Her work has explicated and provided mechanisms for solving control prob-
lems such as independent generation of desirable and feasible actions and recon-
ciliation, the prioritization of action, and the dynamical planning of useful se-

quences of actions.

A blackboard architecture designed for the distributed environment of a net-

work of heterogeneous computers, COPS[35], has rule-based blackboard proc-
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esses which are also internally sequential. They can be notified of remote events
on each other’s blackboards using ‘‘ambassadors,”” which are simply local rules

that represent the interests of remote processes.

The GBB (Generic Blackboard)[32] is a high-level implementation tool de-
signed to provide an application builder with both speed and flexibility in imple-
menting a blackboard-based application as well as an efficient execution capabil-
ity. GBB contains two distinct subsystems: a high-level blackboard database com-
piler and a set of generic control shells. The blackboard architectures have suf-
fered from limitations suc;l as difficulty in implementation, lack of portability and
generality and clumsy information placement and retrieval schemes. The effort
made at the University of Massaéhusetts at Amherst is to overcome these short-
comings and is noteworthy in this regard. The organization of GBB is shown in
Figure 2. The blackboard database compiler defines the blackboard and blackboard
objects as well as the insertion retriéval and storage structure. The generic control
shells define the KSs, and also create other control objects such as goals or plans.
Three different control schemes are available in the GBB, simple shell control
shell, KS and execution shell and the Knowledge Base(KB) shell where the latter
two are based on the BB1 model of control. As noted earlier, the compiler and
control shell are two distinct subsystems with the blackboard events signifying any

change in the situation.
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18.2.4 SUMMARY

Distributed Artificial Intelligence (DAI) can potentially solve problems that are
too large for a centralized system because of resource limitations induced by a
given level of technology. Limiting factors such as communication bandwidths,
computing Spced, and reliability result in classes of problems that can be solved
only by a distributed system. It can provide means for interconnecting multiple
expert systems that have different, but possibly overlapping expertise, thereby ena-
bling the solution of problems whose domains are outside that of any one expert
system or knowledge source. DAI is the most appropriate solution when the prob-
lem itself is inherently distributed, such as in distributed sensor nets, distributed
information retrieval and knowledge acquisition, because it is easier to find experts
in narrow domains. Many problem domains are already partitioned or hierarchical
as in the object detection case, and that is why DAI lends itself easily to it. Our
research is aimed at using DAI for the solution of object classification problem in a

data fusion system with distributed sensors.
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18.

OVERALL SYSTEM ARCHITECTURE

In the first chapter, we talked about the need for automation of the multisensor
data fusion with emphasis on the object classification problem. This need has pro-
vided the fuel for the investigation of the DAI techniques which could be applied
for the implementation of such systems. The present chapter is devoted to the

description of the system architecture proposed in this research.

18.3.1 BACKGROUND

The purpose of the system is the processing of sensed data available from
multiple sensors about a single object. The main goals are to:
1) Combine it into a single useful report or, in other words, a coherent representa-
tion of the situation, and
2) Perform classification by its features into disjoint sets (object classes). Our sys-
tem is fairly general to incorporate any kinds of objects and classification schemes

as well as categories. -

Figure 3 shows the sensor input model to the data fusion center. As illustrated
many sensors and distributed sensor networks feed in the information in the form
of reports to the data grouping and compaction unit, which also receives the contex-
tual information and intelligence data. The different kinds of information and

measurements form the basis of expert system reasoning, which is discussed later
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In section 18.3.2 The detailed description of data grouping and compaction unit is
beyond the present scope, but for the present discussion it would be sufficient to
say that it eliminates the redundant or unimportant data and groups the data in the
form of packets with each scan. In other words, it defines the boundaries between
the scans, and maintains some form of organization. It also maintains data about
the events which do not require immediate attention and can wait or those that are
expected to happen. These events are called simple events and expected events re-
spectively. The ones which require immediate attention are called clock events. The
situation data base exchanges the data with the data grouping and compaction unit

with the highest priority to the clock events.

The DAI system extracts the information from the situation data base and
outputs the object identification theory to the user/system operator who, in turn,
performs senscr management. As noted earlier, in a fully automated system the
flow of action would not include the user/system operator except for the purpose of

informing him of the decision and the chosen course of action.

In general, for a data fusion problem three criteria drive the design of any
‘‘reasonably intelligent’’ object identification/classification system. These include
the following.

1) Sensor Modeling: Each sensor is unique to itself so it is likely to be contributing
information to the situation data base in its own sensor-specific level of abstrac-

tion. The system should be capable of accurately modeling the information pro-
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vided by each sensor source.
2) Data Fusion and interaction with the user: The system must be capable of:
i) fusing the information provided,
ii) computing a statistical or probabilistic or fuzzy measure for the resultant
ID and classification quality, and
iii) accurately displaying the information to the user. This information should
be explicit and there must be provisions to the user/system operator/battle
commander to specify his own set of parameters which guide the operation of
the system. This is to provide the system with the maximum amount of situ-
ation and contextual knowledge along with the common sense and experience
which is so exclusively human!
3) Conflict Resolution: The system should be capable of resolving any potential
sensor conflicts or failures. In other words, the combining mechanism should be
capable of giving a decision and issuing a warning (if necessary) to the user or
system operator that the confidence in the object identification theory is not

enough, and it might be dangerous to pursue it any further.

18.3. 2 USE OF SENSED INFORMATION
The process of data fusion uses a combination of sensors and sources to col-

lect information of the tactical situation. This information might include: reports of
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object detections, related events, tracks, or factual information. This data is used to

detect, locate, and classify the objects and events.

Figure 4 shows the three levels of expert reasoning which are used to obtain
discrimination between objects of similar type or discrimination between objects of
different types (i.e., identification). This can be achieved by any one or a combina-
tion of sensed variables. The discrimination process can infer the identity by meas-
ured object attributes, object behavior, or contextual clues provided by multiple

Sensors.

Directly measured features{1] include attributes of the object e.g., spectral signa-
tures: radar, IR etc., spatial characteristics, or of the phenomena that can be asso-
ciated with the object e.g., effects on the environment, secondary effects, or events
linked to the object. These attributes are measured by the sensor directly or result
from preprocessing operations (filtering, integration, clustering), which refine and

combine the raw measurements into a single attribute.

Behavioral/Derived measurements of the object include temporal behavior (ve-
locity, acceleration, maneuvering, direction of travel, etc.), tactical activities (emi:-
ter status/mode, and hostile or friendly acts such as jamming, deceptive, or en-
gagement actions) and ellipticity measurements. Doctrinal procedures can be es-
tablished to permit behavior to be independent of object performance and to allow
unique object discrimination. Examples are air corridors and restricted zones,

which provide discrimination of foes by restricting the behavior of friends.
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Contextual interpretation implies the total spatial, spectral, and temporal situ-
ation in which the object is found. The location and relationship to other objects;
and the background information constitutes the spatial context e.g., priority zone
assessment and pattern for attack intention. The spectral context includes sensed
attributes e.g., communication, countermeasure activities, levels of noise. Tempo-
ral context information includes the relative timing of sensed events or object ac-

tivities and their implications of coordinated group behavior.

18.3.3. THE SYSTEM ORGANIZATION & OPERATION

The combination/classification mechanism of our system combines heuristic
and statistical pattern recognition technique. It requires parametric knowledge of
apriori probabilities for the combination scheme and assumes independence of

measured values.

The key functions of generating, interacting with the user ahd posting hypothe-
ses on the blackboard are performed by diverse and independent programs called
knowledge sources (KSs). Each KS can be roughly schematized as a condition-ac-
tion pair. The condition comporent prescribes the situations in which the KS may
contribute to the problem-solving activity, and action component specifies what
that contribution is and how to integrate it into the current situation. KSs have been
developed to perform a variety of functions and are capable of accounting for
inaccurate or insufficient data. If one of the KS is not able to post a hypothesis

then the PS activity continues on the basis of the other KS only and the system
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warns the user that the object identification theory might be unreliable and should
not be pursued any further, since the results would not help the system operator

but instead they might lead to decisions which might not be suitable.

KSs communicate with each other through a blackboard as shown in Figure 5.
It is a global database, which records the hypotheses generated by KSs, combines
them and has a confidence KS built into it that informs the user of the overall
confidence in the object identification theory and whether it should be pursued any
further. Refer to the section on the probability basis for more about the scheme
employed for the combination mechanism in the sample implementation. Any KS
can generate a hypothesis and post it on the blackboard. These actions, in turn,
may produce structures that satisfy the applicability condition of the other KSs. In
our framework, the blackboard serves four functions: it performs KS initiation,
represents intermediate states of problem-solving activity in the form of levels with
the posted hypothesis of each KS, it communicateé messages from one KS that
activate other KSs and it combines the hypothesis from the KSs to report a best
explanation or refined hypothesis which then is tested for the overall confidence

before being reported to the outside world as an object identification theory.

The system which we have described in this section is implemented on a serial
machine, Symbolics 3645, but it simulates the concurrent communication and

processing of a distributed system.
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It accepts all the data from the user at one time, in one scan, thus modeling
many sensors pouring in the information together. Each knowledge source picks up
the relevant data or posted guess and performs the necessary computations. If it
cannot generate a satisfactory hypothesis, it keeps on interacting with the user till a
guess can be made or the user declares that he doesn’t have sufficient data. This
delay in posting the hypothesis on the blackboard, is to delay the communication
till computation has been performed to a satisfactory level, hence minimizing the

cost.

A unique feature of our system is that KSs at one level ‘can know’ the hypothe-
ses, posted on the blackboard, by other KSs of the same level. In other words, they
can read it from the blackboard. However, to avoid any bias towards the decision
of object identification theory, KSs at different levels (except the contextual inter-
pretation KSs) will proceed independently to generate and post their hypotheses.
The combination and decision making is left on the knowledge built into the black-

board.

The contextual interpretation KSs shall only be able to add or subtract confi-
dence in object identification theory and inform the user/system operator of its

significance, consequence and implications. They cannot modify or delete it.

The system implementation and validation of our system is discussed next.
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18.

SYSTEM VALIDATION

To solve object identification and classification problem, using the system pre-
sented earlier we utilized five commercial ACs as objects and modeled the sensors
using two Knowledge Sources(KSs), for aspect angle with polarization and the
ellipticity information. In the present chapter, we demonstrate the feasibility of our
architécture using a data base which is a subset of the expert reasoning mentioned

earlier. The description of this data base is the topic of the following sections.

18.4.1 BACKGROUND

The objects to be identified and classified in our system are Aircrafts(ACs).
The category of the ACs is commercial and they belong to one of the five classes:
Boeing 747, DC10, Boeing 707, Concord, and Boeing 727. The knowledge sources
of our system utilize the data in the form of tables which was gathered through
experimentation at The Ohio State University (OSU). OSU ElectroScience Labora-
tory (ESL) has developed various methods for solving the Radar Target Identifica-
tion (RTI) problem [36]. Areas of research have included the investigation of opti-
mal frequency ranges [37], where wavelengths extend from the Rayleigh region to
the optical region, and polarization studies [38] involving various linear and non-

linear combinations of the radar scattering coefficients.
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Before discussing the KSs of our system, some electromagnetic theory back-

ground is in order.

The optimal frequency range for radar target identification should lie in the
Rayleigh - resonance frequency range where the wavelength is about the same size
or larger than the size of the target (we shall call it object henceforth) [39]. So in
this region the scattered field is descriptive of the shape and volume of the object.
In the resonance region the scattered field is due to re-radiating surface currents
set up on the object body and also gives the object shape and size information. The
desired features for object identification are found; the character of the radar re-
turn is not influenced appreciably by the shape and size information and small

changes in aspects.

However, in the optical region, where the wavelength is small compared to the
object size, small changes in aspects can cause significant changes in the scattering
characteristics. The scattering mechanism in the optical region are related to the
interaction of the specular points and contain information on the finer details of
the object. Small changes in aspects cause significant changes in the scattering
characteristics, if the separation of the specular points is large compared to the

incident wavelength.

18.4.2 MODELING THE SENSORS
The ESL has developed a multi-frequency data base [36] consisting of ocean

ship, aircraft, and ground vehicle radar signatures, and has explored radar detec-
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18.

tion methods and various classification methods for each class of objects. We are
utilizing this data base as tables for each kind of sensor, which is being modeled
Oy a w5. Ini a real iife situation, these entries would be extracted from the situation
data base, replacing the user who is currently responsible for supplying the data to

the system.

The feature space contains the information available in the electromagnetic
energy return from the scattered object. Information available from this energy
spectrum depends on both the transmitter and the scatterer. Features such as
transmitted frequency, received amplitude, transmitted polarization, received po-
larization, and object range, are available to most radar systems. There can be
other features too, such as received phase, object speed, object direction etc. The
reader is referred to the three levels of expert knowledge; direct measurements

(DM), behavioral/derived measurements (BM), and contextual interpretation (CI)

described earlier.

The two measurements which we utilize are the direct measurements (aspect
angle, polarization data) and the derived measurements (ellipticity data). The de-
scription of the features of the data utilized and how they were obtained are the

contents of the following discussion.

4.2.lAspect angle, polarization data
The data base we use consists of calibrated complex monostatic radar returns

from five metallic coated scale model aircraft: Concord, DC10, Boeing707,
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Boeing727, and Boeing747 [36]. The silhouettes and the full-scale dimensions of
these commercial aircraft are shown in Figures 6-10. The data base consists of
calibraszd complax (coherent) monostatic radar returns measured at various azi-
muth angles, frequencies, and polarizations, at an elevation and roll angle of 0
degree. The data was taken at the OSU ESL compact range facility [40] over the
frequency bands of 1 to 12 GHz. The polarization schemes measured are listed
below as polarization types:

(HH) Transmitting Horizontal polarization, Receiving Horizontal polarization.
(Vvv) Transmitting Vertical polarization, Receiving Vertical polarization.

(HV) Transmitting Horizontal polarization, Receiving Vertical polarization.

The polarization types HH, VV are commonly referred to a co-pol polariza-
tions, and the polarization type HV is referred to as the cross-pol polarization.
Note that by the electromagnetic theorem of reciprocity, thé polarization types VH
(Transmitting Vertical polarizatiori, Receiving Horizontal polarization) and HV are
equal. Additional steps[41] are required to obtain the “‘low-error’’ signature. The
purpose is to remove unwanted background clutter from the object measurement
and provide a scale correction factor based on a mathematicﬁ representation of a
reference object. .Calibration equations are used and to ensure the best results in
the calibration process, background and reference object measurements are made
after every five object measurements. Additional signal ﬁrocessing techniques are

employed to achieve the final form of the low-error object backscattered signature.

-43-




?inally, a computer program called DATADASE [42] allows the storage of
frequency formatted data strings at many different aspect angles and the three
base line polarization types HH, VV, and HYV, into one single random-accessed
data file. Listings from the DATABASE computer program characterizing the RTI
aircraft data bases as shown in Table 1-5 are used as the knowledge base for the

Aspect angle Polarization (ASPOL) KS.

18.4.2.2 Elliptical Features

The concept of transient polarization impulse response (TPIR) is used [43]. It
could possibly be used to identify radar objects based on a decomposition of the
return signature into portions that correspond to object substructures, such as
wings, tails, or engine inlets. Conceptually, the TPIR can be envisioned as the
result of transmitting a short circularly polarized (CP) pulse toward the radar ob-
ject, and then measuring the back-scattered response with (wide band) vertically
and horizontally polarized antennas. If the outputs of the vertical and horizontal
antennas were connected to the y and x plates of an oscilloscope, the TPIR would

be observed.

Tﬁere are possibly many ways of parameterizing the polarimetric information
contained in TPIR in a form usable by the pattern recognition components of an
object identification system. An effective parameterization technique is known as
the *‘ellipse fitting’’[43). From Figure 11 it may be observed that subsections of the

“end view” of the TPIR closely resemble ellipses or partial
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The Ohio State Univesity ElectroScience Laboratory
Compact Range Experimental Data 1984
Scale factor = Elevation angle = 0 degress

LOW FREQUENCY FORMATTED DATA BASE (GHz)

ASPECT (Deg) POLARIZATION
- 'n L [ nv L L J w o
0 1-12 1-12 1-12
10 1-12 1-12 1-12
15 1-12 1-12 1-12
=C 1-12 1-12 1-12
30 1-12 1-12 1-12
40 1-12 1-12 1-12
45 1-12 1-12 1-12
S0 1-12 . 1=12 1-12
60 1-12 1-12 1-12
70 1-12 1-12 1-12
78 1-12 1-12 1-12
80 1-12 1-12 1=-12
90 1-12 1-12 1-12
100 1-12 1-12 1-12
10§ 1-12 1-12 1-12
110 1-12 1-12 1-12
120 1-12 1-12 1-12
130 1-12 1-12 1-12
138 ' 1-12 1-12 1-12
140 1-12 1-12 1-12
150 1-12 1-12 1-12
160 1-12 1-12 1-12
168 1-12 1-12 1-12
170 1-12 1-12 1-12
180 1-12 1-12 1-12
270 1-12 1-12 1-12

Figure 1 727 Low-Frequency Data Base Map
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The Ohioc State Univesity ElectroScience Laboratory
Conzact Range Expecimental Data 1984
Elevation angle = 0 degrees

Scale factor =

LOW FREQUENCY FORMATTED DATA BASE (GHz)

ASPECT (Deg)

170
180

POLARIZATION
.nvl

1-12
1-12
1-12
1-12
NULL
1-12
NULL
1-12
1-12
1-12
NULL
1-12
NULL
1-12
1-12
1-12
1-12
NULL
1-12
1-12
1-12
NULL
1-12
NULL
1-12
1-12
1-12
NULL
1-12
NULL
1-12
1-12
1-12
1-12

1-12
NULL
1-12
NULL
NULL
1-12
NULL
NULL
1-12
NULL
NULL
1-12
NULL
NULL
1-12
NULL
1-12
NULL
NULL
1-12
NULL
NULL
1-12
NULL
NULL
1-12
NULL
NULL
1-12
NULL
NULL
1-12
NULL
1-12

Figure 2 747 Low-Frequency Data Base Map

-46-




The Ohio State Univesity LlectroScience
Compact Range Experimental Data 1984

Scale factor =

LOW FREQUENCY FORMATTED DATA BASE (GHz)

ASPECT (Deg)

165§
171
278
180
270

Elevation angle = 0
POLARIZATION

‘a - .'v.
1-12 1-12
1-12 44
1=-12 1=12
1-12 1-12
6~12 '}l
1-12 1-12
6-12 NULL
1-12 1-12
1-12 le12
1-12 1-12
6=-12 NULL
1-12 1-12
6-~12 NULL
1-22 1-12
1-22 1-12
1=-12 1-12
6-12 NULL
a=12 1-12
6=-22 5
1=-12 a=12
l1=-12 1-12
1-12 i-12
6~12 NULL
1-212 1-12
6=-12 NULL
1-12 1-12
1-12 1-12
1-12 1-12
6-12 1 54
1-12 1-12
6-12 L
1=12 1=-12
1-12 1-12
1-12 1-12
6-12 454
1-12 1-12
6-12 NULZ

Laboratory

degrees

'w.

1-12
1-12
1-12
1-22
6-12
1-6.3
6-12
1-12
1-12
1-12
6-12
1-12
§-12
1-12
1-12
l1-12
6-12
1-12
6-12
1-12
1-12
1-12
6-12
1-12
6-12
1-12
1-12
a=12
6-12
1-12
6-12
1-12
1-12
1-12
6-12
1-12
1-12

Table 3 7o7 Low-Frequency Data Base *{ap
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The Ohio State Univesity RlectroScience laboratory
Compact Range Bxperimental Data 1984

Scale faczor =

L2levation

LOW FRECUENCY PORMATTED DATA BASE (GHzZ)

ASPICT (Deg)

0
10
18
29
30
40
4s
£C
60
70
7¢
80
90

100
108
10
123
130
135
149
150
169
163
170
182
270

1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-32
1=12
1-12
1-12
1-12
112
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1=12
1-12
1-12
1-12
1-12

POLARIZATION
.'v».

1-12
1-12
1-12.
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-12
1-12
NULZ
1-12
1-12
1-12
1-12
1-12
1-12
1-12

angle = 0 degrees

1-12
1-12
1=12
1-12
1-12
1=12
1-12
1-12
1-32
1=22
1=12
122
1-12
1-12
1-12
1-12
1-12
1-32
i=l2
1=i2
1-12
1-12
1-22
1-12
1-12

i1-13

Table & DC10 Low-Frequency Data Base Map
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The Ohio State Univesity RlectroScience Laboratory
Coapact Range Experimental Data 1984
Elevation angle » 0 degrees

Scale factor =

LOW FREQUENCY PORMATTED DATA BASE (GHz)

ASPECT (Deg) POLARIZATION

.u.’ ..v.

0 1-12 1-12
10 1-12 1-12
13 1=12 WULL
20 1-12 1-12
as 6-12 NULL
30 1-12 1-12
33 6-12 NULL
40 1-12 112
43 1-12 1-12
S0 1-12 1-12
§5 6-12 NULL
60 1=-12 1-12
63 6-12 NULL
70 1-12 1-12
75 1-12 1-12
80 1-12 1-12
8s 6-12 NULL
90 1-12 l-12
9% 6-12 NULL
100 - 1-12 1-12
105 1-12 1-12
10 1-12 1-12
118 6-12 NULL
120 1-12 l-12
125 6-12 NULL
130 - 1le12 1-12
138 1-12 1-12
140 1-12 l-12
148 6-12 NULL
150 1-12 1-12
185 6-12 NULL
160 1-12 1-12
165 1-12. 1-12
170 1-12 1-12
175 6-12 NULL
180 1-12 1-12

1-12
1-12
1-12
1-12
6-12
1-12
6-12
1-12
1-12
1-12
6-12
1-12
6-12
1-12
1-12
1-12
6-12
1-12
6-12
1«12
1-12
1-12
6-12
1-12
6-12
1-12
1=-12
1-12
6-12
1-12
6-12
1-12
1-12
1-12
6-12
1-12

Tabla 5 Concord Low-Frequency Data Base Map
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Figure{l: TPIR for the Concord at 0° viewed from the direction of propagation.
showing E field locus.
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ellipses. This, in turn, suggests that largest amplitude portions of the TPIR which
correspond to the major scattering centers, can be represented by an elliptical

parameterization.

The parameterization of the portions of the TPIR corresponding to the major
scattering centers is accomplished by a best-fit ellipse approximation using a
least-squares fitting algorithm. The set of features derived from this pafamcteriza-
tion are the ellipticity €, the tilt angle 7, and the amplitude A of the fitted ellipse.
These three parameters desqribe object substructure geomeiries in a natural way.
The overall size (cross-section) of the substructure determines the amplitude, the
shape of the substructure is strongly related to the ellipticity, and the orientation

determines the tilt angle.
18.4.2.3TPIR Features for Commercial AC’s

In Table 6 we have the sets of features representing the engine inlet and tail
derived from the TPIR's for the set of five commercial AC's which we have chosen
to demonstrate our system. In this table, the amplitude A, the ellipticity € and the
tilt angle 1, are displayed along with the parameters ¢s and te which are the times
(in nanoseconds) marking the start and end of the corresponding response subsec-
tion[43]). The accurate values are shown and so are the intervals or ranges of
values which account for any error in the measurements of the sensors. In other

words, the ranges account for the possible inaccuracies in the observations.
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AC'S o b . A .o e Dot Component
<0.065 0.125 °* : 1=§ :u : 3339 : u :48—68 Engine inlet
Concord A @ e o)
' ’ L) ' . 2-8 ¢ B94=-114
0.940 LIS A2 v (7.08) v (9) e o (104) Tail
<0272 0130 'y, *©  14-18 ‘e 9-18 * u’ 38-58 Engine Inlet
DC-10 Lo (15.908) ') ) (48)
0580 0746 ',, & 12-16 ' | 6-12 ‘' w' 81-101 ,
L (13.622) . (9) L 81 Tail
0120 0095 .A; . 1822 I ., 169-189 |Engine inist
Boeing .. (20.265) G )} v (179)
707 Ca . 48 e . 612 . . 81101 |
0950 1136 Az | - o 2 % L2 e Tail
0230 -0.108 Al . 1.5 e, 13-19 . wu.157-177 |Engine intet
Boeing : : (3.366) Lo (16) Lo (167)
77 ‘A3« &8 . 26-32 3-23
-3& .477 + A2 o a s B )
0 0477 4 (5.96) v (29 v (13) Tail
0300 -0.139 |4, . 19-23 ‘e ‘2632 ' u'49-69  |Engineiniet
Boeing . oL Q29 . . (29 A 1))
747 .c ] . [ . [
11-15 o ' 2-8 T’ 89-109

Numﬁmhmmwmummnmmmmuwmmnm;-orméhuvwonmmu.
AL mxd T correspond o ths amplinuds. ellipdcity md the ult engls of the ellipse.

Table 6 SET OF FEATURES REPRESENTING ELLIPTICITY DATA
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18.4.3 SAMPLE IMPLEMENTATION
In Figure 5, the KSs mark_ed with asterisks are the ones used for the sample
implementation. The user supplies the data to our system instead of the situation
data base. In a real life situation, an input program would extract it directly from
the situation data base. The present simulation2 performs classificaﬁon of an AC,
after identifying it by its features, into disjoint sets (object classes) comprising of
the five commercial ACs (Boeing 747, Boeing 707, DC10, Concord and Boeing

727).

The two KSs in our system are ASPOL and ELLIPT the theoretical basis of
which has been briefly discussed above. For more details, the interested reader is
mfe&ed to the references presented in the above discussion. Each KS is imple-
mented as a condition-;ction pair. Both of the KSs have been developed to per-
form a variety of functions and are capable of accdunting for inaccurate or insuffi-
cient ciata. KSs communicate with each other through the biackboard, a global
database, which records the hypotheses generated by KSs, combines them and has
a confidence KS built into it. If either ASPOL or ELLIPT is not able to post its
hypothesis then the PS activity continues on the basis of the other KS only and the

system warns the user that the object identification theory might be unreliable and

should not be pursued any further.

2 refer 10 the appendices A and B for the Lisp program code and sample runs respectively.
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18.4.4  THE PROBABILITY BASIS

Our system is employed in domains where conclusions are rarely certain.
Thus, we have to build some sort of certainty-computing procedure on top of the
basic antecedent-consequent apparatus. Our certainty/confidence computation pro-
cedure associates a number between 0 and 1 with each fact. This number, called a
certainty factor, is intended to reflect how much confidence we have in the fact or
how much certain the fact is, with 0 indicating that a fact is definitely false and 1

indicating that a fact is definitely true.

.4.1. The blackboard

In the blackboard, a fact’s certainty is to be determined when the consequents
of several aniccedznt-consequent rules argue for it, requiring the computation of a

multiply argued certainty[44]. To calculate multiply argued certainties, certainty ra-

Certainty factors
9 25 .75

it

9 X1/3 = 3
Certainty ratios

Figure 12 THEINFERENCENET PROCEDURE FOR COMBINING CERTAINTY
EACTORS

tios are used. Certainty factor, ¢, and a certainty ratio, r, are related as follows:
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The certainty of a muitiply argued consequent is determined by transforming to
certainty ratios, multiplying, and transforming back to certainty factors. This is

shown in the Figure 12.

After certainties are transformed into certainty ratios, the certainty ratio of a

multiply argued consequent is given by the following formula:

where rg is the certainty ratio corresponding to the a priori certainty of the conse-
quenf, and the n are the certainty ratios corresponding to the certainties read from
the input-output functions of the cbntributing rules. Note that the formula reduces
to the product of certainty ratios in the special case when the a priori certainty
ratio is 1. This corresponds to the case when the a priori certainty of the conse-
quent is .5. In this special situation, the prior evidence does not indicate whether
the hypothesis is true or false.Transforming certainties into certainty ratios to com-
pute the certainty of multiply argued consequents is a powerful technique for
knowledge based systems. For a detailed discussion of this subjective Bayesian

inference method, the reader is referred to Duda et. al.[45].
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18.4.4.2 The ELLIPT knowledge source

ELLIPT knowledge source shown in Figure 13 first checks against the entries of
Table 6 for the available ranges for the identification of the object as belonging to
one of the classes of ACs. It then uses heuristics to assign the confidence values to
the remaining ACs in the decreasing order of priority based on the “‘¢loseness’
which they exhibit to the identified AC, see Table 7. The degree of closeness of a
particular AC to the identified AC is the amount of features that they have in
common. In other words, what is the confidence in the hypothesis that it *“‘could

have been’’ some other AC if it was not the one that has been identified.

The hypothesis posted by the ELLIPT KS is a list comprising of the confi-
dences which it assigns to each of the five ACs. The confidencé in the identified
AC being equal to the o;erall confidence in the KS itself, which is assigned by the
operator depending on the kind of measurement (derived measurement in the pre-
sent case), the confidence in the sensor which is being modeled by the KS and
various other factors. In Table 7 weights assigned to all the entries of the table are

equal.
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C COR72| COR74 | cor70 | corDC
A 1-5 X X X

As s-8 X s-8 X

< X X X X

¢ X 2-8 6-8 6-8

T, X 48 -68 X 48 - 58
s X 96-101 | 94-101 | 94-101
DC pcor c | pc or 72| Dc orR 74 | DC OR 70
A, X X X X

Ae X X 12 - 15 X

« X 13-18 X X

R 6-8 X 6-8 6-12
T, 48-s8 X X X

s 94 - 101 X 89-101 | 81-101
747 740RC | 740R72 | 7240R 70 |74 OR DC
A, X X 19 - 22 X

Ae X X X 12- 15

« X x x X

« 2-8 X 6-8 6-8

T, 48 -68 X X X

s 94 - 101 X 9-101 | 89-101
727 720RC | 720R74 | 720R 70 |72 0R DC
A 1-5 X X X

As s-8 X s-8 X

< X X X 13- 15
« X X X X

1, X X 169 - 177 X

Ty X X X X
707 700RC | 700R74 | 700R 72 |70 OR DC
A, X 19 - 22 X X

Ae s-8 X. s-3 X

« X X X X

« 6-8 6-8 x 6-12

™ X X 169 - 177 X

s 9a-101 | 89-101 X 81 - 101

NOTATION: The entries marked X stand for the features which are not common amongst the pair of ACs. The values

stand for the feature overlap, and are also indicative of the range of error allowable for the corresponding sensor. C, DC,
707 etc. correspond to Concord, DC10, Boeing 707 ACs respectively. The features A,, A, etc. have already been expisined
in the table of elliptic features. Each of them carries equal weight and they are equally determinable.




18.4.4.3 The ASPOL knowledge source

The ASPOL knowledge source models the system'’s aspect angle and polariza-

tion sensors. It receives/acceéts the data from the user as a list with the aspect
angle followed by the HH, HV and VV polarizations. It checks for each of the ACs
_in the following sequence: Boeing-747, DC10, Concord, Boeing-727 and
Boeing-707. It interacts with the user/system operator for getting more data, thus,
facilitating the generation of a hypothesis if it is so required. It also has provisions
for checking if the data is out of bounds at any stage and asks the user to re-enter
it. In other words, it delays. communication with the blackboard until it is able to
generate a satisfactory hypothesis. The user/ system operator has the option of
specifying that he does not have sufficient data in which case the equivalent of no
hypothesis is posted on the blackboard and the problem solving activity continues
by the hypotheses posted \by remaining KSs. As we can see, in a real life situation,
a key feature of the ASPOL KS would be that it would be able to request more
data frbm the data grouping unit and hence the sensor, if it suspects an object but
has less than the information needed to generate and post a hypothesis. The confi-
dence values it assigns to the ACs is solely dependent on the values suggested by
the system operator thus taking into account the effect of experience and the hu-

man reasoning.
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the basis of the
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board. '

Figure 14 THE ASPOL KNOWLEDGE SQURCE IN QUR SYSTEM
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18.4.5 SUMMARY

To demonstrate the framework presented above, the data base which we utilize
in our implementation is a suﬁset of the expert reasoning mentioned in the earlier
chapters. It is in the form of table entries for each kind of sensor. Each sensor is
being modeled by a KS. In real life situation, these entries would be extracted from
the situation data base, replacing the user who is currently responsible for supy'y-
ing the data to the system.The data base consists of calibrated complex (coherent)
monostatic radar returns measured at various azimuth angles, frequencies, and
polarizations, at an elevatioﬁ and roll angle of 0 degree and the ellipticity data. The
two KSs, ASPOL and ELLIPT in our system stand for the aspect angle, polariza-
tion information (direct measurements) and ellipticity information (derived meas-

4

urements). -
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18.

5

SUMMARY & POSSIBLE EXTENSIONS

18.5.1 SUMMARY AND DISCUSSION

Our approach utilizes the blackboard for information management and hy-
potheses combination. The blackboard is used by knowledge sources (KSs) for
sharing information and posting their hypotheses on, just as experts sitting around
a round table would do. A situation daee base is characterized by experimeqtal
data available from the three levels of expert reasoning. These are direct measure-
ments (polarization, signatures & effects etc.), derived and behavioral measurements
(temporal, act based, ellipticity and classification based on frequencies etc.) and
contextual interpretation (contextual threat, priority zone assignmeht. pattern for
attack intention and fact based information from military intelligence). These KSs
generate intermediate hypotheses and all these hypotheses appear at different lev-
els of abstraction on the blackboard. The posted hypothesis is refined and confi-
dence level of the best explanation is checked to determine if it meets the require-

ments for being an object identification/classification theory.

It should be pointed out that such considerations as the enhancement of the
signal with respect to noise, or the suppression of other forms of background inter-
ference sources e.g., what is commonly referred to as ‘clutter’, were not discussed

since it fell outside the scope of this report.
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1s.5.2 POSSIBLE EXTENSIONS

18.

The directions of possible extensions are many, however we shall discuss only
the ones which seem to hold ﬁc most promise. Addition of the contextual interpre-
tation knowledge sources to take into account ‘‘human like'’ decision making could
be the first avenue that can be tried. The two different kinds of informations for
the contextual interpretation knowledge sources are described below. These could
be entered in the form of simple question answer sessions of the system and the

user/system operator/battle commander. An important thing to note is that these do

not affect the identification task or the classification performed. Their effect is

limited to adding weights or confidence to the object identification theory. How-
ever, it could have its effect on the decision taken by advising or guiding the system
operator of the context of the situation and its implications. Application of Object
Oriented Programming techniques to the identification and classification task in
multiple sensor data fusion problems is another avenue which could bc explored.

These are discussed in the following sections.

5.2.1Contextual Interpretation

The contextual interpretation has been discussed in the expert reasoning in the
earlier chapters. The two types of contextual knowledges which we could utilize are
the priority zone information and pattern for attack intention. These are the topics

of discussion which follows.
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18.5.2.

Priori

Priority zones [3] are regions of the radar’s observation volume having the
likeliiood of serious threats appearing in them and of the corresponding degree of
desire to maintain high quality detection and tracking. It is presently assumed that
the operator will assign these priorities, although automated situation assessment
and priority assignment is being considered. The five priority ratings to be used are
high threat, medium threat, low threat, friendly, and unoccupied. Three situations
can be considered in priority assignment : protection of the radar, protection of the
forward edge of the battle area (FEBA), and protection of a point behind FEBA.
The present intention could be to deal only with situations that can be recognized
from a single scan of the radar, so zone definitions are restricted to simple range
and azimuth limits as in Figure 15.

P or Attack Intenti

Ben-Bassat and Freedy [46] discuss pattern for attack intention, which can be

used as another form of Contextual Interpretation KS. The Table 8 di.scusscs the

probability basis of the class: attack intention.

2. .. Object Oriented Programming

Another possible extension could be making use of the Object Oriented Pro-
gramming techniques using the flgvor macros in Common LISP. The Figure 16
shows the organization of a system making use of flavor macros and object ori-
ented programming. Representation of the objects (ACs for our case) could be

done using the defflavor form, which defines a flavor that represents ACs. As
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BEAM ANGLE

LOW THREAT

MEDIUM THREAT

HIGH THREAT

FRIENDLY

UNOCCUPIED

Figure 15 ZONE ASSIGNMENTS FOR PROTECTION OF THE RADAR., FOR
IHE ZONE PRIORITIZATION

Neots: ose could similarly define the zone assigaments for the protection of FEBA under 20ue prioritization.

Table 8
A Pattern for Attack Intention:
Class: Attack Intention . | |
Features I p I -p
T maseing of mechanized slements ) 03 | o5 -
¢ extensive artillery preparation : 0.8 : 0.4
* artillery position concentrated : 0.8 : 0.2
* concentration of mass toward either or : :
both flanks l 07 1 03
~ * location of enemy troops in forward assembly area : 0.8 : 0.3
* location of supply and evacuation installations : :
well forward l 0.7 | 03
* increased air reconnaissance : 0.8 : 0.4
. * movement of additional troops toward the front = 0.8 : 0.4
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shown, each real world object is represented by a Lisp object and the inherent
structure of objects is called flavor. The output of the generic functions, unlike nor-
mal functions, is different for objects of different flavors for the same input. Meth-
ods is a piece of code which implements the Generic functions on the lisp objects.
The AC flavor is a framework, and we could fit many ACs into that framework.
We represent each real-life AC as an instance of the AC flavor. Each instance
would store information about one particular AC in its instance variables. To cre-
ate or simulate instances we could use, make-instance. Querying the instance for
its values would also be possiblé because of a function that was automatically
generated. New operations (generic functions) for instances of the AC flavor could

be defined using defmethod.

As it is seen from the above discussion, object oriented technique, which pro-
vides a means of configuring everything in a system around objects, could be in-

vestigated more for dealing with the object‘ ciassification problems.
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APPENDIX
A

COMMON LISP PROGRAM CODES
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W SO EESR LSS I SRR OE S ES RS S S SRR SR SRR SR B SIS S S B S S LRSS S SRS RS SRS S

:»: This is the LEVEL 1 KS. Name ASPOL Knowledge source. A few things to
+» be noted here, This is an interactive program. The user

+»» shall be replaced by another piece of code wizich

+ does the data input directly from the SITUATION

i DATA BASE in the real life situation.

i+ SYNTAX COMMON LISP

:» Created By Digvijay Sikka for SUDAI System.

3+» Created Sept. 20, 1988

i Modified Nov. 3, 1988: Dec. 23,1988.

e T e e
+» This function begins by checking if the object is a Boeing-747,

s It calls confirm, confirm? and checks if the data is out of bounds,

+»» in which case it prompts the user to enter a new list.

(defvar *a* nil)
(defvar *b* nil)
(defvar *c* nil)
(defvar *r* nil)
(defvar *d* nil)
(defvar *e* nil)
(defvar *ainp* nil)
(defvar *ainp1®* nil)
(defun check—AC (*list1*)
(peint *
909998 wel l KSZ ASPOL..“‘OO“”.

It is possibie that data out of bounds might have been given
at this stage, but it is not of significant interest to m. -.nce no

-69-




decision about the proof of identity of the object has yet been taken.
However very soon the identity of the Object shall be established.™)
(cond
((equalp (cadr *list1*) '112)
(dc10))
[{
(conflrm *list1*))))

(defun confirm (*list1*)
(cond
((or (equalp (cdr *list1*) "(612 null 612))
(equalp (cdr *list1*) *(612 null 112)))
(dc10)) .
I
(confirm2 *list1*))))

(defun confirm? (*list1*)
(cond
((or (equalp (cdr *listi*) *(1.512 112 nuil))
(equalp (cdr *list1*) *(612 112 112))
(equalp (cdr *list1®) *(1.512 112 112))
(equalp (cdr *list1*) *(612 null null)))

(pl'im [
S99 8 04052800 s e b0 S bR RS eS
**Object is a Boeing-747**
P L Lt L] SOSed t.‘.“")
(print "These are the confidence values
of the AC’s in the following order (Concorde Boeing727 Boeing707 DC10 Boeing747):")
(list74))
(t ,
(print °

ERROR, possibility of being any other AC is low, and data out of bounds

for Boeing 747, give another value™)
(check—AC (accept ‘(list))))))
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(defun list74 O
(setq *ASPOLPROB* (list 0.2 0.2 0.2 0.3 0.9))
(print *ASPOLPROB*))

+ This function checks for the possibility of the Aircraft being

+» anything other than Boeing-747 since it has already confirmed that
'« it is not Boeing-747. It prompts the user to input values for aspect
i angles 120, 130, 135.

(defun dc10 0
@n'm ”

S EOBRSEER NSNS BRSNS SR B e e Sk

**The Object is not a Boeing-747*

...““‘..“‘t.t“O‘tt.““..“‘."

s*Please enter the Polarization
Values (120 hh hv vv) for Aspect angle 120:")

(setq *a* (read))
(print "Now enter those for Aspect angle 130 (130 hh hv vv).")
(setq *b* (read))
(print “Now enter those for Aspect angle 135 (135 hh hv vv).")
(setq *c* (read))
@f (and (equalp (car *a*) '120)

(equalp (car *b*) '130)

(equalp (car *c*) '135)) (confirmdc10 *a* *b* *c*) (print "

Mappeanto.besomeinconsisw\cywimm;\spect
angle values, I am going over it again:™)
(dc10))

+» This function checks if the object is a DC-10, if it encounters data out of
+»» bounds it notifies the user and expects new values. It also calls confirmconc

s to check for the object being one of Boeing 707,727 or Concorde.
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(defun confirmdc10 (*a* *b* *c*)
(cond
(and (equalp (cdr *a*) *(112 null 112))
(equalp (cdr *b*) '(112 nuil 112))
(equalp (cdr *c*) "(112 null 112)))
(print *
sesseststsRes sssees

**The Object is a DC-10**

0920023800585 04 80 b0t a0

These are the confidence values of the ACS, their order i,
(Concord Boeing727 Boeing707 DC10 Boeing747): ™)
(setq *ASPOLPROB* (list 0.2 0.2 0.2 0.9 0.3))
(print *ASPOLPROB*))
@t
(if (and (equalp (cdr *a*) *(112 112 112))
(equalp (cdr *b*) *(112 112 112))
(equalp (cdr *c*) (112 112 112))) (confirmconc) (print *

ERROR, Data out of Bounds

MESSAGE:
This Knowledge source would not be able to generate and post a

hypotlmisbaedonﬂ:edatayouhnvempplied.lfyoudonothave
sufficient data please reply a YES to the following question (and the
identification and classification shall proceed only on the basis of

the remaining KS's) however, if you want to reenter data correctly,

after answering a NO to the question, please enter it again. ") (modaspol)))))

(defun modaspol
(print

Message:
Do you have insufficient or inaccurate daia?")
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(sewq *ainp* (read))
(cond ((eq *ainp*® 'no)
(dc10))
t
(setq *ASPOLPROB* (list 0.01 0.01 0.01 0.01 0.01)))))

++: This function first calls ask~YorN to ask the user if he has

s Data for the Aspect angles 10 and 15, if he doesn’t then the

+: the Program retums the message "Insufficient information” and
;3 outputs partial list, because it needs other measures for coming
i 0 a decision.

(defun confirmconc
(print "
** The Object is not a DC-10 OR BOEING-747 **
s+*But I shall try checking if it is one of BOEING-707, BOEING-727 and CONCORDE***")
(ask~YorN)
(cond ((eq *1* "yes) .
(conc ))
(
(setq *ASPOLPROB* (list 0.01 0.01 0.01 0.01 0.01)))))

(defun ask-YorN O
(print "
MESSAGE,
Is Polarization data available for aspect angles 10 and 15?
If any one or none of them is svailable I have insufficient data. The
identificaiion and classification shall then proceed on the basis of
other KS's. Answer a NO for that case. Please answer YES if polarization
values for both of them are available:™)
(setq *r* (read)))

+» The user is prompted to enter values of polarization for the

+» aspect angles 10 and 15. It calls concorde if the data is not out of
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::: bounds in which case it calls itself.

(defun conc O
(print "

**This is to check if it is a Boeing-707 or Boeing-727
or Concorde, Please enter the values of polarization for Aspect
angle 15, e.g (15 hh hv w).")
_ (setq *d*® (read))
(print “"Now enter those for Aspect 10, e.g (10 hh hv vv):")
(setq *e* (read))
(cona
((and (equalp (car *d*) '15)
(equalp (car *e*) '10))
(concorde *d*))
(4

ERROR,
Aspect angle data out of bounds, Please give it again:™)
(conc))))

(defun concorde (*d*)
(cond ((equalp (cdr *d*) '(112 112 112))

(pn'm”

MESSAGE,
** The Object is not a DC-10 or BOEING~747 or CONCORDE **

Checking if it is either BOEING-727 OR 707

"
(confirm727 *e*))
(t
(if (and (equalp (caddr «d4*) "null)
(equalp (cdr *e*)'(112 112 112))) (listconcd)
(print
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ERROR, Data out of Bounds

MESSAGE:
This Knowledge source would not be abic io generate and post a

hypothesis based on the data you have supplied. If you do not have
mﬂciuitdmﬂeasereplyaYEStothefollowingqu&ﬂon(anddw
identification and classification shall proceed only on the basis of

the remaining KS's) however, if you want to reenter data correctly,

after answering a NO to the question, please enter it again. ") (modaspoll)))))

(defun modaspoll (
(pﬂ.nt ”

Message:
Do you have insufficient or inaccurate data?™)
(setq *ainp1* (read))
(cond ((eq *ainp!* 'no0) -
(conc))
{3
(setq *ASPOLPROB* (list 0.01 0.01 0.01 0.01 0.01)))))
(defun listconcd O
(print "
038622 EEB LSS SR SRS EEP I e EE RS S

** The Object is a CONCORDE **

These are the Confidence values of the AC’s in the following order (Concord
Boeing727 Boeing707 DC10 Boeing 747 ).")

(setq *ASPOLPROB* (list 0.9 0.3 0.3 0.2 0.1))

(print *ASPOLPROB*))

:»» This function checks for if the object is a Boeing-727 or Boeing-707

+»: it also prompts the user if the values given are not appropriate.




s the user migh  -ish to quit by hitting Abort at the Keyboard.

(defun confirm727 (*¢*)
(cond ((equalp (cdr *e*) °(112 112 112))

L 22 1 S e ESEe VeSS NSRS LS

*¢ The Object is a BOEING-727 **

e BSOS LSO SR “*‘vv:‘.‘.‘”‘”) (pﬂm bad

These are the Confidence factors of the
AC's, their order being (Concord Boeing727 Boeing707 DC10 Boeing747):") (list727))
{
(f (equalp (cdr *e*) "(i12 null 112)) Qist707)
(print

ERROR,
The values given are not appropriate, please check them
and enter them again if you wisk to continue at this stage,
or else hit Abort, to start all over again.” )

(conc)))))

(defun list707 O
(print "

LI A DI IS Tl L T2t bt ]2 ]t ]

¢¢ The Object is a BOEING-707 **

- . oSS L L LA LA 4

The confidence factors of the ACS are as following, their order being
(Concord Boeing727 Boeing707 DC10 Boeing747):™)

(setq *ASPOLPROB* (list 0.4 0.6 0.9 0.1 0.1))

(print *ASPOLPROB*))

(defun 1ist727 O
(setq *ASPOLPROB® (list 0.4 0.9 0.6 0.1 0.1))
(print *ASPOLPROB*))

:.oesssssssssesssss Engd Of File for IV Level CheckAC #ooosssssssssssssens
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s =*= Mode: LISP -°*~
e C880000C80000000802000000C0C0808000080000C08SS0EE0NI0EC0T2CRCQEOCREIRTOTEDS
:ss This is LEVEL 2 KS. Name: ELLIPT Knowledge Source (Derived measurements).
;s The ellipt function checks the input given by the user to see if it belongs to the

;+s range of any of the AC’s. If it does not then it exits.If a user doesnot seem

:+: to have sufficient data then it doesnot post any hypothesis on the blackboard

;s: and the decision making proceeds without Ellipt ks.

;+: Created November 30 88 by Digvijay Sikka.

;s: Last modified Jan 08 '89.

(defvar *A1° nil)
(defvar *A2° nil)
(defvar ®el® nil)
(defvar *e2* nil)
(defvar *t1* nil)
(defvar *t2° nil)
(defvar *0i® nil)

(defun ellipt (°list2°® °list3*)
(setq *A1° (caddr °list2°))
(setq *A2° (caddr °list3°))
(setq ®e1°® (cadddr °list2*))
(setq *e2* (cadddr °*list3*))
(setq *t1* (fifth *list2*))
(setq *t2°® (fifth °list3*®))
(ELLCONC))

(defun ELLCONC ()
(if (and (<= 1 *A1* 5)
(<= 33 ®ei® 39)
(<= 48 *t1° 68)
(<= 5 *A2°9)
(<= 2 *e2° 8)
(<= 94 *12° 114)) (ELLCHKC) (ELLDC10)))

(defun ELLDC10 ()
(if (and (<= 14 *A1° 18)
(<= 9 *el® 15)
(<= 38 *t1* 58)
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(<= 12 °A2° 16)
(<= 6 *e2* 12)
(<= 81 *12* 101)) (ELLCHKDC) (ELLB707)))

(defun ELLB707 )
(if (and (<= 18 *A1°® 22)
(<= 1%1°7)
(<= 169 *t1°* 189)
(<= 4 *A2° 8)
(c= 6 %e2° 12)
(<= 81 *t2* 101)) (ELLCHK70) (ELLB727)))

(defun ELLB727 ()
(if (and (<= 1 *A1* S)
(<= 13 ®el® 19)
(<= 157 *t1* 177)
(<= 4 *A2° B)
(<= 26 "e2° 32)
(<= 3 *12* 23)) (ELLCHK72) (ELLB747)))

(defun ELLB747 ()
(if (and (<= 19 *A1° 23)
: (<= 26 *el® 32)
(<= 49 *t1° 69)
(<= 11 *A2° 15)
(<= 2 *e2°* 8)
(<= 89 *12° 109)) (ELLCHK74) (messge) (modellipt “list2* °‘list3*)))

(defun messge ()
(print *

Ellipt Knowledge Source has not been able to generate and post a HYPOTHESIS
based on the data you have supplied. If you do not have the data please reply

a YES to the following question (and the identification and classification

shall proceed only on the basis of the existing HYPOTHESIS posted by ASPOL KS)

however, if you want to reenter data correctly, after answering
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a NO to the question, please enter it again.

..‘..‘...“‘..“.‘.“.“...O......l........l.....‘...........'...‘..0.'"))

(defun modellipt (*list2°® *list3*)
(print ”

MESSAGE,
Do you have insufficient or inaccurate data?")
(setq *0i® (read))
(cond ((eq *0i*® "no)
(nuinput))
(t
(setq *ELLPROB* (list .01 .01 0.01 0.01 0.01)))))

(defun nuinput ()
(print "
Enter the data for ENGINE INLET:")

(setq °list2° (read))
(print *

Now enter the data for TAIL:")
(setq *list3® (read))
(ellipt *list2°* °list3*))

(defun ELLCHKC
(setq *ELLPROB® (list (cprobconc) (cprob727) (cprob707) (cprobdc10) (cprob747)))

(print *

The confidence in the CONCORDE is the highest and is: 0.7. The confidence in each of
the remaining AC'’s is the following, their order being
(Concorde Boeing727 Boeing707 DC10 and Boeing747):

")
(print *ELLPROB"®)
(print *
- "))

(defun ELLCHKDC ()
(setq *ELLPROB* (list (cprobdc10) (dcprob727) (dcprob707) (dcprobde10)
(dcprob747)))
(print "
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The confidence in the DCI0 is the highest and is: 0.7. The confidence in each of the
remaining AC’s is the following, their order being (Concorde Boeing727 Boeing707 DC10
and Boeing747):

)
(print *ELLPROB®)
(prine *

)

{defun ELLCHK74 ()
(setq *"ELLPROB* (list (cprob747) (72prob747) (74prob707) (dcprob747) (74prob747)))
(print "

- Er Y] coas N LI T LY PP P PP PP AT L LI LT T 2

The confidence in the BOEING 747 is the highest and is: 0.7. The confidence in
each of the remaining AC's is the following, their order being
(Concorde Boeing727 Boeing707 DC10 and Boeing747):

")
(print *ELLPROB")
(print *

"))

(defun ELLCHK70 ()
(setq *ELLPROB® (list (cprob707) (72prob707) (70prob707) (dcprob707) (74prob707)))
(pn-nt »

The confidence in the BOEING 707 is the highest and is: 0.7. The confidence in
each of the remaining AC’s is the following, their order being
(Concorde Boeing727 Boeing707 DC10 and Boeing747):

")
(print *ELLPROB"®)
(print -

")

(defun ELLCHK72 ()

(setq *ELLPROB* (list (cprob727) (72prob727) (72prob707) (dcprob727) (72prob747)))
(print "
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The confidence in the BOEING 727 is the highest and is: 0.7. The confidence in
each of the remaining AC’s is the following, their order being

(Concorde Boeing727 Boeing707 DC10 and Boeing747):
")

(print *ELLPROB®)

(print *

")

(defun cprcbeone ()
0.7)

(defun dcprobde10 ()
0.7)

(deiun 72prob727 ()
0.7)

(defun 74prob747 ()
0.7)

(defun 70prob707 ()
0.7)

(defun cprob727 ()
(float (+ (genprobA11) (genprobA21))))

(defun cprob707 ()
(Boat (+ (genprobA21) (genprobe22) (genprobt21))))

(defun cprob747 ()
(float (+ (genprobe21) (genprobtil) (genprobt21))))

(defun cprobdc10 ()
(float (+ (genprobe22) (genprobt12) (genprobt21))))

(defun dcprob727 ()
(float (genprobel)))

(defun dcprob747
(float (+ (genprobA22) (genprobe22) (genprobt22))))

(defun dcprob707 ()
(float (+ (genprobe23) (genprobt23))))
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(defur 74prob707 ()
(float (+ (genprobA12) (genprobe22) (genprobt22))))

(defun 72prob707 () .
(float (+ (genprobA21) (genprobt13))))

(defun 72prob747 ()
0.01)

(defun genprobt13 ()
(cond ((<= 169 *t1* 177) .116)
C |
.01)))

(defun genprobel ()
(cond ((<= 13 *e1® 15) .116)
(t
-01)))

(defun genprobA1l ()
(cond ((<= 1 *A1° ) .116)
(t
01)))

(defun' genprobA21 ()
(cond ((<= S *A2°* 8) .116)
(
01)))

(defun genprobe21 ()
(cond ((<= 2 *e2° 8) .116)
(t
.01)))

(defun genprobe22 ()
(cond ((<= 6 *e2° 8) .116)
(t
-01)))

(defun genprobtil ()
(cond ((<= 48 *t1°* 68) .116)
(t
.01)))
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APPENDIX 16.2

THE BLACKBOARD
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s =*= Mode: LISP -*-

:: Syntax: Common Lisp. Base: 10

s SRS SRS RS S L LB R SRS E BB ERRB S S SRR USSR LSS S GBS SRS SR O RS SV SRR R SR eSS eSS
+»» This is the premilinary Blackboard written primarily for

+: combining the ASPOL and ELLTPT KS's hypothesis, along with their
s confidence factors.It has a built in confidence check which prompts
s the user that the object identification theory might be unreliable |

++ and should not be pursued further if the confidence of the output

i is dangerously low.

:+» Syntax Common Lisp

+»» By Digvijay I Sikka for the Distributed Artificial Intelligence

1o System.

;u created Dec 17, '88.

+»» last modified Jan 7, '88.

s L2 SR I I IR DR bt 2ttt ad it tdtti ittt iliztizatitRyds]

(defvar *ASPOLPROB®* nil)
(defvar *ELLPROB®* nil)
(defvar *firstcom* nil)
(defvar *secndcom® nil)
(defvar *thirdcom* nil)
(defvar *forthcom* nil)
(defvar *fifthcom® nil)
(defvar *list1* nil)
(defvar *list2* nil)
(defvar *list3* nil)
(defvar *confidence® nil)
(defvar *prd1* nil)
(defvar *prd2* nil)
(defvar *prd3* nil)
(defvar *prd4* nil)
(defvar *prdS* nil)
(defvar *userconf® nil)
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(defun presentation ()
(print ”

T Lt T T T T T e S TR PR S PR RS R PR PR LTI T R 2T e LT

SERP VSRS L ER RS BB RN BB E RS S RE SRS RS SR L LRSS S SIS RSB ERL RS SRR B EE S S SRk

THIS IS THE DAI SYSTEM FOR THE IDENTIFICATION AND CLASSIFICATION
OF AIRCRAFTS (ACs).
The ACs which we shall be classifying belong to one of the following five categories,
Concorde, Boeing 747, Boeing 727, Boeing 707 and DC10.

» SERS RSB ERE s RIS SSeeRR eSS LRSS LSS EE SR RS A SRS SES B2 e e

““tttt“ttt‘#“tttt‘“t““‘ttt#t‘t‘t"!‘t““tt*“““‘tt“tttttt

You as a User are simulating the situation data base where the sensors shall feed in the
data, and a Program shall extract it in real life situation. The tables available from the work
done at OSU ESL comprise of the Knowledge base in our case. We have two Knowledge
sources (KSs) for the expert system reasoning. They are ASPOL and ELLIPT.

Please enter the aspect angle polarization data in the following format
(aspect hh hy wv) .

e.g (120 112 112 112) 3")

(setq *listl* (read))

(print "Now enter Engine inlet values for the elliptical KS, in the following
format, FOR ENGINE INLET: (ts te Al el t1):

e.g (~0.065 0.125 2.731 36 58)")

(setq *lis2* (read))

(print "Now enter the Tail values for the elliptical KS, in the following
format, FOR TAIL t(tste A2e212):

eg (0.9401.1357.08 5 104)")

(serq *lis3* (read))

(rdrinp)

(check-AC *list]*)

(levelinfol)

(ellipt *lis2* *list3*)

(levelinfo2)

(combinel))
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(defun levelinfol Q
(print

LEVEL 1 THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY

ASPOL KS:
—— KS Name: ASPOL
Features measured: Aspect angle & polarization
Kind: Direct Measurements
Overall Confidence: 09
"
(print *ASPOLPROB*))
(defun levelinfo2 Q
(pprint "

LEVEL 2 THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY

ELLIPT KS:
———— KS Name: ELLIPT
Features measured: Elliptical Features
Kind: Derived Measurements
Overall Confidence.....c.osnee 0.7
)
(print *ELLPROB*))

(defun combinel Q

(setq *prd1* (* (funcall 'certratios (car *ASPOLPROB®*))
(funcall 'certratios (car *ELLPROB®*))))

(setq *prd2* (* (funcall ‘certratios (second *ASFCY.PROB*))
(funcall "certratios (second *ELLPROB*))))

(setq *prd3* (* (funcall "certratios (third *ASPOLPROB*))
(funcall "certratios (third *ELLPROB*®))))

(setq *prd4® (* (funcall *certratios (fourth *ASPOLPROB?®))
(funcall ‘certratios (fourth *ELLPROB®*))))

(setq *pruS* (* (funcall 'certratios (fifth *ASPOLPROB®*))
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(funcall 'certratios (fith *ELLPROB*®*))))
(combine2))

(defun combine2 ()
(setq *firstcom® (funcall *certinties *prd1%))
(setq *secndcom® (funcall *certainties *prd2*))
(setq *thirdcom® (funcall *certainties *prd3*))
(setq *forthcom® (funcall ‘certainties *prd4*))
(setq *fifthcom® (funcall "certainties *prdS*))
(testcom1))

(defun certratios (inpt)
(/ inpt (~ 1 inpt)))

(defun certainties (inptt)
(¢ inpt (+ 1 inptt)))

(defun ririnp O
(rint”

MESSAGE:
Please specify the confidence level for the Object~identification theory

to be acceptable to you: )
(setq *userconf* (read)))

(defun confidence-level O _
(setq *confidence® (max *firstcom® *secndcom® *thirdcom* *forthcom®* *fifthcom*))
@(f (>= *confidence® *userconf*) "

MESSAGE:

The confidence in the Most Probable Explaination was syfficient enough for
the classification task to be pursued. Hence the classification

information of the AC was ousput to the USER. ™ ™

WARNING:
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The confidence in the Most Probable Explaination was NOT syfficient enough for
the classification task to be pursued further. Hence even though

classification information was ou:pdx. the USER is warned that the

theory might be unreliable. So it should not be pursued any further.”

)]

(defun testcom1
(cond ((> *firstcom* *secndcom®)
(if (> *firstcom* *thirdcom®*) (testfirst1) (testthird1)))
(4
(if (> *secndcom* *thirdcom*) (testsecnd!) ‘testthird1)))))

(defun testfirstl O
(cond ((> *firstcom* *forthcom*)
(if (> *firstcom®* *fifthcom*) (princonco) (prinb747)))
‘(t
(testforth))))

(defun testthird1
(cond ((> *thirdcom* *forthcom®*)
@f (> *thirdcom* *fifthcom*) (prinb707) (prinb747)))
(4
(testforth))))

(defun testsecnd1 Q
(cond ((> *secndcom® *forthcom*)
(f (> *secndcom* *fifthcom*) (prinb727) (prinb747)))
(4
(testforth))))

(defun testforth O
@f > *forthcom®* *fifthcom*) (prindc10) (prinb747)))

(defun princonco
(print
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4882 ES LS BELS LB REPE VRSB ES

The identified AC isa CONCORDE

(12222l A 228 2t 2 o2ttt dd st tds )

The confidence value is:™)
(print *firstcom®)
(confidence-level))

(defun prinb747 O
(print "

seRe . o g o o o o ae e ol e o - o

The identifled AC is 8 BOEING-747

SELES LRSS RSNV ES SR B DS RS20 ES

The confidence value is:™)
(print *fifthcom*)
(confidence-level))

(defun prindc10 Q
(print "
S80S bs PP e R ee eSS 2o b bs s

The identified AC isa DC-10

LA T P22 2 et 2t ettt

The confidence value is:")
(print *forthcom*)
(confidence-level))

(defun prinb707 O
(p“'m ”

LA LS Ll Lt 22t Ll (Ll 22l ]

The identified AC is 8 BOEING-707

200800080058 500 008800905888 0800% 38

The confidence value is:")
(print *thirdcom*®)
(confidence-level))
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(defun prinb727 O
@m "

SREAEBY RS SR RR RSSO SEERYESE SR SR e e S

The identified AC is a BOEING-727

The confidence value is:")
(print *secndcom®*)
(confidence-level))

s ‘..‘..“i“‘.“‘i.t‘.“m of ﬁle for BM.“‘#‘.‘.“‘..““““‘t‘t
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APPENDIX
B

SAMPLE RUNS
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Samnl:.mnl

8% sessss sttt dS S0 eRS SR ES SRS S S S0 0SS eIBES s seseee

SERESSESERR SRS SR L LSS USRS BPEER S 202D 0008020230804 000 85 VE SRS S

THIS IS THE DAl SYSTEM FOR THE IDENTIFICATION AND CLASSIFICATION
~ OF AIRCRAFTS (ACs).
The ACs which we shall be classifying belong to-one of the following flve categories,
Concorde, Boeing 747, Boeing 727, Boeing 707 and DC10.

SESRSESERERERERS RS EEEBRRE SR EBE IS EEAE S LSS SRR ELE DS RRER ISR R RS R SRS

SARERREBRE AR BEBER B RSB R SRS SR SRR SRS EA BB S RSB S SELRESBREE S ERS B SR E kR

You as a User are simulating the situation data base where the sensors shall feed in the
data, and a Program shall extract it in real life situation. The tables available from the work
done at OSU ESL comprise of the Knowledge base in our case. We have two Knowledge
sources (KSs) for the expert system reasoning. They are ASPOL and ELLIPT.

Please enter the aspect angle polarization data in the following format
(aspect hh Ry w): ‘ '
eg (120112112 112) ™
(125 612 pull 612)
"Now enter Engine inlet values for the elliptical KS, in the following
format, FOR ENGINE INLET: (ts te Al el t1) : i
eg (-0.065 0.125 2.731 36 58)")
(=3=13922,1267 50) :
“Now enter the Tail values for the elliptical KS, in the following
format, FOR TAIL i(tste A2e2t2):
_ e.g (0.9401.1357.08 5 104)"
(131471453 91) '

MESSAGE:

Please specify the confidenre level fov 4 e Object-identification theory
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to be acceptable to you: "
09

”

eSS SeReE wel 1 KS: ASPOL.t‘t‘.‘.“t“

It is possible that data out of bounds might have been given

at this stage, but it is not of significant interest to me since no
decision about the proof of idenvity of the object has yet been taken.
However very soon the identity of the Object shall be established.”

S EERE LS VS L LB PSS LS BB EBES RS

**The Object is not a Boeing-747**

."tt“t“‘.i“““i.‘t“‘tt#“.‘t'

*+Please enter the Polarization
Values (120 hh hv vv) for Aspect angle 120:”

(120 112 112 112)
"Now entef those for Aspect angle 130 (130 hh hv vv).”

(30112 112 112)
"Now enter those for Aspect angle 135 (135 hh hv vv)."
(133112 113 112)

”

ERROR, Data out of Bounds

MESSAGE:
This Knowledge source would not be able to generate and post a

hypothesis based on the data you have supplied. If you do not have
sufficient data please reply a YES to the following question (and the
identification and classification shall proceed only on the basis of

the remaining KS's) however, if you want to reenter data correctly,

after answering a NO to the question, please enter it again. ”

”
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Message:
Do you have insufficient or inaccurate data?”
1]

SOV S S SRR RS UG BIESH SIS SRS RS S

**The Object is not a Boeing-747%*

0530088388000 08 000G s 0 bSEe R Rt L

¢*Please enter the Polarization

Values (120 hh hv vv) for Aspect angle 120:"
(20 112 112 112)
"Now enter those for Aspect angle 130 (130 hh hv vv):”
(130112 112 112) ‘
"Now enter those for Aspect angle 135 (135 hh hv wv).”
(135 112 112 112)

** The Object is not a DC-10 OR BOEING-747 **

s++But | shall try checking if it is one of BOEING-707, BOEING-727 and
CONCORDE***"

MESSAGE,

Is Polarization data available for aspect angles 10 and 15?

If any one or none of them is available I have insufficient data. The
identification and classification shall then proceed on the basis of

other KS's. Answer a NO for that case. Please answer YES if polarization
values for both of ther. are available:"”

s

**This is to check if it is a Boeing-707 or Boeing~727

or Concorde, Please enter the values of polarization for Aspect
angle 15, e.g (15 hh hv wv):."

(15 112 null 112)
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"Now enter those for Aspect 10, e.g (10 hh hv vv):”
(10112 113 111)

ERROR, Data out of Bounds

MESSAGE:
This Knowledge source would not be able to generate and post a

’hypothcsisbasedonthedatiyouhavesupplied. If you do not have
sufficient data please reply a YES to the following question (and the
identification and classification shall proceed only c;n the basis of
the remaining KS's) however, if .you want to reenter data correctly,

after answering a NO to the question, please enter it again.

Message:

Do you have insufficient or inaccurate data?”

yes

LEVEL 1 THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY
ASPOL KS:

e KS Nama: ASPOL

Features measured: Aspect angle & polarization
Kind: Direct Measurements
Overall Confldence:...cmveeee 0.9

The confidence in the BOEING 747 is the highest and is: 0.7. The confidence in
each of the remaining AC’s is the following, their order being
(Concorde Boeing727 Boeing707 DC10 and Boeim3747):
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(0.242 0.01 0.13599999 0.242 0.7)

LEVEL 2 THE FOLI OWING HYPOTHESIS HAS BEEN POSTED BY
ELLIPT KS: '
—— KS Name: ELLIPT
Features measured: Elliptical Features
Kind: Derived Measurements
Overall Confidence: 0.7
(0.242 0.01 0.13599999 0.242 0.7)

OSBRSS ES L ERER L EBESVERRR S

The identifled AC is 8 BOEING-747

LIS R I SR AT P22 d a2 1Tttty

The confidence value is:"
0.023026315

”

WARNING:

The confidence in the Most Probable Explanation was NOT sufficient enough for
the classification task to be pursued further. Hence even though

classification information was output, the USER is warned that the

theory might be unreliable. So it should not be pursued any further.”
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Smnl:.mnn

S0P S PRS0V IELHSESEI RSP0 4S800000P 0S50S0 SRS RSB EESEEEEE

- P R N N N N N N U S PN G S A R A D AP R G P R G R Ry - - -
9SSy PESUPISSISYSD e SESVas

THIS IS THE DAI SYSTEM FOR THE IDENTIFICATION AND CLASSIFICATION
OF AIRCRAFTS (ACs).
The ACs which we shall be classifying belong to one of the following five categories,
Concorde, Boeing 747, Boeing 727, Boeing 707 and DC10.

SESPERE LSNPSR SS S SRS DA RSAEEERL RS A SR LSS R ES S L PSS LS LSS RIS S S P RS SR EE SRS

SIS ES SN LG ESSEISREHI IS S RN IREN SIS SRS SEES N A A SRS SRS S S S AR RIS

You as a User are simulating the situation data base where the sensors shall feed in the
data, and & Program shall extract it ia real life situation. The tables available from the work
done at OSU ESL comprise of the Knowledge base in our case. We have two Knowledge
sources (KSs) for the expert system reasoning. They are ASPOL and ELLIPT.

Please enter the aspect angle polarization data in the following format
(aspect kh kv wv) :
eg(1201412112112) "
Q0112 112 112)

"Now enter Engine inlet values for the elliptical KS, in the following
format, FOR ENGINE INLET: (tste Al el t1):

e.g (-0.0650.125 2.731 36 58)")
=12 095214 176.9)

"Now enter the Tail values for the elliptical KS, in the following
format, FOR TAIL :(tste A2 e212):

e.g (0.9401.1357.08 S 104)"
95113635 8 96)
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MESSAGE:
Please specify the confidence level for the Object-identification theory

to be acceptable to you: "
Q9

Ssessstse wd 1 Ks: ASPOLG“““‘O“O

It is possible that data out of bounds might have been given

at this stage, out it is not of significant interest to me since no
decision about the proof of identity of the object has yet been taken.
Howev:~ very soon the identity of the Object shall oe established.”

”
.t.‘.“#‘tt"t“tt‘.‘..t““‘#tt“‘

**The Object is not a Boeing-747**

O““.“.tt““‘t““‘.“‘.“l“ét.

**Please enter the Polarization
Values (120 hh hv vv) for Aspect angle 120:"

(120 112 nuil 112)
"Now enter those for Aspect angle 130 (130 hh hv vv):”

(30 112 null 112)
"Now enter those for Aspect angle 135 (135 hh hv vv):"

(135 112 null 12)

”»

ERROR, Data out of Bounds

MESSAGE:
This Knowledge source would not be able to generate and post a

hypothesis based on the data you have supplied. If you do not have
sufficient data please reply a YES {o the following question (and the

identification and classification shall preceed only on the basis of
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the remaining KS's) however, if you want 10 reenter data correctly,

after answering a NO to the question, please enter it again. ”

Message:

Do you have insufficient or inaccurate data?”

SPOSE PSSR RS LS ESOBE SR SRS SS SIS ESS

**The Object is not a Boeing-747**

‘0‘..“‘.“‘“.‘.‘..‘t“‘.“‘.t“‘.

**Please enter the Polarization .
Values (120 hh hv vv) for Aspect angle 120:”

(12C 112 nuil 112)

"Now enter those for Aspect angle 130 (130 hh hv wv):"

(130 112 null 112)

"Now enter those for Aspect angle 135 (135 hh hv vv).”

(135 112 null 112)

SOV E SRS EEE ISR ESR SR EEEE

**The Object is a DC-10**

2 g g e ol -

These are the confidence values of the ACs, their order is,
(Concord Boeing727 Boeing707 DC10 Boeing747).

(0.20.2020.90.3)

LEVEL 1

THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY
ASPOL KS:

KS Name: ASPOL
Features measured: Aspect angle & polarization
Kind: Direct Measuremen: .
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0.20.202090.3)

The confidence in the BOEING 707 is the highest and is: 0.7. The confidence in
each of the remaining AC's is the following, their order being
(Concorde Boeing727 Boeing707 DC10 and Boeing747):

»

(0.348 0.232 0.7 0.232 0.242)

LEVEL 2 THE FOLLOWING HYPOTHESIS HAS BEEN POSTED BY
ELLIPT KS:

 aaaaand KS Name: ELLIPT
Features measured: Elliptical Features
Kind: Derived Measurements

Overall Confidence.....ceoneee. 0.7

(0.348 0.232 0.7 0.232 0.242)

SHEPLe S SRS E S eR eSS SRR ES

The identified AC is a DC-10

The confidence value is:"
0.7310924

WARNING:

The confidence in the Most Probable Explanation was NOT sufficient enough for

-101-

Rid




the classification task to be pursued further. Hence even though
classification information was oustput, the USER is warned thas the

theory might be unreliable. So it should not be pursued any further.”
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MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquusition programs in support of Command, Control,
Communications and Intelligence (C*I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C*I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

90 S o SF 0 SF IS A S o SF o £ o 5F 9C S o 5F o

Ve




