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ATTRIBUTED IMAGE MATCHING USING A
MINIMUM REPRESENTATION SIZE CRITERION

Arthur C. Sanderson and Balaklcrishnan Ravichandran

Electrical, Computer, and Systems Engineering Department,
Rensselaer Polytechnic Institute, Troy, NY 12180

1 INTRODUCTION

Matching of models to image features is a fundamental step in computer
vision systems. Such matching may take place at different levels of these
systems, from template matching of raw images to symbolic matching of relational
models. In this report, we address the problem of matching localized spatial
features with arbitrary attribute sets to either idealized or learned models. In
mathematical terms, we match spatial patterns of points, where each point has an
associated attribute vector with quantitative and symbolic values. The minimum
representation criterion used to achieve an acceptable match is a principal topic

of this report.

Image matching is difficult to achieve with sufficient generality, speed, and
robustness to be useful in practical systems. Many proposed algorithms are highly
dependent on a choice of particular features and model representation, and they
often require interactive or heuristic methods to extract features. Adding generality
to matching procedures has been difficult particularly because evaluation functions
or match quality measures do not generalize well. Image matching is inherently
complex from a computational point of view, since the number of possible
matches in general grows exponentially with the number of features. Polynomial
complexity is an important property of any practical approach.

Good image matching algorithms must be able to handle feature uncertainty
including missing data, extra features, and noisy attributes. This requirement
has been particularly difficult to achieve since most evaluation functions are not



able to handle missing or extra data in a consistent non-heuristic fashion. The
representation criterion presented in this report is inherently normalized to match
size and number of attributes and directly accomodates missing and extra data.

[his report describes the minimum representation criterion [ 1,2,374) as a basis
for image transformation and correspondence matching. We specifically address
the problem of two-dim,,si~al rigid, attributed point sets with missing and
extra points. The algorithms developed are polynomial in complexity and near-
optimal for this criterion. Examples of performance on highly variable gray-level
images including aerial imagery are shown. Results which have been obtained on
the application of minimum representation matching techniques to several types
of imagery including aerial photographs obtained from RADC are summarized.
While the underlying methdology for the minimum representation approach has
been developed in [3,4], the current work has emphasized a new implementation
of the work and application to new types of imagery. This report includes an
o~er-vlew of the basic methodology, new implementation, and new applications,
:Ind augm, n-ts the papers which have been prepared summarizing our results.

Section 2 of this report defines the image matching problem. Section 3
presents the minimum representation criterion principles. Section 4 describes
a usually optimal, polynomial time algorithm for image matching and transfor-
mation. Section 5 presents some examples of the matching procedure.

2 ATTRIBUTED IMAGE MATCHING

Image matching problems have been approached using a variety of different

hypothesize-and-test techniq,,es in which potential matches are hypothesized and
tested against evaluation criteria. These methods include template corrclation [5],
statistical pattern recognition [5], parameterized geometric fitting [6], and many
different relational structure methods such as graph morphisms [7], compatibility
graphs [8.91, and weighted relational matching [101. In addition, heu'riStic tech-
niques [Ill, Hough transform techniques [ 121, and relaxation labelling techniques
[131 have been proposed. These references indicate examples of the various

approaches, and a more detailed comparative discussion of these algorithms is

included in {41. The approach described in this report is basically a geometric fit-
ting technique which maps point sets to geometric models using a new metric for
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evaluating match quality. The minimum representation metric does not depend
on the specific form of geometric modelling and is extendible to more general
relational structur models.

In this report, we consider images of rigid objects which have undergone
arbitrary translation, rotation, and scaling in a two-dimensional plane parallel
to the image plane. Each input image of an object is represented as a set
of features with attributes, and each object model is represented in a similar
manner for a given view of the object. in practice, the input image feature
representation is extracted from the raw image data using other computer vision
algorithms. The corresponding object model representation may be derived
from a purely geometric model or by learning from a series of observations
of input images. In addition to translation, rotation, and scaling, the image
feature representation will include distortion, noisy attributes, missing (hidden
or occluded) features, and added features. The image matching problem requires
identification of the correspondence match between features and an associated
geometric transformation which 'aligns' the image with the object model. The
existence of an arbitrary transformation and the contribution of distortion and
noise require a search over possible choices using an evaluation criterion which
is tolerant to these effects. In this report, the minimum representation criterion is
used for the selection of the best correspondence and transformation.

An input image data feature representation consists of the ordered pair D =
(F,.A) where F = {ff, i = 1,... ,N} is the set of feature labels, and A =
{ai), i = 1,...,N, j = 1,..., N} is the set of feature attributes.

Each feature may have multiple attributes, and the set of attributes may differ
among features. However, every feature in an image is required to have (x,y)
position attributes denoted by

ail = ui = x-position of fi,

ai2 = vi = y-position of fi.

Similarly, an object model feature representation consists of an order pair
R = (G, B) where G = {g, i = 1. . } is the set of model feature labels, and
B = {b,, i = 1I,...,M, j = 1 ... ,M,} is the set of model feature attributes.
In this case

3



= = x-position of 9i,

bi2 = xi = y-position of gi.

The attributes represented by A and 8 may be of four types:

1. Positional - (x.y)-position (required of every feature),
2. Numerical - numerical measures such as length, angle, area, curvature,

number of neighbors,
3. Symbolic - symbolic labels such as color, texture,
4. Relational - relation of a feature to other features such as connected-to, on-

top-of.

This data structure considers attributes independently and facilitates the de-
velopment of the representation criterion which is strictly cumulative with respect

to the set of features. For the problems considered in this report, relational at-

tributes will not be used. For highly noisy data relational attributes are difficult to
incorporate into matching, and for rigid objects they are less useful since relative

position is maintained by the rigid transformation.

2.1 Correspondence

Given an object model R and an input image I with data feature representation
D, a match between them is defined by a correspondence and a transformation.
The correspondence maps the model features G to the data features F. The
transformation is the set of parameters which defines the translation, rotation,

and scaling used to geometrically align the corresponding features. In this report,
we assume that all correspondence matches are one-to-one, that is, one model
feature matches to only one image feature and vice-versa. This assumption may

be generalized, but simplifies the search problem and provides solutions which

are more easily interpreted.

The size of the correspondence match, V, < min [M. J .is the number
of model feitures which have a correspondence to a designated data feature.

Not all model features have matches, and there may be added features in the
image as well. The correspondence itself is expressed by the set of indices:
C -{c,, z=1 ...... A}. where
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ci = index of the image feature, f,,, which corresponds to the indicated model
feature, gi, when a match occurs and,

= 0, when no match occurs,

and 1 < c, < A'. A particular correspondence match may therefore be
represented by the ordered pair (i,ci).

2.2 Transformation

Given a correspondence (i,i) where the model feature g, is at point (X,,yI

and the image data feature f, is at point (UjVi), then the match is completely
defined by a transformation T which transforms (ui,vi) - (X,',vi'). In general, this
transformation is defined by four parameters, T = (t,, t,, 0, s). where

(t, t,) = translation,
0 = rotation angle,
s = scaling magnitude.

Fig. (1) illustrates such a transformation from (uj,vi) to (x{'.yj'). While the
data point is matched to the model point, the transformed data point does not
necessarily align perfectly with the model point. The transformation will oe
derived from an evaluation criterion over a set of distorted and noisy data points,
and will align relative to that global measure.

3 MINIMUM REPRESENTATION CRITERION

The minimum representation criterion [1,2,3] was introduced as an approach
to unsupervised signal and data analysis in which the complexity of the data
representation is used as a criterion for the choice of model structures and model
parameters. The approach incorporates elements which express the complexity
of the modeling procedure, the model size, and the size of the data residuals. In
contrast to traditional mern square error measures of model fit which do not permit
discrimination among model structures, the minimum representation size explicitly
incorporates model structure and represents the tradeoff between complexity of
the model structure and the resulting error in predicting the data points. This
approach was demonstrated for several classes of parametric statistical models
including evaluation of the order of an autoregressive model and determination

5
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Figure 1 Transformation of an image point at (u,,v,) to a new poin. ( ,',y,') using
transformation T with four parameters: translation 0,.,t), rotation 0. and scaling s.

of the number of clusters in a multivariate data sample. In [21, these techniques
',cre applied to the unsupervised analysis of biomedical signals which resulted in
i sv' tem for the automatic modeling, segmentation, and symbolic representation
of complex patterns associated with medical diagnostic decisions.

The minimum representation criterion is based on a principle of minimum
complexity of a program which explicitly regenerates observed data. Such a pro-
gram includes a procedure, a model, and data residuals, and the size of the overall
program is regarded as a measure of the complexity of the representation. In this
approach, a simple model may require a complex data residual representation,
while a more complex model will simplify the data residual representation. This
tradeoff in overall complexity between model size and data residual size inher-
ently provides a basis for choosing among alternative models. More generally,
the procedure provides a tool for unsupervised decision-making.

Consider an observed data vector x = [xi, x . . . . . tj. The representation of

this data vector is viewed as a program which regenerates the data points with

some known resolution. In [I], this program is more formally defined -n terms of

a classic Turing machine model of computation. There may. in fact, be several

different programs, 7r, which correctly generate the data points, and the 'correct'

behavior of the system is regarded as the minimum size program p* among these,

, - mnmmunmmmunlm l ~ l l III~ I6



such that

s(p I rn n (p,) (hts)

where s .) is the size of the program. As discussed in [I], the shortest program
in an ensemble of such programs generated by a random process is the most
likely program.

Each pro-am, p, includes a number of segments which provide procedure
code, model parameters, correspondercL parameters, and data residuals. Each
different algorithm or different model has a different set of program segments. In
our pre,',>us work on clustering [1], for example, the model parameters included
the cluster center positions in multivariate space, while the data residuals were
encoded relative to these centers using a code which minimized the length of
the data representation by eicoding more probable (closer to the cluster center)
data points with shorter length codes. Ir the image matching problem, the
representation size s(p) of each program includes the following terms:

,s(p) = L + s(q) + s[Cq(x)] +- (),

where

L = size of the program independent of the choice of model,

s(q) = size of model parameters, including the transformation, the
number of modeled data points, Nm, the correspondence match, and
the feature attributes,

S[Cq(X)I = [- log Pq(X) 1, where

Cq(X) = encoded residuals of modeled points, where

Pq(X) = probability density function of the residuals of the modeled
subset of observed data point attributes relative to the model q, and

7



S (e)=Z s (ai,
I )

is the representation size for the unmodeled data points. When all data points
have uniform attribute sets, we can further simplify this to

- (V - -Vr) -SI J

where Sa is the total representation size for the attributes of each unmodeled data
point. In practice, Sa depends on the predefined resolution in bits of each of the
attributes and is therefore usually fixed for a given problem.

The representation of the data residuals is based on an encoding which
represents the more likely points by shorter code strings. There are many specific
coding schemes which might be used, and we have implemented one such scheme

which is based on a truncated hyperbolic distribution of errors. Incorporating this
measure, we can write the representation size equation for a fixed model and data
size in the following form:

.,' p = L - ,,og2M + -* (X ! V - \m)Sa

where

S, = logLu'1 1 E1  + 11.

Eij is the error due to the jth attribute at feature i,

E ,J = Error, [9,, f,]

and wi1 is a weighting parameter which can be used to adjust the relative weight
of attributes for different specific applications. For the image matching problem
we have used Euclidean error measures as a basis for the encoding of position

attributes, and the resulting representation size equation is

(p) = L -.- N, I M ,I I2 (.r, - r,V + (2 47 11

( I + N



For the experiments described in #-his report the second term N, log2 M was
considered a constant for each set of experiments.

4 IMAGE MATCHING ALGORITHM

For a given model and observed data, the best match is defined by an optimal
transformation and an optimal correspondence between some subset of the data
points and a subset of the model points. These two steps may be considered
somewhat independently. An optimal transformation will exist for each possible
correspondence which is chosen, and the algorithm must search over many

possible correspondences in order to find an optimal match.

4.1 Transformation

The minimum representation transformation is in general quite different from
the least mean square error transformation which is commonly used. A closed
form analytical expression for the least mean squared error transformation may
be derived and applied directly to a given model and subset of data points.
The minimum representation match involves a logarithmic transformation of the
square error terms and does not lend itself to a closed form analytical solution.
We have used two algorithms for the calculation of the minimum representation

transformation:

Numerical optimization - Partitioning of the search space using bounds on the
volumes was implemented and combined with a random adaptive search for local

minima. Hundreds of examples were studied using Monte Carlo techniques and
the resulting transformations were examined and compared to mean squared error

transformations. The minimum representation size results were stable and robust,
particularly in the presence of added or missing data points.

Two-on-two transformations - It can be shown analytically that in one-

dimension, a minimum representation transform always has two zero position
error correspondences. In two dimensions, less than 1% of the optimal transfor-
mations found by simulation did not have two-on-two transforms, and for those
cases the difference in the transformations was minor. We have therefore imple-
mented a usually optimal transformation based on the two-on-two transformation.
This approach dramatically decreases the complexity of the algorithm, reducing

9
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a continuous parameter search in four dimensions to a discrete search over (N2

- N)/2 points.

-1.2 Correspondence

The correspondence problem of finding the match between subsets of data
points and model points which minimizes the representation size is solved by
converting it to an assignment problem in the following form. Based on the
minimum representation size equation, each pair of model and data points has two
alternative representations. As a modeled point, the pair may have a representation
size, Sp, associated with the model and residuals. As an unmodeled point, the
pair will contribute a fixed size Sa. Fig (2) shows a set of model points, a set of
transformed data points, and a graph of their possible interpoint mappings. The
transformation parameters are not optimal and were chosen for the purpose of
illustration. The point numbers do not indicate correspondence. The graph of
interpoint distances is a complete bipartite graph, and the optimal correspondence
can be viewed as an optimal assignment of left nodes to right nodes which
minimizes the representation size.

In order to calculate the optimal correspondence, we

1. Assign the pairwise representation size to each arc of the complete bipartite
graph.

10
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2. Replace those representation sizes which are larger than Sa by the value S,
3. Let N' = max (MN)
4. If M < N', add N'-M 'extra' nodes to the set of model nodes. Connect each

extra model node to every data node using N arcs, each with weight Sa.
5. If N < N', add N'-N 'extra' nodes to the set of data nodes. Connect each

extra data node to every model node using M arcs, each with weight zero.

The resulting graph for Fig. (2) is shown in Fig. (3) with Sa = 5.5 bits. The
optimal correspondence is now defined by choosing N' arcs such that (1) the sum
of the arc weights is a minimum and (2) no two arcs share the same endpoint. A
valid correspondence is indicated by a resulting arc weight which is less than Sa
All other arcs indicate that there is no correspondence between the two endpoints.
The sum of the chosen arc weights is the representation size of the resulting match.

The assignment problem in a bipartite graph has been studied extensively
[14], and a number of efficient algorithms exist. A straightforward solution would
require evaluation of N'! sets of arcs. Available algorithms typically are of order
O(N'3 ) or O(MN min(MN)) [15]. The latter algorithm was implemented here.

4.3 Complexity

The complexity of the resulting algorithm may be summarized as follows:

1. Compute optimal two-on-two transformations - O(M 2 N2),

11



2. Compute the graph of representation sizes - O(MN),
3. Compute the optimal match using the assignment algorithm - O(MN

min(M N)).

For large problems the computational complexity of the resulting algorithm
is O(M3 N3 migMN)). While this algorithm still requires significant computation
in its current form, on a typical size problem with N = M = 30, the computation
is reduced relative to a brute force combinatorial algorithm by a factor of 1025.
Many of the previous matching schemes have utilized heuristic techniques to
reduce the computational complexity and did not optimize an objective measure
of match quality. The algorithm described here produces usually optimal matches
in polynomial time.

4.4 Improved Matching Efficiency

The performance of the basic matching algorithm can be improved using a
number of algorithmic techniques and heuristics. The three methods summarized
below utilize increasing assumptions about the characteristics of the data features.

1. Precompute Representation Sizes: The construction of the representation
size graph requires the computation of MD representation sizes. Given a set
of model points, it is possible to precompute all of the necessary representation
sizes in a large x-y array. With such an array, the representation size
calculation between the model point and any transformed data point is reduced
to a single array access. Since a model is a collection of points, a number of
separate arrays are required to represent all the possible representation sizes.
The arrays are constant for a given model.

2. Restrict Transform Space: In most practical applications, there are fixed
limits on the range of possible data point transformations. Those transforms
which fall outside of this range can be ignored. In a typical vision application,
the camera parameters are often fixed so that the scale of the data features
is known within a few percent of their true value. With such scale, rotation,
or translation restrictions, it is often not necessary to generate many of the
candidate tranforms, and the search space is correspondingly reduced.

3. Approximate Method: In the basic matching algorithm, we explore all
possible transforms without screening the candidate matches based on error
criteria. This approach has provided an accurate view of the performance of

12



the algorithm since it searches exhaustively over the candidates. In practice,
one would like to reduce this search space based on prior screening of the
errors. Such a fixed set of prescreened data points where only the most likely
transformations and correspondences are explored, greatly reduces the search
problem and adapts it well to practical situations.

5 EXPERIMENTAL RESULTS

The matching algorithm described in this report was tested on a variety of
gray-level images with different degrees of complexity. Features extracted for
matching are straight line segments and the vertices formed by the intersections
and endpoints of such segments. The Popeye image processing system [16] was
used to extract these edge-related figures by filtering, thinning, fitting of local line
segments, logical reconnection, and simplification of the resulting line graph.

The line segments and their vertices are represented with a number of attached
attributes. Each type of feature has a positional attribute. The position of a line
segment is given by the center point of the line; while the position of a vertex is
the point where two or more line segments intersect. In addition to the positional
attribute, each segment also has a length attribute and a slope attribute. Vertex
non-positional attributes include the number of line segments entering the vertex
and the angle at which they enter.

Two examples of the feature extraction process are illustrated in Figs. (4) and
(5). Fig. (4) shows a simple geometric shape with high contrast. The resulting
edge-related features are clear and reliable as indicated by the dark lines and
comer symbols in the figure. Fig. (5) shows a much more complex image which
includes shading, highlights, and more subtle gray-tones. The resulting edge-
related features are noisy and unreliable, and will often result in incomplete edge
descriptions, or multiple vertices. Such complex images provide an important test
of the minimum representation matching approach since they may contain a small
percentage of repeatable features.

Fig. (6) shows an example of overlapping geometric shapes such as that
in Fig. (4). These overlapping shapes provide a good test for the matching
algorithm because they have occlusion among the objects. The contrast of the
outer boundary of the shapes is still high, but the contrast among the objects is low

13



Figure 4 Fcature extraction from a simple geometric shape with high contras.

Figure 5 Features from a gray-level image of a three-dimensional object.

and in general do not provide edge-related features. In these experiments, each of
the shapes was matched independently of the others, so that no constraints among
the group of objects were used. For the experiments, the independent shapes
were matched with high reliability.

The effect of employing non-positional attributes was studied for these geo-
metric shapes and the results of a study of images with simulated distortions is
shown in Fig. (7). In each case, a random subset of features were selected from

14



Figure 6 Example of minimal representation image matching with overlapping
polygonal shapes. Models of the polygonal shapes were stored. Matching

of each of the shapes to the gray level image was carried out independently.

Strategy Vertex Segement % of Correct
Attributes Attributes Matches

I Position Only Not Used 90.5

2 All Not Used 99.5

3 Position Only Position Only 96.0

4 All All 100

Figure 7 Statistics for matching using several strategies
with different incorporating different sets of attributes.

an image and a random set of synthetic features were added. Less than 50% of
the features in all of these examples corresponded to the real image features. Four
strategies were used on fifty examples of this type and the results are shown in
Fig. (7). These results indicate that the algorithm is robust in spite of very large
distortions of the data, and also that the addition of segment features, and the
attributes for vertices and segments significantly improves the performance.

An example of a complex scene with an occluding object is shown in Fig.

15



Figure 8 a. Example of image features for a noisy gray-level image of a polygonal shape
with an occluding object. b. Correct matching of polygonal model to image features.

(8). The feature set derived from the original image is extremely noisy as shown
in Fig. (8a). The correct match of the geometric model is shown in Fig. (8b).

Examples of matching to images of gray-level objects are shown in Figs.
(9) and 10) for the exanpie in Fig. (5). Fig. (5) :hows the image and extracted
features. Figure (9) shows the match of a model obtained from a slightly different
angle of view. The resulting data image is quite noisy and varies significantly
from the original model. The resulting match is still consistent with the model.
Fig. (10) shows a match for an image of the object which is partially occluded.
These noisy images typically had less than 40% consistent features as a basis
for the match.

Experiments on RADC Images

The minimum representation matching algorithms described above have been
applied to a variety of image test data made available from RADC. These test
d-ta included images of isolated aircraft and aerial images of airport scenes. In
our experiments the isolated aircraft images were used as training images in order
to derive models of aircraft shapes. The complex airport scenes were utilized for
experiments in location and recognition of the model aircraft. The aerial images
themselves were of highly variable quality due to imaging conditions, lighting
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Figure 9 Matching of the gray-level image from Fig. (5) to a stored model obtained from the same
,nbj_ at a slightly different angle of view. Due to noise and distortion of the image, less than

30% of we features were consistent in this image, yet the algorithm was able to correctly match.

FIgure 10 Matching of the stapler model to a gray-level image which is partially occluded.

conditions, and low resolution. We carried out preprocessing of these images
using contrast enhancement techniques.

Extraction of the attributed graph representation from the image was accom-
plished using two different methods:
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1. An edge extraction method similar to that used in the experiments described
above. In this approach, continuity of contrasting edge elements in the gray level
images was established and automatically simplified to produce a structured graph
of nodes and edges.

2. The skeleton approach in which a morphological operator is used to extract
a locus of central points in each gray level region of the image, and then these
central points are connected into skeleton graphs consisting of nodes and edges.

In each case the resulting graph constitutes a data structure which is appropri-
ate to the minimum representation matching methods described above. For many
images the skeleton method was preferable due to the poor resolution of the air-
craft in the aerial images, as well as the shape characteristics of the aircraft which
consisted of configurations of thin black lines. Examples of matching based on
the skeleton method are shown below.

Figure 11 shows an example of an isolated aircraft image used in these exper-
iments. Figure 12 shows the skeleton-based attributed graph data extracted from
this same image. The attributed graph structures contain additional associated
attributes which include node positions, edge lengths, numbers of intersections,
and vertex angles. The minimum representation matching utilizes all of these
attributes.

Figure 13 shows a typical aerial photograph of an airport scene. In this scene
there are several aircraft positioned on a runway, as well as a variety of other
objects including buildings, foliage, and texture which is present on the runway.
Variable lighting, noisy imaging conditions, and poor resolution contribute to the
complexity of identification of the aircraft shapes within this image. Figure 14
shows a subimage which has been used for experiments on aircraft recognition.
Figure 15 shows the skeletal data structure which is extracted from this airport
image. The minimum representation matching algorithms were then utilized to
identify candidate matches for the model data structure within this image. Figure
16 shows the resulting match of the model to the airplane positioned on the
runway. It's clear from Figure 15 that there are a large number of possible node
correspondences between the model and the data for this example. Based on the
search over these possible correspondences, the position and orientation of the
model is placed in such a way that it minimizes the overall representation size
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as described earlier in this report. From intuitive interpretation of this image, the
positioning of the model aircraft is correct within the tolerances of the imagery.
Note that the minimum representation matching methods used are invariant to
translation, rotation, ad scale, and are tolerant to the distortion or inclusion of
parts of the object.

Figure 17 shows an example of an airport subimage with more than one
aircraft present. Figure 18 shows the extracted skeletal attributed graph repre-
sentation for this image. Figure 19 shows the superposition of the model on the
image in the position and orientation which corresponds to the minimum repre-
sentation match. These results indicate a correct match to the first airplane in the
set. The other airplanes in the image are also matched by the same model, but
with higher representation size.

Often a correct, but distorted match resulted from use of the edge-based
models described above. In this case the edge extraction from the low resolution
image of the aircraft runway resulted in a noisy distribution of the edge points
around the object. This noisy distribution of points in the blurred image resulted
in the displacement of the model match and in the gradation in the accuracy of
the resulting position and orientation of the model. The skeleton-based attributed
graph extraction was overall a more reliable procedure for the experiments which
we have carried out with this images.

These experiments have demonstrated the applicability of the minimum repre-
sentation matching methods to the interpretation of aerial photographs of aircraft.
The methods have been applied without modification to two different types of
graph-based feature sets extracted from the image data. The results are character-
istic of the reliability of the data points themselves, and the edge-based features
provide less reliable matching due to the blur in the images associated with the
resolution. The skeleton-based features are more reliable and are associated with
the averaging affect which occurs in the application of the morphological opera-
tors to the gray level image.

6 CONCLUSIONS

This report has described a new approach to image matching which utilizes
the minimum representation criterion as a means to obtain robust matching per-
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Figure I I Example of isolated aircraft image.

FIgure 12 Skeleton-based attributed graph structure derived from the image in Figure 11

formance even when image data is extremely noisy The results are encouraging
in that they demonstrate consistent performance on samples of real gray-level
images. The computational complexity of the approach is polynomial, but still
large for applications such as inspection and robot control. Additional simplifica-
tions and approximations have been suggested which might make the technique
feasible in these domains, and parallel implementation may be required to make
the computation time acceptable.
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FIgure 13 Example of an aerial photograph used in the matching experiments.

Figure 14 Subimage of the airport image in Figure 13.

The minimum representation approach to unsupervised decision-making is
a general tool which has been employed in a number of different problems
domains. The principle provides basic properties which seem to be useful in
measuring and optimizing model structure as well as model paramet-rs in a
data interpretation framework. Such a minimum complexity or minimum entropy
solution is appealing also from an intuitive point of view.
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Figure 15 Skeleton attributed graph data structure derived from the airport image in Figure 13.

4p

Figure 16 Resulting match of the model to the airplane
positioned on the runway for the image shown :n Figure 14.
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AN APPROACH TO REPRESENTING SPATIAL INFORMATION USING

GENETIC ALGORITHMS AND CLASSIFIER SYSTEMS
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1 INTRODUCTION

The attached paper reports on our research activities in using genetic
algorithms to search the space of message forms provided by the PebblePond
algorithm. While our initial intent was to use the full-blown capabilities of the
bucket-brigade algorithm to exploit the temporal structure provided by
PebblePond, we decided early on that the research issues involved in evolving
chains of linked production rules were too substantial and would take us more
into genetic algorithm/classifier system research as opposed to research on
learning spatial structure. Thus, the attached paper reports on our restrictions to
the structural variability of the message forms (provided by PebblePond), which
define the search space for the learning algorithm. In particular, we restrict our
attention to simple pattern classes consisting of 2 or 3 points in each pattern
instance (with many instances in each class allowing us to make the problem
interesting). We were able to design a genetic algorithm which was capable of
finding solutions for these simple problems. Issues in achieving these results,
e.g., supporting speciation to combat premature convergence, are discussed in the
paper.

In an attempt to consider less restrictive forms of messages we began to
formulate a new genetic algorithm that would search the space of all possible
embedded triangulation messages defined by the selections of 3 out of n points
from each training image. While in the middle of this effort, we came to the
conclusion that we needed to take a step back from moving on with the next
logical step and instead reconsider some fundamental issues. One issue was that,
while the restricted message forms which defined the search space worked well
within the genetic algorithm, we were able to contrive examples of pattern classes
which did not fall within the rubric of the message forms. In our initial restriction
of the research away from a full blown bucket-brigade algorithm for forming
arbitrary linkages between classifiers - which would have the potential to explore
the space of various message forms themselves - we were certainly aware that we
were picking off a subspace. In fact, we viewed the extension to the triangulation
message forms as a way of exploring the restricted, but large, space of pattern
classes characterized by angular relations between spatial locations. In addition,
the counterexamples to this space all involved some commonalities in symetry
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that were not reflected in angularity. Thus, while these counterexamples were not
unexpected, they brought back to our awareness the larger problem of finding
ways of exploring the variety of message forms themselves.

At the same time, we also became aware of another fundamental issue in
the way our fitness function guided the behavior of the genetic algorithm.
Basicaily, tX, algorithm v.3,.'.A allow pararnetcrizatior, of various message torms
to survive in the population, providing they were able to make some contribution
towards correctly identifying the pattern classes. If a particular parameterization
were capable of distinguishing all pattern instances correctly, then it would
eventually spread through the population and dominate. Likewise, if a particular
parameterization got many but not all of the classifications correct, the genetic
algorithm could be tuned (once we learned a bit more about "speciation") to allow
such parameterizations to survive. On the other hand, we were able to contrive
examples where two parameterizations would contribute not at all to correct
classifications, but a conjunction of the two would in fact be the answer. (These
examples seem to correspond to what are called "maximally deceptive
landscapes" in genetic algorithm research and, within the framework of pattern
recognition, correspond to cases where all partial matches are incorrect, while the
complete match is the answer.) The issue here is related to the one discussed in
the above paragraph: how can the system automatically find non-summing (or
non-liner) combinations of message forms when the set of patterns can not
adequately be captured by the space represented either by individual message
forms or simple additive combinations thereof. This of course is one of the
fundamental issues in the realization of emergent phenomena and is an issue that
appears in the biological literature in the framework of the debate about
punctuated equilibrium versus gradualism.

As a continuation of this research we would propose to consider two basic
tacts: 1) building upon the success in getting a working syste1: taseo on
restricted message forms, we would consider adding on a system that "monitors"
the behavior of the simpler message forms, seeking to determine when message
forms might be combined into "higher-level" structures, this would correspond.
within the framework of classifier systems as discussed by Holland, to the search
for "arresting conditions" (or a priori constraints on the behavior of the adaptive
system) that in effect operate deus ex machina, or 2) return to a consideration of
the full-blown bucket-brigade system for dynamically combining primitive
message forms into chains or groups of "higher-level" messages, that can then
take on a unified role within the behavior of the system. Finally, as we continue
to advance our understanding of the PebblePond algorithm itself, we would
expect that new measures and constraints on combinations of measures will arise
and ultimately feed back into the research on spatial learning.



An Approach to Representing Spatial Information using
Genetic Algorithms and Classifier Systems

Michael M. Skolnick
David B Jacobs

Department of Computer Science
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Troy, N.Y. 12180

An approach towards representing spatial information within the context of genetic algorithms is presented.
By translating positional information into a temporal sequence of bit string messages, it is possible to parame-
trze spatial information for use in genetic search. The transformation that produces the temporal sequence of
messages is based upon a cellular automata simulation of wavefronts emanating from point sources. Message
sets arriving early on repot in parallel on all spatially proximate information, while latter message sets report
on more disparate information. A genetic algorithm has been successfully applied to the search for classifiers
that distinguish simple classes of spatial patterns. We consider how the various mechanisms of classifier
systems, e.g.. the bucket brigade algorithm and "triggering" conditions could be used to build a more robust
system.

Introduction

The problem of representing spatial information on images via genetic algonthms and classifier systems [)l
has proven to be quite difficult. Genetic algorithms are designed to effectively search a parametrized
representation of space. That is, "genes" on an individuals "chromosome" correspond to the various classes
of spatial measures, the values of the "alleles" correspond to the range of values within the space of measures
and genetic operators are used to implicitly search for combinations of parameters (over all hyperplanes) that
optimize the fitness function. With respect to spatial information the most immediate issue concerns the
choice of an initial set of (hopefully robust) spatial measures. Also, there is the issue of searching for
alternative measures if those initially chosen are inadequate. Even more fundamental is the extent to which
the underlying representational framework of "chromosonal" bit strings and the associated genetic operators
tespecially cross-over) provide a good "match" with spatial strcture.

One approach is to identify each gene with an image pixel where feature measurements at each pixel serve as
alleles (2]. One itmmedute problem with this approach is that feature measurements typically result in a rather
sparse array of sigmficant (above threshold) values, which translates into a sparse dismbuuon of significant
information spread about the individual "strings" in the population. In addition. translation. scale or
rotational invariance is difficult to handle within such a framework. The most fundamental limitation of
dimctly mapping pixels from euclidean space onto linear strings within genetic algonthms is that the mapping
(and, in turn, genetic operators like cross-over) introduce discontinuities which disrupt the search for spatial
structure. These issues have given rise - both within the area of genetic algorithms and computer vision in
general - to approaches which are based upon defining a search space of parametized spatial measures that
capture the information within the pixel arrays. One GA effort in this direction has involved the search for
optimal parametrized linear transforms that map one image array into another 131. This work, while of interest
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from the perspective of estimating mappings between pixel arrays. is less relevant to the general problem of
representing spaiall information (unless it can be shown that the general problem can be cast in terms of
image transformatons).

Gil'ies [43 work stands out as an application of genetic algorithms involving the representation of spatial
information. A learning system is developed that is able to distinguish between classes of input images
provided as a tainig set The learning system parametrizes the spatial structure through a class of image
processing transformations and measures known as mathematical morphology (51. The chromcsomes used in
this work were based on a morphological program "form" (or schema) that involve three broad classes of
parameters, which represent the following spatial structure: I. shapes that capture the structure of the
background of the images, 2. shapes that capture the structure of the foreground of the images and 3. vectors
that spatially relate the measures from foreground and background. Thus, there is a strong emphasis in
Gillie's work on considering the search through measures of both shape and spatial position. In our work, we
have focused exclusively on the issue of spatial position. Note that this does not preclude expressing shape
information by combining primitive shape measures spatially. In fact, the tension between the exploration of
robust shape measures versus their decomposition into spatial relations between mom primitive shape
measures is fundamentaL

An algorithm has been developed, called Pebble-Pond [61, which can be thought of as tr-ansformng spatial
structure into temporal structure. The algorithm is based upon a cellular automata simulation of waverronts
emanating from point sources. At each wave iteration within Pebble-Pond, filters and measures on the
cellular array state space are taken, producing a set of messages about all significant "events" occurring at the
iteration. Various measures and state space events have been shown to compute the following set of spatial
structures: all order Gabriel graphs, Voronoi tessellations and nearest neighbor graphs [71, the point pairwise
probability (or co-variance) distribution [5], detectors of approximately co-circular, co-linear or co-convex
points sets, and new alternative measures of spatial structure. Based upon the diversity of the spatial measures
provided by the cellular state space computed by Pebble-Pond. we feel chat the state space might be an
appropriate vehicle by which alternative spatial measures might be searched via a learning algorithm. In
addition, at each iteration, i, measures on the changing wave configuration space are reporting on spatial
structure that is separated by a distance d(i). In other words, messages ansing out of Pebble-Pond at time step
i are reporting on all spatial structure a distance d(i) apart and at latter time steps report or more distant spatial
relationships. The result is a temporal ordering of messages coming out of Pebble_Pond that directly reflects
a spatial ardering. With respect to learning algorithms, we feel that this transformation of spatial into
temporal structure might provide an appropriate vehicle for the mechanisms of classifier systems. especially
triggering conditions and the bucket brigade algorithm [i1

The next section will describe PebblePond. with two purposes in mind: to define the set of messages that are
used as input to the genetic algorithm and classifier system presented in this paper and to give -,ome sense for
the complete space of spatial structure that might be obtanable from Pebble-Pond. The third section will
report on a genetic algorithm for learning to distinguish classes of spatial patterns based upon a specific class
of input messages from Pebble-Pond.

The input: PebblePond algorithm

Pebble-Pond. can be visualized in terms of the waves emanating from pebbles tossed into a pond of water.
The wave propagation process differs from what happens in nature in that wave fronts - and the information
they carry - are permitted to pass through each other without interference. The non-destructive intermingling
of wave fronts permits the computation of non-planar graph structures. A significant aspect of the algorithm
is its use of cellular automata transformations based on mathematical morphology [8: 9: 101. These
transformations provide a method for decomposing digital approximations of disks into sequences of local
cellular neighborhood transformations. This is hov- at each iteration within Pebble-Pond. the wave fronts of



increasing radi ae generated. Li additicn, tnvphologica filters permit the extaction - out of the complexity
of wave space configurations that arise over time - of the infomation required for computing particular spatial
Stuctures.

To give the basic intuitions of Pebble-Pond and describe the messages input to the current generic aigonthm
we will consider how PebblePond can be used to compute the k-th order Gabriel Graph. GG(k) [ii: Iz2. In
order for an edge connecting two points to be in the GG(k). the edge is considered to define the diameter of a
cirle and the resulting circle may circumscribe no more than k points. The first issue that needs to be
addressed concerns how to translate the geometic criterion for constructing an edge in GG(k) into an equiva-
lent criterion ivolving wave phenomena. The basic observation exploited by the algorithm is the following: if
circular waves are permitted to radiate from all points, then the waves of those points within the circle will
reach the midpoint of the diameter before the wave fronts of the pair of points being evaluated as a Gabriel
edge. Figure I illustrates this with respect to the algorithm determining that A-B and C-D form Gabnel
edges. Note that for potential edge C-D there are three wave fronts that will have passed through the midpeint
(indicated by the two darker spots) before the wave fronts from C and D meet; likewise, there are 5 such
wavefronts passing through before those from A and B meet.

Figure 1: GG(k) constraint - wavefronts within circles will hit midpoint
diameters before circumference wavefronts.

If we consider that the algorithm must propagate the wave fronts of all possible point pairs while checking
potential edge midpoints - all this in pallel - then it becomes clear that the algorithm is dealing with the ma.
nipulation of a large and highly complex set of cellular state space configurations. Thus, the main task of the
algorithm for computing the GG(k) is to spread the wave fronts in parallel. counting the number of wave
fronts that have passed through all edge midpoints detected at the current time step. At the same time. it must
do this without having any interferene between the waves and without getting confused by the multiplicity of
configurations. The details and issues on how this can be accomplished is described elsewhere (61 (Note that
the PebblePond algorithm is being implemented on an AIS-5000 linear array processor [131.)

Thus. significant inforination for the computation of GG(k) resides at the midpoints of all edges of the
complete graph. At each iteration i. Pebble-Pond detects all midpoints of edges some distance, d~i), apart and
then records the number of wave fronts that have previously passed through each midpoint. This information
forms the structure of the input messages to the genetic algorithm /classifier system described in the next
section. Thus, the three relevant message fields for GG(k) are: the number of wave fronts - identified by "#-
wave"- and the identity of the point source nodes - identified by "i" and "j" - of the potential Gabriel Edge.
To this is added the following information fields (all of which can be made available by Pebble-Pond): -t" -
the time step during which the wave fronts met (which is equivalent to one half the edge length), "x" and "y"
- the x and y coordinates of the detected midpoint, and "theta" - the angle formed by the edge with respect to a
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vertical axis. The amning set of point paterns is divided into two classes and the genetc algorithm must
learn how to dtins.- them. Thus, for each imrage in the UinIn classes. Pebble-Pond computes a set of
messages in the order in which the wave fronts meet, where each message is of the following form:

t i j x y #-wave theta in-class

where

t is the time step at which the wave fronts of the Gabriel edge meet
i and j are the identity of the (Gabriel) nodes or point sources

(assigned in line scan image order)
and y ame the (Gabriel) edge midpoints
-wave is the number of wavefronts thai previously passed through edge midpoint

them is the angle (between 0 and 180 degrees) formed by edge and vertical axis
in-class indicates which of the two pattern classes to which the image belongs.

Consider the following two images both consisting of three points but representing different pattern classes
(corresponding to vertically vs horizontally oriented point sets):

0 4 9 14 19 0o4 9 14 1

O i I ' : I I I ! ; i . . . . . I

9 .9

9 9

in-class - I in-class = 0

The messages. in order of arrival to the learning system, from the vertical point set are:

:3 i:O j:l x:14 y:4 #-wave:O theta:0 in-class:l
t: i:l j:2 x:14 y:13#-wave:0 theta:0 in-class:l
t9 i:O j:2 x:14 y:10 #-wave:l theta:0 in-class:l

and from the horizontal point set are:

t:4 :l j:2 x:13 y:9 #-wave:O theta:90 in-class:O
t:4 i:O j:l x:4 y:9 #-wave:O theta:90 in-class:O
t:9 i:0 j:2 x:9 y:9 -wave:l dieta:90 in-class:0
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How the current genetic algorithm processes these message forms in order to distinguish the pattern classes
will be described in the next secuon. The intent of initially resticting the lea.,ing algorithm to these message
forms is to include an initial set of different basic types of spatial measures. For example, the time field, r.
provides basic temporal information as does the order in which the messages arrive. In addition. when there
are more points in the input images #-waves will reflect some temporal information since midpoints of edges
where the *-waves is large tend to be detected in latter stages of Pebble-Pond (unless there is something'special" about the point distibution). The four fields that encode wave identities (i and j) and rmdpoirnt
coordinates (x and y) reflect more the absolute position of the point sources. Finally, the #-wave and theta
fields are intended to reflect ror the relative spatial positions of the images. where theta :s rotational
dependent and *-waves is rotational independent. The measures both enjoy some degree of inclependence and
dependence and our idea is to use the genetic algorithm to explore different pattern classes with respect to
understanding these measures. These measures seemed like a reasonable starting point from which to begin
the exploration of genetic algorithms and classifier systems.

Before turning to the genetic algorithm that uses these messages as input, we conclude this section by
describing some other measures provided by Pebble-Pond that may be significant. Besides functioning as
additional dimensions to be added to the search space, these measures might function as "tnggenng
conditions" fIl within a more general classifier system. For example, consider how Pebble-Pond can be used
to compute the morphological co-variance dismbution of point pairs [51. The distibution measures the
probability of encountering pamr of points separated by all possible shift vectors in the image, i.e.. the value
of the probability density function at polar coordinates r and 0 indicates the probability of encountering point
pairs that are separated by a vector (r, e). The distribution is useful in general texture analysis and in
applications involving the properties of materials [9: 14'. Assume that. at each iteration of Pebble_Pond. the
number of detected Gabriel edge midpoints is saved. The histogram of the number of waves meeting at each
time step is an estimate of in orientation independent measure of pairwise co-variance. i.e.. just with respect
to r. This is obvious when we consider that all wave fronts from points the same distance apart will meet si-
multaneously. In addition, the full co-variance statistic - with orientation, e. included - can be obtained via
further processing of the cellular state space [6). In terms of triggering conditions, anytime a large (above'threshold") number of meeting events occur at a given time step, then that indicates potential interesting
events. Anytime that there is some regularity in the time course of large numbers of meeting erents, then
there is evidence of textural information, e.g., consider a regular lattice (or texture) of points in which case
there will be large numbers of meeting waves occurring over multiple time intervals based on the interval
between neighboring lattice points. We are trying to suggest that there is the opportunity within the format of
PebblePond to define productions that are defined a priori and look for patterns of messages over time that
reflect spatial structure.

A final example of another spatial structure provided by Pebble-Pond which should be useful in the
development of a more robust classifier system is illustrated in Figure 2.

Figure 2: Detected wave crossings cluster at centers of "near" co-circularity



Basically, by defining appropriate morphological filtrs it is possible to detect all crossings of wave fronts at a
given time step 161. Wave crouing events are significant, since any wave crossing represents a potential co-
circularity of two point sources (see Figure 3). If at each time step. Pebble-Pond measures any clusterings of
detected wave crossing. then in effect it is measuring how close point configuratons can be approximated by
a circle (whose radius is a function of the current time step). information on near co-circulanties - whert they
occur, when and if they repeat - is also fundamental spatial information that could be "looked- for" as potenoal
mggermnn conditions. Relating such co-circular events across time (or equivalently, across different scale cir-
cles) may prove useful in the segmentmon of important spot groupings. In addition to co-circularines. it is
possible within PebbiePond to detect nearly co-linear point configurations and perhaps larger classes of
(convex or non-convex) configurations. Within the context of learning algorithms one would expect the less
specific measurements involving co-circularity and co-Lineanty to play a more fundamental role.

I%

Figure 3: all crossing wave events represent potential pairwise co-circulanties

The diversity of spatial suicturies produced by Pebble-Pond is a result of the measures and filters that can be
applied to the evolving wave front configurations. Various filters can be chosen to be applied to the cellular
automata state space at various points in the algorithm. resuiting in different spatal sn'ucnires or
measurements. With respect to broad issues in learning algorithms, these measures may be chosen as initial
input channels into a learning algorithm; it may also be possible to define learning algorithms which
effectively search the "space" provided by PebblePond to define new prmitive or derived measures. Finally,
specific patterns of measuements (e.g.. indicating near co-circulanties or texture information) might be
provided a priori to a learning system as a way of implementing "tiggenng" conditions. We now leave these
broad considerations and turn to our initial experiments using the message forms defined above.
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Genetic algorithm for processing PebblePond input

Given n poits in a awinfg lfiae. there will be k2) messages produced w~here each message has the

following form (and nume of bits as indicated in parentheses):

t I j x y #-wave theta class
(7) (4) (4) (7) (7) (4) A) (1)

where all fields have the meaning described in the previous sction and the class bit undicates which of ohoo
classes of images produced the message. Our broad goal is to build a classifier system that will scarch for
those amsage forms that characterin the amig sets. Obviously, since the number of messages grow-, at

00n2 ) the system should root requie 0(n2 ) classifiers, one for each possible message. Further, the evenra~l
goal is to build up a hierarchy of classifiers making predictlons and "hi gher- level" hypotheses over ime. A~t
the saue time, there is a basic "locality" effect in the sense that messages which arrie frotti different imauges
at about the samse tim or within approximately the same order, should be primary candidates f-'r
discriminating the awning sets. Thus. ive envisioned the possibiiy of starting off with some large number of
classifiers that would organase themselve's into specilist "species' in the sense that each group would pay
attention to spatial information at some specific time sc While suggestive, this idea is way beyond %hnat
one would consider an inal step in the research - one must crawl before one walks. Thus, we decided to

start our investigations by making the simplifying assumption that all (n) message 'ram a taining image,

would go into (12) jndIoUdL populations of classifier attempting to categonm them, where the i-th

population of clasifiers is exposed to the i-th message produced by Pe bble -ond on sulb traiing image. Lf
there are 6 aning images (3 in the class and 3 not in te class) then population i would receive 6 mess-ages
from which to base its adaptation. As a simple example consider the following 2 classes consisting each orf
three images (and their point sets):

Images and messages from clas I

0 4 g 14 19 0 4 9 14 19 0 g 14 9g

o0 0 0__ _ __ _

4 -4

9, 9

clasl. 4- (5.5) (0.5) (6.4) ) clossl_ -(6.8) (12.6) (9.7) ) class1_3 1 4,S) (6.6) (5.5)
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messages from each image in class I in order of airval

ca,.'Ii I dal? ciaaal$13
I i i x 'i I-.. IA t i i x X 0-w theta Iri! t I i X X *--bth-,lass/

0 0 1 5 4 0 45 1 0 0 1 8 7 0 45 00 1 4 5 0 45 1
1 0 2 7 4 0 108 1 1 0 2 10 7 0 108 ' 1 0 2 6 5 0 108 1
2 1 2 7 5 1 90 1 2 i 21 0 8 1 90 2 1 2 6 6 1 90 1

[mnas and nwmwags nm daw 0

. 4 g 14 'q * . 4 ig Q 4 g 14

_______________4__ 14 4---

clASSO -. j (S.5) (9.5) (8.4) C42802 - (8.6) (2,6) (9.9) c'&980_3 * 4(4,6) (8.6) (5.7))

mess ges from each image in class 0 in order of arrival

cIAssOl cissrOZ2 clIss0o3
I x v -w themC lM i i s x v #-w thetaclass t i I x v - Ihetaclan

0 0 2 5 5 0 135 0 0 0 2 8 8 0 135 0 0 0 2 4 6 0 135 0
1 1 2 7 5 0 72 0 1 1 2 10 8 0 72 0 1 1 2 6 6 0 72 0
2 0 1 7 5 1 90 0 2 0 1 10 8 1 90 1 2 0 1 6 6 1 90 0

Note that in this simple example, it happens that the nine the messages are generated corresponds to their
order of generation. (In fture systems, which will integrate information across different orders, rules
focusing on a comrpariso of order and time of message generation could generate iseful information.) To
continue with the example, three sets of messages are sent to respective populations of classifiers (under
separst genetic algorithms), where each set consists of all messages produced at that order in the output of
PebblePond. For example, the messages that are underLined are all input to the classifiers that are
responsible for distingishg the two image classes, where the distncton is based solely upon the frst
messages output by Pebble-Pond on each image. The messages (both in decimal and binary format) input to
the classifier population for first order messages ame:
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Order I momne sent to dasafler systergeftilgc algorithm

t i i x v 0-w them clan ia s i X v #-w thetm clas
0 0 2 5 5 0- 135 - 0 classO 1 00000001000010010100001011000010110000110000111o
0 0 2 8 8 0 135 0 claaso_2 00000001000010010100010001000100010000100000 11 10
0 0 2 4 6 0 135 0 classo3 00000001000010010100000010000110100001100001110
0 0 1 5 4 0 45 1 cl4861 0000000100001000110000101000010010000JOG101 1011
00 1 8 7 0 45 1 classi 2 00000001000010001!0001000100001111000010010110111

0 0 1 4 5 0 45 1 clas1l3 0000000100001000110000100100001011000010010110111

The above 6 strinp of 42 bits then form the messages to a randomly initialized classifier system defined over

the alphabet defined by 10. 1, #)42. To start our experiments, we used a fitness function with two
componeits: The first component is a step function it which the classifier is given 42 points (the length of
the bit string) for every correct classification of a given message aM is penalized 42 points for each incorrect
classificaton. A correct classification occurs when there is a match between the clasfier and the message
and the last bit (the bit which determines the class) of the classifier and message match. In the above case. if
a classifier matcbed all 3 out of the 3 input stnings in the class it is attemptLng to predict and did not falsely
predict class inclusion for strings in other classes it would receive a maximum of 3 * 42 points towards its
fitness. The second component makes the funcion more continuous by adding a bias towards marhing
individual bits in the message stings. To accomplish this we used the average number of bis for which the
classifier marbes a message. For example. if the classifier matched 15 bits of one message and 21 bits on
another message., the result would be 18. The fial fitness function is the addition of these two components.
The genetic algorithm code was based upon some modifications to the CFS-C system U251 and we generally
used most of the default parameters.

After running the genetic algorithm until it stabilized at maximum fitness classifiers - based on the system re-
ceiving the order I messages pven above - the following classifier (placed beneath the input message strings)
was one of those found with maximum fimess (of 166 - 3"42+40):

Order I mmiagm sent to claifler system/genetic algorithm

t i i x v #-w theta class
0000000100001001010000101100001011000011000o o 11O0
000000010000100101000100010001000100001100001 1 10
0000000o00001001000001001000011000001100001 1 10
00000001000010001 10000101 0 00001 00 100000010I oil
00000001000010001I000 10 00 000011oo00 00 10 110l
000 0000100001000 10 10000 000 0110 000 10010110 II

JZ"2%IOOJ: 2f:.:::1##(00000 4O 11#111

By the way in which the training set is contrved -namely, that the difference between the classes resides in
the angles formed by two of the edges of the mangles (with respect to a vertical axis) - the expectation is that
signufam bits will be found in the theta pan of the classifier. For the optimal classifier above, the 4-th bit
from the right (") tus out to be a significant bit. Note that there is no pressure in the fitness function
towards Ws. in cases where a specific I or 0 either doesn't distinguish between the classes or does not interfere
with the correct classification by the classifier. Other optimal classifiers of the population focused on other
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significant bits of theta. e.g., the third bit from the left end point of them In addition. since the genetic
algorithm is opporias , soac of the optimal classifiers honed in on other (non-theta) differences in the
input, e.g.. bits in the values of j. This is to be expected in a situation where such a small sample of
messages are guiding the leaming.

Our next experiments ivolved more aining examples so that the probability of random significant
differences decreased. In audiman we sought to create mning set where a single critical disinction is
insufficient to distinguish the classes with the intention of having the genetic algorithm support two sub-
optimal classifier,. It was relatively easy to centrol for random differences but. while in early generations the
genetic algorithm brought out two suboptiml classifiers, any differences in fimess Itween the two
eventually resulted in dominance by the better classifier. This was a result of the way in which parents are
chosen and the method for determining which classifiers get replaced. Basically, pagents are chosen
according to the normalized probability based on each classifiers fimess. Replaceable classifiers are chosen
with the probability of l/fimess. Unfortunately if left like this, it has the effect of quickly becoming a
homogeneous population. While this is not harmful when the system needs to find one significant
differentiatng bit, it will cause serious problems if a class is defined by two independent criteria. This means
that if being in a class signifies having A OR B, then there ae two independent seazrh spaces that the genetic
algorithm needs to develop. One way to solve this is to cream a pool of replacement clasaiflers based on

/fimess and then choose which classifier to replace by which one is most like the replacing classifier. This
has the effect of dividing up the population into different search spaces thereby allowing speciation. (Note to
the reviewer in a final paper we would expect Tn discusa these issues moe systematically with mor
examples and more on the integration across the current partitions via orderings.)

Conclusion

PebblePond can be viewed as a tmnsformaton that maps spatial structure, represented u points in a cellular
array, into temporal structure. Information is produced at each iteration, which is based on selected measures
of the state space of wave configurations, where early iterations represent mor spatially proximate structure
and laiter iterations represent more spatially dispersed structure. For the initial design of the learning system
discussed in this paper we focused on the information arriving from udpoints of the edges of the complete
graph ordered in time according to edge length. As each contgunton of points is presented to the learning
systeL,, Pebble_Pona will produce over time a set of "messages" that result from the various measures and
filters defined on evolving wave configurations, The initial experiments discussed in this paper have treated
message groups over time independently, but for simple discriminations the classifier system undergoing
adaptation via a genetc algorithm has been able to find appropriate solutions. Work will continue on
increasing the difcult of the training sets, especially in terms of examples involving more complex
correlations between measures. Eventually, we see a system developing that will use the bucket brigade
algorithm to search for correlations of PebblcPond measures over time. In addition, the a priori spatial
structure provided by Pebble-Pond. e.g., GG(k). VT(k), near co-cuculanties. can serve to define an initial set
of measures upon which to define a classifier hierarchy. The genetic recombinaton procedures automatically
search for relevant combinanons of a pnon measures and the mechanisms associated with triggering
conditions provide the capability of adding new measures. Thus, we see both a rich a priori structure upon
which to base a learnmSg algonthm and a rich space of measures from which to discover new relevant
structures.
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