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1. Introduction

The Colgate University project in the framework of the Northeast Artificial Intelligence
Consortium (NAIC) was devoted to the design of a planner system for the application of
I&W (Indications and Warning). The specification of the task evolved from the early
direction of intelligent database management toward the emphasis on F-oblem-solving
activity. The task of the project was two-pronged:

A. Design of a system to
1. ubtain as input me3sages concerning events in a model of a real-life subworld;
2. 'understand' these events by detecting what plans they are parts of and, whenever

applicable, what goals are pursued by the instigators of these events;
3. produce (suggestions for possible) plans of action necessary in connection with the

situation in the world.
B. Implementation of this system for the world of I&W.

This general task included a large number of subtasks, many of which require significant
research effort. We concentrated on designing the mechanisms and knowledge bases for the
problems of plan recognition (a part of 'understanding' in 2. above) and plan production (in
the framework of 3. above). We excluded from our consideration the problems of
perception (speech, graphical, or visual); the problem of understanding natural language
inputs (that is, understanding the contents of these messages), as well as actual performance
of plans suggested by our system.

The conceptual background of this effort is described in some detail in Section 4. The
historical background of the project and the way in which it merges with other efforts in the
Consortium is briefly discussed here. Cooperation with other research teams within the
Consortium, especially with the University of Massachusetts project led by Victor Lesser
and Bruce Croft, led to the state of affairs where plan understanding and plan production
has become the main thrust of the research effort at Colgate. It was decided, in consultations
with the project monitors at RADC, that the natural language aspects of the task would be
postponed for later consideration.

2. Strategy

We nave taken a concentric approach to the task of designing and implementing the
planning system. In other words, we decided to produce an implementation for every
design version of our system (called, for historical reasons, POPLAR). As our study of the
problem of knowledge-based automatic planning progresses, newer versions of the system
will appear.
In what follows we describe in succession the design peculiarities and the implementation
characteristics of the two versions of our system (POPLAR 1.3 and POPLAR 2.0) that were
developed. Goals were set for the implementation of the next version of the system
(POPLAR 3.0). This last version would have introduced very substantial changes to the
overall design, and would have been addressed in the final year of the project if it had
continued.



3. Technical Content

3.1. POPLAR 1.3

3.1.1. Introduction

This section presents an overview of a cognitive modeling system centered around a
personality-oriented planner, and then describes in detail the types of knowledge it uses to
make control decisions. POPLAR is a model of an intelligent actor capable of planning
sequences of contiol and dowiain actions in a simulated world that exists independently of
the planner. The world is a simplification of the 'Dungeon' computer game environment.
The actor makes control decisions on the basis of situational knowledge as well as its
personality characteristics (character traits, physical and mental states) and its belief abou.
personality of other cognitive entities in the world. POPLAR is a step towards an AI system
whose behavior is psychologically justified and can provide the basis for an experimental
testbed in cognitive modelling.

3.1.2. Setting the Stage

The POPLAR planner is a component in a model of an intelligent actor. It is an
approximation of the human actor in that:

i) like humans, it possesses multiple goals with associated plans;
ii) like humans, its control decisions depend upon multiple sources of information, e.g.

input from the 'objective' world, its permanent character traits, its temporary
physical and mental states, and past experience;

iii) like humans, it is immersed in an 'objective' world, changes in which can be
introduced not only by the actor, but also by events beyond the actor's control,
making it necessary to deal with non-monotonicity.

We believe that the essence of an intelligent actor's cognitive ability is best described in
terms of the following loop:

1) perceive input stimuli (sensory, proprioceptive, or mental);
2) generate goals connected with these stimuli;
3) schedule the most important goal instance for the given period of time: the one to

which the actor's cognitive resources are allocated;
4) choose (occasionally, create) and
5) execute plans to achieve this goal, including the performance of physical, verbal, or

mental actions that are components of these plans. Executions of the loop provide
continuous change and stimulation at several levels. Physical actions introduce
continuous change and stimulation at several levels. Physical actions introduce
changes in the objective world. Verbal actions can provide sensory input for other
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intelligent actors in the world. Mental actions introduce changes in the world of
the actor himself (his event memory and beliefs). So, the actions by the actor and
other actors in the objective world change this world, and therefore, provide new
inputs for the system.

POPLAR 1.3 offers a solution to above loop components 2), 3), the non-creative
part of 4), and the mental action part of 5). The visual perception portion of 1) and the
physical actions of 5) are simulated through interaction with the human user of
POPLAR.

In the current implementation there is no natural language capability (i.e. the ver-
bal behavior of 1) and 5) are not addressed). Nor do we tackle in any complete ard
principled manner the extremely complex problem of learning (one facet of which is the
creative part of 4).

The central cognitive and architectural points that distinguish POPLAR 1.3 are, in
addition to i) - iii) above, as follows:

A. The choice of the type(s) of knowledge for scheduling (cf. 3 above) and selecting
(cf. 4 above) activities. We proceed from the assumption that in a non-trivial
world these operations should be based on a psychologically justified model of
human cognitive behavior. This property makes POPLAR 1.3 personality-oriented,
i.e. provision is made in the present model for introducing personality factors that
influence goal generation aud plan selection.

D. Decisions concerning the organization of metaknowledge that monitors and directs
the cognitive processes of goal generation and plan selection. POPLAR 1.3
represents such metaknowledge in the same framework as the domain plans (top-
level, intermediate and primitive). This allows them to be processed by the same
reasoning mechanism.

3.1.3. The Conceptual Architecture of POPLAR 1.3.

The conceptual architecture of POPLAR 1.3, as presented in Figure 1, consists of
the following modules:

1) the objective world, information from which and from

2) the regulatory system of the actor (cf Norman, 1981), where the non-cognitive
knowledge about the actor's character and physical and mental states is stored, is
obtained by

3) the sensor, which processes this input and produces, in the short-term memory
(STM) of an actor,

4) the snapshot, in which the objects currently perceived by the actor are stored,
with their parameters, to be scanned by

5) the goal generator component of the reasoning mechanism (the cognitive
module) which produces

3



6) the list of candAiate goals, that contains all the goal instances that the actor has
at a certain time, including the ones added after the new input was processed. In
making its decisions, the goal generator uses the data stored in

7) the actor's long-term memory (LTM), which contains knowledge about

a) the beliefs the actor has about

-- objects in the objective world, including self-beliefs

-- actor's goals

-- domain-specific and metalevel processes (stored as plans)

b) the acquired values the actor has about these beliefs: what is more impor-
tant, when and why, etc.

c) the event memory that embodies past experience.

8) The scheduler component of the reasoning mechanism chooses (schedules) a goal
instance in the list of candidates and selects the appropriate plan for its achieve-
ment. The executor component of the reasoning mechanism then attempts to
execute the plan. Lower-level primitive plans are, in fact, actions that are per-
formed by

9) the output module; these actions can introduce changes into the world, into the
list of candidate goals aad the long-term memory.

4
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3.1.4. The Implementation.

POPLAR 1.3 is an implementation of the above conceptual schema in a concrete
application domain. It has been implemented in PEARL (Deering et al., 1981) which runs
in Franz Lisp under Unix 4.2.

The world in which POPLAR 1.3 is immersed is reminiscent of that of the well-
known 'Adventure' or 'Dungeon' games. We represent a cave in which POPLAR's actor
can find and react to enemies, treasures, tools, weapons, food and other objects. It is
important to understand, however, that POPLAR 1.3 is not a game-playing system. We
are in the process of applying the system in a different domain (the office world).

At present POPLAR's actor is supplied with three basic goals:

1) 'Don't get killed', dubbed Preserve-Self-1 or PSI

2) 'Don't die of hunger, thirst or fatigue', Preserve-Self-2 or PS2

3) 'Collect as much treasure as possible', Get-Treasure or GTR.
in POPLAR 1.3 the system is making the d, isions about what to do next, while it

is the responsibility of the user to provide it with input and means for verifica.tion of
success of actions. The user, therefore, provides the testing ground for the system's
empirical experience in the world.

With this caveat in mind, let us see how POPLAR 1.3 is organized to allow its actor
to 'act' in this environment.

3.1.5. The System Architecture of POPLAR 1.3.

POPLAR 1.3's system architecture (Figure 2) represents the conceptual architecture
of Figure 1 with implementation restrictions superimposed.
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In POPLAR 1 3 the role of the objective world including the provision of its rules,

*the laws of nature', is assumed by the human user/experimenter. The user also interac-
tively introduces and removes objects in the cave and modifies their parameters. (In
future versions we intend to implement ongoing changes in the objective world gen-
erated by the operation of if-added demons on a World Blackboard (cf. 3.1.5.2.1).

The user also either permits or forbids certain primitive operations to simulate the
actor's pragmatic experience. For example, the user might forbid the actor to pick up
ar, ooject that is 'too heavy' but previously believed by the actor to be manipulable.

hnis natural state of affairs underscores the difference between the objective world and
the world of POPLAR's actor and his beliefs. It is also a means of modeling mistakes (a
necessary first step in trying to learn how to recover from them).

The sensor and the output block are simulated in POPLAR i.3's monitor (though
mental actions are performed by demons (see below).

When the user decides to add an object to the current world, it does it by listing
it on the world blackboard (WBB), the data structure interfacing the objective world
and the world of POPLAR's actor. WBB also contains a clock which guides all tem-
porally spread processing.

The STNi of POPLAR's actor has the reasoning mechanism (the monitor and the
executor with their associated bookkeeping functions, demons) permanently connected
with itt. STM contains one-instance metaplans: the goal generator and the scheduler.
STM also includes the actor blackboard (ABB), which contains slots relating to the
current state of POPLAR actor's activities, including notably the agenda of activated
goal instances.

POPLAR actor's LTM contains his objects, plans, rating functions and history. Cf.
a detailed discussion in 3.1.51.

POPLAR actor's knowledge about his own regulatory system and that of others is
linked in the implementation with the representation of these objects in LTM. In addi-
tion to knowledge about objects, LTM contains knowledge about plans, history of pro-
cessing and proper scheduling and selection.

Let us discuss the components of POPLAR 1.3 in greater detail.

3.1.5.1. LTM.

3.1.5.1.1. Objects.

Several typical object frames and the semantics of their slots are described in
Appendix 1. The choice of character traits is at present empirical. However, in parallel
to implementing POPLAR 1.3, we have been conducting extensive psychological experi-
ments seeking to establish the set of 'primitive' personality characteristics and their

t The monitor, the executor and the bookkeeping functions stand out among the components of
STM in that they are not 'conscious' functions, the actor performs them 'instinctively', while of oth-
er eiements of STM the actor is consciously aware
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mapping into more complex notions that are used by intelligert actors in personality-
based decision-making. A separate :et of experiments will determine the primitives for
specifying mental states of the actor.

3.1.5.1.2. Plans.
POPLAR's knowledge about the dynamics both in the objective world an in the

actor world is represented as a set of declarative structures called plans.

Plans in POPLAR 1.3 are classified into several groups (cf. Figure 3).

TOP-LEVEL /INTERMEDIATE /RIMITIVE

DOMAIN PLANS PS I FIGHT, move,
PS2 EAT, take,
GTR GET, etc. find, etc.

METAPLANS GG as,
as gg-input,

I I_ etc.

Figure 3. Classification of plans in POPLAR.

First, there are domain plans that describe actions in the world and metaplans
that describe the processes that manipulate other plans. These include such plans as
the goal-generator (gg), tile plan-selector, the agenda-scheduler (as), etc. Second, there
are top-level plans whose instances appear in POPLAR's agenda as representatives of tile
three main goals; and primitive plans that are no further decomposable into sequences
of actions and provide tile proper framework (of preconditions, cfects, etc.) for their
main action.

The plans that are neither top-level nor primitive are called intermediate. Inter-
mediate plans are never scheduled other than in the process of expanding a top-level
plan. There are no intermediate metaplans. Also, all of the metaplans are primitive
(decomposable), and two of them, at the same time, top-level.

To illustrate the above discussion, consider, for instance the top-level plan of deal-
ing with enemies, such as, in the POPLAR 1.3 objective world, snakes, crocodiles or
trolls. The actor can have a number of (intermediate plan) possibilities: to fight, to flee,
to hide, to wait and see what happens, etc. All of the above are decomposed into
strings of lower level plans (such as get, take, find, etc.), and the process of decomposi-
tion continues until all the final decompositions contain only primitive plans (such as,
for instance, move or take).

9



Plans in POPLAR 1.3 are represented in a modified version of the language EDL
(Bates et al., 1181; cf. also Croft & Lefkowitz, 1984). The frame for a plan contains the
following slots (clauses):

ID the name of the plan

TOP-LEVEL-FLAG is this plan top-level?

IS contains the temporal and causal expansion of the plan

COND used to pass parameters ('propagate constraints') to
lower-level plans upward propagation will be added for
the plan recognition task

WITH specifies the parameters with which the current plan
will be processed

CONTROL contains predicates to choose whether to execute op-
tional steps in the plan this slot has the form of an a-
list (<(Control# <s-expr>)>*

PRECONDITIONS predicates that allow the processing of the current plan
to start, differ in principle from CONTROL predicates
by being independent of the current context of plan
processing

STATUS one of 'on-agenda', 'executed', 'succeeded', or 'failed';
used for communications with the reasoning mechan-
ism

ACTION-FOR-PRIMITIVE if plan is domain primitive permission is requested for
its completion and the main action is performed (the

rest being 'effects')

TIMIE number of time cycles the plan takes (only for primi-
tives) -- either integer or s-expression that evaluates to
integer

RATING-FUNCTION scheduling knowledge, see below

EFFECTS auxiliary (including bookkeeping) modifications accom-
panying the success of the plan

Figure 4 contains a grammar of the plans implemented in POPLAR 1.3, and Appen-
dix 2 contains annotated examples of POPLAR 1.3 plans.
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I ::= PSi I PS2 I GTR I GG ('Goal-Generator') I as ('Agenda-Scheduler')
PSI :-- FIGHT I HIDE I WS ('Wait-and-See')
PS2 EAT I DRINK I SLEEP
GTR ::= {FIGHT I find} GET
GG ::= gg-input I gg-objects-perceived I gg-physical-states-perceived
FIGHT :: find {find GET} move attack
HIDE ::= find move
WS ::= do-nothing
EAT ::= find {find GET} ingest
DRINK find (find GET) ingest
SLEEP find do-nothing
GET ::= move take

Vertical bars separate disjoined elements; in practice,
the 'or'-ed plans are chosen on the basis of their ratings
through the application of a special metaplan we call the
Plan-Selector, not shown in the grammar;

curly brackets enclose optional plans; the decision
whether to execute the optional plan(s) is made on the basis
of control functions that are stored in the parent plan and
govern the parsing of its IS slot;

plans shown in lower case are primitive.

Figure 4. A grammar of plans in POPLAR 1.3.

3.1.5.1.3. The Rating Functions.

The knowledge that POPLAR's actor has about the relative importance of a top-
level goal instance and the relative merits of one plan of action aimed at achieving a
goal over another is embodied in the rating functions. In the current implementation
rating functions are associated with every plan that can serve as parameters in the
plan-selector and the agenda-scheduler.

The rating functions calculate a numerical value for a plan, a rating, in all situa-
tions where a choice among plans that can be pursued is possible. They draw upon:

a) knowledge of the objects involved in an objective world situation;

b) the character traits, mental and physical states of the actor;

c) the actor's beliefs about the character and current physical/mental state of any
other cognitive entity participating in the situation;

d) the actor's event memory, the history of past processing.

Thus, if two actors, Actorl and Actor2 find themselves in an identical threatening
situation (e.g. a snake), but one of them is more courageous (a character trait) and/or
is in general not very fearful of snakes (a situational characteristic), the actors may

I1



respond to the situation by choosing different plans (e.g. Flee for Actorl and Fight for
Actor2) or even altogether different goals (while Actorl is likely to choose 'Preserve-Self'
against the snake -- because high levels of attention to threats can be expected from
actors with low courage values; Actor2 may choose, say, an instance of 'Get-Treasure',
because the snake is not serious enough a threat).

The construction of rating functions is an empirical process of gradual refinement.
Even without changing the knowledge used by the rating functions one can always
manipulate parameters of a function to calibrate its results.

One of the objectives of the psychological experimentation conducted in parallel
with this project (cf. Section 4) is to better understand the nature and parameters of
tOe rating functions.

Examples of rating functions are presented in Appendix 3.

3.1.5.1.4. History

This part of the actor's LTM contains his memory of past processing. In princi-
ple, history can have a very rich structure and be used in a wide variety of ways. Spe-
cial demon-type functions can be defined, for example, to introduce modifications into
the actor's beliefs about objects and processes in the real world based on certain pat-
terns in the event memoryt. This is one more location in POPLAR 1.3's architecture
where a measure of learning can and is planned eventually to be introduced.

At present the history contains only two types of data: a) the record of all the
recursive calls to the executor in the form of paths that the processing took in the
grammar of plans and b) a list of the objects (physical or mental) found by all
instances of the Find plan; this knowledge is used to retrieve the status and the results
of various plan instances. A typical instance of history is presented in Appendix 4.

3.1.5.2. Actor/World Interfaces.

As mentioned above, in the current implementation of POPLAR 1.3 there are two
blackboards that facilitate links between the world and the actor.

3.1.5.2.1. The World Blackboard.
WBB is used for introducing new sensory input and managing temporal relations

in the system. POPLAR 1.3 has time-triggered demons that automatically update the
values of the actor's physical and mental state based on the amount of time he engages
in a certain activity.

t An example Suppose that in an internalized plan for fighting crocodiles 'stick' is listed as the
best weapon Then during one invocation of the plan Fight (Actor Crocodile Weapon) no stick could
be found, so that Actor had to use a gun It appeared that both the results were better and the fa-
tigue increase was smaller Alter this plan execution was written into the history, a comparison is
made (by the above demons) and the old belief about the stick being the best weapon is changed

12



In their simplest manifestations, the time-related modifications deal with increas-
ing the actor's hunger, thirst and fatigue values at predetermined independent rates.
When the value of any of the above parameters becomes greater than a predefined
threshold, a message to this effect automatically registers in ABB's 'states-perceived'
slot, as a result of which at the next pass of the monitor an instance of Preserve-Self-2
goal will be activated, and the corresponding top-level plan will appear on the agenda.

Temporal knowledge is also used to implement a simple model of attention. A
detailed discussion of this mechanism will be deferred till Section 3.1.6.3.

3.1.5.2.2. The Actor's Blackboard.

ABB contains information about

a) the list ('objects-perceived') of object instances that the actor has perceived in the
current environment;

b) the list ('states-perceived') of all physical states currently perceived that warrant
the attention of the goal generator (e.g. the level of hunger above a threshold);

c) the agenda of all top-level plans (the representatives of the main goals) vying for
the attention of the cognitive processor of the actor at any given time;

d) the stack ('current-path') of plans currently being executed (from a top-level plan
to a primitive).
In future implementations, specifically when plan recognition will be added to the

repertoire of POPLAR and the number of actors inhabiting its world will be allowed to
be greater than one, the number of ABBs in the system may grow to as many as the
square of the number of actors. This is because every actor stores his beliefs about
other actors' activities in instances of ABB attached to his representation of these other
actors. Therefore, each actor theoretically can be aware of all the other actors and con-
tain an ABB for each, including himself.

A typical example of ABB and WBB contents is presented in Appendix 5.

3.1.6. The Algorithms.

3.1.6.1. The Monitor.

The top-level control function of POPLAR 1.3, the monitor, is an infinite loop (our
actors do not die -- only if killed by enemies!) which performs the following tasks:

a) it maintains contact with the user (to obtain new input);
b) it starts the executor loop that consists of i) processing new input; ii) scheduling

an action; and iii) executing this action

c) it displays selected situations in the world with the help of a (rather simple)
graphic interface.
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3.1.6.2. The Executor.

The main bulk of POPLAR 1.3 processing is performed by the executor. To under-
stand how POPLAR 1.3 works it is sufficient to trace a cycle of its activities.

The executor is called many times during one monitor cycle. First, it processes the
goal generating plans using the information obtained by the monitor from the objective
world as well as that from the actor's regulatory system. As a result of this stage, the
agenda of competing top level plan instances is updated. Second, it executes the
agenda scheduler plan sclect the best candidate plan. Finally, it executes the chosen
top-level plan (this involves a number of recursive calls to the executor). When eventu-
ally the execution ends, the result of current processing (success or failure) is reported,
and a new cycle of the monitor begins.

Omitting a few overly technical details, we can describe the activities of the execu-
tor generally as follows:

a) obtain a plan to process; if it is not a plan instance (the agenda holds only plan
instances, e.g. 'CTR19'; whereas is clauses of plans are formulated in terms of
plan types, e.g. 'Find'), create a new instance of this plan;

b) check the plan's preconditions clause; if preconditions do not hold, report failure
and its reason and exit; otherwise,

c) expand the plan by considering its is clause: call the is clause parser;

c') if the is clause is 'primitive', then action-for-primitive is performed (most
often this is a request to the 'laws of nature', the user, to allow an update in
the objective world, e.g. a move by the actor; if the permission is given the
processing proceeds as specified in e') below; if the action is not allowed the
processing proceeds as in e"). (Let us repeat that the semantics of this situa-
tion is that the actor's beliefs about the objects and/or plans and/or values
are somewhere wrong, as a result of which some indication of imminent
failure must be given to prevent the 'automatic' success of most planners in
situations where the internalized preconditions of a plan hold.)

c") if the IS clause is not 'primitive' the parser has to make specific control deci-
sions: i) whether to execute an optional subpath in the IS clause; ii) which of
any possible number of disjoined subplans to choose for fulfilling the current
plan. (The ability to choose one of a number of 'shuffled' subplans (those
that can be fulfilled in any temporal order) will be added to POPLAR in near
future.) The knowledge about whether to execute an optional subpath is
encoded in the control slot of the plan whose is slot is parsed. The
knowledge selecting one of disjoined subplans is contained in the plan-selector
mtap!an and the rating function slot of the current plan. Once it becomes
clear what member of the is clause should be processed first, the executor

d) calls itself recursively with this plan; this event is recorded on ABB, specifically, in
a data structure called current-path; the old content of current-path is added
to history.
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e') if an is clause is processed to its end (cf. the special case of 'primitive' in c')
above), the status slot of the plan is set to 'succeeded' and the effects clause is
evaluated;

e ") if for some reason the is clause cannot be processed to its end, the status slot is
set to 'failed' and

f) this information is communicated to the parent plan; the current plan is discarded
from the current-path stack, and the processing of the is clause of the parent
resumes. When, eventually, the outcome of the top-level (and bottom-of-stack in
current-path) plan becomes known, then

g') if it succeeded, then the effects clause is evaluated and the corresponding top-level
plan instance is removed from the agenda (and added to history);

g") but if it failed, then, assuming that the need that had spawned this goal has not
been satisfied, the executor creates a new instance of the same top-level plan and
adds it to the agenda instead of the failed one (which goes to history).

h) a new cycle of the monitor starts.

3.1.8.3. Modeling Attention.

The previous section described the normal flow of control in a monitor cycle. In
real life, however, an actor can hardly have the luxury of being able to finish the pro-
cessing of a top-level plan without taking in new information about the objective world.
In future implementations of POPLAR the temporal relations among plans will be ela-
borated to include the many possibilities of concurrent processing (cf. Allen, 1983a, for
the description of a model of time that can be adapted for use in our model; cf. also
McCue & Lesser, 1983) for a temporal logic in the POISE system).

POPLAR 1.3 reacts to this problem as follows. When a top-level domain plan is
chosen from the agenda and passed over to the executor, its rating is used for calculat-
ing the number of time cycles this plan will be allowed to execute without being inter-
rupted. The more 'important' the plan (i.e., the higher its rating) the longer it is
allowed to execute uninterrupted. This current programming device is a rough simula-
tion of the actor's concentration or attention to the task. Intuitively, the more
immersed one is into a task, the less one would be inclined to be distracted by new sen-
sory inputs. It is obvious that character traits and physical/'mental states affect the
ability to concentrate.

When an interrupt occurs, the entire current-path is suspended; the instance of
the top-level plan is deleted from the agenda and another instance is created and added
to it (the new instance reflects the knowledge of the stage at which the processing was
suspended; history is used for this purpose). Then the monitor starts a new cycle.

3.1.6.4. An Example.

Suppose we want to test the performance of POPLAR 1.3 in the following situation
of the world. We want to put the actor in a cave with a rock, a snake and an apple
and to set its hunger well above the detecting threshold.
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POPLAR 1.3 acts as follows:

a) asks the user whether he wants to remove certain objects from the world; we do
not, so we answer in the negative;

b) asks the user whether he wants to change any of the properties of the objects
already present in the world; this is the time to input the (high) value of actor's
hunger;

c) asks whether the user wants to add new objects to the world; we do; since our
perception module is simulated, we submit prefabricated instances of objects to
POPLAR 1.3; we write: (rock1 snakel applel).

d) adds the above object instances to ABB.objects-perceived. Since snakes spawn the
need for-protection (by virtue of their being descendants of 'creature'), the goal
Preserve-Self-I is activated (by the gg-input plan) and an instance of its
corresponding top-level plan, PS10, is added to ABB.agenda (which already con-
tain the unique instance of the Agenda-Scheduler plan that resides there per-
manently); appropriate messages are issued by POPLAR 1.3,

e) detects, through gg-states-perceived, the actor's hunger; 'hunger' is added to
ABB.states-perceived and an instance, PS20, of the top-level plan of the Preserve-
Self-2 goal is added to ABB.agenda; appropriate messages are issued;

f) since no objects had been present in the world before, and, therefore, no changes
to their properties could be introduced, gg-objects-perceived will not be needed in
this case, a messagc to which effect will be issued;

g) at this point ABB.agenda is (agenda-scheduler PSiO PS20); the monitor calls the
executor with the scheduler plan, as a result of which the two domain plans
receive ratings. Suppose now that PS20's rating is higher (because the actor is
very hungry and at the same time not too afraid of snakes); this being the goal
choice,

h) the scheduler is called with PS20(Actor hunger); checks its preconditions (empty!)
and expands its is clause; the plan-selector, using the rating functions in the plans
Eat, Drink and Sleep, decides to select Eat; an instance of Eat, EatO(Actor) is
created and pushed onto current-path

i) EatO's preconditions are checked (empty!), and its own is clause is expanded; this
means creating a new instance of Find, Findo(Actor food Actor.inventory), -- that
is, first the actor wants to check whether he is carrying some food;

j) the controll predicate chooses whether to execute the optional Find and Get plans;
the predicate essentially returns 'true' if the previous Find failed; the optional sub-
path corresponds intuitively to the situation when the actor looks around him try-
ing to find some food; suppose now that FindO fails; in this case,

k) Find(Actor food ABB.objects-perceived) is executed; Find's IS clause is 'primitive';
its action-for-primitive is to record the object found; Findi finds applel;

1) next, GETO(Actor, applel) is created and pushed onto current-path; this
instance's is clause consists of Move followed by Take; (in reality, Get has three
parameters, the third being the indication of the time that the actor can spend on
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retrieving the object -- this is very handy as a precondition if, for example, an
adversary can reach the desired object first!)

m) Move0(Actor Applel) is created and pushed onto current-path; Move is a primi-
tive plan, so its action-for-primitive asks the user for permission for the actor
to move to the point where applel is. We grant the permission; MoveO evaluates
its effects, updating the positions of the actor and all the objects in his inventory
and sets its status to 'succeeded';

n) current-path is appended to history; Move0 is popped, and the next plan in the
IS clause of GetO is pushed onto current-path: Take0(Actor applel);

o) Take0 is primitive; its processing is similar to the processing of MoveO; it succeeds,
one of its effects being that applel is added to the actor's inventory, and after
manipulations with current-path similar to those in 1), IngestO(Actor applel) is
sent to the executor;

p) Ingest is primitive; suppose we allow the actor to ingest the apple; then, after the
appropriate (and by now familiar) bookkeeping operations, we find ourselves at
the point where EatO is proclaimed as succeeded; at this point we evaluate its
effects and pop it from current-path (which at the time contains only PS20,
known to have succeeded);

q) effects of PS20 are evaluated (the hunger level of the actor is decreased, and a
message to this effect is issued), and with this PS20 is popped from current-
path, which remains empty; this signifies the completion of a cycle of the monitor.

3.2. POPLAR 2.0.

3.2.1. Introduction.

This section describes the changes introduced into the Colgate personality-oriented
planner in the new version, POPLAR 2.0. A number of technical improvements were
made to support new functionality. POPLAR 2.0 runs on a Symbolics 3600 Lisp
Machine. This is a companion text to a previous report on POPLAR: S.Nirenburg
I.Nirenburg and J.Reynolds, POPLAR: A Testbed for Cognitive Modelling, Research
Report COSC7, Division of Natural Science, Colgate University, June 1985. This docu-
ment is structured as follows. First we highlight the additions to the functionality of
the system. Next we describe the changes in the knowledge representation introduced in
POPLAR 2.0. This is followed by a description of the modified algorithms. Finally, we
include a discussion of implementation-related decisions and an example run of POPLAR
2.0. Example plan representations in POPLAR 2.0 can be found in the appendix.

3.2.2. Comparing the functionality of POPLAR 1.3 and POPLAR 2.0.
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3.2.2.1. Review of Functionality in POPLAR 1.3.

Before talking about the differences between POPLAR 1.3 and POPLAR 2.0 let us
recall the planning algorithm of POPLAR 1.3.

The top level function Monitor:

begin
repeat forever

call the function MAINTAIN-WORLD;
{which obtains from the user information about changes in the
world and records it}

for every object in ABB.objects-perceivedt do
if the object is connected to a certain behavioral need (goal)
and ABB.agenda* does not contain an instance of a top level
plan to achieve this goal then create an instance of a top
level plan to achieve this goal (satisfy this need) and
add it to the ABB.agenda

for every physical state in ABB.states-perceived"* do
if ABB.agenda does not contain top level plans for achieving
corresponding goals (preserve self from hunger, thirst and/or
fatigue, called the MAINTAIN goals) then create an instance of
corresponding top level plan and add it to ABB.agenda;

if ABB.agenda is empty then EXIT (end-repeat);

for every plan in ABB.agenda do
produce a rate for this plan by evaluating its rating function;

choose the plan with the top rating;
call Executor with the top-rated plan

end.

The function MAINTAIN-WORLD:
begin
repeat

ask the user whether he/she wants to add objects to the world
if 'yes' then obtain an object instance name and add it to the
ABB.objects- perceived

until the answer is 'no';
repeat

ask the user whether he/she wants to remove any object instance
from the world

t ABB objects-perceived is a slot on 'Actor-Blackboard' (see Nirenburg et al, 1985) which holds a
list of object instances perceived by Actor at a given time

* ABB agenda (see below) is a slot on 'Actor-Blackboard' which holds a list of top-level plans as-
sociated with Actor's goals at the moment

* ABB states-perceived (also see below) is a slot on 'Actor-Blackboard' which holds a list of
Actor's physical states (hungerfatigue, etc ) perceived at a given moment



if 'yes' then obtain an object instance name and delete it from the
ABB.objects-perceive

until the answer is 'no';
repeat

ask the user whether he/she wants to change any object's
attributes
if 'yes' then obtain an object name, names and new values for
attributes and record them

until the answer is 'no'
end.

The central function of POPLAR is Executor. It is described in detail in Niren-
burg et al., 1985. Briefly, the algorithm is as follows:

begin
obtain a plan to process
if the plan's preconditions do not hold

then report failure and exit
else expand the plan by considering its is slot:
if the is clause is 'primitive'

then perform its Action-for-primitive and
if was completed successfully then evaluate that plan's effects

else for every subplan in the is slot
call Executor with that subplan

if is slot is processed to its end
and the last executed subplan was completed successfully

then report SUCCESS of the current plan,
evaluate its effects, EXIT;

else report FAILURE, EXIT;
end.

One cycle of the Monitor in POPLAR 1.3 covers the choice and the execution of a
single top-level plan. This process lasts N time cycles where N is equal to the number of
primitive plans involved. (Note that the plan Move is also primitive so that it lasts
only one time cycle irrespective of the distance between Actor's starting and end posi-
tions.)

Changes in the world are made only once during one Monitor cycle (at the begin-
ning). This means that no changes obtained during processing are recorded before the
beginning of the next Monit*or cycle. In other words the world remains monotonic
during one Monitor cycle.

In POPLAR 1.3 an attempt was made to approach the solution of this problem in
the following way: when a top-level plan is chosen its rating is used to calculate the
number of time cycles that this plan will be allowed to execute without interruption.
The more 'important' the plan, the longer it is allowed to execute uninterrupted. When
an interrupt occurs, the entire current-path (a data structure where the stack of exe-
cuted plans is stored) is sent to history. Then the Monitor starts a new cycle and if
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the same top-level plan is chosen execution starts 'from scratch' even if some of its sub-
plans were completed successfully during the previous Monitor cycle.

Both problems described above (the possibility to make the world nonmonotonic
and ability of saving partial results for the further use) are solved in the new implemen-
tation of the POPLAR: POPLAR 2.0.

3.2.3. Improvements in POPLAR 2.0.

A major difference between POPLAR 2.0 and POPLAR 1.3 is the separation of the
task of executing an entire top-level plan into two different tasks:

a) execution of non-primitive and 'mental-primitive' plans (this is done by Executor
in POPLAR 2.0) and

b) execution of 'physical-primitive' plans (this is done by Effector) (a detailed
description of both algorithms see below in Section 3.1.6.).

The new Executor performs a top-level plan execution by expanding its is slot -
considering its sub-plans (i.e goes down in the plan hierarchy, or in other words, lowers
the level of abstraction). When a 'physical-primitive' plan is encountered control is
passed to Effector with that plan as a parameter. Effector performs a 'physical-
primitive' plan execution.

This distinction gives an opportunity in future to perform these two tasks in
parallel. The idea behind this decision is that in real life people tend to perform physi-
cal and mental actions simultaneously (for example, a person can start schedaling week-
end activities while driving to his job on a Thursday).

It is postulated that the execution of a 'physical-primitive' plan lasts one time
cycle. Therefore a new Monitor cycle now also lasts one time cycle. (Note that the
primitive plan Move is now represented as one 'step' of the Actor.) So, changes in the
world could be perceived by the Actor after every time cycle.

When the top-level plan chosen for execution is already partially executed, Execu-
tor then starts processing at the point where it left off at the previous step. This point
could be found by detecting differences between plan type name and plan instance
name Subplans that were already processed are presented by plan instance names in
the is slot.

3.2.4. Plans in POPLAR 2.0.

For the new version changes were introduced into the plan grammar of POPLAR
1.3. (See Figure 5 for the new version of the grammar.) Note that the most important
changes were introduced into the plans that involve finding objects (e.g., Fight, Eat.
Drink). In POPLAR 1.3 these plans contained 'optional' subplans and a decision
whether to execute them was made with the help of what we called 'control' functions.

In POPLAR 2.0 instead of both optional paths and control functions a new
mental-primitive' plan Get-Selector is used.

The get-selector plan creates new instances of the Get plan: one instance for
each object instance that was 'found' by the previously performed LOCATE plan. (for
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example, Actor is looking for food. Applel, apple2 and carroti are located in the sur-
roundings of the Actor by the plan Locate. Then three instances of the plan Get are
created: Getl (object applel), Get2 (object apple2) and Get3 (object carrotl)). All these
instances of the Get plan obtain the status 'candidate' and the real-world-flag value of
'no't. A list of these instances is stored in the is slot of the get-selector plan for
future use. Then one of them is chosen for further execution. The choice is made on the
basis of rating. The information on which the rating process is based is contained in the
rating function slots of the Get plans.

When the Get-Selector plan is executed for the second or further time, it chooses

one of the Get plan instances that it had created previously (and stored in its is slot).
The algorithm for making the choice is as follows: if there is a plan with the status
'suspended', choose it for execution, else if there are plans with the status 'candidate'
rate them and pick the one with the maximum rate, otherwise report FAILURE.

I ::= P IM IGTR
PS1 ::= FIGHT I HIDE I wait-and-see
PS2 ::= EAT I DRINK I SLEEP
GTR :: GET
FIGHT ::= FIND move attack
HIDE :: locate move
EAT ::- FIND ingest
DRINK ::= FIND ingest
SLEEP ::= locate do-nothing
GET ::- move take
FIND :: locate get-selector GET

Plans shown in lower case are physical-primitive; plans shown in italics are mental-
primitive.

Vertical bars separate disjoined subplans; in practice, the 'or'-ed plans are chosen

on the basis of their ratings through the application of a special 'mental-primitive'
metaplan Plan-Selector, not shown in the grammar.

Figure 5. A grammar of plans in POPLAR 2.0.

The Plan-Selector makes a specific control decision as to which of any possible
number of disjoined subplans to choose for fulfilling the current plan. The knowledge
for selecting one of disjoined subplans is contained in the rating-function slots
(methods) of the disjoined subplans.

t The instantiation of plan tokens for possible future use is essentially a way of modeling one-
step look-ihead' The Actor as if thinks about all possible plans at this point and choose the best f
them to perform

21



3.2.5. The Algorithms.

In this section we present the algorithms of the functions that have been changed
in POPLAR 2.0.

Executor (P)

a) obtains as parameter a plan, P; P could be either a plan instance or a plan
typet. If P is a plan type then

i) create a new instance of this plan

ii) substitute the plan name P with the name of the new created instance in the
is slot of the parent plan

else (i.e. P is a plan instance)
case status
'failed': exit, reporting failure,
'succeeded' exit, reporting successt.

b) check the plan's preconditions clause: if preconditions do not hold, (are false)
report failure and its reason and exit; otherwise,

c) expand the plan by substituting the contents of its is clause for the plan itself;
if the is clause is 'physical-primitive' then exit;
if the is clause is 'mental-primitive' then perform its Action-for-primitive. If
the current plan is either Plan-Selector or Get-Selector (metaplans that chose
the next plan for execution) and Action-for-primitive was performed success-
fully (a plan is selected) call Executor recursively with the selected plan. [f
Action-for-primitive failed then report failure and exit.
if the IS clause is not 'primitive' then call Executor recursively with this plan.

end Executor.

Another new function is Effector, whose task it is to monitor actual (simulated)
execution of a primitive plan.

The algorithm of Effector is as follows:

a) if FAILURE was reported by Executor then for each plan in the current-path
set status to 'suspended': exit:
else obtain a primitive (physical) plan instance P (from Executor). Perform P's

Action-for-primitive.

b) for each plan in the current-path (including P) do: check satisfaction-
condition; if it holds then perform that plan's effects and set status to 'suc-
ceeded', else set status to 'suspended'.

t note that the agenda holds only plan instances, e g 'GTR19', whereas is clauses of plans can
contain both plan types, e g 'Find', and plan instances - in case when those plans were already
processed once by Executor

This means that plans that were already completed are not executed again
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3.2.8. Implementation.

POPLAR 2.0 is implemented in Zetalisp and runs on a Symbolics 3600 Lisp
Machine. The new implementation uses the knowledge representation system native to
the 3600 Lisp Machine, the Flavors system. Although the overall structure of the
knowledge base remains unchanged, a number of internal technical modifications were
made.

3.2.8.1. Plan structure.

To maintain the ability to continue execution of a plan from the point it was
interrupted, a number of new slots (both instance variables and methods) were added
to the basic plan frame (flavor), as specified in the extended EDL of Nirenburg et al.,
1985. The syntax of several slots was modified as follows:

WITH
now contains a list of parameters in the form: ((agent <object-instance-name>)
(object <object-instance-name>) (instrument <object-instance-name>) (place
<position> )(time-for-execu tion <time>)

SATISFACTION-CONDITION
one or more of world states that become true after this plan is executed success-
fully. This slot is used for understanding the status of the plan, that is, whether
the plan is already completed or not.

REAL-WORLD-FLAG
holds YES when a plan instance is created for immediate execution, and NO if
that instance creation is 'look-ahead'. This slot is used by the plan Get-Selector
(see above).

STATUS
one of 'on-agenda', 'executed', 'suspended', 'succeeded', 'failed' or 'candidate'.

Appendix 6 contains examples of POPLAR 2.0 plans.

3.2.6.2. The Actor's Blackboard.

Two slots were added to the Actor-Blackboard to help trace Actor's behavior:

CURRENT-GOAL
holds the Actor's current goal

CURRENT-PLAN
holds the name of the plan presently executed by Actor.

3.2.6.3. The User Interface.

In POPLAR 2.0 the function MAINTAIN-WORLD which directs the acquisition of
information from the user is menu-driven. It contains a menu for choosing an operation
(insertion, modification, etc.), a menu for changing an at:ibute(s) of an object in the
world, etc.
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"Tihe world is represented by the board which contains 200 (10 x 20) mouse sensi-
tive squares. Objects could be moved from place to place or removed from the board
using the mouse.

The screen is divided into three separate windows:

a) the Actor's world (see above);

b) a LISP Listener window where all messages generated by the program appear

c) the TRACE window which monitors the current values of the most important
parameters and data structures including

i) the CLOCK of the system

ii) Actor's blackboard which contains AGENDA of goals, a current plan, a
current goal as well a i

iii) Actor's physical state parameters.

All the values are updated immediately after changes were introduced.

3.2.7. An Example.

Suppose we want to test POPLAR's performance in the following world situation.
The room will contain, in addition to the Actor itself, a rock, a snake, a sword, a dog
and a stick. The positions of all the objects will be as shown in Figure 6. Recollect that
the world in which POPLAR operates at the moment is that of an actor in a room with
sources of danger, food and treasure. The actor is 'programmed' to plan survival and
maintenance of self plus getting as much of the treasure as possible in its possession.

stickI swordi

ACTOR

snake 1

rockl

dog 1

Figure 6. An Instance of the POPLAR World.
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POPLAR 2.0 acts as follows:

a) obtains a new input from the user:

i) first it produces a menu containing the list of possible operations of the fol-
lowing types:
creating new object instances,
adding existing object instances to the world or
changing attributes of the object instances in the world.
The user clicks on 'creating new object instances', then

ii) the next menu containing the list of all object types that are predefined in
the system is popped.

The user chooses, say, 'snake'. Then

iii) the menu containing the list of the parameteis for 'snake', with default
values, is popped, so that the user can make changes there.

The procedure iterates until specifica!!y Lold to exit, so that the user inserts all
desired objects into the world.
POPLAR 2.0

b) processes the n-w input: since snakeb and dogs spawn the need for protection,
two insta-"ces of the goal Protect (P1 and P2) are created and added to
ABB.agenda.

c) checks Actor's physical state (hunger, etc.). Suppose that none of the hunger,
thirst and fatigue is above the detecting threshold, therefore, ABB.states-perceived
is empty.

d) the function Agenda-Scheduler is called. The goal P1 ((agent Actor)(object
snakel)) gets the highest rate because the Actor (as it is adjusted for this particu-
lar run of POPLAR) is more concerned about snakes than about dogs. Note also
that the snake is closer to the Actor than the dog.

e) the Executor is called with P1 which is now posted in both ABB.current goal and
ABB.current-plan. P doesn't have any preconditions, so its is clause is expanded:
first a new instance of Plan-Selector is created. Since Plan-Selector is a
'mental-primitive' plan, its Action-for-Primitive is performed:

f) new instances of the plans Fight, Hide and Wait-and-See are created and rated
(using their rating functions). Fighti is selected. ABB.current-path now contains
(P1 Fighti).

g) Executor is called with Fightl. After checking the preconditions of Fighti (there
are none) the IS clause is expanded to (Find Move Attack). Findl with ((agent
Actor)(object weapon)) is created and pushed onto ABB.current-path. Then Findi
is in its turn expanded to (Locate, Get-selector Get).

h) Locatel with ((agent Actor)(object weapon)) is created and since it is 'mental-
primitive', its Action-for-primitive is performed. The result is the list of objects
'found' (sticki swordl). (Actor 'knows' that both sticks and swords could be used
as weapons against snakes). The plan Locatel is completed successfully.
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i) Get-selectorl is created and its Action-for-primitive is performed. As the result
of this two instances of Get (Geti ((agent Actor)(object stickl)) and Get2 ((agent
Actor)(object swordl)) are created and rated. The Get with the highest rate (in
this case Get2 because sword is more effective weapon then stick) is selected for
execution.

j) Executor is called with Get2 which is expanded to (Move Take).
k) Executor is called with Move; Movel is created. Since its is slot is 'physical-

primitive' control is passed to Effector.

1) Effector performs Movel's Action-for-primitive which is 'make one step
towards the position of swordl'. This step is made, i.e. the position of Actor is
changed. Then the SATISFACTION-CONDITION1 of all plans in the ABB.current-
path are checked (the current path at this point contains (Movel Get2 Fighti P1).
None is satisfied, so the values of their 'status' slots are set to 'suspended'.

m) a new cycle of the Monitor begins. The user has again an opportunity of chang-
ing the world. Suppose, the user does not want to change anything. So, the
agenda of goals remains the same and the top rated goal is the same P1.

n) the path of 'suspended' plans is found (Movel Get2 Findl Fightl P1). Since
Movel is not yet completed, control is passed to the Effector with Movel.

o) the Effector performs the next 'step' of the Actor's movement towards swordl.
Then SATISFACTION-CONDITIONs of all plans in the ABB.current-path are
checked, none is satisfied, so the values of their 'status' slots are set to
'suspended'.

p) a new cycle of the Monitor begins.

4. Background and Related Work.
In designing and implementing POPLAR 2.0 a number of conceptual and technical

decisions and choices had to be made. The following is an incomplete, though represen-
tative list.

1) how does one approach, and justify, construction of a multi-faceted system
when little is known about the peculiarities of its components? Where is the starting
point?

2) how might the problem of personality influences upon cognition be addressed?
3) within cognitive component, how are goals and plans related? How are they

each related to such concepts as needs, drives, performance, etc.?
4) What is the structure of Lhe planning module in cognitive systems? How is the

scheduling of the cognitive system's activities performed?
5) What is the relationship between the use of internalized (canned) and newly

created plans?
6) What is the relation between plan production and plan understanding?
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The realization of the above and some additional problems was instrumental in
the design stage. While not all of the decisions have been already made at this stage,
our desire was to avoid design choices that would preclude or hamper a future improve-
ment or extension.

None of the theoretical or design decisions were made without the influence of
other. Drevious, related work. In this section we briefly review the bases for the vario,_,-
decisions as well as mention other work on the problems we faced.

Fundamental to the development of POPLAR was the approach to the task, faced
by most cognitive modelers, of building a structure consisting of a number of distinct
constituents, the details of many of which were (and at present remain) unknown. How
does one construct a global model when many of its components are uncertain, and
each one is itself a mystery? Here we adopted the attitudes advocated by Haugeland
(1981), who suggests that it is appropriate to study an entire information processing
system (IPS), consisting of several modules each of which (plus the IPS itself) is a black
box, without first completing the study of the components; thus, we studied the cogni-
tive actor even though we had not (and, obviously, could not) first provided an account
for perception and performance.

Norman (1981) was very instrumental in specifying the tasks to be tackled in cog-
nitive modeling. We also owe much to Anderson's (e.g. 1983) work on the architecture
of cognitive entities. Sloman & Croucher (1981) discuss the introduction of motives,
moods, attitudes and emotions in natural and artificial intelligent systems. Although
no formalism is suggested for encoding this type of information, the general thrust of
the approach is valuable for those who consider the introduction of certain personality
characteristics into a class of Al systems. Wallace (1981) addresses similar problems in
the context of learning.

Uhr & Kochen (1969) is an early work that addressed similar issues. Many oQ the
important points for POPLAR have been anticipated in that work. Unfortunately, Uhr
& Kochen's approach cannot be even called knowledge-based. It was an attempt to per-
form an important piece of research with inadequate means.

Wood (1983) discusses planning in a dynamically changing world with multiple
actors. Her system, AUTODRIVE, uses the world of the automobile driver as the
domain. Although the design of the system depends too strongly on the implementation
world, the idea of interaction between the actor and the world (in fact, the mere separa-
tion of the objective world and that of the actor -- through a program called SI'ULA-
TOR) is very fruitful.

Schank & Abelson (1977) and Schank & Lehnert (1979) informally discuss and
catalog human (including interpersonal) goals. Carbonell (e.g. 1979) discusses the use
of the concept of personal goals in the context of understanding stories. Wilensky
(1983) also discusses everyday goals _nd metagoals, as well as various cooperative and
competitive relations among them.

The relation between goals and plans is an interesting question that had to be
addressed in our work. Our solution was to use this term only for top-level goals recog-
nized by the goal-generators but made manifest in the system through the instantiation
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of a top-level plan. We did not use the concept of goals at lower levels in planning (i.e.
we did not use the term 'subgoaling', cf. Lesk, 1984).

It is argued (cf. e.g. Barber (1983) or Berlin (1984)) that subgoaling is preferable to
the use of 'canned' plans because if the latter are used then there is no possibility of
ever achieving a goal in a non-standard way. But in the subgoaling approach, within
the current state of the art, no upexpected results can be obtained either. T-i introduce
these, one has to build a learning system, one capable of creating and not only recreat-
ing. But at present the planning of the subgoaling type remains no less 'canned' than
the the 'forward' planning.

It seems that these two approaches to planning relate essentially in the same
manner in which backward chaining relates to forward chaining in inference making.
Our opinion is that the choice between the two is not strategically important and
should reflect the peculiarities of the domain and other 'weak' considerations, so typical
for Al.

Another important issue related to goals and plans is whether to build systems
that in scheduling an action take into consideration the knowledge of how many
different plans and/or goals will be furthered by it. The main empirical body of
Wilensky's book (1983) is devoted to such issues. Cf. also Hammond (1983) for a philo-
sophically related approach. Hayes-Roth & Hayes-Roth (1979) also want their planner
to have this capability. Our position on this topic (cf. also Carver et al., 1984) is that
in the type of planners we are building the goal cooperation or conflict does not play a
role. We argue that to treat this topic as central in modeling planning in intelligent
actors is similar to consider such non-everyday tasks as playing chess and solving
differential equations central topics for Al. The latter methodological fallacy has been
amply criticized.

General works on planning that immediately influenced this project include
Stefik's work (e.g. 1981) on metaplanning and planner architecture. Hayes-Roth &
Hayes-Roth (197) describe a very rich planning domain and offer a good discussion of
what the editors of The Handbook of AI (Cohen & Feigenbaum, 1982, p. 519; cf. also
pp. 22 - 27) call opportunistic planning. It does not seem, however, that a non-trivial,
involved implementation of the itinerary planner they suggest is possible.

Hayes-Roth (1984) is a definitive proposal concerning the architecture for planners.
It addresses the control problem in Al systems as a whole. It also contains a com-
parison with other current proposals concerning control. In its architectural part this
proposal (in fact, not only this proposal!) draws heavily on the earlier work in the
HEARSAY-! speech understanding system that introduced and popularized the black-
board architecture (cf. Erman et al., 1980).

The crucial idea of metalevel reasoning is discussed, with different emphases, in
Stefik (1981), Hayes-Roth (1984), Wilensky (1983) and Genesereth (1983).

The basic architecture of POPLAR has a number of common points with that of
Wilensky's planner (cf. Wilensky, 1983, pp.22-23). The two models, however, display
major differences, notably in the attention paid in POPLAR to the problem of scheduling
or in importance attributed to the idea of the independent representation of the
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objective world. Insufficient attention to scheduling and to describing the planning pro-
cess at the system level were prominent among the criticisms in some reviews of
Wilensky's book (cf. Russell, 1984; Berlin, 1984).

Many interesting ideas about scheduling can be found in Sathi et al. (1984) and
Fox (1983).

Work on understanding plans in the POISE (Croft et al., 1983) and Argot (e.g. Litman
& Allen, 1984) projects ha helped in formulating some parts of our approach.

5. Status and Future Development.

5.1. General.
POPLAR is a working system that generates and executes a relatively small number

of plans in a rich, though simulated, environment. Its scheduling capabilities actually
seem to transcend the immediate necessities of the domain. The system is designed in
such a way that both domain planning and metaplanning are performed by one execu-
tor (that is, POPLAR can reason about its own actions). A number of features have been
included that make POPLAR a model of a human planner in a real world.

At the same time, the possibilities of development and improvement that this
basic system offers are probably even more exciting than experimentation with the
current version of POPLAR. There are many points at which the system can be
improved. Some of them are discussed below.

First (and simplest) of all, the POPLAR actor's knowledge about the objects, goals
and processes both in the objective world and its own 'mind' can and will be aug-
mented. In parallel, the control knowledge (rating and control functions) will be con-
stantly adjusted and tuned, both through the introduction of additional character trait,
mental state and situation parameters and through devising more appropriate ways of
amalgamating them in the decision functions. Extensive experimentation with POPLAR
will help to verify such decisions.

In parallel and in conjunction with the POPLAR project, these authors have been
involved in designing a general model of human cognitive activity. Initial results of that
research are reported elsewhere (Nirenburg & Reynolds, 1983; Reynolds & Nirenburg, in
preparation). An aspect of that project extremely helpful to POPLAR is research aimed
at deriving a set of 'primitive' character traits, motivations and mental states, such
that weighted combinations of them will correspond to the 'higher-level' parameters
(e.g. 'aggressiveness') that we would l1're to use in POPLAR's decision functions.

One can see that the above are actually two separate problems: 1) to extract prim-
itives; 2) to express complex entities in terms of the primitives. It w'as decided to adapt
the primitives suggested by Cattell (cf. e.g. Cattell & Child, 1975). Extensive psycho-
logical experimentation with humans is pursued in order to find answers to the second
problem. The benefits of having a system that boasts psychologically valid (and not
'folk psychology'-based) control parameters are enormous and self-evident. And, there-
fore, this is one of the most immediate improvements we plan to make.
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We also plan to add plan understanding to plan production. The world is inha-
bited by more than one cognitive actor (consider, for instance, the trolls in the current
POPLAR). In order to behave correctly an actor must be able to discern plans of others.
We believe that POPLAR's machinery will be able to handle plan recognition without the
necessity to introduce major changes. An actor will maintain as many blackboards as
there are cognitive actors around. It will assume that all other actors operate in the
same manner. It will have beliefs about their character traits, etc. and will 'project'
plans for them much in the same manner as it plans.

A logical extension to adding plan recognition is to introduce verbal behavior into
POPLAR. There exist a number of interesting approaches to discourse analysis and plan
understanding in dialogues (e.g. Allen, 1983b; Litman & Allen, 1984; Carberry, 1983;
Reichman, 1984; etc.). A study in modifying POPLAR to involve verbal behavior and
discourse analysis can be found in Nirenburg & Pustejovsky (1985).

The inclusion of multiple actors into the objective world can lead to the develop-
ment of an experimental testbed for modeling conflict resolution, cooperation and many
more important 'real-life' situations. The possibilities here are definitely substantial
and quite unexplored.

The mechanism for modeling attention will undergo serious modifications, as will
the treatment of time and the interaction between the actor(s) and the objective world.

And, finally, a most important avenue of improvement is the introduction of
learning capabilities to the system. There are many modules in POPLAR where planning
can be introduced; and there are many different types of learning to be studied. Some
examples of this may be modifying the scheduling behavior depending on results of pre-
vious processing or after seeing somebody achieve a goal in a way not previously used;
modifying beliefs about objects; being able to 'create' new plans, by analogy or other-
wise; and many many more. This topic is one of the more complex ones, but any pro-
gress in this direction may have a very beneficial effect on the field of planning in Al.

5.2. Specific Plans: POPLAR 3.0.

The development plans for the coming year include the development and imple-
mentation of
1) strategies for combining plan recognition and plan production in one system;

2) a mixed strategy for planning: the use of canned plans for standard situations
and 'first principles' knowledge when non-standard situations arise;

3) the development of a model of (a subset of) the world of I & W.
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Appendix 1. Representation of OBJECTS in POPLAR 1.3

We present objects in two ways: first, in the way the object is stored in LTM, and
second, from within a POPLAR run (as an annotated script). The difference is due to
inheritance of parents' properties by children in the hierarchy.

A.
(dbcr exp creature person ;this is a PEARL header for a frame

(id person)
(type creature) ;CREATURE is the parent of PERSON
(h-process- roles lisp ((Take Who)

(Put Who)
(Find Who)))

;the above are the roles in which an instance
;of this type can appear in specified
;processes by virtue of its having properties
;of a "human": humans can act as agents in
;TAKE, PUT and FIND

(mental-state struct) ;humans have mental states -- cf. the
;default values in the script listing below

(character-traits struct char-traits) ;ditto
(weapon-against ((sword 100 3)(knife 50 1)(rock 10 20)))

;POPLAR knows (believes) that weapons against people
;include swords, knives and rocks; the numbers (a b)
;indicate the efficiency of the weapon and the maximum
;range

(power 50) ;maximum
(speed 50) ;maximum
(fearsomeness 25) ;what is the level of fear that such objects

;typically elicit in POPLAR (default: 25)
(mass 5.5)

(inventory lisp) ;the objects this person is perceived by POPLAR
;to be carrying
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B.
PGPLAR> person

(person (id person)
(type creature)

(o-process-roles ((Find What)))

;this property L, inherited by virtue of PERSON's being a
;descendant o OBJECTS: any object can occupy the "what" slot in Find,
;because findiiz mental objects is recollecting their representations in
;memory

(shape nl)
(color nil)
(mass 55)
(position nil)
(p-process-roles ((Take What) (Put What)))
(goal-parameters ((PSI adv)))

;the above properties are inherited by virtue of person being a descendant
-of PHYSICALOBJECTS; the goal-parameters slot specifies an instance of
;what goal is created when an object of this type is perceived. In this
;case the intuition behind the entry is that the appearance of a person
;spawns the creation of a goal instance of Preserve-Self-I, that is,
;persons are perceived by POPLAR as potential enemies

(edibility nil)
,this property is inherited by virtue of PERSON's being a descendant of
;+alive; nil is the default value with the semantics of "unknown"

(c-process-roles
((Eat Who)
(Ingest Who)
(Drink Who)

(Move Who)
(Attack (Who Whom))))

the above properties are inherited by virtue of PERSON's being a
;descendant of CREATURE; creatures are considered by POPLAR to be able
,to be agents of eating, drinking and moving, and agents and objects of
;attacking

(weapon-against ((sword 100 3) (knife 50 1) (rock 10 20)))

(power 50)

(fearsomeness 25)
(speed 50)
(orientation nil) ;this shows whether this particular person

;LOOKS at POPLAR at the moment of processing
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;the following are physical states (conceptually, they are a part of
;the regulatory system)

(hunger 0)
(thirst 0)
(fatigue 0)
(injury 0)
(h-process-roles ((Take Who) (Put Who) (Find Who)))
(mental-state (nilstruct))

-character traits are a component of the regulatory system
(character-traits
(char-traits (greed 20)

(pedantism 10)
(hunger-tolerance 5)
(thirst-tolerance 20)
(fatigue-tolerance 20)
(courage 25)
(aggression 40)
(impulsiveness 30)
(articulateness 40)
(extravertedness 50)
(loquaciousness 40)
(curiosity 55)))

(inventory nil))
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Appendix 2. Examples of PLAN representation in POPLAR 1.3.

(dbcr exp PLANS PSI
(ID PSI)
(Type PLANS)
(Top-level-flag yes)
(IS ((Plan-Selector Fight Wait-and-See))) ;Flee Hide
(With (Actor Adversary))
(COND ((Plan-Selector '(Fight Wait-and-See) ;Hide Flee

current-plan)
(Fight Actor Adversary)
(Flee Actor Adversary)
(Hide Actor Adversary)
(Wait-and-See Actor Adversary)))

(Preconditions (and (member 'Adversary (getpath ABB '(OBJECTS-PERCEIVED)))
;Adversary is among objectb perceived by the Actor

(or (= 'Actor 'self)
(and (structurep Actor)

(not (structurenamep 'Actor))
(= (getpath (eval Actor) '(type) 'person))))))

-Actor is either "self" or any instance of person
(Rating-function (rating-func-PS1)))
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(dbcr exp PLANS Plan-Selector
(ID Plan-Selector)
(Type PLANS)
(Top-level-flag no)
(IS (primitive))
(Action-for-primitive (Schedule-of-plan 'list-of-plans 'calling-plan))
(With (list-of-plans calling-plan))
(Time 1) )

(dbcr exp PLANS Fight
(ID Fight)
(Type PLANS)
(Top-level-flag no)
(IS (Find (Controll (Find ! (Control2 (Get)))) (Control3 (Move ! Attack))))
(COND ((Find Actor (getpath Adversary '(weapon-against))

(getpath Actor '(inventory)))
(Find Actor (getpath Adversary '(weapon-against))

(getpath ABB '(OBJECTS-PERCEIVED)))
(Get Actor (car result-find)

(div (distance Adversary (car result-find))
(getpath Adversary '(speed))))

(Move Actor (prog (weapon-range)
;position to Move to
(cond ((<= (distance Actor Adversary)

(setq weapon-range
(caddr (assoc (getpath (eval (car result-find))

'(type))
(getpath (eval Adversary)

'(weapon- against))))))
;if distance between Actor and Adversary is less
;(or equal) than the range of the Actor's weapon
;then Actor doesn't need to move towards Adversary

(return (getpath (eval Actor) '(position))))
(t (return (calculate-position Actor

Adversary weapon-range)))

(Attack Actor Adversary (car result-find))))

(Control ((Controll (Fight-Controll Actor Adversary))
(Control2 (Fight-Control2 Adversary))
(Control3 (Fight-Control3))))

(With (Actor Adversary))
(Rating-function (rating-func-fight)))
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(defun Fight-Controll (Actor Adversary)
(cond ((not (= (car ABB.CURRENT-PATH.Status)

'succeeded))

t)
;EITHER the last executed plan (which is Find) failed

((= (cadar Adversary.weapon- against)
(cadr (assoc (car result-find).type

Adversary .weapon- against)))
nil)

;OR actor's current weapon is NOT the most efficient weapon
against this adversary

((lessp
(div (times (distance Actor Adversary)

(diff (cadar Adversary.weapon-against)
(cadr (assoc (car result-find).type

Adversary .weapon-against))))
Actor.character-traits.impu Isiveness)

fight-controll-threshold))
;OR even if the actor does not have the best weapon, he may decide not to
;look for a better one - if the distance between him and the adversary
;is too small, if the actor is very impulsive or if the weapon is not
;much worse than the best one

(defun Fight-Control2 (Adversary)
(cond ((null (cadr result-find)) t)

;no weapon was found in actor's possession
((greaterp (cadr (assoc (car result-find).type

Adversary weapon- against))
(cadr (assoc (cadr result-find).type

Adversary. weapon- against))))
;the weapon that was found "around" is BETTER than
;the weapon in actor's possession ]
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Appendix 3. Examples of POPLAR 1.3 rating functions.

A. The rating function for the Preserve-Self-i goal (and top-level plan)

(defun rating-func-PSL (actor adversary)

(fix (div
(times

(calculate-fear actor adversary)
actor. aggression)

actor. courage)))

(defun calculate-fear (actor adversary)

(fix (div
(times adversary.orientation

(add adversary.niass adversary.speed)
adversary.power
adversary .aggr
adversary. fearsomeness)

(times (fix (addi (log (distance actor adversary))))
actorcourage
actor.power
(add actor-mass actor.speed)))))

B. The rating function for the Fight intermediate plan.

(defun rating-func-fight (actor adversary)

(fix (div
(times adversary. weapon- against. .effi cien cy

actor.courage
actor.power
(addi adversaryinjury)
(expt actor. aggression 2))

(times
(calculate-fear actor adversary)
adversary .power
(addi actor.injury)
ad versary fearsomeness
(add 1 actor. fatigue)))))
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Appendix 4. HISTORY in POPLAR 1.3.

;this is the way HISTORY looks at the end of the example run of 5.4.

POPLAR> HISTORY
((IngestO EatO PS20)
(Takeo GetO EatO PS20)
(MoveO GetO EatO PS20)
(Geto EatO PS20)
(Findl EatO PS20)
(Findo EatO PS20)
(EatO PS20)
(Plan-SelectorO PS20))

Appendix 5. BLACKBOARDS in POPLAR 1.3.

Typical contents of the worldand the actor blackboards.

POPLAR> WBB
(World-Blackboard (I) WBB)

(NEW-INPUTS trolli apple2 crocodile2)

(TIME (Base-Time (ID Time)(act-time 17))))

POPLAR> ABB
(Actor-Blackboard (ID ABB)

(OBJECTS-PERCEIVED (troil2 sword l gold-nugget2))
(STATES-PERCEIVED (hunger fatigue))
(AGENDA PS14 PS22 GTR4 Agenda-Scheduler)
(CURRENT-PATH (find7 fight3 PS14)))
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Appendix 6. Examples of PLAN representation in POPLAR 2.0.

(deffiavor Plans (id
is
top-level-flag
with
status
satisfaction-cond
param-binding
real-world- flag)

0
:settable-instance-variables
:gettable-instance-variables
:initable-instance-variables
)

(defflavor P ((id P)
(is '((Plan-Selector Fight Flee Hide Wait-and-See)))
(top-level-flag 'yes)
(with '((agent actor)(object adversary)(instrument weapon)))
(status 'init))

(Plans)
:settable-instance-variables
:gettable-instance-variables
:initable-instance-variables
)

(defmethod (P :init) (options)
(setq param-binding '((Plan-Selector (Fight Wait-and-See Hide) ,id)

(Fight ,(a.ssoc 'agent with)
,(assoc 'object with)

(weapon nil))
(Wait-and-See ,(assoc 'agent with))
(Hide ,(assoc 'agent with)

,(assoc 'object with)))
satisfaction-cond '(not (member (quote ,(cadr (assoc 'object with)))

(send ABB :objects-perceived))))
;goal P is achieved when Adversary is not among
;the objects perceived by Actor

(defmethod (P :rating-function) ()
(let* ((actor (eval (assoc 'agent with)))

(adversary (eval (assoc 'object with)))
(dist (distance actor adversary))

42



(adv-mass (send adversary :mass))
(actor-mass (send actor :mass))
(orientation (cond ((equal (send adversary :orientation) 'yes)

2)
(t 1)))

(adv-power (send adversary :power))
(actor-power (send actor :power))
(actor-courage (send actor :courage))
(adv-speed (send adversary :speed))
(actor-speed (send actor :speed))
(adv-aggr (send adversary :aggression))
(actor-aggr (send actor :aggression)))

(fix (div (times orientation
(add adv-mass adv-speed)
adv-power
adv-aggr
actor-aggr
(send adversary :fearsomeness))

(times (fix (addi (log dist)))
actor-courage
actor-courage
actor-power
(add actor-mass actor-speed)))

(defflavor Find ((id Find)
(is '(Locate (Plan-Selector Get)))
(top-level-flag 'no)
(with '((agent actor)(object obj)))
(status 'init))

(Plans)
:settable-instance-variables
:gettable-instance-variables
:in itable- instance- variables)

(defmethod (Find :init) (options)
(setq param-binding '((Locate ,(assoc 'agent with)

,(assoc 'object with))
(Plan-Selector (Get) ,id)
(Get ,(assoc 'agent with)
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(object obj)))
satisfaction-cond '(member (cadr (assoc 'object with)))

(send (eval (cadr (assoc 'agent with)))
:inventory))

;goal Find is achieved when Actor has Object
;in his possession

(defmethod (Find :preconditions) ()
(cadr (assoc 'object with))
-the object is specified (Actor 'knows' what is to be found))

(defflavor Take ((id Take)
(is '(physical-primitive))
(top-level-flag 'no)
(with '((agent actor)(object obj)))
(status 'init))

(Plans)
:settable-instance-variables
:gettable-instance-variables
:initable-instance-variables)

(defmethod (Take :init) (options)
(setq satisfaction-cond '(member (cadr (assoc 'object with)))

(send (eval (cadr (assoc 'agent with)))
:inventory))

;goal Take is achieved when Actor has Object
;in his possession

(defmethod (Take :preconditions) 0
(and (member (cadr (assoc 'object with))

(send ABB :objects-perceived))
;Object is among the objects perceived by Actor

(equal (send (eval (cadr (assoc 'agent with))) :position)
(send (eval (cadr (assoc 'object with))) :position)))

;Object and Actor are on the same position

(defmethod (Take -action-for-primitive) ()
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;the part of the code that maintains the graphic
;part of the program is omitted

(let ((actor (cadr (assoc 'agent with)))
(object (cadr (assoc 'object with))))

(send (eval actor) :set-inventory
(cons object

(send (eval actor) :inventory)))
;add Object to Actor's inventory

(format t "-& a a a a -&"
object

"is now in"
actor
"'s possession.")

(send ABB :set-objects-perceived
(delete object (send ABB :objects-perceived)))

))
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PROVIDING INTELLIGENT ASSISTANCE

IN DISTRIBUTED OFFICE ENVIRONMENTS'

Sergei Nirenburg

Colgate University

Victor Lesser

University of Massachusetts

Abstract. We argue that a task-centered, an agent-centered and a cognition-
oriented perspective are all needed for providing intelligent assistance in distri-
buted office environments. We present the architecture for a system called
OFFICE that combines these three perspectives. We illustrate this architecture
through an example.

1. Introduction.
In this paper we describe OFFICE, a system that provides intelligent assistance in the
office environment. A schematic diagram of the type of system we are proposing is
shown in Figure 1.
In this diagram the office worker operating together with his/her workstation constitute
one node in the office problem solving network. The initiative in such a problem-
solving environment is mixed: it can be originated by the office worker performing a
low-level task or specifying a high-level goal to be accomplished or the office system
OFFICE requesting the worker to perform a task. Thus, we see OFFICE as an intelligent
qs,.;stant to the office worker.

We argue that a task-centered, an agent-centered and a cognition-oriented perspective
are all needed for providing intelligent assistance in distributed office environments. We
need knowledge from each of these perspectives in order to support not only effective
local interaction between OFFICE and the office worker, but also to coordinate coopera-
tive problem solving among the nodes in the system. Coordinating problem solving is
an especially difficult task, given the semi-autonomous nature of processing at each
node; the bandwidth of the communication channel (which makes it not feasible for
nodes to have a complete global view of problem solving in the network); the diversity
of the types of knowledge necessary for coordinating and scheduling office activities;
and the necessity to provide guidance to the office worker about how to prioritize his
own tasks so that they are coherent with the goals of the whole system.

I This work was supported by the Air Force Systems Command, Rome Air Development Center,

Griffiss Air Force Base, NY 13441-5700, and the Air Force Office of Scientific Research, Boiling Air
Force Base, D C 20332 under contract number F30602-85-C-0008
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We s,,:. the coordination problem as breaking down into a number of subproblems,
which include managing resources; equalizing workload distribution; managing goal
conflicts; maintaining a proper level of redundancy in task execution and especially in
information flow; analyzing dependencies in the sets of goals, plans and events, etc.
Automation of any of the above tasks clearly involves manipulation of many types of
knowledge, both domain and control.

COMMUNICATION NETWORK

transmission request for
of hihg-level service
view of local - - -

activities coordinating
problem solving

cooperative
dialogue LOCAL

DB

understand WORKSTATION

user tasks TOOLS
EXPERT SYSTEMS

generating tasks

producing data

office worker

Figure 1. A node in a network of cooperative office workstations.
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To illustrate the problem of local scheduling that takes into account global coherence,
consider an office consisting of an executive, E, and his/her secretary, S. Suppose, E is
dictating letters to S, and the telephone rings. S answers, and the call appears to be
about a very important shipment, and S is asked to provide some information about it.
The scheduling choice here is between continuing with the letters (task Ti) and per-
forming the request that came over the phone (task T2). We want our system to con-
sider a number of factors here, including the relative importance of the tasks (say, a
number of people may be idle in the company because of the lack of raw materials that
are to be shipped), the time limitations (suppose, the information is needed before the
end of the business day, and it's already 4 p.m.; also, the estimated time of finding the
requested information), personal characteristics of S and E, etc. If the secretary were
scheduling purely locally, he/she may prefer to schedule T2, but knowing that E will be
detained by her doing so, S may prefer T1 based on global coherence considerations. S's
knowledge about personal characteristics of E can also be a factor: if E is very cons-
cious of his/her status and importance, then the decision of scheduling T1 is even more
strengthened; if not, and if S has the characteristic of being assertive, T2 may be pre-
ferred, after an explanation to E.

In what follows we, first, trace the project's genesis from three research projects in con-
nected fields and discuss its functionality. Second, we describe how an office can be
modelled in a distributed computer system such as OFFICE and describe its architecture
and the basic processing cycle. Finally, we give an example of OFFICE operation where
we concentrate on its reasoning capabilities.

The Task-Oriented Perspective.

Our initial effort in developing an expert system in the office domain is the task support
system POISE (Croft et al., 1983). POISE has been designed to support office workers in
their problem solving activities through the use of plan recognition and planning In the
plan recognition mode the system obtains messages about certain atomic events (such
as too! invocations) and tries to determine into which of typical tasks known to the
system this event fits. In this manner POISE is able to monitor the activities in an office,
predict future activity and detect errors. If, as a result of the monitoring, the system
understands the user's task, it can in principle take over its completion. This task com-
pletion mode is integrated with the planning mode of operation. In the planning mode
POISE is supplied with a typical tasks and its parameters and tries to execute as much
of it as possible, based on its knowledge of the task structure and the status of domain
objects in a semantic database.

POISE's knowledge takes the form of an hierarchy of typical tasks. Each task is
represented by a precondition statement that defines the necessary conditions for its
execution; a goal statement that specifies the intended effect of the task; the sequence of
subtasks needed to be performed in order to accomplish the task and the constraints
among the parameters of the subtasks and those of the task. See Figure 2 for an exam-
pie.
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PROC Purchase-items (Purchasing Amount It-ms Vendor)
DESC Procedure for purchasing items with non-state funds
IS Receiv e- purchase- request

I (Process-purchase-order I Process-purchase-requisition)
I Complete-purchase

COND
Process-purchase-order Amount = Receive-purchase-request Amount
OR
Process-purchase-requisition. Amount = Receive-purcnase-request.Amount
Process-purchase-order Items = Receive-purchase-request Items
OR
Process-purchase-requisition Items = Receive-purchase-request Items
Process-purchase-order Vendor = Receive-purchase-request. Vendor
OR
Process-purchase-requisitionVendor = Receive-purchase-request Vendor
Process-purchase-order.Amount = Complete-purchase Amount
OR
Process-purchase-requisition Amount = Complete-purchase.Amount
Process-purchase-order Items = Complete-purchase Items
OR
Process-purchase-requisition Items = Complete-purchaseltems
Process-purchase-order Vendor = Complete-purchase.Vendor
OR
Process-purchase-requist tion. Vendor = Complete-purchase Vendor

WITH Purchaser = Receive-purchase-request Purchaser
Amount = Receive- purchase- requestAnount
Items = Receive-purchase-request Items
Vendor = Receive-purchase- request Vendor

Figure 2. A plan in POISE

POISE plans are structured so that they in principle allow concurrent execution of sub-

tasks of a task. Straightforward transformation of POISE into a distributed system can-

not, however, be performed. Since POISE does not have a developed agent-oriented per-

spective, there is no way in it to express a fact such as 'requests made by the manager

of the office have priority over those made by other workers' or the fact that even

though certain workers are better at doing certain types of jobs, if they are not avail-

able to do a job of this type, then other workers have to be assigned this responsibility.
There is also no way of talking about seemingly independent tasks being actually parts

of a cooperative problem solving situation. This includes the considerations of arbitra-

tion of competing claims for limited resources.

POISE does not distinguish or reason about the agents' roles and the objects in plans.

Thus, for instance, it does not have the possibility to understand that an unusual event

happened if it gets the message that the president of a company typed a letter (and not

a secretary). Therefore it cannot infer that the secretary may have a day off or that a

goal must be instantiated of changing workload distribution among the employees.
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Another deficiency of POISE is that the plan recognition and planning architectures are
not designed for being distributed and assume a global blackboard and a single locus of
control. POISE gives us some ideas about what an intelligent assistant could be but its
architecture is not appropriate for use in a distributed environment and it lacks a dis-
tributed agent-oriented perspective.

The Distributed Agent-Oriented Perspective.

One of the research areas where we can look for ideas of how to implement the distri-
buted agent-oriented perspective is the field of distributed Al. One of the current
approaches there is the study of functionally accurate, cooperative (FA/C) distributed
problem solving (Lesser and Corkill, 1983; Corkill, 1982; Durfee et al., 1984, 1985).
With this approach, a problem is solved in cooperation by a set of semi-autonomous

processing nodes (agents) that may have inconsistent and incomplete local databases.
each node independently generates tentative partial solutions, communicates them
through a network to other nodes, receives messages (partial solutions, goals, plans and
facts) from other nodes, and modifies its processing in accordance with new input. The
experience of this work has shcv"n that the control problem is difficult; that the net-
work communication is both difficult and computationally expensive; most importantly,
it was found that the key to global coherence is having sophisticated agents who can
reason about their own view of processing as well as the views of other agents. They
have developed a system in which each node is guided by a high-level strategic plan for
cooperation among the nodes in the network. This plan, which is a form of metalevel
control, is represented as a network organizational structure that specifies in a general
way the information and control relationships among the nodes. Examples of this infor-
mation include static priorities among local tasks, to whom and what information to
communicate and how to prioritize tasks that have been requested by other nodes
versus those that were locally generated.

Other work by Smith and Davis (1981) has focused on the knowledge and the protocols
necessary for nodes to decide in a distributed way how to allocate subtasks to other
nodes. This involves a two-way bidding protocol in which the contractors (taking on
the task perspective) and bidders (taking on an agent perspective) communicate to
determine the best task allocation.

The work by Lesser et al. focuses on how to do local scheduling given a static task allo-
cation that may redundantly allocate tasks among nodes, while Smith and Davis focus
on dynamic task allocation. The office domain requires an integration of both
approaches together with augmenting the knowledge used by both approaches for
scheduling. The office domain also presents challenges to both approaches because of
the tighter and more complex interactions among agents that exists in this domain,
compared to the distributed interpretation dom,.in from which 'both of the above
approaches evolved.

50



The Cognition-Oriented Perspective.

The distributed problem solving approaches described above concentrated on the archi-
tecture of the network and the nodes, with the view of organizing the control structure.
The types of knowledge necessary for control and communication in OFFICE are studied
in the field of cognitive agency research (e.g. Georgeff, 1984, Moore, 1985, but mainly
Nirenburg et al., 1985, 1986). The view of the world in this field is that cognitive agents
are immersed in a world which is non-monotonic, in the sense that changes in the world
can be introduced not only because of the activities of a single agent but also through
uncontrolled external events. Agents are capable of a variety of cognitive tasks. They
can perceive objects and events in the world. They possess a set of goal types and
means of achieving goals of these types: plans. They perform goal and plan generation,
selection and execution in complex situations in which many goals and plans coexist
and compete for the attention of the agent's conscious processor.

The study of the knowledge that underlies the reasons for particular choices of goals
and plans by an agent (in other words, reasons for scheduling and communication deci-
sions) is the central theme of this approach. This knowledge is claimed to involve such
factors as personality traits, and physical and mental states of the agent, in addition to
the knowledge about the domain situation and the typical tasks and goals. Our
approach is to use all the types of knowledge discussed in the cognitive agency
approach within the architectural framework inspired by the distributed Al research.

2. An Architecture for a Distributed Office System.
We present here, through an example, an architecture for an intelligent assistance sys-
tem that integrates the task-, agent- and cognition-oriented perspectives.

2.1. Representing an office.

An office is modelled as a network whose nodes are interpreted as office workers and
edges, as communication channels. Every node in the network is a complete problem
solver that consists of an office worker and his/her workstation. Following POISE,
OFFICE deals with typical activities in a university-based research project (RP), namely:
purchasing equipment, hiring and travel. The types of agents in the RP office include
Principal Investigator (PI), Research Associate (R.A), Graduate Student (GS), Secretary
(S), Vendor (V) and Accountant (A). A typical instance of a project may involve 1 PI, 2
RA's, 6 GS's, 1 S, 3 V's (e.g., DEC, Symbolics and TI) and and 2 A's (say, one in
Accounts Receivable and one in Personnel).
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Figure 3 shows the communication channels for the RP office.

GS

P1 bRA

S

A V

Figure 3. The network of processing nodes in a model of an RP office.
The arrows illustrate authority relationships (see below).

Every node in the oflice network is aware of its responsibilities to carry out parts of cer-
tain plans. They also know who or where from they can and should seek information
that is necessary for them to perform their tasks (recall that information about the typ-
ical agents for all types of tasks is among the knowledge that every agent possesses).

At any moment t each agent in OFFICE has an agenda of current goals or, more pre-
cisely, of current goal instances, as illustrated in (1),

PU! ,PU,, IIIJ, ,TRI 1)

where PU', HIP and TRk stand for instances of goal types Purchase, Hire and Travel,
and ai designate subsets of network nodes that are working cooperatively on particular
goals. Intuitively, at any given moment the office workers are pursuing a number of
goals, working in teams. Note that some such goals can be in conflict or can compete
for resources. Therefore, the agents must have means of resolving these conflicts.

The architecture of an agent in OFFICE is illustrated in Figure 4. A frame-based
representation is used for objects, goals, plans and actions, including messages. Plans
are represented in extended EDL (ef. Nirenburg et al., 1985). An agent has knowledge
about the goals it is typically responsible for as well as about plans that are typically
used to accomplish these goals. (If node A has a goal G on its agenda, then A is
responsible for achieving G.) It also has the knowledge about the current state of its
goal agenda, as well as a subset of the contents of other agents' agendas. Scheduling
knowledge used by the agent to select goals and plans for processing is represented as a
set of condition-action rules. The agent also is aware of the authority relationships in
the office, illustrated in Figure 3, that are part of the agent's scheduling knowledge.
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(beneficiary Research-Project)
(Supergoals Conformity- between-Workers- and- Work-Amount

Use-All-Resources-Available)
(Trigger (or (sum of expenditures is less than available funds)

(there are less workers than needed to do work)))

(goal PURCHASE
(Typical-Responsible-Agents PI)
(Typical-Plan Purchase-plan)
(time-scale days)
(importance 1)
(beneficiary (PI S RA GS)) ,any member of RP
(Supergoals Get-Equipment

Use-All-Resources-Available)
(Trigger (and (there are funds available)

(the beneficiary's resources are incomplete,
compared to the typical resources allocated
to this role-holder)))

Figure 5. The goals HIRE-PERSON and PURCHASE.

(Purchase-plan
(icon PU)
(With ((Agent RP member)

(Object POBJ) ,is not specified at the moment of
plan instantiation

(Amount int) - - "
( ,.))

(is ((specify-item-to-buy (agent = RP member
object = item
approx-price = int))

(make-document (agent = RP member
doc-type = purchase-request
object = item))

(communicate (agent = RP member
destination = Secretary
object = purshase-request))

(plan-selector ((process-purchase-order (agent = Secretary
object = item))

(process-purchase-requisition (agent = Secretary
object item)))

,both plans are compound
(complete-purchase (agent = Secretary

object = item))

(preconditions (Agent has money Vendor has Object))
(effects (Agent has less money

Vendor has more money.
Agent has Object))
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(Process-Purchase-Order
(with (agent secretaxy

object - item
destination = vendor
price = int))

(preconditions (approx-price < $250))
(is (make-document (agent = secretary

doe-type = purchase-order
object = (item vendor)))

(communicate (agent = secretary
object = purchase-order
destination = vendor)))

(Complete-Purchase
(with (agent= secretary

object item
source vendor))

(is (# (communicate (agent = vendor
destination = secrttary
object = item))

(communicate (agent vendor
destination = secretary
object = bill)))

(check-goods (agent = secretary
object = item))

(plan-selector ((pay-for-goods (agent = secretary
destination = vendor
object = item
amount = bill.amount)

(cancel-goods (agent = secretary
destination = vendor
object = item
amount = bill.amount))))

(make-document ;a primitive plan
(with (agent = person

doc-type = purchase-request I bid-request I purchase-order
disbursement-form I item-rejection-form Icv Ioffer

destination = person I organization
object = (item, price ..) ,parameters that are mentioned in

;the document

(is primitive)
(effects ) ,the document exists

(check-goods
(with (agent - person

object =-item))
(is primitive)
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(Communicate
(with (agent = person

destination = person
object = message
type = assertion I question I order
instrument = medium))

,medium is a list of phone, mail, csnet, etc.
(is primitive)
(action-for-primitive))

(Get-Info
(with (agent = person

object = message
was-invoked-by = person3
instrument medium))

(is (plan-selector (ask-track (agent = personl
destination = person2
was-invoked-by = person3
instrument = medium))

find-track (agent = person
object = message)))

(effects (communicate (agent = personl
destination person3
object = message
instrument = medium)))

Figure 6. A sample of OFFICE plans.

Local and Global Scheduling Knowledge

A special part of the knowledge in OFFICE is the knowledge about scheduling and prior-
itizing activities by the nodes in the network. A part of the scheduling knowledge is
static, that is, is considered true irrespective of the circumstances in which the schedul-

ing takes place. The other portion of the scheduling knowledge is dynamic in that it
takes into account the presence of other goals on the node's agenda and the suggests
the ways of dealing with goal conflict.

The static part of an agent's scheduling knowledge includes the authority and responsi-
bility structure of the office and the profiles of actual workers in specific roles within
the organization. The latter includes both the workers' stated attitudes and preferences
with respect to the types of jobs they are performing and their personality profiles, as
understood by the current agent, on the basis of which the above attitudes and prefer-
ences can be inferred.

The dynamic part of this knowledge includes a snapshot of problem solving activities
from the current agent's perspective; a representation of time and other resources; and
a set of operational rules that contribute to the task of scheduling. In this paper we will
present these rules as a set of scheduling heuristics, bypassing, for the sake of clarity
and understandability the actual formalism in which they are expressed. The scheduling
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heuristics are as follows:
1. Static priorities are stated for all the types of top-level goals. The instances of

goals with higher static priorities will be preferred. Thus, for instance, Purchasing
can be declared more important than Hiring.

2. The more time a goal spends on the agenda, the higher the priority it acquires.
3. The less time the accomplishment of a goal will take (as estimated by an agent),

the higher the priority it acquires.
4. The smaller the effort needed for the accomplishment of a goal (as estimated by an

agent), the higher the priority it acquires. This rule measures effort in terms of
both the amount of energy exertion on the part of the agents and the number of
intermediate steps (plans) still estimated as needed to accomplish the goal.

5. If a precondition for a plan selected to achieve a goal is false, the goal's priority
goes down; however, for specific types of preconditions and nodes a new goal of
satisfying this precondition can be established.

6. The higher the authority of the node responsible for a goal, the higher the priority
it acquires.

7. Beliefs about the agendas of other network nodes weigh less in the decision process
than the contents of own agenda. For example, if the level of authority responsible
for a goal G is inferred by a node then it will increase the priority of G to a lesser
degree than in the case when the authority level was explicitly obtained as input.

8. If the accomplishment of a goal satisfies preconditions for the execution of a plan
(or a number of plans) leading to the achievement of other goals (on any of the
goal agendas in the network), the priority of the goal is considered higher.

The influence of prioritizing rules based on the above scheduling heuristics is calibrated
to produce a general dynamic priority for every goal on a node's agenda.

2.2. How Do the genL. "p,;i - t'
A cycle of processing by each agent involves a consecutive invocation of the perceptor,
the goal generator, the scheduler, the planner and the executor (cf. Figure 4).
The perceptor
obtains as input (either through the network or from the office worker) messages about
changes in the world that were received since the previous time cycle (changes are vari-
ous new. states, including results of actions performed by agents in the system).
Input messages are classified according to their speech act character. ,Messages can be
either assertions or requests. Assertions can be definitions, opinions, facts, promises,
threats and advice. Requests can be questions (request-info) or commands (request-
action). Commands are orders, suggestions or pleas. This classification is needed to
improve the understanding capabilities of the system (as compared, e.g., with POISE).
Also, it allows a clear way of setting goals for the nodes in the network.
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Next, the perceptor 'understands' these actions in terms of plans they are parts of and,
correspondingly, in terms of what was the goal that the agent of that action pursued.
This step embodies the plan recognition activity of the system, since, in the general
case, it must understand plans of others in order to perform its own plan production.

The goal generator
updates the agenda of the node's goals due to new inputs. Thus, the arrival of the fol-
lowing input:

(mesage-14
(instance-of message)
(speech-act order)
(sender P- I)
(receiver Secretary-33)
(proposition (communicate Secretary-23

Vendor- 101
'what is the price of desk-22?'
Phone))

will lead to the generation of the low-level goal instance 'Get-Info-34' that will be

fulfilled when the secretary knows the price of the desk. The plan selection for reaching
this goal also is specified in the message: using the telephone. 'Get-Info-34' is added to
secretary's agenda of goals to accomplish.

There are thus two kinds of sources of goals for every node. One source is the state of
the (office) world (if there are more workers than workstations, the goal of purchasing
equipment will be generated and put on the office head's agenda). The other source, as
in the above example, is messages (requests and orders) from other nodes.

The scheduler

selects a goal to pursue from among a number of candidate goals on the agenda. It
applies condition-action rules designed on the basis of the above scheduling heuristics
and evaluates the current local state of problem solving from the current agent's per-
spective. After the scheduler finishes operation, one goal from the node's agenda is
selected for processing, and control is passed to the planner.

The planner
has the task of providing a plan for the achievement of the goal scheduled by the
scheduler. If the agent knows of a canned plan that typically leads from the current
state to the goal state, the planner simply passes the plan to the executor (see below). If
more than one plan can be used to achieve a given goal, the planner selects one of
them, based on the scheduling rules. The same heuristics that are used for scheduling
goals are also used for plan selection. This is in itself a scheduling heuristic.

The knowledge needed by the planner includes the list of plan types, the list of plans
that are believed by the node to be instrumental in achieving the goal selected by the
scheduler, and the for competing plans.
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The executor

is called after the planner selects a plan for achieving the current goal.1 It performs the
following sequence of steps:

a) creates an instance of the chosen plan (if such an instance does not already
exist) and lists it under the corresponding goal on the agenda.

b) checks preconditions of the plan; if preconditions do not hold (the plan is not
immediately applicable) then sets precondition states to be (sub)goal states; puts
them on the goal agenda (note that one of preconditions is 'to have values for all
non-optional parameters') else expands the agenda tree by substituting the current
plan by the sequence of its component plans.

c) if the first subplan in this sequence has the current node as its agent, it is pro-
cessed by the executor; if another role in the office is the agent of a subplan, the
execution of the current plan is interrupted and a value of its 'status' slot is set to
'suspended' and a corresponding message is issued to the agent of the next sub-
plan.

d) if the plan is 'primitive' the actions specified in it are performed. Then the exe-
cutor checks whether the plan is completed; if yes, the executor reports this,
through the communication channels, to the node responsible for supergoal of the
goal which the current plan helped achieve. In this way responsibility relationships
are both statically and dynamically introduced into the system.

3. An Example Run of OFFICE.
We will consider 2 top-level goals: Purchase and Hiring. The processing will be traced
from the standpoint of one specific network node, that of Secretary (S). At the begin-
ning of the run S already has a nonempty agenda of plans and goals. It also has a
representation of agendas of other nodes in the network. This representation may con-
tain mistakes, because it is mainly a result of plan understanding activities of the node.
The contents of S's agenda and S's belief about the agendas of a sample of other nodes
at the beginning of our manual trace are given in Figure 7.

This is a simplification In reality, planning and execution steps can be interleaved
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S's own agenda

AGENDA ITEM 1
Purchase-plan3 (object = terminal)

communicate (agent = S, destination = PI, object
[communicate'(agent = Vi, object = terminal,

destination = S)
communicate (agent = V1, object = bill,

destination = S)I)
check-goods (agent = PI, object = terminal!6)
plan-selector (agent S, object =

lpay-for-goods (agent = S, destination = VI,
object bill)

cancel-goods (agent = S, destination = VI,
object = (terminall6 bill))

AGENDA ITEM 2
process-purchase-order5 (object = book)

make-document (agent = S, document-type = purchase-order,
object ==book, destination = V2)

communicate (agent = S,object = purchase-order, destination = V2)

Secretary's beliefs about Pi's agenda:

AGENDA ITEM 1.
Purchase-plan3 (object = terminal16)

complete-purchase (agent = PI, object = terminall6)

AGENDA ITEM 2
HIring-plan2 (RA)

evaluate (agent = PI, object = candidate3)
make-document (agent = S, object = offer, destination = candidates)
communicate (agent = S, object = offer, destination = candidates)
select (agent = candidate, object = accept/rej)
make-doc (agent = candidate, object = accept/rej)
communicate (agent = candidate, object = accept/rej)
plan-selector (agent = S, object =

acceptance-track rejection-trackl)

S's representation of RAI's agenda

AGENDA ITEM I
PUI (object = bookil)

process-purchase-order (agent = S, object = bookil)
complete-purchase (agent = S, object = bookli)
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An ageada item consists of the name of a goal and the names of those of the plans
selected for its accomplishment that are not yet (completely) executed, with the bind-
ings for their parameters. Plan names are printed in bold. Plan names with numbers
appended represent plan instances. The above agendas say that the secretary has the
plans to facilitate the purchase of a terminal and to facilitate purchasing of a book
asked for by a research associate (Purchase-plani); S believes PI has plans to hire a
research associate (Hiring-plan2) and to facilitate the purchase of a terminal (Purchase-
plan3). S also believes that RAI has the plan of purchasing a book (Purchase-plan1). PI
is responsible for both g on its agenda; S is co-responsible for the Purchase-plan3. In
contrast, S is responsible only for a subplan of the top-level plan Purchase-plan1. RA1
is responsible for Purchase-plan1.

Figure 7. Sample Contents of the Agendas of an Agent.

Now let us trace the operation of OFFICE through a number of time slices starting with
the above state, observing the decision S makes and the changes to its agenda due to
new inputs.

------ time slice 1

Suppose, there is a message posted on the secretary S's blackboard : messagel9 from
research associate RA2, of type order, that asks to get a price for a desk from vendor V
by phone. This message is received by S and a new goal, GET-Ii'NO11, is generated and
put on its agenda. S also updates its representation of RA2's agenda by adding there
the (inferred) plan of buying a desk. Note that the inferred Purchasing goal is not on
S's agenda; therefore, S is not responsible for it.

Next, the scheduler must choose one of the 3 goals on the agenda (PU3 P-P-O5 and GET-
INFOIi) for immediate processing.

In our example the Get-Information goal will be chosen. This happens because the Pur-
chasing goal is out of contention since it is in the stage of waiting for ordered goods
(terminal) to come (Scheduling Heuristic 5). The choice is, therefore, between the
Process-Purchase-Order and the Get-Information. P-P-O has, of course, been on
agenda for a longer time (Scheduling Heuristic 2), but GET-INFO can be performed by
just placing a phone call, while P-P-O requires typing out a form (Scheduling Heuristic
4). There is no rush on the book order, so the goal that can potentially be achieved
sooner (Scheduling Heuristic 3) is selected (Scheduling Heuristics 2 and 3 prevail in this
case over Scheduling Heuristic 4).

Next, a plan get-info is found for achieving the chosen goal; this plan is instantiated
and the executor runs its first subplan: communicatel5 (agent = S, object = mes-
sage34, proposition = message19.proposition, destination = V2, type = question,
instrument = phone). As a result of that subplan, the vendor is informed about the
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question.

time slice 2-

New inputs: a) Message20: a terminal and a bill arrived from vendor V1 b) Message 21:
the price for the book arrived from V2.

The messages are perceived and understood as the execution of specific plans traced on
S's agenda: a) refers to the two communicate plans that are objects of the next com-
ponent of the plan chosen for the Purchase3 goal instance; b) is the response to mes-
sagel9 above.

The above messages do not lead to the generation of any new goals. The schedukr now
has the following choice: PU3, P-P-OS and GET-INFOI1 P-P-Os has the same status as at
the previous cycle. PU3 is now at a point where the PI must be told that preconditions
are met for the execution of the check-goods plan (because the terminal arrived). Only
one action remains to be performed in GET-INFOIl, and that is to relay the information
obtained from V2 to RA2

At this point GET-INFOLI is chosen for the following reasons. S knows that PI is
currently in a meeting with a candidate for hiring. Even though the importance of the
check-goods plan is relatively high (Scheduling Heuristic 1), it cannot be performed at
this point (the presence of PI is necessary) and is therefore rated low. GET-INFOIi is
closer to completion than the other goals. In accordance with Scheduling Heuristic 3, it
is selected, and S sends the plan (communicate agent= S, Destination - RA2,
Object - Message2l.proposition) to the executor.

After this plan is executed, the entire tree for GET-INFOUl is deleted from the agenda.

4. Summary and Status.

We hope we have shown that in order to provide assistance in distributed office
environments we need to integrate the agent-centered, the task-centered and the
cognition-oriented perspectives. It is important to carefully choose the task and del-

ineate the world corresponding to it. It is equally important to provide an architecture
that can support sophisticated scheduling activities by nodes in a distributed problem
solving network. At the same time one should try to explore the sources of real-world
knowledge that is used as the basis for scheduling. In addition to the observable world
situation the scheduling algorithm must have access to the knowledge about the inter-
nal states of the processors, or, in other words, the 'personality profile' of the agents to
whom the system provides assistance.

The node-level knowledge and processors have been implemented in Zetalisp on a Sym-
bolics 3600 Lisp Machine. We are currently developing the network level of the system.
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POPLAR: A Testbed for Cognitive Modeling.

Irene Nirenburg, Sergei Nirenburg and James H. Reynolds

Colgate University, Hamilton, NY 13346

ABSTRACT

This paper presents an overview of a cognitive modeling system centered around a
personality-oriented planner, and then describes in detail the types of knowledge it
uses to make control decisions. POPLAR is a model of an intelligent actor capable of
planning sequences of control and domain actions in a simulated world that exists
independently of the planner. The world is a simplification of the 'Dungeon' computer
game environment, The actor makes control decisions on the basis of situational
knowledge as well as its personality characteristics (character traits, physical and
mental states) and its beliefs about personality of other cognitive entities in the
world. POPLAR is a step toward an Al system whose behavior is psychologically
justified and can provide the basis for an experimental testbed in cognitive modeling.

1. Setting the Stage.

The POPLAR planner is a component in a model of an intelligent actor. It is an approxi-
mation of the human actor in that:

i) like humans, it possesses multiple goals with associated plans;

ii) like in humans, its control decisions depend upon multiple sources of information, e.g.
input from the 'objective' world, its permanent character traits, its temporary physical and
mental states, and past experience;

iii) like humans, it is immersed into an 'objective' world, changes in which can be introduced
not only by the actor, but also by events beyond the actor's control, making it necessary to
deal with non-monotonicity.

We believe that the essence of an intelligent actor's cognitive activity is best described in
terms of the following loop:

1) perceive input stimuli (sensory, proprioceptive or mental);

2) generate goals connected with these stimuli;

3) schedule the most important goal instance for the given period of time: the one to which
the actor's cognitive resources are allocated;

4) choose (occasionally, create) and

5) execute plans to achiee this goal, including performance of physical, verbal or mental
actions that are components of these plans. Executions of the loop provide continuous
change and stimulation at several levels. Physical actions introduce changes in the objec-
tive world. Verbal actions can provide sensory input for other intelligent actors in the
world. Mental actions introduce changes in the world of the actor himself (his event
memory and beliefs). So, the actions by the actor and other actors in the objective world
change this world, and therefore, provide new inputs for the system.



POPLAR offers a solution to above loop components 2), 3), the non-creative part of 4), and
the mertal action part of 5). The visual perception portion of 1) and the physical actions of 5)
are simulated through interaction with the human user of POPLAR.

In the current implementation there is no natural language capability (i.e. the verbal
behavior of 1) and 5) are not addressed). Nor do we tackle in any complete and principled
manner the extremely complex problem )f learning (one facet of which is the creative part of 4).

The central cognitive and archi ectural points that distinguish the current version of
POPLAR are, in addition to i) - iii) above, as follows:

A. The choice of the type(s) of knowledge for scheduling (cf. 3 above) and selecting (cf. 4
above) activities. We proceed from the assumption that in a non-trivial world these opera-
tions should be based on a psychologically justified model of human cognitive behavior.
This property makes POPLAR personality-oriented, i.e. provision is made in the present
model for introducing personality factors that influence goal generation and plan selection.

B. Decisions concerning the organization of inetaknowledge that monitors and directs the cog-
nitive processes of goal generation and plan selection. POPLAR represents such metak-
nowledge in the same framework as the domain plans (top-level, intermediate and primi-
tive). This allows them to be processed by the same reasoning mechanism.

A discussion of POPLAR's relation to other work in the field is in Section 6.

2. The Conceptual Architecture of POPLAR.

The conceptual architecture of POPLAR, as presented in Figure 1, consists of the following
modules:

1) the objective world, information from which and from

2) the regulatory system of the actor, where the non-cognitive knowledge about the actor's
character and physical and mental states is stored (cf. Norman, 1981), is obtained by

3) the sensor, which processes this input and produces, in the short-term memory (STM)
of an actor,

4) the snapshot, in which the objects currently perceived by the actor are stored, with their
parameters, to be scanned by

5) the goal generator component of the reasoning mechanism (the cognitive module) which
produces

6) the list of candidate goals, that contains all the goal instances that the actor has at a cer-
tain time, including the ones added after the new input was processed. In making its deci-
sions, the goal generator uses the data stored in

7) the actor's long-term memory (LTM,), which contains knowledge about

a) the beliefs the actor has about

- objects in the objective world, including self-beliefs

- actor's goals

- domain-specific and metalevel processes (stored as plans)

b) the acquired values the actor has about these beliefs: what is more important, when
and why, etc.

c) the event memory that embodies past experience.
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8) The scheduler component of the reasoning mechanism chooses (schedules) a goal instance
in the list of candidates and selects the appropriate plan for its achievement. The executor
component of the reasoning mechanism then attempts to execute the plan. Lower-level
primitive plans are, in fact, actions that are performed by

9) the output module; these actions can introduce changes into the world, into the list of can-
didate goals and the long-term memory.

3. The Implementation.

POPLAR is an implementation of the above conceptual schema in a concrete application
domain. It has been implemented in PEARL (Deering et al., 1981) which runs in Franz Lisp under
Unix 4.2.

The world in which POPLAR is immersed is reminiscent of that of the well-known 'Adven-
ture' or 'Dungeon' games. We represent a cave in which POPLAR's actor can find and react to
enemies, treasures, tools, weapons, food and other objects. It is important to understand, how-
ever, that POPLAR is not a game-playing system. We are in the process of applying the system
in a different domain (the office world).

At present POPLAR's actor is supplied with three basic goals:

1) 'Don't get killed', dubbed Preserve-Self-I or PSI

2) 'Don't die of hunger, thirst or fatigue', Preserve-Self-2 or PS2

3) 'Collect as much treasure as possible', Get-Treasure or GTR.

In POPLAR the system is making the decisions about whit to do next, while it is the
responsibility of the user to provide it with input and means for verificaticn of success of actions.
The user, therefore, provides the testing ground for the system's empirical experience in the
world.

With this caveat in miad, let us see how POPLAR is organized to allow its actor to 'act' in
this environment.

4. The System Architecture of POPLAR.

POPLAR's system architecture (Figure 2) represents the conceptual architecture of Figure 1
with implementation restrictions superimposed

In the current version of POPLAR the role of the objective world including the provision of
its rules, 'the laws of nature', is assumed by the human user/experimenter. The user also interac-
tively introduces and removes objects in the cave and modifies their parameters. (In future ver-
sions we intend to implement ongoing changes in the objective world generated by the operation
of if-added demons on a World Blackboard (cf. 4-2.).)

The user also either permits or forbids certain primitive operations to simulate the actor's
pragmatic experience. For example, the user might forbid the actor to pick up an object that is
'too heavy' but previously believed by the actor to be manipulable. This natural state of affairs
underscores the difference between the objective world and the world of POPLAR's actor and his
beliefs. It is also a means of modeling mistakes (a necessary first step in trying to learn how to
recover from them)

The sensor and the output block are simulated in POPLAR's monitor (though mental
actions are performed by demons (see below).

66



When the user decides to add an object to the current world, it does it by listing it on the
world blackboard (WBB), the data structure interfacing the objective world and the world of
POPLAR's actor. WBB also contains a clock which guides all temporally spread processing.

The STM of POPLAR's actor has the reasoning mechanism (the monitor and the executor
with their associated bookkeeping functions, demons) permanently connected with itt.

STM contains one-instance metaplans: the goal generator and the scheduler. STM also includes
the actor blackboard (ABB), which contains slots relating to the current state of POPLAR
actor's activities, including notably the agends, of activated goal instances.

POPLAR actor's LTMI contains his objects, plans, rating functions and history. Cf. a
detailed discussion in 4.1.

POPLAR actor's knowledge about his own regulatory system and that of others is linked in
the implementation with the representation of these objects in LTM. In addition to knowledge
about objects, LTM contains knowledge about plans, history of processing and proper scheduling
and selection.

Let us discuss the components of POPLAR in greater detail.

4.1. LTM.

4.1.1. Objects.

Several typical object frames and the semantics of their slots are described in Appendix 1.
The choice of character traits is at present empirical. However, in parallel to implementing
POPLAR, we have been conducting extensive psychological experiments seeking to establish the
set of 'primitive' personality characteristics and their mapping into more complex notions that
are used by intelligent actors in personality-based decision-making. A separate set of experiments
will determine the primitives for specifying mental states of the actor.

4.1.2. Plans.

POPLAR's knowledge about the dynamics both in the objective world and in the actor
world is represented as a set of declarative structures called plans.

Plans in POPLAR are classified into several groups (cf. Figure 3).

First, there are domain plans that describe actions in the world and metaplans that

describe the processes that manipulate other plans. These include such plans as the goal-
generator (gg), the plan-s-lector, the agenda-scheduler (as), etc. Second, there are top-level plans
whose instances appear in POPLAR's agenda as representatives of the three main goals: and

primitive plans that are no further decomposable into sequences of actions and provide the
proper framework (of preconditions, effects, etc.) for their main action.

The plans that are neither top-level nor primitive are called intermediate. Intermediate
plans are never scheduled other than in the process of expanding a top-level plan. There are no
intermediate metaplans. Also, all of the metaplans are primitive (decomposable), and two of
them, at the same time, top-level.

t The monitor, the executor and the bookkeeping functions stand out among the components of STM in that
they are not 'conscious' functions; the actor performs them 'instinctively', while of other elements of STM the
actor is consciously aware.
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To illustrate the above discussion, consider, for instance the top-level plan of dealing with
enemies, such as, in the POPLAR objective world, snakes, crocodiles or trolls. The actor can have
a number of (intermediate plan) possibilities: to fight, to flee, to hide, to wait and see what hap-
pens, etc. All of the above are decomposed into strings of lower level plans (such as get, take,
find, etc.), and the process of decomposition continues until all the final decopositions contain
only primitive plans (such as, for instance, move or take).

Plans in POPLAR are represented in a modified version of the language EDL (Bates et al.,
1981; cf. also Croft & Lefkowitz, 1984). The frame for a plan contains the following slots
(clauses):

ID the name of the plan

TOP-LEVEL-FLAG is this plan top-level?

IS contains the temporal and causal expansion of the plan

COND used to pass parameters ('propagate constraints') to lower-level
plans upward propagation will be added for the plan recognition
task

WITH specifies the parameters with which the current plan will be pro-
cessed

CONTROL contains predicates to choose whether to execute optional steps in
the plan this slot has the form of an a-list: (<(Control# <s-
expr>)> *

PRECONDITIONS predicates that allow the processing of the current plan to start;
differ in principle from CONTROL predicates by being indepen-
dent of the current context of plan processing

STATUS one of 'on-agenda', 'executed', 'succeeded', or 'failed'; used for
communications with the reasoning mechanism

ACTION-FOR-PRIITIVE if plan is domain primitive permission is requested for its comple-
tion and the main action is performed (the rest being 'effects')

TiME number of time cycles the plan takes (only for primitives) - either

integer or s-expression that evaluates to integer

RATING-FUNCTION scheduling knowledge, see below

EFFECTS auxiliary (including bookkeeping) modifications accompanying the
success of the plan

Figure 4 contains a grammar of the plans implemented in this version of POPLAR, and
Appendix 2 contains annotated examples of POPLAR plans.
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4.1.3. The Rating Functions.

The knowledge that POPLAR's actor has about the relative importance of a top-level goal
instance and the relative merits of one plan of action aimed at achieving a goal over another is
embodied in the rating functions. In the current implementation rating functions are associated
with every plan that can serve as parameters in the plan-selector and the agenda-scheduler.

The rating functions calculate a numerical value for a plan, a rating, in all situations where

a choice among plans that can be pursued is possible. They draw upon:

a) knowledge of the objects involved in an objective world situation;

b) the character traits, mental and physical states of the actor;

c) the actor's beliefs about the character and current physical/mental state of any other cogni-
tive entity participating in the situation;

d) the actor's event memory, the history of past processing.

Thus, if two actors, Actori and Actor2 find themselves in an identical threatening situation
(e.g. a snake), but one of them is more courageous (a character trait) and/or is in general not
very fearful of snakes (a situational characteristic), the actors may respond to the situation by
choosing different plans (e.g. Flee for Actorl and Fight for Actor2) or even altogether different
goals (while Actorl is likely to choose 'Preserve-Self' against the snake - because high levels of
attention to threats can be expected from actors with low courage values; Actor2 may choose,
say, an instance of 'Get-Treasure', because the snake is not serious enough a threat).

The construction of rating functions is an empirical process of gradual refinement. Even
without changing the knowledge used by the rating functions one can always manipulate param-
eters of a function to calibrate its results.

One of the objectives of the psychological experimentation conducted in parallel with this
project (cf. Section 7) is to better understand the nature and parameters of the rating functions.

Examples of rating functions are presented in Appendix 3.

4.1.4. History

This part of the actor's LTM contains his memory of past processing. In principle, history
can have a very rich structure and be used in a wide variety of ways. Special demon-type func-
tions can be defined, for example, to introduce modifications into the actor's beliefs about objects
and processes in the real world based on certain patterns in the event memoryt. This is one more
location in POPLAR's architecture where a measure of learning can and is planned eventually to
be introduced.

At present the history contains only two types of data: a) the record of all the recursive
calls to the executor in the form of paths that the processing took in the grammar of plans and
b) a list of the objects (physical or mental) found by all instances of the Find plan; this
knowledge is used to retrieve the status and the results of various plan instances. A typical
instance of history is presented in Appendix 4.

t An example. Suppose that in an internalized plan for fighting crocodiles 'stick' is listed as the best weapon.
Then during one invocation or the plan Fight (Actor Crocodile Weapon) no stick could be round, so that Actor
had to use a gun. It appeared that both the results were better and the fatigue increase was smaller. After this

plan execution was written into the history, a comparison is made (by the abore demons) and the old belief
about the stick being the best weapon is changed.
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4.2. Actor/World Interfaces: the blackboard.

As mentioned above, in the current implementation of POPLAR there are two blackboards
that facilitate links between the world and the actor.

4.2.1. The World Blackboard.
WBB is used for introducing new sensory input and managing temporal relations in the

system. POPLAR has time-triggered demons that automatically update the values of the actor's
physical and mental state based on the amount of time he engages in a certain activity.

In their simplest manifestations, the time-related modifications deal with increasing the
actor's hunger, thirst and fatigue values at predetermined independent rates. When the value of
any of the above parameters becomes greater than a predefined threshold, a message to this effect
automatically registers in ABB's 'states-perceived' slot, as a result of which at the next pass of
the monitor an instance of Preserve-Self-2 goal will be activated, and the corresponding top-level
plan will appear on the agenda.

Temporal knowledge is also used to implement a simple model of attention. A detailed dis-
cussion of this mechanism will be deferred till Section 5.

4.2.2. The Actor's Blackboard.
ABB contains information about

a) the list ('objects-perceived') of object instances that the actor has perceived in the current
environment;

b) the list ('states-perceived') of all physical states currently perceived that warrant the atten-
tion of the goal generator (e.g. the level of hunger above a threshold);

c) the agenda of all top-level plans (the representatives of the main goals) vying for the atten-
tion of the cognitive processor of the actor at any given time;

d) the stack ('current-path') of plans currently being executed (from a top-level plan to a
primitive).

In future implementations, specifically when plan recognition will be added to the repretoire
of POPLAR and the number of actors inhabiting its world will be allowed to be greater than
one, the number of AEBs in the system may grow to as many as the square of the number of
actors. This is because every actor stores his beliefs about other actors' activities in instances of
ABB attached to his representation of these other actors. Therefore. each actor theoretically can
be aware of all the other actors and contain an ABB for each, incuding himself.

A typical example of ABB and WBB contents is presented in Appendix 5.

5. The Algorithms.

5.1. The Monitor.

The top-level control function of POPLAR, the monitor, is an infinite loop (our actors do
not die - only if killed by enemies!) which performs the following tasks:

a) it maintains contact with the user (to obtain new input);

b) it starts the executor loop that consists of i) processing new input; ii) scheduling an action:
and iii) executing this action
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c) it displays selected situations in the world with the help of a (rather simple) graphic inter-
face.

5.2. The Executor.

The main bulk of POPLAR processing is performed by the executor. To understand how
POPLAR works it is sufficient to trace a cycle of its activities.

The executor is called many times during one monitor cycle. First, it processes the goal
generating plans using the information obtained by the monitor from the objective world as well
as that from the actor's regulatory system. As a result of this stage, the agenda of competing top
level plan instances is updated. Second, it executes the agenda scheduler plan select the best can-
didate plan. Finally, it executes the chosen top-level plan (this involves a number of recursive
calls to the executor). When eventually the execution ends, the result of current processing (suc-
cess or failure) is reported, and a new cycle of the monitor begins.

Omitting a few overly technical details, we can describe the activities of the executor gen-

erally as follows:

a) obtain a plan to process; if it is not a plan instance (the agenda holds only plan instances,
e.g. 'GTRI9'; whereas in clauses of plans are formulated in terms of plan types, e.g.
'Find'), create a new instance of this plan;

b) check the plan's preconditions clause; if preconditions do not hold, report failure and its
reason and exit; otherwise,

c) expand the plan by considering its is clause: call the is clause parser;

c if the is clause is 'primitive', then action-for-primitive is performed (most often
this is a request to the 'laws of nature', the user, to allow an update in the objective
world, e.g. a move by the actor; if the permission is given the processing proceeds as
specified in e) below; if the action is not allowed the processing proceeds as in e").
(Let us repeat that the semantics of this situation is that the actor's beliefs about the
objects and/or plans and/or values are somewhere wrong, as a result of which some
indication of imminent failure must be given to prevent the 'automatic' success of
most planners in situations where the internalized preconditions of a plan hold.)

c') if the IS clause is not 'primitive' the parser has to make specific control decisions: i)
whether to execute an optional subpath in the IS clause; ii) which of any possible
number of disjoined subplans to choose for fulfilling the current plan. (The ability to
choose one of a number of 'shuffled' subplans (those that can be fulfilled in any tem-
poral ,;-der) will be added to POPLAR in near future.) The knowledge about whether
to execute an optional subpath is encoded in the control slot of the plan whose is
slot is parsed. The knowledge selecting one of disjoined subplans is contained in the
plan-selector metaplan and the rating function slot of the current plan. Once it
becomes clear what member of the is clause should be processed first, the executor

d) calls itself recursively with this plan; this event is recorded on ABB (cf. 4.2.2), specifically,
in a data structure called current-path; the old content of current-path is added to his-
tory (cf. 4.1.4.).

e') if an is clause is processed to its end (cf. the special case of 'primitive' in c I above), the
status slot of the plan is set to 'succeeded' and the effects clause is evaluated;

e'l if for some reason the is clause cannot be processed to its end, the status slot is z t to
'failed' and
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f) this information is communicated to the parent plan; the current plan is discarded from the
current-path stack, and the processing of the is clause of the parent resumes. When,
eventually, the outcome of the top-level (and bottom-of-stack in current-path) plan
becomes known, then

g') if it succeeded, then the effects clause is evaluated and the corresponding top-level plan
instance is removed from the agenda (and added to history);

g ") but if it failed, then, assuming that the need that had spawned this goal has not been
satisfied, the executor creates a new instance of the same top-level plan and adds it to the
agenda instead of the failed one (which goes to history).

h) a new cycle of the monitor starts.

5.3. Modeling Attention.

The previous section described the normal flow of control in a monitor cycle. In real life,
however, an actor can hardly have the luxury of being able to finish the processing of a top-level
plan without taking in new information about the objective world. In future implementations of
POPLAR the temporal relations among plans will be elaborated to include the many possibilities
of concurrent processing (cf. Allen, 1983a, for the description of a model of time that can be
adapted for use in our model; cf. also McCue & Lesser, 1983) for a temporal logic in the POISE
system).

At present, however, POPLAR reacts to this problem as follows. When a top-level domain
plan is chosen from the agenda and passed over to the executor, its rating is used for calculating
the number of time cycles this plan will be allowed to execute without being interrupted. The
more 'important' the plan (i.e., the higher its rating) the longer it is allowed to execute uninter-
rupted. This current programming device is a rough simulation of the actor's concentration or
attention to the task. Intuitively, the more immersed one is into a task, the less one would be
inclined to be distracted by new sensory inputs. It is obvious that character traits and
physical/mental states affect the ability to concentrate.

When an interrupt occurs, the entire current-path is suspended; the instance of the top-
level plan is deleted from the agenda and another instance is created and added to it (the new
instance reflects the knowledge of the stage at which the processing was suspended; history is
used for this purpose). Then the monitor starts a new cycle.

5.4. An Example.

Suppose we want to test POPLAR's performance in the following situation of the world.
We want to put the actor in a cave with a rock, a snake and an apple and to set its h'inger well
above the detecting threshold.

POPLAR acts as follows:

a) asks the user whether he wants to remove certain objects from the world; we do not, so we
answer in the negative;

b) asks the user whether he wants to change any of the properties of the objects already
present in the world; this is the time to input the (high) value of actor's hunger;

c) asks whether the user wants to add new objects to the world; we do, since our perception
module is simulated, we submit prefabricated instances of objects to POPLAR; we write:
(rockl snakel applel).
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d) adds the above object instances to ABB.objects-perceived. Since snakes spawn the need for
protection (by virtue of their being descendants of 'creature'), the goal Preserve-Self-I is
activated (by the gg-input plan) and an instance of its corresponding top-level plan, PS10,
is added to ABB.agenda (which already contain the unique instance of the Agenda-
Scheduler plan that resides there permanently); appropriate messages are issued by
POPLAR;

e) detects, through gg-states-perceived, the actor's hunger; 'hunger' is added to ABB.states-
perceived and an instance, PS20, of the top-level plan of the Preserve-Self-2 goal is added
to ABB.agenda; appropriate messages are issued;

f) since no objects had been present in the world before, and, therefore, no changes to their
properties could be introduced, gg-objects-perceived will not be needed in this case, a mes-
sage to which effect will be issued;

g) at this point ABB.agenda is (agenda-scheduler PS10 PS20); the monitor calls the executor
with the scheduler plan, as a result of which the two domain plans receive ratings. Suppose
now that PS20's rating is higher (because the actor is very hungry and at the same time
not too afraid of snakes); this being the goal choice,

h) the scheduler is called with PS20(Actor hunger); checks its preconditions (empty!) and
expands its is clause; the plan-selector, using the rating functions in the plans Eat, Drink
and Sleep, decides to select Eat; an instance of Eat, EatO(Actor) is created and pushed onto
current-path

i) EatO's preconditions are checked (empty!), and its own is clause is expanded; this means
creating a new instance of Find, Find0(Actor food Actor.inventory), - that is, first the
actor wants to check whether he is carrying some food;

j) the controll predicate chooses whether to execute the optional Find and Get plans; the
predicate essentially returns 'true' if the previous Find failed; the optional subpath
corresponds intuitively to the situation when the actor looks around him trying to find
some food; suppose now that FindO fails; in this case,

k) Find(Actor food ABB.objects-perceived) is executed; Find's IS clause is 'primitive'; its
action-for-primitive is to record the object found; Findi finds applel;

1) next, GETO(Actor, applel) is created and pushed onto current-path: this instance's is
clause consists of Move followed by Take; (in reality, Get has three parameters, the third
being the indication of the time that the actor can spend on retrieving the object - this is
very handy as a precondition if, for example, an adversary can reach the desired object
first!)

m) MoveO(Actor Applel) is created and pushed onto current-path; ,Move is a primitive plan.
so its action-for-primitive asks the user for permission for the actor to move to the point
where applel is. We grant the permission; MoveO evaluates its effects, updating the posi-
tions of the actor and all the objects in his inventory and sets its status to 'succeeded';

n) current-path is appended to history; Move0 is popped, and the next plan in the IS clause
of GetO is pushed onto current-path: TakeO(Actor applel);

o) TakeO is primitive; its processing is similar to the processing of Move0; it succeeds, one of
its effects being that applel is added to the actor's inventory, and after manipulations with
current-path similar to those in 1), Ingest0(Actor applel) is sent to the executor;

p) Ingest is primitive; suppose we allow the actor to ingest the apple: then, after the appropri-
ate (and by now familiar) bookkeeping operations, we find ourselves at the point where
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EatO is proclaimed as succeeded; at this point we evaluate its effects and pop it from

current-path (which at the time contains only PS20, known to have succeeded);

q) effects of PS20 are evaluated (the hunger level of the actor is decreased, and a message to
this effect is issued), and with this PS20 is popped from current-path, which remains
empty; this signifies the completion of a cycle of the monitor.

6. Related Work.

In designing and implementing POPLAR a number of conceptual and technical decisions
and choices had to be made. The following is an incomplete, though representative list.

1) how does one approach, and justify, construction of a multi-faceted system when little is
known about the peculiarities of its components? Where is the starting point?

2) how might the problem of personality influences upon cognition be addressed?
3) within cognitive component, how are goals and plans related? How are they each related

to such concepts as needs, drives, performance, etc.?
4) What is the structure of the planning module in cognitive systems? How is the schedul-

ing of the cognitive system's activities performed?

5) What is the relationship between the use of internalized (canned) and newly created
plans?

6) What is the relation between plan production and plan understanding?

The realization of the above and some additional problems was instrumental in the design
stage. While not all of the decisions have been already made at this stage, our desire was to
avoid design choices that would preclude or hamper a future improvement or extension.

None of the theoretcal or design decisions were made without the influence of other, previ-
ous, related work. In this section we briefly review the bases for the various decisions as well as
mention other work on the problems we faced.

Fundamental to the development of POPLAR was the approach to the task, faced by most
cognitive modelers, of building a structure consisting of a number of distinct constituents, the
details of many of which wer (and at present remain) unknown. How does one construct a global
model when many of its components are uncertain, and each one is itself a mystery? Here we
adopted teh attitudes advocated by Haugeland (1981), who suggests that it is appropriate to
study an entire information processing system (IPS), consisting of several modules each of which
(plus the IPS itself) is a black box, without first completing the study of the components; thus,
we studied the cognitive actor even though we had not (and, obviously, could not) first provided
an account for perception and performance.

Norman (1981) was very instrumental in specifying the tasks to be tackled in cognitive
modeling. We also owe much to Anderson's (e.g. 1983) work on the architecture of cognitive
entities. Sloman & Croucher (1981) discuss the introduction of motives, moods, attitudes and
emotions in natural and artificial intelligent systems. Although no formalism is suggested for
encoding this type of information, the general thrust of the approach is valuable for those who
consider the introduction of certain personality characteristics into a class of Al systems. Wallace
(1981) addresses similar problems in the context of learning.

Uhr & Kochen (1969) is an early work that addressed similar issues. Many of the import-
nant points for POPLAR have been anticipated in that work. Unfortunately, Uhr & Kochen's
approach cannot be even called knowledge-based. It was an attempt to perform an important
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piece of research with inadequate means.

Wood (1983) discusses planning in a dynamically changing world with multiple actors. Her
system, AUTODRIVE, uses the world of the automobile driver as the domain. Although the
design of the system depends too strongly on the implementation world, the idea of interaction
between the actor and the world (in fact, the mere separation of the objective world and that of
the actor - through a program called SIULATOR) is very fruitful.

Schank & Abelson (1977) and Schank & Lehnert (1979) informally discuss and catalog
human 'including interpersonal) goals. Carbonell (e.g. 1979) discusses the use of the conc..pt of
personal goals in the context of understanding stories. Wilensky (1983) also discusses everyday
goals and metagoals, as well as various cooperative and competitive relations among them.

The relation between goals and plans is an interesting question that had to be addressed in
our work. Our solution was to use this term only for top-level goals recognized by the goal-
generators but made manifest in the system through the instantiation of a top-level plan. We did
not use the concept of goals at lower levels in planning (i.e. we did not use the term 'subgoaLing',
cf. Lesk, 1984).

It is argued (cf. e.g. Barber (1983) or Berlin (1984)) that subgoaling is preferable to the use
of 'canned' plans because if the latter are used then there is no possibility of ever achieving a
goal in a non-standard way. But in the subgoaling approach, within the current state of the art,
no unexpected results can be obtained either. To introduce these, one has to build a learning sys-
tem, one capable of creating and not only recreating. But at present the planning of the subgoal-
ing type remains no less 'canned' than the the 'forward' planning.

It seems that these two approaches to planning relate essentially in the same manner in
which backward chaining relates to forward chaining in inference making. Our opinion is that the
choice between the two is not strategically important and should reflect the peculiarities of the
domain and other 'weak' considerations, so typical for AL.

Another important issue related to goals and plans is whether to build systems that in
scheduling an action take into consideration the knowledge of how many different plans and/or
goals will be furthered by it. The main empirical body of Wilensky's book (1983) is devoted to
such issues. Cf. also Hammond (1983) for a philosophically related approach. Hayes-Roth X&
Hayes-Roth (1979) also want their planner to have this capability. Our position on this topic (cf.
also Carver et al., 1984) is that in the type of planners we are building the goal cooperation or
conflict does not play a role. We argue that to treat this topic as central in modeling planning in
intelligent actors is similar to consider such non-everyday tasks as playing chess and solving
differential equations central topics for Al. The latter methodological fallacy has been amply cri-
ticized.

General works on planning that immediately influenced this project include Stefik's work
(e.g. 1981) on metaplanning and planner architecture. Hayes-Roth & Hayes-Roth (1979) describe
a very rich planning domain and offer a good discussion of what the editors of The Handbook
of Al (Cohen & Feigenbaum, 1982, p. 519; cf. also pp. 22 - 27) call opportunistic planning. It
does not seem, however, that a non-trivial, involved implementation of the itinerary planner they
suggest is possible.

Hayes-Roth (1984) is a definitive proposal concerning the architecture for planners. It
addresses the control problem in Al systems as a whole. It also contains a comparison with other
current proposals concerning control. In its architectural part this proposal (in fact, not only this
proposal!) draws heavily on the earlier work in the HEARSAY-11 speech understanding system that
introduced and popularized the blackboard architecture (cf. Erman et al., 1980).
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The crucial idea of metalevel reasoning is discussed, with different emphases, in Stefik
(1981), Hayes-Roth (1984), Wilensky (1983) and Genesereth (1983).

The basic architecture of POPLAR has a number of common points with that of
Wilensky's planner (cf. Wilensky, lfR3, pp.22-23). The two models, however, display major
differences, notably in the attention paid in POPLAR to the problem of scheduling or in impor-
tance attributed to the idea of the independent representation of the objective world. Insufficient
attention to scheduling and to describing the planring process at the system level were prominent
among the criticisms in some reviews of Wilensky's book (cf. Russell, 1984; Berlin, 1984).

Many interesting ideas about scheduling can be found in Sathi et al. (1984) and Fox
(1983).

Work on understanding plans in the POISE (Croft et al., 1983) and Argot (e.g. Litman &
Allen, 1984) projects has helped in formulating some parts of our approach.

7. 1 and Future Development.

L'JPLAR is a working system that generates and executes a relatively small number of
plans in a rich, though simulated, environment. Its scheduling capabilities actually seem to tran-
scend the immediate necessities of the d.omain. The system is designed in such a way that both
domain planning and metaplanning are performed by one executor (that is, POPLAR can reason
about its own actions). A number of features have been included that make POPLAR a model of
a human planner in a real world.

At the same time, the possibilities of development and improvement that this basic system
offers are probably even more exciting than experimentation with the current version of
POPLAR. There are many points at which the system can be improved. Some of them are dis-
cussed below

First (and simplest) of all, the POPLAR actor's knowledge about the objects, goals and
processes both in the objective world and its own 'mind' can and will be augmented. In parallel,
the control knowledge (rating and control functions) will be constantly adjusted and tuned, both
through the introduction of additional character trait, mental state and situation paramet ers and
through devising more appropriate ways of amalgamating them in the decision function-. Exten-
sive experimentation with POPLAR will help to verify such decisions

In parallel and in conjunction with the POPLAR project, these authors have been involved
in designing a general model of human cognitive activity. Initial results of that research are
report-Ed elsewhere (Nirenburg & Reynolds, 1983; Reynolis & Nirenburg, in preparation). An
aspect of that project extremely helpful to POPLAR is research rimed at derivir , a s," of 'primi-
tive' character traits, motivations and mental states, such that weighted combinau 5 r-f them
will correspond to the 'higher-level' parameters (e.g. 'aggressiveness') that we would l'e to use in
POPLAR's decision functions.

One can see that the above are actually two separate problems: 1) to extract primitives; ?,
to express complex entities in terms of the primitives. It was decided to adapt the primiti- es
suggested by Cattell (cf. e.g. Cattell & Child, 1975). Extensive psychological experimentation
with humans is pursued in order to find answers to the second problem. The benefits of having a
system that boasts psychologically valid (and not 'folk psychology'-based) control parameters are
enormous and self-evident. And, therefore, this is one of the most immediate improvements we
plan to make.
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We also plan to add plan understanding to plan production. The world is inhabited by
more than one cognitive actor (consider, for instance, the trolls in the current POPLAR). In order
to behave correctly an actor must be able to discern plans of others. We believe that POPLAR's
machinery will be ab' to handle plan recognition without the necessity to introduce major
changes. An actor will naintain as many blackboards as there are cognitive actors around. It will
assume that all other actors operate in the same manner. It will have beliefs about their character
traits, etc. and will 'project' plans for them much in the same manner as it plans.

A logical extension to adding plan recognition is to introduce verbal behavior into
POPLAR. There exist a number of interesting approaches to discourse analysis and plan under-
standing in dial-gs (e.g. Allen, 1983b; Litman & Allen, 1984; Carberry, 1983; Reichman, 1984;
etc.). A study in modifying POPLAR '- involve verbal behavior and discourse analysis can be
found in Nirenburg & Pustejovsky (1985).

The inclusion of multiple actors into the objective world can lead to the development of an
experimental testLed for modeling conflict resolution, cooperation and many more important
'real-life' situations. The p ssibilities here are definitely substantial and quite unexplored.

The mechanism for modeling attention will undergo serious modifications, as will the treat-
ment of time and the interaction between the actor(s) and the objective world.

And, finally, a most >,,aportant avenue of improvement is the introduction of learning capa-
bilities to the system. There are many modules in POPLAR wheie planning can be introduced;
and tn.re are many different types of learning to be studied. Some examples of this may be modi-
fying the scheduling behavior depending on results cf previous processing or after seeing some-
lody achieve a goal in a way not previously used; modifying beliefs about objects; beirg able to
(create' new plans, by analogy or otherwise; and many many more. This topic is one of the more
complex ones, but any progress in this direction may have a very beneficial effect on the field of
,lanning in Al.
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Appendix 1. Objects in POPLAR.

Representation of OBJECTS in POPLAR.

We present objects in two ways: first, in the way the object is stored in LTM, and second,
from within a POPLAR run (as an annotated script). The difference is due to the inheritance
of parents' properties by children in the hierarchy.

A.

(dbcr exp creature person ; this is a PEARL header for a frame
(id person)
(type creature) ; CREATURE is the parent of PERSON
(h-process-roles lisp ( (ake Who)

(Put Who)
(Find Who)))

the above are the roles in which an instance
of this type can appear in specified
processes by virture of its having properties
of a "human": humans can act as agents in
TAKE, PUT, and FiND

(mental-state struct) ; humans have mental states -- cf. the
; default values in the script listing below

(character-traits struct char-straits) ; ditto
(weapon-against ((sword 100 3) (knife 50 1) (rock 10 20)))

POPLAR knows (believes) that weapons against people
include swords, knives and rocks; the numbers (a b)
indicate the efficiency of the weapon and the maximum
range

(power 50) ; maximum
(speed 50) ; maximum
(fearsomeness 25) ; what is the level of fear that such objects

; typically elicit in POPLAR (default: 25)
(mass 55)
(inventory lisp) ; the objects this person is perceived by POPLAR

; to be carrying
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B.

POPLAR> person
(person (id person)

(type creature)

(o-process-roles ((Find What)))
this property is inherited by virtue of PERSON's being a
descendant of OBJECTS: any object can occupy the "what" slot in Find,
because finding mental objects is recollecting their representations in
memory

(shape nil)
(color nil)
(mass 55)
(position nil)
(p-process-roles ((Take What) (Put What)))
(goal-pac'ameters ((PSI adv)))

the above properties are inherited by virtue of a person being a descendant
of PHYSICAL-OBJECTS; the goal-parameters slot specifies an instance of
what goal is created when an object of this type is perceived. In this

;case the intuition behind the entry is that the appearance of a person
spawns the creation of a goal instance of Preserve-Self- 1, that is,
persons are perceived by POPLAR as potential enemies.

(edibility nil)
this property is inherited by virtue of PERSON's being a descendant of
+alive; nil is the default value with the semantics of "unknown"

(c-process-roles
((Eat Who)
(Ingest Who)
kDrink Who)
(Move Who)
(Attack (Who Whom))))

;the above properties are inherited by virtue of PERSON's being a
;descendant of CREATURE; creatures are considered by POPLAR to be able
'to be agents of eating, drinking, and moving, and agents and objects of

attacking

(weapon-against ((sword 100 3) (knife 50 1) (rock 10 20)))
(power 50)
(fearsomeness 25)
(speed 50)
(orientation nil) ; this shows whether this particular person

; LOOKS at POPLAR at the moment of processing
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the following are physical states (conceptually, they are part of
the regulatory system)

(hunger 0)
(thirst 0)
(fatigue 0)
(injury 0)
(hoprocess-roles ((Take Who) (Put Who) (Find Who)))
(mental-state (nilstruct))

character traits are a component of the regulatory system
(character-traits

(char-traits (greed 20)
(pedantism 10)
(hunger-tolerance 5)
(thirst-tolerance 20)
(fatigue-tolerance 20)
(courage 25)
(agression 40)
(impulsiveness 30)
(articulateness 40)
(extravertedness 50)
(locquaciousness 40)
(ruriosity 55)))

(inventory nil))
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Appendix 2. Examples of PLAN representation in POPLAR.

(dbcr exp PLANS PS I
(ID PSI)
(Type PLANS)
(Top-level-flag yes)
(IS ((Plan-Selector Fight Wait-and-See))) ; Flee Hide
(With (Actor Adversary))
(COND ( (Plan-Selector (Fight Wait-and-See) ; Hide Flee

current plan)
(Fight Actor Adversary)
(Flee Actor Adversary)
(Hide Actor Adversary)
(Wait-and-See Actor Adversary)))

(Preconditions (and (member 'Adversary (getpath ABB '(OBJECTS-PERCEIVED)))
; Adversary is among the objects perceived by Actor

(or (= 'Actor 'self)
(and (strcutrep Actor)

(not (structurenamep 'Actor))
(= (getpath (eval Actor) '(type) '(person))))))

; Actor is either "self' or any instance of person
(Rating-function (rating-fuc-PS 1)))
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(dbcr exp PLANS Plan-Selector
(ID Plan-Selector)
(Type PLANS)
(Top-level-flag no)
(IS (primitive))
(Action-for-primitive (Schedule-of-plan 'list-of-plans 'calling-plan))
(With (list-of-plans calling-plan))
(Time 1)

(dbcr exp PLANS Fight
(ID Fight)
(Type PLANS)
(Top-level-flag no)
(IS (Find (Controll (Find! (Control2 (Get)))) (Control3 (Move Attack))))
(CON]) ((Find Actor (getpath Adversary '(weapon-against))

(getpath Actor '(inventory)))
(Find Actor (getpath Adversary '(weapon-against))

(getpath ABB 'OBJECTS-PERCEIVED)))
(Get Actor (car result-find)

(div (distance Adversary (car result-find))
(getpath Adversary '(speed))))

(Move Actor (prog (weapon-range)
; position to move to

(cond ((<= (distance Actor Adversary)
(setq weapon-range

(caddr (assoc (getpath (eval (car result-find))
'(type))

(getpath (eval Adversary)
'(weapon-against))))))

; if distance between Actor and Adversary is less
; (or equal) than the range of the Actor's weapon
; then Actor doesn't need to move toward Adversary

(return (gerpath (eval Actor) '(position))))
(t (return (calculate-position Actor

Adversary weapon-range)))

(Attack Actor Adversary (car result-find))))

(Control ((Control 1 (Fight-Control 1 Actor Adversary))
(Control2 (Fight-Control2 Adversary))
(Control3 (Fight-Control3))))

(With (Actor Adversary))
(Rating-function (rating- func-fight))
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(defun Fight-Controll (Actor Adversary)
(cond ((not (= (car ABB.CURRENT-PATH.Status)

'succeeded))

t)
; EITHER the last executed plan (which is Find) failed

((= (cadar Adversary.weapon-against)
(cadr (assoc (car result-find).type

Adversary.weapon-against)))
nil)

; OR actor's current weapon is NOT the most efficient weapon
; against this adversary

((lessp
(div (times (distance Actor Adversary)

(diff (cadar Adversary.weapon-against)
(cadr (assoc (car result-find).type

Adversary.weapon- against))))
Actor.character-traits.impulsiveness)

fight-control 1 -threshold))
; OR even if the actor does not have the best weapon, he may decide not to
; look for a better one -- if the distance between him and the adversary
; is too small, if the actor is very impulsive, or if the weapon is not

much worse than the best oneI

(defun Fight-Control2 (Adversary)
(cond ((null (cadr result-find)) t)

no weapon was found in the actor's possession
((greaterp (cadr (assoc (car result-find).type

Adversary.weapon-against))
(cadr (assoc (cadr result-find).type

Adversary .weapon- against))))
the weapon found "around" is BETTER than
the weapon in the actor's possession
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Appendix 3. Examples of POPLAR rating functions.

A. The rating function for the Preserve-Self-I goal (and top-level plan)

(defun rating-func-PS 1 (actor adversary)

(fix (div
(times

(calculate-fear actor adversary)
actor.aggression)

actor.courage)))

(defun calculate-fear (actor adversary)

(fix (div
(times adversary.orientation

(add adversary.mass adversary.speed)
adversary.power
adversary.aggr
adversary.fearsomeness)

(times (fix (add 1 (log (distance actor adversary))))
actor.courage
actor.power
(add actor.mass actor.speed)))))

B. The rating function for the Fight intermediate plan.

(defun rating-func-fight (actor adversary)

(fix (div
(times adversary.weapon-against.efficiency

actor.courage
actor.power
(addl adversary.injury)
(expt actor.aggression 2))

(times (calculate-fear actor adversary)
adversary .power
(addl actor.injury)
adversary. fearsomeness
(add 1 actor.fatigue)))))
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Appendix 4. The History mechanism in POPLAR.

; this is the way HISTORY looks at the end of the example run of 5.4.

POPLAR> HISTORY
((IngestO EatO PS20)

(Take0 GetO EatO PS20)
(MoveO GetO EatO PS20)
(GetO EatO PS20)
(Findl EatO PS20)
(EatO PS20)
(Plan-SelectorO PS20))

Appendix 5. Blackboards in POPLAR.

Typical contents of the world and the actor blackboards.

POPLAR> WBB
(World-Blackboard (ID WBB)

(NEW-INPUTS trolll apple2 crocodile2)
(TIME (Base-Time (ID Time) (act-time 17))))

POPLAR> ABB
(Actor-Blackboard (ID ABB)

(OBJECTS-PERCEIVED (troll2 swordl gold-nugget2))
(STATES-PERCEIVED (hunger fatigue))
(AGENDA PS14 PS22 GTR4 Agenda-Scheduler)
CURRENT-PATH (find7 fight3 PS 14)))
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Figure 2. The system architecture of POPLAR 1.3
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TP-LEVEL INTERMEDIATE PRIMITIVE

DOMAIN PLANS PS 1 FIGHT, move,
PS2 EAT, take,
GTR GET, etc. find, etc.

METAPLANS GG as,
as gg-input,

etc.

Figure 3. Classification of plans in POPLAR.

I::= PSI I PS2 1GTR I GG ('Goal-Generator') I as ('Agenda-Scheduler')
PSI ::= FIGHT I HIDE I WS ('Wait-and-See')
PS2::= EAT I DRINK I SLEEP
GTR ::= {FIGHT I find} GET
GG ::= gg-input I gg-objects-perceived I gg-physical-states-perceived
FIGHT ::= find {find GET} move attack
HIDE:: find move
WS ::= do-nothing
EAT ":= find {find GET} ingest
DRINK ::= find {find GET} ingest
SLEEP ::= find do-nothing
GET ::= move take

Vertical bars separate disjointed elements; in practice, the 'or-ed' plans are chosen on
the basis of their ratings through the application of a special metaplan we call the Plan-
Selector, not shown in the grammar;

:urly brackets enclose optional plans; the decision whether to execute the optional
plan(s) is made on the basis of control functions that are stored in. the parent plan and
govern the processing of its IS slot;

plans shown in lower case are primitive.

FIGURE 4. A grammar of plans in POPLAR.
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MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
f selected acquisition programs in support of Command, Control,

Communications and Intelligence (C 3I) activities. Technical and
engineering support within areas of competence is provided to

ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C-I systems. The areas of
technical competence include communications, command and

control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, elect romagnetics, and propagation, and electronic N
reliability/maintainabilitv and compatibility.


