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1 INTRODUCTION

Matching of models to image features i1s a fundamental step in computer
vision systems. Such matching may take place at different levels of these
systems, from template matching of raw images to symbolic matching of relational
models. In this report, we address the problem of matching localized spatial
features with arbitrary attribute sets to either idealized or learned models. In
mathematical terms, we match spatial patterns of points, where each point has an
associated attribute vector with quantitative and symbolic values. The minimum
representation criterion used to achieve an acceptable match is a principal topic
of this report.

Image matching is difficult to achieve with sufficient generality, speed, and
robustness to be useful in practical systems. Many proposed algorithms are highly
dependent on a choice of particular features and model representation, and they
often require interactive or heuristic methods to extract features. Adding generality
to matching procedures has been difficult particularly because evaluation functions
or match quality measures do not generalize well. Image matching is inherently
complex from a computational point of view, since the number of possible
matches in general grows exponentially with the number of features. Polynomial
complexity is an important property of any practical approach.

Good image matching algorithms must be able to handle feature uncertainty
including missing data, extra features, and noisy attributes. This requirement
has been particuiarly difficult to achieve since most evaluation functions are not




able to handle missing or extra data in a consistent non-heuristic fashion. The
representation criterion presented in this report is inherently normalized to match
size and number of auributes and directly accomodates missing and extra data.

This report describes the minimurm representation criterion [1,2,3.4] as a basis
for image transformation and correspondence matching. We specifically address
the problem of two-dimensional rigid, attributed point sets with missing and
extra points. The algorithms developed are polynomial in complexity and near-
optimal for this criterion. Examples of performance on highly variable gray-level
images including aerial imagery are shown. Results which have been obtained on
the application of minimun: representation matching techniques to several types
of imagery including aerial photographs obtained from RADC are summarized.
While the underlyving methdology for the minimum representation approach has
been developed in {3,4], the current work has emphasized a new implementation
of the work and application to new types of imagery. This report includes an
overview of the basic methodology, new implementation, and new applications,
and augments the papers which have been prepared summarizing our results.

Section 2 of this report defines the image matching problem. Section 3
presents the munimum representation criterion principles. Section 4 describes
a wvsually optimal, polynomial time algorithm for image matching and transfor-
mation. Section 5 presents some examples of the matching procedure.

2 ATTRIBUTED IMAGE MATCHING

Image matching problems have been approached using a variety of different
hypothesize-and-test technigqres in which potential matches are hypothesized and
tested against evaluation criteria. These methods include template corrciation {5],
statistical pattern recognition [5], parameterized geometric fitting [6], and many
different relational structure methods such as graph morphisms (7], compatibility
graphs [8.9], and weighted relational matching [10]. In addition, heuristc tech-
niques {11}, Hough transform techniques [12]. and relaxation labelling techniques
[(13] have been proposed. These references indicate examples of the various
approaches, and a more detailed comparative discussion of these algorithms is
included in {4]. The approach described in this report is basically a geometric fit-
ting technique which maps point sets to geometric models using a new metric for .




evaluating match quality. The minimum representation metric does not depend
on the specific form of geometric modelling and is extendible to more general
relational structure models.

In this report, we consider images of rnigid objects which have undergone
arbitrary translation, rotation, and scaling in a two-dimensional plane paraliel
to the image plane. Each input image of an object is represented as a set
of features with attributes, and each object model is represented in a similar
manner for a given view of thc object. in practice, the input image feature
representation is extracted from the raw image data using other computer vision
algonthms. The corresponding object model representation may be derived
from a purely geometric model or by learning from a series of observations
of input images. In addition to translation, rotation, and scaling, the image
feature representation will include distortion, noisy attributes, missing (hidden
or occluded) features, and added features. The image matching problem requires
identification of the correspondence match between features and an associated
geometric transformation which ’aligns’ the image with the object model. The
existence of an arbitrary transformation and the contribution of distortion and
noise require a search over possible choices using an evaluation criterion which
is tolerant to these effects. In this report, the minimum representation criterion is
used for the selection of the best correspondence and transformation.

An input image data feature representation consists of the ordered pair D =
(F,A) where F = {f,,i=1,...,N} is the set of feature labels, and 4 =
{ai;, 1 =1,...,N, j=1,...,N,} is the set of feature attributes.

Each feature may have multiple attributes, and the set of attributes may differ
among features. However, every feature in an image is required to have (x,y)
position attributes denoted by

a;; = u; = x-positon of f,

ap = v; = y-position of f;.

Similarly, an object model feature representation consists of an order pair
R=(G,B)whereG = {gi, i=1,.... M} is the set of model feature labels, and
B = {b;,i=1,....M, j=1,..., M} is the set of model feature attributes.

In this case
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biy = x; = x-position of g;,

biz = yi = y-position of g;.

The attributes represented by A and 8 may be of four types:

[a—y

Positional - (x.y)-position (required of every feature),

Numerical - numerical measures such as length, angle, area, curvature,
number of neighbors,

Symbolic - symbolic labels such as color, texture,

4. Relational - relation of a feature to other features such as connected-to, on-
top-of.

[NV
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This data structure considers attributes independently and facilitates the de-
velopment of the representation criterion which is strictly cumulative with respect
to the set of features. For the problems considered in this report, rzlational at-
tributes will not be used. For highly noisy data relational attributes are difficult to
incorporate into matching, and for rigid objects they are less useful since relauve
position is maintained by the rigid transformation.

2.1 Correspondence

Given an object model R and an input image / with data feature representation
D, a match between them is defined by a correspondence and a transformation.
The correspondence maps the model features G to the data features F. The
wansformation is the set of parameters which defines the translation, rotation,
and scaling used to geometrically align the corresponding features. In this report,
we assume that all correspondence matches are one-to-one, that is, one model
feature matches to only one image feature and vice-versa. This assumption may
be generalized. but simplifies the search problem and provides solutions which
are more easily interpreted.

The size of the correspondence match, N, < mun{M. . NV].is the number
of model features which have a correspondence to a designated data feature.
Not all model features have matches, and there may be added features in the
image as well. The correspondence itself is expressed by the set of indices:
C = {e, 1 =1,...,M}. where




¢; = index of the image feature, f. , which comesponds to the indicated model
feature, g;, when a match occurs and,

= (0, when no match occurs,

and 1 < ¢; < N. A particular correspondence match may therefore be
represented by the ordered pair (i,c;).

2.2 Transformation

Given a correspondence (i,i) where the model feature g, is at point (x,,y;)
2nd the image data feature f; is at point (4;,v;), then the match is completely
defined by a transformation 7 which transforms (u;,v;) — (x;’,y;"). In general, this
transformation is defined by four parameters, T = (¢, t,, O, s). where

(tu, tv) = translation,
O = rotation angle,
s = scaling magnitude.

Fig. (1) illustrates such a transformation from (u;,v;) to (x;".y;"). While the
data point is matched to the model point, the transformed data point does not
necessarily align perfectly with the model point. The transformation will oe
derived from an evaluation criterion over a set of distorted and noisy data points,
and will align relative to that global measure.

3 MINIMUM REPRESENTATION CRITERION

The minimum representation criterion [1,2,3] was introduced as an approach
to unsupervised signal and data analysis in which the complexity of the data
representation is used as a criterion for the choice of model structures and model
parameters. The approach incorporates elements which express the complexity
of the modeling procedure, the model size, and the size of the data residuals. In
contrast to traditional mern square error measures of model fit which do not permit
discrimination among model structures, the minimum representation size explicitly
incorporates model structure and represents the tradeoff between complexity of
the model structure and the resulting error in predicting the data points. This
approach was demonstrated for several classes of parametric statistical models
including evaluation of the order of an autoregressive model and determination
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Figure 1 Transformation of an image point at (4;,.v.) (o a new poin. (x’',y;") using
ransformation T with four parameters: wanslation f1,.4,), rotation O, and scaling s.

of the number of clusters in a multivariate data sample. In [2], these techniques
were applied to the unsupervised analysis of biomedical signals which resulted in
a sysiem for the automanc modeling, segmentation, and symbolic representation
ot complex patterns associated with medical diagnostic decisions.

The minimum representation crniterion is based on a principle of minimum
complexity of a program which explicitly regenerates observed data. Such 2 pro-
gram includes a procedure, a model, and data residuals, and the size of the overall
program is regarded as a measure of the complexity of the representaton. In this
approach, a simple model may require a complex data residual representation,
while @ more complex model will simplify the data residual representation. This
tradeoff in overall complexity between model size and data residual size inher-
ently provides a basis for choosing among alternative models. More generally,
the procedure provides a tool for unsupervised decision-making.

Consider an observed data vector x = [x;, x;. ... xy]. The representation of
this data vector 1s viewed as a program which regenerates the data points with
some known resolution. In {1], this program is more formally defined n terms of
a classic Turing machine model of computation. There may. in fact, be several
Jifferent programs, =, which correctly generate the data points, and the 'correct’
behavior of the system is regarded as the mimimum s1ze program p* among these,




such that
s(p*y =min s{p,)  (bits)

where s (-) is the size of the program. As discussed in [1], the shortest program
in an ensemble of such programs generated by a random process is the most
likely program.

Each pro;ram, p, includes a number of segments which provide procedure
code, model parameters, correspondence parameters, and data residuals. Each
different algorithm or ditferent model has a different set of program segments. In
our prev.~us work on clustering [1], for example, the model parameters included
the cluster center positions in multivariate space, while the data residuals were
encoded relauve to these centers using a code which minimized the length of
the data representation by ecoding more probable (closer to the cluster center)
data points with shorter length codes. Ir the image matching problem, the
representation size s(p) of each program includes the following terms:

sip)=L + s(q) + s[Ce(x)] + s(e).

where

L = size of the program independent of the choice of mode!,

s(q) = size of model parameters, including the transformation, the
number of modeled data points, N, the correspondence match, and
the feature attributes,

5[Cq(x)) = [- log P4(x) ], where

Cq4(x) = encoded residuals of modeled points, where

P,(x) = probability density function of the residuals of the modeled
subset of observed data point attributes relative to the model ¢, and
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is the representation size for the unmodeled data points. When all data points
have uniform attribute sets, we can turther simplify this to

sley=(N —-\'m)ZS(tl,),

J
=(N-N,S

where S, 1s the total representation size for the attributes of each unmodeled data
point. In practice, S, depends on the predefined resolution in bits of each of the
attmibutes and is therefore usually fixed for a given problem.

The representation of the data residuals is based on an encoding which
represents the more likely points by shorter code strings. There are many specific
coding schemes which might be used, and we have implemented one such scheme
which 1s based on a truncated hyperbolic distribution of errors. Incorporating this
measure. we can write the representation size equation for a fixed model and data
size in the following form:

stpr=L + Npyleg M + Zs, + (N =N, S,

where
\‘ = Z log [u‘;J E;] + 1] .
E, is the error due to the jth attribute at feature i,

E,, = Error, (9:0 feolo

and wy, 1s a weighting parameter which can be used to adjust the relative weight
of attmbutes for different specific applications. For the image matching problem
we have used Euclidean error measures as a basis for the encoding of position
atuributes, and the resulting representation size equation is

) 3 1/.)
.c(p):L + .\',,l 10{}3.\[ + Z 10(]7 [( r —-1'” + (!j: “]/x)-> + IJ +

N
YD dogafwy By + 1] + (N = NS

1 =3




For the experiments described in this report the second term N logz M was
considered a constant for each set of experiments.

4 IMAGE MATCHING ALGORITHM

For a given model and observed data, the best match is defined by an optimal
transformation and an optimal correspondence between some subset of the data
points and a subset of the model points. These two steps may be considered
somewhat independently. An optimal transformation will exist for each possible
correspondence which is chosen, and the algorithm must search over many
possible correspondences in order to find an optimal match.

4.1 Transformation

The minimum representation transformation is in general quite different from
the least mean square error transformation which is commonly used. A closed
form analytical expression for the least mean squared error transformation may
be derived and applied directly to a given model and subset of data points.
The minimum representation match involves a logarithmic transformation of the
square error terms and does not lend itself to a closed form analytical solution.
We have used two algorithms for the calculation of the minimum representation
transformation:

Numerical optimization - Partitioning of the search space using bounds on the
volumes was implemented and combined with a random adaptive search for local
minima. Hundreds of examples were studied using Monte Carlo techniques and
the resulting transformations were examined and compared to mean squared error
transformations. The minimum representation size results were stable and robust,
particularly in the presence of added or missing data points.

Two-on-two transformations - It can be shown analytically that in one-
dimension, a minimum representation transform always has two zero position
error correspondences. In two dimensions, less than 1% of the optimal transfor-
mations found by simulation did not have two-on-two transforms, and for those
cases the difference in the transformations was minor. We have therefore imple-
mented a usually optimal transformation based on the two-on-two transformation.
This approach dramatically decreases the complexity of the algorithm, reducing
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Figure 2 Two point sets and the bipartite graph of their possible correspondences.

a continuous parameter search in four dimensions to a discrete search over (N?
- N)/2 points.

4.2 Correspondence

The correspondence problem of finding the match between subsets of data
points and model points which minimizes the representation size is solved by
converting it to an assignment problem in the following form. Based on the
minimum representation size equation, each pair of model and data points has two
alternative representations. As a modeled point, the pair may have a representation
size, Sp, associated with the model and residuals. As an unmodeled point, the
pair will contribute a fixed size S,. Fig (2) shows a set of model points, a set of
transformed data points, and a graph of their possible interpoint mappings. The
transformation parameters are not optimal and were chosen for the purpose of
illustration. The peint numbers do not indicate correspondence. The graph of
interpoint distances is a complete bipartite graph, and the optimal correspondence
can be viewed as an optimal assignment of left nodes to right nodes which
minimizes the representation size.

In order to calculate the optimal correspondence, we

1. Assign the pairwise representation size to each arc of the complete bipartite
graph.

10
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Figure 3 Expanded bipartite graph with representation sizes indicated as distance measures.

2. Replace those representation sizes which are larger than S, by the value S,

Let N = max (M ,N)

4. If M < N’, add N'-M ’extra’ nodes to the set of model nodes. Connect each
extra model node to every data node using N arcs, each with weight S,.

5. If N<N’, add N’-N ’extra’ nodes to the set of data nodes. Connect each
extra data node to every model node using M arcs, each with weight zero.

hed

The resulting graph for Fig. (2) is shown in Fig. (3) with S, = 5.5 bits. The
optimal correspondence is now defined by choosing N’ arcs such that (1) the sum
of the arc weights is a minimum and (2) no two arcs share the same endpoint. A
valid correspondence is indicated by a resulting arc weight which is less than S,,.
All other arcs indicate that there is no correspondence between the two endpoints.
The sum of the chosen arc weights is the representation size of the resulting match.

The assignment problem in a bipartite graph has been studied extensively
[14], and a number of efficient algorithms exist. A straightforward solution would
require evaluation of N’/ sets of arcs. Available algorithms typically are of order
O(N'?) or O(MN min(M N)) [15]. The latter algorithm was implemented here.

4.3 Complexity

The complexity of the resulting algorithm may be summarized as follows:

1. Compute optimal two-on-two transformations - O(M?N?),

11




t9

Compute the graph of representation sizes - O(MN),
3. Compute the optimal match using the assignment algonthm - O(MN

min(M N)).

For large problems the computational complexity of the resulting algorithm
is OM?N? minfM.N)). While this algorithm still requires significant computation
in its current form, on a typical size problem with N = M = 30, the computation
is reduced relative to a brute force combinatorial algorithm by a factor of 1025.
Many of the previous matching schemes have utilized heuristic techniques to
reduce the computational complexity and did not optimize an objective measure
of match quality. The algorithm described here produces usually optimal matches
in polynomial time.

4.4 Improved Matching Efficiency

The performance of the basic matching algorithm can be improved using a
number of algorithmic techniques and heuristics. The three methods summarized
below utilize increasing assumptions about the characteristics of the data features.

1. Precompute Representation Sizes: The construction of the representation
size graph requires the computation of MD representation sizes. Given a set
of model points, it is possible to precompute all of the necessary representation
sizes in a large x-y array. With such an array, the representation size
calculation between the model point and any transformed data point is reduced
to a single array access. Since a model is a collection of points, a number of
separate arrays are required to represent all the possible representation sizes.
The arrays are constant for a given model.

2. Restrict Transform Space: In most practical applications, there are fixed
limits on the range of possible data point transformations. Those transforms
which fall outside of this range can be ignored. In a typical vision application,
the camera parameters are often fixed so that the scale of the data features
is known within a few percent of their true value. With such scale, rotation,
or translation restrictions, it is often not necessary to generate many of the
candidate tranforms, and the search space is correspondingly reduced.

3. Approximate Method: In the basic matching algonthm, we explore all
possible transforms without screening the candidate matches based on error
criteria. This approach has provided an accurate view of the performance of

12




the algorithm since it searches exhaustively over the candidates. In practice,
one would like to reduce this search space based on prior screening of the
errors. Such a fixed set of prescreened data points where only the most likely
ransformations and correspondences are explered, greatly reduces the search
problem and adapts it well to practical situations.

5 EXPERIMENTAL RESULTS

The matching algorithm described in this report was tested on a variety of
gray-level images with different degrees of complexity. Features extracted for
matching are straight line segments and the vertices formed by the intersections
and endpoints of such segments. The Popeye image processing system [16] was
used to extract these edge-related figures by filtering, thinning, fitting of local line
segments, logical reconnection, and simplification of the resulting line graph.

The line segments and their vertices are represented with a number of attached
attributes. Each type of feature has a positional attribute. The position of a line
segment is given by the center point of the line; while the position of a vertex is
the point where two or more line segments intersect. In addition to the positional
attribute, each segment also has a length attribute and a slope attribute. Vertex
non-positional attributes include the number of line segments entering the vertex
and the angle at which they enter.

Two examples of the feature extraction process are illustrated in Figs. (4) and
(5). Fig. (4) shows a simple geometric shape with high contrast. The resulting
edge-related features are clear and reliable as indicated by the dark lines and
corner symbols in the figure. Fig. (5) shows a much more complex image which
includes shading, highlights, and more subtle gray-tones. The resulting edge-
related features are noisy and unreliable, and will often result in incomplete edge
descriptions, or multiple vertices. Such complex images provide an important test
of the minimum representation matching approach since they may contain a small
percentage of repeatable features.

Fig. (6) shows an example of overlapping geometric shapes such as that
in Fig. (4). These overlapping shapes provide a good test for the matching
algorithm because they have occlusion among the objects. The contrast of the
outer boundary of the shapes is still high, but the contrast among the objects is low

13




Figure 4 Fcature extraction from a simple geometric shape with high contrast.

Figure 5 Features from a gray-level image of a three-dimensional object.

and in general do not provide edge-related features. In these experiments, each of
the shapes was matched independently of the others, so that no constraints among
the group of objects were used. For the experiments, the independent shapes

were matched with high reliability.

The effect of employing non-positional attributes was studied for these geo-
metric shapes and the results of a study of images with simulated distortions is
shown in Fig. (7). In each case, a random subset of features were selected from

14




Flgure 6 Example of minimal representation image matching with overlapping
polygonal shapes. Models of the polygonal shapes were stored. Matching
of each of the shapes to the gray level image was carried out independently.

Strategy Vertex Segement % of Correct
Attributes Attributes Matches
1 Position Only Not Used 90.5
2 All Not Used 99.5
3 Position Only Position Only 96.0
4 All All 100

Flgure 7 Statistics for matching using several strategies
with different incorporating different sets of attributes.

an image and a random set of synthetic features were added. Less than 50% of
the features in all of these examples corresponded to the real image features. Four
strategies were used on fifty examples of this type and the results are shown in
Fig. (7). These results indicate that the algorithm is robust in spite of very large
distortions of the data, and also that the addition of segment features, and the
attributes for vertices and segments significantly improves the performance.

An example of a complex scene with an occluding object is shown in Fig.

15




Figure 8 a Example of image features for a noisy gray-level image of a polygonal shape
with an occluding object. b. Correct matching of polygonal model to image features.

(8). The feature set derived from the original image is extremely noisy as shown
in Fig. (8a). The correct match of the geometric model is shown in Fig. (8b}.

Examples of matching to images of gray-ievel objects are shown in Figs.
(9) and 10) for the exainpie in Fig. (5). Fig. (5 ‘hows the image and extracted
features. Figure (9) shows the match of a model obtained from a slightly different
angle of view. The resulting data image is quite noisy and varies significantly
from the original model. The resulting match is still consistent with the model.
Fig. (10) shows a match for an image of the object which is partially occluded.
These noisy images typically had less than 40% consistent features as a basis
for the match.

Experiments on RADC Images

The minimum representation matching algorithms described above have been
applied to a variety of image test data made available from RADC. These test
ds:a included images of isolated aircraft and aerial images of airport scenes. In
our experiments the isolated aircraft images were used as training images in order
to derive models of aircraft shapes. The complex atrport scenes were utilized for
experiments in location and recognition of the model aircraft. The aerial images
themselves were of highly variable quality due to imaging conditions, lighting
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Figure 9 Matching of the gray-level image from Fig. (5) to a stored model obtained from the same
obje.. at a shightly different angle of view. Due to noise and distortion of the image, less than
30% of tne features were consistent in this image, yet the algorithm was able to correctly match.

Figure 10 Matching of the stapler model to a gray-level image which is partially occluded.

conditions, and low resolution. We carried out preprocessing of these images
using contrast enhancement techniques.

Extraction of the attributed graph representation from the image was accom-
plished using two different methods: |
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1. An edge extraction method similar to that used in the expennments described
above. In this approach, continuity of contrasting edge elements in the gray level
images was established and automatically simplified to produce a structured graph
of nodes and edges.

2. The skeleton approach in which a morphological operator is used to extract
a locus of central points in each gray level region of the image, and then these
central points are connected into skeleton graphs consisting of nodes and edges.

In each case the resulting graph constitutes a data structure which is appropri-
ate to the minimum representation matching methods described above. For many
images the skeleton method was preferable due to the poor resolution of the air-
craft in the aerial images, as well as the shape characteristics of the aircraft which
consisted of configurations of thin black lines. Examples of matching based on
the skeleton method are shown below.

Figure 11 shows an example of an isolated aircraft image used in these exper-
iments. Figure 12 shows the skeleton-based attributed graph data extracted from
this same image. The attributed graph structures contain additional associated
attributes which include node positions, edge lengths, numbers of intersections,
and vertex angles. The minimum representation matching utilizes all of these

attributes.

Figure 13 shows a typical aerial photograph of an airport scene. In this scene
there are several aircraft positioned on a runway, as well as a variety of other
objects including buildings, foliage, and texture which is present on the runway.
Variable lighting, noisy imaging conditions, and poor resolution contribute to the
complexity of identification of the aircraft shapes within this image. Figure 14
shows a subimage which has been used for experiments on aircraft recognition.
Figure 15 shows the skeletal data structure which is extracted from this airport
image. The minimum representation matching algorithms were then utilized to
identify candidate matches for the model data structure within this image. Figure
16 shows the resulting match of the model to the airplane positioned on the
runway. It’s clear from Figure 15 that there are a large number of possible node
correspondences between the model and the data for this example. Based on the
search over these possible correspondences, the position and orientation of the
model is placed in such a way that it minimizes the overall representation size
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as described earlier in this report. From intuitive interpretation of this image, the
positioning of the model aircraft is correct within the tolerances of the imagery.
Note that the minimum representation matching methods used are invariant to
translation, rotation, and scale, and are tolerant to the distortion or inclusion of
parts of the object.

Figure 17 shows an example of an airport subimage with more than one
aircraft present. Figure 18 shows the extracted skeletal attributed graph repre-
sentation for this image. Figure 19 shows the superposition of the model on the
image in the position and orientation which corresponds to the minimum repre-
sentation match. These results indicate a correct match to the first airplane in the
set. The other airplanes in the image are also matched by the same model, but
with higher representation size.

Often a correct, but distorted match resulted from use of the edge-based
models described above. In this case the edge extraction from the low resolution
image of the aircraft runway resulted in a noisy distribution of the edge points
arourd the object. This noisy distribution of points in the blurred image resulted
in the displacement of the model match and in the gradation in the accuracy of
the resulting position and orientation of the model. The skeleton-based attributed
graph extraction was overall a more reliable procedure for the experiments which
we have carried out with this images.

These experiments have demonstrated the applicability of the minimum repre-
sentation matching methods to the interpretation of aerial photographs of aircraft.
The methods have been applied without modification to two different types of
graph-based feature sets extracted from the image data. The results are character-
istic of the reliability of the data points themselves, and the edge-based features
provide less reliable matching due to the blur in the images associated with the
resolution. The skeleton-based features are more reliable and are associated with
the averaging affect which occurs in the application of the morphological opera-
tors to the gray level image.

6 CONCLUSIONS

This report has described a new approach to image matching which utilizes
the minimum representation criterion as a means to obtain robust matching per-
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Figure 11 Example of isolated arcraft image.

Flgure 12 Skeleton-based attributed graph structure derived from the image in Figure 11

formance even when image data is extremely noisy. The results are encouraging
in that they demonstrate consistent performance on samples of real gray-level
images. The computational complexity cf the approach is polynomial. but still
large for applications such as inspection and robot control. Additonal simplifica-
tions and approximations have been suggested which might make the technique
feasible in these domains, and parallel implementation may be required to make
the computation time acceptable.




Figure 14 Subimage of the airport image in Figure 13.

The minimum representation approach to unsupervised decision-making is
a general tool which has been employed in a number of different problems
domains. The principle provides basic properties which seem to be useful in
measuring and optimizing model structure as well as model paramet~rs in a
data interpretation framework. Such a minimum complexity or minimum entropy
solution is appealing also from an intuitive point of view.




- S, i
Figure 16 Resulting match of the model to the airplane
positioned on the runway for the image shown (n Figure 14.
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AN APPROACH TO REPRESENTING SPATIAL INFORMATION USING
GENETIC ALGORITHMS AND CLASSIFIER SYSTEMS
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1 INTRODUCTION

The attached paper reports on our research activities in using genetic
algorithms to search the space of message forms provided by the Pebble_Pond
algorithm. While our initial intent was to use the full-blown capabilities of the
bucket-brigade algorithm to exploit the temporal structure provided by
Pebble_Pond, we decided early on that the research issues involved in evolving
chains of linked production rules were too substantial and would take us more
into genetic algorithm/classifier system research as opposed to research on
learning spatial structure. Thus, the attached paper reports on our restrictions to
the structural variability of the message forms (provided by Pebble_Pond), which
define the search space for the learning algorithm. In particular, we restrict our
attention to simple pattern classes consisting of 2 or 3 points in each pattern
instance (with many instances in each class allowing us to make the problem
interesting). We were able to design a genetic algorithm which was capable of
finding solutions for these simple problems. Issues in achieving these results,
e.g., supporting speciation to combat premature convergence, are discussed in the

paper.

In an attempt to consider less restrictive forms of messages we began to
formulate a new genetic algorithm that would search the space of zall possible
embedded triangulation messages defined by the selections of 3 out of n points
from each training image. While in the middle of this effort, we came to the
conclusion that we needed to take a step back from moving on with the next
logical step and instead reconsider some fundamental issues. One issue was that,
while the restricted message forms which defined the search space worked well
within the genetic algorithm, we were able to contrive examples of pattern classes
which did not fall within the rubric of the message forms. In our initial restriction
of the research away from a full blown bucket-brigade algorithm for forming
arbitrary linkages between classifiers - which would have the potential to explore
the space of various message forms themselves - we were certainly aware that we
were picking off a subspace. In fact, we viewed the extension to the triangulation
message forms as a way of exploring the restricted, but large, space of pattern
classes characterized by angular relations between spatial locations. In addition,
the counterexamples to this space all involved some commonalities in symetry
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that were not reflected in angularity. Thus, while these counterexamples were not
unexpected, they brought back to our awareness the larger problem of finding
ways of exploring the variety of message forms themselves.

At the same time, we also became aware of another fundamental issue in
the way our fitness function guided the behavior of the genetic algorithm.
Basicaily, tic algorithm v,ould aliow parametcrizations of various message torms
to survive in the population, providing they were able to make some contribution
towards correctly identifying the pattern classes. If a particular parameterization
were capable of distinguishing all pattern instances correctly, then it would
eventually spread through the population and dominate. Likewise, if a particular
parameterization got many but not all of the classifications correct, the genetic
algorithm could be tuned (once we learned a bit more about "speciation”) to allow
such parameterizations to survive. On the other hand, we were able to contrive
examples where two parameterizations would contribute not at all to correct
classifications, but a conjunction of the two would in fact be the answer. (These
examples seem to correspond to what are called "maximally deceptve
landscapes” in genetic algorithm research and, within the framework of pattern
recognition, correspond to cases where all partial matches are incorrect, while the
complete match is the answer.) The issue here is related to the one discussed in
the above paragraph: how can the system automatically find non-summing (or
non-liner) combinations of message forms when the set of patterns can not
adequately be captured by the space represented either by individual message
forms or simple additive combinations thereof. This of course is one of the
fundamental issues in the realization of emergent phenomena and is an issue that
appears in the biological literature in the framework of the debate about
punctuated equilibrium versus gradualism.

As a continuation of this research we would propose to consider two basic
tacts: 1) building upon the success in getting a working syster: based on
restricted message forms, we would consider adding on a system that "monitors”
the behavior of the simpler message forms, seeking to determine when message
forms might be combined into "higher-level” structures; this would correspond.
within the framework of classifier systems as discussed by Holland, to the search
for "arresting conditions” (or a priori constraints on the behavior of the adaptive
system) that in effect operate deus ex machina, or 2) return to a consideration of
the full-blown bucket-brigade system for dynamically combining primitive
message forms into chains or groups of "higher-level” messages, that can then
take on a unified role within the behavior of the system. Finally, as we continue
to advance our understanding of the Pebble_Pond algorithm itself, we would
expect that new measures and constraints on combinations of measures will arise
and ultmately feed back into the research on spatial leaming.
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Abstract

An approach towards representing spatial information within the context of genetic algorithms is presented.
By wransiating positional informaton into a temporal sequence of bit string messages, it 15 possible to parame-
trize spatial information for use in genetic search. The transformaton that produces the temporal sequence of
messages is based upon a cellular automata simulation of wavefronts emanating from point sources. Message
sets arriving early on report in parailel on all spadally proximate information, while latter message sets report
on more disparate information. A genetic algorithm has been successfully applied to the search for classifiers
that distinguish simple classes of spatial parterns. We consider how the various mechanisms of classifier
systems, e.g., the bucket brigade algorithm and “triggering” conditions could be used to build a more robust
system.

Introduction

The problem of representing spadal information on images via genetic algonthms and classifier systems (1)
has proven to be quite difficult. Genetic algorithms are designed to effectively search a paramemzed
representation of space. That is, “genes” on an individuals “chromosome” correspond to the vanous classes
of spadal measures, the values of the “alieles” correspond to the range of values within the space of measures
and genetic operators are used to implicitly search for combinations of parameters (over all hyperplanes) that
optimize the fimess function. With respect to spadal information the most immediate issue concemns the
choice of an initial set of (hopefully robust) spatial measures. Also, there is the issue of searching for
alternative measures if those initally chosen are inadequate. Even more fundamental is the extent to which
the underlying representational framework of “‘chromosomal” bit smngs and the associated genetc operators
(especially cross-over) provide a good “match™ with spanal structure.

One approach is to identify each gene with an image pixel where feature measurements at each pixel serve as
alleles (2]. One immediate problem with this approach s that feature measurements typically result in a rather
sparse array of significant (above threshold) values, which ranslates into a sparse dismbuuon of sigmficant
informanon spread about the individual “stnngs” in the populauon. In addition, translanon, scale or
rotagonal invariance is difficult to handle within such a framework. The most fundamenta! limianon of
directly mapping pixels from euclidean space onto linear smings within genenc aigonthms is that the mapping
(and, in tum, genetic operators like cross-over) inroduce discontinuities which disrupt the search for spanal
structure. These issues have given rise - both within the area of genenc algonthms and computer vision in
general - to approaches which are based upon defining a search space of parametrized spatual measures that
capture the information within the pixel arrays. One GA effort in this direction has involved the search for
optumal paramemzed linear transforms that map one image armray into another {3]. This work, while of interest
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from the perspective of estimanng mappings between pixel arrays. is less relevant to the general probiem of
representing spatial information (unless it can be shown that the general problem can be cast in terms of
image transformations).

Giliies (¢} work stands out as an applicatdon of genetc algonthms involving the representanon of spanal
information. A learning system is developed that is able to distinguish between classes of input images
provided as a training set. The learning system parametrizes the spatial structure through a class of image
orocessing mansformatons and measures known as mathematical morphology (51. The chromosomes used in
this work were based on a morphological program “form™ (or schema) that involve three broad classes of
parameters, which represent the following spadal structure: 1. shapes that capture the structure of the
background of the images, 2. shapes that capture the structure of the foreground of the images and 3. vectors
that spadally relate the measures from foreground and background. Thus, there is a8 stong emphasis in
Gillie's work on considering the search through measures of both shape and spatial position. In our work, we
have focused exclusively on the issue of spanal position. Note that this does not preclude expressing shape
information by combining primitive shape measures spatally. In fact, the tension between the exploration of
robust shape measures versus their decomposition into spatal relations between more primunve shape
measures is fundamental.

An algorithm has been developed, called Pebble_Pond (61, which can be thought of as transforming spaual
structure into temporal structure. The algorithm is based upon a cellular automata simuladon of wavetronts
ermnanarng from point sources. At each wave iteranon within Pebble_Pond, filters and measures on the
cellular array state space are taken, producing a set of messages about all significant “events” occurring at the
iteration. Various measures and state space events have been shown to compute the following set of spanal
structures: all order Gabriel graphs, Voronoi tessellagons and nearest neighbor graphs (7], the point pairwise
probabulity (or co-variance) distribunon (S], detectors of approximately co-circular, co-linear or co-convex
points sets, and new alternative measures of spatial structure. Based upon the diversity of the spatal measures
provided by the cellular state space computed by Pebble_Pond, we feei that the state space mught be an
appropriate vehicle by which alternatve spagal measures might be searched via a leaming algonthm. In
additon, at each iteration, i, measures on the changing wave configuranon space are reporting on spanal
structure that is separated by a distance d(i). In other words, messages ansing out of Pebble_Pond &t tme step
i are reportng on all spatial structure a distance d(i) apart and at latter ume steps report or more distant spanal
relagonships. The result is a temporal ordering of messages coming out of Pebble_Pond that directly reflects
a spatal ordering. With respect to leaming algorithms, we feel thar this transformagon of spanai into
temporal smucmure might provide an appropriate vehicle for the mechanisms of classifier systems, especially
mggering conditions and the bucket brigade algorithm (1)

The next section will describe Pebble_Pond, with two purposes in mind: to define the set of messages that are
used as input 1o the genetc algorithm and classifier system presented in this paper and to give =ome sense for
the complete space of spatial szucture that might be obtainable from Pebble_Pond. The third section will
report on a genetic algonthm for learning to disunguish classes of spatial patterns based upon a specific class
of input messages from Pebble_Pond.

The input: Pebble_Pond algorithm

Pebble_Pond, can be visualized in terms of the waves emanating from pebbles tossed into a pond of water.
The wave propagation process differs from what happens in nature in that wave fronts - and the informanon
they carry - are permitted to pass through each other without interference. The non-destructive intermungling
of wave fronts permits the computation of non-planar graph structures. A significant aspect of the algonthm
is its use of cellular automata wansformanons based on mathemancal morphology (8:9:10]1. These
tansformations provide a method for decomposing digital approximanons of disks into sequences of local
cellular neighborhood transformatons. This is how at each iteration within Pebble_Pond, the wave fronts of




increasing radu are generated. Ly additicn, morphological filters permit the extraction - out of the complexity
of wave space configurations that arise over time - of the info,Taation required for computing parncular spatial
structures.

To give the basic intuitions of Pebble_Pond end describe the messages input to the current genetic aigorithm
we will consider how Pebble_Pond can be used to compute the k-th order Gabniel Graph, GG(k) (11; 12}, In
order for an edge connecting two points to be in the GG(k), the edge i1s considered to define the diameter of a
circle and the resulting circle may circumscribe no more than k points. The first issue that needs w© be
addressed concerns how to translate the geomerric criterion for constructing an edge in GG(k) into an equiva-
lent criterion involving wave phenomena. The basic observaton exploited by the algorithm 1s the following: if
circular waves are perminted to radiate from all points, then the waves of those points within the circle will
reach the midpoint of the diameter before the wave fronts of the pair of points being evaluated as a Gabnei
edge. Figure ] illustrates this with respect to the algorithm determining that A-B and C-D form Gabnet
edges. Note that for potential edge C-D there are three wave fronts that will have passed through the mudpcint
tindicated by the rwo darker spots) before the wave fronts from C and D meer; likewise, there are § such
wavefronts passing through before those from A and B meet.

»

Figure 1: GG(k) constraint - wavefronts within circles will hit midpoint
diameters before circumference wavefronts.

If we consider that the algorithm must propagate the wave fronts of all possible point pairs while checking
potential edge midpoints - all this in parallel - then it becomes clear that the algorithm is dealing with the ma-
nipulation of a large and highly complex set of cellular state space configuranons. Thus, the main task of the
algorithm for computing the GG(k) is to spread the wave fronts in parallel, counting the number of wave
fronts that have passed through all edge midpoints detected at the current time step. At the same tume, it must
do this without having any interference between the waves and without getting confused by the muldplicity of
configurations. The details and issues on how this can be accomplished is described elsewhere (6] (Note that
the Pebble_Pond algorithm is being implemented on an AIS-5000 linear array processor (13].)

Thus, sigmficant information for the computaton of GG(k) resides at the midpoints of all edges of the
complete graph. At each iteration i, Pebble_Pond detects all midpoints of edges some distance, d(i), apant and
then records the number of wave fronts that have previously passed through each midpoint. This informartion
forms the soucture of the input messages to the generic algorithm /classifier system described in the next
section. Thus, the three relevant message fields for GG(k) are: the number of wavefronts - identfied by “#-
wave” - and the identity of the point source nodes - identfied by “i” and *j"" - of the potential Gabriel Edge.
To this is added the following information fields (all of which can be made available by Pebble_Pond): 't -
the time step during which the wave fronts met (which 1s equivalent to one half the edge length), “x” and "y
- the x and y coordinates of the detected midpoint, and “theta” - the angle formed by the edge with respect to a
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vertical axis. The maining set of point parterns is divided into two classes and the genetc algorithm must
jearn how to distinguish them. Thus, for each image in the aining classes, Pebble_Pond computes a set of
messages in the order in which the wave fronts meet, where each message is of the following form:

t 1
where

t

iand j

and y
#-wave
theta
in-class

X y #wave theta in-class

is the time step at which the wave fronts of the Gabriel edge meet
are the identity of the (Gabriel) nodes or point sources

(assigned in line scan image order)
are the (Gabriel) edge midpoints
is the number of wavefronts that previously passed through edge midpoint
is the angle (between 0 and 180 degrees) formed by edge and vertcal axis
indicates which of the two pattern classes to which the image belongs.

Consider the following two images both consisting of three points but representing different pattern classes
(corresponding to vertcally vs horizontally oriented point sets):
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The messages. in order of arrival to the ieamning system, from the vertical point set are:

4 i:l j:
4 0 )
t9 0 )

y:4 #-wave:0 theta:0 n-class:1
y:13 #-wave:0 theta:0 in-class:1
y:10 #-wave:] theta:0 in-class:1

1Nt set are:

3 y9 #wave:D thera:90 in-class:0
y:9 #-wave:0 theta:90 in-class:0
y:9 #wave:l theta:90 in-class:0
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How the current genetic algorithm processes these message forms in order to distinguish the pattern classes
wil! be described in the next section. The intent of initally restricting the leamning algonthm to these message
forms is to include an inital set of different basic types of spaual measures. For example, the ame field, t.
provides basic temporal information as does the order in which the messages arrive. In addition, when there
are more points in the input images, #-waves will reflect some temporal information since mudpoints of edges
where the #-waves is large tend 10 be detected in latter stages of Pebble_Pond (unless there 1s something
“special” about the point distribudon). The four fields that encode wave idendues (i and j) and mudpoint
coordinates (x and y) reflect more the absolute position of the point sources. Finally, the #-wave and theta
fields are inwended to reflect more the relanve spatial positdons cf the images, where theta s rotational
dependent and #-waves is rotational independent. The measures both enjoy some degree of independence and
dependence and our idea is to use the genenc algorithm to explore different pattern classes with respect ©
understanding these measures. These measures seemed like 2 reasonable starung point from which to begin
the exploraton of genetic algorithms and classifier systems.

Before turning to the genetic algorithm that uses these messages as input, we conclude this secton by
describing some other measures provided by Pebble_Pond that may be significant. Besides funcuoning as
addidonal dimensions to be added 0 the search space, these measures might function as “miggenng
condidons” (1] within a more general classifier system. For example, consider how Pebble_Pond can be used
to compute the morphological co-variance distibution of point pairs (5. The distribution measures the
probability of encountering pairs of points separated by all possible shift vectors in the image, i.c.. the value
of the probability densiry tunction at polar coordinates r and @ indicates the probability of encountering point
pairs that are separated by a vector (r, 8). The dismbudon is useful in general texture analysis and in
applications involving the properties of materials [9; 14). Assume that, at each iteration of Pebbie_Pond, the
number of detected Gabriel edge midpoints is saved. The histogram of the number of waves meeting at each
ume step is an estimate of an orientation independent measure of pairwise co-variance, i.c., just with respect
tor. This is obvious when we consider that all wave fronts from points the same distance apart will meet si-
multaneousty. In addition, the full co-variance statistic - with onientation, @, included - can be obtained via
further processing of the cellufar state space (6]. In terms of miggering conditions, anytime a large (above
“threshold™) number of meeting events occur at a given ame step, then that indicates potential interesnng
cvents. Anyume that there is some regulanty in the time course of large numbers of meetang events, then
there is evidence of textural information, e.g., consider a regular lauice (or texture) of points in which case
there will be large numbers of meeting waves occurmng over multiple ime intervals based on the interval
between neighboring lattice points. We are trying to suggest that there 1s the opportunity within the format of
Pebble_Pond to define productions that are defined a priori and look for patterns of messages over ume that
reflect spatial structure.

A final example of another spatal soucture provided by Pebble_Pond which should be useful in the
development of a2 more robust classifier system 1s illustrated in Figure 2.

Figure 2: Detected wave crossings cluster at centers of ‘near’ co-circulanty
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Basically, by defining appropriate morphological filters it is possible to detect all crossings of wave fronts ata
given time step (6]. Wave crossing events are significant, since any wave crossing represents a potenual co-
circularity of two point sources (see Figure 3). [f at each ume step, Pebble_Pond measures any clustenngs of
detected wave crossing, then in effect it is measuring how close point configuratons can be approximated by
a circle (whose radius is a function of the current ime sizp). Informadon on near co-circulanties - where they
occur, when and if they repeat - is also fundamental spadal information that could be “looked-for” as potenaal
mggering conditions. Relating such co-circular events across ome (or equivalently, across different scale cur-
cles) may prove useful in the segmentation of umportant spot groupings. In addition to co-circularines, it is
possible within Pebbie_Pond to detect nearly co-linear point configuraunons and perhaps larger classes of
{(convex or non-convex) configurations. Within the context of learning algorithms one would expect the less
specific measurements involving co-circularity and co-lineanity to play a more fundamental role.

Figure 3: all crossing wave events represent potential pairwise co-circulanties

The diversiry of spatial structures produced by Pebble_Pond is a result of the measures and filters that can be
applied to the evolving wave front configuranons. Various filters can be chosen to be applied to the cellular
automata state space at various points in the algonthm, resuiting in different spabal smucrures or
measurements. With respect to broad issues in learming algorithms, these measures may be chosen as ininal
input channels into a leaming algorithm; it may aiso be possible to define learming algonthms which
effectively search the “space” provided by Pebble_Pond to define new primutive or derived measures. Finally,
specific patterns of measurements (e.g., indicatng near co-circulantes or texture informanon) might be
provided a priori to a learning system as a way of implementng “miggering”’ conditions. We now leave these
broad considerations and tum to our initial experiments using the message forms defined above.
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Genetic algorithm for processing Pebble_Pond input
(n

Given n points in a training image, there will be -\2) messages produced where each message has the
following form (and number of bits as indicated in parentheses):

t 1 j x 'y #wave thew ciass
M ¥ ¥ M (4) (8) (H

where all fields have the meaning described in the previous section and the class bit indicates which of two
classes of images produced the message. Our broad goal is t build & classifier system that will search for
those message forms that characterize the mumng sers. Obvicusly, since the number of messages grows at

O(nz) the system should not require O(nz) classifiers, one for each possible message. Further, the eventual
goal is to build up a hierarchy of classifiers making predicuons and “higher-level” hypotheses over ame. At
the same titne, there is 8 basic “locality” effect in the sense that messages, which amve from different :mages
at sbout the same fime or within approximately the same order, should be primary candidates for
discriminating the training sets. Thus, e envisioned the possibility of startng off with some large number of
classifiers that would organize themsel2s into specialist “species” in the sense that each group would pay
attendon to spatial information at some specific ime scale. While suggestive, this idea 15 way beyond what
one would consider an initial step in the research - one must crawl before one walks. Thus. we decided w
n
start our investigations by making the simplifying assumption that all (2) messages ‘rom & ganing umnage,

n
would go into (2) independent populations of classifiers attempting to cawegonze them, where the i-th

population of classifiers is exposed to the i-th message produced by Pebble_Pond on gagh training image. If
there are 6 training images (3 in the class and 3 not in the class) then population i would receive 6 messages
from which to base its adaptation. As a simple example consider the following 2 classes consisting each of
three images (and their point sets):

Imsges and messages from class 1
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classl_te { (5.5)(9.5) (6.4)) classl_2 = { (8.8) (12.8) (8.7} } classt_3 =« | (4.8) (8.6)(55))
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messages from each image in class ! in order of armival

Note that in this simple example, it happens that the ume the messages are generated corresponds to thewr
(In future systems, which will integrate informaton across different orders, rules
focusing on a comparison of order and nme of message generation could generate useful informaton.) To
conanue with the example, three sets of messages are sent to respective populadons of classifiers (under
separate genetic algorithms), where each set consists of all messages produced at that order in the output of
Pebble_Pond. For example, the messages that are underlined are all input to the classifiers that are
responsible for distingushing the rwo image classes. where the disunction is based solely upon the frst
messages output by Pebble_Pond on each image. The messages (both in decimal and binary format) input to

order of generadon.

the classifier populanon for first order messages are:
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] class 1 v clasgt_2 classt_3
11 J Xy *%w theta class L4 xy #whew closs - <A class
00154 0 45 1 00187 0O 45 ! 00145 0 as 1
1027+ 0 108 102107 0 108 10265 0 108 1
21278 1 9 1 212108 1 %0 i 21266 1 9 1

Images and messages “-om class 0
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class0_1a{ ($.5) (9.5) (8.8) ) cians0_2 « { (8,8) (12.8) (3.9) } c'ass0_3 = { (4,8) (8.6) (5.7)}

messages from each image in class O in order of arrival
class0_1 ciase0_2 class0_3

. I ! . . ] ]
0025% 0 13 0 00288 0O 135 O 00246 O 135 O
11278 0 72 0O 112108 0 72 0 11266 0 72 0
20175 1 9% 0 201108 1 9 1 20166 1 9% 9




Order 1 messages sent to classifier system/genetic algorithm
Li i xy #wiheaclass image id | S Xy #w theta class

0023585 Q 138_0 class0_1  0000000}j0000]001C(0000101}0000101{0000{10000111(0
00288 0 135 O class0_2 0000000j0000j0010|00010006|0001000|0000}1000011110
00246 Q0 135 O class0_3  0000000]0000(0010|0000100]0000110{00G0|16000111|0
00154 0O 45 { ciass1_1  0000000({C000{0001[0000101]0000100{0000]00101101(1
00187 0 45 1 class?_2 0000000{0000{0001!0001000]0000111100061001011011
00145 0 45 1 classi_3  0000000{0000/0001j0000100|0000101]0000{00101101|1

The above 6 strings of 42 bits then form the messages w & randomly initialized classifier system defined over

the alphabet defined by [0, 1. #)%2. To surt our experiments, we used a fimess function with rwo
components: The first component is a step functon it which the classifier is given 42 points (the length of
the bit string) for every correct classification of a given message and is penalized 42 points for each incorrect
classification. A correct classification occurs when there is a match berween the classifier and the message
and the las bit (the bit which determines the class) of the classifier and message match. In the shove case, if
a classifier matwched all 3 out of the 3 input strings in the class it is artempting to predict and did not falsely
predict class inclusion for smings in other classes it would receive 3 maximum of 3 * 42 points towards its
fimess. The second component makes the function more continuous by adding a bias towards matching
individual bits in the message srings. To accomplish this we used the average number of bits for which the
classifier mawches a message. For example, if the classifier matched 15 bits of one message and 21 bits oo
another message, the result would be 18. The final fimess function is the addition of these two components.
The genetic algonithm code was based upon some modificatons to the CFS-C system (15] and we generally
used most of the default parameters.

After running the genetic algorithm undl it stabilized at maximum fimess classifiers - based on the system re-
cetving the order | messages given above - the following classifier (placed beneath the input message strings)
was one of those found with maximum fimess (of 166 = 3*42+40):

Order 1 messages sent to classifier system/genetic algorithm
L i X Y. #w theta clasg

0000000)0000{0010]000010110000101(0000|10000111(0
000000010000{0010]|000100010061000{0000{10000111(0
0000000|0000J0010}0000300)0000110)0000]1000011110
0000000/0000]0001|0000101[0000100{0000|00101101)1
0000000]000010001]0001000{0000111(0000(C0101101{1
0000000}0000]0001|0008100{0000101/0000|0010110111

OOOOMOIONOOIOMMMOMNONO0 | # #1#00#HONO1 1#1]1

By the way in which the muining set is contrived - namely, that the difference berween the classes resides in
the angles formed by two of the edges of the triangies (with respect to a verncal axis) - the expectation is that
significant bits will be found in the theta pan of the classifier. For the optamal classifier above, the 4-th bit
from the right ("1") turns out to be a significant bit. Note that there is no pressure in the fitmess function
towards #'s, in cases where a specific 1 or O either doesn't disunguish between the classes or does not interfere
with the correct classification by the classifier. Other optimal classifiers of the populadon focused on other
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significant bits of theta, ¢.§., the third bit from the left end point of theta. In addition, since the generic
ilgorithm is opportuaistc, some of the optimal classifiers honed in on other (non-theta) differences in the
inputs, e.g.. bits in the values of j. Ths is © be expected in a situation where such a small sample of
messages are guiding the leaming.

Our next experimenwss involved more waining examples so that the probability of random significant
differences decreased. In addition, we sought to create training sets where a single critical distinction is
insufficient to distinguish the classes, with the intendon of having the genetic algorithm support two sub-
optimal classifiers. It was relarively easy to control for random differences but, while in early generations the
genetic algorithm brought out two suboptimal classifiers, any differences in fimess Letween the two
evenrually resuited in dominance by the better classifier. This was a result of the way in which parents are
chosen and the method for determining which classifiers get repiaced. Basically, parents are chosen
according to the normalized probability based on each classifiers fimess. Replaceabie classifiers are chosen
with the probability of 1/fimess. Unfortunately if left like this, it has the effect of quickly becoming a
homogeneous population. While this is not harmful when the system needs to one significant
differentiating bit, it will cause serious problems if a class is defined by two independent criteria. This means
that if being in a class signifies having A OR B, then there are two independent search spaces that the genetic
algorithm needs w0 develop. One way w solve this is ® create a pool of replacement classifiers based on
1/fitmess and then choose which classifier 1o replace by which ope is most like the replacing classifier. This
has the effect of dividing up the populadon into different search spaces thereby allowing speciaton. (Note to
the reviewer: in & final paper we would expect i~ discuss these issues more systematically with more
examples and more on the integration across the current partitions via orderings.)

Conclusion

Pebble_Pond can be viewed as a transformation that maps spatial structure, represented as points in a cellular
armay, into temporal stucture. Informadon is produced at each iteration. which is based on selected measures
of the sute space of wave configurations, where eariy iterations represent more spatially proximase scructure
and lanter iteradons represent more spatially dispersed soucture. For the inital design of the leaming systern
discussed in this paper we focused on the information arriving from mudpoints of the edges of the complete
graph ordered in tme according to edge length. As each configuration of points is presented to the learning
systeis, Pebble_Pona will produce over time a set of “messages” that result from the various measures and
filters defined on evolving wave configuratdons. The initial experiments discussed in this paper have treated
message groups over time independenty, but for simple discriminations the classifier system undergoing
adaptation via :u%enenc algorithm has been able w0 find appropriste solutdons. Work will continue on
increasing the difficulty of the taining sets, especially in terms of examples involving more complex
correlations between measures. Evenwally, we see a system developing that will use the bucket brigade
algorithm to search for correlations of Febble_Fond measures over ume. In addition, the s priori spatial
structure provided by Pebble_Pond, e.g.. GG(k). VT(k), near co-circularities, can serve to define an ininal set
of measures upon which to define s classifier hierarchy. The genetic recombinaton procedures automancally
search for relevant combinations of a priori measures and the mechanismis associated with tiggering
conditions provide the capability of adding new measures. Thus, we sce both a rich a priort structure upon
which to base a leaming algorithm and a rich space of measures from which to discover new relevant

strucrures.
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