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8.1 Executive Summary

Rochester Institute of Techology's (RIT) contribuiion to the Northeast
Artificial Intelligence Consortium (NAIC) project has been the research and
development of a system of techniques and processes suitable for use in a
continuous speech, large vocabulary, speech understanding system. We have
incorporated these techniques into an functioning workstaticn which is ca-
pable of testing, evaluating, and delivering this speech understanding tecli-
nology. Other contributions made possible by this NAIC project have been:
the engendering of Al capabilities within the Rome Air Development Center
(RADC) & RIT, the support and educational growth of many students and re-
searchers at RIT who worked on the project during the past five years. and
scme private industry involvement.

The research and development of RIT's speech understanding system
carefully incorporated testing and evaluation methods at each level of plan-
ning, design, implementation, and testing. These methecds allowed us to not
only produce the optimal integration of these technologies, but also pro-
duced qualitative and quantitative comparisons of less successful techniques
so that firture researchers might benefit from our extensive testing. This
comparative work was performed at all levels of system development includ-
ing the system architecture, control structure, knowledge representation,
implementation, and error analys!s.

This comparative evaluation methodology required us to design a highly
modular framework in which we could prototype and evaluate the speech
understanding techniques that were being developed. A hierarchical system
with multi-level knowledge representations was chosen as the best approach
for handling this type of comparative development. The interfaces at each
level were derived from the symbolic representation of the speech used at
that level of the hierarchy. The symbolic representations at each level were
derived from the levels of data reduction that occurred as the speech was
processed along the continuum of raw acoustic waveform to a representation
of meaning. The well-defined interfaces and modular programming
approach allowed head-to-head comparisons of several techniques within
each level of the system hierarchy.

The system development was made possible by the use of the ESPRIT
(Explorer Speech Processing at RIT) system. ESPRIT is a speech research
development environment which runs on the Texas Instruments Explorer
workstations. ESPRIT was developed at RIT, for use as a test-bed for the
speech understanding system. The ESPIRT environment provides re-
searchers unfamiliar with Lisp, and the Explorer workstations, the ability to
develop speech and signal processing experiments. ESPRIT uses a mouse-
and-menu interface combined with a graphical programming language to
both design and operate a variety of speech and signal processing exper-
iments. The work on the ESPIRT system has also led to development of an
object-oriented simulation workstation at RIT Research Corporation and has
involved private industry (Texas Instruments and Allied Signal).
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Our research has involved researchers from many disciplines. The fields
of Artificial Intelligence, Electrical Engineering, Speech Audiology and
Phonology, Mathematics, and Statistics were all represented in some aspect
of the project. Some of the methodologies that have been studied are Expert
Systems, Neural Networks, Hidden Markov Models, Conceptual Analysis,
Dynamic Programming, and Statistical Classification techniques.

Our prototype speech understanding system is a knowledge based system
which attempts to capture the knowledge the experts use in reading and in-
terpreting spectrograms. This knowledge allows us to generate phonetic
information from the raw acoustic waveform. From the phonetic transcrip-
tions, words are hypothesized and these utterances are used by the natural
language system. The natural language systcm then analyzes the utterances
and produces a representation of meaning for the utterance.

The system has been designed to be domain-independent. We have found
it necessary to introduce domain-specific information at the higher level
understanding functions, but this is not unusual in natural language under-
standing systems. The lower levels of the system hierarchy were, in fact,
tested using a completely different domain than that used with the higher
level understanding functions. We feel that our domain-independent ap-
proach makes the architecture of our system flexible as well as extensible.

The NAIC funded project has produced the following items:

e A prototype system with functionality and competing methods at each
level of the system hierarchy.

e Four Completed Master of Science Degrees with four more pending.

e The ESPRIT speech processing system (evolved as a byproduct, it was
not funded directly by the NAIC but its development was necessitated by
the NAIC project. The funding was provided by RADC and Texas
Instruments Inc.)

e Technology transfer from RIT to RADC as well as to private industry.

We feel that our work has effectively investigated the types of extremely
difficult problems encountered when dealing with a large vocabulary, con-
tinuous speech, speaker-independent system. There are, however, some ar-
eas of research where we feel that further investigation might yield interest-
ing results. These extensions to the work include: the development of a
commercial quality speech understanding system based upon our prototype
system, the incorporation of adaptive processes and learning into the
system, and the testing and evaluation of as yet undiscovered speech under-
standing procedures.




Our work in the speech understanding area has allowed us to develop
tools, technologies, and personnel that may be applied to other speech re-
lated disciplines. The speech undersianding work we have done has exten-
sions in the areas of: speaker identification, language identification, and key
word spotting.

8.2 Research Project Definition

In order to effectively summarize the work of RIT over the past five years
it is necessary to examine the original goals and objectives of our work. This
discussion will establish the context of our research to more clearly show
where we started, where we are today, and the evolution of the project over
its five year life span.

8.2.1 RIT's Project Mission

As expressed in our proposal to RADC [RITR84], RIT's mission in the
NAIC is twofold. Our primary research goal was the application of Artificial
Intelligence techniques toward the development of speech understanding
systems. More specifically, our research was geared toward a speaker inde-
pendent, continuous speech, large vocabulary type of system. These types of
systems are the most challenging systems to dcvclop, but they provide the
most natural interface between man and machine.

Our secondary goal was to support and fmplement the mission objectives
of the NAIC here at RIT. These objectives being: (1) Al technology advance-
ment needed to support knowledge-based systems applications to C3I mis-
sion requirements; (2) The advancement of the KADC in-house research and
development capability; and (3) Education and training in Al technology to
expand the quantity of Al researchers and faculty.

8.2.2 Project Specifications

In order to pursue the goals above, overall project specifications were de-
veloped which gave the project both scope and direction. These specifica-
tions helped to keep the various sub-research projects oriented toward the
higher level mission objective as well as producing a cohesive research pro-
ject after such a lengthy investigation.

The specifications for the Speech Understanding System were as follows:

* Derivation of an intermediate phonetic representation for continu-
ous speech from any speaker

* Measure the quality of the match between errorful phonetic repre-
sentations and phonetically based lexical entries

* Incorporate multiple level knowledge sources to differentiate plau-
sible and implausibic parsings.
5




e Extensively research, test and compare competitive methods used
in the system

Ancillary goals for the support of the NAIC were:

* Form a core group of faculty with education, experience and inter-
ests in Al

e Enlarge and strengthen the computer science graduate program in
the area of Al

e Increase Al knowledge of local industry.

e Obtain hardware and software toois necessary to do Al research at
RIT.

8.2.3 Speech Understanding Project Focus

The application of Al techniques to the problem of developing Speech
Understanding Systems, has given our work a unique flavor and focus. This
focus {s based on modeling the human ability to understand speech. This
modeling occurs at many levels. For example., we may model the human au-
diterv <ystem's ability to classify phonetic categories, or we might model the
tianian dbility to transcribe utterances based upon their spectrograms. These
models, as well as others. help us to identify the knowledge sources and
representations that are applied to understanding speech. Like many prob-
lems in Al, we are attempting to investigate a system of processes that is
poorly understood. difficult to analyze/dissect/measure, and performed al
most effortlessly by human beings.

Thus our approach to understanding speech is based on techniques
which, at some ievel, model the human ability. This approach fundamentally
differs from the acoustically based engineering techniques that were once
applied to speech recognition problems. This approach doeq not imply that
the structure of our system is indicanve of the mcithods used by humans, but
instead tries to build on the processes that are demonstrated by humans.
Consider the case of stop consonant place of articulation. If experimental
results indicate that humans can classify place of articulation to high degree
of certainty it is reasonable to try to design a system which also models this
behavior. This is true even if it is not understood how this information is
used in the understanding process. This approach is exemplified in our use
of many feature extractors. These feature extractors attempt to extract the
same types of information which speech scientists believe are captured by
the ear. Thus, we attempt to capture the knowledge produced by the
physiology of the ear.




8.3 Speech Understanding Project Design

Cver the course of flve years it is not unreasonable to see some evolution
in the system design of a project. In our situation, desigri changes were
generally either the result of new hardware architecture, or flaws in our
previous design which became apparent as we attempted to implement it.
The overall system goals remained constant throughout and these goals are
reflected in the ..software “architecture of the system. The system
architecture has both hardware and software components. The hardware
architecture primarily involves the machine platforms and speech
processing hardware upon which the system was implemented. The
software architecture involves the knowledge representations and decision
mechanisms necessary for understanding speech.

8.3.1 Speech Understanding Project Software Architecture

The software architecture has always been viewed as a knowledge based
system that attempts to capture spectral information from a spoken uiter-
ance. Experts who read and interpret spectrograms use this information to
formulate hypothesis about the unknown utterances. Combined with infor-
mation observed directly from the audio waveform and a rich set of knowl-

edge sources, experts can accurately segment and parse unknown utter-
ances.

The system architecture was designed to capture the low-level infor-
mation present in the audio signal and transform it into knowiedge rep-
resentations which can be used to parse the utterance. This transformation
-from audio waveform to low-level knowledge representation to ever higher-
level knowledge representations is both a means of data compression as well
as a method to reduce the complexity of the overall problem. The data com-
pression occurs because the representation of the signal at each level in the

hierarchy incorporates a greater amount of knowledge than the level below
it.

The lowest level in the software architecture is the audio waveform. This
waveform is digitized and analyzed using standard speech and signal pro-
cessing algorithms to obtain low-level features of the signal over time. These
algorithms include FFT and LPC analyses, formant and pitch tracking, zero-
crossing counts, etc. These features capture both the spectral and intensity
information that is processed by the ear.

So at this level we have transformed the analog, acoustic information
from an utterance into a set of discrete vectors, where each vector repre-
sents the feature values for a short interval of the utterance. The reduction
of data at this level is substantial and results in a speech representation of

the utterance that does not sacrifice information necessary for higher-level
decision making processes.
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The sequence of feature vectors is then analyzed by a classifier that
makes decisions about coarse phonetic categories. The classifier segments
the signal into discrete segments based on the categories: vowel-like, strong
fricative, weak fricative, and silence. These segments can be thought of as
regions of the signal that are roughly homogeneous. This sequence of coarse

phonetic categories is the next speech representation in the software
architecture hierarchy. ’

These sequences of coarse phonetic categories are presented to classi-
fiers that attempt to assign phonetic labels to the coarse phonetic segments,
ie. the coarse phonetic segments are themselves segmented into actual
phonemes. This classifiers do not necessarily identify a single phoneme for
each segment, but have the ability to genecrate probability measures for
several possible phonetic iabellings. This approach of assigning confidence
facaors to the labellings mirrors the approach of human spectrogram
readers.

This lattice of phonetic labels and probabiiities is presented to a word hy-
pothesizer. It is the hypothesizer's responsiliility to generate possible word
sequences from the strings of phonetic Izbels. The hypothesizer must
address the following problem areas: (1) phonetic insertions and deletions
due to the context of the word; (2) efficiently searching the lattice of
phonetic labe’s and probabilities for the correct combination; (3) handling
errors made by the lower-level classifiers.

Once we have the candidate word sequences, they are analyzed by a mod-
ule which attempts to select the best word sequence based on confidence
factors from the lower-levels of the system and on domain-specific knowl-
edge. This selected utterance is considered io be the correct transcription
of the raw signal and is passed on to the natural language understanding sys-
tem.

The highest level of the system is a natural language understanding sys-
tem. This system builds a representation of meaning for the input utterance
using all possinle knowledge sources including domain knowledge. syntactic
and semantic information, and domain goals.

The sofiware arch.tecture is best described as a data driven or forward
chaining type of control strategy. The strategy is based on the assumption
that a reasonably accurate phonetic transcription of the raw speech signal
can be produced by the low level modules in the system. We are interested
in phonetic transcriptions because they are reasonably speaker independent
within the constraints of nationality, region, language, and context.

8.3.2 Speech Understanding Project Hardwarce Architecture

The hardware side of our speech understanding work has changed
greatly over the course of the contract. The system implementation began in
1985 on a Sun Microsystems model 2/130. This platform had been chosen

8



because of the availability of. speech analysis software for the Sun 2. This
speech analysis software was proprietary and not available for distribution or
resale. It was developed by Speech Recognition Systems, Inc of Rochester,
New York for their own commercial applicaticns. It was provided to us, at
no cost, through our close association with Dr. Robert Houde of Speech
Recognition Systems with the understanding that it will be used only for the
research of the NAIC speech understanding project. This analysis software
allowed us to perform meny signals analysis fuactions such as: A/D and D/A
conversion; display of 2 dimensional analysis including waveforms, zero-
crossings, energey measures, etc., FFT and LPC analysis; and spectrogram
displays. The Sun became our main speech research platform. We extended
our analysis capabilities by developing new analysis programs including a
formant tracing tool based on LPC coefficients, formant and pitch tracking
software, and speech synthesis software. Th+: Sun also held the Carnegie-
Mlellon University (CMU) speech data base wi:ich we have used throughout
the development of the speech understanding system. The CMI! database
consists of approximately 13G0 utterances broken down into vowel-dense,
fricative-dense, and stop-dense categories. For each utterance CMU
provided us with the digitized speech and a hand-labeled phonetic
transcription of ithe utterance.

As the project progressed, the Sun became inadequate in terms of com-
puting power and storage. While we were considering upgrading the Sun 2
10 a model 3 the NAIC announced the availability of university priced Texas
Instruments Explorer I LISP workstations. RIT acquired two of these work-
stations in the spring of 1987. These workstations provided us with a better
platform for implementing the higher-level decision algorithms i{n the pro-
ject as well as the lower-level feature extraction. Odyssey TMS320 Signal
Processing boards were acquired and dramatically improved our signal
processing capabilities. The Explorer I workstations were later upgraded to
Explorer II workstations and increased system performance even more.

A speech analysis workstation similar to the SRS analysis software on the
SUN was needed for the Explorer platforms. This need prompted the devel-
opment of the ESFRIT speech workstation. Funded jeintly by TI and RADC,
ESPRIT met and exceeded the functionality available on the Sun. The
ESPRIT system has evolved from a simple signal analysis tool into an inte-
grated, speech-research environment. As ESPRIT is the primary delivery
vehicle for the speech understanding system, it will be discussed at some
length in the following section.

8.3.3 The ESPRIT System

ESPRIT is a speech research development environment [RITR89] that
runs on the Texas Instruments Explorer LISP workstation, optionally
augmented with one or more Texas Instruments Odyssey Signal Processing
boards.



ESPRIT's main goal is to provide speech scientists, linguists and engi-
neers with an intuitive software environment in which to study speech
signals and to provide tools for conducting speech research. The basic
functions of ESPRIT are to collect, process and graphically display raw and
processed speech signals in ways that are useful to speech scientists. No
prior knowledge of LISP or any other programming language is necessary,
and no prior knowledge of the operation of the TI Explorer is required in
order to perform a wide variety of speech processing tasks.

Users may operate ESPRIT interactively to performa simple operations
one at a time and display the results after each operation is performed.
These operations and displays include raw waveforms, FFT and LPC spectro-
grams, and other useful parameters and features that can be extracted from
speech signals.

Users may also build modules made up of simpler operations and displays
to perform complex tasks. This feature allows users to literally “draw™ a se-
quence of speech processing functions and display directives and then exe-
cute the resulting “program” to perform the task that was drawn. This al-
lows a user who is not a programmer to put together existing programs into
a configuration that performs some desired task without having to type a
single line of code.

The ESPRIT user interface takes a mouse-and-menu approach, and in
fact, the entire system can be run by clicking the three buttons on the
Explorer's mouse. Help is available at all times for all commands, both in the
form of mouse command documentation, which is always dicplayed automat-
ically, and in the form of more extensive documentation, which may be dis-
played easily on demand.

Care was taken in the design of ESPRIT to make the displays and mouse
buttons as consistent as possible. This helps the user to develop sound in-
stincts for how to use the system and view the displays. For users who feel a
need to type keystrokes instead of navigating through menus, all commands
on all menus have corresponding keystroke equivalents.

Both the module building capabilities and graphical display capabilities
were heavily used in implementing the speech understanding project on the
Explorers. The section of ESPRIT used for building modules is the Module
Editor. Through the Module Editor users can build up complex processes by
describing how the pieces fit together graphically. Figure 8-1 on the next
page shows the software architecture of the speech understanding system as
it is built under ESPRIT. Figure 8-2 shows some of the graphs that ESPRIT
can generate. These graphs allow us to evaluate the signal processing algo-
rithms used in the system and to make exact measurements from the analy-
ses.

10
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Figure 8-1 Meta-Module of Speech Understand
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The ESPRIT environment itself, is an object-oriented system built around
the following conceptual objects: data objects, processes, displays and meta-
modules. Data objects are data structures which hold raw speech, sequences
of FFTs or LPC spectra, sequences of phonemes or words. These data objects
may be permanently stored as files or dynamically created and destroyed
throughout the execution of the user's application.

Processes are TMS 32020 code or LISP code which are used to create,
analyze, and destroy the various types of data objects. ESPRIT contains a
large number of signal processing routines that may be used by any

application. Users may also develop their own processes and incorporate
them into the ESPIRT environment.

Displays are the graphical windows which are used to display and mea-
sure the data objects. Several types of displays are seen in Figure 8-2. The
environment stores the knowledge to correctly display the various types of
data objects, or the user can specify a different type of display other than the
default.

The most important capability provided by ESPRIT is the ability of users
to build their own meta-modules. A meta-module is a directed graph that
contains process objects, display objects and possibly other meta-modules as
well. A graphical interface allows the users to draw their applications. Figure
8-1 is a meta-module which describes the speech understanding system.

ESPRIT has given RIT the capabilities to not only study speech, but to
study many different areas of intelligent signal processing. The ESPRIT en-
vironment could be used to study image and vision problems, sensor fusion
and radar signals, language and speaker identification, and key word
spotting. ESPRIT's non-programmer-specific interface has also been the
basis for the development of an object-oriented simulation package for the
Explorer systems. This simulation environment is currently being used to
study manufacturing simulations, and distributed discrete event simulation
(DDES).

8.4 RIT's Speech Understanding Methodology.

As indicated by the software architecture, the understanding system can
be broken down into three sub-processes: (1) The transformation of the
audio signal into a speaker-independent phonetic transcription: (2) The
transformation of the phonetic transcription into the best representation of
the utterance at the word level; and (3) determination of the utterance's
meanings based on the words. This section will investigate the methods
that were employed to complete these sub-processes.

8.4.1 Low Level Feature Extraction

The reasoning behind the investigation of low level features is that they
follow the model of the human auditory system. The auditory system is
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capable of very accurately measuring both time and frequency events. Thus
the features we have investigated have been of two classes, short time
analyses of energy information and analyses of frequency information. Each
of the low level features we have investigated, and the reason behind its
inclusion in our research, will now be briefly discussed.

Energy measurements can be computed to measure the sound pressure
of the signal over some number of samples. These energy measures can be
used for silence detection, marking prosodic features. Relative energy mea-
sures (measures which relate energy at certain frequencies) can reveal valu-
able information for classifying certain similar phonetic categories. Relative
peak energy measures examine the relationship between total energy for the
samples and the peak value for the samples. Relative peak energy is gener-
ally used when a normalized energy measure is required.

Zero crossing rates and counts are critical in the detection and classifi-
cation of fricatives. This feature measures the number of times the signal
crosses the zero-amplitude measure. A dead band is usually implemented to
reduce the impact of low-level background noise. Sound pressure values
within this dead-band are not counted.

FFT spectra are calculated by applying a Fourier analysis to the time-
order signal to produce amplitude/frequency pairs over time from the raw
waveform. The size of analysis window controls whether wide-band or nar-
row band frequency analysis results. FFT Spectra are the basis for relative
spectral energy measures, spectrogram displays, and most other measures
which require frequency information. For speech signals, LPC Spectra are
often used instead of FFTs.

LPC Spectra are produced by applying Linear Predictive Coding algo-
rithms to the speech signal. LPC analysis models the speech vocal tract as
an all-pole filter whose parameters can then be used to replicate the original
speech waveform. LPC spectra tend to show better resolution of formant
frequencies (resonances produced by the vocal tract) than FFT spectra. The
order of the LPC filter controls the number of spectral peaks sought by the
model. A fourteenth order model will find 7 peaks which is more than
adequate for most applications.

Average spectra are computed to smooth the spectral change over time.
This is most often done in order to better display the spectra in a spectro-
gram or waterfall display. It is not generally used as a feature for higher level
decision making.

Spectral moments reveal information about the distribution of energy
across the frequency range. The first four moments indicate mean,
variance, skewness, and kurtosis. Mean is midpoint or average frequency of
the power distribution. Variance indicates how compresssed or spread out
the energy is across the frequency range. Skewness is a measure of how
symmetrically the energy is distributed about the mean. Kurtosis measures
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the amount of energy at the extremes of the spectra relative to the amount
of energy in the center. These four spectral moments have been used in the
analysis of stop consonants and vowel classification.

Some investigation has gone into using the analysis of frequency versus
energy measures. These calculations are made against the frequency infor-
mation of the spectra as opposed to the four spectral moments which are
computed from the energy information. These features are being used by
the vowel and stop consonant classfiers.

Formant traces have been calculated using a variety of methods. The
ESPRIT system currently implements the Markel [MARK76] algorithm
which examines spectral peaks in the LPC spectra. Other methods which
have been examined use zero-crossings, spectral moments, and vector
quantization symbols. The greatest amount of research in this area was the
development of some statistical approaches to formant tracking [GAYV8Y).
This approach assigns probability measures to sets of features extracted
from a short-time analysis of the signal and a conditional mean estimate is
used to determine formant frequency values. This work is a generalization
of methods introduced by Kopec [KOPE86] based on hidden Markov models
[RABI86] and vector quantization symbols. The results of this research will
be covered in the results section of this report. Formant frequency
information is used extensively in vowel and vowel-like classification.

Pitch traces have been studied using a variety of methods. Most of the
methods are based on an autocorrelation method. This method shifts a
window of the input signal along the signal and computes the corresponding
autocorrelation function. The maxima of this function represents the area of
highest correlation and ccrresponds to a shift of one pitch period location.
The fundamental frequency is then calculated from the pitch period.
Another pitch tracking method is Markel's Simplified Inverse Filter
Tracking algorithm (SIFT) [MARK72] . This algorithm combines standard
autocorrelation techniques with inverse filter formulation and cepstral
information. The pitch period of this glottal waveform is then estimated us-
ing an autocorrelation technique. Pitch trace information can be helpful in
normalizing frequency information to achieve independence between male
and female speakers.

In general, sets of features are collected over some window size of the
signal. These feature vectors are then collected into a knowledge represen-
tation known as a pattern set which can be used by the higher level classi-
fiers.

8.4.2 Coarse Phonetic Classification

Our studies in coarse phonetic classification of speech signals [DELMS8S]
attempted to answer two questions. The first question is whether or not our
low level features preserve the information necessary to perform coarse
phonetic classification. If our feature sets are not strong enough to indicate
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coarse phonetic categories we would expect poor performance from fine
phonetic classifiers using the same information. The second question that
needed answering was whether it was better to scparatc the segmentation
and identitication problems. In other words, does the system achieve better
classification accuracy with a coarse phonetic classifier doing segmentation
and then identifying the phonemes within each segment, or is it better to
determine phonemes directly from the feature vectors without first
segmenting wne signal. To answer these questions we had to implement a
coarse phonetic classifier.

The coarse phonetic categories studied were: vowel-like, strong fricative,
weak fricative and silence. Two decision making procedures were invesu-
gated. The first procedure used a Euclidean distance measure to clusters in
a n-feature dimensional space that had been derived using the K-means clus-
tering algorithm. The second procedure investigated the use of a multivari-
ate maximum likelihood distance measure to classify the segments. Also in-
vestigated was the impact of structuring the decision making process.
Several tree-structured decision architectures were compared for each of
the classification methods.

Both methods were trained on ten speakers using 98 utterances from the
CMU speech database. Training and testing involved both known and
unknown speakers. The results of this study are presented in section 8.5.2
of this report.

The coarse classifier must be able to handle the problems of speaker vari-
ability as well as the coarticulatory affects produced in continuous speech.
Any gross mistakes in segmentation or classification (e.g. identifying a vowel
as a fricative) will probably result in an ultimately incorrect word identifica-
tion.

The architectures of both decision methods begin with the generation of
label/vector pairs (LVPs) for each 10ms frame in the utterance. This LV?
consists of a phonetic label, which is taken from hand labeled information
provided by CMU (ie. a priori information) and a feature vector computed for
that frame. The features used for this project were: zero crossing rate, total
energy, relative energy, peak energy, measure of spectral change, measure
of periodicity, and the four spectral moments.

The training of each of these classifiers is somewhat different from this
point. The maximum likelihood classifier trained using a supervised algo-
rithm. LVP's from the same coarse phonetic class are clustered together.
For each of the four clusters, a mean feature vector and inverse covariance
matrix are calculated. These statistics indicate the cluster’'s center and dis-
tribution in ten dimensional space (from the ten features in the vector).

The training used by the K-means method is unsupervised and uses no
a priori information about the actual phonetic label for each LVP. The K-
means algorithm is a clustering technique that will form K clusters of data
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points in an n-dimensional space. For speech samples the feature vector
portion cf the LVP is considered to be a point in an n-dimensional space.
The algorithm initially chooses K initial centers (often the first K data
points) and distributes the remaining data points about the cluster centers
based on a Euclidian distance to the cluster centers. New centers are
calculated by choosing the point such that the sum of the squared distances
from all the points within the cluster is minimized. This
distribution/recalculation of points and centers continues until none of the
cluster centers are different from the previous calculation. Note that this
process does not necessarily cluster data into the coarse phonetic classes. It
clusters based on similarities in the feature vectors for the data points. If the
feature vectors do not indicate a reasonably separzble n-dimensional space
then the cluster analysis will not yield the coarse phonetic categories we are
interested.

After both methods have been trained, the classification of a LVP from a
test utterance is quite similar. A distance measure is calculated between the
unknown LVP and cluster centers that have been calculated by the K-means
and ma“mum likelihood training. A z-score is used as the distance measure
when using the K-means centers. The maximum likelihood method uses the
following distance measure:

rl=(x-u)t SUM! (x-u)

where:
x = the feature vector being evaluated
u = the mean feature vector for the cluster
SUM'! = the inverse covariance matrix for the cluster
(x - u)t = the transpose of x - u

The following possible decision tree structures where used:

D1
D1 smc/\)z
/\/\D VAN /m\ o /3\
si1 Vow SFric WFric Sil Vow SF WF sil Vow
Binary tree Single leve] tree Skewed binary

Figure 8-3 Three decision tree structures for coarse classification

In figure 8-3 the nodes labeled with a D represent a decision point be-
tween the children. These indicate the optimal combination of classes
within the three typec of decision tree structures. In the skewed tree the
goal is to find the most identifiable class first, then the next easiest, and so
on. The tree structure then affects the classes that you train the classifier to
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detect. With the binary tree the K-mean training algorithm would generate
two clusters and then split the clusters again.

8.4.3 Fine Phonetic Classification

Once coarse segmentation and classification has been performed, the sys-
tem must attempt to produce the actual phonetic transcription of the utter-
ance. This is done using several fine level classifiers. We have done research
in the areas of fricative, stop consonant, and vowel identification. Each of
these classifiers takes the appropriately labeled segment that was indicated
by the coarse level processes as well as the features for that segment and at-
tempts to identify the phoneme(s) present in the segment.

8.4.3.1 Fricative Expert System

In our invccotigation of fricatives we examined the use of an expert system
to classify fricatives based on expert spectrogram readers [ATKI87]. Two
experts and a knowledge engineer were used to build the expert cystem
using Rulemaster, a rule-based expert system shell from Radian Corporation.

Using Rulemaster, the knowledge engineer produced example tables
indicating the conditions necessary for certain actions to occur. From these
example tables Rulemaster induced the rules necessary to build the decision
tree. This method requires that knowledge of all possible values of the con-
ditions or attribute be known at system development time.

The main example table for the fricative expert system appears below.
Fricatives can be classified based on the attributes of voicing and place of ar-
ticulation. Voicing is present when the vocal cords are vibrating and is indi-
cated in spectrograms by the presence of a voice bar. The voice bar is the
frequency resonance that appears in a spectrogram as a single dark bar at
the fundamental frequency of the speaker. Place of articulation is the
location of the articulatory mechanism which produce the sound. The
locations used by this system were labiodental, alveolar, palatal, and dental,
which indicate mechanisms at the lips and teeth, alveolar ridge, palate. and
teeth, respectively.

18




Fricative Indicated
labiodental absent f as in foo
labiodental present v as in vote
alveolar absent s as in see
alveolar present z as in zoo
‘palatal absent sh as in shoe
palatal present zh as in azure
dental absent th as in thief
dental present dh as in then
uncertain present v ordh
uncertain absent f or th

Table 8-1 Example table ior classifying tricatives.

The high level goals of place and voicing are then proved with rules in-
duced from example tables for the place of articulation classes and voicing
attributes. The classification results and a sample expert system interaction
are presented in section 8.5.3 of this report.

8.4.3.2 Stop Consonant Classification

Our work in stop consonant classification [CAMP89] is based on the shape
of spectra taken from the burst region of the stop. Acoustically, stop
consonants appear as a short period of low signal energy (closure) followed
by an abrupt release (burst). This release appears as a large body of noise in
the spectra of the stop. The durations of the bursts are relatively short.
typically 20 to 40 msec. It has been shown that recognition of stops can be
achieved knowing the shape characteristics of the stop spectra [STEV78.
BLUM79, KEWL83]. Spectral moments have been used as features to capture
the concepts of spectral tilt and compactness.

Our general approach to stop classification has been the following: (1)
Spectral Analysis of the stop is performed; (2) Feature Extraction from the
spectra; (3) Optional feature compression; (4) Maximum likelihood classifi-
cation.

Several signal analysis methods were compared to obtain both static and
running spectra for the stop. Data analysis windows varied from 10, 15, 20,
30 and 40 msec. The windowing function used was a cosine modified
Hamming window which preserved data on the left side of the window. The
number of spectra analyzed varied from one to six with a shift size equal to
50% of the data window. Both FFT and LPC spectra were investigated. For
the static spectra 256 and 1024 point FFTs were examined. In all combina-
tions the log power spectra was the basis for feature extraction.

The features that were used were the moments of a distribution. mean,
variance, skewness, and kurtosis. The central clustering of a distribution is
usually measured by the first moment (the mean). In a normalized distri-
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bution, mean is only relevant for values along the abscissa (frequency values).
Three estimators of central clustering were examined: Mean of the abscissa
(Center frequency); Mean of the ordinate (meaningless for a normalized dis-
tribution); Median (value for which large and smaller values of x are equally
probable). Two estimators of dispersion were examined: The variance and
the mean absolute deviation. Skewness measured the degree of asymmetry
(tilt) of the distribution. Kurtosis measured the peakedness or flatness
(compactness) of the distribution.

The classifier being used is the maximum likelithood classifier that was
discussed in the coarse phonetic classification section above as well as the
vowel classification section that follows.

The stop data was separated into several classes to enable a reasonable
comparison of classification results. The following figure shows the statis-
tical breakdown that will be used in the results section.

Stops
Start and VOT labeled Only Start labeled
With Closure Without With or
Closure without closure
\M Labial
Volced ‘ /
Voicing Classifier |—& Place Alveolar
Unvoliced
\ Velar
/b/ K/
/d/ /t/
/e/1/p/

Figure 8-4 Stop consonant statistical breakdown

Like fricatives, stop consonants can be classified by their place of articu-
lation and voicing characteristics, hence the testing of the classifiers ability
to predict place and voicing. The separation of stops with closure and with-
out closure is to determine the affect of not having the silence from the clo-
sure as an identifying feature of the stop. There has been little work in
classifying stops where the closure segment is not clearly present. The sep-
aration of stops with VOT (Voice Onset Time) marked is to determine if
knowledge about the VOT is useful in classifying the stop. The classification
of stop consonant 1esuiis> are presented in section 8.5.4.
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8.4.3.3 Vowel Classification

The performance of two types of classifier have been investigated for use
with vowel and vowel-like segments. The first uses a maximum likelihood
approach similar to the one used in the coarse phonetic segmentation. The
second type uses a back-propagation neural network. These classifiers
produce a phonetic decision for each 5ms frame of the analyzed vowel-like
segment. This output sequence of phonemes is then presented to a Hidden
Markov Model (HMM) which produces the final output string. These two
approaches to coarse phonetic segmentation might better be called pre-
classifiers as they attempt to reduce the complexity of the classification
performed by the HMM.

The reason for using the HMM as the final decision process was to make
use of the temporal information in the signal. One of the keys to vowel
segmentation is identifying the formant transitions within the vowel. The
HMM has the ability to capture these temporal characteristics whereas a
static classifier cannot. The reason for using the neural net and maximum
likelihood processes at all is to reduce the time involved in running the

HMM. It is computationally prohibitive to run every feature through the
HMM.

Like all of the fine level sementers mentioned so far, the vowel classifier
makes use of low level features from the signal. The features used by this
classifier were the four spectral moments, fundamental frequency (SIFT al-
gorithm), and formant traces (using hand labeled traces from LPC spectro-
gram)j.

The vowels being examined are the ten vowels used in the classic

Peterson and Barney vowel perceptions study [PETE52]. They are /iy, ih, eh,
ae, o, ah, uw, aa, er/.

The maximum likelihood pre-classifier is nearly identical to the maxi-
mum likelihood process described in the sectitcn on broad phonetic
segmentation and will not be discussed in detail.

The neural network pre-classifier uses the back-propagation training al-
gorithm. This algorithm is based on a multi-layer feed-forward perceptron.
We used a single hidden layer with the hyperbolic tangent as its nonlinearity
function. Since several feature set combinations were tested, and the num-
ber of hidden nodes is dependent on the number of input values, several
different number of hidden layer nodes were investigated.

The decision to use a HMM was based on its ability to accurately model a
time varying process. The HMM does this by assuming that a time-varying
process can be thought of as a set of states with transitions between the
states. Through presentations of example processes the HMM can be trained
to predict the probabilities of the transitions from state to state and the
probabilities of an output symbol being generated by each state. In applica-
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tions where HMMs are applied the transitions from state to state are not di-
rectly observable. In the vowel study the transitions being modeled are pri-
marily the transitions in the formant frequencies observed in a vowel-like
segment. These formant transitions are procuced by the time varying pro-
cess of articulating continucus speech.

A three state, left-to-right model was used as the HMM for this study. In
this model each of the three states has a pcssible transition to itse!f or to
the state immediately to its right. The rightmost state has a transition to the
leftmost state. Three states were chosen to attempt to model the onglide,
central, and offglide segments in a vowel's formant frequency transition. The
vowel classification results are presented in the section 8.5.5 of this report.

8.4.5 Automatic Neural Networks

RIT has become very inierested in the application of Automatic Neural
Networks (NNs) to solve classiflcation problems. Neural networks are not
difficult to program and qui‘e simple to use. All they require is a set ur
features as input and they produce a sequence of discrete classification
symbols. There is a natural inherent parallelism in neural networks which
can be exploited in terms of fault-tolerance and execution speed.

The ability ¢f NNs to learn by example allows them to be easily trained.
The more training data that is presented to the network, the more accurate
the results. NNs can be taught to “remember” certain classes of objects. The
features of the ohjects can be presented at the input layer of the network
and the corresponding class at the output layer of the network. The internal
nodes of nets can then be trained to adjust themselves to produce the de-
sired output. This is an example of supervised training, the person training
the net knows the correct response and pencalizes incorrect responses. The
penalization is done by modifying the behavior of the internal nodes in the
network. After some number of trials the NN can consistently produce the
desired output.

Unsupervised training is used when the desired output symbol is un-
known. The network forms internal clusters which it uses to classify the
data into the discrete symbols at the output layer.

Neural networks can be applied to many classification problems. We have
utilized them primarily for speech-related classifications such as coarse
phonetic classification, Phonetic identification and classification, and word
recognition. NNs in general can be apnlied to any feature-based classification
problem. NNs can address the same class of problems that have been
traditionally solved with statistically based classifiers such as K-means
cluster analysis and maximum likelihood.

Figure 8-5 shows the structure of the networks that we have used at RIT.
This network has three nodes in the input laver (X0, X1, X2), flve nodes in
the hidden layer, and nine nodes in the output layer. This net would be used
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to classify data into nine discrete classes. We have used twice the number of
input layer nodes minus one as a formula for computing the number of
hidden nodes in a single hidden layer model. For this figure the three input
layer nodes correspond to three features that would be used for the
classification. The networks we have investigated are fully connected, with
each node in one layer attached to each node in the level below. Weights are
attached to each connection and are adjusted by the training algorithm to
produce the desired values at the output layer when presented with certain
values at the input layer.

ONONO
© ©QROE

Figure 8-8 Neural Network Structure

We have been using a supervised training model called back-propagation.
In this model input is presented at the input layer and if the output layer is
correct then no adjustments are made to the weights in the system so as to
correct the error. The weights are adjusted according to the equation:

le(t+l) = le(t) + Eiji + a(ij(t) - Wij(t-l))
where
€ = Gain term

o = Momentum term
Wiy(t) is weight from hidden node i or from an input to node j

Xi is either an input node or a node in the hidden layer

Calculation of 8 based on derivative of the hyperbolic tangent
8 = (1-yj2)(dj-y;) when j is a node in the output layer

8 = (1-xj2)Z(5j-Wj) when j is a node in a hidden layer
dy 1s the desired output for the specific node j and
yj is the actual output for node j
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When using the back-propagation model the initial weights are randomly

set to small values (= 0.05). The training is simple, but computationally ex-
pensive. For very large feature sets the back-propagation training method
can be very slow. For example, on an Explorer 11, a 10,000 token feature set,
presented to a neural net with 10 input layer nodes, 19 hidden layer nodes.
10 output layer nodes, took twelve hours to train to 50 passes (presentations
of the input). There is quite a bit of interest in moving some neural network
software to digital signal processing boards such as the Odyssev board for
the TI platform or the DSP32 board we have used in the Macintosh
environment. Transputer boards may also be used for higli-speed training of
neural networks.

Our interest in neural networks helped to develop an informal weekly
neural network seminar at RIT. At this seminar other tvpes of networks and
training models were examined. RIT also sponsored the 1939 NAIC Spring
Meeting on Neural Networks and Complex Distributed Systenis. At this
meclng several NN topics were discussed including «=cn~intive memary of
Hopfie'd netwcerks, Neural Networks for handwritten digit reccgriticn,
Neural Networks for phoneme classification. Electronic Neural Neatworks.
and others.

€.4.6 Word Hypothesis from Errorful Phonetic Strings

Tlis 1s the first project which operates on the phonetic strings produced
by the lower levels of the system. The phoietic string representation of the
speech signal is intended to be speaker independent. This project [SELL89]
investigated a dynamic programming approach to the word hypothesis
problem. It was based on an approach known as Dynamic Time Warping
(DTW] [ITAK75]. DTW is a common method of sequence comparison used in
matching a reference vector with an unknown vector. As applied to phonetic
strings. the DTW algorithm compared the unknown phonetic string with
reference strings from a database of words. A cumulative least cost path
combined with an empirically determined threshold was used as the
decision criteria for recognition.

This work is the first of the higher-levei components of the speech
understanding system. The knowledge representations used at this level are
closer to the meaning of the speech than those at the lower levels of the sys-
tem. Both this work and the later natural language understanding work are
working in the domain of cockpit-speech. The CMU speech databa:e is not
oriented toward any domain (ie. the utterances were chosen for the.r acous-
tic properties not how they apply to any type of domain or scenario). Thus
the higher-levels in the speech understanding system investigated the
speech used by fighter aircraft pilots. The utterances were taken from a
USAF Cockpit Natural Language study |[LIZZ87). The vocabularv from the
study involved a vocabulary of 656 words gathered during simulated aircraft
missions.

24




The difficulties in matching the unknown phonetic strings with the ref-
erence string are the result of two classes of problems . The first problem is
the front-end errors produced by the lower-levels of the speech understand-
ing system. These front-end errors are due to the inability of the lower-
levels of the system to differentiate similar sounding phonemes. The second
class of errors consists of errors produced by the speakers. This second
class of errors consists of insertion, deletion, and substitution errors. These
errors are more common in continuous speech where we are less precise in
our pronunciation of words. The following are examples of the three types of
errors.

Insertion Error — chauffeur /sh ow fr/ is pronounced /sh ow1fr/
Deletion Error — hallway /h ao 1 w ey/ is pronounced /h ao w ey/
Substitutior Error — tell /t eh 1/ is pronounced /k eh 1/

Some of these pronunciations are rule-governed. For example, the word
identify is often pronounced idenify. The rule governing this deletion states
that the phoneme /t. may be deleted when it appears in between /n/ and a
vowel. These phonological variations can be handled by creating an an ideal-
ized pronunciation in the lexicon and alternative pronunciations based on
the application of the pronunciation rules. Phonological variations across
word boundaries are more difficult to handle. Consider the phrase “Did you
see it?.” The addition of the word /j u/ for the alternative pronunciation of
“you”, may conflict with the recognition of “judge”.

Another problem in interpreting phonetic strings is a single phonetic
string with multiple interpretations. The following two sentences are a
classic demonstration of this:

“Remember, a spoken sentence often contains many words that were not
intended to be heard.”

“Ream ember, us poke can cent tense off in contains men knee words
that were knot in tend did tube bee herd.”

Matching entries against a lexicon of representative transcriptions cannot
resolve this problem. Other knowledge about syntax, semantics, and acoustic
clues must be used to solve this problem. This problem was beyond the
scope of our DTW word hypothesizer.

DTW has most commonly been applied to speech as the comparison of
two time varying sequences of acoustic feature vectors. Each sequence de-
fines the axis of a matrix mapping the feature vectors (per unit time) against
one another. At each coordinate in the matrix a measure of distance or dis-
similarity between the acoustic vectors is calculated. The goal is to find a
path from the the first symbol in the feature vector to the last symbol whose
cumulative distance (from the matrix values) is minimized. This method was
extended to use phoneme strings as the unknown and reference patterns.
The differences introduced by this extension relate to the time axis and the
dissimilarity measures. Although the phoneme strings are time ordered each
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symbol may represent one or more arbitrary units of time. Therefore we are
not strictly warping along a time axis. The difficulty with the dissimilarity
measure was that there was no known metric for representing the differ-
ence between phonemes.

The matching algorithm traverses the matrix determining the least cost
path. Figure 8-6 shows matching with an insertion error and with a deletion
error.

Input Utterance Input Utterance
ae | n m |d d th { jh Ju
ac |O |7 7 |10 d 0 9 3 {9
Reference I 7 —\|10 Reference th |9 S 9
d 10 | 10| 10 d 0 9 9
!
Figure 8-8 DTW matching algorithm

Searching all possible paths through the matrix is computationally ex-
pensive, so the search is constrained by limiting the degree of slope in the
path, and setting a maximum permissible path distance. These constraints
prune paths that would otherwise grow excessively large.

Ideally, a comprehensive inter-phoneme distance matrix (the phonetic
dissimilarity measure) would be based upon the classification characteristics
of the lower levels of the speech understanding system. At the time of the
implementation only vowel-vowel confusability statistics where available.
Distance data for consonants was extracted from studies of human confus-
ability [SHEP80]. We still lacked any distance measure from vowels and con-
sonants. We therefore assumed that in general the distance between conso-
nants and vowels (excepting glides /y/ and /w/) was large enocugh to assume
that their confusability was zero.

Discussion of the testing procedures and results for DTW word hypothe-
sis are presented in section 8.5.6.

8.4.7 Natural Language Understanding using Conceptual Analysis

Our work in Natural Language Understanding has focused on the use of
Conceptual Dependency (CD) theory as it is applied to cockpit-speech
[RIDL89]. The goal of this work is to build a representation of meaning from
the words in an utterance. CD [SCHA75, SCHA77. SCHA80] attempts to
represent events as a composition of primitive actions, iniermediate states.
and causal relationships.

In this way, the utterances “Flight command gave F16#1 the target posi-
tions” and “F16#1 received the target positions from flight command” both
could use the same representation. The representation would have the
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power to express that target positions were transferred from flight com-
mand to F16#1 and that target position information originated from flight
command. The only significant difference between the two sentences is
which actor initiated the transaction.

The language that fighter aircraft pilots use to communicate with each
other about their actions, environment, and intentions, is very challenging
language for Natural Language Understanding (NLU) systems to handle. This
is because cockpit speech has evolved in a highly constrained environment
and must meet different criteria of expressive power, legibility, syntax. and
semantic content from every-day conversational language. The language that
a person uses is always dependent on that person’s environment. Cockpit
language is more alien to the non-military, non-flying public than many of
the ordinary variations in language because the fighter aircraft environment
is so different from the normal day-to-day interactive environment of most
people. The public is not, in general., acquainted with the cockpit of a
fighter aircraft so the language used there appears to have little in commoen
with the standard, everyday use of English.

There are many factors that have contributed to the unique language used
by fighter pilots. A fighter aircraft is a technologically complex machine, so
there tends to be a large amount of jargon and technical words surrounding
its operation. Fighter aircraft are used primarily in the environment of the
military, so there exists some military jargon not directly related to fighter
aircraft. The military uses acronyms more heavily than the civilian popula-
tion, so cockpit speech is also rife with acronyms. Another strong factor in
shaping cockpit speech is the speed required for pilot communication.
Events transpire very quickly in fighter aircraft, especially during battle situ-
ations, so the utterances must be short while maintaining a high information
content. In sacrificing length for speed, one of the first casualties is correct
English grammar. Only enough grammar remains to remove ambiguity of the
roles the words play when combined with world knowledge and the present
situation. Since connectives and qualifiers do not add as much information
as they do length, they are left off except when absolutely necessary. The
following utterances are from a cockpit speech, natural language study done
by the Air Force. The utterances from this study form the domain for this
thesis work.

Arm em up Select best weapon

Pass data Chaff and flares

Pigeons to alternate How we doing

Gimme sidewinder Radar enter track while scan target helicopter

The utterances above reflect the style of cockpit speech. They are com-
pact and contain primarily verbs and nouns or, if a verb can be assumed. only
nouns. These utterances demonstrate a dependence upon situation and en-
vironment to fill in missing information. For example, “Chaff and flares™ may
be a request to test these weapons, arm these weapons, or fire these
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weapons based on whether the pilot is performing systems checks, prepar-
ing for engagement, or already engaged with an enemy.

At the core of any representation of meaning, there must be a system for
representing concepts. These concepts may be physical events, mental pro-
cesses, causal ideas, statements of intent, as well as many other actions that
may be described using natural language. The Conceptual Dependency (CD)
theory use the following rule [SCHA75] for representing concepts.

Conceptualizations have the following
an ACTOR—the doer or performer of an ACT
an ACT—An action done to an object
an OBJECT—The thing that is acted upon
a RECIPIENT—The receiver of an object as the result of an ACT
a DIRECTION—in which that action is oriented
a STATE—the state

CD uses this same framework to represent concepts. If any of the re-
quired elements in the framework are missing, they must be postulated
from knowledge sources other than the utterance being parsed. Such
sources include: domain specific knowledge, knowledge of speaker habits,
and previously parsed information.

The process which builds the conceptualization is the conceptual ana-
lyzer. The conceptual analyzer takes a sequence of words and builds the
conceptualization indicated by the words. It uses a conceptual dictionary
where the concepts that represent objects and actions within the domain
are stored. In the domain of cockpit speech, the job of the analyzer is made
more difficult by the extremely loose grammar, high use of contextual and
domain knowledge. and the short utterances. The words in the utterance
provide only enough information to disambiguate the meanirig.

CD was chosen since it attempts to build meaning representation directly
from the words that it sees. Also. since CD can be implemented as a frame-
based. slot-filling mechanism the analysis of the utterance need not be done
in a left-right fashion, but can instead be driven by expressive strength of
the words that it sees. Thus the analyzer could start with the verb(s} in the
utterance since they generally carry much of the information content of the
utterance. From the conceptualization of the verb, objects can be postulated
from the utterance or domain specific knowledge. It was felt that this was a
good approach for handling the unique problems presented by the cockpit
speech domain. One of the difficulties in applying CD to cockpit speech was
that CD theory was developed to perform story understanding. These storics
consisted of third person descriptions of human events. The man-machine
interface application of CD which is demanded in cockpit-speech led to the
addition of a few more primitive actions as well as methods for representing
intelligent aircraft (machines with ability to understand and manipulate
their environment in the manner of humans).
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At the time of the writing of this report, this work was not yet at the im-
plementation phase. In section 8.5.7 some conceptualizations for utterances
from the domain will be presented.

8.5 Results of Speech Understanding Research

Attempting to report concisely the results of several years of work is a
difficult task at best. We have decided to collect the results of each of the
methodologies discussed above into this section so that they might be more
easily referenced and reproduced. Each sub-section will briefly restate the
the problem being addressed, present results, and finally some discussion
and conclusions.

8.5.1 Feature Extraction (Formant Tracking) Results

The innovative work addressing low-level feature extraction was done in
the area of formant tracking. We developed a statistical approach to formant
tracking. This approach assigned probability measures to sets of features ex-
tracted from short-time analysis of the signal and a conditional mean esti-
mate is used to determine format frequency values. This work was a general-
ization of methods introduced by Kopec based on hidden Markov models
and vector quantization symbols.

Two approaches for calculating the probability measure were evaluated.
The first approach calculated the probability of a formant occurring at a
given time at given frequency from the classification based on the class dis-
tances calculated by the maximum likelihood classifier. This classifier is de-
noted FSD. The second method, computes probabilities from the observation
frequencies of vector quantization symbols assigned to feature vectors. These
observation frequencies are collected from training data. This classifier is
denoted by FVQ. The FVQ work was included primarily for direct com-
parison to the work of Kopec.

RMS Error % Large Errors
F1l F2 F3 Fl F2 F3

Markel 92 274 503 1.2 5.4 21.3
S40(1024) |72 93 150 1.6 0.4 1.5
S40(64) 98 155 235 3.2 1.3 4.4
FSD 68 122 214 0.7 0.4 3.9
|FVQ 99 154 224 3.7 1.1 4.8

Table 8-2 Formant Tracker Comparisons

Table 8-2 compares the FSD and FVQ to other types of formant trackers.
Markel is a peak picking algorithm tested on the CMU database. S40(1024)
and S40(64) are trackers used by Kopec with vector quantization codebook
sizes of 1024 and 64 respectively using the TI connected digit database. In
the table, smaller numbers indicate better performance. Large errors are
defined by Kopec as a frame in which the absolute difference between the
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hand-marked value and the tracked value is 250Hz or greater in the case of
F1 and 500Hz or greater in the cases of F2 and F3. The statistical trackers
were all measured with a threshold value of 0.5
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Figure 8-7 FSD Missed Formants
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Figure 8-8 FSD False Alarms

Figures 8-7 and 8-8 show the FSD trackers performance with respect to
missed formants and false alarms. A missed formant is defined as a frame in
which there was a hand-marked value but no tracked value. Similarly, a false
alarm is a frame in which there was a tracked value but no hand-marked
value. The threshold value in the two figures represents the minimum prcb-
ability necessary to predict a formant. Small thresholds will predict more
formants but have a correspondingly high false alarm rate. Large thresholds
have the opposite behavior.

The only approach to formant tracking in the literature which has been
quantitatively analyzed in adequate fashion are Kopec's vector quantization
trackers. In Kopec's study. approximately 142,000 frames were-hand
marked. This is about four times as much data as we had available. The code-
books used by Kopec were trained on about 250,000 frames or about 12
times the training we used with the FVQ tracker. Referring back to table 8-
2, we see that the peak picking algorithm scored well on F1, but poorly on
F2 and F3. The high percentage of large errors, particularly for F3, reveals
the difficulty in accurately assigning formant labels to spectral peaks. The
results for the FVQ and S40(64) trackers were quite similar for all three
formants. The FVQ codebooks may, however, have been insufficiently
trained. The performance of the FSD tracker could be improved by allowing
a more flexible configuration. The quantization size and number of features
for each of the formants could be set independently, rather than using the
same configuration for F1, F2 and F3. In particular, F3 would probably
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benefit from an increase in the number of features used since it has the
largest frequency range and the worst performance.

8.5.2 Coarse Phonetic Classification Results.

The coarse phonetic categories studied were: vowel-like, strong fricative,
weak fricative and silence. Two decision making procedures were investi-
gated. The first procedure used Euclidean distance measure to clusters in
the n-feature dimensional space that had been derived using the K-means
clustering algorithm. The second procedure investigated the use of a multi-
variate maximum likelihood distance measure to classify the segments. Also
investigated was the impact of the structure of the decision making process.
Several tree-structured decision architectures were compared for each of
the classification methods.

Error Type

2 3 4
Max. Like. Single Level 68% 73% 86% 450~
Max. Like. Binary Tree 80% 84% 91% 58%
Max. Like. Skewed Binary 75% 81% 85% 54%
K-means Single Level 76% 84% 87% 48%
K-means Binary Tree 79% 83% 91% 49%
K-means Skewed Binary 78% 83% 90% 56%

“Table 8-3 Coarse Phonetic Classilication Results

In order to provide enough training data for the maximum likelihood
classifier, all of the 96 utterances from the CMU data were used. Therefor.
the results in table 8-3 represent training and testing on the same data set.
In the table, the error types are as follows: 1.) Frames labeled correct out of
all framcs; 2.) Frames labeled correct disregarding frames at the bcundariecs
of two phonetic classes; 3.) Segments correct to within 10ms of the
boundary; 4.) Segments correct everywhere within the true segment. A
segment is a sequence of frames all having the same class. For example, an
80ms noise associated with the phoneme /s/ would create a strong fricative
segment of 8 frames. Error type 3 indicates an instance where any frame in
the segment was correctly classified. Error type 4 indicates an instance
where all frames except boundary frames in the segment where correctly
classified. Error type 4 is the most stringent of the error constraints.

The best overall classifier was the maximum likelihood binary trec
method. It was the top performer, or tied for the top. in all four error anal-
ysis methods. Of the tree structures. the binary tree performed best since
the two systems using it outperformed all of the other system. These results
indicate that the overall performance of both the classifiers was improved
through the use of a decision tree structure and that the binary tree
structure produced more accurate decisions than the other tree structures.
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Possible improvements to the system would involve designing a second
level of software to smooth the classes. The current system operates strictly
on a frame-by-frame basis, taking almost no account of the characteristics of
its neighboring frames. The only constraint involving neighboring frames is
that a single frame surrounded on both sides by different frames will be
changed to conform to the neighbors. HMMs are a very attractive method for
performing the second level smoothing described above.

8.5.3 Fricative Expert System Results.

In our investigation of fricatives we examined the use of an expert system
to classify fricatives based on expert spectrogram readers. The testing of the
the expert system was limited by the SUN system upon which the system
was running at the time. The system had been operating at about 97%
capacity for some time. These space constraints allowed only 43 fricatives
from four speakers (three male and one female) to be examined. The identi-
fication was considered correct when the system classified the sound a
single phoneme which agreed with expert’s opinion.

Correct identification was made 60% of the time. Included as incorrect
were case where the system did not have enough knowledge to decide be-
tween competing candidates and therefore gave two choices as to the iden-
tity of the phoneme. Of the identifications considered incorrect, 41% were
classifications that gave correct information about the segment but did not
identify it as a single phoneme. Results for male speakers were substantially
higher than for female speakers. 74% for males and 37% for females. Most
of the errors that were made with female voices were due to a poor initial
diagnosis of the amount of energy in the speech signal.

The following is an excerpt from an the expert-system dialog wii the
user: [user input in bold face]

Does the sound segment have

a) concentrations of energy mid or high range?
b) very diffuse energy

c) too little energy to tell

>a

Is there

a) a concentration of energy about 5kHz
b) a concentration of energy about 3kHz
c) both of these a) and b)

d) neither of these [a,b,c.d]

> why

(A AR R EEREERES SRR ERERRE RSN RR R R R SRR R R

An investigation of the energy concentration is being performed
in order to discriminate between the s (alveolar) and sh (palatal)
sounds
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L XX EEREEEARREER R SRR RS ERNSR RN ERERR R D

Is there

a) a concentration of energy about 5kHz
b) a concentration of energy about 3kHz
c) both of these a) and b)

d) neither of these [a,b,c,d]

>a

place is alveolar
is there a voice bar present? [yes.no] > n
is there evidence of periodicity lyes.no} >n

Advice: could be s as in see

(Return continues) why

I A E RS R RS R R R R R R R R R RE SRR R R RN SRR NE]

Since the answer to “Is there evidence of periodicity ?” is noev-
idence when the answer to “Is there a voice bar present ?” is
no. It follows that voicing is absent

Since the reply to “strong” is a) it follows that the place of ar-
ticulation is alveolar.

Since voicing is absent when the place of articulation is alveolar
advise “could be s as in see” in order to classify the fricative.

.““.“““.“.‘...‘..“.i‘.“.“‘ﬂ““;tt‘

Enhancements to this work include re-working of the C program which
initially determines the energy of the fricative. Of the incorrect
identifications 41% were strong fricatives that were misclassified as weak by
the C routine. Clearly the decision constraints in this process need
adjustment. Most of the errors made with female voices were due to an
Initial misdiagnosis of the strength of the amount of energy in the signal by
the user of the system. This may be due to the fact that the spectrograms
being used measure spectral amplitudes to 6Hz, but many female voices have
ranges up to 8kHz. Since strong fricatives have a concentration of energy in
the high frequencies of the speaker's range, it is possible that the
concentrations expected for strong fricatives was being lost.

8.5.4 Stop Consonant Classification Results
Our work in stop consonant classification is based on the shape of spectra

taken from the burst region of the stop. Our general approach to stop classi-
fication has been the following: (1) Spectral Analysis of the stop is per-
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formed; (2) Feature Extraction from the spectra; (3) Optional feature com-
pression; (4) Maximum likelihood classification.

The stop consonant classification testing is incomplete at the time of this
writing. The results presented here represent the best classification results
achieved by training and testing on all the stop consonants present in the
vowel dense CMU database.

A~y [ L 1 e/ LV /K Total
Closure O }

2 frames 192pts] 100 | 96.0 — 100 | 95.2 | 97.9 | 97.6

3 frames 1S2pts — 100 — 100 100 100 100
No Closure

2 frames 128pts| — [ 100 ] — | — | 100 | ] 100
Combined

4 frames 192pts| 100 [ 95.7 ] — | 100 | 95.8 | 98.3 | 97.4

Table 8-4 Stop Consonant Classification (% correct)

The efiect of not enough training data is evident in the classification re-
sults. Table entries with no values represent consonants that the maximum
likelihood classifier could not establish mean feature vector values for, be-
cause there were not enough presentations of that particular stop consonant.
Note that in stops not preceded by a closure only /d/ and /t/ could be clas-
sified. Work under development is being done with the combination of the
CMU vowel dense and stop dense data. Final correct classification results are
not available yet. but enough training data has been collected to eliminate
this lost class problem. The results above represent the best combination of
number of frames, frame width (in data points), and features when trained
and tested against the vowel dense database. The fcllowing two tables shiow
the classification results of place of articulation and voicing under the same
testing conditions as above.

[ Voiced | Unvoiced | Total
Closure
4 frames 192pts 96.7 | 966 | 96.6
No Closure
4 frames 128pts 97.4 | 100 | 99.1
Combined
4 frames 256pts 889 | 937 | 920

Table 8-5 Stop Voicing Classification (% correct)

35




Labial Alveolar Velar Total

Closure
3 frames 192pts 96.0 95.5 100 97.2
4 frames 256pts 96.7 96.6 100 96.6
No Closure
1 frames 192pts 100 88.2 100 92.0
2 frames 128pts 100 100 100
Combined
4 frames 192pts 95.7 93.0 96.1 94.5

Table 8-6 Stop Voicing Classification (% correct)

The work that is currently under investigation is aimed at optimizing the
feature sets that are being used in order to reduce the noise (interfering
features) that is presented to the maximum likelihood classifier. Work is also
being done on the combined vowel dense and stop dense data which should
allow better classification results (due to more training data) and training
and testing against different data sets. Classification results for different
training and testing sets are expected to be in the 70% range.

8.5.5 Vowel Classification Results

The performance of two types of classifiers was investigated for use with
vowel and vowel-like segments. The first classifier was a maximum likeli-
hood classifier similar to the classifier used in the coarse phonetic classifi-
cation. The second classifier was a back-propagation neural network. These
classifiers produced a phonetic classification for each 5ms frame of the ana-
lyzed vowel-like segment. This output sequence of phonemes was then pre-
sented to a hidden Markov model (HMM) which produced the final output
string. The neural network and maximum likelihood classifiers might better
be called pre-classifiers as they attempted to reduce the complexity of the
classification performed by the HMM.

The features that were used to classify the vowels consisted of the first
three formant frequency values, (F1, F2, F3), pitch (F0), mean (M2), vari-
ance (M2), skewness (M3), kurtosis (m4), median (m5), and the mean for-
mant frequency values for each individual speaker (mFl, mF2, mF3). The
more successful classification feature set included F1 and F2. These formant
frequencies best characterize tongue height and advancement. This enables
a distinction to be made between front, central, and back vowels.

Classification by the neural network and maximum likelihood pre-classi-
fiers occurred at a frame by frame level of the vowel token at 5ms intervals.
The database was split in half with each half having an equal distribution of
tokens. One half was used for training the other for testing. The results
achieved for a NN with all twelve features, 18 nodes in one hidden layer and
momentum and gain terms of 0.5 and 0.3 produced training accuracy of
64.46% and testing accuracy of 47.38% as shown tables 8-7 and 8-8.
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iy ih eh ae ah uw uh aa a0 er

iy 8566 747 098 177 020 196 079 039 -~ 0.79
ih 937 6694 551 441 303 165 634 055 110 1.10
eh 335 671 4787 2348 549 305 488 335 091 091
ae 221 522 1325 6747 241 080 141 562 100 060
ah 293 460 753 586 6109 209 628 544 251 167
uw 821 870 145 290 145 6618 870 048 048 097
uh 510 1327 1429 612 969 1276 8214 255 357 051
aa 217 326 598 2174 815 054 489 478 326 217

ao 090 270 1351 1441 631 - 991 991 4054 180
er 233 233 233 093 18 047 18 047 093 8651
Average rate of correct decisions 64.46

Table 8-7 Training Results for NN Vowel Classifier

1y ih eh ae ah uw uh aa ao er
iy 7592 1329 077 - 039 694 193 077 - -
ih 1450 6221 344 153 229 1260 344 - - -
eh 217 1115 2632 2601 1238 186 1796 - - 217
ae - 860 1363 637 650 - 294 398 - 0.63
ah - 1480 516 1549 1408 - 4648 376 - 0.94
uw 763 321 - - 040 4859 3896 - - 120
uh - 577 - - 1298 2933 4760 337 - 0.96
aa - 462 462 2197 4277 058 1850 462 - 231
a0 - - - 2185 3193 - 27T - - 13.45
er - 972 - 11.11 1250 139 14588 278 - 4792
Average rate of correct decisions 47.38

Table 8-8 Testing Results for NN Vowel Classifier

Training the maximum likelihood pre-classifier was managed in a slightly
different fashion. An exhaustive search of which combination of N features
that best the vowel tokens was performed, where N ranged between 3 and
8. Pre-classification results of the optimal feature set are shown in table 8-9.
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Features Used % Correct

F1,Fo.F3 55.68
F1,Fo,F3,F0 61.82
F1,F2,F3,FO,mF2 64.89
F1,F9,F3,FO,mF2,M5 66.99

F1,F2,F3,FO,mFgo,M5mF3 68.54

Table 8-9 Gaussian preclassification results based upon feature set

The feature set finally used for the maximum likelihood classifier was F1,
F2, F3, mF1, mF3 based upon its overall performance. Table 8-10 shows the
training results of the classifier. The jack-knife statistic shown in table 8-10
is obtained by removing the individual influences of the training tokens from
the training statistics, thus giving a more accurate indication of what the
testing performance might be.

iy ih eh ae ah uw uh aa 20 er
iy |8288 837 088 029 078 477 019 - - 1.85
ih 1152 6080 7.04 - 496 1024 40 016 - 128

eh 138 922 510 1736 829 092 276 353 292 261
ae 133 369 168 6021 359 010 041 1221 041 123
ah 044 487 531 310 2965 332 1681 2345 1195 111

uw | 702 154 - 022 132 7193 1513 - - 2.85
ubh | - 421 545 - 10.15 1658 5545 173 470 173
aa 084 252 252 952 1513 - 112 5602 1064 168
a0 - - 087 217 043 261 565 - 8826 -

er 056 084 139 - — 306 111 084 167 9053
Total .18 A1 1 14 o7 .10 .08 .08 .06 .07
Average rate of correct decisions 64.39

Jack-knife 54.92

Table 8-10 Training resuits for a Gaussian pre-classifier

The final part of the study involved taking the results of the pre-
classifiers and classifying the vowels over time with the aid of a HMM. A
three state left to right model was constructed for every vowel class that was
being investigated. The results of applying the HMM to the phonetic path-
way indicated by the backpropagation neural network appear in table 8-11
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iy ih eh ae ah uw uh aa ao er
iy 8906 468 - - - 625 - - - -
ih |465 7674 465 - 233 465 465 233 - -
eh |- 50 6500 1250 50 250 250 50 - 2.50
ae |- 250 1750 8000 250 - - 750 - -
ah |- 968 968 323 4839 - 1613 1290 - -
uw |40 8.0 4.0 - - 5600 2400 - - 4.0
uh |- 120 120 - 714 1786 5000 357 - -
aa |- 588 588 588 2941 - 588 5294 - -
a0 |- - - - 30.00 - - 4000 2000 10.00
er |- 666 - 666 - — — 1333 - 7333
Jack knife 68.05

Table 8-11 Results of hidden Markov model with neural network

The results of applying the HMM vowel models to the output of the
maximum likelihood pre-classifier are presented in table 8-12.

iy ih eh ae ah uw uh aa ao er
1y 8906 469 - 312 - 1.56 - - - 1.56
ih 930 6047 930 - 233 1163 465 233 - -
eh |- 750 5000 2000 500 250 500 750 - 2.50
ae - 250 1750 6500 250 - - 1250 - -
ah - 645 323 - 2581 323 1935 3226 645 3.23
uw | 400 400 400 - - 6400 1600 4.00 - 4.00
uh - - 714 - 1071 2143 5000 - 714 357
aa |- - 588 588 1176 - - 5882 11.76 5.88
ao - - - - 10.00 1000 - 10.00 7000 -
er - - - - - - ~ - — 100.0
Total 20 12 12 12 06 10 09 .10 K0! o1
Average rate of correct decisions 63.58
Jack-knife 58.15

Table 8-12 Results of hidden Markov model with Gaussian classifier

As shown in previous studies [HILL87], formant frequency values tend to
be the best features that characterize a vowel. The drawback in using these
values resides in the difficulty of accurately tracking frequency values. The
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comparison of the maximum likelihood mmethod and neural network is
inconclusive for this study. Each modec! has its own strengths and
weaknesses. A neural network tends to be more forgiving when presented
irrelevant features, whereas the Gaussian model is apt to “memorize” the
insignificant features and thus lose its abilitv to generalize about the specific
class the training token came from. On the other hand the time required to
train a neural network takes a few hours in contrast to the few minutes
needed to train the maximum likelihood classifier.

Further work in this area includes the investigation different types of
neural network models, and the development of a more speaker indepen-
dent feature. The models should not have to rely on the normalizing values
of mF1, mF2, and. mF3.

8.5.6 Word Hypothesis from Errorful Phonetic Strings Results

This project investigated a dynamic programming approach to the word
hypothesis ::roblem. It was based on an approach known as Dynamic Time
Warping (D1W). DTW {s a common method of sequence comparison used in
matching a reference vector with an unknown vector. As applied to phonetic
strings, the DTW algorithm compared the unknown phonetic string with
reference strings from a database of words. A cumulative least cost path
combined with an empirically determined threshold was used as the deci-
sion criteria for recognition.

A comprehensive series of tests were ruun against a group of forty-two
phrases containing ten-percent substitution errors. Of insertion, deletion.
and substitution errors, substitution errors are the most common in speech
and caused less problems for the DTW than the other two. Each test varied
one of three primary variables: the minimum distance threshold, the num-
ber of candidate words accepted at any one phonetic index, and the size of
the lexical search space when obtaining reference patterns for the DTW pro-
cess. Five threshold values were used ranging from zero to 1000. Values
ranging from five to thirty were used as the number of candidates accepted
at any index. The small search space provided access to approximately
twenty to thirty percent of the word-initial phoneme groups in the lexicon,
whereas the large search space was twice that.

The performance of each test was evaluated using the following criteria.
First, the flnal word lattice returned from ecach parsing was examined for
the presence of the intended utterance. Finding all utterance words in their
correct order was considered a complete match. The number of complete
matches from N test utterances provided the total percent recognition. A
second measure of success: was ‘the average percentage of words hypothe-
sized per phrase. This gives a relative idea of how well the parsing process is
working on a phrase basis. It relates the number of correct words found to
the number in the original utterance over all phrases.

40



The computational speeds for the process were disappcinting. Cn an
Explorer I, times ranged from 4 to 21 hours per test (42 utterances).
Equivalent tests on the Explorer II reduced these times by a factor of five.
There was a positive correlation between increased run times and increases
in all three variables. Table 8-13, shows the range of recognition rates for ut-
terances in the test suite.

Threshold Low Recognition Rate High Recognition Rate

0 36 50

125 46 50

175 48 50
225 57 63
275 57 66
500 63 66
1000 63 66

Table 8-13 Recognition Rates for DTW algorithm

Results from the most successful test were selected for more through ex-
amination. An immediate observation was that in most cases, words not hy-
pothesized were of short transcription length (under four phonemes). Aware
that there are several points within the hypothesis procedure that a poten-
tial candidate may be pruned before acceptance, the missed words were
submitted individually for parsing and monitored as to when they were
dropped. It was discovered that the DTW comparison procedure was penal-
izing small words severely and pruning them early on. Words with signifi-
cantly different transcription lengths should be treated differently. As refer-
ence pattern length grows, the distance generated by a single mis-match in
the warping process has less impact cn possible rejection due to averaging.
Therefor, the decision to prune shorter words based on distance must be
made earlier than longer words. After making this adjustment to the pro-
cess, total phrase recognition rates increased by fourteen percent to a high
of 80%.

From various veiwpoints, the dynamic time warping method of this study
has proven to be not entirely satisfactory for use in the hypothesis of words
from errorful phonetic strings. Three minute per test phrase run-times are
magnitudes away from real time processing. It was demonstrated that noise
levels (measured as the total number of words required to identify a single
correct word) in the test with greatest recognition rate approached ninety
to one. This places a tremendous burden on higher level processes which
must detect the correct phrase from the word lattice. Assuming that twenty
were hypothesized at each of ten phonetic indices, there are 2010 possible
phrases in which to find the actual phrase. For these reasons alternative
methods must be investigated for word hypothesis in continous speech.
given a different organization or additional information within the lexicon,
syntactic and semantic constraints might be used to selectively predict
which words (reference patterns) are most likely to be present in
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the unknown utterance. Hidden Markov models are also an attractive alter-
native.

8.5.7 Natural Language Understanding using Conceptual Analysis Results

Our work in Natural Language Understanding has focused on the use of
Conceptual Dependency (CD) theory as it is applied to cockpit-speech. The
goal of this work is to build a representation of meaning from the words in
an utterance. Much of this project is still in the design area. Two diagrams
will be presented showing the type of behavior expected from the com-
pleted project.

Figure 8-9 is from the cockpit-speech natural language study and is
provided as an indication of the use of natural language as a man-machine
interface to the aircraft. It also demonstrates the unique qualities of cockpit
speech.
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Description:
Pilot is approaching rendezvous. A data link message has been recetve concerning down
range threats.

Voice from aircraft before command:
“Thireat data.”

Experimenter's prompt for command:
"request details on threat data.”

Voice response from aircraft after command
“Tracking J band.”

Display at start Display at finish

Utterances Issued:

threat status, radar sort, is it in an active mode, threat data is it a
threat, go. evasive course,

am i targeted, display information, threat stats, defeat, more data,
analyze, geve me the threat data,

present the data, give me more inforamtion on the threat, threat ring,
go data, describe threat,

give me a threat ring, go data, is the site active, give me the data.
threat locked on to me, go ahead,

status ten, sam zone show me the threat.

Figure 8-9 Cockpit Speech Domain
Adapted from {LIZZ87]

Figure 8-10 is graphical representation of the conceptualization for the
situation described above. Of note are a new primitive action, DISPLAY,
which takes image information as an object and presents it on some type of
visual device. It is analogous to the human action of speaking. The
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conceptualization of threat data is a list of attributes which make up the
object. These attributes have not yet been finalized.

1.3.02 “Request details on threat data”

~ — ~

o .
Aircraft] € MTRANS &— (CA of threat data) (RI CP(Pilot1)

’|‘I CP(Aircraft1)
Aircraftl €= SPEAK T
TO Aircraft] $= DISPLAY
C2SOUND(CA of threat data) To
_jl) C2PICT(CA of threat data)
Speaker(Aircraftl) Ears(Pilot1) _T_D

Display(Aircraftl) Eyes(Pilot1)

\ y

Figure 8-10 Example of CD conceptualization

The majority of the phrases in figure 8-9 should map onto the meaning
representation of figure 8-10.

The work in this area is challenging, but there is hope for some interest-
ing results, particularly in determining how to address the unique problems
presented by cockpit speech.

8.5.8 NAIC Ancillary results

Aside from the speech understanding project, we have supported at RIT,
the educational and technical goals of expanding the base of Al research.
This is best demonstrated by comparing the status of Al at RIT in 1984 with
that in 1989.

The faculty with Al expertise has increased from 1 to 9. This includes
computer science faculty, faculty from other disciplines at RIT, and the full-
time employees at RIT Research Corp’s Intelligent Systems Division. The Al
curriculum in 1984 consisted of a single survey type course. As of 1989
there are both graduate and undergraduate concentrations in Al as well as
many one-time seminars. By 1984 5 Al theses had been completed. That
number has grown to 60.
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In 1984 there was no funded research for Al at RIT. ‘l'oday the following
projects have been funded (NAIC—Speech Understanding, RADC & TI—
Speech Workstation Development, RADC—Intelligent Surveillance System:
(with Buffalo & RPI), US Govt.—Intelligent Signal Processing, US Govt.—
Obiect Oriented Simulation, US Govt.—Intellicent Environment for Micsion
Planning, US Govt.—Neural Network Applications to Chinese Character
Recognition, US Govt.—Smalltalk and Object-Oriented databases, Eastman
Kodak—Neural Network Application to Signal Detection). We have built up a
host of Al equipment including two Explorer II, 2 Explorer I, Sun 2/130,
several Macintoshes running common LISP.

‘We have established an Al presence at RIT and are well prepared to study
new applications and problems.

8.6 Conclusions and Implications for Further Development

The five-year NAIC Speech Understanding project has provide RIT the
ability to study speech and the Al teciiniques that can be applied to speech.
We feel that we now have a excellent understanding of the difficult problems
encountered in developing a large vocabulary, continuous speech, speaker-
independent, speech understanding system. We believe that we understand
what the solutions to many of those problems are as well.

Future developments could include the development of a commercial
quality speech understanding system based upon our prototype system, the
incorporation of adaptive processes and learning into the system, and the
testing and evaluation of as yet undiscovered speech understanding proce-
dures.

Our work in the speech understanding area has allowed us to develop
tools, technologies, and personnel that may be applied to other speech re-
lated disciplines. The speech understanding work we have done has exten-
sions in the areas of: speaker identification, language identification, and key
word spotting.

In summary, we have established a real Al research resource at RIT and
need only new challenges and problems upon which to apply it.

45




8.7 References

[ATKI87] Atkinson, K.,, “FRIC — An Expert System to Recognize
Fricatives”, unpublished Masters Thesis, Rochester Institute of Technology,
1987.

(BLUM79] Blumstein S.E.. and Stevens, K.N., “Acoustic Invariance in
Speech Production: Evidence from Measurements of the Spectral
Characteristics cf Stop Consonants”, J. Acoust Soc of America, Vol66 #4,
1979.

[CAMP89] Campanelli, M., “Coinputer classification of phonetically
segmented stop consonants in a speaker independent continuous speech
environment”, unpublished Masters Thesis under development, Rochester
Institute of Technology., 1988.

[DELMS8S] Delmege, J., “CLASS — A study of methods for coarse
phonetic classification”, unpublished Masters Thesis, Rochester Institute of
Technology, 1988.

[GAYVS89] Gayvert, R., “A Statistical Approach to Formant Tracking".
unpublished Masters Thesis, Rochester Institute of Technology. 1989.

[HILL87] Hillenbrand, J. and Gayvert, R.T., “Speaker-Independent
Vowel Classification Based on Fundamental Frequency and Format
Frequencies”, Journal of the Acoustical Society of America, Spring 1987, 81
(Suppl. 1), S93 (A).

[ITAK75] Itakura, F., “Minimum Prediction Residual Principle
Applied to Speech Recognition”, IEEE Transactions Acoustical, Speech,
Signal Processing, ASSP-23, 1975, 67-72.

[KEWLS83] Kewley-Port, D., “A Time-varying features as correlates of
place of articulation in stop consonants”, J. Acoust Soc of America, Vol73
#1, 1983, 232-235.

[KOPES86] Kopec, G.,"Formant Tracking Using Hidden Markov
Models and Vector Quantization”, IEEE Trans., ASSP-34, 1986, 709-729

[L1ZZ87] Lizza, Capt. G., Munger, M., Small, Capt. R., Feitshans, G.,
and Detro, S., "A Cockpit Natural Language Study - Data collection and Initial
Data Analysis”, Flight Dynamics Laboratory, Wright-Patterson Air Force Base,
Ohio, April 1987, Doc.#AFWL-TR-87-3003.

[MARK72] Markel J.D., “The SIFT Algorithm for Fundamental

Frequency Estimation”, IEEE Trans. Audio Electroacoustics, AU-20 5, 1972,
367-372.

46




[MARK76] Markel J.D. and Gray A.H. Jr., Linear Prediction of Speech,
Springer-Verlag, 1976.

[PETES52] Peterson, G., and Barney, H., “Control Methods used in a
Study of the Vowels™, J. Acoust Soc of America, Vol 24, 1952, 175-184.

[RABI8S6] Rabiner, L.R. and Juang, B.H., “An Introduction to Hidden
Markov Models”, IEEE ASSP Magazine, January 1986, 4-16.

[RIDL89] Ridley, T., “Conceptual Analysis techniques applied to
understand cockpit-speech”, unpublished Masters Thesis under
development, Rochester Institute of Technology, 1989.

[RITR84] RIT Research Corp. of Rochester Institute of Technology,
"Proposal — RADC Artificial Intelligence Research Program”, PRDA 84-01,
July 1989.

[RITR89] RIT Research Corp. of Rochester Institute of Technonlogy,
"Final Report of the ESPRIT System", CDRL No. FOO3 of RADC/IRAA contract
Nec. F30602-87-D-0090 Task 106, 1989.

[SCHA75] Scnank, Roger C. Conceptual Information Processing.
Amsterdam: North-Holland, 1975.

[SCHA77] Schank, Roger C., and Robert P. Abelson. Scripts, Goals,
Plans and Understanding. Hillsdale, NJ: Lawrence Erlbaum, ~977.

[SCHAS80] Schank, Roger C., and Christopher K. Riesbeck. Inside
Computer Understanding. Hillsdale, NJ: Lawrence Erlbaum, 1980.

[SELLS89] Sellman, R.T., “Word Hypothesis in Undifferentiated,
Errorful Phonetic Strings”, unpublished Masters Thesis, Rochester Institute
of Technology, 1989.

[SHEPS80] Shepard, R., “Multidimensional Scaling, Tree-Fitting, and
Clustering”, Science, 210, October 1980, 390-398.

[STEV78] Stevens, K.N. and Blumestein, S.E., “Invariant Cues for

Place of Articulation in Stop Consonants”, J Acoust Soc of America, Vol 64
#5, 1978, 1358-1368

47




# 1 o S o F A S A 9 SF o S o S 9 S 9P S S o SF ST ST A S o

N

Ol Sl OO o OQWS CAM @ OO Cal O

~

MISSION
of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Ccmmunications and Intelligence (C*1) activities. Technical and
engineering support within areas of competence s provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of CI systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

fef o AF A I AF A 9 AF o S I A € £F 9 A 0 S 98 S 9 £ 9 F S

S OJRAB ORIV LR AR OB OQ8 o f O

>

LA

e OB O CAVS O TR O ok O

Q




