
AD-A234 890

RADC-TR-90-404, Vol Xl (of 18)
Final Technical Report
December 1990

KNOWLEDGE BASE
MAINTENANCE

Northeast Artificial Intelligence Consortium (NAIC)

Kenneth Bowen

APPROVED FOR PUBLIC RELEASE" DISTRIBUTION UNLIMITED

This effort was funded partially by the Laboratory Director's fund.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

C.~

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Services (NTIS). At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-404, Volume XI (of 18) has been reviewed and is approved

for publication.

APPROVED:

IC!N J. CRO"V 'F R

Project Kr-iner

APPROVED:

' URTZ, JR.

Technical Director
Directorate of Command & Control

FOR THE COMMhfANDER:

RONALD RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE OMNo07oe4-0188

gW -~ vy rqgdq u..lu V9Ct.@8ftdC ati a W~'Mm Send~ OkuTrwu *Wc r=~Wb, Opwmu'ur wE1Rua om

OwN Mw. Si~m Aj*VVA -4m. mti*Of'm d MwiNK n- 8nd.ud9 Pqunaiic Rme~d.iPr =0 00. WNOOV4 0C 205M

1. AGENCY USE ONLY (Loae BI 2. REPORT DATE a, REPORT TYPE AND DATES COVERED
December 1990 Final Sep 34 - Dec 89

4. TirLE AND SUBTITLE 5. FUNDING NUMBERS

KNOWLEDGE BASE MAINTENANCE C - F30602-85-C-0008
PE - 62702F

6. AUTHOR(S) PR - 5581
TA - 27

Kenneth Bowen 'WU- 13

(See reverse)
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(E$) 8, PERFORMING ORGANIZATION
Northeast Artificial Intelligence Consortium (NAIC) REPORTNUMBER

Science & Technology Center, Rm 2-296 N/A
ill College Place, Syracuse University
sy'_acuse NY i3244-41OU

9. SPONSORING/OORING AGENCY NAME(S) AND ADDRESS(ES) 1 .SPONSORING/MONITORING

Rome Air Development Center (COES) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700 RADC-TR-90-404, Vol XI

(of 1)

11. SUPPLEMENTARY NOTES (See reverse)

RADC Project Engineer: John J. Crowter/COES/(315) 330-3564

This effort was funded partially by the Laboratory Director's fund.
12a DISTRBUTION/AVALABIJ1Y STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distrioution unlimited.

13. ABSTRACTLU'r u wdo:
The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force

Systems Command, Rome Air Development Center, and the Office of Scientific Research.
Its purpose was to conduct pertinent research in artificial intelligence and to
perform activities ancillary to this research. This report describes progress during

the existence of the NAIC on the technical research tasks undertaken at the member
universities. The topics covered in general are: versatile expert system for
equipment maintenance, distributed AI for communications system control, automatic
photointerpretation, time-oriented problem solving, speech understanding systems,
knowledge base maintenance, hardware architectures for very large systems, knowledge-
based reasoning and planning, and a knowledge acquisition, assistance, and explanation

system.

The specific topic for this volume is the use of logic Programming methodologies for

knowledge base maintenance.

14.$UBJECTTERMS Artificial Intelligence, Frolog, Knowledge ase, isMEROFPACESLogic Programming, Languages, Feasibility, Knowledge Base 96

Maintenance ,€ a RC CODE

17. SECURITY CLASFCAION 1& SECURITY CLAIFICATION 1a SECURITY CLASSIFICATiON 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED L.C ,LAF S I .I ED I UL
NSN 7540-0 .2101- J0 StcWI Fom 2gm (Pmv 2-e

P,_ul Lb ANSI Std Z31. a
2910

Block 5 (Cont'd) Funding Numbers

PE - 62702F PE - 61102F PE - 61102F PE - 33126F PE - 61101r
PR - 5581 PR - 2304 PR - 2304 PR - 2155 PR - LDFP
TA - 27 TA - J5 TA - J5 TA - 02 TA - 27
WU - 23 WU - Ol WIJ - 15 WU - 10 WU - O1

Block 11 (Cont'd)

This effort was performed by the Syracuse University, Office of Sponsored
Programs.

Table of Contents

11.1 Executive Summary................................. 11-3

11.2 Introduction... 11-6

11.3 Hamid Bacha 11-13

r1 tPIrOlog [MP/Ce etation, and .4pplication

11.4 Aida Batarekh...................................... 11-i8

Incomp'ete and Inconsist -nt Knowledge

11.5 Howard Blair..... 11-21

Theory of Logic Prograrnmina

11.6 Kenneth Bowen..................................... 11-29

Fo?,ndations and 41nplication: Reason Maintenance

11.7 Ilvas Cicekli... 11-55

rnctaProlog Implementation

11.8 Keith Hughes....................................... 11-60
[ntCrfa~eS to Databases

11.9 Hyung-Sik Park..................................... 11-7-0

.\egat ion. and Databases

11.10 V.S. Subrahmanian 11-74

Theony of Logic Prograrmming

11.12 List of Supported Students........................ 11-81

.11.1.1 List of Published Papers........................... 11-83

7V

11.1 Executive Summary

This project was concerned with the development of logic programming-based ma-

chinerv for the management of large complex knowledge bases of a highly dynamic

character, together with the development of mathematical foundations for such svs-

te'is. l,owledge base management includes the maintenance of ordinary integrity

constraints as well as sophisticated reason maintenance systems. The work was car-

ried out from the point of view of certain meta-level extensions of Prolog. generically

baptised metaProlog. The primary tasks of the project included the following.

" Continued development of the metaProlog system. The principal goals here are

the construction of an efficient metaProlog compiler, development of sophisti-

cated memory-management methods, the development of suitable interfaces to

non-metaProlog external databases, and the study of co-routining and concur-

rencv.

" Development of knowledge representation formalisms in metaProlog. including

analogs of frames, semantic nets, blackboards, etc.

" Study of the expression of generic database management and knowledge base

reason maintenance approaches in metaProlog, with special attention begin de-

voted to maintenance of static and dynamic integrity constraints, reason main-

tenance, and daemons.

" Construction of one or more experimental demonstration systems using the

machinery developed.

e Exploration of semantic foundations both for classical logic programming as well

as non-standard approaches showing potential for dealing with the theoretical

problems which arise in knowledge base maintenance.

We developed considerable knowledge of the structure and uses of the metaProlog

system, ranging from its theoretical underpinnings to its use for implementing such

programming constructs as frames, semantic nets, and message-passing. We al c de-

veloped considerable expertise and tools concerning the implementation of systems

of the character of Prolog and metaProlog. We first applied this to the construction

of a byte-code interpreter-based compiler for Edinburgh Prolog which achieved 10tK

LIPs running the standard benchmark on a VAX 780. At the time, this was the

11-3

fastest implementation of Prolog on the VAX 780. This was used to compile our first

sulbstantial simulator fnr metaProlog (written in Prolog), producing a system which

enabled us to begin serious metaProlog-based experiments. We then began extensions

of the abstract machine underlying the Prolog byte-code interpreter aimed at produc-

ing an abstract machine suitable for the compilation of metaPro'og. We explored a

number of alternatives which presented themselves, eventually consolidating most of

the valuable ideas into one system. Two alternative approaches to one aspect of the

system led to the development of two alternative versions of the metaProlog compiler
s;'-ch',. Both versions implement the core metaProlog features:

" Theories (logic databases) as first-class program objects which can be the values

of variables and be returned by procedures;

" Direct program access to the underlying proof predicate.

Both are incremental and interactive compilers which appear to be interpreters,

but which generate (very quickly) byte-coded instructions for the underlying abstract

metaProlog machine; these instructions are executed by an abstract machine inter-

preter coded in C. (Following the pattern for ordinary Prolog, extremely efficient

native code compilers can be developed from this architecture.) Both systems had

approximately the same efficiency as our earlier byte-coded Prolog compiler: ap-

proximately 8-10,000 LIPS on the native reverse benchmark, depending on cache

interaction, on a VAX 780.

Both systems were later extended to incorporate the following:

* Complete garbage collection; This included collection of compiled program code

which is stored on the system heap.

* Proofs of goals as first-class objects; Consequently, programs can reason about

the proofs resulting from solutions of goals (e.g., for explanation generation or

for sophisticated fault diagnosis).

Xcrv early on, we completed the axiomatization of a medium-scale knowledge-

base problem in Edinburgh Prolog. We used this experience to guide some of the

ir'.cstigations into the design of the metaProlog engine. Later, we converted it to run

in the metaProlog system.

11-4

We also conducted a extensive study of the truth and reason maintenance liter-

ature. eventually focusing primarily on deKleer's Assumption-Based Reason Mainte-

nance. hnplementation of ABRM can be carried out using metaProlog. Ilowevei,

because of the logical character of deKleer's work, we are studied methods of ab-

stracting its basic facilities and directly incorporating them in metaProlog as system

facilities.

We also co-,structed an interface from our orginal Prolog compiler to the academic
version of the INGRES DBMS. and experimented with it. Because of the monolithic

character of INGRES, comnmunication between the two systems was limited to string-

based communication, and the results were initially somewhat disappointing. How-

ever, we later ported the interface to the commercial version of the INGRES DBMS,

and achieved much better results. This reinforced our conviction that there must be

as close as possible communication between the Prolog/metaProlog system and any

external DBMS system with which it is linked.

We examined a number of semantic approaches to clarifying the foundations of

metaProlog. The fundamental difficulties arise from the "amalgamated character" of

the language, wherein the variables of the language must not only range over con-

ceptually ordinary individuals, but also over the syntactic constructs of the language

itself, noting that the language is untyped (like LISP and ordinary Prolog). Sev-

eral directions explored included using "possible world" semantics and a semantics in

which ordinary logical structures interpreting the language are extended to include

abstract syntactic entities generated (rather like a word algebra) from the individuals

of the interpretation.

The first approach, while intuitively appealing, does not seem to lead to useful

tools. The second approach has promise, but does seem to entail considerable com-

plexity. However. a third approach (which is definitely related to the second) sug-

gested itself, and this seems to have even greater potential. In essence, this approach

follows the so-called "substitutional interpretation" of logic, but instead of basing the

work on the traditional two-valued truth values, utilizes collections of partial search

spaces for proofs in the language as the set of truth values.

We devoted considerable effort to exploring theoretical approaches to default rea-

soning. inconsistency, stratified knowledge bases, non-standard logics, topological se-

mantics. and multi-valued logic programming. These investigations were quite suc-

cessful. The details are presented in the body of the report.

11-5

11.2 Introduction

11.2.1 Logic and Databases: The Need to Extend Prolog

Prolog has many attractive features as a programming tool for artificial intelligence

and the management of knowledge bases. These include code that is easy to under-

stand, programs that are easy to modify, and a clear relation between its logical and

procedural semantics. Moreover, it has proved possible to create clear and efficient

implementations. Nonetheless, it possesses several shortcomings. Chief among these

is difficulty representing dynamic dathases (databases which change in time) and an

apparent restriction to backward chaining, backtracking, depth-first search. A major

component of our work has been to develop and implement an extension to Prolog,

called TrctaProlog, which preserves the virtues of Prolog while introducing powerful

constructions to attack these problems. This work is a direct continuation of the

investigation into meta-level programming in logic begun by Bowen and IKowalski

[198 2].

Many artificial intelligt.;ce Aoolications demand facilities which amount to the

ability to dynamically manipulate databases or knowledge bases. A database is most

naturally represented in Prolog as a set of assertions and clauses. This exploits all

the advantages of Prolog's inherent deductive machinery. However, the logical core

of ordinary Prolog provides no conceptual basis for segmenting or modifying the

database. Most implementations of Prolog have provided ad hoc extensions to the

basic logic programming paradigm which allow for dynamic modification of the pro-

gram database by the program itself. But since the database is the program. the use

of these facilities introduces difficulties similar to those introduced by global variables

arid self-modifying code in conventional programming languages. The effect of these

features on the virtues listed above is catastrophic. Programs become difficult to

11n1erstand, reliable modification of the code is almost impossible, and the logical se-
irant ics ;s utterly destroyed. We know of no mathematical or philosophical definition

0 1 first-order proof where the collection of axioms is not fixed. We would, suspect any

such notion to be incoherent. We believe these difficulties can be overcome bv the

ntroduction of theories as First-class objects which can be dn1ia-icalllv -re'it.d and

theory. We regar'l this system as simply a first-order logical theory of axiom sets and

proofs.

11-6

The means of indicating that a met,- Pfolog goal ; should be solved in a particular

theory T is an explicit call on thie proof predicate demo. From a logical point of view.

the proof predicate is really a relation between three objects: the theory T. the goal

(G, and the proof P which attests to the solvability of G in T. But logic programming

is not only concerned with the static existence of proofs, but also the process of

discovering, them. That is, it is also concerned with the notion of search space and

search strategies. Thus, for logic prograrruning, the deep central relation is the one

which holds between a theory T, a goal G, and the complex object consisting of a

proof for G ili T seen as a portion of a search space explored by a particular search

strategy. Our investigations have led us to the conclusion that all of these entities must

be treated as first-class objects (metaProlog terms) capable of being manipulated and

passed as values of parameters.

11.2.2 Meta-Level Programming

It is important to make clear our notion of meta-level programming. Briefly, one

(listinguishes between the formal language being used to conduct some (unspecified)

axiomatic investigation (the object language) and the language u ed to carry on

any discussion about the objc.:t language (the metalanguagel. For many purposes

(including those of this paper), the metalanguage need only be powerful enough to

discuss the combinatorial syntactic properties of the object lai',iao. The essential

point is that the relations of the metalanguage are about the sv:: actic entities of

the object language: the variables of the metalanguage range o.Ovr v'arious svntactic

entities of the object language. In contrast, the variables of the object language either

have no specified range (when it is viewed as a formally uninterpreted language) or

(when the object language is treated as being interpreted) range over the members

(possibly extremely mathematically complex) of some specified set.

Properly viewed, an ordinary Prolog interpreter is already a meta-level object.

The object level consists of a fragment of ordinary first-oraer logic, a language and

proof predicate. The latter describes which formulas of the language are consequences

of sets of other formulas of the language. The meta-level of a theorem-prover is

concerned with the manipulation of sets of object-level formulas in the search for a

collection of formulas which witnesses the derivability of a given goal formula from

a given set of axiom formulas. The prover proper is a meta-level object because its

variables range over formulas (and other syntactic classes) of the object level language.

11-7

Thus a Prolog interpreter really defines a relationship between sets of formulas

(the program database), goal formulas, and proofs, namely the relation that the proof

witnesses the deducibility of the goal formula from the program database. (Note that

the standard Prolog interpreters return a portion of the proof to the user, namely

that part of the substitution applying to the variables occurring in the goal). As
commonly implemented, pure Prolog interpreters incorporate the program database

as a fixed part of the interpreter. Thus, from a meta-level point of view, a standard

Prolog interpreter provided with a fixed prcgram database defines a certain meta-

Ievel unary predicate applying to goal formulas. This meta-level unary predicate
holds for just those goal formulas which are deducible from the program database

b- the interpreter. The fundamental operator of standard Prolog systems is thus a

one-place operator (usually written call(...)) which invokes a search for a deduction

of its argument from the implicit prograni database parameter. The heart of the

proposal -t forth by Bowen and Kowalski w-s to utilize a system implementing
the full c.ducibilv relation described above. Such a system would have metavariables

which not czly range over formulas and term , but would also allow the metavariables

to range over sets of formulas (called theories). The fundamental operator of such

a system is a three-place operator, usually written demo(Th-eory,Goal,Proof). which

iliVOKes a sea:Ch for a proof of the goal formula appearing as its second argument
frorn th,, theory (or program) appearing as its first argument.

-%,I metaProlog program databases are the values of metaProlog variables and
are set up either by reading them in from files or by dynamically constructing them

iisin,) syster predicates. Besides the built-in predicate demo/3. the system predicates

iclude:

0 ald-tot Th)ry. Axiom, NewTheory)

SlropIrOrn(Theorv. Axiom. NewlIheory)

.n c build new theories from old ones by adding or deleting formulas. Thus for

,lr<il")Wpl. one miuzt find the body of a clause containing calls of "he form

t. addto(Tl, A, T2), demoJT2, D. PL

-. r, th. hlIeoryw hieh is the value of TI has ben construrt-, hy the earlier calls.

[it, ."c: of t') woulld th,n be to construct a new ,fheory 12 resii tinr, from TI b y

he addlition of the formula A as a new axiom. and then the ir xonkati m of a search

5 r a proof of th forrmula D from the the-nry T2. Since denmo mplements the proof

I -S

relation. such prograrns as (-) preserve the logical semantics of Prolog while providing

f.,r the dynamic construction of new databases from old.

The correctness and completeness of an implementation of demo are expressPd by

.}v! ... e cak'd reflection rules by Bowen and Kowalski:

e 1: ,0.:-u T. A, Pt. then A is derivable from T via proof P.

* if A is derivable from T via proof P. then demo(T. A. P).

11.2.3 The General Situation

I ho ral pover meta p wer) of this system lies rot in the specific system facilities

,-:e have described, but m the prograrmning methodology they introduce. The exam-

p!:, in the preceeding sect ,n only beings to explore the possibilities of this system.

Usirt this approach. in [Bowen and Kowal ki 1982], [Bowen and Weinberg 19S.51. and

1o,3,en ! 5 we have begun to logically characterize frames and default hierarchies.

9.7fnraIIzed networks of theories and semantic nets, and more general control strate-

res such as bottom-up or breadth-first search. There is no logical requirement that

the o:Ily notion of proof in metaProlog be the Horn clause-oriented demo predicate we

hcne introduced. We see no reason whv other methods of proof cannot co-exist with

.o. \Ve envisage the situation in which another method of proof would be rapidly

pro- otyped using explicit rec, rsive calls on the present demo, and later integrated

itlo the system at a low level.

By stepping up to the full meta-level point of view wherein all components of the

,s,, e'm i have become first-class objects, we have entered the realm o" a logical construal

of T heories, Goals, and SearchSpaces in which it is possible to axiomaticallh and

programmatically characterize elements of the system previously regarded as parts

Of the implementation. This allows us to introduce powerful logical approaches to

the, construction of artificial intelligence systems, and in particular, to systems which

must. manipulate complex knowledge bases.

11-9

11.2.4 Non-Classical Logic Programming

Classical logic is a logic of truth. Using classical logic we can reason about the

truth of different kinds of propositions relative to a given theory. Thus, we classify

propositions as either being false or true.

Unfortunately, this often proves to be an overly simplistic point of view. For

instance, the famous Ferrnat s Last Conjecture mu.st assuredly be either true or false.

but at this point in time, we are unable to say, with certainty, which of these cases

is the correct one. The same is also true of the P = AP ? problem. There are those,

however, who strongly disbelieve the proposition P = NP. Classical logic does not

permit us to express this disbelief because, of course. these disbelievers mav well turn

out to be wrong, and it may indeed be proven a few years hence that P is indeed

equal to NP.

We view many non-classical logics as logics of belief. Typically, human beings are

fallible. They have beliefs and disbeliefs, which may be wrcng when judged relative to

sc, rle empirical Standard. The process of changing our beliefs is a common occurrence
in oIr daily world. Often our beliefs turn out to be correct, but often they are not.

\Wose stiil, people may hold beliefs that are inconsistent in some respects - yet they

ma'; be able to reason perfectly well about certain other domains.

Our point here is simply that the study of beliefs is important, and perhaps even

more important than the study of truth, which is after all a rather ephemeral quantity.

The approacn of the metaProlog system is to make the various sets of beliefs

(theories) explicit and amenable to direct manipulation. As such, the system provides

the urnderlving nMdchinery for several possible approaches to the problem of belief, but

is in itse-lf, neutral. The study of belief and the process of change of belief has been

,,,,::-ve. We devoted our major efforts in the following areas:

e A topolog ially motivated semantics for logic programs Vhich has developed

il,.p and p>werful theorems concerning non-monotonic reasoning.

* A therv of logic programming that allows us to reason in the presence of

nr:,:onqtenc,. In particular we develop one such logic which belongs to a family

, h ,ics t*1 (To by the generic name paraconsistent logics.

* A tliory , o,) prc'rancming that allows us to reason in the presence of

mreI,,rtoin, ilf,,riat i,,n. i.e. information which is vague in the sense that one is

11-10

not sure of its truth/falsity, but has some feel (usually expressed in terms of a
quantitative "'certainty" factor) of the truth/falsity of a proposition.

A family of of logic programming languages over multivalued logics having a
certain kind of algebraic structure (i.e. a complete latti e). Under such circum-
stances, both the declarative (i.e. model theoretic and fixed point theoretic)
semantics and the proof-theoretic (i.e. query processing procedures) generalize

to the multivalued case.

11.2.5 Theoretical Basis for Logic Programming

As logic programming is a comparatively new field, we find that its basic theoretical
underpinnings are very weak. There are many techniques in mainstream mathematics
which may be used as tools to study the semantics of logic programming. It can hardly
be doubted that establishing important links between well understood mathematical

techniques and the semantics of classical and/or non-classical logic programming can
only help enrich the semantics of logic programming. With this goal in mind, our
group has undertaken the study of the topological and algebraic foundations of logic

programming.

Associated with any (classical) logic program is an operator whose fixed-points are
exactly the models of a formula called the completion of the program. One of the open
problems in logic programming is to determine conditions for the completion to be

consistent. A. Batarekh and V.S. Subrahmanian defined a (compact and Hausdorff)
topology called the query topology on the space of interpretations of the first order
!anguage ass2ciated with a program. It is shown that whenever the program is either

covered and/or function free, the operator associated with the program has a fixed-
point iff it possesses a collapsibility condition. This collapsibility condition therefore
yields a necessary and sufficient condition for program completions to be consistent
(for such programs).

One can now study the algebraic properties of the space of programs by looking
at the set of all operators associated with programs and associating some binary
operators. Under some natural binary operators originally defined by Mancarella and
Pedreschi, we obtain an algebra on programs that is easily seen to be a distributive
lattice. The important question now is that of negation. Is there some notion of
complementation relative to programs ? Unfortunately, there is no such notion of

11-11

complementation that yields a Boolean algebra or for that matter any richer algebraic

structure like a ring, etc. (except in the most trivial cases). Finally, we can use this

framework to study the equivalences of programs - in particular, a notion called

subsumption equivalence due to Maher can be generalized considerably to normal

logic programs and also to paraconsistent and/or multivalued logic programs.

11-12

11.3 Hamid Bacha

metaProlog Implementation and Application

11.3.1 Implementation of the metaProlog Compiler

The two major accomplishments of my work on the project are the completion of the

metaProlog system and the implementation of a medical expert system in metaPro-

log. The metaProlog language is an extension of the popular logic programming lan-

guage Prolog. As a high level programming language, Prolog has the most efficient

implementation while still closely approximating the ideals of logic programming.

Nevertheless, it has many limitations in terms of expressive power and problems with

its ad hoc extra-logical features. These shortcomings have been recognized for a long

time by many researchers, and a meta-level approach has been advocated as an al-

ternative. Among the shortcomings that hamper the expressive power of Prolog are

the many aspects that are supported by its underlying architecture, but not directly

available to the user. Some of these aspects are:

" The sets of clauses (database)

" The provability relation (-)

" The control strategy (depth first search, clause selection according to textual

order)

" The rules of inference

" The proof trees

Some of the add hoc extra-logical features of Prolog that tend to cause problems

are the "assert" and "retract" primitives which dynamically modify the database.

The metaProlog system tries to deal with some of these shortcomings while preserving

the ideals of the logic programming paradigm. The tacit and otherwise inaccessible

aspects of the system it makes explicit include the provability relation (referred to

as "demo"), the sets of relations or procedures (referred to as "theories"), the sets of
clauses making up a procedure (referred to as a "viewpoint"), and the proof trees.

The primitives "assert" and "retract" are replaced by "addto" and "dropfrom" which

are used to create new theories from existing ones. Some definitions were introduced

to extend the accepted Prolog terminology to cope with the use of multiple databases

11-13

(acbually, instead o: saying we use multiple databases, we prefer to say we have one

database which contains multiple theories). These definitions are:

" A metaProlog database is a collection of theories and relations (procedures).

* A relation is a collection of beliefs.

" A theory is a collection of viewpoints.

" A viewpoint is a set of related beliefs (equivalently, a subset of the set of beliefs

making up a relation).

* A belief is a metaProlog fact or rule.

As we can see from these definitions, the metaProlog database contains theories,

and the theories contain viewpoints. A built-in inheritance mechanism lets theories

share clauses, thus avoiding the prohibitive cost of copying clauses from theory to

theory. A fast algorithm is used to match the theories with their corresponding

viewpoints.

Proofs, in the form of proof trees, are directly available to the metaProlog user.

They are treated as first-class objects and can be manipulated very much like any

other metaProlog terms. Since they include all the subgoals that participate in the

evaluation of a given goal, they can be used, for example, to generate explanations for

applications involving expert systems. An unexpected but pleasantly surprising use

of proof trees is to affect the control strategy of the system by directing the search for

a solution along a more desirable path. Indeed, if the system is presented with a goal

and a proof tree indicating a possible solution, it only needs to check whether there

is a proof for the stated goal along the branches of the search space corresponding to

the given proof tree. In other words, the proof tree guides the search for the solution.

No other possibly wrong or infinite paths need to be followed during the evaluation

of the goal. No other solution needs to be considered. We can also use proof trees

that are only partially instantiated. That is, a skeletal description of some desirable

features we would like to see participate in the solution. In this case, the partially

instantiated proof tree serves to focus the system's attention on specific portions

of the search space, leaving it free to explore within these selected subspaces. Early

pruning of non-fruitful branches of the search space and avoidance of blind alleys may

lead to a more efficient solution for certain types of problems, despite the overhead

associated with the proof trees.

11-14

The extensions mentioned above were achieved in the context of a compiled ap-

proach based on the Warren Abstract Machine architecture. This resulted in a fast
and efficient system which relies on an interactive incremental compiler for flexibility

and ease of use. The objective of these extensions is to provide a richer and more
expressive language, as well as a more accommodating environment for artificial intel-

ligence applications such as knowledge representation, natural language processing.

and expert systems.

11.3.2 Application of metaProlog to Medical Expertise

To test the suitability of metaProlog for large scale applications, we embarked on the
task of implementing a medical expert system. The area of expertise selected was
that of Acid-Base and Electrolyte Disorders. The goal was to integrate the clinical
knowledge with the pathophysiological knowledge to come up with a robust exprt

system that combines both surface-level and deep-level reasoning. The system built
used some innovative features such as:

" First-principles assisted evidential reasoning: This method relies on the more

prevalent and widely used clinical knowledge for diagnostic purposes, but brings
in the pathophysiological knowledge on an as needed basis.

" Progressively expanding diagnostic possibilities: Meta-level knowledge and pri-
orities are used to restrict the search for the diagnosis to the more promising

leads. These restrictions are then progressively lifted to include more and more
possibilities for consideration. This method provides a more focussed approach

and a better interaction between the system and the user.

" Thesaurus-driven user interface: all the interactions between the system and
the user are carried through the user interface. To enhance the friendliness of
the system, the user interface is coupled with a thesaurus that defines all the

terms of interest in the domain of the expert system. The thesaurus specifies
the type of query to be used with each term and the type of answer to expect. It

lists the variations as well as the qualifiers applicable to each term. Whenever
possible, it specifies the precondition that must hold before the user can be
queried about a certain finding.

The preliminary results from our experiments with this system were very promis-
ing and seem to suggest that we have an adequate approach. More important, the

11-15

whole experience in implementing this system points to the usefulness and suitability

of metaProlog for implementing expert systems. The metaProlog system offers both

a functional design advantage in terms of knowledge representation and hypotheses

exploration, and a software engineering advantage in terms of structuring the expert

system shell.

11.3.3 Future Work

Unlike many researchers who rely mainly on meta-interpreters to obtain the advan-

tages of the meta-le' el approach, we went one step further and showed that it is

possible to have some of these same advantages plus the speed of a compiler. How-

ever, only some of the desired features of metaProlog have been implemented in this

first phase. The next phase should address the following points:

* Explicit control: we should be able to specify the control regime to used to

solve any goal or subgoal. We should be able to choose between depth-first,

incremental iterative deepening, or breadth first strategies. We should also

have some way of specifying the order of the clauses when there are manv

alternatives.

* A choice of forward or backward chaining. This issue is tied to the control

strategy above.

* A delay mechanism for waiting for some variables to be bound to ground terms.

* A mechanism for allowing coroutining to take place.

* Incomplete theories, that is theories that are not completely specified

e Explicit quantification

In addition to the direct work on the metaProlog system, suitable projects in var-

ious areas of Artificial Intelligence should be identified and implemented in metaPro-

log. These projects should be large and realistic enough to test the limits of the

system. The lessons to be learned from these projects should hopefully confirm the

viability of t h, many features of metaProlog and help establish it as a major player

in the area of research and development of Artificial Intelligence systems.

11-16

11.3.4 Publications

Meta-level Programming: A Compiled Approach. Proceedings of the Fourth In-

ternational Conference on Logic Programming. Melbourne, Australia, 1987.

Edited by Jean-Louis Lassez.

MetaProlog Design and Implementation. Proceedings of the Fifth Interna-

tional Conference on Logic Programming. Seattle, Wa. 19S8. Edited by K.A.

Bowen and R. Kowalski.

Beyond the 1V4.1: A PAM for the CAM. (A Prolog Abstract Machine for Content-

Addressable Memory.) Submitted to the 6th International Conference on Logic

Programming to be held in Lisbon, Portugal in June 1989.

Program Verification Using Meta-Level Logic Programming. Submitted to the

6th International Conference on Logic Programming to be held in Lisbon,

Portugal in June 1989. (In collaboration with Sanjay Khanna).

Clinical vs Pathophysiological Knowledge in Medical Expert Systems. In prepara-

tion (in collaboration with Dr K.A. Bowen and Dr C. Carvounis). To be submitted

to a medical journal.

11-17

11.4 Aida Batarekh

Topological Aspects of Logic Programming

11.4.1 Query Topology

Part I of this report was done in collaboration with V.S. Subrahmanian. A topology

on the set of interpretations of a logic program P was defined, and its properties

studied. The Query topology is defined as follows: the open sets are the collection of

all subsets of X which satisfy a (possibly infinite) disjunction of individual existential

queries. If all Li's are positive literals, the query is said to be positive, if all Li's are

negative literals, the query is negative. We show that the Query topology gives rise

to a totally disconnected, Tychonoff, complete and metrizable space.

A study of equivalences of sentences based on classical and non-classical logics

was also pursued. We proposed four notions of equivalences of sentences. We showed

that under certain conditions on the lattice structure of the set of truth values of the

logic of interest, three of these notions can be captured in terms of results on the

convergence of monotone nets in topology, while the fourth notion can be captured in

terms of a property of convergent nets in compact Hausdorff spaces which is what the

Query topology gives rise to. Our work may be viewed as a semantical counterpart

of Maher's [61 syntactical characterization of pure 2-valued logic programs. These

results [1] can be found in the technical report "Semantical Equivalences of (Non-

Classical) Logic Programs", which has also been presented at the 5th International

Conference on Logic Programming, August 88, Seattle.

Further investigations into the notion of axiomatizability, which we have previ-

ously defined, lead to the study of the special case of finitely definite clause axiom-

atIzability or FDC-axiomatizability for short. We study mappings which are FDC-

deformations, i.e., mappings from sets of interpretations into sets of interpretations

such that the property of FDC-axiomatizability is preserved. We narrow the Query

topology to the set of FDC-axiomatizable interpretations and investigate whether

special properties can be obtained.

11-18

11.4.2 Topological Approaches to Non-Monotonic Reasoning

I studied the connection between the Query topology and the well-known Scott topol-

ogy [2' and established the following: the collection of all open sets which satisfy a

disjunction of positiVe queries, are exactly the open sets in the Scott topology. Simi-

larly, the collection of all open sets which satify a disjunction of negative queries are

the open sets in the Inverse Scott topology, which I have defined in a manner svm-

metrical to that of Scott topology. It is also shown that the Inverse Scott topology

is distinct from the dual of the Scott topology. These results and some properties of

the Query topology can be found in the technical report [2] referenced below.

The lattice of interpretations is shown to be algebraic and supercontinuous hence

also complete and continuous. Therefore one can compare the Query topology to

the Lawson topology which is defined only on continuous lattices. The relationship

between the two is established: the open sets in the Query topology are exactly the

open sets in the Lawson topology. This in turn was used to prove that the space was

compact and 0-dimensional, hence that it had a countable base of sets which are both

open and closed. These results appear can be found in [3].

A notion of axiomatizability is introduced and a set Y of interpretations is shown

to be axiomatizable with a set S of clauses if and only if Y is closed in the Query

topology. These results and others pertaining to the applications of topology in Logic

Programming have been collected in a technical report [4] which will be submitted to

a journal for possible publication.

Having proved that the space of interpretations under the Query topology is a

complete metric space, i.e. that there exists a metric which metrizes the space, the

nature of the metric is investigated. I show that the Query topology is a Cantor space,

and that there is a homeomorphism between the space of interpretations under the

Query topology and the Cantor set.

The potential applications of the results found for the Query topology are studied

with respect to non-monotonic deduction operators occuring in the underlying lan-

guage. Specifically, an attempt is made at modifying the Query topology to deal with

the non-monotonic operator V introduced in my dissertation and used to introduce

assumptions.

An investigation into the continuity properties (continuity as defined in topology)

of the well known deduction operators T T a and T ft a shows that they are continuous

over the set of Herbrand interpretations of a pure logic program P provided P has

11-19

no clauses with free variables and a < w.

11.4.3 Publications

[11 Batarekh A. and Subrahmanian V.S., (1988) Semantical Equivalences of (Non-

Classical) Logic Programs, 5th International Conference on Logic Programming, Au-

gust 88, Seattle.

[2] Batarekh A. and Subrahmanian V.S., (1988), The Query Topology in Logic

Programming, Proc. Intl. Symp. on Theoretical Aspects of Computer Science,

Lecture Notes in Computer Science, Springer Verlag, Feb. 1989.

[3] Batarekh A. and Subrahmanian V.S. (1988), Topological Model Set Deforma-

tions in Logic Programming, to appear in: Fundamenta Informatica.

[4] Batarekh A. and Subrahmanian V.S. (1988), A T-4 Space of Models of Logic

Programs and their completions, I: Foundations, Technical Report, Logic Program-

ming Research Group, LPRG-TR-S8-15.

11.4.4 References

[5] Gierz G., Hofmann K.H., Keimel K., Lawson J.D, Mislove M. and Scott D.S,

(1980), A Compendium of Continuous Lattices, Springer-Verlag.

[6] Maher M. (1986) Equivalences of Logic Programs, in: Foundations of Deductive

Databases and Logic Programming, (ed. Jack Minker), Morgan Kaufmann.

11-20

11.5 Howard A. Blair

Theory of Logic Programming

Howard Blair and Krzyzstof Apt of the University of Texas at Austin and CWI Am-

sterdam, the Netherlands, studied the recursion-theoretic complexity of the perfect

(lterbrand) models of stratified logic programs. This work culminated in [ABSS].

They showed that these models lie arbitrarily high in the arithmetic hierarchy. As a

byproduct they obtained a similar characterization of the recursion-theoretic complex-

itv of the set of consequences in a number of formalisms for nonmonotonic reasoning.

They showed that under some circumstances this complexity can be brought down

to recursive enumerability. This work continued the investigation into the properties,

both semantic and proof-theoretic, of stratified programs introduced by K. R. Apt.

H. A. Blair, A. Walker and A. Van Gelder.

This earlier work is embodied in (ABW87.VGS7. An earlier version of ABWSSI

was issued in 1986 as an IBM Thomas J. Watson Research Center (Yorktown Heights)

technical report. This was seminal work that introduced the theory of stratified logic

programs. The book containing the paper was at last published, nine months behind

schedule, in March 1988. The results reported in the "Arithmetic Classificatio-a"

paper and related results were discussed but not proved in early drafts of 'AB\%S"'.

([VGST1 also appeared in an earlier version in [VGS6].) Revising and final editing of

[ABWS7] was supported by both the Project and a small grant from the Syracuse

University Faculty Senate to support a graduate student from the People's Republic

(sic) of China.

Following the Logic Programming conference in August, 1988. the "Arithmetic

Classification" paper was invited for submission to the journal Fundamenta In7for-

matica. It is now to appear, and amalgamates the results contained in [AB8Sa]. This

latter technical report had been intended for seperate publication but the administra-

tive demands of the Project preempted the time required to develop this publication:

the delay forced the amalgamation of the results with those of the "Arithmetic Clas-

sification" paper. The Completions of Recursion-free general programs, together with

a first-order domain closure assumption, constitute complete theories. The standard

model of a recursion-free program is decidable.

11-21

These combined results were also presented by Blair at a colloquium talk in April,

1988 at the State University of New York at Albany.

Meanwhile, in 1986 Hov.ard Blair continued his study of the recursion-theoretic
complexity of the structure of Herbrand bases of programs and reported this in [B1861.

These results show that a variety of properties of programs, viz. canonicality, determi-

nateness, etc. are highly undecidable and exact hierarchical lower bounds are given.

In [BlS7] Blair showed that all recursive relations over a given finitely generated

first-order language are computable by determinate programs; i.e. the canonical pro-

grams of Jaffar and Stuckey (1986) with completions that have exactly one Herbrand
model. In [BIST] it is further shown that all recursively enumerable sets over the

Herbrand universe of a finitely generated language L are computable by either suc-

ct'ss or failure sets of canonical programs. Indeed. for any two recursively enumerable
disjoint sub'ets of the Herbrand universe of L, a single program can be found that

ha1s one of the sets as its success set, and the other as its finite-failure set. The results
are e Tctive in the sense that from indices of two r.e. sets, the required programs can
he, constructed.

Jaifar and Stuckey [JS86] define canonical logic programs and show that for each
logic program there exists a semantically equivalent (formalized by a definition of

conservative extension) logic program which is canonical. [BIST] gives a different

construction that strengthens the previous results in [JS86]. Given a logic program P,
we effectively construct a program P such that with respect to the classical defini~ion

of consrrative extension the following holds:

', 1' is a conservative extension of P in the classical sense, and comp(P)
:5 a n.ervative extension of comp(P). in the sense of rss6]
i P' is canonical: that is. Tp, I ,{ = gfp(TI,).

Pii) (- contains ho new constant or function symbols, and as a conse-

(puence of this must necessarily contain flew predicate symbols if P itself

is not canonical.

V i'' has the same finite failure set. when restricted to th:e Itlerbrand

Bas,'"f 1'. as I'.

v) f' has the same success set, when restricted to the tlerbrand base of

1'. aLs P.

11-22

In [BlSS.BISSa] direct universal computability by logic programs is defined. When

the set of function symbols of L is infinite there are recursive subsets of the Herbrand

universe arid Herbrand base of L which are not computable by any logic program. The
a'aiivalitv of an eiiective enumeration of the Herbrand universe L of L for inclusion

iII proIraMs is shown to be necessary and sufficient for direct universal computability

Lv .,I c p zrams vwith respect to L. We then show this result holds with respect to

,inD hu iuDS of normal programs as well.

luring the academic year 19ST-198S an initial draft of IBBSST] was completed.

This paper presents the thesis that a logic program P without negation. over a

vAriaiit logic, is a theory that can be associated with an operator whose prefixed

pki.,,!S are exactly the models of P. Part II of this paper to be entitled, "A Logic Pro-

gramming Semantics Scheme, Part II: DOXOLOG, a Belief Maintenance Language-.

is concerned with an application of the semantic approach of part I to give a formal

senmantics for the language DOXOLOG. indicated in the above title.

During 19S8 Blair continued his investigations of morphisms in logic programming

oelOCiOl theory. This work is an attempt to, in particular, model-theoretically formalize

t.e semantics of database updates. The idea is that a new database instance is a

muorphic (rouighly homomorphic) image of a previous database instance such that

both instances are models of the same theory of the database's integritv constraints.

Diuring 19S' , a draft of a proposal for research on Computational Reasoning with

N,:cla-icai and, Paraconsistent Logics was prepared. The draft is intended to serve

a a last,r cocurnent from which various proposals can be derived by both Blair,

au, 10W ih1pendently, his student V. S. Subrahman-n, who has no% completed his

Ph1)D., laving E-aduated in Augaust.

: ",Vbruarv. 19S8 a revised version of [BS87] was invited for submission to a

,.C~ia n.n1e of the journal Theoretical Computer Science for a special issue on se-

pat- from the Seventh Conference on Foundations of Software Technology

1 "[,ret cal ('i,nputer Science. Fhe paper was subsequently accepted. The idea

: 7(; ?,A:,z .<.tc'ncy is that a collection of propositions may be locally cons: tent, but

al~v in,,,sistent. Thus one can reas,,n with large globally inconsistent sets of

11-23

sentences while taking care to avoid inconsistent lines of reasoning as they are de-

tected.

Some progress was made in calendar year 1988 on "An Inductive, Stratification-

frte Definlition of Standard Models of Stratified Logic Programs". It is still in a

forma' ive s'aI. hef work that needs to be done to establish this 'definition' requires

that a ',i:. f !,: al , nat. ing ot)erator, recursive in zero-jump, exist in the right

,. otrt re :it5 obtained during Fiscal year 1988 were that Blair developed a

fu:c: ionallv oriented theory of nondeterministic partial recursive functions in accord

with an earlier theory. relationaihv oriented, of such functions advanced by Ashok

(-'hai,,ira. and this th0'orv w as applied to showing that a logic program with a well-

f,,in e, dependency relation forms a Hi-complete set.

A he,,rem which constructively establishes a domain over which every logic pro-

gr,, is canonical was contectlired, with the general outlines of how to prove it.

re,,:v in March. 19S9 by Howard Blair and Allen L. Brown of both Xerox \Vebster

R -. arch ('enter's System Science Laboratory and the School of Computer and In-

f::,t ion Science at Syracuse Vniversity. Subsequently it was discovered that only a

"e.',tr ve-rion of the theorem that was initially conjectured in March could be proved

withe techniques that had been worked out by Blair and Brown in March, April.

an: May of 19,9. During June of 1989, Blair and Brown discovered that the tech-

nic:z:, could be coupled with an iterative technique and limit construction to prove

the iesired theorem. A draft of a paper describing the theorem and the techniques

e:s, to prove it was written in July, 1989. Below, we briefly describe the theorem

ani: ,InstrItion which comprises Blair's niain effort during Fiscal Year. 1989. Dur-

i-: ,e pw'riod from May 1.5 to Algust 1.5, 1989, Blair was supported soley by Xerox

', it,,ration. 'Aeh'- er Research Laboratory on site - Blair was not supported during
. riod by the NAIC grant.

Sfe nde,,l-t ,r.tic >ema ntics of completed definite clause logic programs exhibit

an asv,:ntrv rfarding Herbrand models: the "duality between True and False.

snccs I(and faiilure. least fixed point and greatest fixed point, least [Herbrandi model

an,! r'at est ierhiandl model" (cf. [JLNI.86) breaks down for various definite clause

~r'ram.. V .latfar. I.asse,, and Maher [,JLM861 point out. for those definite clause

11-21

programs P for which Tp w. = gfp(Tp), many aspects of the theory of such programs

are svmmetric. ("gfp" ["lfp"] means "greatest [least] fixed point".) Jaffar and Stuckey

[JSS6] call a definite clause program P with the property that Tp I .' = gfp(Tp) a

canonical program and show that every definite clause program P has. in a suitable

sense, a consecz'ative extension to a program P' that is canonical. (Hereafter we

shall frequently use the term program synonomously with the term definite clause

proyram.) Via such extensions, "the class of canonical programs is representative of

the class of all programs." [JLM86].

An unfortunate choice of definition in [JS86] for the class of partial recursive func-

tions (in which the minimization operator is applied only to total recursive functions)

appears at first glance to lead to an ineffective construction of the canonical conser-

vative extension. The Jaffar-Stuckey construction adds new constant and function

symbols as well as new predicate symbols, in forming the extension. Blair [BI87]

reformulates the Jaffar-Stuckey construction in order to avoid expanding the given

program's Herbrand universe and observes that the Jaffar-Stuckey construction is

actually effective since, given a program P, an index for the finite-failure set of P,

which is recursively enumerable, can be effectively obtained. From that index to-

gether with an application of the Normal Form Theorem, an explicit definition of

a partial recursive function that enumerates the finite failure set of P can then be

obtained in which minimization is applied, once only, to an explicit definition of a

primitive recursive function. In passing, [B187] also observes that if R is a recursive

subset of the Herbrand universe of a language £ with only finitely many constant

and function symbols, then the construction yields a determinate program Q that

computes R. Specifically,

TQ T w = lfp(TQ) = gfp(TQ) = TQ Ij w

The previous review points out that to obtain a symmetric theory of programs

in the sense of [JLM86] one can move in the direction of restricting the class of

programs considered to those which are still representative, in a suitable sense, of

all programs. Alternatively, one could move in the direction of relativising the T

operators to a pre-interpretation C. (Below, we will use the term prestructure instead

of pre-interpretation since we feel that it is more in accord with usage in the literature

of mathematical logic. Actualy, a prestructure for C is an algebra whose signature is

£=.) If we undertake the latter move then we require a prestructure C (for language

£! such that it satisfies the Clark equality axioms [cf. [L187], [C178]] and for every

program P over language £

T = gfp(Tc)P.

11-25

£C can be large, i.e., it can have infinitely many function and predicate symbols. Thus

up to renaming of symbols, every program is canonical with respect to C.

The construction proceeds in the following way: We begin with a first-order lan-

guage L and a prestructure Wo for C that satisfies the Clark equality theory with

language L. Next, we define the notion of BF-trees with respect to Wo. BF-trees,

simplicitur, are defined in [WML84]. BF-trees are at the opposite end of a spectrum

of generalizations from SLD-trees. In [WML84] both SLD- and BF-trees are special

cases of objects called GLD-trees. In SLD-derivations an atom is selected from a goal

and the goal is resolved with a clause in the given program using the selected atom

and the head of the clause. In GLD-derivations a sublist of atoms occurring in a given

goal is selected for resolution using the heads of a list of clauses from the program.

In a BF-derivation the entire goal is "selected." GLD-, SLD- and BF-trees depict the

disjunctive alternatives in sequences of GLD-, SLD, and BF-derivations, respectively.

A node in a BF-tree is, in general, labeled with a goal, a list of clauses, and a most

generally unifying substitution. In a BF-tree with respect to W nodes are labeled with

mgu's of equivalences of partially interpreted terms, i.e., terms having some of their

variables assigned to individuals of W'.

We use the BF-trees with respect to W 0 that we shall define to obtain a class

of substitutions which yields a quotient of the set of terms of 1 that are partially

interpreted in Wo. The quotient, A' 1 , also satisfies the Clark equality theory. It is

obtained in a manner which resembles the prestructure obtained in the proof of the

completeness of negation as failure due to Wolfram, Maher, and Lassez, [WML84].

From W,, we obtain W,,+I in the same manner as W, is obtained from W 0. If one

carefully manages the selection of variables of 1 in constructing each V+ 1 from ,V,,

it turns out that the sequence of prestructures

Wo, vi, .-- Wi,

forms a chain where each W, is embedded in 4'W,+ and each member of the chain

satisfies the Clark equality axioms. If for each n we identify the individuals of ',V

with their images in W, +1 then we have the union W, = OV, is well-defined

as a prestructure and satisfies the Clark equality theory. And , has the property

that all programs over C are canonical with respect to it. In particular. W 0 can be

chosen to be the Herbrand universe of L.

A revision of the initial draft of this paper is in preperation (September, 1989).

11-26

Blair has been invited to lecture on this work at both the Cornell University Mathe-

matics Center and the upcoming International Symposium on Mathematics and Ar-

tificial Intelligence in January, 1990.

References

[ABSS] Apt, K. R. &- Blair, H. A. "Arithmetic Classification of Perfect Models

of Stratified Programs". Invited Submission to Fundamenta Informatica

(To appear.)

[ABSSa] Apt, K. R. & Blair, H. A. Recursion-fr,- Logic Programs. Logic Pro-

gramming Research Laboratory Technical Report LPRG-TR-88-12

[ABW87] Apt, K., Blair, H., & Walker, A. "Towards a Theory of Declarative

Knowledge", in Foundations of Deductive Databases and Logic Program-

m.:-q, Jack Minker, ed. Morgan-Kaufmann, Los Altos, CA., 1987, pp.

89-148.

[BBS87] Blair, H. A., Brown, A. L. and Subrahmanian, V. S. A Logic Program-

mzng Semantics Scheme, Part I. Jan, 1988. Syracuse University Logic

Programming Research Group Technical Report LPRG-TR8S8-8.

[BI86I Blair, H. A. "Decidability in the Herbrand Base". Workshop on De-

ductive Databases and Logic Programming, Washington D.C. Aug 18-

22, 1986. Revised as Syracuse University Logic Programming Research

Group Technical Report LPRG-TR88-13.

[B1871 Blair, H. A. "Canonical Conservative Extensions of Logic Program Com-

pletions". IEEE Symposium on Logic Programming, San Francisco, Au-

gust, 1987. pp. 154-161. Syracuse University Logic Programming Re-

search Group Technical Report LPRG-TR88-14.

[B188] Blair, H. A. "Metalogic Programming and Direct Universal Computabil-

ity". Revised Version to appear in Proceedings of the Meta88 Workshop,
I1. Abramson & M.H. Rogers, (eds.), MIT Press.

fBl. Sal Blair. H. A. "Metalogic Programming and Direct Universal Computabil-

ity". Syracuse University Logic Programming Research Group Technical

11-27

Report LPRG-TR88-23. Appears in Proceedings of Meta88: Workshop

on Meta-programming in Logic Programming.

[BSS7] Blair, H. A. & Subrahmanian, V. S. "Paraconsistent Logic Program-

ming" (Preliminary Version) Seventh Conference on Foundations of Soft-

ware Technology & Theoretical Computer Science. December, 1987. pp.

340-360. Invited for Submission to Theoretical Computer Science. (To

appear.)

[C1781 Clark, K. L. "Negation as Failure." Logic and Databases, Gallaire, H..
and Minker, J. (eds.), pp. 293-324, 1978.

[JLMS6] Jaffar, J., Lasssez, J-L. and Maher, M. J. "Some Issues and Trends in

the Semantics of Logic Programming," Proceedings of the Third Interna-
tional Conference on Logic Programming, Ehud, Shapiro (eds.). London,

July 1986, pp. 223-241. Lecture Notes in Computer Science, no. 225.

Springer-Verlag, 1986.

[JSS61 Jaffar, J. and Stuckey, P. J. "Canonical Logic Programs". Journal of

Logic Programming, vol. 3, no. 2 pp. 143-155, 1986.

ILLS7] Lloyd, J. W. Foundations of Logic Programming, (2nd. edition.)

Springer-Verlag, 1987.

[VGS61 Van Gelder, A., "Negation as Failure Using Tight Derivations for Gen-

eral Logic Programs" in: Proc. of the 3rd IEEE Symposium on Logic

Programming, Salt Lake City, Utah, 1986.

[VGS7] Van Gelder, A., "Negation as Failure Using Tight Derivations for General

Logic Programs" in Foundations of Deductive Databases and Logic Pro-
gramming, Jack Minker, ed. Morgan-Kaufmann, Los Altos, CA., 1987,

pp. 149-176.

[WNILS4] Wolfram, D.A., Maher, M.J. & Lassez, J-L. "A Unified Treatment of

Resolution Strategies for Logic Programs," Proceedings of the Second

International Logic Programming Conference, Uppsala, Sweden, pp. 263-

276, 1984.

11-28

11.6 Kenneth A. Bowen:

Foundations and Application: Reason Maintenance

11.6.1 The Logic of Monotonic Reasoning

Introduction An intelligent artifact (program) reasoning about some aspect of the

wor!, must often maintain a collection assertions representing its current beliefs. In

many" settings, these assertions may only be plausible conjectures which may have to

be retracted depending upon the course of the agent's reasoning and the accumulation

of evidence, in such circumstances, the agent's reasoning is said to be non-monotonic.

If the assertions added to the collection of beliefs are never retracted, the agent's

reasoning is said to be montonic [refs].

The course of development of the set of beliefs is dependent both on the (external)

evidence discovered and on the agent's choices of resoning steps to employ, even

in the montonic case. This picture of monotonic reasoning is strikingly similar to

the intuitionistic descriptions of the idealized mathematician [ref-Brouwer] and its

formalization in the theory of constructions frefs). While the treatment of infinite

totalities in intuitionism is a fascinating and problematic topic, a stric point of view

can maintain that such totalities are only potential and never actual. This position

is founded on the view that the idealized mathematician is a finite being acting

in time, and that all actualized mathematical entities must be constructed by the

mathematician. Consequently, not only must all actual entities be in fact finite, but

the totality of constructed entities and verified assertions is necessarily finite at any

point in time.

This strict finiteness of the collection of entities and verified assertions is certainly

characteristic of the belief sets of intelligent computer programs. But like the in-

tuitionist mathematician's sets, these sets are potentially infinite in that there is no

in principle bound on the effort of either the ideal mathematician or the intelligent

program.

Kripke's introduction of a classicai model theory of intuitionistic logic provided a

nowerful tool for the classical analysis of intuitionistic reasoning. This model theory

is also very attractive for the analysis of the reasoning of intelligent artifacts (in the

non-monotonic case, in its modal incarnation). While the introduction of Kripke

models provided a intuitively appealing set-theoretic interpretation of intuitionistic

11-29

A,1 = B A,H =r

--- IS: II=a ,A--B -- IS: [L=E,--A

11 =>A r_ =* B 1 1= . A rl .B

A- IS: H =>=E, AAB V-IS: H ZA vB II=H E, AvB

H > A II = Ax[bfa]
V-IS: H-EVxA >-IS H-E,3xA

provided the eigen- where we use the
variable condition substitution notation

is met of Shoenfield[4].

Figure 1: IS-Rules for L'

statements, these models have the disadvantage that in dealing with arithmetic and
analysis, or for that matter, any theory in which all of the statements "there exist
of least n individuals" are derivable, the interpretation requires that infinitely many
individuals actually exist at each world-point or situation, thus preventing a direct
interpretation of any concepts of potentially infinite totality. This drawback also

applies to the analysis of the reasoning of artificial agents. In this paper, we provide a
modification of Kripke's approach which allows us to restrict the number of individuals
actually existing at any world-point or siutation to be finite. The price we pay is that
the number of world-points is necessarily infinite, and in the interpretation of the

logical operators, we must universally quantify over subcollections of the universe

of situations. Consequently, as an analysis of intuitionistic reasoning, it remains
thoroughly classical. However, as an analysis of the reasoning of intelligent agents, it

provides an initial framework for the global analysis of the agent's reasoning.

[-Structures and Validity We will consider languages L with the logical symbols

-,A. V, --+, V, 3, and =, together n-ary predicate symbols p,.... and function symbols
f,... for various n > 0. The system LJA is as defined in Gentzen [2]. The system L'

is defined as follows (cf. Prawitz [3]). Sequents F =t, A are permitted to have more

than one formula in the succedent A. The axioms, structural rules, and the rules
-. IA. A-IA. V-IA, -'- IA. V- IA, and 3- IA, are just as for LK or U. The

rules for introduction in the succedent are as shown in Figure 1.

If F'(A') is a permutation of F(A),F' = A' is a variant of F ' A. Obviously any

11-30

sequent provable in LJ is provable in L', and it is easy to prove the following lemma

by induction on the complexity of proofs (cf. [3]).

Lemma 1 If F =# A is provable in L', either F =* is provable in U or for some A

C r, F t A is provable in U.

Corollary 1 A sequent F =>A is provable in U if and only if it is provable in L'.

Def 2 If a, a,.. .,and bi, b2 ,..., are all terms of L, we will call formulas of the form

a = a identity axioms and we will call formulas of either of the two forms

a , = i b A ... A a ,,= b , f (a ,... a,) f f(b,... , b,)

a, b A...Aa = , - (p(al,...,a,,) *p(bi,...,b.))

equality axioms, where in the latter, p(al,..., a,,) could be a, = a2.

Def 3 We will say that a sequent F => A is provable in LJ= if there exists a finite

set 1- of universal closures of equality and identity axioms such that lI, F =:= A is

provable in U, and similarly for LJ'=.

Then we easily have:

Corollary 4 A sequent => A is provable in LJ= if and only if it is provable in LJ'=.

Def 5 Now let R be a reflexive and transitive relation on the non-empty set K and

let k E K. A subset C C K is a world-line from k if C is a maximal subset of K which

is linearly ordered by R with first element k, and we will write C T k to indicate this.

Also, we write

Rk dl'n R"{k} df, {k' E K • k'Rk}

and

1tk =dfn R"{k} =df, {k' E K • kRk'}.

11-31

Def 6 A semi-classical structure A for the language L consists of the following enti-

ties:

" a non-empty set JAI, the universe of A;

" a binary function =: IAI2 - {U, V};

" for each n-ary predicate symbol p, ain n-ary total function pA, : JAI --+ U, V;

" for each n-ary function symbol f, where n > 0, an n-ary partial function fA

JAI n -4 1IA1;

" for each individual constant c (i.e., 0-ary function symbol), an individual CA E

IAI.

Moreover, we require that for any a, b, c, E JAI,

9 - (a,a) = v,

* if (a,b) = V, then equiv(b,a) = V, and

* if (a,b) = V and a (b,c) = V, then = (a,c) = V.

We will often abbreviate = (a, b) = V by a = b; thus a b is an equivalence

relation on JAI. We will generally write

A =< IA!, E, PA,.,fA,-. ,CA,-.. >.

The values V and U can be thought of as signifying 'verified' and 'unverified', respec-

tively. The language L(A) is obtained from L by adding a new individual constant

ia to L for each aE JAI ; i is called the canonical name of a. Then A has a nat-

ural expansion to a semi-classical structure for L(a), namely, set (1a)A = a for each

a E JAI.

Def 7 Given the language L, an I-structure A =< Ak,K,R > for L consists of a

reflexive and transitive relation R on a non-empty set K together with semi-classical

structures for L.

Ak =< Ak, -- , Pk,...,fk,. .. ,ck >, such that for all k E K (where we write Pk

for PA,, etc.) each of the following hold:

11-32

1. if kRk', then jAk _ .Ak,[;

2. if kRk' and a, b E .Ak, then a =k b implies a -k b;

3. if kRk' and a,,...,a, E jAk?, then pk(al,...,an) = V implies pk', (a,,..., an) =

I".

4. if kB'Rk, then dom(fk) C dom(fk,) and fk, l dom(fk) 2 = fk:

5. if kRk', then Ck = ck,;

6. if a, =k b1,..., a,, -k b, and if < a,,...,a, > and < b1,...,bn > are both in

dcom(fk), then

A k' E B-k V k" E Rfk[fk,,(al,... ,a) =k" f ,(b,...,

7. if a, =k b1,...,a,, =k b,, and if p(al, ..., an) = v, then

A k' E Bk V k" E RkPk"(b,. .. , bn) = V.

8. AkAa,,... ,an E jAk1 A k' E Cik Vk" EC ,,[< a,,... ,an >E dom(fk,)].

We will always assume that

KfnUkEKKAk =

For S C K, set

U(S) =dfn UkESIAki,

where U(A) = U(K). Let Var be the set of free variables of L ; we will use xy,z,...

to range over Var.

Def 8 An assignment in A is a map v : Var - U(A).

Def 9 If v is an assignment in A, x E Var, and a E U(A), we define v by

ifxxsy
({a if xis y

V (y) =
a v(x) otherwise

11-33

Also, set

v#(A) =dfn {x) :x is free in A}.

Def 10 Let a be a term. The denotation of a in A at k E K relative to an assignment

v is given recursively:

v(x) if v(x) e IAkI

undefined
otherwise

fk(a Ak[v],"dn ,aAk[v]) if aAk [v]e I4 kI for i= 1,...,n

f,(l . . a) ~ [I undefined otherwise

Note that if aA.k[v] is defined, it lies in IAkj.

Def 11 Given an assignment v in A, k C K, and a formula A , we define a satisfaction

operator Ak 'l by recursion as follows (recall that V = 'verified' and U = 'unverified*):

1. Ak'(a = b) = k bA'k[v] if aAk[v], bAk[v] are both defined

1U otherwise

2. (aAi. . an ',[V]) if aAk[v] defined for i _ 1..

2 U
otherwise

I V if Akd,(A) = Akv"(B) = V

:3. A v(A A B) =
U otherwise

1V if AC T kVk' E C[Ak''(A) = V or Ak"(B) V]
4Ak(A VB

U otherwise

11-34

{ V if At'(A) = U for all £ E Rk

5. A'(---) =

C' otherwise

7 V if cond(A, B)

t 1U otherwise

{ V if cond 2 (x, A)
7. A k'(V',A)

U otherwise

V if cond 3 (x, A)
S. A kL(3]xA) =

U otherwise

where we use the following abbreviations:

cond1 (A, B) iff:

ACT kVk' E CAf E C[,#A C U(C) & At,-(A) = V VU CU
Am (B) = VII.

corzd9(x, A) iff:

ACTkVk' E CAtECAa EA JAmc CNR[vA CU(C) A(A)!

cond 3(x. A) iff:

ACTkVk'EC[ACC =* AECAaEjAtj[A a (A)]].

Note that the mapping Ak '(A) is always defined. We say that A is 'alid in A if

11-35

for each assignment v in A and each world-line C in A (i.e., maximal subset of K lin-

early ordered by R) such that v#A C U(C), there is a k E C uch that Ak" (A) = V.

A sequent A 1,... , A, B 1 ,. . . ,Bm is valid in A if and only if the formula

A1 A...A A,, B1 V...V Bm

is valid in A. A formula or sequent is valid if and only if it is valid in all I-structures.
The following lemmas are easy to verify by induction.

Lemma 2 Let A be a formula, let b and c be terms, let k C K, and let v be an

assignment in A. Then:

1. (b x [a]) A ,k [v] 2 -b A k[aAX t]]

k, aA,k[]

2. A'kL'(Ax[a]) A k a'jvv (A).

Lemma 3 Let A be a formula, let a be a term, let k, k' E K, and let v be an

assignment in A. Then:

1. if kRk' and a.Ak[v] is defined, then aAk'[is defined and aA'k[= a

2. if kRk' and Ak',(A) = V, then A k''(A) = V.

Main Theorems

Theorem 12 (Validity Theorem) If F A is provable in LJ'. then it is valid.

Theorem 13 (Completeness) A sequent r = E is provable in L.it without cut iff

it is valid in all I-structures in which every IAkI is finite.

11-36

References [1] B owen, K.A., A note on cut elimination and compleitness in first ordtr

t,-mes, Zeit. F. math. Logik und Grund. d. Math., 18 (1972), 173-176.

2 (ir.tzen, G. Inrestigations into logical deduction, in The Collected Papers of

G 'hard Gentz-i i.tt n' 1969, 68-131.

" %V t awjtz 07. 71e rcsults for irtuitiornust,r logic with second order quaT~tificatwoz

in IItuitionism and Proof Theory. Amsterdam. 1970. 259-269.

Sh oent: .. J. Mathematical Logic, Readini., Mass., 1967.

11.6.2 Theoretical Semantics

The logic language on which metaProlog is based amalgamates an object-level lan-

g.ua(-'e with its metalanguage. Consequently, attempts to adapt standard Tarskian

semantics are extremely ugly, and semantic interpretations based on Kripkian se-

mantics are only slightly better. A much more promising approach has arisen by

taking two moves. First (rclated to the approach of A. Church's Theory of Types) is

to regard all the expressions of the language as terms, with the formulas being merely

a di-stinguished subclass of the terms. Second, one abandons the normal two-value

truth value set and the normal "set of individuals" for the construction of denotations,

and replaces them jointly with the set of all "reasonable" syntactic entities from th,_

lang,,age itself., including partial proofs and search spaces. One then constructs a se-

mart c interpretation using the so-called "substitutional interpretation' but attaches

ccdlections of partial proofs and partial search spaces to pairs of theories ard formulas

lit latter regarded as goals to be solved in the theory). It appears that many of

the I.asic theorems of standard logic programming theory can be pushed through by

brute force. However, it is much more appealing to attempt to adapt the ideas of

Blair. Brown. and Subramanian which have shown that the basic theorems can be

Sroved abstractly, given a suitable lattice structure on the space of truth values. The

rwxt step is the search for such a suitable lattice structure om the space of syntactic

rntit ies.

11-37

11.6.3 Reason Maintenance Experiment

We have been exploring several experimental knowledge-base management systems

implemerted using the metaProlog compiler(s). We exhibited a typical example at

the RADC/NAIC Technology Fair during April, 1987. The top level of the system is

sketched below. The primary predicates are

kbm(kb, int, mnt, kb-time)

react-to(request, kb, int, mnt, kbtime)

which are mutually tail-recursive. Three of the arguments are theories:

" kb - the domain knowledge base

" int - the theory defining integrity and consistency of kb

" mnt - they theory containing rules for revision and maintenance, together with

data to effect revisions, etc.

The argument 'kb-time' simply is an abstract clock representation (here, system cycles

- it could be real time). And the argument 'request' is simply the request for action

obtained from the user: a query, a requested update, etc.

knowledge base manager main loop

-- kbm and react-to are mutually tail-recursive

--

all [kb, int, mnt, request, kbtime]

kbm(kb, _nt, mnt, kbtime)

get-req(kb, request, kbtime) &

react to(request, kb, int, mnt, kbtime).

11-38

kbm primary action predicate: react-to

--

Handling queries

-- this simply returns one solution

(prints the instantiated query)

multiple solutions are handled by the "all [..." request below

all [kb, int, mnt, question, kb-time]:

react-to(query(question), kb, int, mnt, kbtime)

demo(kb, question) & ! &

write('<<kbm: ') & write(question) & nl &

kbm(kb, int, mnt, kbtime).

all [kb, int, mnt, question, kb-time]

react-to(query(question), kb, int, mnt, kbtime)

write('<<kbm--No solution: ') & write(que:'ion) & nl &

kbm(kb, int, mnt, kbtime).

Queries requesting all solutions

Input form is:

all [x,y,z,...] : Formula

all [kb, int, mnt, question, kb-time, vars, form, vars,

realVars, instantiatedForm, sols, numVars] :

react-to(all(vars, form), kb, int, mnt, kbtime)
<- I &

write('Trying all sols ...') & nl &

length(vars, numVars) & %create Prolog vars

11-39

make-.var-.list(numVars, realVars) &

subst..prolog(form, vars, realVars, instantiateForm) &

%/instantiate Formula

(demo(kb, setof(realVars, instantiatedForm, sols)) & ! &

writp('Solutions found:') & ni &

show..list(sols);

%%. No solutions alternative

write('No solutions found...') & ni)

& kbm(kb, int1 mnt, kb...time).

React to requests to add an assertion to the kb

all [kb, int, mnt, assertion, vars, var-list, form, inst-form, new-nnt,

new-.kb, kb..time, new-kb-time]:

react-to(add(assertion), kb, int, mnt, kb..time)

(assertion = 1:'(all(vars), form) & !&

instantiate(assertion, inst~form, varlist)&

check-conseqs(inst~form, var..list, kb, int, mnt,

newkb, new~mnt, assertion, kb..time);

integ~ck(assertion, kb, int, mnt, new.kb, new-nnt, ko~time)) &

new.kb-.time is kb-.time + 1 &

kbr.(new~kb, int1 new..mnt, new-.kb..time).

The subsidiary predicates of interest above are those dealing with the checking of
conisequences, integrity, and consistency, defined as follows.

all Cform, var_list, kb, int, mnt, nev-.kb, new~mnt, assertion,

inst..form, kb..time]

check..conseqs(inst-form, varjlist, kb, mnt1 mnt,

new..kb, new~.mnt, assertion, kb~time)

(work-thru.conseqs(inst.form, var-list, kb, int, mnt,

new-kb, newjnnt, assertion, kb~time) & 1;

write('Denying addition of assertion to the kb... .') & nl &

11-40

new-kb = kb &

addto(mnt, failed-add(assertion,kb,int,mnt,kb.Aime), new~mnt)).

all [inst-.form, kb, int, mnt, new.kb, new-.mnt, assertion, kb~ti.me,

head, body, exist-quant.body, var-list, headjlist, head.vars,

body-vars]:

work-thru-conseqs(inst~form, var-list, kb, int, nt,

new~kb, new~mnt, assertion, kb~time)

(inst-form =(head :-body) & ! &

vars-occurring-in(head, head.vars) &

difference(varjlist, head-vars, body..yars) &

exist-.quant(body-.vars, body, exist-.quant-.body) &

(demo'kb, setof(head, exist.quant..body, headjlist)) &

show-list(head-list ,3);

write('No immediate head consequences of this assertion ...' &nl);

write('The expression ') & write(inst.form) &

write(' is not an implication... ignoring for now...') &nl) &

addto(mnt, added(assertion, kb, int, mnt, kb..time), new-.mnt) &

addto(kb, inst-.form, newjcb).

all [kb, int, rant, assertion, new.kb, new-jnnt, kbtime]

integ-ck(assertion, kb, int, mnt, new-.kb, new-ant, kbtime)

(demo(kb, assertion) & ! & write('Duplication--nothing added') & n1

demo(int+kb, acceptable(assertion)) &

contradict-check(assertion, kb, int) &

write('Integrity check passed ...'1) & ni &

addto(rnnt, added(assertion, kb, int, rant, 1.b-.time), new.mnt) &

addto(kb, assertion, new-.kb)).

all [kb, int, mnt, assertion, new.kb, new-ant, kb..time, body,

ans, ansi, instibody,d,e,f,g]

integ-ck(assertion, kb, int9 rnt, new-.kb, new.mnt, kb..time)

11-41

not (demo(int ,clause(acceptable(assertion), body)))

(demo(int+kb, update-via(assertion, body)) &

write('Assertion to add is defined by the following view:')

& ni & ni &

write(' ')& write(assertion) &

write(' if ')& write(body) & put(-.) & ni & ni &

write('Do you want to attempt the addition via this view?') &

read(ansl) &

(affirmative(ansl) & ! &

(not(body = (d,e)) &

demo(int+kb, acceptable(body)) & !; true) & ! &

(not(body = (f,g)) &

contradict-.check(assertion, kb, int) & !; true) &r

write('Integrity check passed...'1) & ni &

check-instances(body, inst..body),

addto(mnt,added(inst-body, kb,int,mnt,kb-.time), new mnt) &

addto(kb, inst..body, new-.kb); fail);

%otherwise for demo(int+kb, update)

contradict..check(assertion, kb, int) &

write(INo (other) integrity clauses apply to ') &

write(assertion) & ni &

write('Do you want to accept it as a pure premise?') & read(ans) &

integ..acton(ans,assertion,kb,int,mnt,new~kb,new-nnt,kb-time)).

all [kb, int, mnt, assertion, new.kb, new-nnt, kb..time, ans]:

integ-act-on(ans, assertion, kb, int1 mnt, newkb, new-~mnt, kb-time)

affirmative(ans) &

write('Adding premise: ') & write(assertion) & ni &

addto(mnt, added(assertion, kb, int, mnt, kb-time), newjnnt) &r

addto(kb, assertion, new.kb).

all [kb, int9 mnt, assertion, new-.kb, new-mnt, kbtime, ans]

integact-.on(ans, assertion, kb, int, mnt, kb, newmnt, kb~time)

not(affirmative(ans)) &r

write('Denying addition of premise: ') &r write(assertion) &r nl &r

11-42

addto(mnt, failed~add(assertion, kb, int, mnt, kb-time), new mnt).

all [kb, int, mnt, assertion, new-mnt, kb-time]

integ-ck(assertion, kb, int, mnt, kb, new-mnt, kb-time)

write('Integrity check failed for ') & write(assertion) &

write(' at time 1) & write(kb-.time) & n1 &

addto(mnt, failed~add(assertion, kb, int, mnt, kb-time), ne'w.mnt).

all [assertion, kb, int, contrary]:

contradict.check(assertion, kb, int)

demo(int, contradictory~assertion, contrary)) &

& demo(kb, contrary)

& !& fail.

all [assertion, kb, int]

contradict-check(assertion, kb, int).

The general kniowledge-base managetinczzt machinery built up above was applied
to a small application concerning the NAIC consortium. First we need a starting
knowledge base. This could have begun empty. The overall system provides facilities
for saving the current state of the kbm system.

theory(naickb). % the knowledge

located(su, city(syracuse)).

located(city(syracuse), state(ny)).

located(ub, city(buffalo)).

located(city (buffalo), state(ny)).

located(um, city(amherst)).

located(city(amherst), state(mass)).

pi(person(lesser, vic), project(1)).

pi(person(croft,bruce), project(1)).

title(project(l) ,[a,knowledge,acquisition,assistance,and,explanation system]).

11-43

pi(person(bowen,ken), project(2)).

title(project(2), [knowledge,base,maintenance]).

pi(person(shapirostu), project(3)).

title (project(3), [a, versatile, expert, system, for, equipment, maintenance]).

located(radc, afb(griffiss)).

located(afb(griffiss), state(ny)).

all [x,y] : in(x,y) <- located(x,y).

all [x,y,z] in(x,y) <- located(x,z), in(z,y).

all [x,y,z] : same.state(x,y) <- in(x,state(z)) & in(y, state(z)).

all [person, title, project]

directs(person, title)

pi(person, project) & title(project, title).

endtheory.

Next we need definitions of predicates which provide for integrity and consistency

maintenance. There are several points worth noting. First, the definition of 'accept-

able' has only one argument, namely the proposed new addition to the knowledge.

However, examination of the code for 'integ-ck' shows that the goal

acceptable (Update)

is run in the context of the current state of the knowledge base (combined with the

theory 'naic-int' defined below). Thus, this effectively defines the notion of 'acceptable

with respect to the current knowledge base'. Secondly, the definitions of 'acceptable'

atud 'Inconsist' are domain-specific: They apply to the anticipated assertions which

the system may consider. Finally, note that the knowledge base designer can define

procedures (possibly domain-specific) which update derived views under acceptable

circumstances, as seen in 'rec-update-via'.

11-44

theory(naic.int). meta-level integrity &consistency

all [placel, place2]

acceptable(located(placel, place2))

subsidiary(placel, place2).

all [placel, place2]

subsid(placel, place2) <- atom(placel).

all [placel, place2J

subsid(city(placel), state(place2)).

all [placel, place2]

subsid(state(placel), country(place2)).

all [placel, place2]

subsid(coiumtry(placel), continent(place2)).

all [placel, place2J

subsidiary(placel, place2)

subsid(placel, place2).

all [placel, place2, place3]

subsidiary(placel, place2)

subsid(placel, place3) & subsidiary(place3, place2).

all ExJ

is-place(city(x)) <- atom(x).

all [xJ

is...place(state(x)) <- atom(x).

11-45

all M]

is-.place(country(x)) <- atom(x).

all [xI

is-place(continent(x)) <- atom(x).

all Enamel, name2, number, boss, what]

acceptable(pi(boss, what))

boss = person(nane2, namel)

& what = project(number) & integer(number).

all [number, words]:

acceptable(title(project(number), words))

integer(number) & list-.of-.atoms(words).

list-of-atoms([1).

all [head, tail]:

list-.of~atoms([head I tail])

atom(head) & list-of-atoms(tail).

7.7,- Rules for inconsistency- --

all [x, y] -

contradictory(x, y)

inconsist(x, y).

all Ex, y]

contradictory(x, y)

inconsist(y, x).

all x

11-46

jnconsist(male(x), female(x)).

all [x]

acceptable(male(x)).-

all (x]

acceptable(female(x)).

-%===Rules for updating views %%%

all [assertion, definition, body]

update..via(assertion, definition)

clause(assertion, body) &

rec-.update-via(body, definition).

all [al,a2, bl,b2]

rec...update-.via((al,a2), (bi, b2))

rec-.update..yia(al, bi) & rec..update-.via(a2, b2).

all [assertion, definition]:

rec-.update-.via(assertion, definition)

var(assertion) & !&fail.

all [assertion, definition]:

rec-.update-via(assertion, definition)

atom (assert ion) & ! &

(clause(assertion, body) & ! &

rec-.update..via(body, definition)

definition =assertion).

all [assertion, predicate, args]:

rec-.update-.via(assertion, assertion)

11-4 7

assertion =.. [predicate I args].

endtheory.

theory(naic-mrit). %l kbm maintenance

all. [x,y]
subset(x, y)

subseto(x,y).

all [x,y,zJ

subset (x, y)

subsetO(x,z) & subset(z, y).

all Ex, y, z]:

belongs(x ,y)

belongs..to(x, y, z).

all EX, y, Z, U

belongs(x, y)

true &

subsetO(u, y) &

demo(y, clause(x, z)).

endtheory.

While only a small toy example, the code above demonstrates the ease with which

knowledge base implementers can directly define notions of consistency and maintance

specific to the content of the particular application. (No revision maintenance is

conducted in this example. See the 'ltm' example below.)

11-48

11.6.4 Reason Maintenance and Theory Manipulation

By bringing the problem-solver and knowledge-base maintenance program closer
together than previously, a very useful and potentially efficient methodology has

evolved. As in the preceeding section, one writes a version of the metaProlog in-

terpreter as normally expressed in Prolog with an explicit argument indicating the
theory underwhich the deduction is being performed. However, in this interpreter,

one includes an implementation of the usual Prolog assert. At the metalevel, this is a

logical axiomatization of such a system. The implementation of assert requires that

the interpreter check the consistency of the assertion being added against an integrity

theory which is also carried around by the interpreter. If the consistency check fails,
the interpreter consults its revision theory to guide revision of the knowledge base to

a consistent state. As is usual with such interpreters, a source-to-source transformer

is created which partially evaluates the domain problem-solving rules and knowledge

base relative to this interpreter (via expansion of arguments). Not only do the trans-

formed rules run much more efficiently, but consideration of the manner in which they

are compiled provides insight into how the process might be pushed deeper into the

metaProlog compiler's abstract machine.

Some exploratory work on an implementation (in metaProlog) of a "logic-based"

reason maintenance system in the style of McAllester was begun. A top-level sketch

of this experiment follows. (It is written in conventional Prolog syntax which our

metaProlog compiler accepts. When more fully developed, it will be converted to

metaProlog syntax via an automatic conversion program.)

/,-

I ltm.pro

I Logic-Based Truth Maintenance
-- *

solve(Problem, Solution, KB, FinalKB)

demo(solver, solved(KB, Solution-Problem)).

x(N) -

name(N, NString),

append("exanp", NString, ".pro", FileString),

11-49

name(File, File-String),

append('x", N-LString, Th-NameString),

name(TheoryName, Th.NameString),

consult(File, Theory-.Name),

demo(TheoryName, initialize-kb(KB))
dermo(TheoryName, goal..problem(Prcblem/Solution))
solve(Problem, Solution, KB, FinalKB),

nl, write(problem=Problem) ,nl,

write(' solved by solution: '),nl,

write(Solution) ,nl.

theory solver. %. $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$.t$$$$$$$$$$$$$

use(kb-primitives).

solved(KB, Output-Problem, T)

current-focus(KB, TO),

solves(Problem, KB, TO, T).

solves(Problem, KB, KB, T, T)

status(Problem, KB, T, true),

solve((Probi & Prob2), 1KBO, KB1, TO, Ti)

solves(Probl, KBO, KBjInter, TO, T_.Inter),

solves(Prob2, KB-.Inter, KBi, T-Inter, Ti).

solves(Problem, KBO, KB1, TO, Ti)

rule..of(KBO, TO, Problem, Body),

solves(Body, KBO, KBi, TO, Ti).

solves(Problem, KBO, KBi, TO, Ti)

status(Problem, KBO, TO, unknown),

11-50

possible-assumption(KBO, TO, Problem),

demo(reason-maint, assumable(Problem, KBO, KBi, TO, Ti))

Deep failure causing backtracking to this point will be handled

tail-recursively inside 'reason..iaint' in the definition of

assumable, which will look for an acceptable way to back up

the theory TO (typically rc-moving some assumptions under some

maintenance regime) to yield a theory T3 and knowledge base

state KB3, arid then calling

solves(Problem, KB3, KB1, T3, Ti).

Consequently, we see that if we originally submit the goal

.-solves(Problem, KBO, KB1, TO, Ti)

and it succeeds, Ti is not necessarily a monotonic extension of TO,

but is an extension of some acceptable revision of TO.

.......................+

endtheory. % solver ##

theory reason-maint. % $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

use(kb-primitives).

assumable(Formula, KBO, KBi, TO, Ti)

status(not(Formula), KBO, TO, true), '

find-.alternate(Formula, KBO, TO, KB3, T3),

demo(solver, solves(Formula, KB3, KBi, T3, Ti))

assuinable(Formula, KBO, KBi, TO, Ti)

integrity-.theory..of(KBO Integ..Th),

demo(Integ-Th, acceptable(Form, TO))
not(inconsistent(Formula, TO, KBO))
addto(TO, Formula, Ti),

update-maint-records(TO, addto(T), Formula, TI), T1, KBO, KBI).

11-51

assurnable(Formula, KBO, KBi, TO, Ti)

find-alternate(Formula, KBO, TO, KB3, T3),

solves(Formula, KB3, KBi, T3, Ti).

inconsistent(Formula, Theory, KB)

status(Formula, OtherTheory, KB, false),

records(KB, extends(OtherlTheory, Theory))

inconsistent(Formula, Theory, KB)

demo(Theory, not(Formula))

endtheory. % reason-maint #####################################

theory kb-primitives. 7. $$$

records(KB, extends(Ti, T2))

extension-records~of(KB, ExtRecs),

dero(ExtRecs, exterids(T1, T2)).

update-maint-records(TO, addto(TO, Formula, Ti), Ti, KEC, KBi)

extension.records.of(KBO, Ext_.RecsO),

addto(ExtRecsO, extends(TO, Ti), Ext..Recsi),

update..kb(extension-records, ExtRecsi, KBO, KBi).

status(Formula, Theory, KB, StatusValue)

kb-access(status-records, KB, Status..Theory),

demo(Status..Theory, status(Theory, Status-Jalue))

extension..records-of(KB, Ext..Recs)

kb-access(extension-.records, KB, Ext-Recs).

11-52

current .f ocus (KB, T)

kb-access(current-focus, KB, T).

kb-.access(What, KB, ExtRecs)

kb-.access-.table(What, ArgNum),

arg(Arg'um, KB, Ext_.Recs).

kb..vector-.size(3).

kb-.access...table(status..records, 1).

kb..access-.table(extension.records, 2).

kb-access-table(current-focus, 3).

make-kb(Arg_.List, KB)

kb-.vector-.size(KB_.Size),

functor(KB, kb, KB-.Size),

instali..kb-.args(ArgList, KB).

install-kb-.args(E], KB).

install-.kb-.args([Entry-.Name = Entry-.Value IRest-.Arg-.List], KB)

kb~access..table(EntryName, Entry-Nun),

arg(Entry..Num, KB, EntryYalue),

install-kb-args(Rest.ArgList, KB).

eridtheory. % kb-primitives #######################################

In the course of working on the ltm example, it is becoming clear that our approach

to nietaProlog may provide an even greater potential with regard to reason mainte-

nance than we originally thought. When one reflects on the details of our metaProlog

11-53

compiler, one sees that there are two distinct components to the treatment of theories:

(1) provision for the raw physical notion of individual independent theories: in our

system. theories are identified with clause-indexing patches referring to subsets of a

global "blackboard" of clauses: (2) maintenance of relationships among theories: in the

present metaProlog. we support maintenance of historical relationships.

The implementation of the former is independent of the latter (though 2 does rely on

1. but this causes no problem for the following). It seems apparent that (2) could be

replaced or supplemented by maintenance of other sorts of relationships between

theories, in particular. the sorts of relationships inherent in reason maintenance.

A good deal of more exploration and experimentation will be necessary before the

situation becomes sufficiently clear to determine whether the processes of reason

maintenance can be sufficiently analyzed into primitive process to warrant

elaboration of additional instructions and facilities in the underlying Abstract Prolog

Machine.

Assumption-Based Reason Maintenance was also a concern. Here the primar "

concern is with the excessive storage demands of de Kleer's methods. The goal is to

discover methods of achieving much more virtual implementations of his ideas. The

target is to be able to explicitly maintain the theories lying along the two fringes: The

boundary between the unexamined theories and the known inconsistent theories, and

the boundary between the unexamined theories and the known consistent theories. All

other theories which have been examined (both consistent and inconsistent) will be

maintained in a compact a virtual representation as possible by describing them in

te-nus of theories lying on the fringe. In essence, these descriptions say what must be

added to or deleted froin a friine thecorv in order to obtain a given virtual theor. The

advantage can be gained by groJping the theories around the statenwrits. ConcepttuallV.

the maintenance will involve quadruples

v(Fornula. Sign. FringeTheory. I,

vlicrc I, is a list ofvirtiial theory ids such th;]t the given Iuniiula must hr ;idded l)Sin

+) or dcletcd toll) SiL:n -) FrintlthunI r for eath o thc the ris w vlirs, itd is oinl ti,,

list

I -%l1

11.7 Ilyas Cicekli

The Design and Implementation of The metaProlog System

Most of the meta-level systems implemented in the last decade are meta-level inter-
preters which introduce extra interpretation layers that slow down the execution. The

metaProlog system described in this report is a compiler-based meta-level system for

the metaProlog programming language. Since metaProlog is an extension of Prolog,
we extended the Warren Abstract Machine (WAM) to the Abstract metaProlog En-

gine (AMPE). metaProlog programs are directly compiled into the instructions of the

AMPE.

In the rest of this report, the metaProlog system is briefly described. Theories
which are first class objects in metaProlog, and their representations in the metaPro-

log system are discussed in Section 2. The basic structure of the AMPE is explained

in Section 3. In the last section, the garbage collector of the metaProlog system is

presented.

11.7.1 metaProlog Theories

In Prolog, there is a single database, and all goals are proved with respect to this

database. When there is a need to update this database, the builtins assert/retract,
which are ad hoc extensions to the basic logic programming paradigm, are used to

create the new version of this database by destroying the old database in the favor of
the new one. On the other hand, there can be more than one theory in metaProlog,

and a goal can be proved with respect to one of these theories. A new theory in
metaProlog is created from an old theory without destroying the old theory.

A new theory is created from an old theory that already exists in the system by

adding some clauses or dropping them. The new theory inherits all procedures of the

old theory except procedures explicitly modified during its creation. Although we

create a new theory from an old theory, the old theory is still accessible by the user.

The provability relation between a theory and a goal is explicitly represented in
rnetaProlog by a two argument predicate "demo". The relation "demo(Theory,Goal)"

precisely holds when "Goal" is provable in "Theory". Similarly, the relation demo(

Theory, Goal, Proof) holds when "Proof' is the proof of "Goal" in "Theory". When
one of these provability relations is encountered, the underlying theorem prover tries

11-55

to prove the given goal with respect to the given theory.

Theories of the metaProlog system are organized in a tree whose root is a distin-

guished theory, the base theory. The base theory contains all the system builtins, and

all other theories in the system are descendants of the base theory. In other words,

all theories can access procedures of the base theory.

Every theory in the metaProlog system possesses a default theory except for the

base theory. The default theory of a theory T is the theory where we search for a

procedure if the search for that procedure in T fails. This seaLch through default

theories continues until the procedure is found or the base theory is reached.

To shorten the depth of the theory, theories in the metaProlog system are classified

into two groups : "default theories", and "non-default theories". A "non-default

theory" is a theory that carries information about all procedures that underwent

modifications in the ancestor theories between this theory and its default theory.

Access to these procedures is very fast, at the expense of copying some references.

The default theory of a theory is the first ancestor theory that is a "default theory". A

"defauit tneory" is a theory whose descendants don't carry any information about th

procedures occurring in that theory. If only default theories are used, access to a given

procedure in a given theory may require a search through all its ancestor theories. In

this case, access to a procedure may be slow, but no copying of references is needed.

Depending on the problem, the system tries to use one or the other approach, or a

combination of both to achieve a balance between speed of access and space overhead.

When a new theory is created from a non-default theory, its default theory will

be its father's default theory. But if a new theory is created from a default theory, its

default theory will be its father. In the first case, the new theory will be at its father's

level. In the second case, the new theory will be at one level above its father's level.

Thus we don't increment the depth of the theory tree when a theory is created from

a non-default theory.

11.7.2 Abstract metaProlog Engine

Our main goal in this project was to create an efficient compiler-based metaProlog

system. Since metaProlog is an extension of Prolog, the Warren Abstract Machine

(WAM) was the best starting point. For this purpose, the WAM is extended to the

Abstract metaProlog Engine (AMPE).

11-56

The AMPE performs most of the functions of the WAM, but it also has some extra

features to handle theories and compiled procedures as data objects of the system.

These extra features basically are:

" Extra registers to handle theories in metaProlog.

" A different memory organization which is more suitable to handle compiled

procedures and theories as data objects of the system.

* The functions of the procedural instructions in the AMPE differ from their

functions in the WAM.

There are two new registers in the AMPE in addition to the registers the WAM

does. The first one is the "theory register" which holds the current theory (context)

of the metaProlog system. The value of the "theory register" is changed when the

context of the system is swtched to another context. This register is also saved

in choice points so that the context of the system can be restored the value saved

in the last choice point during backtracking. The second one is the "theory counter

register" which is simply a counter to produce a unique theory-id for each theory

in the system. It is is incremented to indicate the next available theory-id after the

creation of each theory.

The code space and the heap in the WAM are integrated as a single data area

in the AMPE which is more suitable to handle compiled procedures as data objects.

This integrated snace in the AMPE is still called "heap". Thus theories and compiled

procedures can be created on fly, and they are can be easily discarded when the need

for them is gone. The local stack and the trail of the AMPE still perform the same

job they perform in the WAM.

11.7.3 Proofs

The AMPE can run in two different modes. When a two argument "demo" predicate

is encountered, the system runs in the simple mode. In the simple mode, the system

only proves a goal with respect to the current theory of the system. When a three

argument " demo- predicate is encountered, the mode of the system is switched to the

proof mode. In the proof mode, a goal is not only proved with respect to the current

theory of the system, its proof is also collected. At the implementation level, the

11-57

mode of the system is represented by a mode flag which is also saved in choice points

so that the system can switch from one mode to the another during backtracking.

In the simple mode of the system, only the core part of the system described above

is used. On the other hand, two extra registers are used in addition to the core part

of the system when the system runs in the proof mode. These extra two registers are

used to collect the proof of a goal during its execution.

11.7.4 Fail Branches

After finishing the core part of the metaProlog system, I started to extend the

metaProlog system which can handle extra control information in the demo pred-

icate. Now, the metaProlog system have the following capabilities.

1. Now the system can get fail branches of a goal in addition to its success branches

(proofs). When the goal "demo(T,G,branch(P))" is submitted, P is unified with

a branch (fail or success) of the proof tree of G in T. On the other hand, when

the goal "demo(T,G,proof(P))" is submitted, P is unified with only a success

branch of the proof tree of G in T.

2. The system also supports a fourth argument demo whose fourth argument is

control information. In some cases, to get a complete proof of a goal can be

unnecessary. We may not need all proofs of subgoals. For this purpose, proofs of

these subgoals can be skipped by using the following form of the demo predicate.

demo(T, G, proof(P), skip-proof s-of (Subgoals))

After the execution of the above, proofs of SubGoals don't appear in the proof

P of G in T.

11.7.5 Garbage Collector

The garbage collector of the metaProlog system collects all the garbage in the system

including the garbage in the code. It consists of a recursive marking routine and

a compaction routine. The marking routine recursively marks all locations in the

11-58

heap which are accessible from external locations such as argument registers, and

locations in the local stack. The garbage compaction routine, an extension of Morris's

compaction algorithm, adjusts all pointers in the uncompacted heap and does the real

compaction.

11-59

11.8 Keith Hughes1

Interfaces to Databases

11.8.1 Introduction

The combination of logic programming and relational database systems is a desir-

able goal, because intelligent processing of large numbers of facts becomtes possible.
Database systems are very good at retrieving large amounts of data while doing little

or no inference. On the other hand, logic programming languages such as Prolog
provide powerful methods for doing inference, but are inadequate when it comes to

processing substantial bodies of facts.

Logic and relational database systems (RDBS) are known to have close theoreti-

cal connections [Gallier7S]; and many people have advocated an amalgam of the two.
Extensions to Prolog to achieve such an amalgamation have been suggested, but there
are problems with each. They do, however, point to possible solutions. VMProlog
allows SQL queries to be used in the middle of Prolog statements, but this makes

a distinction between program and data. The resulting programs are overly compli-

cated. Other methods, which require direct modifications to Prolog itself. include the
compiled method [Reiter78a] and the interpretive method [Minker78].

The system to be described here is a combination of a Prolog system and the RDBS

system Ingres [Stonebraker76]. This system provides a framework for experimentation
with alternatives for handling the interface between Prolog and a RDBS. It uses a

variant of the compiled approach to hand queries to the RDBS system. The database

system is extended with a secondary program to handle the large amounts of data.

This paper will trace the history of the system, with particular attention to the

problems which arose, and what was done to solve them. Finally, a plan for future
work will be given.

11.8.2 Previous Approaches

The previous approaches have encountered a variety of problems. These problems

include such areas as handling recursion, efficient handling of very large databases

'This work supported by Applied Logic Systems, Inc. under U.S. Army contract DAAB10-86-C-

0551.

11-60

(of the order of gigabytes of information), and readability of programs. This section

discusses some of the major attempts and the problems related to each.

11.8.3 The Interpreted Method

The interpreted method [Minker78] requires major changes to the underlying Prolog

system. The reader is referred to [Chakravarthy] for the details of this method. The

major idea is that the computation extracts the correct answer from the set of all

possible solutions to each subgoal of the program. Each subgoal is seen as a restriction

process. All of the possible answers from the previous state of the query are examined

by the current restriction, and those not passing are removed. This method, instead
of being the one-answer-at-a-time idea that Prolog adopts, provides the user with all

of the answers at once.

The main problem is the amount of data that must be passed between the logic
system and the RDBS, especially if they are in different processes on a single machine,
or split up between two pieces of hardware. The database is going to send megabytes

of information to Prolog, which will then pass it back. Much time is going to be

spent in communication of this data. Moreover, buffering this much data in the two

systems requires Prolog to have a database manager of its own, defeating the purpose
of using the database system in the first place. Techniques exist for optimizing the

data structure representing the set of solutions at each stage of the computation, but

this method is felt to be inadequate for very large databases.

11.8.4 The Compiled Method

The compiled method [Reiter78a] postpones database queries as long as possible

before sending them to the database system. A meta-interpreter could be written

with definite clause grammers in Prolog to simulate this method. The interpreter

would notice when a database call is being made and add it to a list of other calls
that are pending. When the main program finishes running, all of these queries are

sent in bulk to the database system, at which time the user gets the answer to his

query back.

The problem with this method is that it is assumed that the procedures in the logic
program are non-recursive. When the program is recursing, the system could possibly

11-61

pile up requests until memory was full, getting no useful work done. [Reiter78b]

discusses cases where the recursion terminates, and takes advantage of this. However,

not every program will have this ability. Some recursions may terminate only when

an appropriate answer is retrieved from the database. One possibility is to perform a

flow analysis on the program and decide when recursion will not terminate, and make

the database calls earlier. However, the flow analysis may prove to be difficult.

11.8.5 VMProlog

VMProlog is closest to the current method used. VMProleg allows statements to

be made to the SQL database system by interspersing SQL statements with Prolog

goals. An evaluatable predicate SQL was added to Prolog. w hich allows a query to

be sent to the appropriate system. An example call to SQL/DS would be

...,sql('select flynb,airport2 from flyex where airportl="RJME"',*1),...

where *1 is the variable to be instantiated to a list of the answers to the query. The

query is allowed to backtrack if necessary, giving more possible instantiations of the

variable.

This interface allows the database call to look like a Prolog ca.ll but the statement

of the query is not the same as if the query were stated as

$...,flyex(Flynb,rome,Airport2,_,_,_),...$

which looks more like a Prolog predicate. A simple database compiler could take care

of this problem.

11.8.6 The Syracuse Implementation

The system which follows is a testbed for trying various alternatives for Prolog/RDBS

interfaces. Several evaluatable predicates were added to a version of Prolog written

at Syracuse [Bowen85] to allow communication with the lngres RDBS. Having no

11-62

large databases to test the system has been a problem. The Prolog system and the
interface were written in C on a VAX780 running Unix.

A variation of the compiled approach and the VMProlog approach is used. The
SQL predicate in VMProlog allows the user to keep writing in Prolog without having
to delve too far into another language. The compiled method is advantageous in that
it requires only slight modification to existing Prolog systems and doesn't have the
problems the interpreted method has with very large databases.

11.8.7 The Initial Attempt

The first pass at the interface added three new predicates to Prolog: initlngres,
calllngres, and killngres. initlngres started up an Ingres sub-process, which could
then be removed by killlngres. initingres had one argument, being the database in
which the predicates were to be found.

calllngres actually made the queries to Ingres through the EQUEL [Stonebraker76]
routines supplied with Ingres. EQUEL supplies a series of C routines to allow an
application programmer to call Ingres from the application program. catllngres had
a single argument, being the predicate the user was interested in. This call was then
changed into the QUEL query language for Ingres and sent to Ingres, where it was
processed. The results were then returned and unified with the variables in the call.
Any atoms retrieved by Ingres were installed in Prolog's name table.

For example, a call of

calllngres (parts (PNum, PName ,pink ,Weight, Qoh))

would cause the QUEL statements

range of e is parts

retrieve (e.pnum,e.pname,e.weight,e.qoh) where e.color="pink"

to be sent to Ingres. If no tuples were returned, callIngres would fail. If there were any
answers, callIngres would unify the variables in the call with the answers returned.

11-63

If backtracking occurred, the next tuple would be retrieved, and the variables in the

call would be re-bound.

This approach has several problems. First, Prolog has to know about the details of

Q UEL. If another database system were to be used, the evaluatable predicates would

have to be rewritten. Second. Ingr-s returns all soliition tuples at once, while Prolog

can only consume one answer at a time. Finally, there is only one conrmunication

channel out of Ingres. Thus, the user is allowed only one backtrackable call to the

RDBS.

11.8.8 DBMachine

DBMachine is an program to handle two of the problems encountered with callIngres:

(1) the RDBS wants to retrieve all tuples answering a query at once, and (2) the need

for more than one call to the database at a time, with backtracking if necessary. It is

a program which allocates buffers to Prolog calls to the database, passes the call to

Ingres, and stores the tuples received from Ingres in these buffers.

\When Prolog needs the database system, it creates a DBMachine process. which

then starts up an Ingres process with the appropriate database. Prolog requests are

made to DBMachine, which gets the required information from Ingres through calls

to EQUEL. Splitting up the processes is useful in seeing how to handle networks of

machines talking to each other.

No QUEL statements are sent by Prolog. A much simpler request language is used

by Prolog, which then can be translated to any RDBS query language, such as SQL

or QUEL. This was done to increase the communication bandwidth between Prolog

and the RDBS. Also, the Ingres dependence was taken away from Prolog, allowing

DBNlachine to call any database system without modifications to the evaluatable

predicates in Prolog.

11.8.9 The Prolog/DBMachine Interface

Development of this interface went through two phases. The overall appearance din't

change much, but the underlying mechanisms changed.

The applications programmer talks to DBMachine through three predicates: inztDB,

11-64

killDB, and quer'yDB. The first two predic:,*es are analogous to initingres and killIngres;

except that they start and stop DBMachine.

queryDB(Query) passes a form of Query to DBMachine and instantiates any vari-

ables found in Query to the tuples passed back from DBMachine. queryDB itself is

not the actual call to DBlachine, however. In order to keep the routines in C from

becoming unmanageable, and to allow Prolog to backtrack over the stream of tuples

that DBMachine has generated in response to the query, quer-yDB is written in Prolog

as follows:

queryDB(Query)

requestDB(Query,BufferID),

getAnswers(g(BufferlD) ,Query).

getAnswers(ID,Query) "-

answerDB(ID,Query).

getAnswers(g(BufferID) ,_)

BufferID < 0,

',ail.

getAnswers(ID,Query)

getAnswers(ID,Query).

Notice that the two predicates called requestDB and answerDB are hidden from

the casual user because they have a procedural flavor, whereas the top level call

queryDB does not. requestDB is called with two arguments, one instantiated to the

query to be made, and the second, a variable to be instantiated to the number (a

positive integer) of the buffer in DBMachine where the results will reside. The results

are then retrieved from the buffer by ansuvcrDB, which is encapsulated in getAnswers

to allow Prolog to backtracking over the query. The internals of queryDB are hidden

from the user so that answerDB can make a destructive assignment to signal when

no more answers are to be found in the buffer. If there are tuples left in the buffer,

a(,,n tcrDB will set the variables in Query to their proper values for the next tuple

in the buffer. If the program requires more answers for Query, the first and second

clauses will fail. and getAnswers will be called again. The combination of the first

and third clauses for (, 7tAnswcrs effects the iteration through the buffer as Prolog

backtracks over Query. If the buffer is empty, answerDB changes the BufferID to -1

and fails. This is caught by the second clause of getAnswers. which causes getAnswers

to fail. AnY atoms r-trieved through an.zwerDB are placed in Prolog's name table.

11-65

requestDB modifies Query in order to limit the amount of information sent to

DBMachine. In the first phase of the interface development, this information consisted

of the predicate name, a list of numbers describing which columns contained the

uninstantiated variables, and a list of column numbers corresponding to instantiated

values, along with those values. anscrDB would examine the Prolog structure of

Qary. noticing where the variables were. and get the corresponding tuple values back

from the buffer in I)BMachine.

11.8.10 Problems with Phase One and Their Solution

Phase one of this interface only allowed the user to hand one call to DBMachine at a

time. To solve goals of the form

...,a(A,B,C),b(F,A,R),.

where a and b were database calls, the user had to write them as

queryDB(a(A,B,C)), queryDB(b(F,A,R)),

This had the potential of retrieving the same information from b multiple times as

multiple a tuples were extracted before a pair of solutions with a common A, were

f,,und. Hlowever, this operation is just a join in standard RD13S terminology, and

Joins are something RBDSs do well.

[)uring the second phase of interface development, a database compiler was written

t, allow the users to write programns with little thought about database systems. 'I he
roiiipiIer attempts to retrieve database infornation as efficientlv as oible. The

uIsf.r places db declarations at the beginning of the application program, stating which

pr,.dicates are database calls. For example, the user could say

db(parts/5), db(item/6)

t, d,,cl arC the two 5- and ()-place predi rates poz rts and itc mu as r,> ing in the databas,,.

,'1 program is then read in using db(",ruult(Filc), which reads Fd41 and asserts

I I-6J

rewritten forms of the program clauses. This rewriting has two phases. The first

simply scans the clause and replaces all calls having predicates declared with db by

a queryDB applied to the call. Then, a pass over the rewritten clause optimizes the

call. Currently, the only optimization attempted is that contiguous queryDB's are

merged into one que-yDB call. For example,

a :- parts(A,B,C),item(A,F), F < 12000.

is changed to

a :- queryDB([parts(A,B,C),item(A,F)]), F < 12000.

At the moment, any other possible optimizations, such as passing range checks as

shown above, are not performed. Also, disjunctions are ignored. As more optimiza-

tions are noticed, they will be added.

In the first phase of interface development, if a call such as a(A,A) was made, two

items were passed back from DBMachine and unified together. This was fixed in the

second phase. After sending information on each separate predicate to DBMachine.

requestDB notices where variables are repeated and sends this information along. The

restricted QUEL expression generated by the above queryDB would be

range of eO is parts

range of el is item

retrieve (eO.coll,eO.col2,eO.col3,el.col2)

where eO.coll = el.coll

which is processed more quickly by Ingres than the unrestricted QUEL

range of e0 is parts

range of el is item

retrieve (eO. coll,eO.col2,eO .col3,el, coll,el.col2)

11-67

which ha many more possible solutions. In one test, the query was a join on the

first argument of parts and item, where item was a 6 place predicate with '10 tu-

pies, and parts was a 5 place predicate with 14 tuples. Without the restriction, the

cartesian product of 280 tuples was retrieved by Ingres, taking around 15 seconds.

Approximately 10 seconds were then used to unify the possible combinations together

until the correct tuple was found. With the restriction added, less than a second of

processing time was needed. Variables with multiple occurrences in the query only

elicit one value to be returned from DBllachine. For example, the above restricted

join would return four items per tuple back to Prolog.

11.8.11 Future Research

Many problems remain to be solved. One problem is clogging of the atom table.

XVhen strings are returned from DBMachine, they are stored in Prolog's name table.

With a large database, the name table will soon be clogged with new atoms from the

database, even though many may be useless to the program. One possible solution

to this problem is to have DBMachine assign a unique identifier to each atom Prolog

hasn't already entered in the atom table. Also, more optimizations on the query

(an be performed, such as the range check mentioned above. Allowing variables

and structures to reside in the d-latabase would be helpful. Another modification to

improve efficiency would be to have DBMachine return Warren Abstract Machine

code [WarrenS3]. This could then be executed by Prolog to retrieve the possible

answers to the query.

The problems above only relate to retrieval from the database. In actual appli-

cations, the Prolog system will have to make updates to the database. An approach

similar to [VarrenS4], with appropriate optimizations for bulk updates and the like.

will be implemented.

11.8.12 Conclusion

Relational database systems and logic are so closely related, it seems that they must

be joined to solve the problems of lar-e-scale knowledge base management. There

has been much debate as to the right approach to amalgamate the two. The interface

system constructed in this project provides a flexible testbed in which to explore

sU,;.i cns to the difficult problems arising in this amalgamation. Work with this

11-68

interface has indicated solutions to some questions such as the join problem. It is felt

that the remaining problems can be similarly solved, resulting in a powerful amalgam

of Prolog and relational database systems.

11.8.13 References

Bowen, K.A., Buettner, K.A., Cicekli, I., and Turk, A., [1985]: The Design and Im-

plementation of a High-Speed Incremental Portable Prolog Compiler, Tech Report

CIS-85-4, Syracuse University. To appear in The International Logic Programming

Conference '86 Proceedings.

Chakravarthy, U.S., Minker, J., and Tran, D.: Interfacing Predicate Logic Programs

and Relational Databases, University of Maryland, unpublished draft.

Gallaire, H., and Minker, J. [1978]: Logic and Databases, Plenum Press, New York.

Nlinker, J., [1978]: An Experimental Data Base System Based on Logic. In: Logic and

Databases (eds. Gallaire, H. and Minker, J.), Plenum Press, New York, pp. 107-148.

Reiter, R., [1978a]: Deductive Question Answering on Relational Data Bases. In:
Logic and Databases (eds. Gallaire, H. and Minker, J.). Plenum Press, New York.

pp. 149-176.

Reiter, R., [1978b]: Structuring a First-order Database, Proceedings of the Canadian

Society for Computational Studies of Intelligence.

Stonebraker, M., Wong, E., Kreps, P., and Held, G. [1976]: The Design and Imple-

mentation of Ingres, ACM Transactions on Database Systems, 1:3, (September 1976).

Warren, D.H.D., [1983]: An Abstract Prolog Instruction Set, SRI Technical Report.

Warren, D.S.. [198,1]: Database Updates in Pure Prolog, Proceedings of the Interna-

tional Conference on Fifth Generation Computer Systems.

11-69

11.9 Hyung-Sik Park2

Negation and Databases

Hvung-Sik Park was a visiting assistant professor of Computer and Information Sci-

ence during the academic year 1986-S7, and worked on the grant during the spring

term of 1988. (He accepted a position at the University of Iowa in June of 19SS.) His

research area is the interaction between logic deduction from databases and the as-

sumption of the Generalized Closed WVorld Assumption (GCWA) for those databases.

which was the subject of his dissertation at Northwestern University under the direc-

tion of Prof. Lawrence J. Henschen. Under this approach, one separates the complete

database available to the program into two distinct parts: The Extensional Database

(EDB) consisting of ground atoms (facts) and the Intensional Database (IDB) con-

sisting of all other available clauses. The assumption is that in large applications

the size of the EDB will dwarf that of the IDB, and that typically, the EDB will be

maintained on secondary storage while the IDB will often reside in main memory.

The concern is that the solution of complex queries will lead to large volumes of

retrievals of facts from the EDB. Since retrieval from the EDB will be measured in

milliseconds as opposed to microsecond retrievals from the IDB. this would lead to

serious inefficiencies in applications.

The approach taken here to this problem is based on the general compilation

philosophy followed in the rest of the project: Determine at compile-time the EDB

retrievals which can follow from use of a member of the IDB. Then at run time.

various optimizations to speed availability of the EDB facts can be applied. This can

range from semi-symbolic execution of the program - batching all retrievals to the end

of symbolic execution, followed by retrieval and final resolution of the solution - to

initiating parallel retrieval an' caching of the EDB facts associated with an IDB rule

the moment it is evident at run-time that the rule will be executed. For Horn clause

databases, the basic theory of this approach has been worked out in [Chang,19811.

[Henschen and Naqvi, 1984], and [Reiter, 1978a].

The treatment of negative information causes an increase in problems. Because

of the potentially large volume of negative facts which must be stored if explicit rep-

resentation were to be used, it is preferrable to represent negative facts implicitly.

This leads to the Closed World Assumption (CWA - (Reiter.l,9 b]): A ground fact is

assumed to be false (i.e., its negation is true) if it cannot be deduced from the combina-

'This section written by K.A. Bowen.

11-70

tion of the EDB and IDB. Otherwise stated, this is the principle of negation by failure:

A negated ground atom is provable if the attempt to prove (via a complete positive

deduction procedure) the unnegated ground atom fails. For Horn databases, the re-

lation between negation by failure and logical negation is well-understood ([Clark,

1978]). However, for non-Horn IDBs, the CWA leads to contradictions. For example,

if the IDB consists of (p v q) alone, then neither p nor q is a logical consequence of the

DB, so that under the CWA, both -p and -q would be provable, a contradiction. The

difficulty arises because p (and also q) is indefinite with respect to the DB: neither p

nor q is a logical consequence of the DB. The example demonstrates that the negation

by failure approach does not distinguish between genuinely false atoms (relative to

the DB) and those which are indefinite relative to the DB.'

Define PIGC to be the set of minimal positive ground clauses implied by the

DB, where a clause is minimal if it is not properly subsumed by any positive clause

deducible from the DB. For a ground atom q, PIGC[q] consists of those elements of

PIGC in which q occurs positively as a subformula. The Generalized Closed World

Assumption states tnat if q is a ground atom, then -q can be assumed true if q

is not deducible from DB and q is not indefinite with respect to DB. Let us write

GCWA(DB,-q) for this state of affairs. It follows from [Minker, 1982] that GCWA(DB,
-q) if and only if PIGC[q] is empty. It follows that the problem of coping with

indefinite formulae can be reduced from treating the entire set of indefinite formulae

(with respect to DB) can be reduced to computing the indefinite formulae relevant

to the query at hand.

Further reductions are possible. The following representations are known (Hen-

schen and Park, [Iienschen and Park, 1986]:

(1) PIGC[q] with respect to DB is equivalent to PIGC[q] with respect to EDB U

NUGF U NH[q] U PSUB[nhi], where

(7DB = IDB U NNUC,

3The unpleasant nature of DBs which leave some formulas indefinite is long-established: Classical

logic and model theory - e.g., modern proofs of the Completeness Theorem - exensively utilize meth-

ois (Lindenbaum's Lemma) which embed initial consistent theories or DBs in complete extensions;
I', iII sporsets which (('ave no fornmlas indefinite. Unfortunately, although L.indenbaum's Lemma

, ,-, th ,x , ,.... r-, , t,'nions (assuming the Axiom ,f ('howe the prbiohk of oI-

taming such extensions is recursively unsolvable. Consequently, even in those settings where passing

ti A roplete Pxtension would be logically reasonable, it is not c: mputationally possible. Hence the

ne-d to compute the set of indefinite formulas of the original theory. -KAB

11-71

(2) PIGC[q] with respect to DB is equivalent to PIGC[q] with respect to EDB U

NH[q] U PSUB[nhi], where

CDB = IDB U NC,

In both cases, NH[q] is the set of minimal non-Horn clauscs containing a positive

occurrence of the predicate of q and are derivable from CDB, NNUC is the set of

negative nonunit clauses, and NUGF is the set of negative unit ground facts, NC is

the set of negative clauses, and PSI-B[nhil is the set of clauses derivable from CDB

and which potentially subsume some clause in NIL[q].

All of the foregoing results are valid for DB3; whose formulae contain no function

symbols. During the spring term, Park investigated methods for possible extension

of the results to settings in which function may be present, as well as possible further

improvements of the reductions and resulting computations of GCWA[q,DB]. Several

suggestive special cases appeared, but as yet no general conclusions can be dra'.

Park also organized and conducted a research seminar on Expert Database Sys-

tems for the staff of the grant, as well as other graduate students in the department.

The outline of the topics of the seminar was:

" Introduction of expert systems, databases, and expert database systems.

" Knowledge-based systems, knowledge representation, logical analysis of knowl-

edbases, incompleteness, commonsense reasoning. non-monotonicity, and reason-

maintenance systems.

" Database management systems, semantic data modelling, database constraints.

dependencies, and normal forms, dextensions of DBMSs, including deductive

databases, incomplete databases, and temporal databases.

* Knowledge base management systems and architectures, log c-based data lan-

guages, recursion, complex objects, object-oriented paradigms in KBMSs. con-

straint management, semantic query optimization, knowledge engineering in

DBMSs, intelligent KB-interfaces.

References

iChang] ChangC.L., On evaluation of querips containing derived relations, in Ad-

varices in Database Theory, vol. 1, H.Gallaire, J.Minker, and J.M. Nicolas, eds,

11-72

Plenum Press, New York, 1981, 235-260.

[Clark] Clark, K.L., Negation as failure, in Logic and Databases, H.Gallaire and

J.Minker, eds, Plenum Press, New York, 1978, 293-324.

[Henschen and Naqvi], Henschen, L.J. and Naqvi, S., On compiling queries in recur-

sire first-order databases, JACM, 31:1(1984),47-85.

[Henschen and Park] Henschen, L. and Park, H-S., Indefinite and GCWA inference

In indefinite deductive databases, in Proc. AAAI National Conference, 1986.

[Minker] Minker,J., On indefinite databases and the closed world assumption, in Lec-

ture Notes in Computer Science, 138, Springer Verlag, 1982, 292-308.

[Reiter,1978a] Reiter,R., Deductive question answering on relational databases, in

Logic and Databases, H.Gallaire and J.Minker, eds, Plenum Press, New York,

1978, 149-177.

[Reiter,1978b] Reiter,R., On closed world databases, in Logic and Databases, H.Gallaire

and J.Minker, eds, Plenum Press, New York, 1978, 55-76.

11-73

11.10 V. S. Subrahmanian

Theory of Logic Programming

My work on the project concentrated on the development of a mathematical basis

for classical and non-classical logic programming. In particular, I developed, jointly

with Aida Batarekh, a topological theory of logic programming model theory, while

both alone and/or jointly with A. N. Hirani, I developed an algebraic basis for logic

programming. I also concentrated on the study of several different non-classical logic

programming languages.

11.10.1 Logic Programming with Non-Classical Logics.

I have been involved in the development of a family of non-classical logic program-

mi ng languages that can be semantically characterized in terms of fixed-point theory.

Proposals for logic programming with specific logics (e.g. quantitative logics, paracon-

sistent logics, etc.) were later generalized to yield a generalized declarative semantics

for logic programming over certain kinds of partially ordered sets of truth values.

This declarative semantics is independent (to some extent) of the syntactic nature of

a non-classical logic program. In addition, I developed a proof-theoretic generaliza-

tion of SLD-resolution that is sound and complete for many-valued logic programs

(whose set of truth values is a complete lattice).

11.10.2 Paraconsistent Reasoning.

The design of very large knowledge bases may sometimes result in some inaccuracies.

Paraconsistent logics provide a framework for reasoning in the presence of inconsis-

tency (in the sense of classical logic) via non-classical model theory. Howard Blair

and I have worked on a formal theoretical framework for mechanical reasoning in the

presence of inconsistency. More recently, M. Chakrabarti and I are working on the

semantics of general logic programs (even those whose completions are inconsistent)

with a view to developing a theory of local and global consistency. Newton da Costa

and I are investigating syntactic consequence relations that lead to paraconsistent

logics with a view to developing a proof-theoretic characterization of inconsistent

databases.

11-74

11.10.3 Topological Methods in Logic Programming.

Aida Batarekh and I studied the topological properties of the space of models of logic

programs (and also arbitrary sentences in first order logic). We then derived results

on the fixed-points of non-monotonic operators that map structures to structures.

As a consequence of some results on the (topological) continuity of the wel-known

operator Tp associated with a logic program P, we were able to obtain necessary and

sufficient conditions on the consistency of comp(P) (when P is either a function free

or covered logic program).

11.10.4 Metalogic Programming.

My paper Foundations of Metalogic Programming is the first paper to address the

problem of developing a formal theoretical framework for reasoning about the amal-

gamation of object language and metalanguage in logic programming. It is a compan-

ion to the paper by Pat Hill and John Lloyd that considers metalevel programming

without the amalgamation.

11.10.5 Types in Prolog.

Lee Naish and I have jointly developed a framework for incorporating types in Pro-

log. For programming purposes, our view is that type declarations are useful, and

our semantics essentially characterizes logic programming augmented with type dec-

larations.

11.10.6 Auto-Epistemic Logics.

\Viktor Marek and I are currently studying the connections between differing treat-

ments of negation in logic programming and Al. In addition, ve have studied the

complexity of determining the truth of a formula in a stable expansion of an auto-

epistemic first order theory.

11-75

11.10.7 Nuclear Systems.

A nuclear system is essentially a triple (S, l-, Q) where S is a non-empty set, Q is the
set of existential queries that can be expressed in some fixed but arbitrary first order

language, and - is a binary relation between S and Q. For example, S may be a set

of theories, and - may be an entailment relation, or S may be a set of interpretations
for a first order language and - may be a model-theoretic satisfaction relation, or

S may be a set of theories and F- may be a non-monotonic forcing relation. When
the nuclear system satisfies some simple conditions, S turns out to be a compact

Hausdorff space (under a topology induced by the - relation). One can now study
the fixed-points of non-monotonic closure operators in terms of topological results.

11.10.8 Algebraic Theory of Logic Program Construction.

Given a logic program P, the operator Tp associated with P is closely related to the
intended meaning of P. Given a first order language L that is generated by finitely

many non-logical symbols, our aim is to study the algebraic properties of the set
{Tp P is a general logic program in language L} with certain operators on it. For

the operators defined in this paper the resulting algebraic structure is a bounded

distributive lattice. Our study extends (to the case of general logic programs), the
work of Mancarella and Pedreschi who initiated a study of the algebraic properties of
the space of pure logic programs. We study the algebraic properties of this set and

identify the ideals and zero divisors. In addition, we prove that our algebra satisfies

various non-extensibility conditions. This algebraic study shows promise of leading

to a theory of modules in logic programming.

11.10.9 Protected Completions of Logic Programs.

The notion of protected completion pc(P) of a logic program P was introduced by Jack
Minker and Don Perlis. The Minker-Perlis proposal laid the foundation for reasoning
via protected completions for pure, function free logic programs. We extend their
work by characterizing protected completions of general logic programs. Thus, both

restrictions in the Minker Perlis proposal are removed. Operational algorithms are

also developed. This work is being carried on jointly with James Lu.

11-76

11.10.10 Theorem Proving in Systems with Equality.

James Lu and I studied certain open problems concerning the soundness and com-

pleteness of various problems in RUE-NRF deduction. We proved, amongst other

results, that RUE-NRF deduction in stror. form is incomplete contradicting exist-

ing published results of V. Digricoli and M. Harrison. Our disproof has since been

acknowledged as being correct by V. Digricoli. Since then, we have worked on the

problem of termination of the viability check in RUE-NRF deduction using a method

based on AND/OR graphs.

11.10.11 Accepted/Published Papers

Dissertation: "Computational Reasoning with Non-Classical and Paraconsistent

Logics." Advisor: Howard A. Blair. Ph.D., August, 1989, School of Computer and

Information Science, Syracuse University, Syracuse, NY 13244.

1. Protected Completions of First Order General Logic Programs, accepted for

publication in: Journal of Automated Reasoning. (with James Lu). Sep. 198S.

2. Topological Model Set Deformations in Logic Programming, accepted for pub-

lication in: Fundamenta Informaticae, North Holland. (with A. Batarekh).

3. A Ring-Theoretic Basis for Logic Programming, accepted for publication in:

International Journal of Foundations of Computer Science.

4. Paraconsistent Logic Programming, 7th Foundations of Software Technology

Theoretical Computer Science Conf., Lecture Notes in Computer Science, Vol.

287, pps 340-360, Springer-Verlag. An extended version of this paper has been

accepted for publication in Theoretical Computer Science. (with Howard Blair).

5. AND-OR Graphs Applied to RUE-Resolution, accepted for publication in: Proc.

11th International Joint Conference on Artificial Intelligence, Detroit, Michi-

gan, Aug. 1989. (with V.J. Digricoli and J. J. Lu).

6. Paraconsistent Foundations for Logic Programming, accepted for publication in

.1. of .0j;N-Ca,ssical Logic, (with floward Blair).

7 Algebraic Foundations of Logic Programming, I: TLe Distributive Lattice of

Logic Programs, accepted for publication in Fundamenta Infor-matica, North

Holland. (with A. N. Hirani).

11-77

8. Mechanical Proof Procedures for Many-Valued Lattice-Based Logic Program-

ming, accepted for publication in: Journal of Non-Classical Logic.

9. The Relationship Between Logic Program Semantics and Non-Monotonic Rea-

soning, accepted for publication in: Proc. 6th International Conference on Logic

Programming, (eds. G. Levi and M. Martelli), pps 600-617, Lisbon, Portugal,

June 1989, MIT Press. (with Xktor Marek).

10. On the Expressive Power of Annotation Based Logic Programs, accepted for

publication in: Proc. 1989 North American Conference on Logic Programming.

(eds. F. Lusk and R. Overbeek), Cleveland, Ohio, Oct. 1989, MIT Press. (with

Michael Kifer).

11. Th - ry Topology in Logic Programming, in: Proc. International Symposium

or. oretical Aspects of Computer Science, Lecture Notes in Computer Science

Vol. 349, pps 375-387, Springer Verlag. (with Aida Batarekh).

12. Query Processing in Quantitative Logic Programming, Proc. 9th Conference

on Automated Deduction, Lecture Notes in Computer Science Vol. 310, pps

181-200, Springer, (eds. E. Lusk and R. Overbeek). May 1988.

13. QUANTLOG: A System for Approximate Reasoning in Inconsisten. Formal

Systems, Proc. 9th Conference on Automated Deduction, Lecture Notes in

Computer Science Vol. 310, pps 746-747, Springer-Verlag, (eds. E. Lusk and

R. Overbeek). (with Z. Umrigar). System Summary. May 1983.

14. Foundations of Metalogic Programming, Proc. of the Workshop on Mcs.a-

Programming in Logic Programming, (ed. John Lloyd), pps 53-66, Bristol,

England, June 1988. An extended version of this paper is to be published

this summer in a book edited by H. Abramson and M. Rogers. The book i-, to

be published by MIT Press.

15. Semantical Equivalences of (Non-Classical) Logic Programs, in: Proc. 5th In-

ternational Conference/ Symposium on Logic Programming, eds. R. Kowalski

and K. Bowen, pps 960-977, MIT Press. (with A. Batarekh).

16. Intuitive Semantics for Quantitative Rule Sets, in: Proc. 5th International

Conference/Symposium on Logic Programming, eds. R. Kowalski and K. Bowen,

pps 1036-1053, MIT Press, August 1988.

11-78

17. On the Semantics of Quantitative Logic Programs, Proc. 4th IEEE Symp. on

_ogic Programming, pps 173-182, Computer Society Press. Sep. 1987.

IS. FLOG: A Logic Programming System Based on a Six-Valued Logic, AAAI/Xerox

Second Intl. Symp. on Knowledge Engg., Madrid, Spain, (with R.Anand). April

1987.

Submitted Papers

19. Completeness Issues in RUE-NRF Deduction, submitted to the Journal of the

A CM Currently being revised in accordance with referees' comments. (with

James Lu).

20. Algebhaic Foundations of Logic Programming, II: The Space of Multivalued and

Paraconsistent Logic Programs, submitted to Acta Informatica. Feb. 1989.

2!. Approximate Reasoning in Logic Programming, submitted tc N w Generation

Computing. March 19S8.

22. Strong Completeness Results for Paraconsistent Logic Programming, currently

being ievised for publication in a special volume on Theorem Proving in Non-

Classical Logics, ed. Michael McRobbie, (with Howard Blair). Aug. 1988;

revised, Augu. 1989.

23. Tho Relationship Between Stal.le, Supported, Default and Auto-Epistemic Se-

riantics for General Logic Programs, submitted to Theoretical Computer Sci-

ence. (with Wiktor Marek). Jan. 1989.

24. Paraconsistent Logics as a Formalism for Reasoning About Inconsistent Knowl-

edge Bases, submitted to: Journal of Artificial Intelligence in .X1dicine. (with

Newton C. A. da Costa).

25. Y-Logic: A Framework for Reasoning about Chameleonic Programs with In-

consistent Completions, submitted to: Fundamenta Informaticae, April 1989.

2 6. A Petri Net Model for Reasoning in the Presence of Inconsistency, submitted

to: IEEE Transactions on Data and Knowledge Engneering. June 19S9, (with

T. Murata and T. Wakayama).

27 Existential, Null and Partial Values in Disjunctive Deductive Data')ases, sub-

mitted to: Journal of Automaled Rrasoning, June 19S9.

11-79

2S. The Viability Check in Equality Based Binary Resolution, to be submitted.
(with James J. Lu).

29. Paraconsistent Disjunctive Deductive Databases, submitted to: Theoretical Coin-

puter Science, July 1989.

30. The Paraconsistent Logics PT, to be submitted. (with N.C.A. da Costa and

C. Vago).

11-'SO

11.11 Supported Students

Hamid Bacha

PhD, School of Computer & Information Science

Syracuse University, Syracuse, NY, December, 1989

Dissertation: METAPROLOG: Design, Implementation, and Application to a

Medical Expert System in Acid-Base and Electrolyte Disorders.

Advisor: Kenneth A. Bowen

Aida Batarekh

PhD, School of Computer & Information Science

Syracuse University, Syracuse, NY, August, 1989

Dissertation: Topological Aspects of Logic Programming.

Advisor: Kenneth A. Bowen

Kevin Buettner

MS, School of Computer & Information Science

Svracu e University, Syracuse, NY, December, 1986.

Ilyas Cicekli

PhD expected, School of Computer & Information Science

S vracuse University, Syracuse, NY, expected January, 1990.

Keith Hlughes

N iS., ,of C(om p ter : inforniation Science

. rracuse Iniversity, Syracuse. N"', May, 19S9.

ll-31

Thesis: Prolog as a Uniform Interface to a

Heterogeneous Distributed Database.

Andrew Turk

BS. School of Computer & Information Science

Sracuse University, Syracuse, NY, December, 1986

V.S. Subrahmanian

PhD, School of Computer & Information Science

Syracuse University, Syracuse, NY, August, 1989

er Dissertation: Computational Reasoning with

Non-Classical and Paraconsistent Logics.

Advisor: Howard A. Blair.

Toshiro Wakayama

PhD, School of Computer & Information Science

Syracuse University, Syracuse, NY, August, 1989

Dissertation: Reasoning with Indefinite Information

in Resolution-based Languages.

Advisor: Howard A. Blair.

11-82

11.12 Publications

1. R. Anand and V. S. Subrahmanian. FLOG: A Logic Programming System Based

on a Six-Valued Logic, AAAI/Xerox Second Intl. Symp. on Knowledge

Eng., Madrid, Spain, April 1987.

2. Apt, K. R. & Blair, H. A. Arithmetic Classification of Perfect Models of Strat-

ified Programs, (preliminary version) Jan. 1988. The Proceedings of the

Joint Fifth International Logic Programming Conference and Fifth

IEEE Symposium on Logic Programming Seattle, Washington, August.

1988. Also: Syracuse University Logic Programming Research Group Technical

Report LPRG-TR88-11.

3. Apt, K. R., Blair, H. A., & Walker, A. Towards a Theory of Declarative Knowl-

edge, in Foundations of Deductive Databases and Logic Programming,

Jack Minker. ed. Morgan-Kaufmann, Los Altos, CA. 1988. pp. 89-148.

4. Apt, K. R. & Blair, H. A. Recursion-free Programs. Syracuse University Logic

Programming Research Group Technical Report LPRG-TR-88-12.

.5. Apt, K. R. & Blair, I. A. Arithmetic Classification of Perfect Models of Strati-

fied Programs. Invited Submission to Fundamenta Inforraatica. (To appear.)

6. H. Bacha. Meta-level Programming: A Compiled Approach, Proceedings of

the Fourth International Conference on Logic Programming. Mel-

bourne, Australia, 1987. J-L. Lassez, (ed.)

7. 1. Bacha. MetaProlog Design and Implementation, Proceedings of the Fifth

International Conference on Logic Programming, Seattle, Wa. 19S8.

K.A. Bowen and R. Kowaiski (eds.)

i. Bacha. A Prototype Medical Expert System in Acid-Base Disorders Imple-

mented in MetaProlog Journal of the AIST, 1(3), Spring. 1989.

tI. t"acla,. NK Bowen and C. ('ar':ounis. Clinical rs. Pathol.,;zsio)ZogicaZ Kror-

II', . , .r IOn Tpf' :: ::. :;,,Proce. -

" .. t thie .IST Coiferirlc. , "

A \ Batarokh and V. S. Subrahmanian. Semantical Equivalences of (Non-Ciasszcal)

11-83

Logic Programs, Proc. 5th International Conference on Logic Program-

ming, Seattle, MIT Press, pp 960-977, 1988.

11. A. Batarekh and V.S. Subrahmanian. A T4 Space of Models of Logic Programs

and their completions, I: Foundations, Technical Report, Logic Programming

Research Group, LPRG-TR-SS-15.

12. A. Batarekh and V.S. Subrahmanian. The Query Topology in Logic Program-

ming, Proc. Intl. Symp. on Theoretical Aspects of Computer Science.,

Lecture Notes in Computer Science, v. 349 Springer Verlag, pp. 375-387, Feb.

1989.

13. A. Batarekh and V.S. Subrahmanian. Topological Model Set Deformations in

Logic Programming, to appear in: Fundamenta Informatica.

14. H. A. Blair. Decidability in the Herbrand Base, Workshop on Deductive

Databases and Logic Programming, Washington D.C. Aug 18-22, 1986.

Revised as Syracuse University Logic Programming Research Group Technical

Report LPRG-TR88-13.

15. H. A. Blair. Canonical Conservative Extensions of Logic Program Completions,

IEEE Symposium on Logic Programming, San Francisco, August, 1987.

pp. 154-161.

16. H. A. Blair. Metalogic Programming and Direct Universal Computability, To

appear in the Proceedings of the Workshop on Metalogic Programming,

1988, H. Abramson and M. Rogers (eds.), MIT Press. Syracuse University

Logic Programming Research Group Technical Report LPRG-TRSS-23.

17. H. A. Blair and V.S. Subrahmanian. Paraconsistent Logic Programming. Proc.

7th Conference on Foundations of Software Technology and Theo-

retical Computer Science, Lecture Notes in Computer Science, Vol. 287.

pps 340-360, Springer Verlag. Extended version to appear in: Theoretical

Computer Science.

IS. H. A. Blair and V. S. Subrahmanian. Paraconsistent Foundations for Logic

Programming, to appear in: Journal cf Non-Classical Logic.

19. H. A. Blair. A. L. Brown. and V. S. Subrahmanian. A Loqwc Programining

Semantics Scheme, Part 1. Jan. 1988. Syracuse University Logic Programining

11-84

Research Group Technical Report LPRG-TR88-8.

20. K. A. Bowen. Meta-level programming and knowledge representation, New

Generation Computing, v.3(1985), pp.359-383.

21. K. A. Bowen. New Directions in Logic Programming, (invited address), Proc.

1986 ACM Annual Computer Science Conference, Cincinnati, pp. 19-27.

22. K. A. Bowen. Meta.Level Techniques in Logic Programming, (invited 1-hour

talk) Proceedings of the Artificial Intelligence '86 Conference, Singa-

pore, March, 1986.

23. K. A. Bowen. On the Use of Logic: Reflections on McDermott's Critique of Pure

Reason, invited paper for a special issue of Computational Intelligence, Vol.
3, 1987, pp. 165-168.

24. K. A. Bowen and R. A. Kowalski. Editor, Logic Programming: Proceed-
ings of the Fifth International Conference and Symposium, (Seattle,

1988), Cambridge, MA: MIT Press, 1,690pp.

2.5. K. A. Bowen, K. Buettner, I. Cicekli & A. Turk. The Design and Implemen-

tation of a High-speed Incremental Portable Prolog Compiler, Proceedings of

the 1986 International Logic Programming Conference, London, July.

1986, pp. 650-656.

26. K. Buettner, Fast Decompilation of Compiled Prolog Clauses, Proc. 3rd Int'l

Logic Programming Conf., London, 1986, pp. 662-668.

27. 1. Cicekli. An Abstract MetaProlog Engine for MetaProlog, in: Proc. of the
Workshop on Meta-Programming in Logic Programming, Bristol, Eng-

land, June 1988. To appear in the Proceedings of the Workshop on Met-

alogic Programming, 1988, H. Abramson and M. Rogers (eds.), MIT Press.

2S. V. J. Digricoli, J. J. Lu, and V. S. Subrahmanian. AND-OR Graphs Applied

to RUE-Resolution, accepted for publication in: Proc. 11th International

Joint Conference on Artificial Intelligence, Detroit, Michigan, Aug. 1989.

29. I_ tlonschen and -S. Park. Indefinite and GCI nference in Indefiite De-
ductive Databases, in Proc. AAAI National Conference, 1986.

11-85

30. A. N. Hirani and V. S. Subrahmanian. Algebraic Foundations for Logic Pro-

gramming, I: The Distributive Lattice of Logic Programs, to appear in: Funda-

menta Informatica.

31. M. Kifer and V. S. Subrahmanian. On the Expressive Power of Annotation

Based Logic Programs, To appear in: Proc. 1989 North American Confer-

ence on Logic Programming, E. Lusk and R. Overbeek (eds.), Cleveland,

Ohio, Oct. 1989, MIT Press.

32. J. Lu and V. S. Subrahmanian. Protected Completions of First Order General

Logic Programs, To appear in: Journal of Automated Reasoning, Sept.

1988.

33. W. Marek and V. S. Subrahmanian. The Relationship Between Logic Program

Semantics and Non-Monotonic Reasoning, To appear in: Proc. 6th Interna-

tional Conference on Logic Programming, G. Levi and M. Martelli (eds.),

pps 600-617, Lisbon, Portugal, June 1989, MIT Press.

34. Payne, T. H. & Wakayama, T. Case Inference in Resolution-Based Languages,

Proc. 9th Conference on Automated Deduction, Lecture Notes in Com-

puter Science, Springer-Verlag, May 1988.

35. V. S. Subrahmanian. On the Semantics of Quantitative Logic Programs, Proc.

4th IEEE Symp. on Logic Programming, pps 173-182, Computer Society

Press. Sept. 1987.

36. V. S. Subrahmanian. Foundations of Metalogic Programming, Proc. of the

Workshop on Meta-Programming in Logic Programming, J. Lloyd

(ed.), pps 53-66, Bristol, England, June 1988. Extended version to appear

in: Proceedings of the Workshop on Metalogic Programming, 1988.

H. Abramson and M. Rogers (eds.), MIT Press.

37. V. S. Subrahmanian. Intuitive Semantics for Quantitative Rule Sets, Proc.

5th International Conference/Symposium on Logic Programming, K.

Bowen and R. Kowalski (eds.), MIT Press, Aug. 1988.

38. V. S. Subrahmanian. Query Processing in Quantitative Logic Programming.

Proc. 9th International Conference on Automated Deduction., E. Lusk

and R. Overbeek (eds.), Lecture Notes in Computer Science Vol. 310, pps 81-

100, Springer Verlag, 1989.

11-86

39. V. S. Subrabmanian. Mechanical Proof Procedures for Many Valued Lattice

Based Logic Programming, To appear: Journal of Non-Classical Logic.

40. V. S. Subrahmanian. A Ring- Theoretic Basis for Logic Programming, To ap-

pear: International Journal of Foundations of Computer Science.

41. V. S. Subrabmanian and Z. Umnrigar. QUANTLOG: A System for Approximate

Reasoning in Inconsistent Formal Systems, (System Summary) Proc. 9th

Conference on Automated Deduction, E. Lusk and R. OVerbeek (eds.)

Lecture Notes in Computer Science, vol. 310, pps 746-747, Springer-Verlag,

Mlay 1988.

412. A. Turk. Compiler optimizations for the WV4M1, Proc. 3rd Int'l Logic Pro-

,gramming Conf., London, 1986, pp. 6,56-662.

11.12.1 Papers in Submission and to be Submitted

1. ff. Bachia. Beyond the W'AM1: A P,4M1 for the CAM. (A Proiog A4bstract .1achine

for Content-Addressable Memory.), Workshop on Prolog and Computer

Architecture. October, 1989. JTo be submritted to a technical journal.)

2. H1. Bacha and S. Khanna. Program Ver-ification Using M1eta-Lev'eZ Logic Pro-

grarning, (To be submitted to a technical journal.)

3. Hf. A. Blair and V. S. Subrahmanian. Strong Completeness Results for Para-

consistent Logic Programming, submritted to a technical journal.

1 .il,\. Blair and V. S. Slibrahmanilan. Strong Com 'pleteness Results for Para-

") 1 vnt Logic Programnming. Currently being revised [Or public at Ion ini a spe-
:iaI voturrv' on Theorem Proting in Non-Classical Logics, Michael M.cRobbie

od.) Aug. 1988; revised, Nuog.1S.

..C.A. da Costa and V. S. Subrahmarian. Lcans~s~u I_- :cs as a Forrnai-

is~ f,. uZso'2 ng.4 ou I cosutet !>~o wede ~sr sLmit ted to: Journal

of *X r!ificial Intelligence in Mledlcine.,

P~T . lo o'sldi.

7. J. Lu and V. S. Subrahmanian. Completeness Issaes in RUE-NRF Deduction,

submitted to the Journal of the ACM. Currently being revised in accordance

with referees' comments.

S. J. Lu and V. S. Subrahmanian. The Viability Check in Equality Based Binar-y

Resolution. To be submitted.

9. %V. Marek and V. S. Subrahmanian. The Relationship Between Stable, Sup-

ported, Default and Auto-Epistemic Semantics for General Logic Programs.

Submitted to Theoretical Computer Science. Jan. 19S9.

10. T. Murata, V. S. Subrahmanian and T. Wakayama. A Petri .et Model for Rea-

soning in the Presence of Inconsistency. Submitted to: IEEE Transactions

on Data and Knowledge Engineering, June 1989.

11. V. S. Subrahmanian. Algebraic Foundations of Logic Programming, II: The

Space of Multivalued and Paraconsistent Logic Programs. Submitted to Acta

Informatica. Feb. 1989.

12. V. S. Subrahmanian. Approximate Reasoning in Logic Programming. Submit-

ted to New Generation Computing, March 1988.

13. V. S. Subrahmanian. Y-Logic: A Frametwork for Reasoning about Camncleonzc

Programs with Inconsistent Completions. Submitted to: Fundarnenta Infor-

matica, April 1989.

14. V. S. Subrahmanian. Existentia, Null and Partia! VaIiues 7- Disjun ctzl,: Df-

ductire Databases. Submitted to: Journal of Automated Reasoning. Jun.-

. V. S. Subrahmanian. Paraconsisbtnt L)isjuncire ', -,c as .

ted to: Theoretical Computer Science., Ii>v 1S'

MISSION

Of
Rome Air Development Center

RADC plans and executes research, development, test and

selected acquisition programs in support of Command, Control,

Communications and Intelligence (C3I) activities. Technical and

engineering support withi;., areas of competence is provided to

ESD Program Offices (POs) and other ESD elements to

perform effective acquisition of C'I systems. The areas of

S technical competence include communications, command and

control, battle management information processing, surveillance

sensors, intelligence data collection and handling, solid state

sciences, electromagnetics, and propagation, and electronic
reliability/maintainabilzty and compatibility.

