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12. Computer Architecture for Very Large Knowledge Bases

12.1. Executive Summary

The focus of our research is on the development of algorithmic, software and hardware
solutions for the management of very large knowledge bases (VLKB) in a real time environ-
ment. We approach the problem from electronic and optical points of view. The electronic
approach is based on more traditional digital computer technology and we have developed
algorithmic and hardware solutions to the VLKB problem. We assume a logic programming
inferencing mechanism and a relational model for the management of the knowledge base.
The interface between the inferencing mechanism and the extensional database becomes one
of partial match retrieval. We bridge the gap between the two parts through the use of a sur-
rogate file structure for the representation of both rules and facts.

In the optical approach we are concerned with the higher speed and massive inherent
parallelism of optics and how they might be used to advantage in storage, transport and pro-
cessing of very large knowledge bases.

In the general case a logic programming front end engine requires equal access to all
rules aud facts. Because of this generality we have taken a surrogate file approach to the
management of the VLKB. Surrogate files are transformations that yield improved perfor-
mance because of smaller size, more rigid structure and the opportunity for parallel opera-
tions. In prior work we analyzed several possible surrogate file structures and selected con-
catenated code words (CCW) as the approach that offered the most generality and potential
performance improvements. Basically, a CCW is a concatenation of transformed values and
one can utilize the individual components of the CCW as well as the entire word.

We have designed a parallel back end database machine. The basic idea of the machine
is to reduce the amount of fact data transferred from the secondary storage system while satis-
fying the user query. In order to do this the CCW files are distributed over many disks which
are under the control of many surrogate file processors. The CCW entries are used to greatly
reduce the amount of data that needs to be searched in response to a query. Relational data-
base operations are performed on the surrogate files thus further reducing the amount of data
needed to be retrieved. When all operations are complete the results are then sent to the logic
programming engine for further use. '

Another important advantage of the CCW surrogate file technique is that it can be used
for the indexing of rules expressed as logic programming clauses, where the matching
between constants, variables and structured terms is required to test for unifiability. The




CCW is obtained from the arguments 1n the clause as well as the predicate name of the head
of the clause. Each code word is divided into a tag field and a value field. The tag field can
represent any argument type including lists, structured terms, variables and constants. The
value field contains the transformed representation of the corresponding argument according to
the content of the tag field. Thus, the CCW approach allows for the representation and pro-
cessing of rules and facts in a unified manner.

We have analyzed the CCW technique in a variety of ways including simulation on the
Connection Machine and the development of a demonstration system. The demonstration sys-
tem consists of Prolog, INGRES and specially developed modules. The system allows for the
generation and management of surrogate files of various types, the execution of Prolog pro-
grams and the management of rules and facts.

To handle very large dynamic databases we have developed the dynamic random sequen-
tial access method (DRSAM). It is based on an order preserving dynamic hashing method
derived from linear hashing. The performance of DRSAM was evaluated and found to be
efficient for range queries as well as random access. With order preserving hashing, the
hashed key values are not generally uniformly distributed over the storage address space. To
deal with the nonuniformity we have extended DRSAM with additional control structures.

The use of optics in the management of VLDB'’s can be divided into three parts; storage,
transport and processing. Storage involves the use of optical disks or holograms. It appears to
be feasible to obtain at least two orders of magnitude increase in optical disk transfer rates
through the use of multiple beam reads. These data could be input to optical fiber for tran-
sport to optical database processors. We have developed an initial design of a system for the
performance of various VLKB operations. It can perform selection, projection and equijoin as
well as the filtering of ground clauses. The configuration includes two spatial light modula-
tors and a large photodetector array for photon/electron conversion.




12.2. Introduction

Knowledge based systems consist of rules, facts and an inference mechanism that can be
utilized to respond to queries poscd by users. Tlie objective of such systems is to capture the
knowledge of experts in particular fields and make it generally available to nonexpert users.
The current state of the art of such systems is that they focus on narrow domains, have small
knowledge bases and are thus limited in their application.

As these systems grow, increased demands will be placed on the management of their
knowledge bases. The intensional database (IDB) of rules will become large and present a
formidable management task in itself. But, the major management activity will be in the
access, update and control of the extensional database (EDB) of facts because the EDB is
likely to be much larger than the IDB. The volume of facts is expected to be in the gigabyte
range, and we can expect to have general EDB’s that serve multiple inference mechanisms.
In this report we assume that the IDB is a set of rules expressed as logic programming clauses
and the EDB is a relational database of facts.

In order to set the stage for the problem that we are interested in, consider the following
simple logic programming problem:

grandfather(X,Y) « father(X,Z), parent(Z,Y)
parent(X,Y) « father(X,Y)

parent(X,Y) « mother(X,Y)

father(pat, tiffany) «

father(don, louise) «

PO~

5. mother(mary, louise) «
mother(lisa, tiffany) &

6. « grandfather(X, joan)




The first three clauses form the IDB of rules for this problem, the next two sets form the
EDB of facts and the last statement is the goal. To solve the problem (satisfy the goal), we
must find the names of the grandfathers of joan. For this we search the father and mother
facts on the second argument position, finding values for the first argument position that can
be used later. Thus, we need to find joan’s mother and father before finding her grandfathers.
If we ask a similar but slightly different query

« grandfather(tom, X)

we search the first argument of the father and mother facts in attempting to satisfy it

Consider the following general goal statement of a logic programming language
1 (X1, Xy, - - - Xp).

In this case, values for some subset of the X;’s will be given in the process of trying to
satisfy its goal. Since the subset of the X;’s is not known in advance and can range from
one to all of the values, this places considerable requirements on the relatonal database
management system that supports the logic programming language. In fact, in order to insure
minimum retrieval time from the relational database all of the X;’s must be indexed. With
general indexing the index data could be as large as the actual EDB. In order to considerably
reduce the amount of index data yet provide the same capability, we have considered surro-
gate files. Obviously if not all of the X;’s can take part in goal satisfacuon then the indexing
strategv will change, however in this report we will assume the most general case in which all
of the X;’s are active.

Retrieving the desired rules and facts in this context is an extension of the multiple-key
attribute partial match retrieval problem because any subset of argument positions can be
specified in a query and matching between terms consisting of variables and functions as well
as constants should be tested as a preunification siep.

In the context of very large knowledge bases the question arises as to how to obtain the
desired rules and facts in the minimum amount of time. Three reasonable choices of indexing
schemes to speed up the retrieval are superimposed code words (SCW), concatenated code
words (CCW) and transformed inverted lists (TIL)* surrogate file techniques. Surrogate files
are constructed by transformed binary codes where the transform is performed by well chosen

* SCW, CCW and TIL will be singular or plural depending upon the context.




hashing funcr- .s on the original terms. In [BER87a], SCW, CCW and TIL surrogate files
were discussed in terms of the structures, updating procedures, performance of relational
operaaons on the surrogate files, and possible architectures to support them.

We have implemented an experimental deductive database system on the Connection
Machine of model CM-1 with 32 K processors without the specialized disk system (data
vault), to test the surrogate file schemes for various partial match quenes and implicit join
operations. This experiment reveals that surrogate file loading from VAX 8800 frontend can
be a major bottleneck in parallel processing environments since it not only involves the surro-
gate file reading time from slow secondary storage but also incurs high communicaton over-
heads which is required to broadcast the code words to large numbers of processing elements.
The implementation details and performance evaluations are described in Appendix 12-G of
this report.

To speed up the relational algebra operations based on the CCW surrogate files, a paral-
lel backend database machine is proposed in section 12.3. The basic idea of the proposed
database machine is to reduce the amount of fact data to be transferred from the secondary
storage systems to satisfy a query by performing the relational algebra operations on the CCW
surrogate file firstt The database machine consists of a number of surrogate file processors
(SFP’s) and extensional database processors (EDBP’s) operating in SIMD mode. Each surro-
gate file processor has an associative memory to speed up the relational algebra operations on
the CCW surrogate files. Surrogate file processors and extensional database processors are
connected to other processors of the same type through multistage interconnection networks.
The performance of the proposed system for parallel relational algebra operations was
evaluated.

An important advantage of surrogate file techniques is that they can be easily extended
for the indexing of the rules expressed as Prolog clauses, where the matching between con-
stants, variables, and structured terms is required to test the unifiability. [RAMS86], and
[WADS87] have extended the SCW structure for the indexing of Prolog clauses and [SHI87]
has extended the CCW structure to index the rules and facts in unified manner. In section
12.4, we introduced a surrogate file scheme CCW-2 which can be used for partial unifications
among first order terms in a very large logic programming environment.

To handle very large dvnamic data bases, a new and efficient access method called the
dynamic random sequential access method (DRSAM) is introduced in section 12.5. It is
derived from linear hashing with order preserving. The performance of DRSAM was
evaluated and the file structure found to be efficient for range queries as well as random
access. With order preserving hashing, the hashed key values are not generally uniformly




distributed over the storage address space. To deal with non-uniform distributions, DRSAM
was extended with proper control mechanisms and the resulting file structure is called
EDRSAM.

In section 12.6, we introduced an initial design for the optical implementation of various
operations in Very Large Data/Knowledge Bases. The system is capable of performing projec-
tion, selection and equi-join as well as filtering of ground clauses in an efficient way because
it takes full advantage of the parallel nature of optical information processing. Data stored in
optical disks is retrieved and processed optically by a configuration involving two spatial light
modulators and a large photodetector array where the photon-to-electron conversion takes
place.




12.3. Backend Relational Algebra Machine Based on CCW Surrogate File

12.3.1. Concatenated Code Word Surrogate File

In the context of very large knowledge bases the question arises as to how to obtain the
desired rules and facts in the minimum amount of time. A reasonable choice of indexing
scheme to speed up the retrieval is concatenated code word (CCW) surrogate file technique
discussed in [BER87a]. A surrogate file is constructed by transformed binary codes where the
transform is performed by well chosen hashing functions on the original terms.

Suppose we have a fact type called borders which is given as follows:

borders (Country_1, Country_2, Body_of_Water).

For a particular instance

borders (korea, chiaa, yellow sea).

we would first hash the individual values to obtain binary representatious.

H(korea) = 100...01
H(china) = 010...00
H(yellow sea) = 110...00

Then the CCW of the fact is generated by simply concatenating the binary representations of
all attribute values and attaching the unique identifier of the fact as follows:

100...01} 010...00 110...00{ 00...01.

The unique identifier is also attached to the fact and serves as a link between the two. It is
used as a pointer to the EDB or can be converted to an actual pointer to the EDB by dynamic
hashing schemes.

The retrieval process with the CCW surrogate file is as follows:

1)  Given a query, obtain a query code word (QCW) by concatenating binary representa-
tions corresponding to the attribute values specified in the query. The portion of the
query code word for the attribute values which is not specified in the query is filled
with don’t care symbols.




2)  Obtain a list of unique identifiers to all facts whose CCW’s satisfies
QCW=CCW
by comparing the QCW with all CCW’s in the CCW file for that fact type.

3) Retrieve all facts pointed to by the unique identifiers obtained in step 2 and compare
the corresponding attribute values of the facts with the query values to discard the facts
not satisfying the query. These are called “"false drops". The facts satisfying the query
are called "good drops”. The false drops are caused by the non-ideal property of hash-
ing functions.

4)  Return the good drops.

Compared with other full indexing schemes such as inverted lists [CAR75], CCW surro-
gate file technique yields much smaller amounts of index data; about 20% of the size of the
EDB [BERS87a] while the inverted lists may be as large as the EDB. In terms of maintenance
the surrogate file shows considerable advantages. When a new tuple is added to a relation the
CCW is generated and added to the surrogate file. In the case of inverted lists each list must
be processed. Similar operations must be performed for deleting tuples from a relation.
When changes to an existing tuple are made, the surrogate file entry must be changed and the
proper inverted lists must be changed. '

An important advantage of CCW surrogate file technique is that they can be easily
extended for the indexing of the rules expressed as Prolog clauses, where the matching
between constants, variables, and structured terms is required to test the unifiability. [SHI87]
extended the CCW structure to index the rules and facts in an unified manner.

An additional benefit obtained from using the CCW surrogate file approach is that rela-
tional operations can be performed on the CCW surrogate files [BER87a). To satisfy a query,
interrelated relational algebra operations on the EDB are required, so by performing relatonal
algebra operations on the CCW surrogate file first, considerable processing time can be saved.
Relational operations on CCW surrogate files are a kind of relational operation algorithm
using indices [BLA77, MENS86]. However, using inverted list type indices in parallel rela-
tional algebra operations is very difficult, because the problem of synchronizing accesses to
the indices without completely serializing the actions of the processors executing in parallel
has not been solved yet [BIT83]. On the other hand, a CCW surrogate file is a set of
transformed binary code words corresponding to the tuples of a relation, so it can be horizon-
tally partitioned into subfiles and distributed over the parallel processors to be processed con-
currently.




In [CHUS88], CCW surrogate file technique was analysed on the basis of storage space
required for the surrogate file and time to retrieve the desired facts from the EDB. The
analysis shows that most of the query response time for fact retrieval is used for the surrogate
file processing when the relation is very large (107 bytes) because of the sequential searching
of all surrogate file code words. With smaller relations (10° bytes) surrogate file processing
time is negligible compared with EDB access time.

To speed up the relational algebra operations based on the CCW surrogate file, a back-
end database machine is proposed. The database machine consists of a number of surrogate
file processors (SFP’s) and EDB processors (EDBP’s) operating in SIMD mode. Each SFP
has an associative memory to speed up the relational algebra operations on the CCW surro-
gate files. Since CCW’s are quite compact and regular, they are mapped well to the associa-
tive memories. SFP’s and EDBP’s are connected to other processors of the same type
through multistage interconnection networks.

In section 12.3.2 the proposed architecture is introduced. The relational algebra opera-
tion algorithms for the architecture are explained in section 12.3.3. Section 12.3.4 shows the
performance of the proposed architecture for relational algebra operations.

12.3.2. Structure of the Backend Relational Algebra Machine

A general structure of a backend database machine which contains multiple processors
for the management of a very large extensional database of facts is shown in Figure 12.3.1.
We assume that there are gigabytes of data stored on the EDB disk subsystems and there are
corresponding CCW surrogate files stored on the SF disk subsystems. Suppose that the user
is interested in retrieving fact data satisfying a condition from a particular relation. Then the
selection query is transferred to the backend controller from the host computer and a query
code word (QCW) is constructed in the surrogate file processor manager (SFPM) using the
proper hashing functions. The QCW is then broadcast to the proper Surrogate File Processors
(SFP’s) to be used as a search argument. The SFP compares the QCW with each CCW and
strips off the unique identifiers of matching CCW’s. Each extracted unique identifier is sent
to the EDB processor manager (EDBPM) and passed on to the EDB processor (EDBP) which
contains the fact with that unique identifier. The EDBP will access the block containing the
fact, compare the retrieved fact with the original query to check that it is a good drop and
then send it to the host computer.

The basic idea of the proposed backend database machine is to reduce the number of
EDB blocks to be transferred from the secondary storage systems by performing the relational
operations on the surrogate files first. To speed up the relational algebra operations on the
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surrogate files, each relation’s surrogate file blocks are evenly distributed over a number of
surrogate file disk subsystems so that the SFP’s can process the surrogate files concurrently.

As shown in Figure 12.3.2, a SFP is equipped with an associative memory unit to per-
form the searching operation efficiently. Associative memories are very fast because they use
content addressing and parallel searching, but they are generally costly and rigid in data for-
mat. However, the format of the surrogate file is regular and maps very well into the associa-
tive memory and cost of the associative memory hardware is decreasing as VLSI technology
advances. Additionally, associative memories can be used for relational operations, such as
selection and join, because associative memories can perform many associative operations
such as equal to, not equal to, less than (or equal to), greater than (or equal to), maximum,
minimum, between limits, outside of limits, and others depending on the structure. In our
design, we used word-parallel bit-serial (WPBS) associative memory which consists of two-
dimensionally accessible memory and an array of processing elements. A word slice is a unit
for memory read and write and a bit slice is a unit for arithmetic and logical processing. A
bit-parallel associative memory [RAM78, DAV86], whose memory cells have comparison
logic, is faster than a WPBS associative memory but is much more complex. Current status
of associative memories and associative processors are reviewed in [WALS87].

To balance the speed of an associative memory, multiple disks controlled by two disk
controllers constitute a surrogate file disk subsystem and are attached to a SFP through double
buffers. In our system, one partition of surrogate file of a relation is stored consecutively
within each disk subsystem so that the surrogate file blocks of a relation can be sequentially
transferred to the associated surrogate file processors. By associating a disk subsystem to
each surrogate file processor, we lose some flexibility in allocating processors to a query pro-
cessing but surrogate file blocks can be accessed rapidly.

The surrogate file processors are connected through the SFP interconnection network.
Since there are a number of surrogate file processors, the flexibility and speed of the inter-
connection are very important factors determining the overall performance. The mapping
between SFP’s will be permutation, selective broadcasting, or broadcasting depending on the
distribution of operand surrogate files among the SFP’s (we consider the pair of a SFP and a
surrogate file disk subsystem as a single unit and call it a SFP), the number of available
SFP’s, and algorithms of relational algebra operations. To handle all the mapping modes we
chose a multistage Omega network [LAW75] implemented with 2 by 2 switching elements
with four functions; straight, exchange, upper broadcast, and lower broadcast. Thus, any one
SFP can broadcast a block to the rest of the SFP’s with uniform delay. The SFP interconnec-
tion network will operate in circuit switching mode to facilitate the surrogate file block
transfers.

11
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Figure 12.3.2. Structure of a Surrogate File Processor

The structure of the EDB processor manager is shown in Figure 12.3.3. If a fact unique
identifier is sent from a SFP to the EDB processor manager (EDBPM), the EDBPM finds the
EDB processor (EDBP) containing the corresponding fact by accessing a directory and sends
the unique identifier to the EDBP. The EDBPM has a result buffer to collect the operation
results from the EDBP’s.

The structure of a EDBP is shown in Figure 12.3.4. In case of fact retrieval, a fact
block corresponding to the received unique identifier is accessed by the EDBP. We assume
that EDB blocks are randomly distributed within a disk subsystem, so to speed up the block
access a disk cache is provided per EDBP. Once the block is available in the working
memory of the universal operator, the operator searches the block with the unique identifier,
extracts the fact corresponding to the unique identifier, and compares the extracted fact with
the query to check that it matches. The universal operator is a kind of general purpose pro-
cessor and perform all the tuple-wise relational algebra operations as well as statistical aggre-
gation functions. Through the EDBP interconnection network, facts can be transferred from
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one EDBP to another. We decided to use the multistage Omega network for the interconnec-
tion of EDBP’s. The EDBP interconnection network operating in packet switching mode to
facilitate the frequent transfer of facts between EDBP’s in case of join operations.

A hardware sorting unit [KIT87] is available and can be accessed by a EDEP through
the EDBP bus. The sorting unit can also be used for duplicate removal which is a part of
other operations such as union, difference, and projection.

The processing mode of the backend system is SIMD or MIMD depending on the distri-
bution of surrogate files and relations over the processors and assignment of the processors to
a given operation. If all the processors are working for a single operation, then it becomes a
SIMD mode, but if processors are partitioned into a number of groups and each group of
processors is assigned a different operation, then the processing mode is MIMD at the group
level. To operate either in SIMD or MIMD mode, the interconnection network must be
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partitionable. A multistage Omega network of size 2™ can be partitioned into independent
subnetworks of different sizes with the requirement tha: the addresses of all the I/O ports in a
subnetwork of size 2' agree in (m ~ i) of their bit positions {SIES0].

As the size of the EDB increases, the system can be upgraded by adding a cluster of
SFP’s and EDBP’s to the existing system configuration. If we store the related reladons and
their surrogate files on a cluster of SFP’s and EDBP’s, then each cluster of processors are
working on different queries and the processing mode of the system becomes multiple SIMD
(MSIMD). In this case, the inter-cluster interconnection would be separated from the intra-
cluster interconnections. The backend controller of each cluster would be a cluster controller
and be in charge of communication with other clusters and the global backend controller
through a cluster bus as shown in Figure 12.3.5.
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12.3.3. Relational Algebra Operations in the Backend Database Machine

12.3.3.1. Selection Operation

To select on a particular attribute position, the SFP’s execute a comparison, such as
equal to, not equal to, greater than or equal to, or less than or equal to between the binary
representation of a code word and the hashed value of the constant specified in a selection
query. To retain the ordering between the binary representations of a attribute position,
order-preserving hashing [GARS6] is necessary.

Each SFP retrieves a block of CCW’s and does the projection on the binary representa-
tion of the specified field and unique identifier, then loads the projected CCW’s to the associa-
tive memory. The comparand register of the associative memory is loaded with the hashed
constant. The bit positions of the input mask register corresponding to the hashed constant is
filled with 1’s while other bit positions are filled with Q’s. If there is any match, the
corresponding fact unique identifier is sent to the EDBPM.

As soon aé any fact unique identifier is received by the EDBPM, it finds the EDBP con-
taining the corresponding fact block and sends the unique identifier. The EDBP retrieves the
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fact block by using the unique identifier, searches the block with that unique identifier, and
performs the actual selection operation on the fact. Due to the pre-selection operation on the
surrogate file, the number of fact blocks to be accessed from the secondary storage system is
usually very small compared to the total number of fact blocks of a relation.

12.33.2. Join Operation

There are three main algorithms for the join operation; sort-merge, hash-partition, and
nested-loop join algorithms. The performance of the sort-merge join algorithm for the non-
equijoin operation is as good as that for equijoin operation, because once the two operand
relatdons or subrelations are sorted, the merging step can handle the equijoin and the non-
equijoin in the same way by performing the corresponding comparison operation. The data-
base machine DELTA [SAKS86, ITO87] has multiple relational database engines composed of
sort-merge units and performs the sort-merge join algorithm. If a database machine has sort-
merge units, the selection operation is interpreted as a join operation between a relation and a
constant value specified in a query.

The hash-partition join algorithm is adopted by the database machine GRACE [KIT84].
Each operand relation is partitioned into a number of buckets depending on the hash value of
the join attribute, then matching is performed within each bucket by a processor assigned to
that bucket. Usually the hash-partition join algorithm is better than the sort-merge join aigo-
rithm in the case of the equijoin operation because sorting creates a total ordering of the
tuples in both relations while the hashing simply groups related tuples together in the same
bucket [DEW85]. However, in case of non-equijoin, the operation of each processor is not
limited to a single bucket and the workload of the processors may not be uniform. One prob-
lem of the hash-partition join algorithm is the bucket overflow caused by the non-uniform dis-
tribution of the join attribute value. In this case, rehashing of the overflow bucket i< neces-

sary.

It has been shown that the nested-loop join algorithm takes advantage of different
operand sizes and the processing time is inversely proportional to the number of processors,
while in the case of the sort-merge algorithm after a certain number of processors, duplicating
the number of processors causes very little decrease in the execution time. The reason is that,
after a certain stage, the degree of parallelism is divided by two at each merge pass [VALS84).

Our proposed database machine adopts the nested-loop join algorithm because the associ-
adve memories in each processor can easily perform the parallel execution of the nested-loop
join operation.
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If we assume that the CCW surrogate files of two operand relations are evenly distri-

buted over a number of SFP’s, the nested-loop join algorithm is executed as follows:

1)

2)

3)

4)

3)

6)

7

Each SFP reads a block of CCW surrogate file of the smaller relation from the associated
surrogate file disk subsystem, projects it on the join attribute and unique identifier and
loads it into the associative memory.

Each SFP reads a block of CCW of the larger relation from the associated surrogate file
disk subsystem, project it on the join attribute and unique identifier and store it in the
associative processor input buffer.

One SFP broadcasts the projected block from step 2) to the rest of the SFP’s which
already have a block of CCW surrogate file of the smaller relation in their associative
memories from step 1).

Each SFP searchs the associative memory with the broadcasted projected CCW’s as
searching arguments one by one. If there is a match, the pair of unique identifiers of the
two matched CCW’s are sent to the EDBPM.

Repeat step 3) and step 4) until all the projected blocks in step 2) are broadcasted.

Repeat step 2) to step 5) until all the CCW’s of the larger relation are retrieved from the
surrogate file disk subsystems.

Repeat step 1) to step 6) until all the surrogate file blocks of the smaller relation are
retrieved and searched.

In step 4), as soon as any unique identifier pair is received by the EDBPM, the EDBPM

finds the EDBP’s containing the corresponding facts and transfers the unique identifier pair to
those EDBP’s. If a single EDBP contains the two operand facts then that EDBP performs the
actual join operation on the two facts retrieved, otherwise one EDBP transfers a projected fact
to another EDBP containing the other operand fact, then the join is performed. To reduce the
amount of communication through the EDB interconnection network the smaller projected fact
is transferred. Projection is performed on the join attribute, attributes involved in the output
relation, and the unique identifier. The pre-join operation on the CCW surrogate files is over-
lapped with the actual join operation on the facts. '
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12.3.3.3. Projection Operation

Performing projection (including the duplicate removal) on the surrogate file as a subst-
tute for projection on the EDB is not useful because of the false drops. Generally, the hash-
ing function is not ideal, so different attribute values may have the same hashing function out-
put. Therefore, we can not remove the duplicate binary representations of surrogate file code
words. Thus, projection (including the duplicate removal) must be performed by the EDBP’s
on the actual relations. EDBP’s can use an external sorting unit to remove the duplicate
tuples, or can use a duplicate removal algorithm developed for muitiprocessor system [BIT83)
depending on the size of the relation to be projected, number of processors, and the size of
the memory in each processor. Other relational operations such as set union and set
difference have the same problem.

12.3.4. Performance Analysis of the Proposed Architecture

In this section, we analyse the performance of the proposed relational algebra machine
for the selection and join algorithms. For this purpose, we used a simplied queueing network
model shown in Figure 12.3.6 and estimate the average response time of a query by using the
product form solution of tandem queues [TRI82). The service times of EDBPM and the
EDBP’s may have distributions more regular than the exponential distributions, however as
long as we are interested in the average response times, we can use M/M/1 queues safely
[(KOB78]. We assumed that

1) the workloads of the SFP’s and the EDBP’s involved in a relational algebra operation are
uniform,

2) disk I/O operations and processor operations are executed concurrently whenever possi-
ble,

3) pre-operations on the surrogate files by the SFP’s and the actual operations on the facts
by the EDBP’s are executed concurrently whenever possible.

12.3.4.1. Selection Operation

In case of a selection operation, the average arrival rate of extracted unique identfiers to
the EDBPM is determined by the size of surrogate file of a operand relation, number of SFP’s
involved in the pre-selection operation, and the selectivity. We estimated the pre-selection
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Parameter Values
Average seek time of a disk 28 msec
Rotational delay o.f a disk 8.3 msec
Data transfer rate of a disk 2 MB/sec
Block size 4 KB
Effective EDB block access time 10 msec
Interconnection network speed 10 MB/sec
SF and EDB bus speed 50 MB/sec
Memory bandwidth 10 MB/sec
Unique id. dispatching time 10 psec
Projection rate 6 MB/sec
Time for loading a word to 0.1 psec

an associative memory

Associative memory searching time

for n bit-slices

Time for extracting a responded

word from the associative memory

Byte comparison time in EDBP

(0.5 + 0.1 n) psec

0.2 psec

0.5 usec
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Table 12.3.1. Summary of Parameter Values Used for Performance Analyses
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Figure 12.3.6. Simplied Queueing Model of a Selection/Juin Operation

time and the average service rate of the EDBPM and a EDMP by applying the parameter
values specified in the Table 12.3.1. Since there is no fact transfer between EDBP’s, we don’t
need to consider the effect of network contention.

Figure 12.3.7 shows the total response time of a selection operation on a relation R as a
function of the selectivity (defined as the ratio of the cardinality of the output relation to thai
of the operand relation), the number of SFP’s (M), and the number of EDBP’s (N) when

Cardinality of ap operand relation R = 10%

Size of a tuple = 100 bytes

Size of a unique identifier = 3 bytes

Size of a concatenated code word = 20 bytes

Size of a selection attribute = 15 bytes

Size of the binary representation of a selection attribute = 3 bytes
Size of an output tuple = 100 bytes :

_ umber of false drops = 0.1
number of good drops
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Since the hashing functions used to generate the CCW are not ideal, there are a certain
number of false drops. We assumed that the total number of matched code words is ( 1 + & )
times the actual number of facts satisfying a selection query.

Sec

500

M. N)
4. 8)

(8, 16)

(16, 32)

(32, 64)
(64, 128)

0 10 20 30
Selectivity (%)

Figure 12.3.7. Performance of Selection Operation
( Cardinality of R = 10°)

When the selectivity is low, the pre-selection time on the surrogate file is dominant and
the total response time will decrease as the number of SFP’s increases. As the selectivity
increases, the number of EDB blocks accessed will increase and the actual selection time on
the facts is dominant. Thus, as the number of EDBP’s increases the response time decreases
linearly. Actually, as the selectivity increases the effective EDB block access time would be
reduced due to an increased disk cache hit ratio. However, we assumed that the effective
EDB block access time is constant in evaluating the total selection time.
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To reduce the number of EDB block accesses when the selectivity is high, we can search
an accessed block with the search attribute values specified in the query, instead of searching
the block with a unique identifier. In this way we can find all of the desired fact in that
block. Then, we store the block number in memory and whenever a unique identifier of a
fact within that block is received, we discard the unique identifier since we already retrieved
that fact.

12.3.4.2. Join Operation

In the case of a join operation, the surrogate file size of the two operand relations, the
number of SFP’s involved, and the join selectivity will determined the average arrival rate of
unique identifier pairs to the EDBPM. Since a EDBP performs join operaton on two
operand facts, one of which may be transferred from other EDBP, we have to consider the
network delay caused by the conflict in the network. However, usually the size of the pro-
jected fact is small, so the transfer time of a projected fact is very small compared to a EDB
block access time. Therefore the network contention would not be serious unless the join
selectivity is very high. Furthermore, the fact transfers are overlapped with EDB block
accesses and join operations. It has been shown that any permutation can be performed in a
Omega network within three passes of the network [VARS87], which corresponds to the
analysis given in [THAS81]. Thus, we simply assumed that the effective network speed is one
third of the nominal network speed. We used the parameter values in Table 12.3.1 to evalu-
ate the average response time. '

The response time of a join operation on two operand relation R; and R, is plotted in
Figure 12.3.8 as a function of the cardinality of R,, the number of SFP’s (M), and the number
of EDBP’s (N) when

Cardinality of R; = 10°

Cardinality of the output relation = cardinality of R,

Size of a tuple in R; and R, = 100 bytes

Size of a unique identifier = 3 bytes

Size of a concatenated code word = 20 bytes

Size of a join attribute = 15 bytes

Size of the binary representation of a join attribute = 3 bytes
Contribution of each operand relation to an output tuple = 30 bytes

B= Number of unique identifier pairs extracted -

Cardinality of output relation L.
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Due to the non-ideal hashing functions, the number of joinable code word pairs is larger than
the cardinality of the output relation, and B accounts for this effect.

Sec
10000
M. N
(16, 8)
1000 - (32, 16)
(64, 32)
(128, 64)
100 (256, 128)
10
1 2 J 3 1 T T
10 10 104 103 108

Cardinality of R,

Figure 12.3.8. Performance of Join Operation between R, and R,
(Cardinality of R, = 105, Cardinality of output relation = Cardinality of R,)

As the total size of the two operand relations increases, the response time increases. The
pre-join time is dominant when the join selectivity is low since the pre-join operation is per-
formed on every pair of surrogate file blocks while the actual join operaton is performed on
the two operand facts. Therefore, when the selectivity is low, as we increase the number of
SFP's we can decreases the total join processing time. When the join selectivity becomes
high, actual join operation time is dominant due to the increased number of random EDB
block accesses. In this case, we can reduce the number of EDB block accesses by storing the
retrieved facts in the working memory and reuse it whenever it is requested. For an example
of an equijoin operadon, if the average number of tuples in R; (Ry which have same join
attribute value is C; (C,), then a tuple of R; which is participated in the semijoin of R; by R,
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can be joined with C, tuples of R, on average. Thus, if we store that tuple in the memory,
we can reuse it ( C, — 1) times later. For the same reason, the tuple of R, can be reused
(Cy — 1) times later. In Figure 12.3.8, we used a constant EDB block access time indepen-
dent of the join selectivity. Additional details are given in Appendix 12-A.
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12.4. Management of General First Order Terms and Rules

For conventional database models, 5. number of physical file organization téchniques such
as B-tree indexing and hashing are well developed. For complex objects, however, these tradi-
tional file organizations would be inappropriate for the following reasons.

1. Primary key, which can be used as a unique identifier, does not exist. Retrieving the
desired tuples of knowledge bases can be viewed as an extension of the multiple-key
attribute partial match retrieval problem because any subset of argument positions can be
specified in a query.

2. Lexicographical orders among general terms cannot be decided when the knowledge base
contains variables within tuples. So, we cannot use ordered file organizations such as B-
tree or indexed sequential file.

3. An attribute value can be decomposable into atomic values, and thus a query can be
based on subcomponents of an argument (e.g. f(r(a,X), Y)). If a fully inverted list is to
be used, all the subcomponents should be indexed along with the position in a term. It
will result in substantial amount of index data.

4. Frequent execution of join operations are expected due to the transitive clauses defined
by rules. As traditional hashing or indexing schemes are based on sequential processing,
we need a new file organization suitable for parallel processing.

For efficient processing of VLKB, a new physical file organization scheme called the
surrogate file [BER87a] has been proposed. In this section, some general term indexing tech-
niques based on surrogate files are introduced.

12.4.1. General Term Indexing via Surrogate Files

This section concerns the design of surrogate files for general terms and clauses so that
we can exploit surrogate files as a basis for unification-based retrieval. We consider 5 general
term indexing schemes based on the surrogate file techniques described in the previous sec-
tion. Ramamohanarao and Shepherd [RAMS86] developed a superimposed code word scheme
for both ground terms and structured terms. Colomb [COLS86] developed another superim-
posed coding technique for structured terms. Wise and Powers [WIS84] proposed the Field
Cord Word (FCW) scheme for clauses containing variables and structured terms. Wada et al.
[WADS87] presented a similar indexing scheme to the FCW*. An extension of the CCW to
terms containing variables was developed by Shin and Berra [SHI87].

* Wada called it as a Structured Superimposed Code (SCCW). But, it can be viewed as a
CCW type indexing.
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A brief comparison among the five proposed schemes mentioned above is given in Table
12.4.1. In the table, functor encoding means whether the predicate name (principal functor) is
included as a part of the code. Intuitively, when the number of clauses with the same predi-
cate name is large, functor encoding is not required (they can be clustered). But, for the
rules, the number of clauses with the same predicate name is generally small, and thus it does
require the inclusion the primary functor as a part of indexing structure. Variable encoding
schemes can be classified into two types; field-set and bit-set. The field-set method can be
viewed as simulating the mask register of associative memories. That is, the argument position
representing a variable is masked out. On the other hand, the bit-set method uses one bit to
indicate that the corresponding argument is a variable. In the bit-set scheme, if the tag bit is
set, the rest of the bits are used to indicate common variables. In the SCW scheme, the vari-
ables appeared in the QCW do not require special considerations since they are simply not
broadcast for matching. However, in CCW and FEW the position of variables in the QCW as
well as in the indexing code is 1mponant. Underlying computer languages and computer
architectures are also briefly summarized.

SCW-Based Schemes CCW-Based Schemes
Ramamohanarao Colomb Wise Wada Shin
and Shepherd and Powers et al. and Berra
Eanded SCW
Method Slice Slice String String String
2 level 2 level 1 level 1 level 1 level
Principal no yes yes yes yes
Functor
Variable Bit-Set Bit-Set Field-Set Field-Set Bit-Set
(Index) (Index) Q&0 Q& Q&0
Structure Mask Bits Pasition Field Field Tag Set
Encoding Encoding Encoding (CCW-2)
Underlying Prolog Prolog Prolog/Epilog Prolog Prolog/PARLOG
Language (Interpreter) (Interpreter) (Interpreter) (Interpreter) (Compiler)
Computer - Associative Tighty-Coupled PHI Associative
Architecture Memory Multiprocessor (PSI Net.) Memory

Table 12.4.1 Comparison Among Clause Indexing Schemes
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12.4.1.1. Superimposed Code Word (SCW) Type Indexing

Superimposed code words can be used to represent variables and structured terms stored
in the knowledge bases. Ramamohanarao and Shepherd [RAMS86] proposed the use of extra
mask bits to indicate whether a certain argument position is variable. A record descriptor is
presented by m bits of SCW code and k bits of mask bits. Thus, when a structured term is not
allowed, the value k is the number of arguments in the term. Thus the matching condition is

for ith argument specified in the query is
QCW = (SCW .AND. QCW) .OR. M()
where M(i) is a mask bit which is set to 1 when the corresponding position is a variable.

Suppose that we use 5 mask bits each of which is corresponding to the positions in a
term (1,0), (1,1), (1,2), (2,0) and (3,0)* respectively. Figure 12.4.1 shows the descriptor for
p(X,a.X), p(g(a,X),Y,b) and the matching process for the query « p(g(X,Y),Z,b). To use this
scheme for complex term indexing, however, the structure of terms should be known in
advance, and it is not indicated how to store the don’t care bit in the secondary storage®*.
The use of bit-slice organization and two level indexing scheme are also proposed to speed up
the searching procedure.

Colomb [COLS86] eliminates the need for the mask bits by encoding the position infor-
mation within the SCW, and proposed to encode the principal functor as well as the argu-
ments. When compared to the SCW scheme proposed by Ramamohanarao and Shepherd,
Colomb’s method can accommodate more position information. But, the retrieval procedure is
less efficient than other schemes.

12.4.1.2. Concatenated Code Word (CCW) Type Indexing

Wise and Powers [WIS84] proposed a clause indexing scheme called Field Encoded
Word (FEW). Wada et al [WADS87] proposed a similar scheme, called Structured Superim-
posed Code Word (SSCW). These two schemes are based on the CCW concept. The main
idea is to divide the code word for an argument into k, where k is the number of subterms in
the argument. For example, if a term has 4 argument and a code word with 256-bits is used,

* This address notation of a term is proposed by Colomb [COLS86]. For example, the vari-
able X in the term p(g(a, r(b.X)), ¢, d) has address (1,2,2) since it is the second argument of
r(b,X), which is the second argument of g(a, r(b,X)), which is the first argument of p(g(a,
r(6.X)), ¢, d).

** In case of CCW, the don’t care bits are not stored in the disk. They can be considered
as setting mask registers in the associative memory
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Term SCw Mask bits

p(X.2X) 0100 1000 0000 | 1**01
p(g(@.X),Y,b) | 0111 1100 1000 | 00110

(a) Bit-String Representation of General Terms

CW(g) - 0001 0000 1000
C1 = Bit(4) .AND. Bit(9) .OR. Mask(1)

CW(@®) - 0010 0100 0000
C2 = Bit(3) .AND. Bit(6) .OR. Mask(5)

Matching Condition = C1 .AND. C2

(b) Matching Process for « p(g(X.,Y), Z, b)

Figure 12.4.1 Extending SCW to General Terms (Ramamohanarao and Shepherd)

each argument can occupy 64 bits. Suppose that the first argument is the term f(a,X,r(X)).
Then, the 64 bits of code word is further divided into four 16-bits code, each of which
represents f, a, X and r(X) respectively. This scheme is shown in Figure 12.4.2.

The CCW-1 scheme was proposed for a parallel logic programming language PARLOG
{CLAS86]. By using mode declaration: the guarded clauses of PARLOG can be transformed
to the standard form, where no structured term appears in the head of clauses. Thus, CCW-1
concerns only pure variables and constants. In this scheme, each CCW code corresponding to
an argument has 1 bit tag to indicate whether the argument is a variable. The tag bit is used
for bidirectional don’t care matches as a preliminary step of unification. CCW-1 provides an
efficient mechanism in searching possible candidate clauses as well as in detecting binding
conflicts among shared variables in the early stage of execution.

CCW-2 is basically the same structure as CCW-1, which can be constructed by con-
catenating transformed code words obtained from the arguments along with the predicate
name of the head of a clause. Each code word is divided into two fields; tag field and value
field. Unlike CCW-1, however, the tag field can represent any argument type including lists
and structued terms as well as variables and constants. The value field contains the
transformed representation of the corresponding argument according to the content of its tag
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Figure 12.4.2 Extending CCW to General Terms (WAD87]

field. For example, if the tag indicates structured term, then the value field contains the hashed
value of the primary functor, while if the tag is for a variable, the corresponding value filed
represents the variable identification number. This scheme can be viewed as an augmentation
of CCW-1 with the type checking mechanism. Table 12.42 shows an initial design of
CCW-2 scheme. An example of CCW-2 code is shown in Figure 12.4.3

’ Argument Type | Tag Field Contents of Value Field
Constant 00x Hashed Value of the constant

Function Olx Hashed Value of the Primary Functor/Arity
List 100 Hashed Value of the CAR constant

101 Variable ID for the CAR variable
Variable 11x Variable ID

Table 12.4.2 CCW-2 Coding Scheme

In contrast to CCW-1, CCW-2 can be used for current Prolog systems and does not
require mode declarations. Due to the type checking mechanism, it is expected that false drops
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p(X, a [HIT], f(c,d)

/

01x [ Hash(p)] 11x[ id(X)]00x | Hash(a) || 101] id(H) [01x| Hash(f)] uid

Figure 12.4.3 Extending CCW to General Terms (CCW-2)

can be considerably reduced when compared to previously proposed schemes without
sacrificing the compactness and uniformity of CCW.

12.4.2. Design of an Associative Surrogate File Processor for CCW-1 and CCW-2

Due to the uniform and compact data structure of surrogate files, specialized hardware
can be efficiently exploited. In this section, we present the design considerations on the
hardware implementation of the surrogate files discussed in the previous section.

The CCW-1 scheme can be implemented by using specialized associative memories. Fig-
ure 12.4.4 shows an associative memory which can perform bidirectional don’t care matches
for CCW-1. To deal with the type checking mechanism of CCW-2, a slight modification on
the matching logic of the associative memory is required, which is described below.

Assume that the QCW has n arguments. Then the matched clause heads should satisfy
the following condition

M = m(1) .AND. ...... .AND. m(n)
where m(j) represents the matching condition for the j th argument.

If the ith argument of either QCW or CCW represents a variable, m(i) should be set to 1.
Otherwise they should have the same type for the matching. Special care must be taken for
the arguments representing a list where either a variable or constant can appear as the first
element Let g;; and c;; be the jth tag bits of the ith argument in the QCW and the record
descriptor respectively, and let qbr; and cbr; be the binary representation for QCW and CCW
respectively. ‘(hen m(j) can be represented as follows:

m(j) = (g;0 -AND. g;) ; jth argument of the query is a variable
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ccw  01110...0010 100100111 100101000 uid_1
01110....0010 100100111 100101000 wid_2

Figure 12.4.4 Hardware Implementation of the CCW-1

OR. (¢ -AND. ¢;;) ; jth argument of the record is a variable

; the first element of list can be either variable or constant

.OR. (Qj'o .AND. qjol AND. Cj'o AND. Cj.l AND. (qj.z .OR. CJ_?)
.OR. (gbr; = cbr;) ; conventional matching

Current research regarding indexing general terms based on the surrogate file concept is
limited to search operations rather than processing. Unlike the SCW approaches, the central
focus of the general term indexing schemes based on the CCW should lie in developing surro-
gate file schemes suited to relational algebra operations and unification. Thus, we should be
able to represent variable bindings in terms of surrogate files so that we can gcnerate new
QCWs from them. Additional details are given in Appendix 12-B and 12-C.
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12.5. Inverted Surrogate Files

In this section, we present a new inverted model for surrogate files. This model, called
the inverted dynamic surrogate files (IDSF), is based on a dynamic file structure which is
designed to handle orthogonal range queries. The file structure is the Dynamic Random-
Sequential Access Method (DRSAM). It is based on an order preserving dynamic hashing
method derived from linear hashing [LIT80]. The main characteristic of this access method
over previous ones is the sequential allocation property which leads to the natural adaptation
of elastic buckets [LOMS87] to directoriless organizations. DRSAM shows performance
improvements over previous methods for both direct access and range queries performance.

Our previous work on inverted surrogate files resulted in the transformed inverted lists
(TIL) [BER87, HACS88a]. This file structure is reviewed in Section 12.5.1. In Section 12.5.2,
we discuss the design objectives for DRSAM and present the global approach which we fol-
lowed. Then, we illustrate two variants of DRSAM, namely DRSAMO and DRSAMI. This is
followed by a discussion of new techniques that enhance the performance of DRSAM. In Sec-
tion 12.5.3, we present the results of a performance analysis of DRSAM files.

Order preserving hashing leads to non-uniform distributions. In Section 12.5.4, DRSAM
is extended with proper control mechanisms to adapt to non-uniform distributions. The result-
ing file structure is the extended DRSAM (EDRSAM). This file structure is applied to
inverted surrogate files, leading to the IDSF model. In Section 12.5.5, we draw some conclu-
sions and discuss future research issues.

12.5.1. Transformed Inverted Lists

In this section, the basic inverted surrogate file structure for partial match retrieval appli-
cations, namely transformed inverted lists (TIL) ic presented IDSF. described in Section
12.5.4, is an extension of the TIL concept to dynamic data/knowledge bases.

12.5.1.1. System Model

Single or multilevel indexing is a common technique used in database management sys-
tems (DBMS) for fast data access. In partial match retrieval, creating index files for more than
one field in a record is necessary. The extreme case arises when every entry in a record is
indexed independently and is referred to as inverted lists organization [DAT86, CAR7S,
SALS83]. One problem behind using inverted lists is that the size of the indices can become
enormous, equal to or even larger than the database size.

Transformed inverted lists are similar to inverted lists with the main difference that
indices are built based on the binary representation (BR) of the hashed output of a given field

32




in a record of the database relation. In other words TIL represents the inversion of the surro-
gate image of a relation. Two TIL types, TIL1 and TIL2, are overviewed. A simple surrogate
file representation of a relation is illustrated in Figure 12.5.1. The fields are referred to as
arguments and the BR values for argument position 2 are listed. The actual values for br2, br4
and br5 are shown.

With very large data/knowledge bases, an application environment of the TIL technique
would be the management of the extensional database of facts (EDB) within a logic program-
ming context. It is assumed that many different relations (fact types) with varying degrees and
cardinalities exist in the very large extensional database. Furthermore, the tuples are stored in
such a way that one first accesses the relation followed by an access to a particular tuple via
its unique identfier (Uid). The unique identifier could be derived from the "primary key" of
the relation or a serially generated number attached to each fact. In this discussion, the Uids
are assumed to be serially generated as this would be required in the context of knowledge
bases where the existence of a primary key could be irrelevant.

Thus, the storage structure for the actual facts themselves would be very simple and a
properly chosen dynamic hashing method could be used to guarantee retrieval of a given fact
in at most two disk accesses. This presupposes that all secondary key retrievals will take place
on the surrogate file or through post processing of the retrieved tuples if there are many
different types of users of the same database.

12.5.1.2. TIL1 Description

TIL1 consists of a two level indexed inverted list. Figure 12.5.2 illustrates the TIL1
organization for argument position 2 of the relation of Figure 12.5.1. The blank entries in the
primary index file are usually included for updating purposes. The secondary index file for a
given argument in a tuple is an ordered list of the BRs of the hashing function output of that
argument with the attached unique identifier (Uid). The first entry in each block of this file is
duplicated in the primary index file with an attached pointer to the corresponding secondary
index block address. Furthermore, index files are partitioned in blocks of B bytes each. It is
observed that the entries in the primary index file are ordered as well.

When a given BR is retrieved (say BR=br3), the primary index file is sequentially
accessed using the BR as the search argument and the pointer to the secondary block address
corresponding to that BR retrieved (pt2 in the example). Then the secondary index file is
accessed in a direct mode and the required block(s) retrieved and searched sequentially for the
occurrence(s) of the requested BR. The output is a list of Uids (uid3 and uidl1 for the exam-
ple) corresponding to the value of the request.
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Uid arl ar2 ar3 ard
uidl brl

uid2 br2=010011010
uid3 br3
uid4 brl

uid5 br4=010101011
uid6 brl

vid7 br5=010101110
uid8 br6
uid9 br6
uid10 br7
uid11 br3
uid12 brd

Figure 12.5.1 A surrogate image of a
knowiedge base relation
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BR Uid
brl uidl
brl uid4
brl uid6
BR Pt
br2 uid2
brl ptl
br3 uid3
br2 p2
br3 uid11
/ br4 uid5
br4 pt3
4 id12
bré | ptd br: uid
brs uid7
Primary index file bré | vid8
bré uid9
br7 uid10
Secondary index file

Figure 12.5.2 TIL1 for ar2 of Figure 9.5.1
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12.5.1.3. TIL2 Description

TIL2 is a three level indexed inverted list organization and is illustrated in Figure 12.5.3
for the same example relation. The difference between TIL2 and TIL1 lies in that the TIL1
secondary index file is now split into two files: the TIL2 secondary index file and the tertiary
index file. Each entry in the tertiary index file consists of a Uid, so that the number of entries
in this file is equal to the number of records in the database relation. Each entry in the TIL2
secondary index file consists of three fields: the BR of the hashed function output of an argu-
ment value (say BR=br6), a list length entry "L" that provides the number of records in the
database that have the same entry value in a given argument position (2 for br6) and a pointer
to the address of the first Uid in the tertary file that has BR=br6. This pointer consists of the
block address and a displacement value in the block.

The retrieval process for TIL2 is similar to TIL1, but requires the access of an additional
index level.

12.5.1.4. Partial Match on Multiple Argument Positions

In conjunctive partial match queries, when more than one argument position match is
requested in a query, the differeni outputs from the inverted lists searches need to be inter-
sected. The outcome of the intersection is a set of Uids that complies with the query require-
ments. Finally, this set of Uids is used to directly access the main database for the retrieval of
the matched records. The gain in retrieval time when using transformed inverted list is mainly
due to the small size of the surrogate files and the fast access resulting from the indexing
scheme. Only conjunctive partial match queries are considered in [HACS88a]. Disjunctive
queries have the same level of complexity, with the list intersection operation replaced by a
multiple sets union operation [REI72, MUN76, STO79].

It is noted that the inversion level of the surrogate files is determined by the application
under consideration. Since the underlying target application involves logic programming and
relational databases, fully inverted surrogate files throughout are assumed.

12.5.1.5. Comments on TIL structures

TIL file structures are found to be suitable for partial match queries on static files but
with degraded performance and costly update operations when dealing with volatile files
[HACS88a].

The results relied mainly on 1) a compact representation of the data and 2) a stable file
as defined in [LARS81]. The analytical model which was derived is deterministic in nature and
did not account for the overhead of overflow chains. Larson developed a stochastic model for
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BR PTi2 Uid
brl pts [ uidl
br2 pt6 uid4
uid6
BR | Pt1 \
br3 pt7 uid2
brl ptl
br4 pt8 \ uid3
br3 pt2
uid11
br5 t9 id5
brs | pt3 —"] br p ui
br6 t10 id12
b7 | pt : P v
\ uid7
br7 t11 id8
Primary index file ’ P .
uid9
uid10
Secondary index file Tertiary
index

Figure 12.5.3 TIL2 for ar2 of Figure 9.5.1
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indexed sequential files. With stable files, he determined that the expected number of accesses
for a successful search would increase by 0.3. If the file is dynamic, the performance of these
files and consequently TIL, degrades fast as the file structure results in unusually long
overflow chains. These are detrimental to the retrieval as well as update performance of the
file.

Furthermore, considering for example TIL1 file structures, the primary index file size is
negligible with respect to the secondary level but still too large to fit in main memory. This is
due to the fact that each entry in the primary index points to one physical bucket in the secon-
dary index. To decrease the index size each entry should point to a group of physical buckets.
Multibucket nodes are not new and were proposed by Lomet [LOMS1, 83a, 83b, 87]. In Sec-
ton 12.5.2.6 elastic buckets will be also discussed and applied to a sequential file structure
(DRSAM).

TIL are built in a compact form where consecutive block ranges are ordered. Thus, if
order preserving hashing functions are provided, TIL files can handle range queries. Also, TIL
files can handle non uniform distributions because they are based on indexes.

12.5.2. The Dynamic Random-Sequential Access Method

In this section a new class of key-ordered dynamic file structures for associative search-
ing is described. With order preserving hashing (OPH) functions the uniform distribution
assumption does not generally hold and the structure should be extended with special control
mechanisms to adapt to biased distributions. First a general structure is briefly introduced with
its detailed discussion delayed until Section 12.5.4. Then, the motivations behind DRSAM are
discussed and two variants of DRSAM (0 and 1) illustrated. To control file growth a new par-
tial expansion technique specifically suited for key-ordered files is used. Finally, a generaliza-
tion of the overflow bucket chaining method is discussed.

12.5.2.1. General File Structure

The general file structure which is advocated is a two level dynamic file derived from the
structure of TIL1 [HACB88a]. The first level is designed to adapt to non-uniform distributions
by proper partitioning of the key space into uniformly distributed subranges. The second level
is composed of contiguous storage arcas that are independently and dynamically managed
with DRSAM using OPH. The global file structure is referred to as EDRSAM for Extended
DRSAM and a typical EDRSAM file is shown in Figure 12.5.4. The subregions, referred to as
DRSAM storage areas, are managed with DRSAM and are assumed to have uniform key dis-
tributions. The use of the small table and other control techniques is essential; as generally
good randomizing OPH functions are not available and non-uniform distributions are

38




detrimental to hashed files.

In the remainder of this section, different methods to manage the storage areas of
EDRSAM are presented; specifically variants O and 1. DRSAM is derived from linear hashing
LH [LIT80] with the additional feature that the key-sequential order is preserved within con-
secutive bucket ranges for efficient sequential processing, range queries as well as random
access. The analysis assumes a contiguous storage allocation scheme but can be extended,
similarly to LH, to accommodate distributed secondary storage allocation environments. Based
on the results of this section and Section 12.5.3 a detailed study of EDRSAM is presented in
Section 12.5.4.

12.5.2.2. File Design Objectives

The objective is the design of a file structure with the following characteristics:

1. Fast random access: the structure should be such that, given a search key, the access
cost to the required record is optimal, i.e one disk access (or very near to the optimal
value of one).

2. Fast sequential processing or range query access: given a range for a search key the
structure should be such that the number of disk arm movements (i.e. disk seeks) is one
folowed by successive block reads for each contiguously allocated storage area of the
file. This would hold if enough disk buffer (or swap) space is available.

3. Dynamic: the structure should be easily expandable with low maintenance overhead
(insertion, deletion, change).

In Section 12.5.3 characteristics 1 and 3 are studied within the same context as LH.
Characteristic 2 is achieved if the buckets that qualify for the range query are located in con-
tiguous blocks in a sequential allocation environment, so that one disk access is performed
followed by consecutive bucket reads; or the number of disk accesses is minimized in a distri-
buted allocation environment. Therefore data locality between contiguous physically accessed
secondary storage blocks is an important issue in the physical design of an access method.
TIL [HAC88a] and ISAM( as discussed in [GHOG9] files are typical examples of such con-
cepts. The basic idea with DRSAM is to map logical nodes to consecutive physical buckets to
achieve, for range queries, the consecutive retrieval (C-R) property introduced by Ghosh
[GHO72, 86]. This assures a minimum disk arm movement and is referred to as the consecu-
tive or sequential allocation property in key-order. In the next section order preserving
dynamic hashing is discussed. '
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12.52.3. Order Preserving Hashing

In order preserving linear hashing schemes [BUR83, ORE83] as well as DRSAM, the
file is viewed as a two-level logical trie mapped on a linear storage space. A split expands a
parent bachet at levei ¢ onio ts chilu buckets at level :+1. The leaves of the trie are at eitner
level i or i+1. For example, the idea in [ORE83] is to use the mirror image of the leftmost
bits of the key to achieve order preserving with linear hashing. This leads to the mapping of
Figure 12.5.5: a logical bucket "x" (or node) at level i is the parent of the 2 nodes "x" and
"x+N" at level i+1, with N=2/. As the file grows the physical locations of buckets containing
records in key-order are known but remotely located. Then, range queries that access multiple
buckets will require an extra disk seck for each retrieved bucket.

In Figure 12.5.6 we illustrate how DRSAM maintains physical ordering in the mapping
from logical to physical storage. A logical bucket "x" at level { is the parent of logical buck-
ets "2x" and "2x+1" at level i+1. This mapping achieves data locality with the sequential allo-
cation property. For range queries disk seeks are reduced, which provides a faster and more
efficient access to secondary storage.

To achieve the mapping of Figure 12.5.6, one needs a dynamic, sequential allocating and
order preserving hashing function (OPH;). To implement DRSAM, beginning with a file of
N buckets, the sequence of hashing function (OPH,,OPH,,OPH,,...,OPH;) should have the
following properties:

0<OPH; (Key )<N -1

2xOPH; (Key)
OPHH,I(KC)') = br
2xOPH; (Key) + 1

for all Key and i=0

Using Prefix(Key,i) as the leftmost i bits of a key, a simple OPH; for DRSAM is provided
with:

OPH;(Key) = Prefix (Key ,i).

The prefix function is chosen for convenience but is not generally considered to be a good
randomizing function. While the use of prefix instead of postfix bits has already been con-
sidered in an implementatioit, its context was completely different than the present one
[RAMS84]. Other randomizing functions could be devised and the reader is referred to Section
12.5.4 for a discussion of non-uniform distributions. '

With dynamic hashing without directory, the splitting bucket is not necessarily the one
that overflows. An overflow management scheme is therefore necessary. For linear hashing the
sequence begins by splitting bucket O then 1 and so on until all buckets at level i split leading
to a file at level i+1. The process is then repeated. Assuming contiguous allocation, the
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Figure 12.5.6 Logical/physical mapping
for a DRSAM file structure
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Figure 12.5.7 DRSAMO file at the beginning
of an expansion cycle
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logical and physical bucket addresses would be the same. This function is simple and provides
a fast means to compute the address of a key. It is easy to check from comparing Figures
12.5.5 and 12.5.6 that the sequential allocation property does not lie in the class of linear
hashing split functions advocated by Litwin. One of the problems is that bucket overwriting
can occur if the physical address is equal to the logical address. Some essential medificaticrs
are necessary and two DRSAM files are illustrated next.

12.5.2.4. DRSAM Variant 0

In this section, the basic split sequence for DRSAMO is illustrated. DRSAMO is based on
the same operating system characteristics as those of linear hashing. They are summarized by
the one sided expansion of the file storage area on the secondary storage media. In DRSAMO,
the split sequence is modified so that no overwriting is possible. Assume block sizes of 3
records and a file at level 2 (i.e. N=4 buckets). The home hash function is then
OPH,(Key) = Prefix(Key,2) and the split hash function OPH;(Key) = Prefix (Key,3). With
8 bits encoding a key, the bucket ranges for level 2 are as follows:

bucket #0: 0 to 63.
bucket #1: 64 to 127.
bucket #2: 128 to 191.
bucket #3: 192 to 255.

For an expansion cycle from level 2 to level 3, each range splits in consecutive buckets.
For example, bucket #0 splits onto buckets #0 and #1 and the respective range is then: 0-31
and 32-63, and so on. In general, bucket #x splits onto buckets #2x and #(2x+1). In Figure
12.5.7, the state of the file is shown with 9 insertions. Bucket #0 is full and the split pointer
is initally at bucket # (N/2)= #2 (marked by an arrow).

Figure 12.5.8 shows the file state after the insertion of Key=12. This value hashes to
bucket #0 and a split occurs with an overflow chain attached to bucket #0. Bucket #2 splits
onto buckets #4 and #5. Note that bucket #2 is not used for the moment. It is referred to as
the hole. This hole expands and shrinks during the expansion cycle and the maximum number
of buckets that would be unused at a given time can be shown to be log,N =i. The split
pointer is advanced to bucket #3. Assume that keys 120, 131, 121, 122 and 62 are inserted in
sequence: first 120 goes in bucket #1, then 131 in bucket #5 (as bucket 2 has already split
and is at level 3 now). Figure 12.5.9 shows the status of the file at this stage.

Then comes 121, a collision occurs and bucket #3 splits onto buckets #6 and #7. The
bucket split pointer "folds back" to bucket #1 as the consecutive buckets #2 and #3 are now
empty and can be used to expand bucket #1. Figure 12.5.10 shows the state of the file after
inserting Key=121. With 122 inserted, bucket #1 splits on buckets #2 and #3 and the split
pointer folds back to bucket #0 as shown in Figure 12.5.11. Finally, inserting Key=62 induces
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#0 #1 #2 #3 ‘ #4 #5
0 70 200 130 162
10 72 empty | 235
60

12
Figure 12.5.8 DRSAMOQ example after
one split from Figure 9.5.7
#0 #1 #2 #3 ‘ #4 #5
0 70 200 130 162
10 72 |5PY ) 235 | 131
60 120

Figure 12.5.10 DRSAMO example after
two splits from Figure 9.5.7
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a collision and bucket #0 splits onto buckets #0 and #1. At the end of the process, the file
has undergone a full expansion cycle and is at level 3. The split pointer is advanced to bucket
#4 and a new expansion cycle can begin. The status of the file is shown in Figure 12.5.12.

In this example, the resulting load factor is low (0.625). The load factor is expected to be
simi'ar to LH, and with »a »ncontrolled split mechanism Litwin reports an average load factor
which is lower than the one of EH (around 0.60). Controlled splitting techniques are applied
as well as a new partial expansion method derived from Lomet’s elastic buckets [LOM87] to
improve on the load factor while keeping the near optimal direct access performance.

12.5.2.5. DRSAM Variant 1

If Litwin’s sequential split sequence should be followed, a simple way to avoid overwrit-
ing is to use another physical space for the expansion of the file. For every split, two new
buckets are created while the old one (parent) is freed. What happens if one needs to merge
back? It is clear that the freed bucket should be recovered. Then the file should be able to
expand in two directions which is not a fair requirement on the operating system and contrad-
icts the basic assumption of one sided expansion/contraction of the file. In this section, this
problem is solved with variant 1 of DRSAM.

Basic Model

For DRSAM 1, the same logical expansion/contraction sequence as linear hashing is used.
To avoid physical buckets overwriting the operating system file management features are
slightly extended: for an expansion, the basic idea is to relocate the logical bucket on a newly
allocated larger storage space while the previous space is freed. This operation is nevertheless
irreversible and the freed bucket cannot be recorvered for a subseqrent merge operation. Like
linear hashing, the storage area is only allowed to expand (contract) from one of its boun-
daries. The extension is that the other boundary is allowed to move to return contiguous
storage space to the operating system. For the proper design of DRSAM], this feature is an
essential but realistic characteristic of the operating system.

The split (merge) sequence follows a sequential ascending (descending) order on the set
of logical buckets which form a trie struciure S. The sequence is based on the full ordering
operation defined on the trie as:

For any two logical buckets (or nodes) LN (x,i) and LN (x",i ") in the trie S:
if x=x’then IN(x,i) <IN iV =i<i’

if i=i’then IN(x,i)<IN(x'iN=x<x’




#0 1 #1 #2 #3 #4 #5 #6 #7
0 70 120 130 162 200 235
10 empty 72 121 131
60 122
12
Figure 12.5.11 DRSAMO example after
 three splits from Figure 9.5.7
#0 #1 #2 #3 #4 ‘ #5 #6 #7
0 60 70 120 130 162 200 235
10 62 72 121 131
12 122
Figure 12.5.12 DRSAMO example at the
end of the expansion cycle
) (1,2) 1 22 | G2 | (03) | (1,3)

Figure 12.5.13 Type 1 storage area
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Figure 12.5.14 Type 2 storage area
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where LN (x,i) denotes logical bucket x at level i in the trie, and 0 < x < 2¢. For partial
expansions, this ordering is extended to cover elastic logical buckets.

Storage Areas

In Section 12.5.2.3, it was noted that a file expands by splitting a logical bucket "x" at
level "i" and relocating its contents using OPH(;,;)(Key) onto logical buckets "2x" and
"2x+1". A contraction is the reverse operation and would merge two buckets from level (i+1)
onto their parent bucket at level "i".

Define two storage areas: the type 1 area (T1), generally used for the expansion of the
file and the type 2 area (T2) used concurrently with the contraction of the file. A T1 storage
space can grow or shrink from its right boundary with its left boundary allowed to return
storage to the operating system secondary storage pool while the T2 area operates in the
reverse mode. The T1 area is illustrated in Figure 12.5.13. It shows the leftmost bucket
expanding onto the rightmost (0,3) and (1,3) buckets. Figure 12.5.14 illustrates a T2 area after
contracting the rightmost 2 buckets onto the leftmost bucket (1,1). File movemen. in both
directions is not permitted and the one dimension expansion/contraction of a storage area is
preserved.

A storage area is always scanned from left to right on secondary storage. The left boun-
dary in each area is the lowest logical bucket stored in the area and the physical addresses
within a T1 (T2) area are defined with respect to its left (right) boundary. This will enable us
read the home storage area in key-order through a sequential scan with minimum disk head
movement.

The Mechanism of DRSAM1

At a given time, the primary storage space of a DRSAM file can consist of a T1 and a
T2 area: the T1 storage area can consist of 2 subareas, the home (HL) and the expansion (E)
areas while the T2 storage area can consist of the home (HR) and contraction (C) areas. In
Figure 12.5.13 the HL area consists of buckets (1,2), (2,2) and (3,2) while (E) consists of
buckets (0,3) and (1,3) and in Figure 12.5.14 the HR area consists of buckets (0,2) and (1,2)
while (C) consists of bucket (1,1). Though not required, the subareas are assumed to be con-
tiguously located on secondary storage.

As with LH attach an expansion pointer (expt) with a DRSAMI1 file which points to the
logical address of the next bucket to expand. If the file expands (contracts), expt is logically
incremented (decremented) by 1. A skew counter (sc) is used to determine the logical boun-
dary between the HL and HR areas. The expansion/contraction rules are designed to guarantee
that the (E) and (C) areas will not coexist. The rules are defined as:

47




Expansion

if "C exists"
then (e;) "expand from C to HL"
else if "HR exists"
then (e,) "expand HR to E"
else (e;) "expand HL to E"
endif
endif

Contraction

if "E exists"
then (c,) "contract from E to HR"
else
if "HL exists"
then (c,) "contract HL to C"
else (c3) "contract HR to C"
endif
endif

For expansions, e is used first until all the buckets in the C area are exhausted, then ¢,
until HR is fully expanded and finally HL buckets are sequentially expanded. The same
scheme holds for file contraction. Within a storage area, "expt" is sequentially increased. It is
easy to show that the "lower" logical buckets are in the C area, followed by the ones in the
HR, then the HL and finally E areas. For a sequential scan of the file, if C exists then scan
HR first, followed by HL and then C; else scan E followed by HR then HL.

Consider the DRSAM file of Figure 12.5.15 with only a home area HL (sc¢=0) composed
of 8 buckets with the expansicn pointer pointing to logical node 0 (f/=3 and expi=0). Assum-
ing 8 bit keys, the different bucket hash ranges are included to show the key sequential order
of the file (values in []). Through the addidon of records, assume that a split condition occurs
with the file. Rule e is used and the sequence of linear hashing is followed. The leftmost
bucket HL(0,3) splits and its contents relocated the split hash function as the first two buckets
E(0,4) and E(1,4) of a newly created T1 expansion area (E). Bucket HL(0,3) is freed as
shown in Figure 12.5.16.a and "expt"” and "sc" are incremented by 1.

A 2nd expansion splits HL(1,3) by relocating its contents onto E(2,4) and E(3,4). The
empty bucket is returned to the storage pool, "expt” and "sc" are incremented and the file
status 1s shown in Figure 12.5.16.b. Continuing with the expansion process, the file will be at
level 4 after 8 expansions with the (E) area relabeled as (HL).
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HL
§ 0,3) (1,3) (2,3) (3,3) 4,3) (5,3) (6,3) (7,3)
§l0-3ll (32-63] | (64951 | 196-127) |1128-159] |(160-191] }1224-255]1 |(192-224]
Figure 12.5.15 DRSAMI file with only the HL storage area
'HL
(--) %(1,3) (2,3) (3,3) (4,3) (5,3) ) (7,3)
§[32_63] 164-95] | 96-1271 |1128-159) | (160-191) |(224-255) |(192-224)
E
204 | a4
g 10-15] (16-31)
Figure 12.5.16.a. DRSAMI1 example after
one expansion from Figure 9.5.15
HL
L) PE) E@) |6 [@y 6 |6y | a3
§[64-951 [96-127) |(128-159] |([160-191) {[224-255] ]{192-224)
E
204 Ay [esy |G
20151 | us3n | p24m | w4s63

Figure 12.5.16.b DRSAM!I example after
two expansions from Figure 9.5.15.
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---------------

HL

(-i;) § ('v') (2)3) (393) (4’3) (573) (6’3) (7v3)
: (64-95) | 196-127) f128-159) |1160-191) |(224-255) |1192-224}
E HL
0,4) (1,4) (1,3)
[0-15] (16-31] (32-63]
Figure 12.5.17.a DRSAM1 example after
one merge from Figure 9.5.16.b
HL
(-») P (G) 2,3) 3.3) 4,3) (5,3) 6,3) (7,3)
: L[64-9'5] (96-127] |(128-1591 |[160-191) |](224-255] |(192-224)
HR
0,3) (1,3)
(0-31] (32-63)

Figure 12.5.17.b DRSAMI1 example after
two merges from Figure 9.5.16.b
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Referring to Figure 12.5.16.b assume that due to successive deletions, a merge is neces-
sary. Referring to Figure 12.5.17.a buckets E(2,4) and E(3,4) are merged back together and
relocated onto HR(1,3) in a newly created T2 home area (HR). Pointer (expt) is decremented
by 1 while "sc" stays the same; "sc" actually points to the minimum logical bucket address in
the HL area and thus (sc-1) points to the maximum logical bucket address of the HR area.
Rule ¢, was used here.

A second merge relocates the contents of buckets E(0,4) and E(1,4) onto HR(0,3) as
shown in Figure 12.5.17.b. The file is at level 3 and at the beginning of the expansion cycle
(expt=0). The existence and size of HR is determined by the skew pointer (sc=2). This file is
logically equivalent to the one in Figure 12.5.15 though physically different (different "sc”
values). With the knowledge of "expt, "sc”, the home level fI, and the existence or non
existence of the areas C and E, one can uniquely determine the physical and logical status of
the file.

Further file contraction sets the home level of the file to 2 and would merge the HL
buckets in sequence from right to left onto the contraction area (C) at the left of the HR area
(use rule c,). This is followed by the HR buckets (from right to left using rule c3). If all
buckets from HR contract onto C, a contraction cycle is completed and C is relabeled as HR.
From Figure 12.5.17.b if subsequent splits are accomodated, rule e, is used and the leftmost
bucket of HR is expanded first; which corresponds to logical bucket 0. It is observed that all
possible cases require the simultaneous existence of at most 3 out of the 4 storage subarea
types and the situation where C and E exist together. This complies with the
expansion/contraction rules. In contrast with DRSAMO, the algorithms that govern DRSAMI1
are fairly straightforward and easy to implement. Details are found in [HAC88b].

12.5.2.6. The General Case with Partial Expansions

In this section, DRSAM is generalized with partial expansions (PE} using elastic buckets
[LOMS87]. This concept was first introduced by Lomet [LOMS87] within the context of indexed
file organizations and further applied to B* trees by Baeza-Yates et al. [BAES87].

Over a partial expansion cycle (PEC) each bucket is expanded elastically by a partial
bucket and is relocated to a new physical address. During the last partial expansion, the
bucket at level fI is split (and its contents rehashed with the split hash function) onto two
new buckets of minimal capacity at level fI+1. The process of doubling the number of logical
buckets is referred to as full expansion cycle (FEC) and consists of r PEC.

An example of an elastic home bucket is illustrated in Figure 12.5.18. It shows the
different partial expansion steps of a logical node "x" at level "i" for the case when r=3. Ini-
tially, in Figure 12.5.18.a the node consists of 3 partial physical buckets, and during the 1st
and 2nd partial expansion, the node elastically expands by adjoining to it one partial physical
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(x,i,0)

a) Before any expansion

(x,i,1)

b) After the 1st PEC

(x,i,2)

c) after 2 PEC

(2x,(i+1),0) (2x+1,(i+1),0)

d) after the last PEC splitting takes place

Figure 12.5.18 An clastic logical node
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bucket. This is shown in Figures 12.5.18.b and 12.5.18.c. For the last partial expansion,
adding a new partial physical bucket, doubles the capacity of the node with respect to its ini-
tial state of Figure 12.5.18.a. In this case, the bucket forks into two new child buckets "2x"
and "2x+1" at level "i+1" and with the minimum capacity of 3 partial buckets.

From the expansion mechanisms of DRSAM files, it is clear that elastic buckets are a
natural extension to this file structure with partial
expansions. DRSAMO expands logical buckets on contiguous, physical locations
that are suited for elastic buckets. It is observed that Larson’s approach
[LAR80D] could be adapted without rehashing to DRSAMO as well, but elastic buckets are
preferred as they inherently do not need rehashing during a partial expansion cycle (PEC) and
lead to bucket sizes that grow in small steps with a lower level of granularity.

An eclastic logical node (ELN) is defined as a logical bucket with the capacity of a
number of partial physical buckets. With each ELN associate the triplet ELN (lba lev .exp),
where [ba refers to the logical bucket address, lev the level and exp the PEC cycle that has
been completed by the ELN under consideration. This triplet determines its physical status
with respect to the global status of the file denoted by F (/'L (fI),cexp), NL as the number of
logical buckets, fI the current file level, and cexp the urrent expansion cycle under con-
sideration. Obviously: 0 < Iba < 2! and 0 < exp < r. The capacity of an ELN which has
undergone i partial expansions is B; = (r + i)xpb, where pb is the capacity of a partial phy-
sical bucket. The minimum (B ;,) and maximum (B ,,) capacities are: By=B p, = rxpb and
B, 1= By = (@2r — 1)xpb.

For DRSAMO, and during the cexp-th partial expansion, the physical address (pad) of a logi-
cal bucket (/ba) is determined by:

pad (lba .exp) = lba erﬁr—:tLi- = [bax(r+exp)
j=1 -

where exp = cexp mod r if logical bucket /ba has expanded else exp = cexp—1. For the r-th
PEC the logical bucket of maximum size (B,,,) at level fI splits onto two new logical buck-
ets of minimal size (B ;) at level fI+1.

Like for DRSAMO, elastic buckets are the natural extension
to DRSAM]1 file structures with partial expansions. The
process is similar to the one for DRSAMO at the
elastic node level: over a PEC each bucket is elastically
expanded by a partial bucket and is relocated to a new physical
address. This address is within the expansion area (E) if
it exists or in the left justified home storage area (HL) area
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if "C" exists. During the last partial expansion, the bucket at

level f1 is split (and its contents rehashed with the

split hash function) onto two new buckets of minimal capacity at level
fl+1. The global system model of elastic logical nodes

is the same as the one defined for DRSAMO. The main difference lies
in the expansion sequencing of the ELNs. The

full ordering operation, previously defined on

the logical trie S, is extended to cover ELNs. The

ordering should properly define the chain of buckets

in logical ascending order (for file expansion) or descending order
(for file contraction). The full ordering operation on

S is extended to elastic logical nodes with the following properties:

ELN (x,ip) < ELN(xpi'pp) =i <i’
ELN(x1,i,p) <ELN(xpi p)=p <p’
EINxip)<ELN(x'ipH=x<x’

Then the infinite chain which results is:
<ELN(0,0,0),ELN(0,0,1)...ELN(0,0,r-1),ELN(0,1,0),ELN(0,1,1)...

ELN(0,i,0),...ELN(x,i,0),ELN(x+1,1,0),.... ELN(2! -1,i,0),
ELN(0,,1),.. ELN(x,i,1),ELN(x+1,i,1),... ELN(2} —1,i,1),...

ELN(0,i,r-1),.. ELN(x,i,r-1),ELN(x+1,i,r-1),... ELN(2! -1,ir-1),.....>

Denote by pad(0) to be the physical address of the node ELN (0,i,p) with lowest logical
address within a storage area. During the cexp-th partial expansion, the physical address of a
node with logical address lba would be offset with respect to pad(0) by a number of partial
physical buckets. This offset is computed using the equation derived for DRSAMO and is

given by:
of fset(lba exp) = lbax(r+exp)

Where exp = cexp mod r if logical bucket /ba has expanded else exp = cexp~1. For
DRSAMI, the area is one of HL, HR, C or E. For example, if the expansion area is con-
sidered then pad(0)= E. Considering the contraction area, the address-"C" points to the right
boundary which corresponds to ELN (2/'=1,f1,cexp). Then the physical address (pad (0)) of

ELN (0f1,cexp) is given by:
pad (0) = C—of fset (2" ~1,cexp).
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The details of the algorithms for DRSAM files are found in [HAC88b].

12.5.2.7. Overflow Management of DRSAM Files

In this section a new overflow management scheme is described based on elastic buckets.
The assumption of contiguous allocation for file expansion can be easily extended to deal with
overflow chains. This concept is similar although not equivalent to the one of elastic buckets
which was discussed in the previous section.

The technique is referred to as as elastic overflow chains and is a generalization of the
usual overflow chaining used for collision resolution. The method assumes an overflow
storage pool with capacities b t0 b,;_1=bmax = €lxb in incremental capacities of b, records
(el 2 1 is referred to as the elasticity of the overflow storage pool). When an overflow bucket
of capacity b;_; = byxi becomes full (i.e. overflows) its contents, with the inserted record, are
written onto an overflow bucket of capacity b; = byx(i+1). This process is continued until a
capacity of bp,, is reached whereby a new bucket of capacity b is attached to the chain thus
increasing its length by one. An elastic overflow bucket for el=3 is illustrated in Figure
12.5.19 It is clear that the usual overflow chaining method corresponds to the case where
el=1.

Elastic overflow chaining has definite advantages over the usual overflow chaining
method. Qualitatively, as el increases the overflow chain length decreases which results in an
improvement of the average as well as worse case successful and unsuccessful search costs.
The effect of elastic overflow chaining will be quantified in the next section.

12.5.3. Performance Evaluation of DRSAM file Structures

In this section we discuss the results of a performance evaluation of DRSAM with elastic
buckets. We target the application of DRSAM to secondary key retrieval, like transformed
inverted lists [BER87, HAC88a]. Thus we study the effect of ordered insertions on the perfor-
mance characteristics of DRSAM. This is followed by a performance comparison of LPE and
EB for partial expansions. Finally, sequential and range query processing with DRSAM files
are discussed and compared to similar OPH methods.

12.53.1. System Model

We developed an analytical model for very large DRSAM files and performed extensive
trace driven simulations of the file structure. The results from the analytical model closely
match those from the simulations. As we are interested in secondary storage systems, the
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b0 b1=2.b0

a) first b) after it
assignment overflows once
b2=3.b0 b2 b0
>
c) after it overflows d) the 3rd overflow increases
twice the overflow chain by one.

Figure 12.5.19 Elastic overflow node with el=3
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performance measures are in terms of disk access cost; where disk seek time is the predom-
inant component in the cost measure. The details of the performance analysis can be found in

[HAC88b].

The model assumes a uniform distribution over the hashed domain. Furthermore, main
memory buffer storage is large enough to hold an accessed bucket with its overflow chain.
For a random insertion one needs to perform at least one disk access to read the home bucket
and subsequent reads to traverse its potential overflow chain. It is followed by a disk access to
write back the bucket after inserting the new record at the end of the chain. With ordered
insertions, the record may be inserted at any location in the chain with equal probability. This
implies that, in general, one needs to write back more than one bucket. Elastic overflow
chains are used and the cost to expand or create a new chain is always equal to two disk
accesses (operating systems overhead not included).

With Ifc as the number of record insertions between file expansions, the model follows
the load factor control mechanism described in [RAMS82]. The file is expanded by the addition

of one partial bucket after every Ifc inserted records. The load factor (If°) is almost constant
Ifcxr

hb
sion operation we need at least one disk read to retrieve the bucket undergoing the expansion.

This is followed by a disk access to write the generated blocks into consecutive locations on
secondary storage. Obviously, the existence of overflow buckets increases the number of disk
accesses accordingly. The performance parameters which were determined are the average of
the storage utilizatior: facter (auf ), the average costs for a successful search (acss), unsuc-
cessful search (acus), random insertion (acri) and ordered insertion (acoi ).

and is computed as *; with kb as the minimum home bucket capacity. For an expan-

12.5.3.2. Results and Discussion

The results which we report are taken from the analytical model for a home bucket capa-
city of hb=48 records [HAC88b].

Effect of Elastic Buckets

We illustrate the effect of the number of partial expansions (r) on storage utilization in
Figure 12.5.20. With a fixed average load factor (If = 1.25), the utilization factor increases
with increasing r from an average of 0.91 at r=1 to 0.94 at r=3. To evaluate the retrieval
performance, we chose the basic overflow bucket capacity (obg) such that the average storage
utilization factor is around auf =0.91 for the different values of . Then we plotted the suc-
cessful and unsuccessful search costs in Figure 12.5.21 and 12.5.22 respectively. It is clear

# of records inserted

* i - if =
The load factor is defined as: If home storage space in records
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Figure 12.5.20 DRSAM storage utilization (r=1 to 3)
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Figure 12.5.21 DRSAM successful search cost (auf = 0.91)
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Unsuccessful Search Cost
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Figure 12.5.22 DRSAM unsuccessful search cost (auf = 0.91)
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Figure 12.5.23 DRSAM successful search cost (el=1 to 4)
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that elastic buckets improve the random access performance (acss and acus) of DRSAM.

A higher elasiticity for the overflow buckets does not affect the storage utilization of the
file, but it results in a decrease of the overflow chain length. This tends to improve all perfor-
mance parameters as reported in [HAC88b]. Figure 12.5.23 illustrates the effect of increasing
the elasticity el of the overflow chains on successful search cost. For a sustained average
storage utilization of 93%, the average successful search cost improves with an increase in the
elasticity of the overflow chains. The variations of the performance curves over a FEC
decrease as well.

With a storage utilization factor around 94%, hb=48, r=3 and e/=4, our results show
that the performance of DRSAM is excellent with acss ~ 1.20, acus <2.00 and acri <3.25.
Considering that the performance of file organizations degrade very fast with increasing utili-
zation factors makes the elastic buckets techniques an important extension to DRSAM file
structures and to non indexed dynamic hashing schemes in general.

Effect of Insertion Methods on the Unsuccessful Search

We chose the case where hb=48 records and r=3 to compare the random and ordered
insertion methods. In Table 12.5.1 we report the average insertion and average unsuccessful
search costs for el=1 and el=4. With el=4 ordered insertions result in acus = 1.196 disk
access; while it is equal to 1.934 if random insertions are used. This is an improvement in
performance of 38%. On the other hand, the average insertion cost increases by 20%. The
cumulative effect of ordered insertions and elastic overflow buckets is to improve unsuccessful
search cost from 2.966 to 1.196 (a factor of 2.48).

12.5.3.3. Elastic Buckets Versus Larson’s Partial Expansion

To compare Larson’s partial expansion [LAR82b] (LPE) with elastic buckets (EB) we
used DRSAM as the basic file structure. The test case was for #b=48 records, r=2, e/=1 and
obg=11 records; Ifc was adjusted to result in the same average storage utilization for both
methods (auf ~0.93). Table 12.5.2 shows the averages for LPE and EB.

From the results in Table 12.5.2, it is clear that elastic buckets outperform Larson’s par-
tal expansions scheme. However, the cost paid is a wider fluctuation in storage utilization
factor. This is clear from Figure 12.5.24 where the auf for EB has a peak fluctuation of ~
1.5% around the average while the quf for LPE is almost constant. Figure 12.5.25 compares
the successful search cost for EB and LPE. LPE required a higher average load factor in order
to achieve an equivalent average storage utilization to EB. This causes lengthier overflow
chains to exist and explains the poorer retrieval performance.

It is noted that the performance measure is in terms of random disk access cost and does
not account for differences in data transfer time. For EB the transfer time is higher due to the
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hb=48, oby=11, r=3, Ifc=20, auf =0.94
insertion el=1 el=4
method acus insertion cost acus insertion cost
random 2.966 4.372 1.934 3.227
ordered 1.312 6.006 1.196 3.883

Table 12.5.1 Effect of the insertion method on the cost of
an insertion and unsuccessful search

hb=48, oby=11, r=2, el=1

auf acss acus acri
m
LPE 0.932 1.567 ' 3.496 4.820
EB 0.933 1.359 2.949 4.253

Table 12.5.2 Comparison of LPE and EB for partial expansions
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Figure 12.5.24 LPE versus EB: storage utilization (auf=0.93)
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Figure 12.5.25 LPE versus EB: successful search (auf=0.93)
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use of variable bucket capacities. But the difference in performance which is observed in Fig-
ure 12.5.25 and Table 12.5.2 is large and the unaccounted transfer time becomes irrelevant.

12.5.3.4. Sequential and Range Processing with DRSAM

In this section the efficiency of DRSAM files in handling range queries and sequential
processing is discussed and compared with other relevant order preserving linear hashing tech-
niques. The analysis covers home (primary) buckets and does not account for the overflow
chains which have to be scanned as well.

DRSAM Variant 0

In [HACS88Db], it is shown that if enough disk buffer space is available, a range query
requires at most 2 disk seeks to the primary storage area of a DRSAMO file. These accesses
are followed by consecutive block transfers from disk. For the case where r=1, a range query
which overlaps two or more physical buckets typically requires one disk seek and a complete
sequential scan of the N primary buckets theoretically requires at most 2xfI! = 2xlog,N seeks.
Then for r=1, the sequential processing of a DRSAM file’s primary buckets requires an
O(logyV) disk seeks. For the general case (r21), and for the PEC i under consideration, the

sequential scan for the home buckets of the file requires O(log,N) disk accesses; where
r+i

r+i-1’

DRSAM Variant 1

For the sequential scan of a DRSAMI file, one traverses the storage areas in sequence:
the E and C areas cannot coexist simultaneously. Then the storage areas which are traversed
are either E then HR followed by HL, or HR then HL followed by C. Thus, if a range query
is specified the number of storage area boundaries to be traversed is at most three. Therefore,
the home storage area of a DRSAMI file can be theoretically scanned in O(1) disk seeks.
This is compared to O(N) for an order preserving hashing scheme based on linear or extendi-
ble hashing [FAG79] , tries and B-trees [BAY72, 77] ; and the O(log,N) of DRSAMO.

Comparison with Other Techniques

With DRSAM files, if enough buffer space is available, a range query which overlaps
two or more primary buckets would generally require one disk seek (excluding overflow
access). Consider now other proposed order preserving linear hashing schemes [ORES3,
BURS83]) or order preserving extendible hashing [TAMS81]. With these methods a range query
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spanning two buckets will require two disk seeks to the primary storage area. Furthermore,
these structures cannot make use of the availability of a large buffer space. As the number of
buckets to be retrieved increases the improvement in range query performance increases with
the use of DRSAM file structures. This improvement is based on the locality of data on con-
secutive home buckets and results from the sequential allocation property.

Nevertheless, the existence of the overflow area means that the complete sequential scan
of a DRSAM file would still incur O(N) disk seeks. But, because of the consecutive allocation
property, DRSAM is shown to outperforms previous methods. Furthermore, the use of elastic
overflow bucket chains follows the same concept and implies further improvement of the per-
formance of DRSAM files for range queries.

While achieving absolute near optimality is still an open problem, a promising approach
is to apply the concept of repeated hashing [LARS80a] or similarly recursive hashing [RAMS4]
to DRSAM files (specifically DRSAM1). Recursive hashing uses the same technique for the
management of the overflowing records repeatedly and Ramamohanarao showed its efficiency
as applied to linear hashing. Moreover, recursive hashing can be transformed into an iterative
scheme suitable for files that are stored and accessed on multiple storage units. With DRSAM
files recursive hashing would lead to file structures that are near optimal for both sequental
processing and random access. Another possibility is to adapt overflow management schemes
that use the primary storage area of the file while keeping the sequential allocation property of
DRSAM.

If good solutions for randomizing OPH functions are made available, range queries and
sequential processing performance using DRSAM are expected to be comparable to indexed
sequential files and better than B-tree based structures. This subject is part of the next section.

12.5.4. Inverted Surrogate Files with DRSAM

In this section, the DRSAM technique is extended to inverted surrogate files with the
Inverted Dynamic Surrogate File (IDSF). Section 12.5.4.1 defines access keys in database sys-
tems. In Section 12.5.4.2 the problem of non uniform distributions is qualitatively discussed.
This is followed by extended DRSAM (EDRSAM) in Section 12.5.4.3. The analysis covers
the index table and local control mechanisms to the DRSAM storage areas of Figure 12.5.4.
EDRSAM is proposed to be the core file structure for physical models targeted to replace the
usual inverted lists [DAT86, SAL83]. In Section 12.5.4.4, EDRSAM is applied to ISF and
results in the inverted dynamic surrogate files model (IDSF). The IDSF model extends TIL to
cover very large dynamic files. Finally, the storage overhead as well as the query response
time with IDSF are discussed.
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12.5.4.1. Access Keys to Relational Tables

The concepts of primary and secondary keys in a dzta/knowledge base relaton should be
clearly distinguished. In the remainder of this section, discussions are based on the following
concepts.

Notation: In a VLDKB considering the set of relations R, the set of anrributes of a relation
reR is denoted by A,. The domain of areAr is D (ar). For a relational table the number of
tuples in the relation is denoted by N,.

Definitions: An access key or simply key (L) to a relation is a function on a subset I g Ar :
B = f (ar lareI cAr). The domain of a key p is KS (n)= XID (ar) (where X is the cartesian
ar €

product). The set of distinct values for a key W is denoted by ks ¢ KS with cardinality ks|
C (k,p) is the value distribution factor for k€ KS (1) and refers to the number of occurrences
of k in the N, tuples. The selectivity of k is denoted by ou(k,|t) and is written as:

r

Ck.W

ak,u) =

Clearly, C (k,u)<N, and a(k,u)21. a(k,n) approximates the probability of occurrence for a
key value k (Pz(Z=k)). The average of C (k.p) is:

Cavw= Y k)
keKkS () chl

r

Cav ()
distinct key occurrences in the N, tuples. Using the above definitions, primary and secondary

keys are defined as follows:

A primary key is a key p, such that:
for all keKS(u), C(k,p) € {0,1}.

and a(u) = is the average selectivity of p. Obviously a(u) = ks| is the number of

Any other key type is referred to as a secondary key |, or more formally p, is such
that:

there is a ke KS (i) such that C (k,p)e {2,...,V, }
One also refers to pseudo-primary keys. These are the keys with high selectivities.

In inverted files, or models based on many single attribute single files, each set / is a
singleton of A, and in fully inverted files a partition of A, is determined by the set of Is.
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With these models, C;(k) is used to denote the value distribution factor for k¥ in auribute i
and the average value for an attribute in a relation is denoted by C (i ). o; (k) and a(i) are the
corresponding selectivities.

12.5.4.2. Non Uniform Distributions

In this section, the implications of non uniform distributions on file structures perfor-
mance, especially dynamic hashing methods, are discussed.

One adverse phenomenon common to all order preserving dynamic hashing schemes and
therefore expected with DRSAM is the following: due to uneven distributions within a bucket
range, splitting a node redistributes the records unequally onto its child buckets. The result is
that one of the new buckets will be loaded with most of the keys while the other is sparse.
The degenerate case happens when splitting one level only would move all the data into one
block instead of dividing it evenly onto the 2 buckets.

The degenerate case is illustrated in Figure 12.5.26. For the home hashing depth of 2 bits
the splitting function tries to redistribute the records by dividing them in two groups whose
keys differ through the 3rd bit. But in the example of Figure 12.5.26, all the keys in the split-
ting bucket have the same 3rd bit (from the left) but differ through higher level bits like the
Sth and higher. Then the Ist split results into an empty bucket and a full bucket with the pos-
sibility that an overflow record is attached to it. This means that if the attribute values distri-
bution is highly non uniform, LH, EH and also DRSAM may result in file structures with
long overflow chains and low load factor.

If controlled splitting is used to set the load factor then the degradation in retrieval per-
formance would restrict the application of order preserving dynamic hashing schemes like
DRSAM. Even if single file versions [LAR82a, LAR85] are used the number of search probes
increases very fast with biased distributions. This behavior is typical of tries and trie hashing
schemes [LIT81] and is mentioned in [REG88]. Returning to Figure 12.5.26, one needs to
hash up to level 5 to be able to differentiate between the 3 keys in the example. The resulting
multi-level trie structure will have empty nodes as illustrated in Figure 12.5.27.

When designing access methods for secondary key retrieval applications, the value distri-
buton factor (C (k;u)) of a key becomes an important parameter. With bc as the bucket capa-
city (in records), if C(k,1) > bc then bucket OPH; (k) corresponding to k will automatically
have an overflow chain. This can happen even if the average value distribution factor of the
file (Cav) is less than bc. The effect is similar with uneven distributions. But in this case,
multi-level hashing will not resolve the overflow and the capacity of the bucket should be
extended. It implies that the peak value of the value distribution factor of a key C (k1) is
restricted to be less than bc. This argument holds for any dynamic hashing technique based
on tries. In the case of inverted surrogate lists, this restriction is not overwhelming and would
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Figure 12.5.26 Degenerate split
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NULL K2
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Figure 12.5.27 Multi-level trie hashing
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be easily relaxed as the surrogate file records are small in size so that bc is expected to be
relatively large (typically more than 100 per bucket).

12.5.4.3. Extended DRSAM

Possible solutions for robust OPH file structures were proposed with the “"quantile”
methods [BUR84, KRI87], the statistic based approach [ROB86] and the indexed bounded
disorder method [LIT87]. Also to be mentioned is the linear piecewise method [GARS86]
based on distribution dependent hashing. For DRSAM we propose similar control mechanisms
to alleviate the problems incurred by non uniform distributions and low selectivities of key
values in secondary indices. These mechanisms rely on the sequential allocation property to
maintain the overall performance of the file, and the resulting structure is referred to as
extended DRSAM (EDRSAM). Two control strategies are discussed: 1) global file control
with an index and 2) iocai control with a multi-level trie embedded as a sequentially allocated
structure. The dynamic administration of EDRSAM with the proposed strategies is discussed
in [HACS88b].

Global Control with an Index

The global control mechanism consists of a two level file structure similar to TIL1
[HACB88a]. As shown in Figure 12.5.4 the first level is a memory resident index table. The
table entries are such that the domain of a key is partitioned into intervals with quasi-uniform
distributions. The effect of the index table entries is to digitize the probability density function
or equivalently create a piecewise linear approximation of the cumulative distribution. Each
digital level implies the creation of a DRSAM storage area pointed to by an entry in the index
table. This area grows according to the estimated cumulative distribution over the interval.
Each storage area is independently managed resulting in a multi-level DRSAM structure. This
approach is suitable to a distributed environment where storage is allocated in quanta of con-
tiguous physical blocks.

The use of the index table is essential, as generally good randomizing OPH functions are
not available and non-uniform distributions are detrimental for hashed files. We estimated that
a table size of 4 Kbytes can accommodate around 200 index entries. A file size of 22* elastic
buckets can be achieved. These are more values than one expects to use for very large files. If
the table cannot fit in main memory an additional disk access would be required for the index.
But this situation is not expected to arise unless highly irregular and biased distributions are
considered. Paging algorithms can be used in this case. Details of the index table entries are
found in [HACS88Db].
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Local Control

The DRSAM storage areas in Figure 12.5.4 are said to have a quasi-uniform distribution
of keys. As the file dynamically evolves excessive unbalance due to non-uniform hashing will
appear and degrade the performance within a storage area of the file. Proper local control for
fine tuning is needed to adjust to localized unbalanced hashing. We briefly introduce two such
schemes, namely sub-hashing and super-hashing.

1. Sub-Hashing

The idea of sub-hashing is illustrated in Figure 12.5.28. Assume that two brother buckets
at level "i" are such that one is highly loaded and the other is sparse. The highly loaded
bucket will have a lengthy overflow chain while the sparse brother will be almost empty.
This situation leads to a degradation in the retrieval performance as well as in the storage
utilization of the file. We resolve this situation by merging the contents of the two buck-
ets at a sub-level "i-1".

Tag entries are used to determine the relative level with respect to the home level of the
storage area. A tag value of O refers to the home hash level while a 1 is used for the
split hash level. In Figure 12.5.28 the grouped buckets are at sublevel "i-1". This concept
follows the same idea introduced by Orenstein for MLOPLH [ORES83]. With bc as the
bucket capacity, the physical contiguity is used and the resulting group can use a capa-
city of 2xbc records. Overflow is thus handled more efficiently and the problem arising
from a low selectivity on some secondary keys is naturally resolved. This characteristic
stems out of the sequental allocation property.

2. Super-Hashing

Super-hashing is illustrated in Figure 12.5.29 and is the counterpart of sub-hashing.
When all records in a bucket at level "i" have the same (i+1)-th bit, one of the resulting
child buckets is empty. we need to hash with a higher level to differentiate the keys. Tag
information is also used to identify relative super-hashing depth. In Figure 12.5.29, the
split hash level "i+1" is used first and results in the empty bucket on the right. One addi-
tional hashing depth is required to :differentiate the contents of the left brother bucket.
The resulting buckets are at ievel "i+2" and have a tag value of 2.

Sub and super-hashing can be applied recursively resulting in a embedded multi-level
and sequentally allocated trie structure. With a 4 bit tag per bucket, 16 different levels of
local control can be accommodated.

Some Performance Implications
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Figure 12.5.28 Two buckets regrouped with sub-hashing
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Figure 12.5.29 A bucket uses empty space with super-hashing
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For the local control mechanisms, we observed some similarities with Orenstein’s
'MLOPLH [ORES83]. But the two mechanisms we propose, result in a file structure with its
own characteristics: the use of tag information induces a maximum of one additional access.
Furthermore due to bucket contiguity this access will not need disk head movement. In com-
parison, Orenstein’s method could require a maximum of log, fI disk séeks.

If enough buffering is provided, the random access performance is degraded by the
increased transfer time overhead. In the case where buffering is provided for one single chain,
the additional overhead would be measured in disk rotations. This is compared with other
order preserving linear hashing methods which require one disk seek for each home bucket
access. Furthermore, larger disk buffers cannot be used by such schemes.

The control mechanisms do not assume an underlying probability distribution of the keys
over the key domain. They are designed so that DRSAM files adapt to most key distributions.
The dynamic administration of these methods rely on heuristic strategies which will be
evaluated with real data files. Details of these methods are found in [HAC88b].

12.5.4.4. Inverted Dynamic Surrogate Files

In this section, EDRSAM is discussed within its z_;lication to inverted surrogate files
leading to the dynamic counterpart of transformed inverted lists. This physical model extends
TIL for information/knowledge retrieval applications.

System Model

Using proper hashing functions on the attributes of a tuple in a relational table, its surro-
gate file representation is built. In Figure 12.5.1, the example surrogate file image of a
knowledge base relation has the following values for argument position 2: br2=010011010,
br4=010101011 and br5=010101110. A fully inverted dynamic surrogate file (IDSF) would
consist of A,| EDRSAM files. The EDRSAM surrogate file records for attribute "i" are com-
posed of the BR of the hashed values (instantiations) for that attribute, with the corresponding
Uid. Assuming a file level of 3 and using the given values a typical EDRSAM surrogate file
bucket with its associated records is shown in Figure 12.5.30. br2, br4 and br5 hash to the
same bucket #2.

In actual implementations, only Prefix(BR,(#BR-f1)) bits are needed to be attached with
the unique identifier; where Prefix(K,n) is the right "n" bits of "K" and f! the home level of
the DRSAM bucket under consideration. This would mean that the inverted files would use
the space more efficiently as the file grows: if the block structure of Figure 12.5.31 is fol-
lowed, variable length records would be considered with sizes depending on the hashing level
of the addressed block. This would certainly increase the complexity of the managing
software and its associated hardware to deal with such a blocking scheme. But it leads to an
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BR Uid

010011010 | wuid2
010101011 | wuid5
010101011 | widl2

010101110 | wid7

Figure 12.5.30 Block structure with fixed length records

Prefix Uid

(BR,(#BR-1))

011010 uid2
101011 uidS
101011 uid12

101110 uid7

Figure 12.5.31 Block structure with variable length records
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efficient use of the storage space for the inverted surrogate lists.
Storage Overhead

In this section, the storage overhead for the IDSF model is analyzed. The notation in

Table 12.5.3 is followed. Assuming 15 characters per argument, the number of tuples is com-
Sap

154 A, |

r

CG) |

puted as N, = and the minimum number of bits required for a BR is | log,

. xsfix

Then, the surrogate list size is S(i) =

(bytes).

The capacity of a block (bc) is computed as bc =%‘ng' records. Estimating the ratio of

overflow records to N, to be %ovf, the number of home buckets (#hb) is
N, x(1=%ovf )

- . . =i  Thi .
#hb beanf and the file level is determined by fI l_ogz#hbJ This estimate

assumes one partial expansion for each full expansion.

In the numerical evaluation two relation file sizes (S ) of 10 Mbytes and 1 Gbytes are
assumed with the following characteristics: each file has six arguments (A, |= 6) of 15 char-
acters each. Disk block size is set to B = 2048 bytes and C (i) = 1. Uids are encoded with a 4
bytes word (32bits), a file storage utilization (auf ) of 90% and 20% overflow records (%ovf )
are assumed. The results are reported in Table 12.5.4.

The value of BR-fl = 8 bits checks with the intuitive feeling that variable length
records, as advocated in Figure 12.5.31, efficiently use the storage space allocated for
EDRSAM. The ratio of the variable length to fixed length records is 0.82 and 0.71 for the 10
Mbytes and 1 Gbyte files respectively. This presents a substantial saving on the inverted sur-
rogate list size with fixed record formats. A value of 8% of S, is a 300d estimate for the
inverted surrogate list size.

In [BER87 and HAC88a] it is shown that the storage overhead of TIL surrogate files lies
within a reasonable range of the database size (10 to 30 %). The analysis presented in those
papers assumes static files (or stable files) that are initially loaded and stored in compact form.
For an IDSF built with EDRSAM, the storage overhead is slightly larger and is caused by the
additional space required to manage dynamic files. The total overhead for the IDSF model is
within 50% of the original database.

Query Response Tirme with the IDSF Model
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Notation | Meaning

B Minimum block size that is transferred from

main memory (Blocking Factor)

bc Capacity of a bucket (in number of records)

L@) Average number of matches for an argument i specified

in a query. L (i) = C (i) for partial match queries

R, Average number of arguments m a query

S Database size

S() Inverted surrogate list size for argument "i"

Ly Average word comparison time

wi Word length

fl DRSAM file level

sfix size of a fixed length surrogate record: sfix = Uid+BR
svar size of a variable length surrogate record: svar = Uid+BR —fI
%S; surrogate list size to database size ratio: i&:—)

#A, size of an argument in the database file (bytes)

vif compression ratio: %

Table 12.5.3 Notation for IDSF
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Meaning Sz = 107 bytes Sz = 10° bytes
BR (bits) 17 24
N, 11x10* 11x108
sfix 49 56
%S; 7.6% 7.7%
fl 9 16
BR-f! 8 : 8
svar (bits) 40 40
vif - 0.82 0.71

Table 12.5.4 Storage overhead for IDSF
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In this section, an insight into the equations that govern the query response time (QT)
for inverted surrogate files is presented. For IDSF, QT is divided into three processes:

1) Surrogate file processing and Uid retrieval (SFT).

2) Uid intersection time (/T ).

3) Database access time (DA) to read the identified record(s) satisfying the query.
The query response time is written as: QT = SFT + IT + DA

1. Surrogate File Processing Time

SFT is determined by the number of disk accesses required to retrieve the matching
Uids. Denote by AC (i) the average disk access cost for the surrogate inverted list of
argument i and Q the query specification with R, arguments. Then, the average surro-
gate file processing time can be written as:

SFT = Y AC(i) <R,
ieQ

Denote by OvI(i) as the average overflow chain length for the DRSAM file of argrment
i and ¢, the disk access time which could be t,4,, 4, OF tfy,. With IC (i) as the index
cost, the access cost to the surrogate inverted list is written as:

ACU)= +0OvIG) + IC(i))xt,

where IC (i)= 0 if the index table resides in main memory. For a DRSAM file and a
storage utilization over 90%, AC (i) is expected to be less than 1.2 disk accesses. The
search time of the retrieved blocks is not accounted for as it can be overlapped with the
retrieval process and is neglected [HACS88a].

2. Intersection Time

With no loss of generality conjunctive queries are assumed, as the union operaton for
disjunctive queries has the same level of complexity as the intersection operation. Two
cases are considered:

1) R, = 1: no intersection is required.

2) R, > 1: when more than one argument value is specified in a query, the lists of
retrieved Uids must be intersected. Denoting by NC (R;), the number of comparisons
required to perform the intersection operation, the toial intersection dme is then written
as:
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where ¢, is the average word comparison time and w! the word length in bytes.

An estimate of the number of comparison steps, NC (Rg), for the intersection operation is
derived, based on Stockmeyer and Wong’s work [STO79]: the bounds on the number of
comparisons, I (m,n k), required to intersect two lists, m and n (m<n), of arity k is
given by:

Im,nk)S(m +n)xlogyn +(m +n — Dxk —m + 1
I(m,n.k) 2 Max[(m + n)xlogom —29m,(m +n — )xk —m + 1]

In this case the aiity k=1 and the number of comparisons, NC (2), to intersect two lists
of cardinalities C<C, is :

Max [(Cl + C2)x10g2C1 - 29C1,C7JSNC (Z)S(Cl + C2)X1Og2C1 + C2

The upper bound is based on sorting the list of smaller cardinality prior to performing
the cross lists comparison in at most C,x|log,(C 1+1)I comparisons. It is known that
two_way merge sort on a uniprocessor requires at most Cxlog,C; comparison steps. It
is easy to derive an algorithm that would perform within the specified bounds [KNU73].
Furthermore to intersect more than 2 lists, the number of additional comparisons depends
on the expected number of "hits”" from the first two_list intersection. Denoting this

CxC,
number by GD, GD =

. For R, =3, one needs C 3><log2f( GD + 1) additional

,
comparisons. So that NC (3) is written as:

CGC2
NC (3) < NC{2) + C1xlog,|( 7 + 1)
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The process can be extended to include additional intersection steps for larger values of
R,. It is noted that Cardenas [CAR75] does not attempt to give an estimate of the inter-
section time and Fedorowicz’s approach [FED87] is different from the one presented
here.

An evaluation of the intersection time /T was performed for file sizes of 10 Mbytes and
1 Gbytes and with the same characteristics as the one assumed for the storage overhead
evaluation. The plots in Figures 12.5.32 and 12.5.33 illustrate the intersection time with
t,. =3 msec and wl = 16 bits. While acceptable for low values of C (i), the intersection
time increases with an increasing value distribution factor. In Figure 12.5.32 for S4, = 10
Mbytes, the intersection time is less than 100 msec for C (i )<2°. In Figure 12.5.33 for a
file size of 1 Gbytes, the intersection time is within 200 msec up to C (i) = 1024.

It is noted that the plots represent the intersection time computed for equal attribute
selectivities. For example if Rq =2, the same C(i) (or L(i) for range searches) is
assumed for both arguments in the query. If one follows the reasoning that the probabil-
ity of both arguments in the query having high redundancy factors is low, then the plots
are pessimistic and realistic values for /T would be noticeably smaller. This argument
can be made for any database size.

Moreover these plots represent upper bounds on the expectztion for the intersection time.

Consider the intersection of two lists of constant total length: C; + C, = Cr. Following

the equal selectivity approach to estimate intersection time is equivalent to setting
Ct Ct

Ci= > and C, = b Then it is clear that (C, + Cy)logy(C,) is maximized.

Nevertheless, with a VLDKB the plots in Figures 12.5.32 and 12.5.33 reflect a potential
computation bottleneck when lengthy lists are intersected. This implies that inverted sur-
rogate files are not efficient when the selectivity of the individual arguments in a query
are relatively small. In this case, special intersection hardware could be designed to
speed up the intersection operation.

3. Daiabase Access Time

With GD as the number of good responses to a query and the probability ( )ofa

given response to be in a specific block, the database access time is [CAR7S5]:

S GD

DA =Ta><{—‘£’—]><(l—(l- L)
B Sab
B
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In the analysis of the intersection operation the number of good responses for R, =2 is
C IXC 2

N,
the number of good drops is extrapolated to:

written as GD = . Assuming uniform distributions for the values of an argument,

C;
-—)

D =
G N,H(N’

i€R,

where C; is replaced by L; when dealing with range searches.

The database access time equation follows Cardenas’ equation [CAR75] and assumes
direct access to the main database. It is based on successive selections with replacement.
Yao [YAO77] discusses selection without replacement and points out the cases where
Cardenas’ equation gives rise to a significant error. For most purposes, Cardenas’
approach is satisfactory as the number of good responses is expected to be small for very
large knowledge bases. Following proofs by Christodoulakis [CHR84], it is observed that
the equation for database access time is an upper bound and presents a pessimistic
evaluation of this response time components.

Better bounds for DA could be derived but they would depend on the locality of the
good responses and would be determined by the clustering scheme for the tuples in the
existing database. In the derivation for DA, a uniform distribution was assumed for the
records over the secondary storage blocks. In a multi-user environment, clustering can
improve DA for some applications. Database clustering [JAK80, OZK86] is still an open
design problem that lies in the class of NP_Complete problems.

In conclusion, as with inverted lists, the efficiency of the IDSF model depends on the
selection of the arguments which are used as secondary indices [SCH75a, SCH75b, AND771.
If the selectvities of the arguments is relatively high the model becomes very efficient and
presents the added flexibility to be used for multi-user and dynamic environments. Compared
to conventional invarted lists, IDSF have the following characteristics:

1) the storage overhead for IDSF is less than the main database size. While the size of
the indices of conventional inverted lists is equivalent and even in excess of the database
size.

2) IDSF is based on a dynamic hashing method, namely DRSAM. This file structure is
near optimal for random access and efficient for range queries. Typically, a random
access and range query processing requires one disk seek, excluding overflow chains.
This should be compared to at least two disk seeks for indexed-sequential files. Finally,
the update cost of indexed-sequential files with overflow chains [LAR81] degrades fast
when the file size changes. On the other hand, DRSAM files adapt well to dynamic
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environments. Additional details are given in Appendix 12-D.
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12.6. Optics in Very Large Knowledge Bases.

Optical computing (especially in its analog form) has been widely used in applications
like optical image processing, pattern recognition and signal processing due to its highly
parallel nature. Another area that can benefit significantly from the advances in optical tech-
nology is that of the Very Large Knowledge Bases (VLKB). Optics can play a key role in the
future VLKB [BER87b] providing larger storage capacity, higher transfer rates and parallel
data manipulation. This section discusses some of the possible improvements in the VLKB
performance if optical computing is involved. It focuses on a scheme for the efficient imple-
mentation of relational data base operations using optical techniques.

12.6.1. Optical Data/Knowledge Base Machines.

A common approach to deal with the problems associated with the processing of enor-
mous amounts of data in VLKB is the incorporation of a Data/Knowledge Base Machine
(D/KBM). A D/KBM with multiple storage units, multiple processors and the appropriate
interconnection network will operate as a back-end machine to a host, thus removing the bulk
load of searching through the knowledge base from the front-end computer.

The need for large capacity and high bandwidth secondary storage will be satisfied by
using optical disks [ALT86, CHE86] which can hold up to 10 GBytes per platter (14-inch
diameter). Currently, access times of optical disks are larger than those of magnetic disks
[CAR86]. The reason is that the focusing optics are bulkier than the ’flying’ miniature heads
of magnetic disks. Data rates are comparable, with potential for improvement since optical
disk technology is relatively new.

However, in contras® -vith magnetic media, there are two promising possibilities for
increased optical disk performance by at least two orders of magnitude both in terms of access
time and sustained data rates. First, the read/write beam could be deflected from track to track
very rapidly (on the order of 100 microseconds) by entirely optical means. Second, due to the
non-interference of light beams and the relatively large head to medium spacing one could
imagine multiple beams being used for reading data with a single head carriage assembly
[CAR84]. Alternatively, an unfocused beam could simultaneously read data from more than
one point of a transmissive disk surface [MOS87]. This, coupled with the possibility of multi-
ple heads will allow for enormous data rates. If we assume achievement of access times of
100 microseconds and data rates of 300 MBytes/sec, this represents almost two orders of
magnitude improvement over current magnetic disks.
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Input/Output systems will have to be designed with these rates in mind. Current electron-
ics would be hard pressed to handle them. However, if data could be preprocessed "on the
fly" in its optical form, then the ultimate data rate to the electronics would be much lower on
the average and the data much "richer" in information. Intelligent use of optical pattern
matching could provide us with a set of primitive operations that could help efficiently imple-
ment higher order functionality like, for instance, a subset of relational algebra operators.

For applications which demand fast searching of many megabytes of data all this is very
promising. But with current electronics technology if every subsystem of a machine needs to
cater to such high rates then its cost will be much higher than necessary.

12.6.2. Relational Operations

The most common relational operations in knowledge and data base applications are pro-
jection, selection and join. Other important operations include sorting and text retrieval.
Search of fixed format data (e.g. indices or pointers) could make effective use of optical
content-addressable memory which can be implemented by multiplexing a large number of
holograms in a thick recording material like lithium niobate [GAY85].

The performance of a data base machine with a high degree of parallelism depends
largely on the efficiency of the interconnection network. Therefore, the capabilities and limita-
tions of the interconnect technology utilized in realizing a computational or signal processing
unit are essential in determining the speed and flexibility of the operations that can be
achieved by that unit. Optical signals can flow through three-dimensional space to achieve the
required interconnect pattern between elements of a two-dimensional data array before execut-
ing the desired operation between them [GOO84). To examine more closely these advantages,
four categories of operations must be considered.

In the first category belongs only projection since it is the only operation that does not
require comparisons (except possibly in a second stage where any duplicates have to be
removed). Each element of a one- or two-dimensional array is dropped or retained based only
on its position in the array and not its value.

The second category is that requiring single element operations like selection and text
retrieval. In such computations, each element in a one- or two-dimensional array is processed
independently from the rest of the array elements. The interconnectivity required by these
operations is the loading and unloading of data to a processor array. Clearly, optical intercon-
nections have the advantage of being able to input an entire data array in parallel using the
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third dimension for data propagation. On the other hand, in our electronic associative proces-
sor, data can be input and output only along the edges of a two-dimensional array, one row-
column at a time. Optics have a lot to offer in D/KB systems where single-element operations
are common. :

Another category of operations is that of sorting, which is especially important in D/KB
systems. Computations of this type require global interconnections between all the elements of
the input array, that is, every element of the output array is dependent on all the entries in the
input array. The structure of the sorting problem suggests an efficient algorithm in which
computations grow as O(N*logN). In order to achieve these computational savings, complex
interconnect configurations are necessary among the input elements of the array. Additionally,
these interconnections have to be changed during the different stages of the computation. The
requirement for dynamic interconnections can be exploited by employing the perfect shuffle
function configuration. The perfect shuffle can be applied repeatedly at each stage of the com-
putation to produce the currently desired interconnect pattern, presumably at the expense of
extra time required to complete the interconnections. Optics offer the perfect shuffle function
efficiently, hence its use in hardware sorting units would lead to improvements in system
throughput.

The fourth category includes space and time variant operations like equi- and theta-join.
The input relations can form two one-dimensional arrays and each element of the first array
must be compared to all the elements of the second array. The interconnectivity pattern for
these operations varies in space and time. Furthermore, the various interconnections are data
dependent, making it impossible to predict in advance the appropriate interconnection patterns
required at the different stages of the computation. The throughput of a parallel machine
implementing this type of operations is critically affected by the availability of a dynamic and
global interconnect network. Many processors could be idle for a significant number of cycles
waiting for data to be properly routed to them. The overhead associated with the supervision
of a controller in such a multiprocessor environment lacking space and time variant intercon-
nection network may severely degrade all the advantages of parallel processing. Optics again
offer great interconnection flexibility.

The last three categories of operations involve extensive comparing of the input values to
some reference either fixed (selection, text retrieval) or constantly changing (join, sorting). As
a result, the design must be capable of performing multiple parallel comparisons rapidly. Opt-
cal comparisons can be achieved efficiently using the AND-OR-INVERT (Exclusive-Or) logic
primitive which will be presented in the following section. '
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12.6.3. Optical Comparisons.

Two n-bit words A and B are equal if A,;B, + A;B, =0 for each pair of corresponding
bits A; and B;. Since for the comparison both the value of the bit and its complement are
needed, each n-bit word will be represented by 2n light beams (i.e. the 4-bit word 1011 will
become 10-01-10-10). Using this method a 00 combination corresponds to a "don’t-care”
character while the 11 combination always produces a "Not-Equal” result. The coding
scheme for the two logical values, 1 and 0, can be either light and no light or horizontal and
vertical polarization respectively.

Word A Word B
| LENs
A /
Al J|B1
A &l
—l | >
g g ol
- d - | CELL
g id Do
e e "EQUAL"
) > Signal
oJAD I8
P —

Figure 12.6.1 Optical comparison of two n-bit words.

As can be seen on Figure 12.6.1, the light beams are superimposed bit-wise and are
focused by means of a convex lens on a single photodetector which performs the logical OR
(or summation) of all the beams. If no light is detected the two words are equal while any
level of light intensity other than zero indicates that the two words differ in at least one bit.
The output of the photodetector is electronic [GUI86].

Multiple word comparisons can be performed in parallel if two 2-dimensional arrays, A
and B, are employed each having 2n rows and m columns. At any instance in time the word
at the i-th column of the A array is compared to the word at the i-th column of the B array.
The result (equal or not equal) is recorded on the i-th cell of a row of photodetectors. This
configuration, depicted on Figure 12.6.2, allows for m comparisons of n-bit words to take
place simultaneously.
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Less-Than or Greater-Than comparisons are feasible with the same configuration if some
addidonal logic is employed. In such a case comparison proceeds row-wise starting from the
most significant bit of the words to be compared.

The information on each array has to be recorded on two-dimensional spatial light modu-
lators (SLMs). The next section discusses the characteristics and the capabilities of some
currently available SLM devices.

12.6.4. Spatial Light Modulators

Spatial light modulators constitute an essential part of any optical data processing system
(WARS87, PEN86, KNI81, CAS77]. These active optical devices have the ability to: a) store
on a one- or two-dimensional array information encoded in an input (write) electrical or opt-
cal pattern, and/or b) spatially modify or amplify some of the optical characteristics (phase,
ampiitude, intensity, polarization) of a readout light distribution as a function of space and
time.
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The spectrum of SLM applications is impressingly broad. It ranges from real time opera-
tions (convolution, correlation, heterodyne detection) to pattern recognition techniques, white-
light and color image processing, analog and digital optical computing (matrix-vector pro-
ducts, matrix inversion, binary multiplication, soluton of systems of linear equations, least
squares solution etc), spatial filtering and associative processing.

SLMs may operate in either ransmissive or reflective mode. They can be classified to
electrically or optically addressed SLM (E-SLM and O-SLM respectively) according to the
nature of the control or write signal. Different versions can process optical signals in 1-D, 2-
D or 3-D formats.

A different classification divides SLMs into three classes on the basis of their functional
capabilites.

1) Signal Multiplicarion and Amplification SLMs.
These are three-port devices with a structure similar to that illustrated in Figure 12.6.3.

In a typical amplitude-modulation application the amplitude at each point in the output
image is determined by the product of the input signal at a corresponding point on the device
and the readout image amplitude. The input write image generates a distribution pattern of
electric fields which in tum cause the light-modulating material 10 modify the polarization,
phase and/or amplitude of the readout light The mirror and light-blocking layers permit the
written information to be read out by reflection and prevent leak through of the readout light
to the photosensor.

Modulators in this category can be liquid crystal devices (Hughes Liquid Crystal Light
Valve, LCLV [GRI75, BLE78]), nonholographic photorefractive signal-multiplying devices
(Pockels Readout Optical Modulator, PROM [FEI72, NIS72]), microchannel plate devices
(Microchannel Spatial Light Modulator, MSLM [WARS1, HAR86] and Photoemitter Mem-
brane Light Modulator, PEMLM [FIS86, SOM72]), thermoplastic modulators, volume holo-
graphic devices or semiconductor O-SLMs (Silicon/PLZT modulator [LEES86]). The Photo-
DKDP (Deuterated Potassium Dihydrogen Phosphate [ARM85, DON73]) light valve must be
cooled down to -51° C to operate properly. One-dimensional E-SLMs can be magnetooptic
(LIGHTMOD [ROS83]), micromechanical, electrooptic or acoustooptic devices. Acoustooptic
Bragg cell modulators are the best developed and the most widely used SLMs.

2) Self-Modulating devices.

In these two-port optically addressed SLMs the input light modifies the optical proper-
ties of the modulating material which in turn modifies the light beams as they pass through or
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Figure 12.6.3 The structure of a signal-multiplying spatial light modulator.
(Reflective mode)

reflected from the device to become the output beam. Semiconductor etalons, Fabry-Perot cav-
ities and other bistable devices are typical self-modulating SLMs.

3) Self-Emissive devices.
Self-emissive modulators generate a coherent or incoherent spatial light distribution
under control of electrical or optical input. Examples include CRTs, LED arrays, image
intensifier tubes, photoconductor-accessed electroluminescent devices etc.

For our purposes we need a two-dimensional, optically addressed spatial light modulator
on which binary information can be recorded and used in a fast and reliable way. A resolution
in the order of 1000x1000 pixels or better will be adequate if the total time needed to write
and erase a frame (framing speed) is kept in the order of 107* seconds and lower. These
numbers bring the potential time-space bandwidth of the device to 10'® operations/sec with
roughly 107 records being processed every second.
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Table 12.6.1 summarizes some of the physical characteristics of 2-D O-SLMs. In terms
of potendal throughput PEMLM and Si-PLZT seem to be the best candidates for the job since
they exhibit the largest time-space bandwidth.

LCLV PROM | DKDP { MSLM PEMLM | Si-PLZT

Exposure Sen- ~
sitivity pJ/cm? 1-5 10 10 0.01 0.01 1
Storage Time msecs ~1hour long days days 10s
Contrast Ratio <100:1 1000:1 70:1 1000:1 1000:1 10:1
Framing Speed

(Hz) 40 30 30 200 1000 104
Spatial Resolu-
tion (cycles/mm) 20 5-10 75 5-15 20 10
Time-Space BW
(pixel op/sec) 107 9+106 10’ 2+10° 1010 1010

TABLE 12.6.1 Some characteristic_:s of O-SLM devices.

The initial design of a system that performs the relational operations projection, selection
and equi-join using the above devices will be presented in the next section.

12.6.5. An Optical System for Relational Operations.

Figure 12.6.4 illustrates the initial design of a back-end all-optical Data/Knowledge Base
Machine. It is assumed that binary information is read from some optical storage medium
using a single or multiple laser beams and is available in its optical form for further process-
ing. The way in which records of a certain relation are retrieved is not a major issue since the
distribution of light beams can be spatially modified by means of various optical elements
(lenses, '
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mirrors, beam splitters etc). However, every relaton has to reside in a different storage
volume thus allowing for simultaneous access to any subset of the data base relatons.

When the host issues a request for a transaction to the data base the participating data is
located on the optical disk units, retrieved and an appropriate beam distribution is formed in
the Pattern Generating Unit. The optical data is processed, if needed, by the main processing
unit of the system, the two-SLM configuration described earlier, and the result is recorded on
a photodetector array.

The Pattern Generating Unit (PGU) will contain the necessary optical elements to gen-
erate "on-the-fly" the input optical patterns for the corresponding SLMs. There will be one
PGU for each SLM. The output of the PGU can be sent either directly to the SLM or, via a
beam splitter, to the detector array. An active optical device is required to produce any fixed
optical patterns representing the constant comparison values provided by the particular query.
At a later stage a feedback optical path from the SLMs to the PGUs may be included to allow
for optical processing in a loop.

The final result of a transaction is recorded on an array of photodetector cells which
transforms the optical information to electronic. The resulting electronic pattern is stored in a
fast semiconductor buffer (which may operate in a ring-type fashion) and eventually passed to
the host. The size of the photodetector array depends on the length of the records in the data
base and must be large enough to accommodate the answer to any type of query. In any case
it has to be no longer than the sum of the sizes of the two longest records in the data base.
Each element of the array can be active or inactive according to control electronic signals
issued either by the Control Unit or the comparator.

The Control Unit accepts a transaction request from the host and translates it to the
appropriate control signals to the disks, the PGUs, the SLMs and the detector array. It also
informs the host when the result is in the electronic buffer.

12.6.5.1. Projection

Projection can be easily performed without the use of SLMs when it is the only or the
last operation required by a certain transaction. All that is needed is the deactivation of the
rows or columns of the photodetector array that correspond to the data fields to be masked
out. As a result, only the useful part of each record is passed to the buffer. Since the result of
a projection may contain multiple similar entries, the removal of the duplicates will be per-
formed electronically.
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However, projection is frequently followed by additional operations. In this case the
necessary mask out will take place "on-the-fly" inside the pattern generating unit and the
remaining data fields will be spatially compressed by a set of prisms before they are written
on one SLM for further processing.

12.6.5.2. Selection

Selection is based mostly on comparison of a particular data field to a constant value.
The -ccords of the participating relation are written, one per column, on the first spatial light
modulator, SLM,. On the second modulator, SLM,, an optical pattern is written consisting of
the constant value at the bit positions corresponding to the data field to be compared and
"don’t-cares” for the remaining bit positions. N comparisons take place simultaneously, where
N is the number of resolvable pixels in the horizontal dimension of the SLMs. If the entry in
a data field of a record is equal to the constant valne a match is detect=d at the optical com-
parator and the corresponding column of the photodetector array is activated to record the
qualified tuple which follows the alternate optical path shown on Figure 12.6.4. During the
next cycle another N records are loaded to the S; and compared. Therefore, the service time,
Tse, for a selection operation on a relation R with Ny records is given by:

Ng
TSel = Tsu + ?*Tﬁ

where Ty, is the initial set-up time and T, is the time needed to input an entire frame to the
SLM.

If the size of a record is larger than the number of rows in the SLM then two or more
columns of the array can be used. Another possible solution is to perform a projection before-
hand to drop the undesired data fields, if any.

12.6.5.3. Equi-Join

In the equi-join operation the fields of two records belonging to two different relations,
R, and R;, are concatenated only if the entries in a common data field are equal. In our sys-
tem the records of relation R; are loaded on SLM, as described before while those of R, are
written on SLM, in such a way that the common data field occupies corresponding bit posi-
tons. The decision at the optical comparator is based only on the comparison of these bit
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positons.

If a match is detected during the i® cycle and the respective photodetector columns are
activated, the tuples from both modulators are recorded on the detector array physically con-
catenated. During the i+1% cycle tlie entries in SLM, are shifted (actually the entre array is
erased and rewritten) one column to the left and N new comparisons take place while in the
i+2%® cycle the entries in SLM, are shifted to the opposite direction for another N comparisons
(see Figure 12.6.5).

Plhotodetector
Array

Relation R2

Relation R1

Figure 12.6.5 Performing the equi-join of two relations.

Using a slightly different approach, which may prove more efficient when the number of
records of a relation is larger than N, the pattern on SLM, remains fixed while the wples of
R, slide through SLM,. When they are exhausted a new pattern corresponding to the next N
tuples of R, is written on SLM, and the process is repeated. Detailed analysis and simulation
of various algorithms will provide the optimal solution. Additional details can be found in
Appendix 12-E and 12-F.
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12.6.5.4. Logic Operations

The proposed architecture can perform filtering of ground clauses in logic-based
knowledge base environment. Selection on a conjunction of exact-match criteria is simply
accomplished by incorporating all of them in the reference pattern. Disjunction-based selection
could be done by using concatenated search patterns if the total length is less than N (and
matching on a subset of the detectors), or by connecting more than one optical matcher in a
pipeline. Optical inference engines [WARS86] should be more efficient than their electronic
counterparts because the parallel searching operation eliminates the need for backtracking
through the knowledge base.

12.6.6. Alternatives for an Optical D/KBM.

This section briefly presents various aspects of optical processing that may provide satis-
fying alternatives to an optical D/KBM. Currently, optical technology is not yet available to
efficiently support most of the following ideas but, nevertheiess, they all exhibit a high poten-
tial.

12.6.6.1. Computer Generated Holograms

Holograms are able to record information about both the amplitude and the phase of a
complex wavefront. In Computer Generated Holograms (CGH) [LEES88] the complex wave-
front need not come from an existing physical object but can be computer generated as well.
Several methods exist for encoding the amplitude and the phase of the wave. They can be
classified into two major categories: a) cell oriented holograms (detour phase, non-detour
phase), and b) point oriented holograms (threshold, pulse width modulation, pulse density
modulation). Binary CGHs have also been proposed.

For our purposes, a computer generated hologram may be constructed as a data filter
corresponding to a particular query on the data/knowledge base. Optical data representing
records of relations are flashed through the CGH and only the qualified tuples are collected
into a buffer for further use. Although it sounds like a simple principle, significant problems
remain :2 he solved, the most important being the type of encoding to be used.

Issues related to real-time computer holography have also been irvestgated [FEI85]. A
critical factor is the delay between the time the hologram is exposed and the time when it is
viewed. Naturally, it has to be as short as possible. Currently it ranges from a few
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picoseconds (using liquid CS; as the holographic material) to half a minute (using thermoplas-
tic film). Photographic film is not suitable because of the relatively long time required for its
developing process and because it is not reusable.

Two categories of especially useful materials in real-time holography are photorefractive
materials and thermoplastic film. They can both store images.

Photorefractive materials contain electric charges that are "frozen" in the dark but can
move when illuminated. They are characterized by the strength of the photorefractive effect
they exhibit (Pockel’s coefficient) and by the speed with which the charges migrate through
the material. The speed depends on the intensity of the incident light and response times from
minutes to nanoseconds have been demonstrated. Bi;,SiO,5, GaAs and InP are weak but
mildly fast while BaTiO; is strong-and slow. A mixture of KTaO; and KNbO; (KTN) is
strong and fast but crystals of high optical quality are difficult to grow.

Thermoplastic film can be used to record a hologram due to its ability to repeatedly
soften and harden when heated and cooled. The recording process typically consists of three
different phases: a) positively charging the surface by a corona discharge, b) exposing the film
to the image and c¢) developing. A complete cycle, however, is still considered quite long
although it takes less than a minute.

12.6.6.2. Optical Content Addressable Memories

At a higher level, the use of electronic content addressable-memory has been considered
for improving the performance of database operations. Most of these efforts have not met with
much success primarily because of the small size and the high cost of these devices and the
slow data loading time. On the other hand, optical content addressable memories have the
potential for holding megabytes of data at an appreciably lower cost [BER88]. In addition,
they offer parallel output. Since they are hologram-based their major disadvantage is that they
are read-only. However, for very large data/knowledge bases indexing structures can be dev-
ised which are rather insensitive to updates provided that the update rate remains moderate.
Thus, holographic contert addressable memories could serve in the future for processing
indices to very large databases. As the field develops, they may even be adopted as a primary
storage medium.

95




12.6.6.3. Nonlinear Optics

Nonlinear optics [GIB86] can contribute decisions to optical signal processing and com-
puting. The optical nonlinearity makes the device’s transmission intensity dependent, so one
can obtain the thresholding needed for logic decision making. Nonlinear decision-making
devices can be constructed as waveguides in which the light is guided in tie plane of the non-
linear thin film or as etalons in which the light is imaged from one nonlinear thin film to the
next in such a way that its intensity is highest as it interacts with each film.

Guided-wave devices are most likely to find application where data are handled in a
pipeline manner, for example, optical-fiber communication and interconnect systems, data
encryption, etc. However, waveguides are much like wires except their higher bandwidth.
Etalons permit massive parallelism and giobal interconnectivity; that is, one can perform many
operations simultaneously and interconnect in the next plane two or more pixels far apart in
the present plane.

Both guided-wave devices and etalons can be used for the implementation of relational
operations in a data/knowledge base but the additional features of etalons make them prefer-
able. Consequently we anticipate the use of guided-wave devices in the near term and
increased introduction of etalons in the long term.

Of particular interest is a study of the nonlinear Fabry-Perot semiconductor etalons
[WAKS87] used for the design of all-optical logic devices. GaAs etalons may be used for both
parallel processing schemes utilizing large two-dimensional arrays of all-optical logic gates
and serial processing of data as logic devices for integrated optical circuits compatible with
fiber-optic data transmission. The potential application of these optical switching elements in
parallel massive data processing is essential to the design of an all-optical Very Large
Knowledge Base Architecture.

12.6.6.4. Multivalued Logic

Multivalued logic is easier to implement in optics than in electronics. Light intensity can
be set in a large number of values and detected using already available detectors. The conver-
sion of multivalued optical information to the conventional binary code is not a difficult prob-
lem. Returning to the previous scheme of a hologram used as a data filter, different levels of
light intensity and/or different size of the reading laser beam (corresponding to different cer-
tainty factors or degrees of belief) may allow for the implementation of inference engines
based on fuzzy logic.
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A particular spatial light modulator, called the Variable Grating Mode (VGM) liquid-
crystal modulator [TAN83] exhitits the powerful feature of transforming the light intensity to
spatial frequency. The readout beam is scattered by gratings whose local periodicity varies
with the local intensity of the input-write beam. With such an intensity-to-spatial frequency
converter a wide range of nonlinear functions of the input intensity can be implemented by
spatially filtering the readout beam.

Consider, for example, the sorting operation whose optical implementation remains a
difBcult task since its verv nature calls for some kind of temporary storage. A method has
been proposed by Stirk and Athale [STI88] that uses opticai comparz-and-exchange modules.
A simple optical sorting network based on Fredkin gates can be constructed but its upgrading
for larger applications is questionable.

If, however, enough intensity levels are available to encode the entries of a table which
is to be sorted, the sorting process will be concluded in just one step using the intensity-to-
spatial frequency converter. A detector array capable of detecting spatial frequencies with the
desired accuracy will record the sorted list since there exists a bijection between spatial fre-
quencies and table entries.

12.6.6.5. Optics and Artificial Intelligence

The application of optical computing to Artificial Intelligence has been studied. Areas
that are of special interest to us include knowledge representation, learning ability, expert sys-
tems and neural networks [TAK86, MOS87].

The semantic network scheme is preferable because of its structural resemblance to the
the relational data base model. Semantic networks support two important forms of reasoning,
namely, inheritance and categorization. Inheritance allows an agent to infer properties of a
concept based on the properties of its ancestors. On the other hand, given a partial description
consisting of a set of property values, categorization amounts to finding a concept that best
matches this description.

The connectionist model has been proposed to encode semantic networks. A connection-
ist network consists of a large number of simple computing elements (units) connected via
links. A unit may have multiple inputs and some local memory and communicates with the
rest of the network by transmittiing its output to all units it is connected to. The information
encoded in the network is accessed by activating relevant nodes to the network. Thereafter, all
the nodes compute in parallel. The answer to the query is available at the end of a specified
interval proportional to the number of levels in the conceptual hierarchy. The connectionist
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model can be applied with some modifications to a relational data base for the efficient solu-
ton of complex queries. The difference is that a data base permits massive parallelism
without major requircements for adaptive learning.

Optical implementations of one- and two-dimensional distributions of neurons have been
considered in coherent and incoherent light. The performance cf such networks has been
found to conform to the theoretical predictions of storage capacity (the number of entities that
can be reliably stored). Architectures and optical implementations of two-dimensional neural
net arrangements can provide content addressable associative memory modules that are suited
for use with two-dimensional data arrays where the tuples of one or two relations are stored.
These associative memories can significantly improve the response to a query, especially
when it involves join-type operations. While optics provides the parallelism and massive
interconnectivity needed in the implementation of neural networks and their modules, these on
their part provide the robustness, fault tolerance and power of non-linear processing and feed-
back that are generally lacking in optical processing.
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12.7 Implementing Knowledge Base Management Systems Based on Surrogate Files

We have implemented two prototypes of knowledge base management systems to
demonstrate ihe use of surrogate files in two different environments. The first system .s
developed for a combined environment where an existing databa<= system, INGRES, is used
as a backend to a Prolog interperter. Here surrogate files serve as an alternative indexing
scheme to the traditional ones such as B-tree or Hashing. The second system is for an
integrated environment where rules and facts are handled uniformly, which is implemented in
*Lisp on the Connection Machine having 32 K processors. This second system shows that
the surrogate file technique lends itself well to the parallel processing environment, yet special
care must be taken for the possible I/O bottlenecks. Future work involves the use of surro-
gate files in handling more complex objects such as unrestricted Horn Clauses and multimedia
databases. Additional details are given in Appendix 12-G.
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12.8 Conclusion

In this report, we have discussed a relatdonal algebra machine based on the CCW surro-
gate files and analysed the performance of the architecture for parallel selection and join algo-
rithms The basic idea of the proposed architecture is to reduce the number of EDB blocks to
be transferred from the secondary storage systems by performing the relational operations on
the CCW surrogate file first. It has been shown that we can obtain almost linear speed up in
response time for a relational algebra operation by increasing the processors working con-
currently.

We proposed CCW-2 surrogate file structure which can be used for partial unifications
among first order terms in a very large logic programming environment. Each code word of
CCW-2 is associated with a tag field and a value field. The tag field represents any argument
type including lists, structured terms, variables and constants. The value field contains the
transformed representation of the corresponding argument. We are currently investigating the
Extended Concatenated Code Word (ECCW) to directly perform unification on surrogate files.

A new and efficient access method for very large dynamic files, called the dynamic ran-
dom sequential access method (DRSAM) was developed. It is derived from linear hashing
with order preserving. The performance of DRSAM was evaluated and the file structure found
to be efficient for range queries as well as random access. With order preserving hashing, the
hashed key values are not generally uniformly distributed over the storage address space. To
deal with non-uniform distributions, DRSAM was extended with proper control mechanisms
and the resulting file structure is called EDRSAM. One application for this method is to index
surrogate files which are compressed images of very large databases. The resulting physical
model is called inverted dynamic surrogate files (IDSF) and is proposed as an alternative to
the conventional and static inverted liste. With IDSF, the reduced storage overhead of surro-
gate files is combined with the high performance of EDRSAM to provide a flexible and
efficient physical model to multi-user dynamic VLDBs.

An initial design for the optical impleme~tation of various operations in Very Large
Data/Knowledge Bases has been described. The system is capable of performing projection,
selection and equi-join as well as filtering of ground clauses in an efficient way because it
takes full advantage of the parallel nature of optical information processing. Data stored in
optical disks is retrieved and processed optically by a configuration involving two spatial light
modulators and a large photodetector array where the photon-to-electron conversion takes
place. The next step will be a more detailed analysis and simulation of the proposed architec-
ture to define its true potennal and limitations. Both single and multi-beam parallel read from
the optical disks will be considered. Other parameters include the size and the framing speed
of the modulators, the size of the relations and their records and the different algorithms for
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relational operations.
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ABSTRACT

Concatenated code word (CCW) surrogate files are very useful as indices for very large
knowledge bases to support logic programming inference mechanisms because of their small
size and simple maintenance requirement. Moreover, interrelated relational algebra operations
can be performed on the CCW surrogate files. In this paper a parallel backend database
machine is proposed to speed up the relational algebra operations based on the CCW surro-
gate files. The basic idea of the proposed database machine is to reduce the amount of fact
data to be transferred from the secondary storage systems to satisfy a query by performing the
relational algebra operations on the CCW surrogate file first. The database machine consists
of a number of surrogate file processors (SFP’s) and extensional database processors
(EDBP’s) operating in SIMD mode. Each surrogate file processor has an associative memory
to speed up the relational algebra operations on the CCW surrogate files. Surrogate file pro-
cessors and extensional database processors are connected to other processors of the same
type through multistage interconnection networks. The performance of the proposed system

for parallel relational algebra operations was evaluated.
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1. Introduction

Knowledge based systems consist of rules, facts and an inference mechanism that can be
utilized to respond to queries posed by users. As these systems grow, increased demands will
be placed on the management of their knowledge bases. The intensional database (IDB) of
rules will become large and present a formidable management task in itself. But, the major
management activity will be in the access, update and control of the extensional database
(EDB) of facts because the EDB is likely to be much larger than the IDB. The volume of
facts is expected to be in the gigabyte range, and we can expect to have general EDB’s that
serve multiple inference mechanisms. In this paper we assume that the IDB is a set of rules
expressed as logic programming clauses and the EDB is a relatonal database of facts.
Retrieving the desired rules and facts in this context is a partial match retrieval problem where
any subset of attributes can be specified in a query and matching between terms consisting of

variables and functions as well as constants should be tested as a preunification step.

In the context of very large knowledge bases the question arises as to how to obtain the
desired rules and facts in the minimum amount of time. Two reasonable choices of indexing
schemes to speed up the retrieval are concatenated code word (CCW) and superimposed code
word (SCW) surrogate file techniques discussed in [BER87). Surrogate files are constructed
by transformed binary codes where the transform is performed by well chosen hashing func-

tions on the original terms.

Suppose we have a fact type called borders which is given as follows:

borders (Country_1, Country_2, Body_of_ Water).

For a particular instance
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borders (korea, china, yellow sea).

we would first hash the individual values to obtain binary representations.

H(korea) = 100..01
H(china) = 010..00
H(yellow sea) = 110...00

Then the CCW of the fact is generated by simply concatenating the binary representations of

all attribute values and attaching the unique identifier of the fact as follows:

100...01] 010...00| 110...00| 00...01.

The unique identifier is also attached to the fact and serves as a link between the two. It is
used as a pointer to the EDB or can be converted to an actual pointer to the EDB by dynamic
hashing schemes. A SCW is constructed by converting the binary representations to binary
code words with pre-determined length and weight and bitwise logical ORing the binary code
words [ROB79].

The retrieval process with the CCW surrogate file is as follows:

1)  Given a query, obtain a query code word (QCW) by concatenating binary representa-
tons corresponding to the attribute values specified in the query. The portion of the
query code word for the attribute values which is not specified in the query is filled

with don’t care symbols.

2)  Obuain a list of unique identifiers to all facts whose CCW’s satisfies
QCw=CCW
by comparing the QCW with all CCW’s in the CCW file for that fact “ype.
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3)  Retreve all facts pointed to by the unique identifiers obtained in step 2 and compare
the corresponding attribute values of the facts with the query values to discard the facts
not satisfying the query. These are called "false drops". The facts satisfying the query
are called "good drops”. The false drops are caused by the non-ideal property of hash-

ing functions.
4) Return the good drops.

Compared with other full indexing schemes such as inverted lists [CAR75], SCW and
CCW surrogate file techniques yield much smaller amounts of index data; about 20% of the
size of the EDB [BER87] while the inverted lists may be as large as the EDB. In terms of
maintenance the surrogate file shows considerable advantages. When a new tuple is added to
a relation the SCW or CCW is generated and added to the surrogate file. In the case of
inverted lists each list must be processed. Similar operations must be performed for deleting
tuples from a relation. When changes to an existing tuple are made, the surrogate file entry

must be changed and the proper inverted lists must be changed.

An important advantage of SCW and CCW surrogate file techniques is that they can be
easily extended for the indexing of the rules expressed as Prolog clauses, where the matching
between constants, variables, and structured terras is required to test the unifiability.
[RAMS86] and [WADS87] extended the SCW structure for the indexing of Prolog clauses and
[SHI87] extended the CCW structure to index the rules and facts in an unified manner.

An additional benefit obtained from using the CCW surrogate file approach is that rela-
tional operations can be performed on the CCW surrogate files [BER87]. To satisfy a query,
interrelated relational algebra operations on the EDB are required, so by performing relational

algebra operations on the CCW surrogate file first, considerable processing time can be saved.
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A relational operation on CCW surrogate files is a kind of relational operation algorithm using
indices [BLA77, MEN86]. However, using inverted list type indices in parallel relational
algebra operations is very difficult, because the problem of synchronizing accesses to the
indices without completely serializing the actions of the processors executing in parallel has
not been solved yet {BIT83]. On the other hand, a CCW surrogate file is a set of transformed
binary code words corresponding to the tuples of a relation, so it can be horizontally parti-

tioned into subfiles and distributed over the parallel processors to be processed concurrently.

In [CHUS8], CCW and SCW surrogate file techniques were analysed on the basis of
storage space required for the surrogate file and time to retrieve the desired facts from the
EDB. It is shown that the storage overhead and the query response time with the CCW surro-
gate file is smaller than those of the SCW surrogate file when the average number of attri-
butes specified in a query is small. However, the analysis shows that most of the query
response time for fact retrieval is used for the surrogate file processing when the relation is
large (10° bytes) because of the sequential searching of all surrogate file code words. With
smaller relations (10° bytes) surrogate file processing time is negligible compared with EDB

processing time.

To speed up the relational algebra operations based on the CCW surrogate file, a back-
end database machine is proposed. The database machine consists of a number of surrogate
file processors (SFP’s) and EDB processors (EDBP’s) operating in SIMD mode. Each SFP
has an associative memory to speed up the relational algebra operations on the CCW surro-
gate files. Since CCW'’s are quite compact and regular, they are mapped well to the associa-
tive memories. SFP’s and EDBP’s are connected to other processors of the same type

through multistage interconnection networks.

In section 2 the proposed architecture is introduced. The relational algebra operation
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algorithms for the architecture are explained in section 3. Section 4 shows the performance of

the proposed architecture for relational algebra operations.

2. Backend Database Machine

A general structure of a backend database machine which contains multiple processors
for the management of a very large extensional database of facts is shown in Figure 1. We
assume that there are gigabytes of data stored on the EDB disk subsystems and there are
corresponding CCW surrogate files stored on the SF disk subsystems. Suppose that the user
is interested in retrieving fact data satisfying a condition from a particular relation. Then the
selection query is transferred to the backend controller from the host computer and a query
code word (QCW) is constructed in the surrogate file processor manager (SFPM) using the
proper hashing functions. The QCW is then broadcasted to the proper Surrogate File Proces-
sors (SFP’s) to be used as a search urgument. The SFP compares the QCW with each CCW
and strips off the unique identifiers of matching CCW’s. Each extracted unique identifier is
sent to the EDB processor manager (EDBPM) and passed on to the EDB processor (EDBP)
which contains the fact with that unique identifier. The EDBP will access the block contain-
ing the fact, compare the retrieved fact with the original query to check that it is a good drop

and then send it to the host computer.

The basic idea of the proposed backend database machine is to reduce the number of
EDB blocks to be transferred from the secondary storage systems by performing the relational
operations on the surrogate files first. To speed up the relational algebra operations on the
surrogate files, each relation’s surrogate file blocks are evenly distributed over a number of

surrogate file disk subsystems so that the SFP’s can process the surrogate files concurrently.
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As shown in Figure 2, a SFP is equipped with an associative memory unit to perform the
searching operation efficiently. Associative memories are very fast because they use content
addressing and parallel searching, but they are generally costly and rigid in data format.
However, the format of the surrogate file is regular and maps very well into the associative
memory and cost of the associative memory hardware is decreasing as VLSI technology
advances. Additionally, associative memories can be used for relational operations, such as
selection and join, because associative memories can perform many associative operations
such as equal to, not equal to, less than (or equal to), greater than (or equal to), maximum,
minimum, between limits, outside of limits, and others depending on the structure. In our
design, we used word-parallel bit-serial (WPBS) associative memory which consists of two-
dimensionally accessible memory and an array of processing elements. A word slice is a unit
for memory read and write and a bit slice is a unit for arithmetic and logical processing. A
bit-parallel associative memory [RAM78, DAV86], whose memory cells have comparison
logic, is faster than a WPBS associative memory but is much more complex in structure and
less flexible in functionality. Current status of associative memories and associative proces-

sors are reviewed in [WALS87].

To balance the speed of an mm&aﬁve memory, multiple disks controlled by two disk
controllers constitute a surrogate file disk subsystem and are attached to a SFP through double
buffers. In our system, one partition of surrogate file of a relation is stored consecutively
within each disk subsystem so that the surrogate file blocks of a relation can be sequentially
transferred to the associated surrogate file processors. By associating a disk subsystem to
each surrogate file processor, we lose some flexibility in allocating processors to a query pro-

cessing but surrogate file blocks can be accessed rapidly.

The surrogate file processors are connected through the SFP interconnection network.

Since there are a number of surrogate file processors, the flexibility and speed of the inter-
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connection are very important factors determining the overall performance. The mapping

between SFP’s will be permutation, selective broadcasting, or broadcasting depending on the

distribution of operand surrogate files among the SFP’s (we consider the pair of a SFP and a

surrogate file disk subsystem as a single unit and call it a SFP), the nuaber ot available
SFP’s, and algorithms cf relational algebra operations. To handle all the mapping modes we

chose a muitistage Omega network [LAW7S] implemented with 2 by 2 switching elements

with four functions; straight, exchange, upper broadcast, and lower broadcast. Thus, any one
SFP can broadcast a block to the rest of the SFP’s with uniform delay. The SFP interconnec-

tion network will be operating in circuit switching mode to facilitate the surrogate file block

transfers.

The stucture of the EDB processor manager is shown in Figure 3. If a fact unique
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identifier is sent from a SFP to the EDB processor manager (EDBPM), the EDBPM finds the
EDB processor (EDBP) containing the corresponding fact by accessing a directory and sends
the unique identifier to the EDBP. The EDBPM has a result buffer to collect the operation
results from the EDBP’s.

Backend Controller
EDBPM Result
Contoller Buffer
SF Uid EDB
Bus Buffer Dispatcher Bus
Interface I Interface
Directory

Figure 3. Structure of Extensional Database Processor Manager

The structure of a EDBP is shown in Figure 4. In case of fact retrieval, a fact block
corresponding to the received unique identifier is accessed by the EDBP. We assume that
EDB blocks are randomly distributed within a disk subsystem, so to speed up the block access
a disk cache is provided per EDBP. Once the block is available in the working memory of
the universal operator, the operator searches the block with the unique identifier, extracts the

fact corresponding to the unique identifier, and compares the extracted fact with the query to
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check that it matches. The universal operator is a kind of general purpose processor and per-
form all the tuple-wise relational algebra operations as well as statistical aggregation func-
tions. Through the EDBP interconnection network, facts can be transferred from one EDBP
to another. We decided to use the multistage Omega network operating in packet switching

mode to facilitate frequent transfer of facts betwesn EDBP’s in case of join operations.

EDBP
Controller
EDB
‘ us -
> 4 [ Buffer Interface
EDB Universal
Cache Operator
1 MB ' M | |ALU
DC
—_ EDBP
Buffer Interconnection
Network
Interface

Figure 4. Stucture of a Extensional Database Processor

A hardware sorting unit [KIT87] is available and can be accessed by a EDBP through
the EDBP bus. The sorting unit can also be used for duplicate removal which is a part of
other operations such as union, difference, and projection.

The processing mode of the backend system is SIMD or MIMD depending on the distri-
bution of surrogate files and relations over the processors and assignment of the processors to

a given operation. If all the processors are working for a single operation, then it becomes a
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SIMD mode, but if processors are partitioned into a number of groups and each group of
processors is assigned a different operation, then the processing mode is MIMD at the group
level. To operate either in SIMD or MIMD mode, the interconnection network must be parti-
tionable. A multistage Omega network of size 2™ can be partitioned into independent subnet-
works of different sizes with the requirement that the addresses of all the I/O ports in a sub-

network of size 2! agree in (m —i ) of their bit positions [SIES0].

As the size of the EDB increases, the system can be upgraded by adding a cluster of
SFP’s and EDBP’s to the existing system configuration. If we store the related relations and
their surrogate files on a cluster of SFP’s and EDBP’s, then each cluster of processors are
working on different queries and the processing mode of the system becomes multiple SIMD
(MSIMD). In this case, the inter-cluster interconnection would be separated from the intra-
cluster interconnections. The backend controller of each cluster would be a cluster controller
and be in charge of communication with other clusters and the global backend controller

through a cluster bus as shown in Figure 5.

3. Relational Algebra Operations in the Backend Database Machine

3.1. Selection Operation

To select on a particular attribute position, the SFP’s execute a comparison, such as
equal to, not equal to, greater than or equal to, or less than or equal to between the binary
representation of a code word ax.xd the hashed value of the constant specified in a selection
query. To retain the ordering between the binary representations of a attribute position,
order-preserving hashing [GARS86] is necessary.
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Figure 5. Multiple Relational Database Machine Configuration

Each SFP retrieves a block of CCW’s and does the projection on the binary representa-
tion of the specified field and unique identifier, then loads the projected CCW's to the associa-
tive memory. The comparand register of the associative memory is loaded with the hashed
constant. The bit positions of the input mask register corresponding to the hashed constant is
filled with 1’s while other bit positions are filled with 0’s. If there is any match, the
corresponding fact unique identifier is sent to the EDBPM.

As soon as any fact unique identifier is received by the EDBPM, it finds the EDBP con-
taining the corresponding fact block and sends the unique identifier. The EDBP retrieves the
fact block by using the unique identifier, searches the block with that unique identifier, and
performs the actual selection operation on the fact. Due to the pre-selection operation on the

surrogate file, the number of fact blocks to be accessed from the secondary storage system is

usually very small compared to the total number of fact blocks of a relation.
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3.2. Join Operation

There are three main algorithms for the join operation; sort-merge, hash-partion, and
nested-loop join algorithms. The performance of the sort-merge join algorithm for the non-
equijoin operation is as good as that for the equijoin operation, because once the two operand
relations or subrelations are sorted, the merging step can handle the equijoin and the non-
equijoin in the same way by performing the corresponding comparison operation. The data-
base machine DELTA [SAK86, ITO87] has multiple relational database engines composed of
sort-merge units and performs the sort-merge join algorithm. If a database machine has sort-
merge units, the selection operation is interpreted as a join operation between a relation and a

constant value specified in a query.

The hash-partition join algorithm is adopted by the database machine GRACE [KIT84].
Each operand relation is partitioned into a number of buckets depending on the hash value of
the join attribute, then matching is performed within each bucket by a processor assigned to
that bucket. Usually the hash-partition join algorithm is better than the sort-merge join algo-
rithm in the case of thc equijoin operation because sorting creates a total ordering of the
tuples in both relations while the hashing simply groups related tuples together in the same
bucket [DEWS85]. However, in case of non-equijoin, the operation of each processor is not
limited to a single bucket and the workload of the processors may not be uniform. One prob-
lem of the hash-partition join algorithm is the bucket overflow caused by the non-uniform dis-

tribution of the join attribute value. In this case, rehashing of the overflow bucket is neces-

sary.

It has been shown that the nested-loop join algorithm takes advantage of different
operand sizes and the processing time is inversely proportional to the number of processors,

while in the case of the sort-merge algorithm after a certain number of processors, increasing
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the number of processors causes very little decrease in the execution time. The reason is that

the degree of parallelism is divided by two at each merge pass after a certain stage [VALS84].

Our proposed database machine adopts the nested-loop join algorithm because the associ-

ative memories in each processor can easily perform the parallel execution of the nested-loop

join operation.

If we assume that the CCW surrogate files of two operand relations are evenly distri-

buted over a number of SFP’s, the nested-loop join algorithm is executed as follows:

1)

2)

3)

4)

5)

Each SFP reads a block of CCW surrogate file of the smaller relation from the associated
surrogate file disk subsystem, projects it on the join attribute and unique identifier and

loads it into the associative memory.

Each SFP reads a block of CCW of the larger relation from the associated surrogate file
disk subsystem, project it on the join attribute and unique identifier and store it in the

associative processor input buffer.

One SFP broadcasts the projected block from step 2) to the rest of the SFP’s which
already have a block of CCW surrogate file of the smaller relation in their associative

memories from step 1).

Each SFP searchs the associative memory with the broadcasted projected CCW’s as
searching argumcnts' one by one. If there is a match, the pair of unique identifiers of the

two matched CCW’s are sent to the EDBPM.

Repeat step 3) and step 4) until all the projected blocks in step 2) are broadcasted.
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6) Repeat step 2) to step 5) undl all the CCW’s of the larger relation are retrieved from the

surrogate file disk subsystems.

7) Repeat step 1) to step 6) undl all the surrogate file blocks of the smaller relation are

retrieved and searched.

In step 4), as soon as any unique identifier pair is received by the EDBPM, the EDBPM
finds the EDBP’s containing the corresponding facts and transfers the unique identifier pair to
those EDBP’s. If a single EDBP contains the two operand facts then that EDBP performs the
actual join operation on the two facts retrieved, otherwise one EDBP transfers a projected fact
to another EDBP containing the other operand fact, then the join is performed. To reduce the
amount of communication through the EDB interconnection network the smaller projected fact
is transferred. Projection is performed on the join attribute, attributes involved in the output
relation, and the unique identifier. The pre-join operation of the SFP’s is overlapped with the

actual join operation of the EDBP’s.

3.3. Projection Operation

Performing projection (including the duplicate removal) on the surrogate file as a substi-
tute for projection on the realtion is not useful because of the false drops. Generally, the
hashing function is not ideal, so different attribute values may have the same hashing function
output. Therefore, we can not remove the duplicate binary representations of surrogate file
code words. Thus, projection (including the duplicate removal) must be performed by the
EDBP’s on the actual relations. EDBP’s can use an external sorting unit to remove the dupli-
cate tuples, or can use a duplicate removal algorithm developed for multiprocessor . ystem
[BIT83] depending on the size of the relation to be projected, number of processors, and the

size of the memory in each processor. Other relational operations such as set union and set
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difference have the same problem.

4. Performance An:lvsis of the Proposed Architecture

In this sectiva, we analyse the performance of the proposed relational algebra machine
for the selection and join operations. We used ‘t.e parameter values specified in Table 1 and
assumed that
1) The workloads of the SFP’s and the EDBP’s involved in a relationa' algebra operation

are uniform.

2) Disk I/O operations and the processor- operations are executed concurrently whenever
possible.

3) Pre-operations on the surrogate files by the SFP’s and the actual operations on the facts

by the EDBF’s are executed concurrently whenever possible.

4.1. Selection Operation

In case of a selection operation, the response time is mainly determined by the s'7e of
surrogate file of a operand relation, number of SFP’s and EDBP's involved in the operation,

and the selectivity.

Figure 6 shows the total response time of a selection operation on a relation R as a func-
tion of the selectivity (defined as the ratio of the cardinality of the output reiaton to that of

the operand relation), the number of SFP’s (M), and the number of EDBP’s (N) when
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Parameter Values

Average seek time of a disk 28 msec
Rotational delay of a disk 8.3 msec
Data transfer rate of a disk 2 MB/sec
Block size 4 KB
Effective EDB block access time 10 msec
Interconnection network speed 10 MB/sec
SF and EDB bus speed 50 MB/sec
Memory bandwidth 10 MB/sec
Unique id. dispatching time 10 psec
Projection rate 6 MB/sec
Time for loading a word to -1 0.1 psec

an associative memory

Associative memory searching time | (0.5 + 0.1 n) usec
for n bit-slices

Time for extracting a responded 0.2 psec
word from the associative memory

Byte comparison time in EDBP 0.5 pysec

Table 1. Summary of Parameter Values Used for Performance Analyses
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Cardinality of an operand relation R = 10°

Size of a tuple = 100 bytes

Size of a unique identifier = 3 bytes

Size of a concatenated code word = 20 bytes

Size of a selection attribute = 15 bytes

Size of the binary representation of a selection attribute = 3 bytes
Size of an output tuple = 100 bytes

_ umber of false drops
number of good drops

=0.1.

Since the hashing functions used to generate the CCW are not ideal, there are a certain
number of false drops. We assumed that the total number of matched code words is ( 1 + o)

times the actual number of facts satisfying a selection query.

When the selectivity is low, the pre-selection time on the surrogate file is dominant and
the total response time will decrease as the number of SFP’s increases. As the selectivity
increases, the number of EDB blocks accessed will increase and the actual selection time on
the facts is dominant. Thus, as the number of EDBP’s increases the response time decreases
linearly. Actually, as the selectivity increases the effective EDB block access time would be
reduced due to an increased disk cache hit ratio. However, we assumed that the effective
EDB block access time is constant in evaluating the total response time of a selection opera-

tion.

To reduce the number of EDB block accesses when the selectivity is high, we can search
an accessed block with the search atribute values specified in the query, instead of searching
the block with a unique identifier. In this way we can find all the desired facts in that block.
Then, we store the block number in memory and whenever a unique identifier of a fact within

that block is received, we discard the unique identifier since we already retrieved that fact.
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Figure 6. Performance of Selection Operation

( Cardinality of R = 10%)

4.2. Join Operation

In the case of a join operation, the surrogate file size of the two operand relations, the
number of SFP’s and EDBP’s involved, and the join selectivity will mainly determine the
response time. Since a EDBP performs join operation on two operand facts, one of which may
be transferred from other EDBP, we have to consider the network delay caused by the conflict

in the network. However, usually the size of a projected fact is small, so the transfer time of
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a projected fact is very small compared to a EDB block access time. Therefore the network
contention would not be serious unless the join selectivity is very high. Furthermore, the
transferring of projected facts are overlapped with EDB block accesses and join operations. It
has been shown that any permutation can be performed in a multistage Omega network within
three passes of the network [VAR87], which corresponds to the analysis given in [THAS81].

Thus, we simply assumed that the effective network speed is one third of the nominal network

speed.

The response time of a join operation on two operand relation R; and R, is plotted in
Figure 7 as a function of the cardinality of R,, the number of SFP’s (M), and the number of
EDBP’s (N) when

Cardinality of R, = 10%

Cardinality of the output relation = cardinality of R,

Size of a tuple in R; and R, = 100 bytes

Size of a unique identifier = 3 bytes

Size of a concatenated code word = 20 bytes

Size of a join attribute = 15 bytes

Size of the binary representation of a join attribute = 3 bytes
Contribution of each operand relation to an output tuple = 30 bytes

B = Number of unique identifier pairs extracted _

Cardinality of output relation L1

Due to the non-ideal hashing functions, the number of joinable code word pairs is larger than
the cardinality of the output relation, and B accounts for this effect.

As the total size of the two operand relations increases, the resporisc time increases. The
pre-join time is dominant when the join selectivity is low since the pre-join operation is per-

formed on every pair of surrogate file blocks while the actual join operation is performed on
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Figure 7. Performance of Join Operation between R, and R,

(Cardinality of R, = 105, Cardinality of output relation = Cardinality of Ry)

the two operand facts. Therefore, when the selectivity is low, as we increase the number of
SFP’s we can decreases the total join processing time. When the join selectivity becomes
high, actual join operation time is dominant due to the increased number of random EDB
block accesses. In this case, we can reduce the number of EDB block accesses by storing the
retrieved facts in the working memory and reuse it whenever it is requested. For an example

of an equijoin operation, if the average number of tuples in R; (R,) which have same join
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attribute value is C, (C,), then a tuple of R; which is participated in the semijoin of R, by R,
can be joined with C, tuples of R, on average. Thus, if we store that p.rojccted tuple of R, in
the memory, we can reuse it ( C; — 1) times later. For the same reason, the projected tuple
of R, can be reused ( C, — 1) times later. In Figure 7, we used a constant EDB block access

time independent of the join selectivity.

5. Conclusion

In this paper, we have proposed a relational algebra machine based on the CCW surro-
gate files and analysed the performance of the architecture for parallcl selection and join algo-
rithms. The basic idea of the proposed architecture is to reduce the number of EDB blocks to
be transferred from the secondary storage systems by performing the relational operations on
the CCW surrogate file first. It has been shown that we can obtain an almost linear speedup
in response time for a relational algebra operation by increasing the number of processors
working concurrently. Qur current research is focused on extending the surrogate file tech-
niques to a deductive database system and developing a computer architecture for supporting

the system.
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Abstract

This paper concerns the efficient management of very large logic programs stored in sec-
ondary storage by proposing a physical data organization scheme called an eztended con-
catenated code word (ECCW) which is based on the surrogate file concept.! The ECCW
can be constructed by concatenating transformed code words obtained from the arguments.
Associated with each code word are two fields; a tag field and a value field. The tag field can
represent any argument type including lists and structured terms as well as variables and
constants. The value field contains the transformed representation of the corresponding ar-
gument according to the content of its tag field. The ECCW uses several storage encoding
techniques: multilevel coding to represent nested structures by using normalizing storage
model, tagged coding to discriminate attribute types such as variables, lists, complex terms,
and constants, storage partitioning and tag collection to reduce search space.
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1 Inticoduction

As computer applications become larger and more complex, functionalities of database
management systems (DBMSs) should be extended to deal with diverse environments. In
this context, the need for supporting a data model with the ability to represent arbitrary
complex objects without restrictions on structure is widely recognized. Examples of recent
database systems requiring this ability include object - oriented database systems, knowl-
edge base management systems, and multimedia database systems. It is also clear that the
DBMS supporting complex objects requires a more sophisticated internal storage scheme
since the I/O bottleneck problem becomes worse.

Among the various research issues raised by logic-oriented knowledge base systems, our
study is focused on the issue of physical data organization of complex objects stored on
secondary storage. The main purpose of this study is to provide logic-oriented knowledge
base systems with a universal data organization scheme so that basic operations required
for processing complex objects can be well supported on the data organization.

Our basic approach to solving this problem is the use of surrogate files.1 Surrogate files
are a class of storage model designed for highly efficient secondary storage accesses to very
large data/knowledge bases, which can be viewed as a compact image of the actual knowl-
edge bases primarily based on hashing methods. By first processing surrogate files and
delaying actual knowledge base accesses until a set of relevant pointers to the actual knowl-
edge base is obtained, the performance of the knowledge base systems can be considerably
enhanced.

It is well known that the entire system performance of most data intensive applications
is dominated by secondary storage accesses, that is, by loading data from secondary storage
to a processing level. Due to the dramatic performance improvements of current parallel
computer architectures, this I/O bottleneck problem becomes more serious. Thus, it is
important for a data organization scheme to perform well in parallel computers as well as
in conventional computers, as the traditional file structures do not have this property. The
uniform structure of surrogate files offers the promise of an order of magnitude speed up
for parallel computing. But most surrogate file schemes proposed so far do not support
operations on complex objects, and still require a large amount of I/ O time to load surrogate
files especially for a sequential computer architecture.

In this paper, we propose a new storage model called Extended Concatenated Code
Word (ECCW). The ECCW uses several storage encoding techniques: multilevel coding
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to represent nested structures by using a normalized storage model, tagged coding to dis-
criminate attribute types such as variables, lists, complex terms, and constants, storage
partitioning and tag collection to reduce search space. We are aiming at performing diverse
operations in both sequential and parallel processing environments while minimizing space
overheads.

This paper is organized as follows: In the next section, database models supporting
complex objects are described. Section 3 introduces the basic principle of surrogate files by
describing various Concatenated Code Word (CCW) schemes proposed for logic-oriented
knowledge base systems. The details of the ECCW is discussed in section 4. We conclude

in section 5, and discuss the use of ECCW for various operations as future works.

2 Complex Objects in Database Systems

The classical form of database system such as the relational model was designed to handle
an important but limited class of applications such as financial records or inventories. The
common characteristic of such applications is that they have large amount of data, but the
operations to be performed on the data are simple. For efficient storage management, tradi-
tional database systems are based on records of uniform structures called first normal form
(INF) records defined by Data Definition Languages (DDLs). An obvious disadvantage of
using DDL is that for an attribute having variable length records, the expected maximum
length of the records should be assigned to the attribute, resulting in considerable storage
waste. However, the more serious problem of the 1NF databases stems from its limitation
in modeling real world information. To illustrate this point, suppose we wish to use a
relational database system to store visual images given in Figure 1.

In the figure, four types of drawing objects — circle, oval, rectangle, and vector - are
presented. For each object type, we need information on the type of drawing object, X and
Y coordinate of the origin, color to fill in the object (except for vector objects), and the line
type to be used in drawing the object. For the circle object, we need only one parameter
(diameter), while for the oval, rectangle, and vector object we need two parameters to
represent the shape of the object. Thus, in order to use the relational model, we need the
following relations.

DRAW(SCREEN#, OBJECT#, X-LOCATION, Y-LOCATION).
CIRCLE(OBJECT#, DIAMETER, COLOR, LINE).
RECTANGLE(OBJECT#, V-LENGTH, H-LENGTH, COLOR, LINE).
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Figure 1: Screens in a drawing database

OVAL(OBJECT#, V-DIAMETER, H-DIAMETER, COLOR, LINE).
VECTOR(OBJECT#, DEGREE, LENGTH, LINE).

The major problems using the above scheme are that the OBJECT# in each relation
must be explicitly specified by user and it requires N + 1 relations to represent N types
of drawing objects. The second problem is more serious since a drawing object can be
arbitrarily complex. For example, to represent a general polygon N parameters are required.

The drawing database can be represented by one relation if complex objects are allowed
as attribute values:

DRAW-NF(SCREEN#, SHAPE, [PARAMETERS], X-LOCATION, Y-LOCATION).
Or, when a large number of repeated patterns are expected,

DRAW-NF'(SHAPE, [PARAMETERS], {(SCREEN#, X-LOCATION, Y-LOCATION)})

where the attribute enclosed by a pair of curly brackets represents a set attribute (Fig-

ure 2). The above relations that allow complex objects are called non first normal form
(NFNF) relations.?

For a more formal definition of complex objects, assume that a set of attribute names
and a collection of atomic data types such as integers, float, and strings are given. Then,
(complex) objects3 are definea as follows:™

9% The list object was not defiued by Bancilhon and Khoshafian3. It can be viewed as a generalized set
object.
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DRAW-NF

| Screen# [ Shape L[Parameters] [ X- locatlg_[ Y- locatxon l
1 [ cirde | [10, black, 1] 10
1 circle [10, none, 1] 30 40
1 rectangle | [10, 10, none, 1] 10 10
1 rectangle | {10, 10, none, 1] 13 33
1 rectangle | {25, 10, none, 1] 30 30
1 vector (135, 15, 1] 40 10
2 circle (10, none, 1] 10 10
2 circle (10, none, 1] 20 10
2 circle [10, none, 1] 10 50
2 rectangle | (10, 10, none, 1] 10 30
2 oval (10, 20, none, 1] 30 50
DRAW-NF’
{ Location}
Shape (Parameters] - | Screen# | X-location | Y-location
circle (10, black, 1] 1 10 10
circle (10, none, 1] 1 30 40
2 10 10
2 20 10
2 10 50
rectangle | (10, 10, none, 1] 1 10 30
1 13 33
2 10 30
rectangle | {25, 10, none, 1 1 30 30
oval (10, 20, none, 1 2 30 50
vector [135, 15, 1] 1 40 10

Figure 2: Non first normal form relation for the drawing database
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1. Atomic data elements are objects.

2. If 0,,0,...,0, are objects and a;,az,...,a, are attribute names, then O =< a; :

01,62 : Oa,...,a, : Op > is an (tuple) object.

3. If 0y,03,...,0, are objects then {0,,0,,...,0,} is an (set) object. An ordered set
object is called a list object and represented by [O1,03, ..., O]

The drawing application needs considerably more powerful data operations than con-
ventional business applications. In this context, the integration of the data ménipulation
and host languages becomes important. Zaniolo4:9 indicated that by introducing logic to
database systems, the database system can gain two important functionalities, namely the
ability to handle complex objects and powerful rule supports including recursive views. The
database system with such functionalities is called logic-oriented knowledge base system.

The basic data elements that logic-oriented knowledge bases deal with are terms. A

term is defined as follows:

1. A variable is a term denoted by a capital letter such as X, Y, Z, ...
2. A constant is a term denoted by a lower case letter such as a, b, ...

3. If f is an n-ary function and ¢;,---,t, are terms, then f(¢;, -, %) is a term.

The syntax of the term subsumes that of the complex object. For example, the drawing
database defined by the NFNF database can be represented by terms as shown in Figure 3.

Since the list object can be viewed as a binary function, a polygon with n edges can be

represented by the term given below.

POIYSOB([(@'I, yl)v (.’122, y2)7 ey (Inv yn)])

In addition, by using rules and logical variables, more complex objects can be con-
structed. Consider, for example, the construction of a “disk” type shown in Figure 4.

Suppose that an object type is of the form
object-type([Parameters), X-location, Y-location, Color, Linetype)

and a built-in predicate “group” is used to construct a new object. Then, the disk can be
recognized by the following rule:
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draw(1, circle(10, black, 1), 10, 10).
draw(1, circle(10, none, 1), 30, 40).
draw(1, rectangle(10, 10, none, 1), 10, 30).
draw(1, rectangle(10, 10, none, 1), 13, 33).
draw(1, rectangle(25, 10, none, 1), 30, 30).
draw(1, vector(135, 15, 1), 40, 10).
draw(2, circle(10, none, 1), 10, 10).
draw(2, circle(10, none, 1), 20, 10).
draw(2, circle(10, black, 1), 10, 50).
draw(2, rectangle(10, 10, none, 1), 10, 30).
draw(2, oval(10, 20, none, 1), 30, 50).

(a) Conversion from the DRAW-NF

draw’(circle(10, black, 1), [(1,10,10)]).

draw’(circle(10, none, 1), [(1,30,40), (2,10,10), (2,20,10), (2,10,50))).
draw’(rectangle(10, 10, none, 1), ((1,10,30), (1,13,33), (2,10,30))).
draw’(rectangle(25, 10, none, 1), [(1,30,30)]).

draw’(oval(10, 20, none, 1), [(2,30,50)]).

draw’(vector(135, 15, 1), [(1,40,10))).

(b) Conversion from the DRAW-NF’

Figure 3: Logic-oriented knowledge base for the drawing database
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Figure 4: Disk object

oval

i -
—_—

disk([V-length,H-length], X-location, Y-location, Color, Linetype):-
group([rectangle([V-length,H-length], X-location, Y-location,Color, Linetype),
oval([X, H-length], X1, Y1, Color, Linetype),
oval((X, H-length], X1, ¢-location, Color, Linetype)]),
X1 = X-location + H-length/2, Y1 = Y-location + V-length.

From the examples given above, we have showed that the logic-oriented knowledge base
system is powerful enough to handle most classes of complex objects in a uniform way.

3 Basic Surrogate File Schemes

Surrogate files are constructed by transformed binary codes where the transform is per-
formed by well chosen hashing functions on the original terms. Examples of surrogate file
schemes developed so far include Superimposed Code Word (SCW), Concatenated Code
Word (CCW), and Transformed Inverted List (TIL). In this section we describe the con-
struction of CCW.

The CCW of a tuple is generated by simply concatenating the binary representations
(BR’s) of all attribute values and attaching the unique identifier of the tuple. Consider,
for example, p(a, b, ¢) and assume that the BR’s for a, b, and ¢ are 0100, 1100, and 1010
respectively. The corresponding CCW is

0100 { 1100 | 1010 | UID

The argument positions not specified in the query (i.e. variables) should be represented by
don’t care match indicators. The QCW for « p(a,X,c) can be obtained by replacing the
second argument position with don’t care match indicators.

0100 | xxxx | 1010
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p(X, a, (HIT] fc, d))

Oix |Hash(p) | 11x]id(X) | 00x| Hash(a) || 101 id(H) |O1ix |Hash() | uid

Figure 5: Extending CCW to general terms (CCW-2)

The matching condition is CCW = QCW provided that x (don’t care match indicators)
can match with both 1 and 0. A clear advantage of the CCW over SCW is that we can
perform relational operations such as Join on the surrogate file itself rather than on the
actual extensional database (EDB).

In the standard form of PARLOGS, no structured term appears in the head of clauses.
Thus, in this context, only pure variables and constants should be considered. We pro-
posed a CCW method? (CCW-1) to handle the standard form of clauses. In this sc 1eme,
each CCW code corresponding to an argument has an one bit tag to indicate whether the
argument is a variable. The tag bit is used for bidirectional don’t care matches as a pre-'
liminary step of unification. CCW-1 provides an efficient mechanism in searching possible
candidate clauses as well as in detecting binding conflicts among shared variables in early
stages of execution. However, since this scheme is based on guarded Horn clauses and
mode declarations, its application is somewhat limited to the parallel logic programming
paradigm.

CCW-28 is basically the same structure as CCW-1, which can be constructed by con-
catenating transformed code words obtained from the arguments along with the predicate
name of the head of a clause. Each code word is divided into two fields; tag field and value
field. Unlike CCW-1, however, the tag field can represent any argument types including
lists and structured terms as well as variables and constants. The value field contains the
transformed representation of the corresponding argument according to the content of its
tag field. For example, if the tag indicates structured term. then the value field contains
the hashed value of the primary functor, while if the tag is for a variable, the corresponding
value field represents the variable identification number. This scheme can be viewed as an
augmentation of CCW-1 with the indexing scheme used in Warren’s Abstract Prolog In-
struction Set? where only the first argument is indexed. Table 1 shows the coding method
of the CCW-2 scheme. An example of CCW-2 encoding is shown in Figure 5.

In contrast to CCW-1, CCW-2 can be used for current Prolog systems and does not
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| Argument Type ] Tag Field | Contents of Value Field J

Constant 00x | Hashed Value of the constant
Function 01x Hashed Value of the Primary Functor/Arity
List 100 Hashed Value of the CAR constant
101 Variable ID for the CAR variable
Variable 11x Variable ID

Table 1: CCW-2 coding scheme

require mode declarations. Due to the type checking mechanism, false drops can be consid-
erably reduced without sacrificing the compactness and uniformity of CCW. In addition,
the uniform and compact data structure of CCW’s allows the effective use of specialized
hardwares such as associative memories.?:8

4 Extended Concatenated Code Word

The surrogate files proposed so far have fundamental limitations in handling complex ob-
jects. The SCW schemes10;11 for complex objects cannot effectively support operations
such as join. Furthermore, only very coarse clustering can be used for SCW’s. For example,
when 20-in-1 coding and transposed organization are used, 5 % of record descriptors need
to be accessed. One of the distinctive features of the CCW scheme is its ability to perform
relational operations without accessing actual data/knowledge bases. The previous CCW
schemes, CCW-1 ana CCW-2, however, do not support diverse operations for complex
objects, although they can be used in searching. Furthermore, the previous CCW schemes
lack the ability to support complex searching operations based on subarguments.

The surrogate files generally perform well in a parallel processing environment. One of
the interesting examples is the use of SCW in document retrieval for the massively parallel
Connection Machine.l2 One of the drawbacks of the surrogate file scheme ( both SCW and
CCW ) is that every tuple descriptor should be compared to the given QCW, and thus
its entire descriptor file should be retrieved from secondary storage. Although the size of
descriptor file is small (about 20 % of the original file sizel), loading entire descriptor files
to the main memory. Stonel3 indicated that the use of one-level SCW for highly parallel
machines can incur a serious I/O problem since all record descriptors should be loaded to

data processors. He argued that using a cleaver indexing scheme for a sequential machine
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o uid's Knowledge

Figure 6: Top level organization of surrogate files

draw(uidl, 1, uidl1, 10, 10). circle(uidl, 10, black, 1).
draw(uid2, 1, uid21, 30, 40). circle(uid2, 10, none, 1).
draw(uid3, 1, uid31, 10, 30). rectangle(uid3, 10, 10, none, 1).
draw(uid4, 1, uid41, 13, 33). rectangle(uid4, 10, 10, none, 1).
draw(uid5, 1, uid51, 30, 30). rectangle(uid5, 25, 10, none, 1).
draw(uid6, 1, uid61, 40, 10). vector(uid6, 1335, 15, 1).
draw(uid7, 2, uid71, 10, 10). circle(uid?, 10, none, 1).
draw(uid8, 2, uid81, 20, 10). circle(uids, 10, none, 1).
draw(uid9, 2, uid91, 10, 50). circle(uid9, 10, none, 1).
draw(uid10, 2, uid101, 10, 30). rectangle(uid10, 10, 10, none, 1).
draw(uidl1, 2, uid111, 30, 50). oval(uidll, 10, 20, none, 1).

Figure 7: Normalized complex objects

can outperform massive parallelism.

This section is concerned with the design of the Extended Concatenated Code Word
(ECCW) to solve the problems of the previous surrogate files. Our surrogate file scheme is
based on two heterogeneous storage models as shown in Figure 6. The surrogate file part
(ECCW) is based on the normalized storage model so that partial match retrieval can be
effectively supported. On the other hand, the actual knowledge base supports the direct
storage model where an entire object can be easily accessed.

4.1 Normalization of complex objects

The first step in constructing ECCW codes is to transform complex objects to normal-
ized forms. In the normalized form, every complex subobject is represented by a lower level
“fat” object. The original position of the subobject is substituted by a unique identifier.

Figure 7 shows the normalized complex objects for the drawing database given in Figure
3.
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| Argument Type ] Tag Field | Contents of Value Field l

Constant 00 Hashed Value of the constant
Nested Relation 01 Unique ID for the subrelation
List 10 Unique ID for the List
Variable 11 Variable ID

Table 2: ECCW coding scheme

draw(uidl, 1, uid11, 10, 10). circle(uidl, 10, black, 1)

draw 00 H(1){ O1 uid11] 00 H(10) {00 H(10) || uid1

circle 00 H(10)| 00 H(blacky 00 H(D)}| uid1

Figure 8: The logical representation of a complex object in ECCW
4.2 Tagged coding

The normalized “draw” relation has level number 0, representing an entire object. On
the other hand, the relations such as “circle”, “rectangle”, “oval”, and “vector” are regarded
as objects at level 1. Since all the level 1 objects are the third arguments of the level 0
relation (“draw”), their addresses are 3 with respect to the level 0 relation. For each
normalized form of objects, an ECCW code can be constructed by concatenating tagged
binary descriptions of all the attributes. We use two bit tags to represent four different
types of attribute values. Table 2 shows the tags and the corresponding values. This
tagging scheme is a modification of the one developed for the CCW-2 scheme. Each object
can be logically connected via the uid’s as shown in Figure 8.

4.3 Directory structure of the ECCW

In order to reduce the search space for a given query, various techniques are explored.
Note that, if an argument of a query is an atomic constant, the corresponding arguments
of the qualified objects should also be constants. On the other hand, if the argument has
a complex object type such as a list or a nested relation, then the corresponding argument
type should be matched with that of the corresponding ECCW code. Since variables can be
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considered as “don’t care” match indicators, the variables in ECCW should be considered
for every query. ‘

Thus, for a normalized relation with N arguments, we can partition the relation into
4V subrelations by collecting tags of all attributes in a place. Consider, for example, a
relation with three arguments. Since each attribute at level 1 can have 4 types, 43 = 64
different collections of tags from 000000 to 111111 can be used for clustering. In the best
case, when data are uniformly distributed without variables in ECCW, only 1/ 32 =3.7 %
of surrogate files need to be accessed. In the worst case, however, when every argument is a
constant and the query is for exact match, all the ECCW codes need to be searched. Thus,
we propose to use a data space partitioning scheme such as the grid file for the ECCW so
that we can retrieve a desired code word with small number of disk accesses.

The overall organization of the ECCW is shown in Figure 9. As seen in the figure, the
ECCW consists of three basic components:

1. The header table for level k objects has four entries; relation names for level k relations
( for example, “circle” for circle(10, none, 1)), argument positions (addresses) with

respect to level 0 relation, the number of arguments of the relations, and pointers to

the level k link tables.

2. The link table for level k objects has pointers to grid file directories to access the codes
of level k normalized relations. Child pointers are used to indicate the locations of
header tables at level k + 1.

3. The grid file for level k objects is used to store transformed data of level k objects,
which is partitioned by using data space partitioning schemes described in section
3.3. Grid file directories allow easy access to a portion-of partitions.

4.4 Surrogate file partitioning for parallel disks

Due to the limitations of both magnetic and optical technologies, the use of multiple
disk systems in parallel such as the disk interleavingl4 has been considered. Low cost
Winchester disks, which have the maximum data transfer rate of 1.5 megabytes/sec with
the Small Computer System Interface (SCSI), make it feasible to use a very large number
of disks for a computer system. The Connection Machine Model CM-2,15 for example. can

accommodate eight Data Vaults each of which consists of 39 individual Winchester disks
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Figure 10: Trie directory for database partition

working in parallel. The Data Vault can transfer data at the rate of 40 M byte/sec and
can hold up to 10 G bytes. |

The ECCW adopts grid files!6 to partition large surrogate files into small manageable
blocks. Suppose that we have a normalized subrelation R(A,B) and the corresponding
surrogate codes (without tags) R'(A’,B’). A possible pair of A" and B’ values can be plotted
in a two dimensional area as we have showed in Figure 10 (a). If a relation has k attributes,
then k dimensional area should be considered. The surrogate file R’ is now considered as
a set of points scattered over this area. Since a code has a fixed length, a subrectangular
can hold a fixed number of codes. Consider, for instance, a query R’(010010, 110011) and
the trie directoryl? given in Figure 10 (b). For the query, only the bucket f needs to be
accessed. As shown in the above example, we can divide searching into two processing
levels, i.e. directory search and grid accesses. For exact match queries, two disk accesses
are required. When buckets are ideally distributed and a large number of buckets should
be accessed, the processing time can be reduced further by using parallel disk systems.
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5 Conclusion and Future Work

The ECCW is designed to achieve high performance mainly for parallel processing envi-
ronments. However, due to the index structures of the ECCW, we expect that, unlike
previous surrogate file schemes, the ECCW can efficiently perform search operations in se-
quential environments as well. Furthermore, the storage requirement of the ECCW is not
prohibitively large when compared to other schemes, although its performance is increased
at the expense of more storage. We propose to compare the storage requirement of the
ECCW with other schemes together with the retrieval performance in both sequential and
paralle]l processing environments.

The main advantage of the ECCW stems from its ability to handle operations for
complex objects. We are currently investigating the use of the ECCW for the following
operations for both sequential and parallel processing environments.

1. Unification/Term Matching. We propose to develop a term matching and unification
algorithm based on ECCW, since considerable speed-up is expected in handling com-
plex terms if we can perform unification on surrogate files instead of actual knowledge
bases. As in the case of relational operations on ground facts, it would be possible

to delay accesses to actual knowledge bases until the processing of surrogate files is
finished.

2. Least Fized Point Operation. Since the LFP operation is basically repeated joins
with equality check, it can be implemented as an extension of the parallel relational
algebra.8

3. Ertended Relational Algebra (ERA). Algorithms for ERA operations such as extended
search/project4:9 are relatively easy compared to the unification/term matching oper-
ations. But, in a parallel processing environment, the distribution of data to multiple
storage units will play an important role to a high performance system. The use of
ECCW for unification joinl8 will be also investigated.

One of the important issues in the surrogate file processing is the effects of false drops.
The false drops can be easily recognized for a search operation, but they may be hard
to be detected for a complex operation. For example, after performing a number of join
operations on conjunctions, it is very difficult to decide which portion of the answers resulted

from false drops. Deciding the optimal point for accessing actual knowledge bases to remr<.e
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false drops is one of the most difficult issues in the surrogate file processing. In other words,

after performing a number of consecutive operations on the surrogate files, the detection

of false drops might be difficult. However, checking false drops for every selection could

degrade the system performance since it causes a lot of irrelevant secondary accesses. We

will investigate efficient false drop detection schemes for the operations mentioned above.

Many details of the ECCW scheme such as the management of list objects and the

directory scheme are left unspecified. We will evaluate various alternative methods to

decide optimal structures for the ECCW, and continue to investigate the use of the ECCW

for various operations to improve the performance of very large logic-oriented knowledge

base systems.

6
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Abstract

In this paper we study a class of computer architectures proposed so far for logic-oriented
knowledge bases by surveying specialized computer architectures supporting general clauses
and terms in logic programming, together with important operations and algorithms con-
sidered in designing such machines. Our particular interest lies in handling large, complexly
structured data/knowledge bases residing on secondary storage for data intensive applica-

tions.
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i Introduction

The Knowledge Base Management System (KBMS) is often considered one of the most im-
portant future computer applications, which can be viewed as an advanced database system
augmented with an inferencing mechanism. One of the distinctive features of the KBMS’s,
when compared to other Al based systems, stems from its ability to handle large amounts
of data efficiently. In other words, knowledge base systems should have all the functionali-
ties of current database systems including efficient data access to secondary storage, while
most Al systems such as production rule systems only concerns with manipulating data in
fast primary memory.

Among various possible inferencing mechanisms, this paper concerns the first order logic
or logic programming, as logic programming has been proven to be a useful tool in many
knowledge-oriented applications such as expert systems, and can be well integrated with
existing database management systems. The relational database system is well known to
be congenial for the logic programming system as both systems are based on the first-
order logic. Simple rules, except for rec rsive ones, of logic programming can be easily
represented by the view definition of relational database systems. Even recursive queries
can be processed by a sequence of relational algebra with equality checking. But the
relational model only allows for normalized database, while logic programming deals with
complex data structures called a term. On the other hand, the hierarchical model provides
facilities to define a similar data structure to what logic programming deals with, but lacks
the ability to support general rules. Thus, by introducing logic to a database system, the
database system can gain two important functionalities; recursive view support by general
rules and management complex objects defined by first order terms.

The major problem in interfacing logic programming systems with current database
systems lies in that most traditional data models use some kind of data definition language
to define the structure of data in advance, while logic programming systems can have arbi-
trary complex objects, and establish dynamic run-time data structures through unification.
When secondary storage is involved, the traditional data access methods should be recon-
sidered, and the management of large persistent, complex objects can become a formidable
task. Advances in hardware technology make it feasible to design specialized computer
architectures for complicated applications requiring enormous processing loads.

This paper begins with basic definitions and principles used in the context of logic-

oriented knowledge base systems. Section 3 presents a taxonomy of proposed knowledge
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base machines. We first classify the proposed machines into two large classies, and then
describe the characteristics of those machines in each class. In the following sections, we
will see how proposed machines are designed to deal with specialized operations required

for these functionalities. Section 7 is a conclusion drawn from the survey.

2 Preliminaries

The basic data element that logic programming deals with is term. A term is defined as

follows:

1. A variable is a term denoted by a capital letter such as X, Y, Z, ...
2. A constant is a term denoted by a lower case letter such as a, b, ...

3. If f is an n-ary function and ¢,,---,t, are terms, then f(¢;,---,¢,) is a term.

Terms are searched and manipulated through unification. Informally, the main purpose
of unification is to make two or more terms identical by proper and the most general sub-
stitutions for logical variables existing in the terms. Figure 1 shows the original unification
algorithm proposed by Robinson [51]. The disagreement set D of a set of terms S is the set
of leftmost subterms consisting of different symbols. For example, the disagreement set of S
={p(a,g(X),b),p(a,r(Y),s(X))} is {g(X),x(Y)}. Robinson’s algorithm requires exponential
time with r&pecti\}e to the size of terms. The major processing load stems from ‘occur
checks’ used to prevent variables from binding infinite terms. That is, when testing if a
variable X unifies with a structured term t, a check should be done whether X occurs in t
(i.e. {X/f(X)}). In current Prolog, the occur check is omitted for efficiency.

Ever since Robinson introduced the basic unification algorithm for the resolution prin-
ciple, more efficient algorichms have been proposed. Paterson and Wegman developed the
first linear unification algorithm based on Directed Acyclic Graph representation of terms
(47).! The DAG representation of two terms, p(g(Y), h(X,Y)) and p(g(Z), h(Z. r(U.V))).
and Paterson and Wegman'’s unification procedure on the DAG of the terms are illustrated
in Figure 2. In the DAG representation of terms, common subexpressions are represented
by a single subgraph (the variable Y in the above figure). The lines across two terms
denotes the equivalence class.

!See also 7] for more discussion on Paterson and Wegman’s algorithm. Another linear algorithm is
developed by Martelli and Montanary [36).
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/™ S is a set of terms to be unified */

—

k= 0; O = ¢
CIf ISUkl =1

then mgu = oy

else find the disagreement set D; of So;
3. If there exist a variable v and a term t in D;
such that v does not occur in t (Occur Check)
then opyy = or{v/t}k=k+1; goto 2;
else S is not unifiable

(S

Figure 1: Unification Algorithm

P(E(Y), h(X,Y)) P(8(2), h(Z, r(U, V)
f'" \
\ P

,\V\

—7N\

Figure 2: Unification on DAG
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Since applying unification on large amounts of data requires a heavy processing load,
exploiting parallelism in unification has been studied {25,83,90]. However, Dwork et al. [16]
indicated that, since unification is inherently sequential, even parallel evaluation of a uni-
fication algorithm may not offer a considerable speed-up over a sequential one. On the
other hand, term matching, which can be viewed as a special case of unification when ei-
ther of the two terms to be unified is variable-free, has a very efficient parallel algorithm (
O(log*N)) [17). Thus, unification can be more efficient if all unit clauses (facts) consist of
variable free terms. '

Parallel evaluation of logic programming is also an important issue in logic-oriented
data/ knowledge base systems not only for performance but also for semantics, since the
order of execution among several candidate clauses is very difficult to guarantee, especially
when clauses reside in secondary storage. Conery {10] classified the inherent parallelism in
logic programming into three major categories; low level parallelism, OR-Parallelism and
ANT)- Parallelism. The low level parallelism is to overlap primitive operations required for
logic programming evaluations so that the execution time can be reduced. For example, the
Prolog Instruction Set called Warren Abstract Machine (WAM), proposed by Warren(86]
can be executed in a pipelined fashion [80]. The sequential evaluation order in which
alternative clauses are tried in sequential logic programming (Prolog) can be parallelized
by trying all candidate clauses in parallel, which is called an OR-parallelism. In the context
of very large knowledge bases, a special kind of OR-parallelism, called search parallelism,
can enhance the performance of the system as finding candidate clauses is one of the most
time consuming jobhs. AND-Parallelism, on the other hand, concerns parallel evaluation of
subgoals by replacing the strict left to right evaluation order of Prolog. A possible method
of exploiting AND-parallelism is to restrict the parallelism by forcing subgoals with shared-
variables to be executed sequentially through compile-time analysis, while éxecuting the
other literals in parallel by a simple run-time test [12]. Join on two relations can be viewed
as an example of exploiting AND-parallelism in bottom-up processing.

Parallel logic programming languages have been developed to eectively exploit various
forms of parallelism inherent in logic programming, and, in some cases, have been designed
as the underlying language of logic-oriented data/knowledge bases. Examples of parallel
logic programming languages include PARLOG (8], Concurrent Prolog [61], Epilog [S7]. and
Guarded Horn Clauses [82]. For more complete surveys on parailelism in logic program-

ming, readers may refer to [11,30,48]. As far as bottom-up (forward-chaining) set-oriented
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evaluation is concerned, parallelism may not be an important issue. But when top-down,
tuple-by-tuple evaluation is to be used, the control of binding information among parallel
processes becomes a critical requirement in the context of logic-oriented data/knowledge

base systems.

2.1 Taxonomy of Logic-Oriented Data/Knowledge Base Ma-
chines

The major design objectives of logic-oriented knowledge base machines are to achieve high
performance in two important tasks which can significantly influence on overall system
performance; inferencing on large number of rules and management of a very large data
space consisting of facts stored on secondary storage. In this paper, we classify logic-
oriented data/knowledge base machines proposed so far into two large classes depending
on how rules and facts are managed?:

1. “combined” knowledge base machines (C-KBM) consisting of a number of inference
machines for handling rules and a number of database machines for managing facts.

2. “integrated” knowledge base machines (I-KBM) with capability of uniform manage-
ment of both rules and facts.

The inference machine component of the C-KBM class can be viewed as a front-end of a
database machine component, which is maiﬁly responsible for the unification operation or
for efficient management of memory space to maintain information about variable bindings
for unification. The inference machines can be further classified into two subtypes based

on the instruction level.

1. unification machines designed to speed up unification for logic programming inter-

preters.

e unification co-processors which interact with the existing host by sharing mem-

ories or by interconnection networks.

2For broader surveys on Al machines, interested readers may refer to (28,81,85]. They use different
classification schemes; in (28], the AI machines proposed so far are classified into three major categories,
namely language-based machines, knowledge-based machines, and intelligent interface machines. On the
other hand, Treleaven et al. [81] classifies computer architectures into 6 major categories including two
Al-related categories logic computers and knowledge-based computers. The scope of this paper include
those Al-machines based on logic and database machines in the logic paradigm. For surveys on database
machines, readers may refer to (45,49]. The taxonomies of database machines are presented in [6,49)].
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2.

e unification filters which function similar to database filters. They can perform

unification on data streams from a large file store.

Prolog machines designed for compiled Prolog instruction sets. Most of them are
based on the Prolog instruction set developed by Warren (Warren Abstract Machine:
WAM) [86]. Since compilers’ performance is far greater than that of interpreters,
order of magnitude speed ups can be achieved by exploiting computer architectures
tailored to the instruction set.

The database machine component of the C-KBM class provides knowledge base system

with efficient access paths to objects stored on secondary storage, and supports diverse

database operations such as join. In the context of knowledge base systems, we can consider

two types of database machines.

1.

deductive database machines mainly concerned with how to deal with rules in rela-
tional database environment. For example, the Least Fixed Point (LFP) operation [2]

is considered to support recursive rules.

database machines for unnormalized relations designed to support non-relational
models such as the hierarchical database model. As general terms and Horn clauses
cannot be represented by the relational model, these machines can be used in dealing

with general terms.

The knowledge base machines in the second class, the integrated knowledge base ma-

chines (I-KBM’s), integrate data manipulation and inferencing into a single system. From

the software point of view, this approach includes augmenting logic programming systems

with a secondary storage access capability. We classified the - KBM’s into three categories:

1.

o

massively parallel .=achines which can offer high performance required for integrated
knowledge base machines. Since loading data to the processing level can be a major

system bottleneck, a high data rate should be provided by I/O systems.

machines with intelligent storage management specially designed for logic-oriented
knowledge bases. The principal enhancement of this approach over the combined
approach stems from the capability of managing objects residing in secondary storage
by intelligent storage management such as virtual memory and/or paging systems.
Complex objects (terms) can be retrieved based on unification/term matching, and

top-down evaluation (backward-chaining) of clauses is used.
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3. specialized associative processors designed for logic-oriented knowledge base process-
ing. By exploiting a clever encoding scheme, associative memories can be used for

managing both rules and facts.

Many interesting physical data organization schemes and indexing schemes have been

proposed with these machines, aiming at efficient hardware implementation.

3 Inference Machines

3.1 Unification Machines
3.1.1 Unification Co-Processors

Having found that most execution time of the UNSW Prolog interpreter is taken by unifi-
cation operations, Woo proposed Hardware Unification Unit (HUU) as a back-end server
of VAX11/780 to speed up the unification operations [88,89]. As seen in Figure 3, the HUU
consists of six components:

1. host interface which receives input data (pointers to two terms to be unified) from
the host and sends results to the host. It is also used by the host to access internal
registers and the local memory of the HUU.

2. registers which store input data and intermediate results.

3. ALU which performs arithmetic operations (addition and comparison).
4. local memory used as a variable stack.

5. microcontroller which generates all control signals used in the HUU.

6. clock generator which generates clock pulses when the HUU is active.

Although the HUU can improve the performance of unification up to 100 tirues faster than
the software ‘unify’ function of the UNSW Prolog, the HUU may not outperform Prolog
compiler in terms of the overall performance. Dorby et al. indicated that the compilation
to an optimized instruction for Prolog can gain factors of 20 over interpretation [14]. Even
if we assume that the ‘unify’ function takes 70 % of the total execution time and the
HUU can improve the performance of unification operations 100 times, the HUU can only
achieve speedups of 3.3. The performance analysis of the Syracuse Unification Machine
(SUM) showed a similar result (speedups of 2) [52].
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Figure 3: Hardware Unification Unit by Woo

The associative processor (AP) designed by Stormon [67] for unification is an enhanced
version of the SUM. The Stormon’s unification machine enhance the performance of the
SUM by providing content addressability in stacks for managing binding environments.
Unlike in the HUU, the host sends a stream of pairs of subterms to the associative processor
since all data structures reside in the host. The maximum speed that can be achieved by
the unification processor is predicted up to 500K LIPS (Logical Inference Per Second) which
outperforms most Prolog machines.

3.1.2 Unification Filter

Shobatake and Aiso [63] proposed a systolic-like method to implement a VLSI-oriented
unification processor by using a linear organization of processing elements (cells) aiming at
eliminating frequent data transfers between the host and the unification processor.

A cell consists of two identical pairs of registers — a bound variable register (BVR)
and a symbol register (SYR). The SYR contains a functor with its arity, and the BVR
is designed to keep the variable after unification is completed. It plays a similar role as
the trail stack in Prolog interpreters. An input term to the cell array 1s composed of
beginning mark(TS), functor name with arity followed by arguments represented also by
functor name with arity number, and finally, ending mark (TE). This representation allows
to store arbitrary complex terms. The other term to be unified with the given term is
represented in a reverse order. The arities of variables and constants are assigned to zero.

For example, a term f(X, a(b, Y)) can be represented as
(TS)(£,2)(X)(a,2)(b,0)(Y)(TE)

and the other term f(c,Z) to be unified can be represented as
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Figure 4: Stream Unification

(TE)(Z)(c,0)(£,2)(TS).

Shobatake and Aiso’s unification machine performs unification on the stream of two terms
represented by the family order. Only the cell in the compare-point actually performs
comparison. After variable is instantiated to a constant, the variable binding is broadcast
to other cells to prevent binding conflicts among shared variables. When a variable is bound
to a non-atomic term, the cell corresponding to the variable has the alue of the functor,
and a portion of a term is shifted to a direction to make an empty region. Then the empty
region is copied from the subsequent subterm. Figure 4 illustrates the unification procedure

in the unification processor.

One of the problem of the stream unification method expected in the implementation
stage is the size of cell arrays. That is, the number of cells should be equal to or greater
than the maximum number of symbols representable in a term. Since the data structures
of Prolog can be arbitrary large ( e.g. list ), it would not be possible to construct a cell
array large enough for all cases.

Tanabe and Aiso [72] proposed to use the structure sharing scheme, and designed
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pipelined unification processor (PUP) for stream processing to solve this problem. One
of the major improvements of the PUP over the previous machine is that consistency
checks on variable bindings are separated from comparisons among constants by using a

pipelining technique. The PUU consists of 4 major components:

1. STBYV (Select Term Binding Variable) processor which performs a comparison among
constants to be unified (a preunification step). In this step, all the variables appearing

in the terms are regarded as don’t care match indicators.

o

AVTC (Assign Variable To CTBYV) processor which finds binding conflicts for shared
variables.

3. CTBYV (Charge Term Binding Variable) processors which manage the actual bindings
for variables. There are number of CTBV’s each of which contains a variable binding.

After a successful unification, the most general unifiers (mgu’s) will be stored in
CTBV’s.

4. CCTBYV (Control CTBV) processor which controls CTBV and AVTC.

The unification machines described above are not concerned with secondary storage.
They are classified as unification filters due to their stream processing natures. The unifi-
cation filter proposed by Sabbatel et al. [55,56,57] is a first unification machine that can
find candidate clauses or unifiable terms from secondary storage. This machine exploits “on
the fly” unification and set-oriented retrieval by using a pipelined method. The proposed
hardware component functions similar to the database filters. The unification algorithm
performed in the unification filter is separated into two stages; a preunification step and
a consistency check. When a specialized secondary storage with very high data trans-
fer rate is developed, the stream unification method will be very useful for logic-oriented
data/knowledge bases.

3.2 Prolog Machines

Prolog machines are designed to enhance the performance ~f both sequential and parallel
logic programming languages. Important techniques used in sequential Prolog machines
include the pipelined execution of WAM instruction sets by exploiting special registers for
passing arguments among procedures and the clause indexing scheme to find candidate
clauses for the given goal. In WAM, clauses with the same predicate name are divided
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| Machine | Institution | KLIPS | Characteristics

PLM [15,14] UC Berkley [ 425 | Sequential, WAM
PPP (18] UC Berkley N/A | Parallel extension of
PLM and WAM
HPM [41] NEC 280 | Sequential, WAM
IPP [1] Hitachi 1000 | Sequential, WAM
Special clause Indexing
PSI [20] ICOT 30 | Sequential Interpreter
(Structure Sharing)
PSI-II [20] ICOT 100 | Sequential, WAM
PIE [39,73] U. of Tokyo N/A | Parallel Interpreter
(Structure Sharing)
PEK [71] U. of Kobe 40 | Sequential Interpreter
PARK [37] U. of Kobe N/A | Parallel
PIM-R [22,40] ICOT N/A | Reduction
PIM-D [29,22,40] | ICOT N/A | Dataflow. GHC
ICM3 [43] ECRC 530 | WAM, Co-processor

Table 1: Prolog Machines

into several groups according to the types of the first arguments (i.e. variable, constant.
list, structured term). Then, the selection of a candidate clause in a group is performed
according to the hashed value of the first .argument. This type of indexing is proven
very useful for small logic programs residing in main memory, and allows programmers to
enhance the performance by making clauses discriminated by the first arennients. Parallel
Prolog machines also use diverse techniques such as parallelized WAM .structions. the use
of AND/OR parallelism, and dataflow. Table 1 shows some Prolog machines proposed so
far.

A representative Prolog machine based on the WAM is the Programm  Logic Machine
(PLM) [14,15]). PLM exploits small scale parallelism and instruction pipelining with special
registers and a microcoded instruction set. PLM consists of two main units as seen in
Figure 5; the control unit and the executi~n unit. The control unit consists of a control
store containing micro codes and a microsequencer for executing the micro codes. and is
primarily responsible for directing the actions of the execution unit for its own command
as well as for communicating with the host interface using buffers. The execution unit

consists of two major components; a register file and an ALU. The 1ceister file consists of
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Figure 5: The Ar-“itecture of PLM

nine general registers to support the PLM instruction set. These registers are mainly used
to store pointers to indicate the current state of computation and the previous state for
packtracking. The other special registers — T1, T, MDR, and R - separate an operation into
three stages for pipelining. In the first stage (C stage), the T and T1 registers are loaded
with data. Then, at the next stage (E stage) the ALU performs corresponding commands
and intermediate results are placed on the R and MDR registers. In the final stage (P
stage), the results are transferred ‘o the general registers in the register file. A typical
micro routine involves one C stage operation, several E stage operations and one P stage
operation. By pipelining these three stages, the system performance can be considerably
improved. Parallel Prolog Processor (PPP) is a parallel extension of the PLM to exploit
AND/OR parallelism [18]. A commercial version of PLM called X1 is also being developed
by Xenologic [13,30].

The Integrated Prolog Processor (IPP) (1], which is one of the highest performance
Prolog machines proposed so far, uses optimal arguments (up to 2) instead of the first
argument for indexing. The optimal argument is the one on which clauses can be discrim-

inated. Consider, for example, the following clauses:

p(X, o(Y,Z), [ H|T]) -
p(X,s(Y,2), H|T]) — -
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The second arguments are optimal for indexing since the clauses differ each other only in the
second arguments. Alternatively, an argument having the maximum number of constants
is selected as the optimal argument. If there are more than two arguments that satisfy this
condition, the left-most two optimal arguments are selected for indexing. If there are no
such arguments satisfying above conditions, then the first argument is selected for indexing

as in WAM. This indexing scheme contributes to the high performance of IPP.

4 Data Base Machines

Research and development on database machines have drawn a great attention in past
decade as high-level data models such as the relational model prevails. Modern database
systems should be supported by building multiple layers of software, mapping high-level
commands into low-level storage representations, which have been considered as a cause
of inefficiency under conventional computer systems. The main purpose of building a
database machine is to reduce the gap between the semantic model and the actual internal
representation of data [68]. In the context of logic-oriented krowledge base systems. we can
consider two types of database machines; deductive database machines and non-relational
database machines. The former are designed as a back-end of inference machines and
mainly support the relational model by providing means of efficient relational operations
for general rules. On the other hand, the machines in the latter category provides basic
mechanism for handling complex objects. We investigate physical data organizations of
these database machines since an efficient management of a large data space 1s one of the

most critical requirements [5,66].

4.1 Deductive Database Machines
4.1.1 ILEX

The ILEX machine proposed by Li supports a typical example of knowledge base svs-
tems based on the combination of existing systems {32]. In order to avoid modifications
on an existing logic programming system residing in the host and to provide an interface
between a data manipuiation language and a logic programming language. a meta-level
procedure transforming a query written in the data mauipulation language to the corre-
sponding canonical logic programming form is used.

The hardware of ILEX consists of three major components; a PDP-11 host. Relational

Associative Processor (RAP). and an information retrieval svstem called MEMEN. The
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host is mainly responsible for user interface operations and performs compilation and op-
timization of user queries.- RAP sends transformed queries to MEMEX for searching, and
then performs database operations such as join on the qualified data by using content
addressable mechanism. The MEMEX is a specialized information retrieval system for
searching text by using inverted lists (concordance). The KM-1 proposed by Kellog [31]
takes a similar approach as ILEX in the sense that it uses existing systems rather than
developing specialized hardwares (the Xerox 1100 Lisp machine as the front-end and the
Britton-Lee IDM-500 relationai database machine as the back-end).

4.1.2 DELTA

DELTA is a functionally distributed MIMD database machine supporting inference ma-
chines (PSI's) as a back-end [58]. It consists of two subsystems: the relational database
management supervisory/processing (RSP) subsystem and the hierarchical memory (HM)
subsystem. The RSP subsystem consists of four components each of which functions as
follows:

e interface processor (IP) which is responsible for communications between hosts and
the CP and between hosts and the HM subsystem.

e control processor (CP) which transforms queries into subcommands.

o relational database engines (RE’s) which performs relational operations. Join opera-
tions can be performed in O(N) by using pipelined merge-sort algorithm and special-
ized hardwares.

e maintenance processor (MP) which monitors the status of the system.

The HM subsystem is used to store large databases, and provides access paths for efficient
retrieval of qualified tuples. The HM has a two-layer structure; the lower level layer consists
of moving head disks, and the upper level layer is a fast RAM-cache memory called database
memory unit (DMU) which can be further divided into a buffer area. a disk cache area.
a HM control program area and a working data area of the HM control program. The
physical data organization scheme of DELTA is a fully decomposed storage organization.
where a relation with N arguments is divided into N binary relations with a tuple identifier
(TID) as the first attribute for all N binary relations (see Figure 6 (a)). This organicsation

is well suited to partial match retrieval queries, especially for those queries having only
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Figure 6: Physical Data Base Organization of DELTA

a small number of arguments (attributes) specified. To reduce the search space further.
the data is clustered according to the TID numbers as well as the values. This two-level
clustering method based on this configuration is shown in Figure 6 (b).

The rules and facts of knowledge bases are stored in PSI and DELTA respectively. Users
write programs in a logic programming language to access external databases resided in
DELTA’s HM subsystem. Using the rules stored in PSI’s, the PSI processes the given goal
by converting it into DELTA commands and optimizes them to reduce the number of disk
accesses. Additional information is attached to the commands to form a packet. and then

the packet is sent to DELTA via a local area network.
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/* R: result; T: knowledge base; T’: previous result; Ra:new result
o:selection; 7: projection; M: join /*
R~ o,%x(T);
repeat
begin
/* T is assumed to be a binary relation */
T «— R; :
Ry — r(T".2XT.1)
R~ RURja
end until 7’ = R

Figure 7: Basic LFP Algorithm for a Simple Transitive Clauses

4.1.3 DDC

When no recursive rule exists, any rule can be translated to a number of conjunctions wchich
can be solved by a series of relational algebra operations such as selections, projections,
and joins. The series of relational operations required to solve a goal is called a plan. For
example, the conjunction of EDB predicates p(a, X), q(X, b) can be solved by two selertion
operations on p and q based on the given constant values ¢ and b respectively followed by a
join operation between the second attribute of p and the first attribute of q. However, unlike
the view definitions of relational database systems, the rules in logic-oriented knowledge
base systems can be recursively defined. In this case, the plan generator cannot recognize
how many plans it must generate to find all solutions for a given goal. Therefore, the
system is required to inform the plan generator of the termination point by monitoring the
intermediate results. This operation is called a Least Fized Point (LFP) operation [2,24].
The LFP is basically performed by union and equality-check between previous results and
newly generated ones. The basic LFP algorithm presented in Figure 7.

The Delta Driven Computer (DDC) [21] uses the Alexander method [33] to efficiently
perform LFP operations. DDC consists of a set of PCM (Processor, Communication Device.
Memory) nodes interconnected via a bus without a shared memory, and suppor's three

language levels as follows:

e a high level language such as a logic programming language or a functional program-

ming language
e an intermediate level language called the Virtual Inference Machine (VIM) which is
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a production rule system without functional symbols.

e a DDC machine language called DDCL.

The recursive rules can be eliminated by transformation. Consider for example, the

following rules and a goal.

~ r(a,W).
R1l: p(X,)Y) — r(X,Y).
R2: p(X,Z), r(Z,Y) — (X,Y).

By using the Alexander method, the above rules are translated to

R1.1: problemr(X},p(X,Y) — solutionr(X,Y).

R2.1: problemr(X),p(X,Y),r(Y,Z) — solutionr(X,Y).
R2.2: problem r(X),p(X,Y) — problem.r(Y),cont(X,Y).
R2.3: solutionr(Y,Z), cont(X,Y) — solution_r(X,Z).

where the recursive rules have been removed. Then, the DDC compares previously gen-
erated results with newly generated ones. This mechanism is called the Delta Driven
Execution Model (DDEM). Then a VIM rule is transformed to a number of delta rules.
For example, a VIM rule p,q — r leads to two delta rules

WAp,q” — BAr
WAgq,p’ - BAr

where p’ and q’ are the current representations of p and q in the database. Here BA
and WA represent the deduced facts (virtual relation) and the newly generated results
respectively. When no more WA is generated, the process stops. At DDCL level. both
existing facts and deduced facts are viewed as relations. A large number of tuples are

distributed to multiple processing elements by using a hashing method.

4.1.4 MPDS/MPDC

Tanaka proposed a data-stream database computer called Multiple Processor Direct Search
(MPDS) which uses the encoding/ decoding of databases to reduce the size of large databases
[74]. The use of database encoding makes variable length values mapped to fixed length

codes. It not only reduces the data transfer time, but also makes data structure more
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uniform so that a specialized hardware such as an associative memory can be exploited.
The storage organization scheme of MPDS is based on transposed relations which can be
viewed as inverted files of the encoded database. That is, each attribute has a transposed
binary relation whose first attribute represents the values and the second attribute stores
the tuple identifier of the relation.

The Massive Parallel Database Computer (MPDC) [75] is a successor of the MPDS.
The MPDC uses the grid file {42] as the basic physical storage structure to partition large
data space into manageable small buckets. MPDC consists of two subsystems; the control
subsystem and the data subsystem. The control subsystem and the data subsystem are
responsible for partition search and partition processing respectively.

In the grid file, tuples with n attributes are represented as points of n dimensional hyper
space (D4, D,,...,D,) where D; is the domain of the ith attribute. The hyper space is
partitioned according to the data distribution. Figure 8 shows the partition of data space
for two dimensional data (a) and three dimensional data (b). In Figure 8 (a), the numbers
in circle represent the order of data space partitioning. We assume that a bucket can hold
up to 5 records.

The variations of grid file schemes depend on a number of issues such as the splitting
policy of a overflow bucket, the merging policy of two or more buckets in case of deletion,
and the implementation of a grid directory. Directory schemes proposed for grid files can
be classified into three types:

1. Scale based directory [27]
2. Interpolation based directory [19,46]

3. Trie directory [44,75]

The MPDC adopts the trie directory scheme, where the attribute used in splitting is
maintained in the corresponding node of the trie directory. Suppose, for example. that we
have a relation R(A,B) and the corresponding encoded relation R'(A",B'). A possible pair
of A" and B’ values can be plotted in a two dimensional space as shown in Figure S(a). If
a relation has k attributes, then k dimensional area should be considered. The encoded
relation R’ can be represented as a set of points scattered over this area. Assume that
a rectangular region represents a bucket with capacity of 5 encoded tuples. Consider, for
instance, a query R’(010010, 110011). For the query, only the bucket f needs to be accessed.
Figure 9 shows the corresponding colored binary trie directory for the grid files shown in
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Figure 9: The Physical Data Organization of MPDC (Colored Binary Trie)

Figure 8(a). Since each node can be represented by a small amount of data, the directory
itself can be resident with main memory in most existing computer systems.

As shown in the above example, by using grid files, searching can be divided into two
processing levels i.e. directory search and grid accesses. For exact match queries, only two

disk accesses will be required.

4.2 Database Machines for Unnormalized Relation

Most database machines developed so far are designed for the relational model. The data in
the relational model strictly follows the first normal form restriction where each attribute
value must not be decomposable. Many researchers become aware of this limitation of
the relational model in the context of knowledge base systems and in semantic modeling,
and thus have investigated the use of non-first normal form (NFNF) relations [34]. In this
section, we consider a database machine CASSM([70] which is designed for the hierarchical

model, and B-LOG machine for data/knowledge bases having network-like structures.

4.2.1 CASSM

Context Addressed Segment Sequential Memory (CASSM) is one of the earliest database
machines [70], which supports hierarchically structured relations [69]. The CASS)M has
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facilities for searching complexly structured data types such as sets. trees., and directed
graphs. Another distinctive feature of the CASSM is that it can fetch compiled programs
from disks. This concept is similar to that of logic programming systems, that is, program
and data are uniformly managed.

The CASSM contains a linear array of cells each of which consists of a processing
element and a rotating memory device. A hierarchical record is linearized in a top-down
and left-right order (level-order), and is physically stored in a linear vector consisting of
40-bits words. A word is composed of a 8-bit tag and 32-bit data. According to the tag
bits, eight data types can be identified, including delimiters, name-value, pointer, string,
instruction, operand, protect-lock, and erased data. Figure 10 shows the data structure of
the delimiter type. Since CASSM contains data and program represented by hierarchical
trees, each node of a tree has a unique level number. As sec:: in the figure, the tag consists
of a bit stack (6 bits), S bit (Specification Bit), and Q bit (Qualification Bit). The bit stack
is used for storing intermediate results. The Q bit is used to mark a context to search a
specific subtree, while the S bit is used to find nodes satisfying the specification given in
the query. Due to its associative processing nature, processing nodes in a lower level is as

easy as processing higher level nodes.

4.2.2 B-LOG Machine

Lipovski and Hermenegildo [35] proposed a parallel “branch and bound™ algorithm called B-
LOG to efficiently evaluate logic programs stored in secondary storage. A parallel computer
exploiting a special secondary storage named a Semantic Paging Disk (SPD) [34] is proposed
to implement the B-LOG scheme. The SPD is specially designed to support pointer-

hased searches for databases with a network structure, and consists of one or more search
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processors (SP). Each SP has a read-write head corresponding to one or more tracks,
a random access memory able to hold a track’s data, and a special logic. The logic is
designed to perform search and mark operations by traversing pointers. The basic task
of SPD is thus to provide processors with appropriate subset of data needed for further
processing.

Since SPD works effectively on complexly structured data linked by pointers and stored
on secondary storage, rules and facts are represented by a network-like model. A block
representing a rule or a fact contains pointers to other blocks of subgoals, and weights
(bounds) to guide the search procedures for finding optimal path. The search strategy
adopted by the B-LOG machine is the best-first search combined with a branch-and-bound
algorithm. Although the best-first search has advantages over depth-first or breadth-first
search in the context of parallel processing, it is not an easy task in the evaluation of
logic programs to assign a weight to each arc. In the B-LOG approach, weights are added
to each branch of OR-tree. The AND nodes, the conjunction of subgoals, are assumed
to be executed sequentially. A heuristic success probability is introduced as a basis for
branch-and-bound algorithm.

5 Integrated Knowledge Base Machines

In this section, we consider integrated knowledge base machines which can manage both
facts and rules in a uniform way. For very large knowledge bases, these machines should
support unification-based retrieval of clauses from secondary storage, and thus require
enormous processing loads. They generally exploit the top-down strategy on which most
logic programming languages are based, rather than the databases’ conventional bottom-up
strategy.

5.1 Massively Parallel Machines

Many massively parallel machines have designed aiming at high performance Al systems.
But when large amounts of data are involved, transferring data from secondary storage
to the processing level can be a serious bottleneck in these machines. We present three
massively parallel machines which can be used for logic-oriented knowledge bases, and

assess the issue of /O bottleneck.
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5.1.1 DADO

DADO consists of a large number of identical processing elements (PEs) connected by
using a binary tree topology, and was originally designed to provide high performance in
the execution of large production rule systems [65]. A Control Processor (CP) is attached
to the root of the DADO tree, which is mainly responsible for broadcasting data to PEs.
Taylor et al.[77,78] proposed an implementation technique for OR-parallel execution of
logic programs by exploiting the parallel pattern matching capability of DADO. For logic
program evaluation, clauses are initially distributed across DADO as the following:

o the bodies of rules are stored in the CP,
e clause heads are stored across each PE, and

e an index is associated with each clause head and the corresponding body (no index

for facts).
The proposed parallel evaluation procedure is as follows:
1. The CP broadcasts the given goal to all PEs.
2. Each PE performs unification between the broadcast goal and stored heads.

3. The CP polls each PE to collect bindings first from unit clauses, and then from rule
heads.

4. The collected binding sets are merged. For example, {a(Y)/X, b/Y} is reduced to
{a(b)/X}.

5. The conjunction is first solved independently in a left-to-right manner. Then join is
performed for shared variables.

In [48], Ponder and Patt argues the correctness and soundness of DADO’s parallel
evaluation scheme. But, the major problem of the DADO architecture for data intensive
applications lies in slow data transfer time; the data should be read from the host and

should be broadcast from the root, resulting in high overheads for large knowledge bases.
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5.1.2 NON-VON

Shaw proposed a massively parallel database machine called NON-VON [62]. Although
NON-VON was originally designed for efficient relational operations, it can also support
rule-based systems [26]. NON-VON consists of two major components; a primary process-
ing subsystem and a secondary processing subsystem. The primary processing subsystem
is made of many small processing elements (SPE) and large processing elements (LPE).
The SPE’s are interconnected by a tree network like in DADOQ, but leaf nodes are also con-
nected via a mesh connection. Each SPE has a very small amount of local memory where
data are stored. On the other hand, a LPE is a general purpose microcomputer having a
large random access memory to hold programs, which is connected to a SPE located near
the root of the tree. The operation of LPEs is primarily in a MIMD mode, while SPEs
perform instructions broadcast by LPEs in a SIMD mode. Thus, NON-VON can operate
in a multiple-SIMD mode. The secondary processing subsystem consists of a large num-
ber of disk systems each of which is connected to a LPE. Associated with the secondary
processing subsystem is the intelligent head unit capable of on-the-fly data filtering. Thus,
NON-VON can offer higher I/O bandwidths from secondary storage than DADO.

5.1.3 Connection Machine

The Connection Machine Model CM-2 [79] is a massively parallel back-end computer con-
sisting of a very large number (8K - 64K) of data processors, a number of sequencers, a
Nexus switch, and I/O systems. Each data processor has a 8 K bytes of bit-addressable
local memory and an arithmetic logic unit. A data processor can communicate with any
other data processor via two communication methods. Sixteen data processors are fabri-
cated in a chip, each of which is connected by a cube topology. Associated with a chip is
a router which allows accesses to the local memory of other processors. First, the router
can be used for communication. Second method is the use of the NEWS grid which allows
processors to communicate in a rectangular pattern. That is, a data processor in a grid
pattern such as 256 x 256,1024 x 64,8 x 8192,...,8 x 8 x 4 x 8 x 8 x 4 can pass its data
to neighbor processor. A data processor does not directly execute parallel instructions.
Instead, they are processed by a sequencer. Processors can be divided into up to four in-
dependent sections each of which can have its own sequencer. router, and NEWS grid. Up
to four front-ends can be connected by the Nexus which is a programmable, bidirectional

switch.
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The CM-2’s I/O structure allows data to be moved into or out of the parallel processing
unit at peak rate as high as 320 hlegabytes/second. I/0 is done in parallel by allowing
as much as 2 K processors to simultaneously perform I/O related operations when the
maximum number of I/O channels are available. The Data Vault, CM-2’s mass storage
system, can be connected to each I/O channel, which can transfer data at the rate of 40
megabyte/sec and can hold data up to 10 gigabytes. A Data Vault unit consists of 39
individual disks working in parallel. Thus to get the maximum bandwidth, data is spread
across drives and disk cache is also exploited. In [4], Boral proposed a similar I/O system
consisting

Many interesting applications have been developed for the Connection Machine using
the high I/O systems. One of the interesting example is the document retrieval system
based on the superimposed code word (SCW) [64]. By using a special database encoding
scheme called a concatenated code word (CCW), we have implemented an experimental
logic-oriented knowledge base system on the Connection Machine [3].

5.2 Intelligent Virtual Memory Support/Disk Cache

One of the approaches in realizing a logic-oriented very large knowledge base is to provide
a logic programming system with facilities to access secondary storage. Intelligent virtual

memories and special disk caches have been proposed for this purpose.

5.2.1 MANIP-2

MANTIP [84] is designed to solve combinatorial searching problems in parallel by a branch-
and-bound algorithm with the best-first search strategy. The branch-and-bound algorithm
partitions a large problem into many smaller subproblems until a solution is obtained or
infeasibility is found. The best-first search strategy selects the most feasible subproblem
based on heuristic values assigned to subproblems. As the best-first search requires more
memory spaces, especially in parallel processing environment, a special care must be taken
for efficient management of the memory space. MANIP exploits a special virtual memory
for this purpose [92].

After the problem is decomposed into many small subproblems, the subproblems stored
in secondary storage is organized as a B*-tree [9] whose leaf node represents a page con
taining one or more subproblems. The main memory maintains a heap of pointers to a

partial list of subproblems also residing in main memory. When a subproblem is generated.
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it is added to the list until the main memory space is run out. Then, the subproblem.s are
inserted to the B¥-tree.

MANIP-2 [33] is designed for parallel heuristic evaluation ol logic programming with
a similar architecture to MANIP except for the absence of the secondary storage redis-
tribution network which exists in MANIP between secondary storage and the subproblem
memory controller shared by a number of processors. The global data resister in MANIP
is also changed to the global broadcast bus in MANIP-2. The SLD resolution can be rep-
resented by a OR-tree as in the B-LOG, where a node denoting a subproblem can be a
goal, or by a AND/OR tree where each node can be either a goal or a subgoal. Due to
the AND/OR tree representation, the calculation of heuristic values of MANIP-2 is more
complex than that of B-LOG since weights should be added to both AND and OR node.

5.2.2 MPPM

Yokota and Itoh [91] proposed Relational Kncwledge Base Model which can accommodate
unrestricted Horn clauses (general rules). Formally, a'tuple d in a relational database is

represented as follows:

deRC Dy xDyx...xD,

Here D; is a set of constants and R is called a relation. On the other hand, a tuple t in a

relational knowledge base has two attributes of the form:
teTCHxB

where H is a general term representing the head of a clause, and B is a conjunction of terms
representing the body of a clause. Here, T is called a term relation.

The basic operation proposed by Yokota and Itoh includes unification-restriction which
is based on unification on data stream [38], and unification-join which is actually a paral-
lelized, top-down resolution procedure. The algorithm of the proposed procedure is given
in Figure 11.

The first step of the retrieval-by-unification is to find candidate tuples in a term rela-
tion for a given goal. This is done by unification-restriction operation. The unification-

restriction operation is invoked for the term relation T by the condition

T(Head) o goal
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/* R: result; T: knowledge base; T;: temporary relations;
o: selection; m: projection; o: unification; ™: join */
R:= ¢;
TO = U.headogoal(T);
1:=0;
while T; # ¢ do
begin
R:= meiy:[](Ts') UR; 3
Ti+1 = 7I'T.-.h.ezxd,T.I‘)oc:ly(T'i bOdy o head T)s
1i=1+1
end;

Figure 11: The Algorithm of Retrieval-By-Unification

and makes a new term relation T;. Here the symbol ¢ denotes unification. Then, the
unification-join operation between the second attribute of T and the first attribute of T is
invoked. The new relation, T3 is then produced as a result of unification-join and projection.
This procedure continues until no more new results are generated.

The advantage of the term relation stems from the uniform management of both rules
and facts. However, efficient indexing schemes would be very difficult to develop since
the entire knowledge base can be viewed as one large relation. In addition, the top-down
(backward-chaining) processing strategy may result in a poor performance for large knowl-
edge bases.

For the relational knowledge base model, an integrated knowledge base machine with
specialized unification units is designed. The proposed knowledge base machine consists of
a number of unification engines (UE), a control processor, a multi port page memory, and
a number of disk systems. Figure 12 shows the basic architecture of MPPM.

One of the distinct fea‘ures of the proposed knowledge base machine is the use of multi
port page memory (MPPM) designed by Tanaka [76] which provides very high bandwidth
among unification engines and disk systems. The MPPM consists of a set of I/O ports.
a set of memory banks, and a switching network (Omega network) connecting the ports
with the memory banks. The Unification Engine (UE) has three channels connected to the
MPPM, and processes data streams from the MPPM in a pipelined fashion. The control
processor is responsible for the parallel control of the UE’s and the disk systems.

The unification-join can also be used for bottom-up processing like the equi-join opera-
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Figure 12: MPPM with Multiple Unification Engines
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tion in a relational database [59]. In this case, the equality check of the equi-join is replaced
by unification. Zaniolo proposed different general term handling methods called Extended
Relational Algebra (ERA) for bottom-up processing of relations of general terms [93,94].

In ERA, accesses to the subcomponents of terms are allowed, but recursive rules are not

ccnsidered.

5.3 Associative Processors

During past decade, associative processors and associative memories have plaved very im-
portant roles in database machines. To mange both facts and rules by associative proces-
sors, effective internal representations of rules and facts in associative memories should be

developed.

5.3.1 HAS

The Hybrid Associa:ive Store (HAS) consists of 64 processing elements each of which is
associated with a large number of memory cells [23]. The resulting architecture can be
viewed as a quasi-asscciative processor, since all the PE’s work synchranously by a central
control unit, that is, all the PE’s simultaneously arcess the samc locations of memory cells.
Each PE has an ALU, a number of registers (A,B, and register file C), and a mask register
M.

To illustrate the management of rules in HAS, consider, for example, the following rules

and facts:

p(X,Y) « q(X, Y), r(Y).

A S o
Ne)
~—~
P_
i)
—

Figure 13 shows the basement store for the above logic program. Suppose that a goal
«~ p(a, 2) is given. Each literal in the program is stored together with the line number and
the level number (i.e. head = 0, first subgoal = 1, second subgoal = 2, ...). The evaluation

process is as follows:

1. Find heads of clauses which begin with < *,0 >. Then, unify the heads with the
given goal. In our example, the results are < 1,0 > and < 2.0 >.
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Figure 13: Data Organization of HAS

2. Find literals starting with < 1,1 > and < 2,1 > for the first subgoals.

3. Bind variables. Variables are substituted after all possible candidates are searched.

Although associative searching can be very effective for parallel evaluation of logic
programs, the size limitation of associative memories makes it difficult to be used for

arbitrarily complex objects.

5.3.2 ASSIP-T

ASSIP-T consists of a master processor, two associative memories (CAM1 and CAM?2),
multiple inference processors and unification processors [60] (Figure 14). The main prin-
ciple of ASSIP-T is to separate unification operations from resolution by maintaining two
graphs called a deduction plan and a unification graph with constraints (UwC). Nodes of a
deduction plan denote goals, and edges are classified into two types, SUB and RED, accord-
ing to the type of inference performed on the resolution step. Associated with each edge of
the deduction plan is a set of constraints of the form {(t1,s1,{n}),....(tm,sm.{n})}. as-
suming that the starting edge is of the form p(t;,...,tm), the ending edge is p(s;,....sm).
and the edge number (i.e. resolution step) is n. The corresponding UwC is constructed hy
forming a labeled undirected graph from the constraint. That is, for the constraint (t, s.
d), the nodes t and s is connected by a edge labeled d. Unification failure is detected when
a variable node in the UwC leads to different constant values. When a unification failure
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Figure 14: The Architecture of ASSIP-T

occurs, a minimal conflict set of edges are found and by removing one of the edges in the

minimal conflict set, a successful unification can be obtained.

The master processor gets the constraints from the inference processors and distributes
them to the unification processors where the conflict sets are calculated. The CAM2 stores

each term for the UwC with term names, labels, and the adjacent node in the UwC.

6 Conclusion

Knowledge base systems require considerably more processing power than traditional database
systems or Al systems do. The management of general rules and persistent complex ob-
jects is the most important task in these systems, which requires an enormous processing
load. But advances in hardware technology make it feasible to design specialized com-
puter architectures suitable for knowledge base processing to achieve high performance. In
this paper, we surveyed computer architectures designed for logic-oriented data/ knowledge
bases based on the taxonomy presented in section 3. We classified knowledge base machines
into two large classes, investigated the characteristics of the machines in each class. and
then presented special features of various proposed architectures. The operations that can
be efficiently supported by these machines’ specialized hardwares are also identified.

In order to support general rules in data intensive applications. database machines need
to support the LFP operations. The machines used as front-ends which are responsible for
generating commands for back-end database machines using internal rules are either general
purpose or simple inference machines based on logic programrning. interpreters. Almost
none of high performance Prolog machines designed for optimized compilers or unification
machines are considered as part of knowledge base machines for data intensive applications,

although these machines can provide order of magnitude speed ups over general purpose
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computers. Massively parallel architectures and associative processors are proposed as
integrated knowledge base machines where rules as well as facts can be uniformly handled.
However, for theses machines, transferring data from secondary storage to a processing
level can be a serious bottleneck. NON-VON and CM-2 have specialized disk systems to
solve this problem.

Another important issue in knowledge base machines is the management of a large
number of complex objects stored on secondary storage. The traditional file organizations
would not be well suited for the following reasons:

o Retrieving the desired tuples of knowledge bases can be viewed as an extension of the
multiple-key attribute partial match retrieval problem because any subset of :.cgnment
position can be specified in a query. Furthermore, attribute values are decomposable,
and hence a query can be based on subcomponents of an argument (e.g. f(r(a, X),
Y)). For example, if a fully inverted list is to be used, all the subcomponents should
be indexed along with the position in a term. It could result in substantial amount
of index data.

o The ordering among general terms cannot be decided due to the logical variables.
Thus, we cannot use an ordered file organization such as the B-tree or the indexed
sequential file.

e Most traditional data organization schemes do not lend themselves easily to parallel
processing.

Thus, one of the important issue in designing a computér architecture for data intensive
applications is to develop an effective physical data organization tailored to available hard-
ware components to reduce data transfer rate as seen in CASSM and MPDC.
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ABSTRACT

In this paper a new class of order preserving dynamic hashing structures is introduced
and analyzed. The access method is referred to as dynamic random-sequential access
method (DRSAM) and is derived from linear hashing. With respect to previous
methods DRSAM presents the following characteristics: 1) the structure captures the
hashed order in consecutive storage areas so that order preserving schemes result in
performance improvements for range queries and sequential processing. 2) It adapts
clastic buckets [LOMS87] for the control of file growth. This approach outperforms the
partial expansion method previously proposed by Larson |[LAR82]. The file structure is
also extended with proper control mechanisms to cope with non-uniform distributions.
The outcome is a multi-level trie stored as a two-level sequentially allocated file.

Index Terms: dynamic file structures, order preserving hashing, access method, ran-

dom and sequential files, consecutive retrieval, searching, management of very large
files. '
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1. Introduction

Advances in hashing methods led to the development of new file structures to handle
voladle files [LAR78, FAG79, LIT80. LAR82, RAMS2]. Referred to as dynamic hashing
schemes, these methods are suitable for the management of very large files, with no prior or
furure knowledge of their sizes. The objective was the development of file organizadons that,
with reasonable insertion costs, keep their near optimal performance characteristics for random

access even when the file size constantly changes.

An additional characteristic of file organizations, uncommon to hashing methods, is the
sequential processing or range query capabilities as found in indexed-sequendal files and B-
trees (BAY72]. Based on linear hashing (LH), different order preserving hashing (OPH)
methods were proposed: Orenstein [ORES83] used the mirror image of the leftmost bits with
LH to achieve local order preserving while Burkhard [BURS3] proposed a multi-key retrieval
order preserving method based on the shuffle order.

In this paper, a new class of files derived from linear hashing is presented. It is referred
to as the dynamic random-sequential access method (DRSAM). Thc main characteristic of this
access method over previous ones is the sequennal allocarion property which leads to the
natural adaptaton of elastic buckers [LOMB7] to directoriless organizatons. DRSAM shows
performance improvements over previous methods for both direct access and range queries

performance.

We begin in Section 2 with the file design objectives and the approach which is followed
with DRSAM. In Secdon 3 an implementation of DRSAM is described and illustrated. In Sec-
ton 4 we present the concept of elasdc buckets (EB) as a technique to contol file growth and
for the management of overflow chains. In Section 5 we evaluate DRSAM’s performance
characteristcs: first the performance with elastic buckets is analvzed followed by the effect of
the insertion method on unsuccessful search cost. Then we compare the use of elastic buckets

with respect to Larson’s partial expansions method and discuss range queries with DRSAM
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files. Secdon 6 discusses possible extensions of DRSAM to cope with non-uniform disaibu-

tions. Finally, in Section 7 we summarize the work and introduce future research topics.

2. Objectives and Methodology

Similarly to other dynamic hashing methods the primary objectives of DRSAM are to 1)
achieve the near opdmal random access performance and, 2) be able to easily and narurally
adapt to dynamic environments with low update overhead (inserdon, deledon, change). Addi-
donally a third objective that we consider essential is for DRSAM to provide for efficient
range queries and sequental processing. The basic idea with DRSAM is to map logical nodes
to consecutive physical buckets to achieve, for range queries, the consecutve remieval (C-R)
property introduced by Ghosh (GHO86]. This assures a minimized disk arm movement and is

referred to as the consecurive or sequenrial allocation property in key-order.

Previous OPH schemes have used the linear hashing expansion séqucncc. For example
the idea in [ORES3] is to use the mirror image of the leftmost bits to achieve order preserving
with linear hashing. This leads to the mapping of Figure 2.1. As the file grows the physical
locations of buckets containing records in key-order are known but remotely located and range

queries that access multiple buckets will require extra disk seeks for each retrieved bucket.

In Figure 2.2 we illuswrate how DRSAM maintains physical ordering in the mapping
from logical to physical structure. To achieve this mapping, one needs a dynamic, sequential
allocaring and order preserving hashing function (OPH;). Using Prefix(Key,i) as the leftmost i
bits of a key, a simple OPH; for DRSAM is provided with:

OPH;(Key) = Prefix(Key .i).
With fl as the home hash level, the logical address of a Key ,for the home hash function, is
found by: ‘

lag_addﬂ (Key) = OPHfl (Key)

and for the split functon:
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A ) Iog_addﬂ,.l(Key) = OPHf“,l(KC)')
The prefix functdon is chosen for convenience but is not generally considered to be a good

randomizing function. We discuss non-uniform distributions in Section 6.

In linear hashing and DRSAM the file is logically viewed as a two-level flattened wmie
structure with its leaves at level f or fi+! .. We will denote a logical node as the tuple (x.y);
where x is the node number and y its wie level. The mapping of Figure 2.2 is optmal for
sequential processing in the sense that it tends to minimize disk arm movement. DRSAM files

Ty to achieve this mapping and we illusmrate the concept in the next section.

3. The Dynamic Random-Sequential Access Method

We designed and analyzed two DRSAM schemes, nameiy variant 0 and 1 [HACS8b]:
DRSAM variant O relies on the same file management characteristics as linear hashing but
with a modified expansion/conwraction sequence to approach the mapping of Figure 2.2.
Independently to our work, Hudlesz et al. introduced a similar idea for multddimensional OPH
(HUT88]. We will only consider variant | in this paper and use DRSAM to refer to that file
structure. As for linear hashing, the splitting bucket is not necessarily the one that receives the
inserted record. Thus an overflow resolution procedure is necessary. In the illustrations of this

section overflow chains are not shown.

DRSAM uses the same logical expansion/contraction sequence as linear hashing. To
avoid physical bucket overwriing we slightly extend the operating system file management
features. For an expansion, the basic idea is to relocate the logical bucket on a newly allo-
cated larger storage space while the previous space is freed. This operation is irreversible and
the freed bucket cannot be recorvered for a subsequent merge operation. Like linear hashing,
the storage area is only allowed to expand (contract) from one of its boundaries. The exten-
sion is that the other boundary is allowed to move to return contguous storage space to the

operating system. For the design of DRSAM, this feature is an essential but realistic charac-
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teristic of the operadng system.

3.1. Storage Areas

We define two storage areas: the type 1 area (T1), generally used for the expansion of
the file and the type 2 area (T2) used concurrently with the contracdon of the file. A Tl
storage space can grow or shrink from its right boundary with its left boundary allowed to
return storage to the operating system secondary storage pool while the T2 area operates in
the reverse mode. The T1 area is illustrated in Figure 3.1. It shows the lefmmost bucket
expanding onto the rightmest (0,3) and (1,3) buckets.

(=) (1,2) | (2.2) l (3.2) ‘ (0.3) (1,3)

Figure 3.1 An illustration of a type 1 storage area.

In Figure 3.2 we illustrate a T2 area after contracting the rightmost 2 buckets onto the

_leftmost bucket (1,1). File movement in both directions is not permitted.

| (1,1) l 0.2) (12 ) ‘ ) |

Figure 3.2 An illustration of a type 2 storage area.

A storage area is always scanned from left to right on secondary storage. The left boun-
dary in each area is the lowest logical bucket stored in the area and the physical addresses
within a T1 (T2) area are defined with respect to its left (right) boundary. This will enable us
read the home storage area in key-order through a sequential scan with minimum disk head

movement.

3.2. The Mechanism for DRSAM

At a given time, the primary storage space of a DRSAM file can consist of a T1 and a
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T2 area: the T1 storage area can consist of 2 subareas, the home (HL) and the expansion (E)
areas while the T2 storage area can consist of the home (HR) and conmaction (C) areas. In
Figure 3.1 the HL area consists of buckets (1,2), (2,2) and (3,2) while (E) consists of buckets
(0,3) and (1,3) and in Figure 3.2 the HR area consists of buckets (0,2) and (1,2) while (C)
consists of bucket (1,1). Though not rcqliired, the subareas are assumed to be contiguously
located on secondary storage.

As with LH we attach an expansion pointer (ep) which points to the logical address of
the next bucket to expand. If we expand (contract) the file ep is logically incremented (decre-
mented) by 1. We also need a skew counter (sc) to determine the logical boundary between
the HL and HR areas. The expansion/contraction rules are designed to guarantee that the (E)

and (C) areas cannot coexist. The rules are defined as:

Expansion

if "C exists” then (e,) "expand from C to HL"
else if "HR exists” then (e¢,) "expand HR to E"
else (¢3) "expand HL 0 E"

Contraction

if "E exists” then (c¢,) "contract from E to HR"
else if "HL exists" then (c,) "contract HL to C"

else (c;) "contract HR to C"

For expansions, e, is used first undl all the buckets in the C area are exhausted, then e,
untl HR is fully expanded and finally HL buckets are sequentially expanded. The same
scheme holds for file contraction. Within a storage area we sequentially increase ep. It is easy
to show that the "lower” logical buckets are in the C area, followed by the ones in the HR,

then the HL and finally E areas. For a sequental scan of the file, if C exists then we scan HR,
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followed by HL and then C; else we scan E followed by HR then HL.

Consider the DRSAM file of Figure 3.3 with only a home area HL (sc¢ =0) composed of
8 buckets with the expansion pointer pointing to logical node 0 (f/=3 and ep=0). Assuming 8
bit keys we include the different bucket hash ranges to show the key sequendal order of the
file (values in (J). Through the addidon of records, let us assume that a split conditdon occurs
with the file. We use rule e; and follow the sequence of linear hashing. The leftmost bucket
HL(0,3) splits and we relocate its contents using the split hash funcdon as the first two buck-
ets E(0,4) and E(1,4) of a newly created T1 expansion area (E). Bucket HL(0,3) is freed as

shown in Figure 3.4.a and ep and sc are incremented by 1.

A 2nd expansion splits HL(1,3) by relocatng its contents onto E(2,4) and E(3,4). The
empty bucket is retumned to the storage pool, ep and sc are incremented and we have the file
staatus of Figure 3.4.b. Contdnuing with the expansion process, the file will be at level 4 after 8

expansions with the (E) area relabeled as (HL).

Referring to Figure 3.4.b let us assume that due to successive deletons, a merge is
necessary. Referring to Figure 3.5.a buckets E(2,4) and E(3,4) are merged back together and
relocated onto HR(1,3) in a newly created T2 home area (HR). Pointer (ep) is decremented
by 1 while sc stays the same; sc actually points to the minimum logical bucket address in the
HL area and thus sc—1 points to the maximum logical bucket address of the HR area. Rule ¢,

was used here.

A second merge relocates the contents of buckets E(0,4) and E(1,4) onto HR(0,3) as
shown in Figure 3.5.b. The file is at level 3 and at the beginning of the expansion cycle
(ep=0). The existence and size of HR is determined by the skew pointer (sc=2). This file is
logically equivalent to the one in Figure 3.3 though physically different (different s¢ values).
With the knowledge of ep, sc, the home level fI, and the existence ox; non existence of the

areas C and E, we can uniquely determine the physical and logical status of the file.

Following a similar example, we can show how the file can use a conmaction area (C)

with rules ¢, and c¢;3. The difference between the algorithms of DRSAM and linear hashing
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(HL)

0.3) (1.3) (2.3) 3.3 4.3) (5.3) (6.3) (7.3) !
(0-31] (32-63] [64-95] [96-127] (128-159] [160-191] (192-223] [224-255]
Figure 3.3 File with only the HL storage area at level 3

(HL)
(-+-) (1.3) (2.3) (3.3 4.3) (5.3 (6.3) (7.3
(32-63] {64-95] [96-127] (128-159) {160-191] (192-223) (224.255]
(E)
0.4 (1.4)
{0-15) (16-31]
Figure 3.4.a After one expansion from Figure 3.3.
(HL)
(- () (2.3) (3.3) 4.3 (5.3 (6.3) (7.3)
[64-95] [96-127] [128-159] {160-191] (192-223] [224-255]
(E)
0.4) (1.4) (2.9) (34
(0-15] {16 31] (3247) [48-63]

Figure 3.4.b After two expansion from Figure 3.3




(=) (=) (2.3) (3.3) @.3) (5.3) (6.3) .3
(64-95] (96-127] | (128-159] | (160-191] | (192-223] | (224-255]
(E) (HR)
(0.4) (14) (1.3)
[0-15] (16-31] (32-63]
Figure 3.5.a After one merge from Figure 3.4.b
(HL)
(-+°) (=) 23 (3.3) 4.3) (5.3) (6.3) 7.3
[(64-95] (96-127] {128-159] | (160-191]} (192-223] | (224-255]
(HR)
0.3) (1.3)
(0-31] (32-63]

Figure 3.5.b After two merges from Figure 3.4.b
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are in the mapping of logical buckets onto physical storage space. These algorithms are

straight forward and we implemented them for file expansion. Details are found in [HACS88b].

4. Generalizing DRSAM

Elasuc buckets (EB) were first proposed by Lomet for indexed file organizatons
(LOM87] and further studied within the context of B*-wees by Baeza et al. [BAE87]. In this
secdon we use them to conol DRSAM file growth and extend the concept to the manage-

ment of the overflow area of DRSAM.

Parrial Expansions

With partal expansions the size of the file is doubled over a full expansion cycle (FEC)
composed of a number of partial expansion cycles (PEC). Within a PEC, Larson’s pardal
expansions technique (LPE) uses a sequence of intermediate hashing functions to distribute
the contents of a group of "x” buckets onto "x+1" buckets [LAR82]. The "x" buckets are

reused with the addidon of one “"remote” bucket at the end of the file. A similar scheme was

also proposed in [RAMS2].

From the expansion mechanism of DRSAM, we found that elastic buckets are a natural
extension to this file structure. Denote the number of PEC in an FEC by r and elastc logical
nodes (ELN) with a wiplet (lba fl pexp); where [ba is the node number at level fl and hav-
ing completed PEC pexp. Figure 4.1.a through 4.1.d show the different partial expansion steps
of a logical node "x" at level "i" for the case when r=3: inidally, in Figure 4.1.a the node
consists of 3 (r) partal physical buckets, and during the Ist and 2nd pardal expansion, the
node elastically expands by one partial physical bucker (pb). This is shown in Figures 4.1.b
and 4.1.c.

For the last partial expansion, adding a new partal physical bucket doubles the capacity of the
node with respect to its inital state of Figure 4.1.a. In this case, using the split hash function
the bucket forks into two new child buckets "2x" and “2x+1" at level "i+1" and with the
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minimum capacity of 3 partial buckets. Over a PEC each bucket is elastically expanded and
is relocated to a new physical address. This address is within the expansion area (E) if it

exists or in the HL storage area if C exists.

Two main differences between EB and LPE are observed: i) elastic buckets are suitabie
for file expansions on physically comiguo(xs locations while Larson’s PE is devised for buck-
ets that expand by relocating their contents onto non contiguous physical locations. 2) Elastic
buckets do not require the use of an intermediate hashing function. Splitting the expanding

bucket occurs during the last PEC of a FEC.

Elastic Overflow Chaining

The assumption of contiguous allocation for file expansion is easily extended to deal
with overflow chains. The technique is referred to as elasric overflow chains and is a general-
izadon of the usual overflow chaining used for collision resolutdon. The method assumes an
overflow storage pool with capacities obg to ob,_, = el xob, records in increments of oby
records (el 2 1). When an overflow bucket of capacity ob;_; = obgxi becomes full (i.e.
overflows) its contents, with the inserted record, are written onto an overflow bucket of capa-
city ob; = obgx(i+1). This process is continued until we reach the capacity of ob,,_;. Then a
new bucket of capacity obg is attached to the chain thus increasing its length by one. An elas-

tic overflow bucket for e/=3 is illustrated in Figure 4.2. The usual overflow chaining method

corresponds to the case where el =1,

S. Performance Evaluation of DRSAM

In this section we discuss the results of a performance evaluation of DRSAM with elastic
buckets. We target the applicadion of DRSAM to secondary key remieval, like transformed
inverted lists (BER87, HAC88a]. Thus we study the effect of ordered insertions on the perfor-
mance characteristics of DRSAM. This is followed by a performance comparison of LPE and

EB for partal expansions. Finally, sequential and range query processing with DRSAM files
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splitting takes place

Figure 4.1 ELN during expansion
(elasticity r=3)
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1 0 0
b) after it d) the 3rd overflow increases
overflows once the overflow chain by one.

Figure 4.2 Elastic overflow node with ei=3
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are discussed and compared to similar OPH methods.

S.1. System Model

We developed an analytical model for very large DRSAM files and performed extensive
wace driven simulatons of the file structure. The results from the analytical model closely
match those from the simulations. As we are interested in secondary storage systems, the per-
formance measures are in terms of disk access cost; where disk seek time is the predominant

cormponent in the cost measure. The details of the performance analysis can be found in

(HAC38Db].

The model assumes a uniform distibution over the hashed domain. Furthermore, main
memory buffer storage is large enough to hold an accessed bucket with its overflow chain.
For a random insertion one needs to perform at least one disk access to read the home bucket
and subsequent reads to traverse its potential overflow chain. It is followed by a disk access to
write back the bucket after inserting the new record at the end of the chain. With ordered
inserdons, the record may be inserted at any location in the chain with equal probability. This
implies that, in general, one needs to write back more than one bucket. Elastic overflow
chains are used and the cost to expand or create a new chain is always equal to two disk

accesses (operating systems overhead not included).

With Ifc as the number of record insertions between file expansions, the model follows
the load factor control mechanism described in [RAMS82]. The file is expanded by the addition

of one partial bucket after every [fc inserted records. The load factor (If ) is almost constant

and is computed as -IL% (*); with hb as the minimum home bucket capacity. For an

expansion operaton we need at least one disk read to rewieve the bucket undergoing the

expansion. This is followed by a disk access to write the generated blocks into consecutive

(] The load factor is defined as; If = —mmif reCOds insereed
home storage space in records
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locadons on secondary storage. Obviously, the existence of overflow buckets increases the
number of disk accesses accordingly. The performance parameters which were determined are
the average of the storage utilization factor (auf ), the average costs for a successful search

(acss), unsuccessful search (acus ), random insertion (acri) and ordered insertion (acoi).

§.1.1. Results and Discussion

In this section, we report some results from the analytical model for a home bucket capa-

city of hb=48 records.

Effect of Elastic Buckets

We illustrate the effect of the number of partal expansions (r) on storage udlization in
Figure 5.1. With a fixed average load factor (If = 1.25), the utilizaton factor increases with
increasing 7 from an average of 0.91 at r=1 to uU.94 at r=3. To evaluate the rewieval perfor-
mance, we chose the basic overflow bucket capacity (obg) such that the average storage utili-
zadon factor is around aguf =0.91 for the different values of . Then we plotted the successful
and unsuccessful search costs in Figure 5.2 and 5.3 respectively. It is clear that elastic buckets

improve the random access performance (acss and acus) of DRSAM.

A higher elasiticity for the overtlow buckets does not affect the storage utilizadon of the
file, but it results in a decrease of the overflow chain length. This tends to improve all perfor-
mance parameters as reported in (HAC88b]. Figure 5.4 illustrates the effect of increasing the
elasdcity e/ of the overflow chains on successful search cost. For a sustained average storage
utlizaton of 93%, the average successful search cost improves with an increase in the elasti-
city of the overflow chains. The variations of the performance curves over a FEC decrease as

well.

With a storage udlizadon factor around 94%, hb=48, r=3 and el=4, our resuits show
that the performance of DRSAM is excellent with acss ~ 1.20, acus <2.00 and acri<3.25.

Considering that the performance of file organizations dc-:gradc very fast with increasing
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Figure 5.1 DRSAM storage utilization (r=1 to 3)
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Figure 5.2 DRSAM successful search cost (auf =0.91)
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Figure 5.3 DRSAM unsuccessful search cost (auf = 0.91)
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udlization factors makes the elastic buckets techniques an important extension to DRSAM

file scructures and to non indexed dynamic hashing schemes in general.

Effect of Insertion Methods on the Unsuccessful Search

We chose the case where hb=48 records and =3 to compare the random and ordered
inserdon methods. In Table 5.1 we report the average insertion and average unsuccessful
search costs for e/=1 and e/=4. With e/=4 ordered insertions result in qcus = 1.196 disk
access; while it is equal to 1.934 if randou; insertions are used. This is an improvement in
performance of 38%. On the other hand, the average insertion cost increases by 20%. The
cumulative effect of ordered inserdons and elastc overflow buckets is to improve unsuccessful

search cost from 2.966 to 1.196 (a factor of 2.48).

hb=48, oby=11, r=3, Ifc=20, auf =0.94
insertion el=] el=4
method acus inserdon cost acus insertion cost
random 2.966 4.372 1.934 3.227
ordered 1.312 6.006 1.196 3.883

Table 5.1 Effect of the insertion method on the cost of
an inserton and unsuccessful search

5.2. Elastic Buckets Versus Larson's Partial Expansion

To compare Larson’s partial expansion (LPE) with elastic buckets (EB) we used
DRSAM as the basic file soucture. The test case was for hb=48 records, r=2, e/=1 and
obg=11 records; Ifc was adjusted to result in the same average stora:ge udlizatdon for both

methods (auf ~0.93). Table 5.2 shows the averages for LPE and EB.
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hb=48, oby=11, r=2, el=1

auf acss acus acri
mmm

LPE 0.932 1.567 3.496 4.820

EB 0.933 1.359 2.949 4.253

Table 5.2 Comparison of LPE and EB for pardal expansions

From the results in Table 5.2, it is clear that elastic buckets outperform Larson’s partial
expansions scheme. However, the cost paid is a wider fluctuation in storage udlization factor.
This is clear from Figure 5.5 where the auf for EB has a peak fluctuaton of ~ 1.5% around
the average while the guf for LPE is almost constant. Figure 5.6 cornpares the successful
search cost for EB and LPE. LPE required a higher average load factor in order to achieve an
equivalent average storage udlizadon to EB. This causes lengthier overflow chains to exist

and explains the poorer retrieval performance.

It is noted that the performance measure is in terms of random disk access cost and does
not account for differences in data ransfer ime. For EB the wansfer time is higher due to the
use of variable bucket capacities. But the difference in performance which is observed in Fig-

ure 5.5 and Table 5.3 is large and the unaccounted transfer time becomes irrelevant

§5.3. Sequential Processing with DRSAM

In this section the efficiency of DRSAM files in handling range queries and sequendal
processing is discussed and compared with other relevant order preserving linear hashing tech-
niques. The analysis covers home (primary) buckets and does not account for the overflow

chains which have w© be scam_xed as well.

In Secunn 3.2, it was pointed out that for the sequential scan of the file, one traverses the
storage areas in sequence: the E and C areas cannot coexist simultaneously. Then the storage

areas “~hich are oaversed are either E then HR followed by HL, or HR then HL followed by
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C. Thus, if a range query is specified the number of storage area boundaries to be traversed is
at most three. Therefore, we can theoretically scan the primary storage area in O(1) disk
seeks. In general, if enough buffer space is available, a range query which overlaps over two

or more primary buckets would require one disk seek (excluding overflow access).

Considering other proposed order preserving linear hashing schemes [ORES3, BURE3))
and from Section 2, it is clear that a range query spanning two buckets will require two disk
seeks to the primary storage area. Furthermore, these methods cannot make use of the availa-
bility of a large buffer space. As the number- of remieved buckets increases the improvement
in range query performance increases with the use of DRSAM file stuctures. This improve-
ment is based on the locality of data on consecutive home buckets and results from the
sequential allocation property.

The existence of the overflow area means that the complete sequendal scan of a DRSAM
file would sdll require O(N) disk seeks. But, because of the consecudve allocadon property,
we showed that DRSAM outperforms previous methods. Furthermore, the use of elastic
overflow bucket chains follows the same concept and implies further improvement of the per-
formance of DRSAM files for range queries. While achieving an O(1) disk seeks is stll an
open problem, a promising approach is to apply the concept of recursive hashing [RAMS4].
With DRSAM files, recursive hashing would lead to file souctures that are near optimal for

both sequental processing and random access.

If robust solutions for randomizing OPH functions become available, range queries and
sequential processing performance using DRSAM are expected to be comparable to indexed.

sequential files and better than B-trees structures.

6. Extended DKSAM

Possible solutions for robust OPH file stuctures were proposed with the “"quancdle”

methods [BUR84, KRI87], the statistic based approach [ROBS86] and the indexed bounded
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disorder method [LIT87]. Also to be mentioned is the linear piecewis2 mcthod [GAR86]
based on distribution dependent hashing. For DRSAM we propose similar control mechanisms
to alleviate the problems incurred by non uniform distributions and low selectivities of key
values in secondary indices. These mechanisms rely on the sequential allocation property to
maintain the overall perforrnance of the file, and the resultng stucture is referred to as
extended DRSAM (EDRSAM). Two contol strategies are discussed: 1) global file conwol
with an index and 2) local control with a multi-level rie embedded as a sequendally allocated
stucture. The dynamic administration of EDRSAM with the proposed 'stratcgics is discussed

in (HAC88b].

6.1. Global Control with an Index

The global congol mechanism consists of a two level file swucture similar to TIL1
(HACB88a]. As shown in Figure 6.1 the first level is a memory resident index table. The table
entries are such that the domain of a key is partiioned into intervals with quasi-uniform disai-
butions. The effect of the index table entries is to digitize the probability density funcdon or
equivalently create a piecewise linear approximation of the cumuladve distribudon. Each digi-
tal level implies the creation of a DRSAM storage area pointed to by an engy in the index
table. This area grows according to the estumated cumulative distibudon over the interval
Each storage area is independently managed resulting in a muld-level DRSAM structure. This
approach is suitable to a distributed environment where storage is allocated in quanta of con-

tguous physical blocks.

The use of the index table is essendal, as generally good randomizing OPH functions are
not available and non-uniform distributions are detrimental for hashed files. We estimated that
a table size of 4 Kbytes can accommodate around 200 index enmies. A file size of 224 elastic
buckets can be achieved. These are more values than one expects to use for very large files. If

the table cannot fit in main memory an additional disk access would be required for the index.
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But this situation is not expected to arise unless highly irregular and biased distributions are
considered. Paging algorithms can be used in this case. Details of the index table entries are

found in [HACS88b].

DRSAM
storage areas

_—
T~

Index table

Figure 6.1 General File Model

6.2 Local Control

The DRSAM storage areas in Figure 6.1 are said to have a quasi-uniform distribution of
keys. As the file dynamically evolves excessive unbalance due to non-uniform hashing will
appear and degrade the performance within a storage area of the file. Proper local control for
fine tuning is needed to adjust to localized unbalanced hashing. We bncﬂy introduce two such
schemes, namely sub-hashing and super-hashing.

Sub-Hashing

The idea of sub-hashing is illustrated in Figure 6.2. Assume that two brother buckets at
level "i" are such that one is highly loaded and the other is sparse. The highly loaded bucket
will have a lengthy overflow chain while the sparse brother will be almost empty. This situa-
tion leads to a degradation in the retrieval performance as well as in the storage utilization of
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the file. We resolve this situation by merging the contents of the two buckets at a sub-level
"i-1",

Tag enmies arc used to determine the relative level with respect to the home level of the
storage area. A tag value of O refers to the home hash level while a 1 is used for the split
hash level. In Figure 6.2 the grouped buckets are at sublevel "i-1". This concept follows the
same idea introduced by Orenstein for MLOPLH (ORES83]. With bc as the bucket capacity,
the physical contiguity is used and the resulting group can use a capacity of 2xbc records.
Overflow is thus handled more efficiently and the problem arising from a low selecdvity on
some secondary keys is naturally resolved. This characteristic stems out of the sequendal allo-

cadon property.

Super-Hashing

Super-hashing is illustrated in Figure 6.3 and is the counterpart of sub-hashing. When all

"oy

records in 2 bucket at level "i” have the same (i+1)-th bit, one of the resuldng child buckets 1s
empty. we need to hash with a higher level to differendate the keys. Tag informadon is also
used to idendfy reladve super-hashing depth. In Figure 6.3, the split hash level "i+1" is used
first and results in the empty bucket on the right One additional hashing depth is required to
differendate the contents of the left brother bucket. The resulting buckets are at level "i+2"

and have a tag value of 2.

Sub and super-hashing can be applied recursively resulting in a embedded muld-level
and sequendally allocated trie structure. With a 4 bit tag per bucket, 16 different levels of

local control can be accommodated.

6.3. Some Performance Implications

For the local contol mechanisms, we observed some similarities with Orenstein’s

MLOPLH [ORES83]. But the two mechanisms we propose, result in a file strucrure with its
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own characteristics: the use of tag information induces a maximum of one additional access.
Furthermore due to bucket condguity this access will not need disk head movement. In com-

parison, Orenstein’s method could require 2 maximum of log; f! disk seeks.

If enough buffering is prévidcd. the .random access performance is degraded by the
increased transfer time overhead. In the case where buffering is provided for one single chain,
the additdonal overhead would be measured in disk rotatons. This is compared with other
order preserving linear hashing methods which require one disk seek for each home bucket

access. Furthermore, larger disk buffers cannot be used by such schemes.

The control mechanisms do not assume an underlying probability distribution of the keys
over the key domain. They are designed so that DRSAM files adapt to most key distributions.
The dynamic administration of these methods rely on heurisic stategies which will be

evaluated with real data filcs. Details of these methods are found in [HAC88Db].

7. Conclusion

In this paper, we proposed a dynamic random-sequental access method; DRSAM. Our
simulatdon and analydcal results show performance improvements for this file structure over

other well known order preserving dynamic hashing techniques.

We adapted the concept of elastic buckets to directoriless dynamic hashing schemes and
extended their use to overflow chains. These techniques improve the performance characteris- '
tics of DRSAM, especially for applications requiring high storage utilizadon. These situations
are typical of very large data/knowledge bases. From our work, we recommend that ordered
inserdons be followed if DRSAM files are used for secondary key rewieval. Finally, we found

that elasdc buckets outperform Larson's partial expansion method

As order preserving hashing leads to non-uniform distibutions, we extended DRSAM
with special control mechanisms. The resulting structure, EDRSAM, is designed to handle a

wide range of applicadons without prior knowledge of the key disaibutions. EDRSAM can be
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viewed as embedding muld-level trie hashing in a sequentially allocated physical swucture. In

depth evaluaton of EDRSAM by simulation is forthcoming.

Our long term plan is 'o gain more insight to DRSAM files and apply them to inverted
surrogate files [BER87]. Based on the inverted surrogate files model and EDRSAM we are
working on the development of a parallel back end architecture [HAC88a] for the manage-
ment of very large data/knowledge bases.
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ABSTRACT

In this paper we propose a full text search system based on optics. The
storage and processing of the textual data are performed by an optical
back-end system to an electronic computer. In this way we can take advan-
tage of the speed and parallelism of digital optical processing. Using the
proposed configuration we show how one might implement a set of text

processing operations using lasers, spatial light modulators and photodetec-
tors.
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1. INTRODUCTION

Over the past three decades édvancing technology and parallelism have had a
profound effect on modern electronic digital computing. This impact has come largely
from the development of new microcircuit technology and the use of parallelism at all
levels. While these dramatic advances are expected to continue in the foreseeable future,
optics will play an ever increasing role primarily because of its inherent speed and paral-
lelism. Over the past few years optical storage has gained considerable prominence pri-
marily because of its high storage densities. Communicating via optical fibers is now the
method of choice primarily because of its high speed and large bandwidth. Analog optical
processing has been with us for years but only recently has there been increased emphasis
on digital optical processing and the increased interest in optical storage and communica-
tions will promote additional interest in optical processing.

One of the major problem areas in the information storage and retrieval field
concerns full text search [HAS83]. When the text database contains newspaper articles,
case histories or legal briefs, one must often resort to full text search of the data. Even
with the most sophisticated computing equipment this process may be time consuming
and expensive [HOLS83]. Because of its inherent speed and bandwidth we believe that
optics may offer some future solutions to these problems.

In this paper we propose an electro-optical system for performing full text
operations and show how one might perform a rich set of full text operations using this
optical system.
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2. BACKGROUND

2.1 Optical Text Processing

Shown in Figure 1 is a lL.igh ievei block diagrain of an electro-optical system for
performing full text search operations. The textual data are stored on optical storage
devices and are removed in large quantities for transport to an optical text processor. As
will be discussed in the next section, optical disks have slower access times than magnetic
disks but the potential exists for massive data transfer rates through multi-track reads.
Rates on the order of 300 megabytes per second appear to be feasible [BER87]; this is a
full two orders of magnitude greater than current magnetic disks. Obviously, with these
data rates current electronic computers would have difficulty in accepting the data since
they are designed for much slower rates.

Photon-to-Electron

Conversion
Optical Optical . End
Electronic
2 Text i\ —> Memory [
Storage Processing User
* Optical Signal —p Electronic Signal

Figure 1. Optical Text Processing System.

It is logical then to consider passing the data via optical fibers to an optical text
processor. The optical text processor performs a variety of text operations on the light
beams based upon user queries. The resulting data that satisfy the queries are trans-
formed from photons to electrons for further processing by the electronic computer or
presentation to the user. In this way the superior speed and bandwidth of optics can be
used to advantage. Additionally, the resulting output data rate will be much lower and
within the capabilities of the electronic computer. Thus, the optical text processing system
serves as a back-end system to an electronic computer.
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2.2 Optical Disks

The need for large capacity and high bandwidth secondary storage will be
satisfied by using optical disks which can hold up to 10 GBytes per platter (14-inch
diameter). Culicaily, access times of optical disks arc larger than those of magnetic disks
' [CAR86]. The reason is that the focusing optics are bulkier than the “flying” miniature
heads of magnetic disks. Data rates are comparable, with potential for improvement since
optical disk technology is relatively new.

Optical storage [ALT86, CAR86, DAV87] has its origin on the first video disk
systems which were introduced in the late '70s and the overwheiming success of the
compact audio disks that followed. The replacement of the earlier gas laser heads by new
solid-state Laser Diodes gave birth to the first CD-ROMs [CHES86] with a capacity of
hundreds of Megabytes. h '

Optical storage technology offers ultra high recording density in the order of
hundreds of Mbits/cm2 on a medium that can be replicated at low cost and high speed.
The protective plastic shield on the recording surface considerably prolongs media life,
eliminates the super clean environment requirements and makes optical disks more com:
pact and easier to use. The relatively large (order of millimeters) Head/Medium gap en-
ables the optical head to focus into very small spots, eliminates surface wear and makes
head crashes virtually impossible. In addition, it makes optical disks removable and inter-
changeable. Efficient encoding techniques ensure low uncorrected bit error rate which is
further suppressed by error correction mechanisms. Finally, optical disks allow the inte-
gration of video and audio signals along with data in a medium directly accessible and
interactable with the computer.

Optical disks can be classified into three categories: a) Read-only (ROM), b)
Write-Once-Read-Many (WORM) and c¢) Erasable/Rewritable. The best-known represen-
tative of the first type is the CD-ROM, a compact disk with a standardized format. All the
information is prerecorded by the manufacturer and cannot be altered by the user. Optical
disks of the second category are not standardized and come in different sizes. As their
name suggests, data can be written only once by the user and cannot be erased after-
wards. They are suitable for storage of less volatile data, such as text data bases, or
applications that require a complete history of updates.

Research efforts for the development of erasable optical disks have been fo-
cused primarily into three different approaches: a) Phase change of the material (amor-
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phous to crystalline, b) Plastic deformation and c) Magneto-optic combination. The latter
approach is the most advanced and appears to be the most viable one. in fact, the first
magneto-optic erasable disks were introduced in late 1988 but as of yet no standards have
been established. Magneto-optical disks have the potential to dominate the secondary
memory market. Predictions for tenfold increase in storage capacity and transfer rates
over the next few years are no longer considered optimistic. Future improvements include
faster drives and smaller optical heads along with more efficient encoding and error cor-
recting techniques. We anticipate that optical disks will steadily replace their magnetic
counterparts in applications with very large storage requirements.

2.3 Increasing The /O Bandwidth From Optical Disks

While we believe that single beamn read optical disks will improve in perform-
ance, we also believe that massive data rates can be obtained from optical disks and we
present two such approaches here.

a) Multiple-Beam Read

Solutions to the problem of relatively low access times and transfer rates can be
provided by using more than one laser beams simultaneously. The non-interfering nature
of light and the relatively large distance between the optical head and the disk surface
make parallel multi-beam data access feasible. In fact, commercially available CD-ROM
drives can read many tracks ( i.e. £ 32) without head movement. A single laser beam
can be expanded to multiple parallel coherent beams and each of them can be focused on
a different track on the disk. The readout beams can be further separated and directed to
an array of photodetectors. This technique (Fig. 2.a) can provide data rates in the order of
hundreds of MBytes/sec but it is not suitable for parallel recordings since independent
modulation of a particular beam is not possible.

b) Transmissive Optical Disks ]

The design shown on Figure 2.b uses a transmissive instead of a reflective
optical disk [MOS87]. The unfocused laser beam illuminates a large number of tracks
simultaneously, scanning millions of spots at a time and transferring that information to
an array of photodetectors underneath the disk. According to the Faraday effect the po-
larization of a laser beam passing through a magnetized medium suffers a rotation deter-
mined by the direction of the magnetic field of the material. Therefore, magneto-optical
disks can be operated in the transmissive mode if appropriate consideration is given to the
elimination of diffraction effects.The potential transfer rates of this approach are enor-
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mous. Theoretically, it seems possible that the entire disk can be read in a single revolu-
tion if the beam diameter is large enough, although it is questionable whether such vast
amounts of data could be handled in the output.

Laser

Photo-
detectors

Photo-~
detector

(a) | (b)

Figure 2. ( a ) Multiple-beam read from optical disks and
( b ) Transmissive optical disks.

A more practical solution would be the use of multiple heads, each one of them
accessing a specific number of tracks. Five to ten such heads could cover the entire area
of the disk, which means that the only moving part would be the optical disk. One lens for
each head would focus the output data to a single array of detectors. The situation be-
comes even better if there is no need for photon-to-electron conversion. Instead, the
reflected or trasmitted laser beams could be guided through optical waveguides directly to
optical processors, thus eliminating any contention or saturation problems. Extending
these ideas, the next step is to use memory technology that requires no moving parts.

2.4 Optical Comparisons

Following an approach taken by Guilfoyle [GUI86, GUI88] optical comparisons
can be performed based on the exclusive-or (EX-OR) primitive using dual-rail logic.

Two n-bit words A and B are equal if A8 +A:8 =0 for each pair of corresponding bits
A; and B;. Since both the value of the bit and its complement are needed for the com-
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son, each n-bit word will be represented by 2n light beams (i.e. the 4-bit word 1011 will
become 10-01-10-10). Using this method a 00 combination corresponds to a “don’t-
care” character while the 11 combination always produces a “Not-Equal” result. The
coding scheme for the two logical values, 1 and 0, can be either light and no light or
horizontal and vertical polarization respectively.

Word A Word B

/ Lens

Photo
Detector
Cell

“Equal”
Signal

ERRRRRR
A2y vV B2 Ne—

wary vV eis\e—

Figure 3. Optical comparison of two n-bit words based on the EX-OR
primitive.

As shown in Figure 3, the light beams are superimposed bit-wise and are fo-
cused by means of a convex lens on a single photodetector which performs the logical OR
(or summation) of all the beams. If no light is detected the two words are equal while any
level of light intensity other than zero indicates that the two words differ in at least one
bit. The output of the photodetector is electronic.

Muiltiple word comparisons can be performed in paralléi if two 2-dimensional
arrays, A and B, are employed each having 2n rows and m columns. At any instance in
time the word at the i-th column of the A array is compared to the word at the i-th
column of the B array. The result (equal or not equal) is recorded on the i-th cell of a
row of photodetectors. This configuration, depicted on Figure 4, allows for m compari-
sons of n-bit words to take place simultaneously.
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Figure 4. The two-array configuration for multiple-word optical comparisons.

The information on each array has to be recorded on two-dimensional spatial
light modulators (SLMs). SLMs constitute an essential part of any optical data processing
system [WARS87, PEN86, KNI81, CAS77]. These active optical devices have the ability to:
a) store on a one- or two-dimensional array information encoded in an input (write)
pattern, and/or b) spatially modify or amplify some of the optical characteristics (phase,
amplitude, intensity, polarization) of a readout light distribution as a function of space
and time. SLMs may operate in either transmissive or reflective mode. They can be
electrically or optically addressed according to the nature of the write signal. Different
versions can process optical signals in 1-D, 2-D or 3-D formats. A figure of merit for an
SIM can be given by its Time-Space Bandwidth, in pixel operations per second, which
offers a good approximation to the modulator’s processing power. Time-Space
Bandwidths of 10 bit-operations/sec, which compare favorably to electronic processors
have been experimentally demonstrated [LEESS].

238




3. AN ARCHITECTURE FOR OPTICAL TEXT PROCESSING

3.1 A Hybrid Opto-Electronic Text Processor

Figure S illustrates the design of an architecture for optical text processing.
Documents are stored in banks of large optical disks. The goal of the design is to process
data optically “on-the-fly” taking full advantage of the parallel nature and high speed of
optical processing and retain in the memory only useful information.
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o % Electronic
o Buffer
> e
oD 16 MB
Dtho-
etector .
w o Army
Optical Path

—3p» Electronic Signal

Figure $. An architecture for text processing. -

When a transaction is issued by the user, the participating data are retrieved
from the optical disks and sent to the Optical Text Processor (OTP) via the Page Com-
poser. The Query Resolver accepts electronic control signals from the OTP and the Con-
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trol Unit, decides which documents satisfy the particular query and marks them for per-
manent storage in the Electronic Buffer. The actual contents of the documents arrive at
the Buffer through an alternate optical path and are converted into electronic data by a
Fhotodetector Array. We now describe each part of the system in more detail.

The Optical Text Processor

The Optical Text Processor (Fig. 6) is based on the two-array configuration
described in the previous section. The first SLM is reflective, optically addressed and
receives the light beams generated by the Page Composer. The second SLM is transmis-
sive, electronically addressed and receives its input from the Control Unit. Optical data
are written (one 16-bit character per column) on the first spatial light modulator while the
appropriate search argument is loaded on the second SLM. The two optical patterns are
superimposed and the result is detected on a row of photodetector cells, one for each
character position.

Readout Input from Enable Signal
Laser Beam Control from
* * Unit Control Unit
e Photo

— m——

Optical Input

= \‘:‘m
— ||| || 77

from Page
Composer
bt
SIM-1  Beam SLM-2
Splitter Lens —
To Query
Resolver

Figure 6. The Optical Text Processor

The optical pattern on the first SLM is shifted one character at a time and the
string that is contained in the horizontal dimension of the array is compared to the search
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argument on the second array. The detector records the positions of the characters that
match and sends the corresponding “hit” signals to the Query Resolver. The first few
character positions on SLM-2 will permanently contain the character strings for “New-
Paragraph”, “New-Sentence” and “New-Word” (the “New-Word"” character will be indi-
cated as O). In addition, some positions may be reserved for the detection of special
characters such as control characters etc, as shown in Figure 7.a. The remaining length
will hold the search arguments(s). The total length of the array depends on the size of the
search strings.

Each photodetector cell performs the logical OR of the light beams emerging
from the 16-bit positions corresponding to a single character. Each cell can be individu-
ally controlled (enabled or disabled) by the Control Unit (Fig. 7.b). The decision on
whether a match has occurred is taken by checking only selected groups of enabled detec-
tor cells, that correspond to the array columns on which the search arguments are stored.

Enable
e : Detector
E E E Search Argument(s) cell
New=-Paragraph
New-Sentence :
M Special
a
New-Word Characters
“Hit" Signal
(a) (b)

Figure 7. ( a ) Arrangement and ( b ) Individual control of the photodetector
cells
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The Page Composer

The Page Composer contains the necessary optical elements to generate “on-
the-fly” the input optical patterns for the OTP. The main element is a fast optical scanner
which will convert the sequential input from the disks to a two-dimensional pattern. The
speed of this optical scanner is faster than the transfer speed from an optical disk, thus
eliminating any contention problems at the Composer’s input and the resulting need for
buffering. The output of the Page Composer is sent to both the Optical Text Processor
and, via a beam splitter, the Phctodetector Array.

The Query Resolver

The Query Resolver is an electronic sequential circuit that contains various
binary counters to count the number of occurrences of particular components (para-
graphs, sentences, words or even specific characters). It also contains a set of flags that
can be set by the “hit” signals arriving from OTP. The necessary logic is employed to
resolve ambiguous results and inform the Control Unit about successful queries. In addi-
tion, the Query Resolver maintains the number (or the name) of the document currently
under process. |

The Electronic Buffer

Following an alternative optical path, data from the disks arrive at another
two-dimensional photcdetector array where they are converted to electronic signals and
stored into the Buffer. The Buffer, is a fast semiconductor memory of 16 MBytes, which
operates as a ring~type queue. A document remains in the Buffer for further processing
or output to the user only if it is marked by the Query Resolver as such. Otherwise, it is
overwritten by subsequent data streams. Since the system operates as a back-end ma-

chine connected to a host computer, there are multiple parallel channels between the
Buffer and the front-end.

The Control Unit

The Control Unit maintains the identifier of the document being processed in
the OTP and issues control signals to the optical disks and the page composer. It gener-
ates the appropriate search arguments which consist of strings of characters, spaces and
“don’t-cares” (a “don’t-care” will be indicated as x) and enables the detector cells corre-
sponding to the positions of these strings. The Control Unit also monitors the contents of
the Electronic Buffer.
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3.2 Performing Text Operatlons

The proposed architecture is capable of performing many different kinds of
text search operations. The optical part constantly performs comparisons while the elec-
tronic part is responsible for writing the necessary search arguments, manipulating and
interpreting the signals generated by OTP, and passing the results to the user. The follow-
ing is a description of the implementation of various text operations.

a) Count the number of occurrences of word A in a document.

The search argument, which will be OAQO, is loaded on SLM-2 of the OTP. The
Query Resolver is notified about the arrival of a new document at the OTP and resets a
counter to 0. Every new occurrence of A will cause an increment of the counter until the
end of the document is reached.

b) Search for word A in a document, paragraph or sentence.

The search argument will be JAO. As soon as a match is detected the current
component will be marked and kept in the buffer for further processing. The arrival of a
new component will be detected by keeping track of matches on the reserved photodet-
ector cells.

c) Search for string A andfor string B in a document, paragraph or sentence.

The search argument will be OAO*xx0OBO (the number of don’t-care characters in
the middle is arbitrary but has to be -at least 1). A match over all the detector cells
corresponding to the string A and/or string B will signal a success to the Query Resolver.
If the end of the component is reached before the occurrence of the second string (for the
“and” case) the process will start all over again.

The following example will help illustrate the procedure. Suppose we want to find
all the documents that contain the words “chaos” and “Universe” in the same paragraph
and that in one such document a particular paragraph starts like this: “In the beginning
of the Universe there was chaos...”. As previously mentioned, the search argument:
OchaosOxxOUniversed will be loaded in SLM-2 (Fig. 8a) and the appropriate detector
cells will be enabled (Fig.8b). The separation of the two arguments by “don’t-cares” is
necessary to avoid ambiguities in the detection of each string. The characters of the docu-
ment begin to slide one-by-one into SLM-1 and are compared to the search arguments.
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The query will be satisfied when:
1) a new paragraph is detected, and _
2) the presence of strings “chaos” and “Universe” are detected

—not necessarily in that order— before the end of the paragraph.

When a new paragraph begins, a flag F, is set to 1 and two others, F, and F,, are reset to
0 in the Query Resolver. If one of the words is found, the second flag is set. Only when
the second word is detected and the three flags register 1, has a match occurred. The
paragraph is marked in the buffer and the three flags are reset. The process will be
repeated with the arrival of a new paragraph. Figures 8c-8f show four different instances
of SLM-1 namely : the entrance of the paragraph into SLM-1, the detection of the new
paragraph, the detection of word “Universe” and finally, the detection of the word
“chaos” which signals the success of the operation. -
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(a) The contents of SLM-2, ( b ) the grouping of the photodetector cells and
( c-f') the contents of SLM-1 in four different cycles.

Figure 8. Search for the words “chaos” and “Universe” in the same paragraph.
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This query is case-sensitive because it will detect only Universe and not universe or
UNIVERSE. It is possible, however, to modify the software so that it automatically inputs
all these variations as additional search arguments in SLM-2. Then, by adding some more
flags in the Query Resolver and slightly changing the decision logic we can perform case-
insensitive queries.

d) Search for words A and B with arbitrary number of words in between.

Once more the search argument will be JAO**OBO. When the presence of word A
or B is detected a flag in the Query Resolver is set and the process continues until the
other word is detected or the end of the document is reached. Again, if a match has
occurred the component is marked for further processing.

e) Search for words A and B with exactly n words in between.

The search argument will be JAOBO. As soon as the word A is detected the word
counter is reset to 0 and starts counting using the signal from the space character position
between A and B. When its content becomes equal to n t'i¢ values of the detector cells
corresponding to the B string are examined for a possible ratch. If there is no match the
process is repeated. With some additional logic and more word counters available, cases
of multiple occurrences of A followed by multiple occurrences of B can be resolved.

f) Search for the string XxxY (fixed length embedded don’t care).

The search argument will be OXxxYO. To avoid accepting the given pattern when it
does not belong in the same word the detection of a space between X and Y (when it
reaches the leading space position of the search argument) will cancel the match signal.

8) Search for the patterns ?X or X? (variable length prefix or suffix don’t care).
The search argument will be XO or OX, respectively.

h) Search for the pattern X?Y (variable length embedded don’t care).

The search argument will be OXOYO. When OX is detected a flag is set at the
Query resolver and the detector cells corresponding to the pattern OYO are enabled. If
YO is detected and no space has occurred in between, a match has taken place. If a space
is detected before the occurrence of YO, the flag is reset and the process is repeated.

i) Count the number of sentences and/or paragraphs and/or words in a document.

A different binary counter is reset for each component in the Query Resolver and its
input is linked with the corresponding detector cells. At the end of the document the
contents of the counters hold the results.
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4. MULTIPLE-PAGE AND MULTIPLE-DOCUMENT SEARCH

Spatial light modulators can achieve spatial resolutions in the order of tens of
line-pairs per millimeter, which means that a 16-bit character can be stored in an area
roughly 1 mm long and 0.05 mm wide. The effective area of most SLMs is in the order of
10-30 cmz?, large enough to accommodate about 10% characters resulting in 105 parallel
comparisons in a single step.

It would be extremely inefficient to allow all this processing power to be wasted
with only one input data string arriving at SLM~1. Therefore, the initial design can be
modified in order to employ multiple stream input to the first SLM as well as multiple
search arguments (not necessarily the same) on the SLM-2. Each input stream will corre-
spond to a different page of the document or even to a different document.
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Figure 9. The Optical Text Processor for multiple-page text search.

Using the previously discussed techniques different pages can be stored on
different tracks of the disk and retrieved in parallel by multiple laser beams. This com-
plex optical pattern is imaged on SLM-1 with the help of the page composer. In this case
a two-dimensional photodetector array is needed with more complicated control mecha-
nisms. Instead of a single plano-convex lens, a lenslet array (an array of multiple mini-
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ature lenses) can be incorporated to focus the output of SLM-2 to the photodetectors. The
new design is depicted in Figure 9.

Obviously, there will be a significant increase in the system’s throughput not,
however, without a considerable increase in the hardware complexity of the Control Unit
and the Query Resolver.

5. CONCLUSION

In this paper we present an initial design of an optical full text processor. We
show how one can perform a full set of text operatio}xs ranging from simple searches to
various types of variable length “don’t-care” searches. Because of the speed and parallel-
ism of optics we believe that the performance of this system would be extremely good.
However, our next step is to conduct detailed mathematical and simulation analyses to

obtain a quantitaiive measure of possible performance improvement that such a system
could attain.
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ABSTRACT

In this paper we propose a data base machine architecture based on optics.
The storage, transport and processing of the data are performed by an opti-
cal back-end system connected to an electronic computer. In this way we
can take full advantage of the speed and parallelism of digital optics prior to
transforming from photons to electrons. Using the proposed configuration
we show how one might implement selection, projection and equi-join op-
erations using lasers, spatial light modulators and photodetectors.
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1. INTRODUCTION

During the past two decades data bases have become an inseparable part of our
every day life. From a simple bank transaction to complex weather prediction, there is an
enormous demand for the maintenance and effective manipulation of large volumes of
data. Data bases with on the order of gigabytes are very common and their expansion to
the terabyte range in the near future is a conservative prediction. In addition, fast re-
sponse is often critical, especially for real-time applications.

The relational data model [COD70] has been widely used. The key to flexibility
in a relational data base lies in the ease with which relations can be manipulated. The
application will often need data from many different relations in order to soive a particu-
lar problem. The Data Base Management System must be able to derive the desired
relations. For this. several relational operations have been developed with which the origi-
nal relations can be manipulated to achieve the desired representation for the application.

The most common relational operations are: Union, Set Difference, Intersec-
tion, Cartesian Product, Selection, Projection, Quotient and Join. Three of them, namely,
Selection, Projection and Join, are particularly useful for processing queries but are time-
consuming, especially the Join. A fast and reliable implementation of these operations is
important to the performance of a data base system. With the combined requirement of
large storage and real time processing, electronic computers can be hard pressed to meet
data base system needs.

Digital optics is a relatively new technology that may be able to help solve these
problems by replacing electronic signals with light beams. Photons have some very attrac-
tive properties, such as high speed, massive parallelism and non-interference. The idea of
optical computing is not new. Optical (especially analog) technology has been used for
years in applications such as: image processing using spatial filtering of coherent light,
pattern recognition using matched filters, signal processing using acoustooptic devices and
matrix-vector multiplication using discrete optical processors. However, in recent years,
with the maturing of laser technology, research results have indicated that digital optical
processing is feasible and may offer considerable benefits in terms of speed and parallel-
ism.
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The first commercial optical products such as videodisks or compact audio
disks have become impressingly successful. Optical fibers are extensively used in modern
telecommunications and the use of holographic memories for multiple interconnection
networks has already begun. There are numerous areas that can benefit from optical
technology, Very Large Data/Knowledge Bases being one of them [BERS87].

In this paper we examine some of the aspects of using optics to deal with data
base problems. We begin with a section on data base and optics in which we discuss
optical storage, transport and processing of data. We then present an initial design of an
optical data base machine and indicate how to perform a subset of relational operations,
namely selection, projection and equi-join.
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2. OPTICS AND DATA BASES

2.1 Data Base Machines

A common approach to deal with the problems associated with the processing
of enormous amounts of data in very large data bases is the incorporation of a Data Base
Machine (DBM). A DBM with multiple storage units, multiple processors and the appro-
priate interconnection network will operate as a back-end machine to a host computer
undertaking a large part of the total traiisaction load. DBMs must have very large storage
capacity, high degree of parallelism to ensure acceptable data rates and specialized proc-
essing units such as sorting pipes, data filters, relational operators or inference mecha-
nisms. Many electronic DBMs have been proposed but only a few have been implemented
and even fewer have become commercially successful [NEC84, NEC86, BRI88]. While
electronic processing is acceptably fast, the Input/Output process remains a bottleneck
particularly when a transaction requires a global search through the entire data base.

High-capacity optical disks, high-bandwidth reliable optical interconnection
networks and optical processing elements can offer an alternative solution. Here, we are
concerned with the design of a back-end optical Data Base Machine capable of perform-
ing a set of relational operations, namely selection, projection and join. The goal of the
system is to preprocess data “on-the-fly” in their optical form and pass to the electronic
host only “useful” information. The photon-to—electron conversion takes place only at the
final stage of the machine.

2.2 Optical Data Base Machines

Shown in Figure 1 is an overall block diagram of an electro-optical data base
machine. The current data rates that can be sustained from current optical disks are in the
order of one megabyte per second with the rates from magnetic disks being about 3
megabytes per second. However, as discussed in a subsequent section, it appears to be
feasible to generate data rates in the area of 300 megabytes per second through multi-
beam reads and multiple heads. Assuming that these rates are feasible then the data
could be input directly into an electronic computer, shown as interface A on Figure 1.
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Figure 1. General block diagram of an electro-optical data base machine.

However, these data rates would overwhelm current electronic digital comput-
ers since they have been designed for magnetic disk rates. An alternative approach is to
feed the data from the disks into optical fibers and distribute them to remote locations.
This is shown as interface B cn Figure 1. While this approach takes advant:.. 2 of the
superior speed and parallelism of optical communications the receiving computers will
again have difficuity with such high rates. Finally, interface C seems to offer the best
approach. In this case the data in its optical form are processed by an optical processor
prior to conversion and presentation to the electronic computer. The electronic computer
is then better able to accept a reduced data rate; one that will be richer in content.

2.3 Optical Storage

Large capacity secondary storageis available using optical disks which can hold
up to 10 GBytes per platter. Currently, access times are larger than those of magnetic
disks [CAR86]. The reason is that the focusing optics are bulkier than the “flying” mini-
ature heads of magnetic disks. Data rates are a factor of three slower but with potential
for improvement since optical disk tzchnology is relatively new.

Optical storage technology offers ultra high recording density in the order of
hundreds of Mbits/cm2 on a medium that can be replicated at low cost and high speed.
The protective plastic shield on the recording surface considerably prolongs media life,
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eliminates the super clean environment requirements and makes optical disks more com-
pact and easier to use. The relatively large (order of miilimeters) head-medium gap en-
ables the optical head to focus into very small spots, eliminates surface wear and makes
head crashes virtually impossible. In addition, it makes optical disks removable and inter-
changeable. Efficient encoding techniques ensure low uncorrected bit error rate which is
further suppressed by error correction mechanisms. Finally, optical disks allow the inte-
gration of video and audio signals along with data in a medium directly accessible and _
interactable with the computer.

The major disadvantage of the optical disks is the locw Input/Output transfer
rate (sustained) due to high access times. Solutions to this problem can be provided using
three different techniques: a) multiple-beam read, b) transmissive disks and ¢) multiple-
head read.

The non-interfering nature of light and the relatively large distance between the
optical head and the disk surface make parallel multi-beam data access feasible. In fact,
commercially available CD-ROM drives [CHE86] can read many tracks without head
movement. A single laser beam can be easily expanded to multiple parallel coherent
beams and each of them can be focused on a different track on the disk. The readout
beams can be further separated and directed to an array of photodetectors. This technique
(Fig. 2.a) can provide data rates in the order of hundreds of MBytes/sec but it is not
suitable for parallel recordings since independent modulation of a particular beam is not
possible.

The design shown in Figure 2.b uses a transmissive instead of a reflective
optical disk [MOS87]. The unfocused laser beam illuminates a large number of tracks
simultaneously, scanring millions of spots at a time and transferring that information to
an array of photodetectors underneath the disk. According to the Faraday effect the po-
larization of a laser beam passing through a magnetized medium suffers a rotation deter-
mined by the direction of the magnetic field of the material. Therefore, magneto-optical
disks can be operated in the transmissive mode if appropriate consideration is given to the
elimination of diffraction effects. The potential transfer rates of this approach are enor-
mous. Theoretically, it seems possible that the whole disk can be read in a single revolu-
tion if the beam diameter is large enough. However, it is questionable whether such vast
amounts of data could be handled in the output.
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Figure 2. ( a ) Multiple-beam read from optical disks and
( b ) Transmissive optical disks.

A more practical solution would be the use of multiple heads, each one of them
being able to access a specific number of tracks. Five to ten such heads could cover the
entire area of the disk, which means that the only moving part in the whole device would
be the optical disk rotating at a fixed speed. One lens for each head would focus the
output data to a single array of detectors. The situation becomes evea better if there is no
need for photon-to-elec:-on conversion. Instead, the reflected or trasmitted laser beams
could be guided through optical waveguides directly to optical processors, thus eliminat-
ing any contention or saturation problems.

Beyond these approaches lie other possibilities including the complete elimina-
tion of mechanical movement. Considerable research effort has been devoted to holo-
graphic memories. Search of fixed format data, such as the indices of Very Large Data/
Knowledge Bases, could make effective use of optical content-addressable memory which
can be implemented by multiplexing a large number of holograms in a thick recording
material like lithium niobate [GAY8S, BERS8S].
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2.4 Optical Processing

Optical comparisons can be performed ased on the exclusive-or (EX-OR)
primitive which calls for dual-rail logic [GUI86, GUIs8]. Two n-bit words A and B are
equal if ABi+AB;=0 for each pair of corresponding bits A; and B:. Since both the
value of the bit and its complement are needed for the comparison, each n-bit word will
be represented by 2n light beams (i.e. the 4-bit word 1011 will become 10-01-10-10).
Using this method a 00 combination corresponds to a “don’t-care” character while the 11
combination always produces a “Not-Equal” result. The coding scheme for the two logi-
cal values, 1 and 0, can be either light and no light or horizontal and vertical polarization
respectively.

Word A Word B
l l / LenS
A
—_— ﬂ. —————>p | B,
el > = Photo
24 B4 Detector
- —_—D Cell
| |
—_— _—>
s pr—
. - R ] “Equal”
- 1 Signal
—~—p {An| ———p |Ba
" 1
% {An| =P |Ba
[~ |~

Figure 3. Optical comparison of two n-bit words based on the EX-OR primitive.

As can be seen in Figure 3, the light beams are superimposed bit-wise and are
focused by means of a convex lens on a single photodetector which performs the logical
OR (or summation) of all the beams. If no light is detected the two words are equal while
any level of light intensity other than zero indicates that the two words differ in at least
one bit. The output of the photodetector is electronic.

Multiple word comparisons can be performed in parallel if two 2-dimensional
arrays, A and B, are employed each having 2n rows and m columns. At any instance in
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time the word at the i-th column of the A array is compared to the word at the i-th
column of the B array. The result (equal or not equal) is recorded on the i-th cell of a row
of photodetectors. This configuration, depicted on Figure 4, allows for m comparisons of
n-bit words to take place simultaneously. The operation is concluded in as much time as
it takes for a laser beam to propagate from a source through the two arrays and reach the
photodetectors.

Word A Word B Plano~-Convex
l Lens
1 Photo
L~ L~ L A
] d | Detector
] |~ | 1
1
1+ L1 4+ L~
e
//‘ -1 //‘ -
1
1 |1 |+ L~
|+ ] |+ L1
// V] ________
/D |
SIM-1 SIM-2

Figure 4. The two-array configuration for multiple-word optical comparisons.

The information on each array has to be recorded on two-dimensional spatial
light modulators (SLMs). SLMs constitute an essential part of any optical data processing
system [PEN86, KNI81, CAS77]. These active optical devices have the ability to: a) store
on a3 one- or two-dimensional array information encoded in an input (write) electrical or
optical pattern, and/or b) spatially modify or amplify some of the optical characteristics
(phase, amplitude, intensity, polarization) of a readout light distribution as a function of
space and time.

SILMs may operate in either transmissive or reflective mode. They can be clas-
sified as electrically or optically addressed SLM (E-SLM and O-SLM respectively) ac-
cording to the nature of the control or write signal. Different versions can process optical
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signals in 1-D, 2-D or 3-D formats. Another classification [WAR87] divides SLMs into
three classes on the basis of their functional capabilities: a)Signal-Multiplication and Am-
plification devices, b) Sclf—Modulating devices and c¢)Self-Emissive devices.

In a typical amplitude-modulation application the amplitude at each point in
the output image is determined by the product of the input signal at a corresponding point
on the device and the readout image amplitude. The input write image generates a distri-
bution pattern of electric fields which in turn cause the light-modulating material to mod-
ify the polarization, phase and/or amplitude of the readout light.

A number of physical characteristics of an SLM are critical to its performance.
Spatial Resolution, in line pairs per mm, has to be as high as possible because it deter-
mines the number of individually addressed pixels or bits on the array. High Framing
Speed, defined by the time needed for a complete Write/Read/Erase cycle, is the most
desirable feature of an SLM. A figure of merit for an SLM can be given by its Time-Space
Bandwidth, in pixel operations per second, which offers a good approximation of the
modulator’s processing power. Time-Space bandwidths of 101 operations/sec, which
compare favorably to electronic processors, have been experimentally demonstrated
[LEES88]. Storage Time, varies considerably with different designs. Applications that use
SLMs as storage devices require long storage times while real-time processing needs can
be satisfied with subsecond storage times. Exposure Sensitivity must be high to minimize
power requirements and heat dissipation problems. Contrast Ratio can be critical in some
image processing applications but is not as important for binary information processing.

The spectrum of SLM applications is impressingly broad. Acoustooptic modula-
tors have been used in a variety of real-time operaticns such as convolution, matched-fil-
ter correlation, pattern recognition, spectrum analysis and radar detection. SLMs are
widely used for optical analog and digital computing [RHO84, GUI88]. Numerical appli-
cations include matrix-vector [CAS82] and matrix-matrix products, matrix inversion,
binary addition, multiplication [CHAS86] and division. All Boolean logic functions can be
implemented between multiple beams. Computations are performed using two’s-comple-
ment or residue arithmetic and achieve high numeric accuracy. Optical systolic array
architectures and linear algebraic processors [CAS84] have been proposed.
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2.5 Relational Operations

The performance of a data base machine with a high degree of parallelism
depends largely on the efficiency of the interconnection network. Therefore, the capabili-
ties and limitations of the interconnect technology utilized in realizing a computational or
signal processing unit are essential in determining the speed and flexibility of the opera-
tions that can be achieved by that unit. Optical signals need not obey the nearest neighbor
interconnection law. They can flow through three-dimensional space to achieve the re-
quired interconnect pattern between elements of a two-dimensional data array before
executing the desired operation between them [GOO84]. Using SLMs with space-
bandwidth of 256x256 we can achieve total interconnect gate densities in the area of 109.
Optical systems with clock speeds reaching 108 show potential interconnect bandwidth in
the order of 107 [GUI88]. To examine these advantages more closely, four categories of
operations must be considered.

Only projection belongs in the first category since it is the only operation that
does not require comparisons (except possibly in a second stage where any duplicates
have to be removed). Each element of a one- or two-dimensional array is dropped or
retained based only on its position in the array and not its value.

The second category contains single element operations like selection and text
retrieval. In such computations, each element in a one- or two-dimensional array is proc-
essed independently from the rest of the array elements. The interconnectivity required by
these operations is the loading and unloading of data to a processor array. Clearly, optical
interconnections have the advantage of being able to input an entire data array in parallel
using the third dimension for data propagation. On the other hand, in an electronic asso-
ciative processor, data can be input and output only along the edges of a two-dimensional
array, one row-column at a time. Optics have a lot to offer to Data/Knowledge Base
(D/KB) systems where single-element operations are common.

Another category of operations is that of sorting, which is especially important
in D/KB systems. Computations of this type require global intcrconﬁections between all
the elements of the input array. That is, every element of the output array is dependent on
all the entries in the inpu* array. The structure of the sorting problem suggests an efficient
algorithm in which compuu ricns grow as O(NxlogN). In order to achieve these computa-
tional savings, complex interconns it configurations are necessary among the input ele-
ments of the array. Additionally, these interconnections have to be changed during the
different stages of the computation. The requirement for dynamic interconnections can be
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exploited by employing the perfect shuffle function configuration. The perfect shuffle can
be applied repeatedly at each stage of the computation to produce the currently desired
interconnect pattern, presumably at the expense of extra time required to complete the
interconnections. Optics offer an efficient realization of the perfect shuffle function,
hence its use in hardware sorting units would lead to improvements in system throughput.

The fourth category includes space and time variant operations like equi- and
theta-join. The input relations can form two one-dimensional arrays and each element of
the first array must be compared to all the elements of the second array. The interconnec-
tivity pattern for these operations varies in space and time. Furthermore, the various
interconnections are data dependent, making it impossible to predict in advance the ap-
propriate interconnection patterns required at the different stages of the computation. The
throughput of a parallel machine implementing this type of operations is critically af-
fected by the availability of a dynamic and global interconnect network. Many processors
could be idle for a significant number of cycles waiting for data to be properly routed to
them. The overhead associated with the supervision of a controller in such a multiproces-
sor environment lacking space and time variant interconnection network may severely

degrade all the advantages of parallel processing. Optics again offer great interconnection
flexibility. :

The last three categories of operations involve extensive comparing of the input
values to some reference either fixed (selection, text retrieval) or constantly changing
(oin, sorting). As a result, the design must be capable of performing multiple parallel
comparisons rapidly. Optical comparisons can be achieved efficiently using the AND-
OR-INVERT (Exclusive-Or) logic primitive which was discussed in the previous section.
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3. AN OPTICAL DATA BASE MACHINE

Figure 5 illustrates the design of a hybrid opto-electronic architecture capable
of performing relational data base operations. The data base resides in banks of large
optical disks. Binary information is read from some optical storage medium using a single
or multiple laser beams and is available in its optical form for further processing.
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Figure 5. An architecture for relational data base operations.
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The way in which records of a certain relation are retrieved is not a major issue
since the distribution of light beams can be spatially modified by means of various optical
elements (_lenses, mirrors, beam splitters etc). However, every relation has to reside in a
different storage volume thus allowing for simultaneous access to ény subset of the data
base relations.

When the host issues a request for a transaction to the data base the participat-
ing data are located on the optical disk units, retrieved and an appropriate beam distribu-
tion is formed in the Pattern Generating Unit. The optical data are processed, if needed,
by the Optical Data Base Processor (ODBP) and the result is recorded on a photodetector
array. The ODBP is described in the next section.

The Pattern Generating Unit (PGU) contains the necessary optical elements to
generate “on-the-fly” the input optical patterns for the ODBP. There will be one PGU for
each optically addressed SLM. The main element of a PGU is a fast optical scanner which
will convert the sequential input from the disks to a 2-D pattern, as shown in Figure 6.

Optical
Scann
er >
>
Input Light
Beam
>
Optically
f Addressed
2-D SIM

Figure 6. The use of the optical scanner for the conversion of the sequential input
to a two-dimensional pattern.

Such optical scanners are capable of deflecting a laser beam at any point in an
area of tens of square centimeters in about 4 nanoseconds. This speed is faster than the
transfer speed from an optical disk, thus eliminating contention problems at the PGU
input. The output of the PGU can be sent either directly to the SLM or, via a beam
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splitter, to the detector array. An active optical device is required to produce the readout
optical beam necessary to read the information stored on the light modulators.

The final result of a transaction is recorded on an array of photodetector cells
which transforms the information from photons to electrons. The resulting electronic pat-
tern is stored in a fast semiconductor buffer and eventually passed to the host. The size of
the Photodetector Array (PA) depends on the length of the records in the data base and
must be large enough to accommodate the answer to any type of query. In any case it has
to be no longer than the sum of the sizes of the two longest records in the data base. Each
element of the array can be active or inactive according to control electronic signals
issued either by the Control Unit or the ODBP.

The Control Unit accepts a transaction request from the host and translates it
to the appropriate control signals to the disks, the PGUs, the ODBP and the detector
array. It generates the necessary arguments for the Selection operation and passes them to
the ODBP. The Control Unit also monitors the contents of the electronic buffer and in-
forms the host when the result is available.

3.1 The Optical Data Base Processor

The Optical Data Base Processor (Figure 7) is based on the two-array configu-
ration described in the previous section and performs only comparisons. There are three
spatial light modulators. SLM-1 and SLM-2 operate in the reflective mode and are opti-
cally addressed by the light beams generated in the Page Generating Units. SLM-3 is
transmissive, electronically addressed and receives its input from the Control Unit.

Optical data are written, one record per column, on the first two modulators
while the appropriate selection arguments are ioaded on SLM-3. For our purposes we
need two-dimensional spatial light modulators on which binary information can be re-
corded and used in a fast and reliable way. A resolution in the order of 1000x 1000 pixels
or better will be adequate if the total time needed to write and erase a frame (framing

speed) is kept in the order of 10™* seconds and lower. These numbers bring the potential
time-space bandwidth of the device to 10'° operations/sec with roughly 107 records being
processed every second.
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Figure 7. The Optical Data Base Processor.

To PA

There are two sets of photodetector comparator cells, C, and C,, only one of
which is enabled at any given instance depending on the type cf operation being per-
formed. The two optical patterns on SLM-1 and SLM-2 or SLM-1 and SLM-3 are super-
imposed and the result is detected on the comparators C, and C, respectively. Each
photodetector cell performs the logical OR of the light beams emerging from the bit
positions corresponding to a tuple. Each cell can be individually controlled (enabled or
disabled) by the Control Unit (Figure 8). The decision on whether a match has occurred is
taken by checking only selected groups of enabled detector cells.

265




Detector
cell “Match” Signal

Enable

Figure 8. Individual control of the photodetector cells.

The “match” signals from the Comparators are used to select and enable the
appropriate rows and/or columns of the Photodetector Array so that only these data,
which satisfy the query, will be converted to electronic signals and passed to the buffer.

The realization of the relational operations projection, selection and join is dis-
cussed in the next section.
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4. PERFCRMING RELATIONAL OPERATIONS.

4.1 Projection

Projection can be easily performed without the use of the Optical Data Base
Processor when it is the only or the last operation required by a certain transaction. All
that is needed is the deactivation cf the rows or columns of the photodetector array that
correspond to the data fields to be masked out. As a result, only the useful part of each
record is passed to the buffer. Since the result of a projection may contain multiple simi-
lar entries, the removal of the duplicates will be performed electronically.

However, projection is frequently followed by additional operations. In this case
the necessary mask out will take place “on-the-fly” inside the pattern generating unit and
the remaining data fields will be spatially compressed before they are written on one or
two SI.Ms for further processing.

The maximum throughput of a projection operation is bounded only by the
framing speed of the SLMs and the size of the tuples of the relation.

4.2 Selection

Selection is based mostly on comparison of a number of data fields, usually 1,
to the selection argument. The records of the participating relation are written, one per
column, on SLM-1. An optical pattern consisting of the constant value of the selection
argument is placed at the bit positions corresponding to the data field(s) to be compared
and “don’t-cares” for the remaining bit positions. N comparisons take place simultane-
ously, where N is the number of resolvable pixels in the horizontal dimension of the
SLMs. If the entry in a data field of a record is equal to the constant value a match is
detected at the optical comparator C, and the corresponding column of the photodetector
array is activated to record the qualified tuple which follows the alternate optical path
shown on Figure 6. During the next cycle another N records are loaded to SLM-1 and
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compared. Therefore, the service time, Tse, for a selection operation on a relation R with
Ngr records is given by:

N
Tsea = Ta "’?R X Tg

where Ty, is the initial set-up time and T, is the time needed to input an entire frame to
the SLM.

If the size of a record is larger than the number of rows in the SIM then two or
more columns of the array can be used. Also, projection will be performed beforehand to
drop the undesired data fields, if any.

4.3 Equi-Join

In the equi-join operation the fields of two records belonging to two different
relations, R, and R,, are concatenated only if the entries in one or more common data
fields are equal. In our system (Figure 9) the records of relation R, are loaded on SI.M-1
as described before while those of R, are written on SLM-2 in such a way that th? com-
mon data field(s) occupy corresponding bit positions. The decision at the optical com-
parator C, is based only on the comparison of these bit positions.

Photo-
detector
Relation Array
R,

Figure 9. Performing the equi-join of two relations.
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If a match is detected during the i-th cy - and the respective photodetector
columns are activated, the tuples from both modulators are physically concatenated on
the detector array. During the (i+1)-th cycle the entries in SLM-1 are shifted (actually the
entire array is erased and rewritten) one column to the left and N new comparisons take
place while in the (i+2)-th cycle the entries in SLM-2 are shifted in the opposite direction
for another N comparisons.

Using a slightly different approach, which may prove more efficient when the
number of reccsds of a relation is larger than N, the pattern on SLM-2 remains fixed
while the tuples of R, slide through SLM-1. When they are exhausted a new pattern
corresponding to the next N tuples of R, is written on SLM-2 and the process is repeated.
An upper limit of the service time, Tioin , for this operation is given by:

’ N N
Tjom = Tsu+[TFr X (1 +-§R‘-) X —I\%-]

where Ty, is the set-up time, Tk, is again the time needed to input an entire frame to the
SIM and Ng, and Ng, are the numbers of records in relations R, and R,, respectively.

4.4 Logic Operations

The proposed architecture can perform filtering of ground clauses in a logic-
based knowiedge base environment. Selection on a conjunction of exact-match criteria is
simply accomplished by incorporating all of them in the reference pattern. Disjunction-
based selection could be done by using concatenated search patterns if the total length is
less than N (and matching on a subset of the detectors), or by connecting more than one
optical matcher in a pipeline. Optical inference engines [CAU8S5, WARS86] should be
more efficient than their electronic counterparts because the parallel searching operation
eliminates the need for backtracking through the knowledge base.

4.5 Some Future Research Considerations

There is a number of riodifications that can improve the overall efficiency of
the original system. One such modification will allow the output of SLM-2 to be imaged
on SLM-3 also. in this way, the throughput of a selection operation could be doubled
since there will be two independent optical streams from SLM-1 and SLM-2 arriving, in
an interleaved manner, at SLM-3 which holds the common selection argument(s). The
optical flow is controlled by adjustable beam splitters.
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Another possibility involves a feedback optical path from the SLMs to the
PGUs to allow for optical processing in a loop. This approach is feasible when the binary
encoding technique uses different polarization angles so that the original information is

not destroyed after passing through the second SLM. The alternative design is illustrated
in Figure 10. '
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Figure 10. An alternative design of the Data Base Processor.

5. CONCLUSION

In this paper we present an initial design of an optical data base machine. We
show how one can perform relational data base operations including selection, projection
and equi-join. Because of the speed and parallelism of optics we believe that the perform-
ance of this system will be extremely good. However, our next step is to conduct detailed
mathematical and simulation analyses to obtain a quantitative measure of possible per-
formance improvement that such a system could attain.
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Abstract

We have implemented two prototypes of knowledge base management systems to demon-
strate the use of surrogate files in two different environments. The first system is developed
for a combined environment where an existing database system, INGRES, is used as a back-
end to a Prolog interperter. ‘Here surrogate files serve as an alternative indexing scheme
to the traditional ones such as B-tree or Hashing. The second system is for an integrated
environment where rules and facts are handled uniformly, which is implemented in *Lisp on
the Connection Machine having 32 K processors. This second system shows that the surro-
gate file technique lends itself well to the parallel processing environment, yet special care
unust be taken for the possible I/O bottlenecks. Future work involves the use of surrogate
files in handling more complex objects such as unrestricted Horn Clauses and multimedia
databases.
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1 Introduction

In the near future one of the major computer applications will involve Knowledge Base
Management Systems (KBMS), which can be viewed as a technology extension of current
database systems and expert systems. To realize a KBMS, two approaches have generally
been considered. The first combines an existing database with some types of inference en-
gine, where the inferencing mechanism is clearly separated from the management of large
data. A typical example of this approach is to combine a relational database system with
a Prolog Interpreter. The corresponding system architecture can be constructed by com-
bining two components; an inference machine and a database machine. This system is
not concerned with the extension of the underlying data model. That is, only existing
database models supporting normalized relations are considered. The second approach
integrates data manipulation and inferencing into a single system. The principal enhance-
ment of this approach over existing expert systems lies in the capability to manage data
residing on an external device; this capability includes access methods which are typical of
database technology and are integrated in the logic programming framework. This system
can offer a more extended data model by allowing complex objects in attribute values to
be retrieved based on unification.

In terms of physical organization, knowledge base management systems differ greatly
from database systems in the ways in which queries are specified and the internal data are
organized. Most queries in knowledge base systems are partial match queries; any subset
of attribute values can be specified in a query. That is, we cannot take advantage of the
primary key in indexing. As general terms from Horn clauses are allowed as attribute val-
ues, the file organization schemes and indexing schemes which have been used in current
database systems should be totally changed. In addition, recent advances in massively
parallel machines raise another issues in physical knowledge base desizn; most file orga-
nization schemes developed so far were designed for sequential processing, and hence did
not easily lend themselves to the parallel processing environment. Due to their uniform
structures, surrcgate files have rccently been given much attention in the parallel processing
environment [1,2]. This paper concerns the practical aspects of surrogate files. We imple-
mented two prototypes of knowledge base systems each of which represents two different
approaches in realizing knowledge base systems, namely the combined approach and the
integrated approach.

The rest of this paper is organized as follows. In the next section, the basic concepts of
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Key | BR | Codewords (12-in-2)
0010 0010 0000 0100
1011 0000 0110 0060
1000 0001 0000 1000
0100 0100 1000 0000
1100 0010 0100 0000
1010 0001 0000 0010
1001 0010 0000 0010

Ao oo o 'Y

Table 1: Sample Values for Codewords .

surrogate files are presented. Section 3 concerns an experimental surrogate file processing
system based on the first approach; combination of existing technology (i.e. INGRES and
Prolog). Described in Section 4 is a prototype of the second approach; an integrated system
where rules and facts are managed together. We implemented this experimental system on
the Connection Machine with 32K processors. Future work regarding both approaches are
presented in the last section.

2 Construction of Surrogate Files

Surrogate files are constructed by transformed binary codes where the transform is per-
formed by well chosen hashing functions on the original terms. Surrogate file schemes de-
veloped so far involve Superimposed CodeWord (SCW), Concatenated CodeWord (CCW),
and Transformed Inverted List (TIL). In this section we describe the construction of SCW
and CCW. Readers are referred to [3,4,5] for complete analysis of diverse surrogate files
including TIL.

In a superimposed coding scheme, a fixed length of bit-string, called a record descriptor
or a SCW, is associated with each tuple in the knowledge base. The SCW is formed
by superimposing (bitwise OR-ing) each codeword corresponding to each attribute of the
tuple. A codeword is said to be m-in-n encoding if the length of the codeword is m bits and
the number of bits to be set to 1l’s are n. The number n is often called the weight of the
codeword. One possible way to obtain a codeword is first hashing the individual attribute
values to obtain a Binary Representation (BR) and then use the BR as a seed for a random
number generator which generates n positions to be set to 1’s. Consider, for example, a
tuple p(a,b,c) and the codewords given in Table 1. The SCW for p(a,b,c) is formed as
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follows:

CW(a) — 0100 1000 0000
CW(b) — 0010 0100 0000
.CW(c) — 0001 0000 0010

0111 1100 0010 | UID

The unique identifier (UID) is attached as shown. For a given query, a Query CodeWord
(QCW) is constructed by the same method. Then the record descriptors, rather than the
record themselves, are searched against the QCW. Matching condition can be determined
by AND-ing the QCW and the SCW for each tuple; the AND operation should result in the
same bit string as the given QCW for a matching tuple. That is, the matching condition is
QCW = QCW .AND. SCW. For the matched SCW'’s, the corresponding UID’s are collected
to be used as pointers to the actual tuples. Consider, for example, a query ~ p(a,X,c).
The corresponding QCW can be obtained as follows:
CW(a) — 0100 1000 0000

CW(c) — 0001 0000 0010
0101 1000 0010

By AND-ing the QCW with the SCW of the p(a,b,c), since the same bit-string as the
given QCW obtained, the UID is used to gain access to the actual tuples.
QCW for p(a,X,c) 0101 1000 0010

SCW for p(a,b,c) = 0111 1100 0010 | UID
0101 1000 0010

Due to the superimposing of codewords, some tuples which do not match the query can
have the SCW which is the superset of the QCW. For example, the QCW for « p(d,X,Y)
is 0010 0000 0010 which matches with the SCW for p(a,b,c) since

0010 0000 0010 = 0010 0000 0010 .AND. 0111 1100 0010

Such a match is called a false drop. Some false drops are caused by not discriminating
the argument positions. For example, the QCW’s for — p(X,a,Y) would match with the
SCW of p(a,b,c). Due to the false drops, actual tuples should be checked after they are
retrieved. However, only a small portion of actual tuples will need to be retrieved based
on the primary key, that is, UID.

The CCW of a tuple is generated by simply concatenating the binary representations
(BR’s) of all attribute values and attaching the unique identifier of the tuple. Consider, for
example, p(a,b,c) and the BR’s given in Table 1. The corresponding CCW is

277




0100 | 1100 | 1010 | UID

The argument positions not specified in the query (i.e. variables) should be represented by
don’t care match indicators. The QCW for «— p(a,X,c) can be obtained by replacing the

second argument position with don’t care match indicators.
0100 | xxxx | 1010

The matching condition is CCW = QCW provided that x (don’t care match indicators)
can match with both 1 and 0. A clear advantage of the CCW over SCW is that we can
perform relational operations such as Join on the surrogate file itself rather than on the
actual extensional database (EDB). One of the drawbacks of the surrogate file scheme
( both SCW and CCW ) is that every tuple descriptor should be compared to the given
QCW, and thus entire descriptor file should be retrieved from secondary storage. Although
the size of descriptor file is small (about 20 % of the original file), loading entire descriptor
files to the main memory requires many disk accesses when the actual relation is very large.
We consider scme solutions to this problem in a later section.

3 The Combined Approach

As the size of knowledge based systems grow, increased demands will be placed on the
management of their knowledge bases. The management of the intensional database (IDB)
of rules will become a large and formidable task in itself, but the major management activity
will be in the access, update and control of the extensional database (EDB). The volume
of facts is expected to be in the gigabyte range. In this section we present the design of
a demonstration system implementing the surrogate file concept for CCW and SCW for
knowledge bases. This system is currently implemented on the VAX8800 and uses the
approach of combining Logic Programming through an interface with a Data Management
System as seen in Figure 1. The system demonstrates that the surrogate file concept can
be used to access, update, and control the extensional database (EDB), which contains the
facts that the intensional database (IDB) can use. The volume of facts is expected to be in
the gigabyte range, and we can expect to have general EDB’s that serve multiple inference
mechanisms.

Let us set the stage for the problem that we are interested in by considering the foilowing

simple logic programming problem:
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Figure 1: Combining Logic Programming with Data Management System

grandfather(X,Y) « father(X,Z), parent(Z,Y)
parent(X,Y) « father(X,Y)

parent(X,Y) « mother(X,Y)
father(henry,cathy)

o> W NN -

father(don,louise)

5. mother(zofia,cathy)
mother(lisa,tiffany)

6. « grandmother(X, joan)

The first three clauses form the IDB of rules for this problem, the next two sets form
the EDB of facts, and the last statement is the goal. To solve the problem (that is, to
satisfy the goal), we must find the names of the grandfathers of joan. For this we search
the mother and father facts on the second argument position. finding values for the first
argument position that can be used later. Thus. we need to find joan's mother and father
before finding her grandfathers. Consider the following general goal statement of a logic

programming language:
I'(.Yl, ‘Yg, ceey 4\’7:)-

In this case, values for some subset of the X;’s will be given in the process of trying to

satisfy its goal. Since the subset or the X|'s is not known in advance and can range from
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one to all of the values, this places considerable requirements on the relational database
management system that supports the logic programming language. In fact, in order to
insure minimum retrieval time for the relational database all of the X;’s must be indexed.
With general indexing the index data could be as large as the actual EDB. In order to
considerably reduce the amount of index data yet provide the same capability, we have
considered surrogate files. Obviously if not all of the X;’s can take part in goal satisfaction
then the indexing strategy will change, however here we assume the most general case in
which all of the X;’s are active. Retrieving the desired rules and facts in this context is
an extension of the multiple-key attribute partial match retrieval problem, because any
subset of the argument positions can be specified in a query and matching between terms
consisting of variables and functions as well as constants should be tested as a preunification

step.

3.1 Demonstration System for SCW and CCW

In this section the demonstration system supporting the surrogate file concept for CCW
and SCW is presented. The functional architecture of this system is shown in Figure 2.
As is noted from this figure the overall architecture is a collection of subsystems interfaced
together mainly by a relational database management system, which is INGRES. The
function of each subsystem is described below.

3.1.1 Logic Programming and Interface

For the operating environment of the proposed system, it is assumed that a user submits
his/her queries using a logic programming language such as Prolog [6]. Upon receiving
a Prolog based query, the system passes it to an INGRES interface handler. The main
function of this interface is to transform this query into a relational query with arguments
and format acceptable to INGRES. This is achieved by the use of specially designed buffers
for parameter passing. The interface itself is written in C and Prolog [7]. The detail

discussion about its internal structure is given in section 3.3.

3.1.2 INGRES

INGRES is the conventional relational database management system and provides all the
data management functions such as retrieval, manipulation, integrity control, relational

operations, and so on. A query posed by a user is first transformed to a corresponding
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query codeword (QCW). Then the QCW is used as the search key for surrogate files which
are also maintained by INGRES. Upon receiving the QCW, INGRES first accesses the
surrogate file to retrieve the unique identifiers of qualified facts. Then the unique identifiers
are used as primary keys of the actual knowledge bases and false matches are removed.

In this demonstration system, since surrogate files as well as the actual kncwiedge base
are maintained by the INGRES, the latency through INGRES increases overhead, and thus

the full advantage of the surrogate file cannot be realized in the demonstration system.

3.1.3 Query Codeword and Surrogate File Generators

In order to retrieve a fact, based upon one or more arguments, each argument is passed
to the QCW Generator. The argument is hashed and a QCW is generated. The type of
hashing employed depends on whether a CCW or SCW surrogate file is used. The surrogate
file generator forms the CCW and SCW surrogate files. When a new fact is entered through
INGRES, it is passed to the surrogate file generator, where it is hashed in order to generate
a CCW or SCW. At the same time a unique identifier (UID) is generated. Both parameters
are then passed to INGRES, which in turn stores them in the surrogate file.

3.2 Demonstration System Implementation

This section describes the detail implementation of the demonstration system. The system
has been built using an ancestral database described earlier. The system employees the
Columbus Prolog for logic programming and EQUEL as the database language. EQUEL
13 a combination of C and QUEL which is the language used to interact with INGRES.
The combination of C with QUAL is used for the implementation of the interface to the
database. The complete implementation of the system consists of two major tasks; the
implementation of the Surrogate File, and interfacing the Surrogate File system with Logic
Programming. The first task was achieved through the implementation of all the modules
associated with the surrogate file, without taking into account the use of Logic Program-
ming. Having completed the surrogate file portion of the system, the next task was to
integrate Logic Programming with the Surrogate File subsystem. The detaiied discussion
of these tasks is given below.
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3.2.1 Surrogate Files Using INGRES

The first major task was to write the code which would handle the surrogate files. First
of all, the surrogate files had to made for each relation. In other words, the Surrogate
File Generator had to be implemented. An interface using EQUEL was written so as to
allow the user to build up the extensional database. The interface was designed to be user
friendly through the use of menus. The sequence that a user needs to follow is described
below. At the start of the session the user is presented with the following options:

enter the number corresponding to the task you wish to perform.
1. Append tuples to a relation
2. Find the children of a parent
3. Find the parent of a child
9. To Exit
enter choice:

To add tuples the user would enter the number 1 for the choice. Having done this the user
is then prompted for the relation name, followed by another prompt to supply the relevant
information. The following session illustrates the process of adding a tuple to the maternal
relation in the ancestral database. The objective is to add the information that zofia is the

mother of cathy.

enter the relation name (maternmal, paternal): maternal
maternal relation chosen
enter mother’s name: =zofia
enter child’s name: cathy
zofia is the mother of cathy

The data entered is first processed by the Surrogate File Generator, where it is hashed
according to the mechanism employed for CCW (or SCW) surrogate files. The information
is then stored in the appropriate surrogate file, CCW/SCW using INGRES. Also, INGRES
stores the original input in the EDB. Figure 3 shows how the information is stored in the
surrogate file and in the EDB.

3.2.2 Testing Surrogate File

Having developed the facility to generate the surrogate file, the next step was to test the

system by submitting queries to the system. The queries at first did not come from a
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I maternal relation jl msurro relation
uid [ mother [ child mh mc uid
1| zofia winston || 8023910 | 7825774 | 1
2 | zofia peter 8023910 | 7366004 | 2
3 | mary bruce 7168370 | 6451829 | 3
4 | vera mary 7759218 | 7168370 | 4
5| eva teresa 6649441 | 7628146 | 5
6 | teresa | james 7628146 | 6971757 | 6
7 | cindy yvonne || 6515054 | 7960175 | 7
8 | zofia cathy 8023910 | 6513012 | 8
9| eva lorie 6649441 | 7106418 | 9
10 | eva paul 6649441 | 7364918 | 10
11 | carmela | mary 6513010 | 7168370 | 11
17 | carrie john 6513010 | 6975336 | 17
18 | joyce peter 6975353 | 7366004 | 18
19 | laura vera 7102837 | 7759218 | 19

Figure 3: Storage of information in Surrogate File (CCW) and in the EDB

logic programming environment so as to test only the surrogate file part of the system.
Later logic programming was interfaced to allow queries to come from a logic programming
environment. Testing the surrogate file part of the demonstration system was performed
by choosing the appropriate menu item. By choosing item 2 we can for instance find the
children of zofia; such a query can be written in Prolog as follows, mother(zofia,X). By
choosing item 3 from the menu we can query the database to find for instance the mother
of cathy, the equivalent query in Prolog would be maternal (Y,cathy). INGRES does not
accept a query directly based on Prolog. A query based on Prolog must first be processed
S0 as to format it according to the requirements of INGRES. As mentioned earlier , this
is done by an interface, which takes the query and processes it make it understandable
to INGRES. This will be discussed in more detail in the next section. The following are
examples of how the surrogate file concept was tested.

enter choice : 2  (Finding the children of a parent)
to find the children of a father enter --- father
to find the children of a mother enter --- mother

enter your choice: mother
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looking for a child’s mother
enter the mother’s name to find her children: =zofia
looking for the children of zofia
winston
peter
cathy
enter choice : 3 (Finding the parent of a child)
to find the father of a2 child enter --- father
to find the mother of a child enter ~-- mother
enter your choice: mother
looking for the mother of a child
enter the child’c aamc to find its mother: cathy
looking for the mother of cathy
zofia
range of c is maternal
range of 4 is msurro
retrieve(parents=c.motber)

where c.uid = d.uid and d.mc = hashed query

3.3 Interfacing Logic Programming

In order to incorporate the Logic Programming Environment, an interface linking Prolog
and INGRES together [7] has been employeed. The interface converts the logic query into
QUEL language based relational query, which is then submitted to INGRES. For example,
the logic query mother(zofia,X), is translated by the interface into the following QUEL
based format:

queryDB([relation-name(fieldl, field2)]).
The query mother(zofia,X) is actually processed by the following way.

mother (Name,Child) «- hash(Name,Newname),
queryDB([msurro(A,Newname,Uid)]),
queryDB([maternal(Uid,Name,Child)]).
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The first subgoal hashes the query, or in other words the Query Codeword is generated.
The second subgoal accesses the appropriate surrogate file through INGRES to find the
Unique Identifier (UID). Then, the UID is passed to the EDB, where the appropriate facts
are retrieved. Furthermore a check for false drops needs to be made because the hashing
function may not be perfect. The complete process from the time a logic query is submitted
until the final answer is produced, is illustrated as follows. For this purpose the sample run

of mother(zofia,X) is presented.

> prolog db

Starting up DBMachine
resetting the machine
COLUMBUS Prolog Unix Version 2.9 (DB version)
?- initDB(logic) /* specifies tbe database to be used */

yes.
?7- consult(demopro). /* consults the logic programming rules */

Consulting ’demopro’...

’demopro’ consulted

yes.
?- mother(zofia,X). /* query to find childremn of zofia */
X = ’ginston’;
X = ’peter’;
X = ’cathy’;

no.

In the above example, the ‘prolog db’ initiates the Columbus Prolog interpreter together
with the INGRES interface. The command ‘initDB(logic)’ tells INGRES that the database
name to be used is ‘logic’. Then, the rest of procedures are the same as those of conventional
~ Prolog interpreters.

4 The Integrated Approach

Presented in this section is a succinct description of the experimental implementation of the

surrogaie file processi~g method for relational algehra on the Conrection Machine using 32
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K processors with conventional disk systems. This system is run under Ultrix supporting
both Connection Machine models CM-1 and CM-2, and is implemented in *Lisp. We
also developed a small Prolog interpreter that directly accesses surrogate files as well as
transforms queries into conjunction of goals. This interpreter, however, is restricted in the
sense that neither recursive queries nor complex objects are supported. Some modifications
of this system should support these functionalities, which require further study. Some
empirical results are presented in order to identify the possible sources of speedups and
bottlenecks in processing very large data/knowledge bases. Complete source listing is
given in the Appendix.

4.1 Parallel Algorithms for Relational Algebra

Described in this section are parallel algorithms for two representative relational algebra
operations based on surrogate files, selection and equi-join, in a massively parallel processing

environment. The experimental system is based on the following assumptions:

o The entire surrogate file for a relation can be resident with in the local memory of the
Connection Machine. We consider several ways to improve the surrogate file loading
time in subsequent sections.

e Each processing element (PE) stores a CCW from a relation. That is, with 32 K
processors, we can handle a relation with up to 32 K tuples. Each PE may accom-
modate k CCW’s from k different relations. The value k depends on the number of
attributes for the relations since we assume the use of a fixed number. of bits for all
attributes.

The paralle] selection based on surrogate files can be divided into two main parts. First,
surrogate files are processed against the query codeword (QCW) of the given query, and
the UID’s corresponding to the matched tuples are collected. Then the actual EDB are
accessed using the UID’s as primary keys.

The query that requires joins is of the form «— @;,Q2,---,@n. For join operations,
n selection operations are independently performed for the n conjunctions @, @, - -, @n.
That is, the shared variables (join variables) are not considered in'selection operations.
All PE’s have flag bits corresponding to Q%s called Mark(i) (i = 1,...,n). The selection
operation for Q; sets the flag bit (Mark(i)) to 1 in each PE’s local memory when the PE
contains a CCW such that CCW = QCW. Then the number of matches N;, are calculated
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for each relation by adding the corresponding flags for all the PE’s, and then sorted in
ascending order. The Q; with the lowest V; is used to form a new set of queries for other
Q.’s. Consider, for instance, a query of the form R(a,X), P(X,Y,c). Suppose that the
number of tuples satisfying the subquery R{a,X) is 3 with results {X | ¢, d, f } and the
cardinality of the relation P is greater than 3. The number ot matched tuples can be
easily calculated using parallel sum functions after setting a flag io 1 for all processors
where matchings occurred. Three new queries are formed for the relation P after selectinns
are completed. They are P(¢,Y,Z), P(d,Y,Z) and P(f,Y,Z). For each newly formed queries,
selections are performed and the corresponding flag is logically OR-ed with the flags resulted
from other newly formed queries and logically AND-ed with the previous flag resulted from
the initial selection. Since we de not explicitly produce a new relation, the operation can
be viewed as an implicit join based on a parallel nested-loop algorithm. Figure 4 presents
the join algorithm described in this section in a more formal manner. In the next section
we consider some empirical results obtained from this experiment.

4.2 Some Empirical Results

In order to measure the performance against large databases, a procedure make-edb is
developed. This procedure can make an arbitrary length of test EDBs by generating random
numbers. For example, make-edb(’R 2 8000) creates an EDB R with 2 attributes and
8000 tuples. This function also creates the surrogate file for the relation. The simple Prolog
interpreter developed as a front-end translates user queries into conjunctions whose literals
are all EDB predicates. The variables appearing in the query can be viewed as don’t care
match indicators, which are represented by symbols starting with ?. This notation is based
on [8,9]. The variables given in the users’ query are considered as level 0 variables. The
level is increased thereafter for all the unbound variables whenever unification is performed
with non EDB predicates. Consider, for example, the following simple IDB:

((grandfather 7?x ?y)(father ?x ?7z)(parent ?z ?y))
((parent ?x 7?y)(father ?x 7y))
((parent ?x ?y)(mother ?x ?y))

where father and mother are EDB predicates. The query (grandfather ?x a) is first
translated to

(grandfather (?x.0) a).
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/* Let Q be a query of the form « Q4,Q2, -, @n.
Qi is of the form Qi(X;,---, Xx,).
n : the number of subqueries in the query.
N; : the number of selected tuples for Q; */
begin
fori=1tondo
begin
/* Do selection in parallel for @Q;(Xy, -+, Xk). */
Mark(i) := (CCW; = QCW) for each processor j (j = 0,..32K — 1);
N; := Sum(Mark(i));
end {for}
@’ := Sort Q; according to Nj;
fori=2tondo

begin
Form a new query set using @3, -, Q@i_;;
fork =1to NN; do
begin

New-Mark(i) := New-Mark(i) .OR. (CCW; = QCW);
Mark(k) := New-Mark(i) .AND. Mark(k);
end {for}
end {for}
Access EDB based on UID (the PE number);
Checking False Matches;
end {program}

Figure 4: The Parallel Join Algorithm for the CM
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Then by the unification with the first clause
(father (7x.0) (?z.1))(parent (7z.1) a).
Then, this is transformed to two independent conjunctions;

(father (7x.0) (?z.1)) (father (?7z.1) a)
(father (?x.0) (?z.1)) (mother (?7z.1) a)

The shared variables act like join variables and searching is performed based on the con-
stant. We used 16 bit binary representations (BR’s) for each attribute. The selection time,
Sem is estimated as 0.01 second for the BR, which does not depend on the number of tuples
selected, or number of tuples resident in local memory of the processing elements. That is,
most of the time is spent in forming new queries and the parallel selection time performed
in the Connection Machine is negligible. As can be seen in the previous section, in the
average case, our join aigorithm has the parallel complexity of O(k x n?) where n is the
minimum selectivity among k sub goals. For an equi-join between two relations, the join
time is measured approximately n x S, where n is the minimum selectivity for the initial
selection and S, is the selection time including all the overheads in the front-end and the
Connection Machine. Once surrogate files are loaded to the local memory of the Connec-
tion Machine, relational algebra can be performed very efficiently. Surrogate file processing
is very good choice in a massively parallel processing environment (SIMD type) due to its
uniform data structure. However, we observed some problems in this method mainly due
to the low transfer rate from secondary storage.

Since the Connection Machine used for this experiment does not have any specialized
disk systems, it has to load data from its front-end having conventional disk systems.
Figure 5 shows the actual surrogate file loading time including the overhead required to
distribute the loaded data to parallel variables. This figure shows that with conventional
disk systems surrogate file processing incurs high communication overhead. ‘

Another time consuming task in our implementation is the EDB access time using
UID’s as primary keys. We used a block with the capacity of 50 tuples for actual EDBs
to randomly access the qualified tuples. A UID is assumed to give the block number as
well as relative position in the block for the corresponding tuple. In Figure 6, we plotted
the actual EDB access time in the front-end. We cannot measure exact time for a large

number of matched tuples, since, when that is the case, the system spends a lot of time in
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Figure 6: Actual EDB Access Time with Conventional Systems

garbage collection. But, we can estimate the EDB access time by using simple regression.’

4.3 Enhancing I/O Performance

One of the drawbacks for the algorithms described in previous sections is that the entire
surrogate file should be read and distributed to all processing elements. This section con-
cerns efficient surrogate file loading schemes and describes some metheds which can reduce
the surrogate file loading time.

4.3.1 Data Vault

The Connection Machine Model CM-2, unlike the CM-1, allows fast data transfer using
multiple I/O controllers [10]. Input/Output can also be done in parallel, with as many as

'When a large portion of a relation is qualified in surrogate file processing, the actual EDB processing
time can be reduced. Since reading a tuple takes almost the same amount of time as reading 50 tuples
in the same block. But the EDB access time is several orders of magnitude larger than the surrogate file
searching time in the CM.
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2K processors able to send and receive data at the same time. The data processors send
and rece.ve data via I/O controllers, each of which can control a set of 8 K processors. An
I/0 controller treats its 8K physical processors as two banks of 4K, and can be connected
to a Data Vault. The Data Vault (DV) is the Connection Machine mass storage system,
which provides large blocks of data with very high transfer rate. A DV can transfer data
at a rate of 40 megabytes per second. Since there can be up to 8 I/O controllers for a fully
configured Connection Machine, the maximum transfer rate of 320 megabytes per second
can be achieved. The 8 DV’s can accommodate up to 80 gigabytes of data. Thus, when 8
DV’s are used, the 512 megabytes of surrogate files can be loaded in 2 seconds. Each DV
stores its data in an array of 39 individual disk drives working in parallel. The DV can
provide enough data transfer rate for the massively arallel environment. However, this
solution is not cost effective since & DVs use 312 disks, each of which has the capacity of
about 250 megabytes.

4.3.2 Disk Interleaving

A group of disk units is interleaved if each data block is stored in such a way that succeeding
portions of the block are on different disks. This technique has been implemented for
many existing computer systems [11]. By interleaving data on multiple disks, the data
may be accessed in parallel reducing data transfer time by a factor of 1/n where n is
the degree of interleaving. Previously proposed database miachines exploited the idea of
interleaving at the level of track rather than disk. Disk interleaving is more cost effective
than track interleaving since conventional moving head disk can be used. Since data is
interleaved among ¢ number of disk systems, conversion is necessary in order to assemble
parallel data streams coming from disks into a serial data stream and vice versa. Figure 7
shows the conversion buffer used for this purpose. As the buffer is filled, the columns are
converted into the rows of a single data stream. Kim indicated that as the amount of data
to be transferred is increased, the performance of disk interleaving is considerably better
than parallel disk systems without interleaving. Thus. disk interleaving can enhance the

performance of surrogate file loading.

4.3.3 Surrogate File Clustering

In contrast to the parallel disk systems which concerns increasing data transfer rate, clus-

tering techniques are used to decrease the amount of data to be loaded. The increasing
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usage of databases and integra.ed information systems has encouraged the development.
of file structures specifically suited to partial match queries. Inverted file were among the
earliest such file structures. However, inverted files were originally designed for single key
retrieval. and hence manifest various deficiencies in particular for partial match queries.
Furthermore, maintenance costs of inverted files tend to be very high when compared to
other irdexing methods. We describe a way to cluster surrogate files using a proposed fle
organization called a grid file with a binary trie directory [12] to illustrate the idea. A file
structure designed to manage a disk allocates storage in units of fixed size called disk buck-
ets. The structure used to organize the set of buckets 1s the heart of a file system. Suppose
that we have a relation R(A,B) and the corresponding surrogate file R'(A’.B’). A possible
pair of A’ and B’ values can be plotted in a two dimensional area as showr. in Figure 8. If a
relation has k attributes, then k dimensional area should be considered. The surrogate file
R’ is now considered as a set of points scattered over this area. A sub rectangular represents
a bucket with capacity of 5 codewords. Consider, for instance, a query R'(010010, 110011).
For the query, only the bucket f needs to be accessed. Figure 9 (a) shows the corresponding
colored binary trie directory for the grid files shown in Figure 8. Figure 9 (b) represents the
data structure for a node in the colored binary trie. Since each node can be represented by
a small amount of data, the directory itself can be resident with in main memory in most
existing computer systems. As shown in the above example. clustering divides searching

into two processing levels i.e. directory search and grid accesses. For exact match queres,
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such as used in actual EDB accesses, two disk accesses are necessary.

5 Conclusion and Future Work

In the context of knowledge base management systems, logic and databases have been ex-
tensively investigated, as both fields have much to offer the other. First order logic can
enhance the functionality and representation power of current database systems exploit-
ing general rules and allowing complex attribute values. Hence, knowledge base systems
should be able to handle more complex operations than database sysiems; such examples
include least fixed point (LFP) operation [13], unification-based retrieval [14], extended
projection/selection [13], unification-join [16] and so on. In this context. we are currently
developing surrogate file schemes suited to general terms and rules, and parallel algorithms
for the operations mentioned above. An initial approach regarding this research is intro-
duced in [17]. We have implemented an experimental deductive database system on the
Connection Machine to test the surrogate file schemes for various partial match queries and
implicit join operations. This experiment reveals that surrogate file loading time can be a
major bottleneck in parallel processing environments since it not only involves the surro-

gate file reading time from slow secondary storage but also incurs a high communication

295




Arg Number Left Child Pointer Right Child Ponter

Intemal Node

Physical Bucket Address

Leaves
(b)

Figure 9: Colored Binary Trie for the Example
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overhead which is required to broadcast the codewords to a large number of processing
elements. One possible solution to this problem is exploiting parallel /O techniques such
as the disk interleaving [11] or the use of specialized parallel disk systems such as the data
vauil used in the Connection Machine model CM-2. An effective segmentation technique is
also being investigated to reduce the search space. We will continue this effort to see how
well the surrogate file concept would work for very large knowledge base systems.
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/* */
/* Demonstration System Program */

/* The following is the listing of the demonstration system 1mplemenung *
/* the surrogate file concept for CCW and SCW.

/* Any statements preceede by # or ## are EQUEL statements. */
r{nain()

# include <stdio.h>

## int menuflag,q;

## char choice[2];

FILE *fopen(),*fp; /* file used to keep track of the last UID used */

## ingres logic /* the name of the INGRES database */

/* The following code displays the initial menu, prompting the user to  */
/* make a choice. */

menuflag = 0;

do {
prind("enter the number corresponding to the task you wish to perform.\n");

printf(" O initialize the uid to 0 . \n");
printf(" 1 append tuples to a relation. \n");
printf(" 2 find the children of a parent. \n");
printf(" 3 find the parent of a child. \n");
prind(" 9 to exit. \n");

printf("enter choice : “);

scanf("%s" choice);
pﬁnﬁ(lm \1");
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/* Choice zero reinitializes the UID to zero; the file that keeps track of */

/* the last UID used must be opened and a zero written to it and then  */

/* closed. This choice was used only during the initial stages of programming.*/
/* Choice ore calls the subroutine to add tuples to the database and thus */

/* building up our extensional database and surrogate files. Choice two */

/* allows the user to find the child(ren) of a parent, this option enabled */

/* us to check the workings of our surrogate files before interfacing the */

/* system with logic programming. Choice three allows the user to find  */

/* of a child. The fourth choice labled option nine exits the program.  */

switch (choice[0]) {
case ’0’ :
q=0;
fp = fopen("unique”,"w");
fprintf(fp,"%d\n",q);
fclose(fp);
break;
case ’'1’:
addtuple();
break;

case 2’ :
parentque();
break;

case '3’ :
childque();
break;

case '9’ :
menuflag = 1;
break;

default :

printf("invalid choice entered \n");
break;
}
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} while (menuflag =0 );

## exit

}

/* The following is a simple hash function used to derive the CCW. This */
/* hash subroutine can be made more sophisticated as the system grows. */

hash(s)
char s(];

{

## int ccw;

ccw=0;

cew = s[0] * 256 * 256;
ccw = ccw + s[1] * 256;
cew = ccw + s[2];
printf("\n%d\n",ccw);
return(ccw);

}

/* The following subroutine adds tuples to our extensional database, */
/* including the associated surrogate files. The user is provided with */
/* a menu for ease of use. The user is prompted for the relation name. */
/* Once the relation has been chosen the variables are set to their  */

/* proper values for that particular relation. */

addwpleQ

{

## char fa[16],ch[16];
## char name[16];

## char relative[11];
## char surrogate[16];
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## Char parent[11];

## char hpa[3],hch[3];

## int mx,cnt,key flag,i,ccwl,ccw2,mame;
## int uniden;

FILE *ffp;

ffp =(FILE *) fopen("unique","r");
fscanf(ffp,"%d",&uniden);
fclose(ffp);

printf(" enter the relation name : *);
scanf("%s" ,name);

if(stremp(name,"paternal)==0) (
mame=1; }

if(strcmp({name,"maternal")==0) {
mame =2; }

## range of n is name

/* The variables are set to the appropriate values, reflecting the */

/* choice made.

switch (rname) {

case l:
printf("\n paternal relation chosen \n");
stcpy(relative,"father™);
strcpy(surrogate, " psurro”);
strcpy(parent,“father");
strepy(hpa, "hf™);
strepy(heh,"he");
break;
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case 2 :
printf('\n maternal relation chosen \n");
strepy(reladve,"mother”);
stcpy(surrogate, " msurro™);
strcpy(parent,”mother");
strepy(hpa,”"mh");
strepy(heh,"me™);
break;

default :
printf('"\n invalid relation name entered \n");
break;
}

/* This is the while loop that allows tuples to be added, it is */
/* terminated when quit is detected as an input. */

flag = 0;
while(flag == 0)
{
printf("\n enter %s name : " relative);
scanf("%s" .fa);
if (fa[0]=="q’ && fa[l]="u’ && fa[2]=="{’ && faf3]="t") {

flag=1;
break;
}
/* The hash function is called to hash the parent’s name. */

ccwl = hash(fa);

printf("\n enter child’s name :");
scanf("%s",ch);
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/* The hash function is called to hash the childs name. */

ccw2 = hash(ch);

printf("\n %s is %s of %s \n" farelative,ch);
/* The UID is incremented and the new value is written out to a file. */
uniden++;

ffp=(FILE *) fopen("unique”,"w");
fprintf(ffp,"%d\n" ,uniden);
fclose(ffp);

/* The following are EQUEL statements that append the enetered tuples to */
/* the database and to the surrogate files. */

## append to name(uid=uniden,parent=fa,child=ch)

## append to surrogate(hpa=ccw1,hch=ccw2,uid=uniden)
## print paternal

## print psurro

## print maternal

## print msurro

}

return;

)

/* The following subroutine will find the children of a particular father
or mother. The user is presented with a menu to facilitate usage.

Once the apropriate choice has been made the variables are set to the
values that will make the search possible.

parentque()
{
## char findpar(11];

## char fpsurrogate({11];
## char fprel(11];
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## char baby[16];
## char hpar{5];

## char pronoun[4];
## char pquery{16];
## int part;

## int fgh;

#i# int flagl;

printf(“to find the children of a father enter --— father\n");
printf("to find the children of a mother enter --— mother\n"),
printf("enter your choice : ");

scanf("%s",findpar);

if(srcmp(findpar,“father")==0) {
part=1; }

if(stcremp(findpar,"mother")==0) {
part=2; }

/* The variables are set to the approriate values, reflecting the */
/* choice made. */

switch(part) {
case 1:

printf("\n looking for a child’s father \n");
strepy(pronoun,his");
strepy(fpsurrogate, "psurro”);

strepy(fprel,”paternal”);

strcpy(hpar, "hf™);
break;

case 2:
printf("\n looking for a child’s mother \n");
strcpy(pronoun,"her");
strepy(fpsurrogate, ‘msurro™);
strcpy({prel,“maternal”);
strcpy(hpar,"mh");
break;
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default :
printf("\n invalid choice entered \n");
break; }

/* The following defines what relations of the database will be accessed. */
/* What relations are accessed depends on the values of 'fpsurrogate’ and */
/* fprel’, which were set according to whether we are dealing witha */
/* matemnal or paternal query. */

## range of s is fpsurrogate
## range of r is fprel

/* This is the loop that prompts the user for the name of the parent */
/* for which the names of its children are to be found. If quitis  */
/* detected the loop is terminated. */

flagl =0;

while(flagl ==0)
{

prindf('"\n enter the %s’s name to find %s children:" findpar,pronoun);
scanf("%s" ,pquery);

if (pquery[0]=="q’ && pquery[1]=="u’ && pquery[2]=="i" & pquery[3]=="t") {
flagl = 1;
break; }
/* The hash function is called to hash the query. */
fqh = hash(pquery);
printf("%d\n" fgh); printf("looking for the children of %s \n",pquery);
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/* These are the actual EQUEL statements which retrieve the desired */
/* information. ) */

## retrieve (baby=r.child) where r.uid = s.uid and s.hpar = fgh
## {

printf(" %s \n",baby);
## )

}

return,

}

/* This subroutine finds the particular parent (mother or father) of a  */
/* particular child. The user is presented with a menu. The menu asks  */
/* him/her whether he/she is intersted in finding the mother or the father */
/* of a particular child. Having answered this question the variables are */
/* set with the appropriate values reflecting the answer given. */

childque()

{

## char findch(11];
## char chsurrogate{11];
## char chrel{11];
#4# char parents{11];
#4# char hach(5];

## char prnoun(4];
## char chquery[16];
## char partype(8];
## int kid;

## int chqh;

## int flag2;

printf("to find the father of a child enter —-- father \n");
printf("to find the mother of a child enter —-- mother \n");
prind("enter your choice : ");

scanf("%s" findch);

if(sremp(findch, "father")==0)

308




kd=1;}

if (stremp(findch, "'mother")==0) {

/* The variables are set to the appropriate values, reflecting the

kd=2;)

/* choice made. */

switch(kid) {

case 1:

case 2 :

default :

/* The following defines what relations of the databse will be accessed. */
/* What relations are accessed depends on the values of ’chsurrogate’
chrel’, which were set according to whether we are dealing with */
/* a maternal or a paternal quuery.

/*and’

printf("\n looking for the children of a father \n");
strcpy(prnoun,his");

strcpy(chsurrogate, 'psurro’);
strcpy(chrel,"paternal”);

strepy(hach,"he");

strepy(partype, "father™);
break;

prind("\n looking for the children of a mother \n");
strcpy(prnoun,”her”);
strcpy(chsurrogate,"msurro”);
strepy(chrel,"maternal”);

strepy(hach,"mce");

strcpy(partype, “mother”);

break;

printf('"\n invalid choice enetered \n");
break;

*/
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## range of d is chsurrogate
## range of c is chrel

/* This is the while loop that prompts the user for the childs name, if */
/* quit is detected then the loop terminates. */

flag2 = 0;
while(flag2 == 0)
{

printf('"\n enter the child’s name to its %s : ",findch);
Scanf("%S",Chqucr}’);

if(chquery[0]=="q’ && chquery[1]=="u’ && chquery[2]=="i" && chquery[3]=="1") {
flag2 =1;
break; }

chgh= hash(chquery);
printf("%d\n",chgh);

/* These are the actual EQUEL statements that access the desired */
/* information. */

## retrieve (parents=c.partype) where c.uid = d.uid and d.hach = chqh
## {

printf(" %s \n",parents);
## }
}
return;

]
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:’: Integrated Knowledge Base System Based on Surrogate Files
;s File Management for Very Large Knowledge Bases Based on
»»» Surrogate Files (Concatenated Code Words).
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:.; Global constants and variables

9

;v MAXIMUM-CON]J: the maximum number of conjunctions allowed in a query
(defconstant MAXIMUM-CONTJ 10)

;» surrogate-pvar: array of parallel variables to store surrogate files
;5 surrogate-selected: bit-map resulted from surrogate file selection
;; temp-selected: a temporary variable for *surrogate-selected’

(defvar surrogate-pvar (make-array MAXIMUM-CONY))
(defvar surrogate-selected (make-array MAXIMUM-CONJ ))
(defvar temp-selected (make-array MAXIMUM-COND))

;»» Initalizing parallel variables

(dotimes (k MAXIMUM-CONJ)
(setf (aref surrogate-selected k) (allocate!! nil!!))
(setf (aref surrogate-pvar k) (allocate!! (!! 10000)))
(setf (aref temp-selected k) (allocate!! nil!!)) )

,» *array-available* is the number of surrogate files stored in the CM
»»» pvar-in-use contains EDB predicate names corresponding to surrogate-pvar

(defvar *array-available* Q)
(defvar pvar-in-use (make-array 4 :initial-element nil))
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;;» idb: contains DB clauses
5 *edb*: the EDB predicate names
5> no-of-clauses: the number of clauses in the current program

(defvar *idb* nil )
(defvar *edb* nil )
(defvar no-of-clauses 0)

;» environment: variable bindings represented by bit-maps
" temp-rcsult, intermediate-result: temporary storage for selection
;; *mask*: masking some ﬁelds for selection
;s Note:
;3 *mask® is served as the mask bits in associative memories.
;» If a field of the given querv is a variable, the corresponding *mask*
;; field is set to 100000C0...0000, otherwise 1111111 .. 111 (i.e. normalized).

(defvar environment (make-arrry MAXIMUM-CONJ))
(*defvar temp-result nil!!)

(*defvar intermediate-result nil!!)

(*defvar *mask* (!! 0))

no-of-prcdxcate-m{onjuncnon the number of predicate in the current
conjunction
;»: proved-var-list: the list of variables that have been instantiated.

(defvar no-of-predicate-in-conjunction)
(defvar proved-var-list)

s SIMPLE PROLOG INTERPRETER

s Spccxal Commands : "load" loads new IDB

HH "listing" d:splays the current program

;'; "halt” terminates the execution of this program
;+» Note: IDB file names should be capital

;v  EDB predicates should be declared with arities

r ey
99
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(defun toplevel ()
(progn
(format t "Surrogate File Demonstration System - 1")
(terpri)
(do ((goal nil))
((equal goal 'halt) "END-OF-EXECUTION)
(progn
(setq goal (and (print *?- )(read)))
(cond ((equal goal ’load ) (initialize-system))
((equal goal ’listing ) (listing))
((listp goal) (solve (list goal )))
))
)]

;»; Initialization of some global variables

(defun initialize-global-vars ()
(progn
(setq *array-available* 0)
(setq no-of-clauses 0)
(dotimes (j (length surrogate-pvar))
(*all
(*set (aref surrogate-pvar j) (!! 0)))

)

)

;s 'Consulting’ a new set of IDB and load surrogate files specified
;s by the IDB to the pvars in the CM.
5»» EDB should be declared as a part of the program

(defun initialize-system()
(let ((fname nil))
(initialize-global-vars)
(formatt "IDB FILE NAME : ")
(setq fname (read))
(cond ((probe-file fname)
(progn
(setq *idb* nil)
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(setq *edb* nil)
(with-open-file ( ifile fname :direction :input)
(do(kO(+k1)
(edb nil) .
(clause (read ifile nil) (read ifile nil)))
((eq clause nil) (setq no-of-clauses k))
(setq *idb* (append *idb* (list clause)))
(if (eq (caar clause) 'edb )
(progn
(setq edb (cdar clause))
(cm:time
(dotimes (k (Iength edb))
(load-surrogate (car (nth k edb)) (cadr (nth k edb)))
(setq *edb* (append *edb* (list (car (nth k edb)))))
OMMN)

(t (format t "~S does not exist" fname)))
)

;»» Listing the clauses including the EDB predicates

(defun listing ()
(progn
(format t "IDB")
(dotimes (k no-of-clauses)
(print (nth k *idb*)))
(terpri)
(format t "EDB")
(dotimes (k *array-available*)
(print (aref pvar-in-use k)))
))

! HASHING

Y

;;» Constants

;s FIELD-LEN is the length of each code word

s» FIELD-VAL is the upper bound of a code word

;v NORM-VAL is the minimum value for a code word
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;s CONS-MASK is mask for a constant argument
(the maximum value for the code word)
s VARS-MASK is mask for a variable argument

(defconstant FIELD-LEN 16)

(defconstant FIELD-VAL (expt 2 FIELD-LEN))
(defconstant NORM-VAL (expt 2 (1- FIELD-LEN)))
(defconstant CONS-MASK (1- FIELD-VAL))
(defconstant VARS-MASK NORM-VAL)

»»» A simple hashing function. It returns a normalized integer value between
;3; NORM-VAL and FIELD-VAL. Normalization is required for logical AND and OR
;3; operations

(defun hash (a-str)
(let ((hash-value 0))

(dotmes (k (length a-str))

(setq hash-value (+ (* 26 hash-value)
(- (char-code (char a-str k)) 64) )))
(setq hash-value (mod hash-value FIELD-VAL))
(cond ((< hash-value NORM-VAL) (+ hash-value NORM-VAL))
(t hash-value))
)

.: BASIC SURROGATE FILE HANDLING ROUTINES:

e
"

;»» make-surrogate: create a surrogate file

3 file-name is actually a EDB prcdxcatenamc

3 Note: If the given file-name is FATHER, its corresponding
e surrogate file name is FATHER.SUR.

(defun make-surrogate ( file-name )
(with-open-file (ofile (concatenate ’string (symbol-name file-name) ".SUR")
:direction :output :if-exists :supersede
:element-type ‘(mod ,FIELD-VAL))
(do ((clause (read ifile) (read ifile))
(cl nil) (hashed-arg 0))
((null clause))
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(setq ¢l clause)
(dotimes (i (length cl))
(setq hashed-arg (hash (symbol-name (nth i cl))))
(write-byte hashed-arg ofile)
),
)

w load-surrogate loading surrogate files to surrogate-pvar
returns the number of tuples in the ’filename’

(defun load-surrogate ( filename arity )
(with-open-file (ifile (concatenate ’string (symbol-name filename) ".SUR")
:direction :input :element-type ‘(mod ,FIELD-VAL) )
(progn
(do (kO (+1Kk)
(code-value 1)
oy
((= code-value 0) k)
(dotimes (i arity)
(setq 1l (read-byte ifile nil 0))
(setq code-value (+ (* code-value {* i FIELD-VAL)) 11)))
(setf (pref (aref surrogate-pvar *array-available* ) k) code-value)
) :
(setf (aref pvar-in-use *array-available*) filename)
(setq *array-available* (1+ *array-available*))

)

. MAKING A QUERY CODE WORD

“ee
"y

»»s Making a query code word

(defun generate-qcw (argument-list)
(let ((arity (length argument-list))
(qew 0)
(mask-field 0)

316




(argument nil))
(dotimes (kk arity qcw)
(setq argument (nth kk argument-list))
(setq code (cond ((and (listp argument)
(variable-symbol-p (car argument)))
VARS-MASK)
((stringp argument) (hash argument))
((symbolp argument) (hash (symbol-name argument)))

)
(setq qcw (+ (* qcw FIELD-VAL) code))
)
)
;s Detect variable symbols
;3 Variable names start with ? [Nilsson 84][Carlsson 84]

(defun variable-symbol-p (x)
(and (symbolp x) (eq #\? (char (symbol-name x) 0)))
) .

. PARALLEL QUERY PROCESSING BASED ON SURROGATE FILES

"

;33 Solves a conjunction of literals

(defun solve-conjunction (edb-predicates)
(setq no-of-predicate-in-conjunction
(cond ((symbolp (car edb-predicates)) 1)
(t (length edb-predicates))))
; constructing the list of boolean pvars
(terpri)(format t "Surrogate File Selection Time")
(cm:time
(dotimes (k no-of-predicate-in-conjunction)
(setf (aref environment k) (nth k edb-predicates))
(*set (aref surrogate-selected k)
(selection-on-surrogate (nth k edb-predicates)))))
(cond ((*null) (terpri)(format t "No (by surrogate file selection)"))
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; immediate failure
((= (Iength edb-predicates) 1)
(terpri) (format t "Actual EDB Loading time")
(time (simple-selection (car edb-predicates) 0)))
; when the conjunction has only one predicate
(t ; reducing the size of virtual relations
; false-drop elimination from virtual relations
(terpri)(format t "Join on SF")
(cm:time (solving-conjunction-surrogate))
; sets global boolean pvars
(cond ((*null) (terpri)(format t
"No (by relational operations on surrogate files)"))
; immediate failure after restriction
(t (terpri)(format t "Actual EDB Loading Time")
(time (relational-operations)))
)
)

;s Selection on the surrogate files
;;; Returns boolean pvar
;s BUGS: it can’t check p(x, x), i.e. shared variables in a predicate.

(*defun selection-on-surrogate (goal)

(=!! (1! (generate-qcw (cdr goal)))
(logand!! (!! (set-mask-field (cdr goal)))

(aref surrogate-pvar (find-surrogate-file (car goal))))
)

»»s According to the predicate name, access the appropriate surrogate file
;s Returns the index

(defun find-surrogate-file (predicate-name)
(let ((sf-index 0))

(dotimes (k *array-available* sf-index)
(if (equal (aref pvar-in-use k) predicate-name) (setq sf-index k))
) ) .
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;»» reducing the size of selected tuples

(defun solving-conjunction-surrogate ()
(let ((sort-key (sort-by-selectivity))
(temp-env (make-array no-of-predicate-in-conjunction
:initial-element nil)))
; reodering the goals by selectivity
(dotimes (k no-of-predicate-in-conjunction)
(setf (aref temp-env k)
(aref environment (car (nth k sort-key))))
(*set (aref temp-selected k)
(aref surrogate-selected (car (nth k sort-key)))))
(doumes (k no-of-predicate-in-conjunction)
(setf (aref environment k) (aref temp-env k) )
(*set (aref surrogate-selected k) (aref temp-selected k)))
(setq proved-var-list nil)
(dotimes (k (1- no-of-predicate-in-conjunction))
(equijoin-surrogate k))
)

;s Nested Loop Join
;»» index can be used for goal in environment & selected tuples
;55 1n surrogate-selected

(defun equijoin-surrogate (index)
; 115 used to indicate ith argument of (aref environment index)
(let ((arg (cdr (aref environment index)))
(sl (find-surrogate-file (car (aref environment index))))
(s2 0) (cell nil) :
(arg-to-prove nil) (rest-goal-args nil))
(dotimes (i (length arg))
(setq arg-to-prove (ath i arg))
(cond ((or (symbolp arg-to-prove)
(member arg-to-prove proved-var-list :test #’equal)) nil)
; if the corresponding argument is constant or already proven
; variable cell then do nothing
(t
; k is used to indicate rest goal positions in the environment
(setq proved-var-list (append proved-var-list (list arg-to-prove)))
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(do ((k index))
((= k (1- no-of-predicate-in-conjunction)) )

(setq k (1+ k))
(setq rest-goal-args (cdr (aref environment k)))
(setq s2 (find-surrogate-file (car (aref environment k))))
; j is used to indicate the argument in target goal
(dotimes (j (Iength rest-goal-args))

(setq cell (nth j rest-goal-args))

(cond ((not (equal arg-to-prove cell)) nil)

(t (refine-selected-set sl index i s2 k j))))
N

;»» Parallel Part of equijoin-surrogate

(defun refine-selected-set (s1 index-1 arg-pos-1 s2 index-2 arg-pos-2)
(let ((tqgcw-index nil)
(tqcw-list nil)
(gqcw (set-mask index-2 arg-pos-2)))
(*when (aref surrogate-selected index-1)
(do-for-selected-processors (k)
; making qcw
(setq tgcw 0)
(dotimes (i (length (cdr (aref environment index-2))))
(setq tqcw (+ (* tqgcw FIELD-VAL)
(cond ((=i arg-pos-2)
(mod (truncate (/ (pref (aref surrogate-pvar s1) k)
(expt 2 (* FIELD-LEN
(1- (- (length
(cdr (aref environment index-1)))
arg-pos-1))))

FIELD-VAL))
(t VARS-MASK)))))
(setq tqcw-index (cons k tqcw-index))
(setq tqcw-list (cons tqcw tqcw-list))
)
(*all
(*set intermediate-result nil!!)
(*set *mask* (!! qcw))
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(dotimes (i (length tgcw-index))
(*set temp-result (=!! (!! (nth i tgcw-list))
(logand!! *mask* (aref surrogate-pvar s2))))
(if (= 0 (selectivity temp-result))
(setf (pref (aref surrogate-selected index-1)
(nth i tqgcw-index)) nil)
(*set intermediate-result (or!! intermediate-result temp-result))
)
)
(*set (aref surrogate-selected index-2)
(and!! (aref surrogate-selected index-2)
intermediate-result))

)

(defun *null
(let ((is-fail t))
(dotimes (k no-of-predicate-in-conjunction )
(cond ((= (selectivity (aref surrogate-selected k)) 0)
(setq is-fail t) (return))
(t (setq is-fail nil))))
is-fail))

(defun set-mask (environment-index arg-pos-index)
(let ((qcw-mask 0) (arg (cdr (aref environment environment-index))))
(dotimes (k (length arg) qcw-mask)
(setq qcw-mask (+ (* FIELD-VAL qcw-mask)
(cond ((= k arg-pos-index) CONS-MASK)
((and (listp (nth k arg))
(+ariable-symbol-p (car (nth k arg)))) VARS-MASK)
(t CONS-MASK)»))
)

(defun set-mask-field (arg)
(let ((qcw-mask 0))
(dotimes (k (length arg) gcw-mask)
(setq qcw-mask (+ (* FIELD-VAL qcw-mask)
(cond ((and (listp (nth k arg))
(variable-symbol-p (car (nth k arg)))) VARS- \/IASK)
(t CONS-MASK))))))
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)

»»» Primary False Drop Detection; checking constants argument
;s and Creates Virtual relations
;»» Immediate return when crearing null virtual reladons

(defur relational-operations ()
(let ((virtual-relations nil))
(do .mes (k no-of-predicate-in-conjunction)
; Creating Virtual Relation
(setq virtual-relations
(append virtual-relations
(list (simple-selection (aref envi-onment k) k))))

)
)

3 Sorts the global variables er vironment and surrogate-selected
»»» based on the selectuvity
;»» returns the sorted index

(defun sort-by-selectivity ()
(let ((scrt-key nil))
(dotimes (k no-of-predicate-in-conjunction)
(setq sort-key (append sort-key
(list (cons k (selectivity (aref surrogate-selected k)))))))
(sort sort-key #’< :key #’cdr)
)

;»» Determines how many surrogates are selected

(defun selectivity (x)
(*when x (*sum (!! 1))))

;»» Accessing the actual EDB (optimized version)
»»» After surrogate file processing has been completed, actual EDB tuples are
;»; loaded to main memory.

(defun simple-selection (goal index)
(let ((result nil) (old-block-no -1)
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(old-rec-no 0) (block-number 0)
(rec-no 0) (ifile nil)
(tuple nil) (filename (car goal))
(arg (cdr goal)))
(*when (aref surrogate-selected index)
(do-for-selected-processors (i)
(setq block-number (truncate (/ i BLOCK-SIZE)))
(setq rec-no (mod i BLOCK-SIZE))
(cond ((= block-number old-block-no)
(dotimes (k (1- (- rec-no old-rec-no)))
(read ifile))
(setq tuple (read ifile))
(setq old-block-no block-number)
(setq old-rec-no rec-no))
(t
(setq new-file-name
(merge-pathnames *default-pathname-defaults*
(make-pathname :name filename :version block-number)))
(if (streamp ifile) (close ifile))
(setq ifile (open new-file-name :direction :input))
(dodmes (k rec-no)
(read ifile))
(setq tuple (read ifile))
(setq old-block-no block-number)
(setq old-rec-no rec-no)
)
(if (filter arg tuple)
(setq result (append result (list (project arg tuple)))))
))

(close ifile)
(print (cons (var-filter arg) result))
)
»»» Eliminates constant arguments from the argument list
(defun var-filter (arg-list)
(mapcan #’(lambda (X) (and (listp x) (variable-symbol-p (car x)) (list x)))
arg-list))

;»; False Drop Detection
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(defun filter (argument result-tuple)
(every
#'(lambda (x y) (or (and (listp x) (variable-symbol-p (car x)))
(equal x y)))
argument result-tuple)

)

;; Eliminating the common constants from the result tuple

(defun project (arg tuple)
(mapcan #’(lambda (x y) (and (and (listp x) (variable-symbol-p (car x)))
(list y))) arg tuple)
)

"’ PROGRAMS FOR TRANSLATING GOALS TO EDB PREDICATES

Y

;3 Variable

;3; *var-level* : used to avoid name conflict between variables.
A Level O variables are those appeared in the original
s goal specified by users

(defvar *var-level* 0)

;»» Constructing conjunctions of edb predicate and solving each conjunction
5+ Assume that the variables in the goal should be shared among each literal
;»» No recursive clause and function argument are considered.

(defun solve (goal-list)

(let ((conjunction-list nil)
(new-goal-list nil))
(setq *var-level* 0)
(setq new-goal-list (free-var-substitute goal-list))
(setq conjunction-list (unify-subgoal new-goal-list))
;» Solve conjunctions
(dotimes (k (length conjunction-list))
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(format t "Solving ... ")
(print (nth k conjunction-list))
(cm:time (solve-conjunction
(ccad {symbolp (car (nth k conjunction-list)))
(list (nth k conjunction-list)))
(t (nth k conjunction-list))))

)

»»; Making a list of candidate clauses.

(defun find-candidate ( goal)
(mapcan #’(lambda (x) (and (unifiable goal x) (list x))) *idb*))

(defun unifiable (goal clause)
(and (equal (car goal) (caar clause))
(= (length goal) (length (car clause))) ))

;3 Unify a subgoal

(defun unify (goal )
(let ((unified nil)
(candidate-clause (find-candidate goal)))
(dotimes (k (length candidate-clause) unified)
(setq unified (append (unify-subgoal (substituting-candidate goal
(nth k candidate-clause))
) ) unified)))

;»» Instantiate free variables by unification

(defun substituting-candidate (goal clause)
(let ( (binding nil)
(new-clause nil))
(setq binding (find-binding (cdr goal) (cdar clause)))
(setq new-clause (mapcar #’(lambda (x) (sublis binding x)) (cdr clause)))
(setq *var-level* (1+ *var-level*))
(setq new-clause (free-var-substitute new-clause))
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)

(defun find-binding (goal-arg head-arg)
(mapcar #’cons head-arg goal-arg)

)

;»» Resolving a conjunction to edb predicates.
»»» This function calls unify recursively.

(defun uiafy-subgoal (body)
(let ((resolved nil))
(cond ((null body) nil)
(t
(dotimes (k (length body) resolved)
(if (member (car (nth k body)) *edb*)
(setq resolved (cartesian-product resolved (list (nth k body))))
(setq resolved (cartesian-product resolved (unify (nth k body))))
D))
)

;3> Substituting the free variables in the body ( conjunctions )
;»» by using *var-level™* to avoid variable name conflicts

(defun free-var-substitute (body)
(map 'list #' (lambda (y) (map ’list #’sub y)) body))

53; Substituting variable symbol with variable cell
(defun sub (x)
(cond ((variable-symbol-p x) (cons x *var-level*))
(tx)))
;s Appending the é.ltcmafivc clauses to make conjunction
(defun cartesian-product (list1 list2)

(let ((result nil))
(setq result nil)
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(cond ((null listl) (setq result list2))
((null list2) (setq result list1))
(t _
(dotimes (k (length listl))
(dotimes (j (length list2))
(setq result (append result (list
(cons-1 (nth k listl) (nth j list2)))))))))
result ))

(defun cons-1 (a b)
(cond ((and (symbolp (car a)) (symbolp (car b))) (list a b))
((symbolp (car a)) (cons a b))
((symbolp (car b)) (append a (list b)))
(t (append a b))))

. CREATING SAMPLE EDBS BY GENERATING RANDOM NUMBERS

29

;»» Constants.

" BLOCK-SIZE the maximum number of tuples that can be stored in a file.
If make-edb generates more than BLOCK-SIZE tuples,

39 create-block creates subsequent blocks

¥ (e.g. FATHER#0, FATHER#1 ........ ).

3»» MAX-FIELD + 1: the maximum number of characters that can appear in an
" argument.

(defconstant BLOCK-SIZE 50)
(defconstant MAX-FIELD 5)

;s Creating an EDB and its surrogate file by generating random numbers
5» filename : an EDB predicate name

;s fields : The number of arguments in the predicate

;s cardinality : The number of tuples to be generated

(defun make-edb (filename fields cardinality)
(let ( (file-tag 0) (buffer (make-array BLOCK-SIZE :initial-element nil))
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(cnt 0) (tuple nil) (tmp 0) (hashed-arg 0) (arg nil)(k 0))
(with-open-file (ofile
(concatenate ’string (symbol-name filename) ".SUR")
:direction :output :if-exists :supersede
:element-type ‘(mod ,FIELD-VAL) )
(dotimes (i cardinality )
(setq tuple nil)
(dotimes (j fields)
(setq k (+ (random MAX-FIELD) 1))
(setq arg nil)
(dotimes (1 k)
(setq tmp (+ 65 (random 26)))
(setq arg (concatenate 'string arg (list (code-char tmp)))))
(setq hashed-arg (hash arg))
(write-byte hashed-arg ofile)
(setq tuple (append tuple (cons arg nil)))
)
(setf (aref buffer (mod i BLOCK-SIZE)) tuple)
(cond ((= (mod i BLOCK-SIZE) (1- BLOCK-SIZE))
(setq new-file-name .
(merge-pathnames *default-pathname-defaults*
(make-pathname :name filename :version file-tag)))
(setq cnt BLOCK-SIZE)
(create-block new-file-name cnt buffer)
(setq file-tag (+ file-tag 1)))
((=1 (1- cardinality))
(setq new-file-name
(merge-pathnames *default-pathname-defaults*
(make-pathname :name filename :version file-tag)))
(setq cnt (1+ (mod i BLOCK-SIZE)))
(create-block new-file-name cnt buffer)
)
)]

;3 Creating a subfile
;»» The main purpose of dividing the files into subfiles is for efficient
;s access to secondary storage. We are using sequential file access

(defun create-block (filename count buffer)
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(with-open-file (ofile filename :direction :output
;if-exists :supersede)
(dotimes (k count)
(princ (aref buffer k) ofile))))
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MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C%I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C*I systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.




