
AD-A234 885

RADC-TR-90-404, Vol VI (of 18)
Final Technical Report
December 1990

BUILDING AN INTELLIGENT
ASSISTANT: THE ACQUISITION,
INTEGRATION, AND MAINTENANCE OF
COMPLEX DISTRIBUTED TASKS

Northeast Artificial Intelligence Consortium (NAIC)

Victor R. Lesser and W. Bruce Croft

APPROVED FOR PUBLIC RELEASE" DISTRIBUTION UNLIMITED

This effort was funded partially by the Laboratory Director's fund.

~A

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force 9a, NY 13441-5700

, , , ''

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National Technical Information Services (NTIS). At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-404, Volume vi (of 18) has been reviewed and is approved

for publication.

APPROVED: /A!'

DOUGLAS A. ITHITE
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.

Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

RONALD RAPOSO
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

Form AprovedREPORT DOCUMENTATION PAGE O0MB No. 0704-.0188

go=g Wu" 11m to "co r. w wv m wo a V~w uuma d to =on SwV amwrtW jsn "w bJnb1 esn r "W =wmo d "u
cc6,ca I l 0 f lw & @ gj.Wg fcr ,.m "ubj"% w , , HMaM~M SVuW 0 tO 9far r pffs' W 1 A 215 dfwlm
00f HiwW Si.ft 04AWO VA ZM4 W'd to ift Of d Muugrmt N udgeL Pq waft e.,c P M4 (me . WWVV= DC M

1. AGENCY USE ONLY Ume WO 2. REPORT DATE 36 REPORT TYPE AND DATES COVERED
December 1990 Final Sep 84 - Dec 89

4. TITLE ANO SUBTRME 5. FUNDING NUMBERS
BUILDING AN INTELLIGENT ASSISTANT: THE ACQUISITION, C - F30602-85-C-0008
INTEGRATION, AND MAINTENANCE OF COMPLEX DISTRIBUTED TASKS PE - 62702F

AUTH~q(S)PR - 5581
A~l-,I (TA - 2 7

Victor R. Lesser and W. Bruce Croft WU - 13

(See reverse)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) & PERFORMING ORGANIZATION

Northeast Artificial Intelligence Consortium (NAIC) REPORT NUMBER
Science & Technology Center, Rm 2-296 N/A
I11 College Place, Syracuse University
Syracuse NY 13244-4100

a *PNSOfING1MONITORtNG AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORINGMONITORING
Rome Air Development Center (COES) AGENCY REPORT NUMBER
Griffiss AFB NY 13441-5700 RADC-TR-90-404, Vol VI

(of 13)

11. SUPPLEMENTARY NOTE3 (See reverse)

RADC Project Engineer: Douglas A. White/COES/(315) 330-3564

This effort was funded partially by the Laboratory Director's fund.
12. DISTRIBUTIONAVALABIU1Y STATEMENT 1 . DISTRIBUTION CODE

Approved for public release; distribution unlimited.

1 3 ABSTRACT(Mrui -"
The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force

Systems Command, Rome Air Development Center, and the Office of Scientific Research.
Its purpose was to conduct pertinent research in artificial intelliiance and tL
perform activities ancillary to this research. This report describes progress during

the existence of the NAIC on the technical research tasks undertaken at the member
universities. The topics covered in general are: versatile expert system for
equipment maintenance, distributed Al for communications system control, automatic
photointerpretation, time-oriented problem solving, speech understanding systems,
knowledge base maintenance, hardware architectures for very large systems, knowledge-
based reasoning and planning, and a knowledge acquisition, assistance, and explanation

system.

The specific topic for this volume is the development of intelligent interfaces to

support cooperating computer users in their interactions with a computer.

14. SUBJECT TERMi I NUMER OF PAGES
Artificial Intelligence, Planning, Intelligent Computer-Aided 128

Instruction, Intelligent Interfaces, Plan Recognition i mcE cooE

17. SECURITY CLASSFICATION 18 &SECURITY CLASSIFICATION 1 I SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACTOF REPORT OF TM PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 504 -amlO,, J-w : r , F M SJ t , 2-M

Block 5 (Cont'd) Funding Numbers

PE - 62702F PE - 61102F PE - 61102F PE - 33126F PE - 61101F
PR - 5581 PR - 2304 PR - 2304 PR - 2155 PR - LDFP
TA - 27 TA - J5 TA - J5 TA - 02 TA - 27
WU - 23 WU - 01 WU - 15 WU - 10 WU - O1

Block 11 (Cont'd)

This effort was performed as a subcontract by the University of Massachusetts
at Amherst to Syracuse University, Office of Sponsored Programs.

Volume 6

1989 ANNUAL REPORT
To Rome Air Development Center

Building an Intelligent Assistant:
The Acquisition, Integration, and Maintenance

of Complez Distributed Tasks

Victor R. Lesser
W. Bruce Croft

Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts

Acoe~s Ion For

ev

av, :}:d ~l codesDl th i/! .,Iv ni e

lL-d/o

S-jaII I I I II

11 k13 1

Contents

6.1 Executive Sumnmary 3

6.2 Ancillary Activities 6
6.2.1 Degrees Conferred 6
6.2.2 New AI Faculty 6
6.2.3 New Al Courses 6
6.2.4 Journals, Book Chapters, Other Papers 7
6.2.5 Progress or Products Resulting from NAIC Research 8
6.2.6 Improvements to Research Environment 9

6.3 Overview of Research 10
6.3.1 Planning and Plan Recognition 10

6.3.1.1 Deeper Domain Modeling 10
6.3.1.2 Implementing an Incremental Hierarchical Plan Recognition System 26
6.3.1.3 Planning for the Control of an Interpretation System 45
6.3.1.4 Planning with Worlds 56
6.3.1.5 Plan Execution Using Human Agents 63

6.3.2 Knowledge Acquisition 71
6.3.2.1 Knowledge Acquisition as Knowledge Assimilation 7!
6.3.2.2 Knowledge Acquisition For Planners 82

6.3.3 Cooperative Problem Solving 93
6.3.3.1 Planning and Execution of Tasks in Cooperative Work Environments 93

6.3.4 Tutoring Systems 105
6.3.5 Representation and Control 106

6.3.5.1 Tools for Representing Tutoring Primitives 108
6.3.5.2 Tools for Representing Discourse Knowledge 114

2

Section 6.1

Executive Summary

Our research over the five-year period has focused on two basic and interrelated research ques-
tions: 1) how to automate the acquisition, integration, and maintenance of a global understanding
of a complex process from multiple, distributed local perspectives, 2) how to use this "under-
standing" to support users in their cooperative interaction with the system and other users by
assisting in the execution of tasks and by explaining the reasons behind the actions and deci-
sions involved in reaching the current state of the system. We believe these are some of the
key research questions that need to be solved in order to effectively use a distributed network
of workstations to perform cooperative problem solving in a complex task-oriented environment.
The importance of this problem area and related research issues has been increasingly recognized
over the five years of this research project. We think that the results of our research will, and
to some degree already have had, a significant impact on the emerging subfields of intelligent
interfaces and computer-supported cooperative work.

During the five years of the project, we have studied these issues by looking at the task
domains of software development, office procedures, project management, and tutoring. We
have built a number of systems to demonstrate our research. Our early work in an intelligent
assistant focused on understanding user actions through hierarchical event-based descriptions.
An offshoot of this work was the approach of using event-based behavioral abstractions as a
tool for distributed debugging and performance evaluation. This approach is now receiving wide
attention. As a result of this early work, we realized that advances in the following basic research
areas would be necessary for satisfying the goals of our project. For each of these areas, we list
our research accomplishments:

9 Knowledge Representation - The goal is to provide a framework for representing realistic
models of complex open-ended domains. The results were:

- a knowledge representation framework that integrates activity models, agent descrip-
tions, object specifications and relationships;

- meta-plans as a specification technique for large and complex plan libraries and domain-
dependent exception handling routines;

- integration cf empirical knowledge which represents soft domain constraints into clas-
sic hierarchical plan formalisms through the addition of a truth maintenance system
(TMS);

3

- integration of planning and simulation techniques for validating plans in complex,
dynamic environments.

" Knowledge Acquisition - The goal is to develop techniques for user specification of plans
and dynamic acquisition at run time of new and revised plans. The results were:

- an approach for knowledge acquisition based on the assimilation of new and revised
plans with existing specifications;

- a cognitive model for how people recall their activities and an interface based on this
model that can be used to acquire plans, display plans and modify plans;

- a formal model of plan exceptions, and techniques for detecting, classifying and learn-
ing from them.

" Focusing in Plan Recognition - The goal is to develop techniques for quickly and efficiently
arriving at the best interpretation of the actions/data that have currently been observed.
The results were:

- a recognition architecture that exploits heuristics based on user rationality and fully
uses available constraints as soon as possible in the recognition process;

- a new approach to controlling plan recognition, called evidence-based plan recognition,
that uses a symbolic representation of current uncertainties in the interpretation and
control plans keyed to specific uncertainties to efficiently guide the recognition process.

" Multi-Agent, Interactive Planning - The goal is to provide a framework to specify partial
plans and for the user(s) to interact with planner(s) to complete these plans based on the
dynamics of the specific situation. The results were:

- an architecture based on a formal model of interactive planning has been implemented;

- models for negotiation among user and system, and among systems, have been devel-
oped.

* Knowledge Display - The goal is to provide a display framework and tools for the user to
effectively interact with an intelligent assistant:

- a suite of programming tools that enables authors to browse and explain knowledge
in an expert system for tutoring. These tools facilitate tracing and summarizing the
reasoning within an expert system and allow an author to interactively modify system
reasoning and response in an intelligent discourse system;

- a graphics object-oriented environment for building simulations of complex environ-
ments for decision support.

These ideas have been realized in a number of systems. The GRAPPLE system monitors a
user's activities, detects errors, and reasons about the user's plans. It uses domain knowledge to
make plausible assumptioas about missing values in an open world application. This is used to
provide improved error detection, prediction, and disambiguation.

POLYMER is a planning system which constructs partial plans and executes them interac-
tively. It uses constraints from agent actions to extend its partial plans. Exception handling

4

is achieved by a subsystem called SPANDEX, that classifies exceptions and constructs an ex-
planation of how each action may fit into the current plan. Plan acquisition is supported by a
subsystem called DACRON, that has a graphical interface based on how people recall their tasks,
and a knowledge assimilation is supported by a subsystem called KnAc.

In short, we feel that significant progress, both from a conceptual and practical perspective,
has been made in developing an intelligent assistant to support knowledge-based, computer-
supported cooperative systems. Additionally, we think there has been important spin-off research
in planning and plan recognition that will also have significant impact.

We have also built a suite of software tools that enable a user to browse through a complex
knowledge base while the system tailors its explanation to the particular user. Other tools
facilitate tracing and summarizing expert system reasoning.

Both the GRAPPLE and POLYMER systems have been built during the past 5 years. Each
recognizes user plans and monitors user activities. It handles exceptions to given plans. GRAP-
PLE makes plausible assumptions about missing values in an open world application and POLY-
MER constructs partial plans and employs constraints based on user activities to extend these
partial plans.

Several systems are designed to improve the quality of an intelligent interface. We have
developed several knowledge acquisition systems, one for the acquisition of user plans and another
for the acquisition of discourse decisions. The latter systems enables a user to input new choices
about machine interventions and responsz: based on its internal user model and discourse history.
This system enables an author to expand the system's repertoire of response even as testing and
evaluation of the system proceeds.

5

Section 6.2

Ancillary Activities

6.2.1 Degrees Conferred

" Ph.D.s: 1

" MSs: 2

6.2.2 New AI Faculty

a 1. Professor Rod Grupen

6.2.3 New AI Courses

" 591D (Fall '89): Computer Vision

" 591L (Fall '88): Image Processing

" 689 (Spring '89): Machine Learning

" 691C (Spring '89): Topics in Optimization

* 791A (Fall '88): Connectionist-Approach Learning

" 791A (Fall '89): Mobile Robots

" 791W (Fall '88): Computer-Supported Cooperative Work

" 791W (Spring '89): Knowledge-Based Tutoring and Advisory Systems

* 791X (Fall '88): Sophisticated Control of Knowledge-Based Systems

6

6.2.4 Journals, Book Chapters, Other Papers

Broverman, C., "Plan Execution Using Human Agents," Department of Computer and Infor-
mation Science, University of Massachusetts at Amherst, Technical Report 89-83.

Carver, N. and Lesser, V.R. "Planning for the Control of an Interpretation System," Univer-
sity of Massachusetts/Amherst Computer and Information Science Department Technical
Report 89-39, April 1989.

Connell, M. Huff, K.E. and Lesser, V.R. "Implementing an Incremental Hierarchical Plan Recog-
nition System," Proceedings of the 2nd AAAI Workshop on Plan Recognition, IJCAI-89,
Detroit, 1989.

Huff, K.E. and Lesser, V.R. "A Plan-Based Intelligent Assistant that Supports the Software
Development Process," Third ACM Symposium on Software Development Environments,
Boston, Massachusetts, November 1988.

Kuwabara, K. and Lesser, V.R. "Extended Protocol for Multistage Negotiation," Proceedings
of the 9th Distributed Artificial Intelligence Workshop, 1989, pp. 129-161.

Lander, S. and Lesser, V.R. "A Framework for the Integration of Cooperative Knowledge-based
Systems," Proceedings of the 4th IEEE International Symposium on Intelligent Control,
Albany, NY, September 1989, pp. 472-477.

Lander, S. and Lesser, V.R. "A Framework for Cooperative Problem-solving Among Knowledge-
based Systems," IJCAI 1989 Workshop on Integrated Architectures for Manufacturing
Working Notes, Detroit, August 1989.

Lander, S., "A Framework for the Integration of Cooperative Knowledge-Based Systems," sub-
mitted to the Fourth IEEE Symposium on Intelligent Control. 7/'89

Lefkowitz, L.S. and Lesser, V.R. "Knowledge Acquisition as Knowledge Assimilation," Interna-
ttonl Journal of Man-Machine Studies, Volume 29, No. 2, 1989, pp. 215-226.

Mahling, D. and Croft, W.B. "Relating Human Knowledge of Tasks to the Requirements of
Plan Libraries," Internati.onal Journal of Man-Machine Studies, 31, 1989, pp. 61-97.

Mahling, D. and Croft, W.B. "Knowledge Acquisition for Planners," Knowledge Acquisition,
(to appear).

Croft, W.B. and Lefkowitz, L. "Knowledge-based Support for Cooperative Activities," Pro-
ceedings of HICCS-21, 1988, pp. 312-318. (Also in Readings on Distributed Al Morgan
Kaufnann, 1988.)

Lefkowitz, L. and Croft, W.B. "Planning and Execution of Tasks in Cooperative Work Environ-
ments," Proceedings of the Fifth IEEE Conference on Artificial Intelligence Applications,
Miami, Florida, 1989, pp. 255-262.

Mahling, D. and Croft, W.B. "A Visual Language for the Acquisition and Display of Plans,"
Proceedings of IEEE Workshop on Visual Programming Languages, 1989, pp. 50-56.

7

Woolf, B., "Representing, Acquiring and Reasoning about Tutoring Knowledge," Proceed ags
of the Second Planning Workshop for Intelligenit Tutoring Systems AFHRL, Brooks A r
Force, San Antonio, TX. (chapter)

Woolf. B., "Tutoring Enviroiunents for the Construction and Communication of Knowledge"
chapter in book entitled Design Principles for Bu;lding Software for Learning, 1989.

Woolf, B., "Computer Partners in ou; Future," co-authored by Ted Slovin, published in "The
Futurist: A Journal of Forecasts, Trends and Ideas about the Future."

6.2.5 Progress or Products Resulting from NAIC Research

TECHNOLOGY TRANSFER:

Beverly Woolf gave presentations at UMass for visitors from external research at Apple
Computer Company -ad the Electricity Commission of Victoria, Australia.

Beverly Woolf presented her work to External Research, Apple Computer Company in
Cupertino, CA July 18, 1989 and tc the Multimedia Lab, Apple Computer in San
Francisco July 19, 1989.

SEMINARS I/WORKSHOPS:

Scott Anderson and Penni Sibun attended the Meeting of the Association of Computa-
tional Linguistics in Seattle June 26-30, 1989.

Scott Anderson attended the 2nd Annual CUNY Conference on Human Sentence Process-
ing.

TECHNICAL PRESENTATIONS:

David Lewis delivered talks at Cornell, Carnegie-Mellon and Unisys to discuss the use of
Natural Language Processing for Information Retrieval with researchers.

David Lewis gave a talk on the CL model and representation quality in Information
Retrieval as part of the Office of Naval Research, URI, site visit, July, 1989.

Bev Woolf presented her work at an NSF Principal Investigators meeting in Pittsburgh
on November 3 and 4, 1988 and was an invited speaker at a workshop on Hypermedia,
sponsored by General Electric, Schenectady, New York, November 28, 1988.

Beverly Woolf described her work to a gathering of University professors and Apple em-
ployees at a meeting of Apple External Research, Cupertino, CA, January 23, 1989.

Beverly Woolf presented a seminar of her work for Andy Van Dam at Brown University
March 1, 1989 and was an invited panelist at the American Educational Researchers
Association in San Francisco, March 27, 1989.

Beverly Woolf delivered a talk entitled "Representing, Acquiring and Reasoning about
Tutoring Knowledge," at the Intelligent Tutoring Systems Research Planning Forum
at the Air Force Human Resources Laboratory, Brooks Air Field, San Antonio, Texas,
April 5-6, 1989.

8

Beverly Woolf gave invited presentations at the International Conference on Computer
Assisted Learning, University of Texas at Dallas, May 10 and at the University of
Maine at Orono May 23, 1989.

Beverly Woolf delivered a seminar at NASA training headquarters in Houston, Texas and
presented a paper at an AI Workshop for American Express Executives, in Minneapo-
lis, MN, May 12, 1989.

Beverly Woolf presented a demo and a talk describing her NLP/planning system at the
Rome Air Force Development Center, July 27, 1989.

6.2.6 Improvements to Research Environment

During this last year we have significantly upgraded our computational capabilities in two ways;
we've increased the capabilities of existing Lisp machines, and have added new machines (see list
below). As a result of these additions, we have over sixty Lisp machines in our environment.

12 TI Explorer-I to Explorer-Il upgrades
2 TI Explorer-I to Explorer-Il-plus upgrades
1 TI Explorer-II to Explorer-Il color upgrades
7 TI Micro-Explorers
2 TI networked micro-Explorer Systems
2 Sun 4/110FCE
1 MacIvory

9

Section 6.3

Overview of Research

6.3.1 Planning and Plan Recognition

6.3.1.1 Deeper Domain Modeling

We show that intelligent assistance for software development is an open world, where useful
information about the state of the world is missing. This proves to be a significant barrier
to achieving a nontrivial representation of the domain and leaves the intelligent assistant
without a basis for independently critiquing many actions of the user. We advance a solution
to acquiring additional state information by using domain knowledge to make plausible as-
sumptions about the missing values based on the observed state. This process is formalized
as non-monotonic reasoning. Using these plausible assumptions, the credibility of competing
alternatives can be evaluated independently of the user; actions that are consistent with cur-
rent assumptions will have the highest credibility. If it becomes necessary, actions that have
low credibility can still be pursued after reconciling the assumptions with the requirements of
the actions. The ability to make plausible assumptions allows additional domain knowledge
about the context for actions to be made explicit; thus the approach enables deeper modeling
of the domain.

6.3.1.1.1 Approach to Deeper Domain Modeling

Substantive support of processes requires involvement in both the complex decisions as well as
the mundane details. We will show that formally representing the knowledge involved in some of
these decisions can be a challenge. As examples in the software development application, consider
the criteria for choosing the baseline from which to develop a new system version, selecting tests
to run, or deciding which system version is releasable. If a process assistant lacks knowledge
to address these decisions, it cannot independently critique a choice made by the user, nor can
it suggest a restricted set of likely candidates from which the user can choose. In this case,

intelligent assistance is seriously restricted because the representation of the domain is Lirnited
to surface issues.

6.3.1.1.2 The Open Worlds Problem

Consider the goal of testing a new system version. To test a system means running all applicable

testcases, and only those cases (neither under- nor over-testing is desirable). The problem is that

10

Just Right

EProper
0xtra Cases

Cases ExcludedAllowed il

Too permissive Too rigid

Figure 1: Rigidity versus Permissiveness in Plan Recognition

applicability of testcases cannot be directly observed as a result of past actions nor computed
with certainty from observable data. Thus, when a testcase is run, there is no independent basis
for determining if the testcase is indeed applicable, or if this is the last of the applicable test
cases (which signals the end of testing). Knowledge about testing strategies (where a given strat-
egy implies that certain categories of testcases are applicable) underlies the choice of testcases,
but this deeper knowledge cannot be exploited since the operative testing strategy cannot be
determined-it too is not observable.

When information about the state of the world is incomplete, we say that a planning ap-
plication involves an open world. The software development application is an open world since
predicates indicating whether a testcase is applicable or whether a system version is releasable
are not directly observable, nor are they readily computable from the observable data. Open
worlds present significant problems. When it is impossible (or infeasible) to acquire the miss-
ing information, plan recognition is adversely affected. Competing interpretations of actions
cannot be disambiguated, some distinctions between legal and illegal actions/plans cannot be
made, predictions of future actions lack precision, and there is no basis to explain why observed
actions/plans were chosen over other alternatives.

These problems with planning in an open world are due to the difficulty of achieving accurate
descriptions of operators. Predicates whose truth or falsity cannot be determined cannot be used
in operator definitions to define the relevancy of an operator (preconditions), the decomposition
and completion criteria (subgoals), or restrictions on parameter bindings (constraints). When
such predicates are omitted entirely, the operator definitions are under-constrained and plan
recognition is too permissive; N "illegal" plans will be accepted, predictions will be too general,
and alternatives that are actually irrelevant cannot be discarded. Attempting to compensate
by substituting another expression for the missing predicate may yield a definition that is over-
constrained and plan recognition will be too rigid.

In intelligent assistance, as in other applications of plan recognition to open worlds, it is
important to find some balance between these two extremes of permissiveness and rigidity (as
illustrated in Figure 1). An approach is needed that will closely approximate the desired situation,
without being consistently too permissive or consistently too rigid. Further, the approximation
should be "elastic," in the sense that it can be adjusted when a deviation is identified. This is

11

I Just right Almost right

Figure 2: Finding a Balance between Rigidity and Permissiveness

shown in Figure 2.

6.3.1.1.3 Towards a Solution

One approach that captures the spirit of Figure 2 is to use the observable state information
to make plausible assumptions about the missing state information. In the testing example,
there is a correlation between the types of changes made during source editing (something that
can be measured) and the operative testing strategy, which in turn determines the categories of
tests that are applicable. For example, when changes are simple (affecting a few lines of code),
a weak test strategy would typically be appropriate-only base testcases would be applicable.
Otherwise, standard testing would typically be appropriate-base and normal testcases would be
applicable, This reasoning is inherently non-monotonic. Assumptions are made in the absence
of information to the contrary; later, additional information may be acquired that defeats the
earlier conclusion and its consequences.

When assumptions about test strategy and applicability are added to the observable state of
the world, it is possible to evaluate the credibility of alternatives. Interpretations of actions (or
predictions of future actions) that agree with the current assumptions have the highest credibility;
interpretations lose credibility with each assumption that is violated. If the operative testing
strategy is assumed to be standard testing, then an action to run one of the normal cases is
fully credible, because that case is assumed to be applicable. On the other hand, an action to
archive the system, which is predicated upon testing being completed, would have less than full
credibility as long as there are applicable (i.e., base or normal) cases still to be run.

Given two alternative interpretations that differ in credibility, the more credible alternative
is more likely to be the correct interpretation. Given two choices for completing an unsatisfied
subgoal, the more credible alternative is the better prediction of the future. An action whose
"best" interpretation is below a certain credibility threshold is a possible user error. Thus, the
programmer can be advised of a possible oversight when archiving prior to running all applicable
testcases. Finally, it is possible to give the underlying reason for the credibility of running or not
running a particular testcase, by citing the operative testing strategy and its implications.

Credibility can be combined with other discriminators to determine which interpretations

12

to pursue. Sometimes it will be necessary or desirable to pursue an interpretation that is not
fully credible; for example, the interpretation may still be the "best" considering all available
discrimination information. In order to proceed with such an interpretation, it is necessary to
reconcile the assumptions about the state of the world with the requirements of the desired
interpretation. For example, suppose the operative testing strategy is assumed to be standard
testing. To pursue an interpretation in which archiving starts when only base cases have been
run, it is necessary to revise the assumption that testing is not done. While this can trivially
be accomplished by simply recording that testing is done, it is far more interesting to provide
some rationale for testing being done. And, indeed, the preferred reconciliation is to change the
operative testing strategy from standard to weak testing, after which it follows that testing is
now dont. (The full implementation of all the examples informally described here will be given
later).

In the remainder of this section, we show how a plan recognition system, based on the classical
hierarchical planning paradigm, can be extended to incorporate a new type of domain knowledge
about the context for actions; unlike the knowledge already reflected in operator definitions,
this knowledge is approximate rather than absolute. This approach allows plausible inference
and plausible explanation within a deeper model of domain activities than is otherwise possible.
In section 6.3.1.1.4, we show how to capture this deeper knowledge, and how to exploit it for
reasoning about world state. This is accomplished through monotonic and non-monotonic rules
in a truth maintenance system. In section 6.3.1.1.8, we explore the impact on a plan recognition
architecture. Credibility represents a new perspective from which competing interpretations can
be disambiguated. Reconciliation is the means by which assumptions are revised when the plan
recognizer discovers that its assumptions are wrong.

6.3.1.1.4 Reasoning About the State of the World

Filling in the missing details about the current state of the world is a process of extrapolation from
what is known about the state. Extrapolation involves adding certain specific conclusions about
the state when a particular pattern of other propositions holds in the state. Thus, extrapolation
lends itself naturally to a rule-based process: when < pattern >, add < conclusion >. In
this approach, the additional knowledge that enables deeper domain modeling is captured in
these rules, not directly in the operators (which are the standard vehicles for expressing domain
knowledge). Thus, actions determine a core state; the rules are then applied to the core state
to arrive at an extended state. If the additional knowledge were to be expressed directly in the
operators, individual rules would have to be replicated in multiple operators. (A pattern can be
an arbitrarily complex logical expression involving predicates whose truth is determined by many
different operators; each such operator would have to use the pattern in a conditional effect).

It is a requirement that the rule system support non-monotonic reasoning, in order to capture
the conjectural nature of some of the conclusions. Non-monotonic reasoning allows a connection
between pattern p and conclusion c that is a special kind of logical implication; this connection
between p and c is such that p typically implies c (that is, if there is no information to the
contrary, then c holds if p holds). Different systems for non-monotonic reasoning, including
circumscription, modal logics, and default logic, take different approaches to formalizing the
concept of "no information to the contrary." For an overview of non-monotonic reasoning, see
[36].

13

uldKE-I

G: built(S) GGoal, PuPrecondition,

S: source ready(S)ubol.Eteta

has -oxcutable(S) Arws are shown between two
tested(S) qratore If one can be used to

E: ADD Wuit()_______________

make-source ZZtest archive 1

G: source ready(s) G: tested(S) G: archived(S)
E: ~~P NE syte:S [*. stneedqs(Sd(P : buit(B aselins) : -: te t d)5newmoduieM) ITERATEO(l) ... 9n!cse read........ orY.*acWlWd

ADD source ready(S) j cases juh(S) E: ADD archived(S)

E: ADO tested(S)[make newmoduie_ make-newcasoa run-cases
0. newmodule(M) G: noweaessready(S) 0: cases run(S)
P: - P: - P: has exescutable(S)
S: exists(tezt,T) 5: newcase(TC,S) ITERATEO(1) S: case tried(.TC,S).. ITERATED-

ENEW moduie(U) E: ADD nowcases ready(S) U~letdn(S)
ADD seurcsjs(M,T) E:ADD cases run(S)

0: newcase(TC,S) run one_case

S: 'e~lit'sie" i-,t) . "c.. tred(TC,S)
G: exIsts(text.T) S E Ptc(C : *pplic; beTC

P:-ADD newcas*(TC,S) E: ADD case trIed(TC.S)

Figure 3: Operators for Building a System Version

14

A truth maintenance system (TMS) [28] is one approach to implementing non-monotonic
reasoning, based on multi-valued logic. (Although a similar concept, the assumption-based truth
maintenance system, ATMS [deKleer, 1986], has been introduced, we are interested here in the
original notion of a TMS as described by Doyle.) A TMS maintains a network of nodes, each
of which can be labeled IN or OUT. Separate nodes are used for a proposition and its negation.
(A proposition is a predicate with bound arguments; if the predicate is a core state predicate,
then the proposition is a core state proposition). If the node for a proposition is IN and the
node for its negation is OUT, the proposition is true; if the node is OUT and the negation is IN,
the proposition is false. If boch are OUT, the truth value is unknown; if both are IN, there is a
contradiction.

Justifications capture the relationships between the nodes, correlating a set of support nodes
and a set of exception nodes with a conclusion node. A justification of the form A EXCEPT
B-C means that if A is I and B is OUT then C is IN. The exception node B represents the non-
monotonic content of the justification; a monotonic justification has an empty list of exceptions.
In order for a node to be IN, it must have at least one valid justification; a justification is valid
if all iLs support nodes are IN and all its exception nodes are OUT. A premise justification has
empty support and exception lists, so it is always valid.

6.3.1.1.5 Domain Knowledge in TMS Justifications

As an example, take the selection of operators in Figure 3 for building a system version. The ef-
fects of these operators determine the core state of observable facts. The use of the extended state
predicates that cannot be observed is highlighted. For example, the precondition in r-unone..case
requires that the testcase be applicable; the iteration completion criteria in run-cases is that
tests-done be true; and, there is a subgoal in build that will allow archiving to be skipped when
waiving it is appropriate. The objective is to use TMS justifications to derive truth values for
these extended state predicates.

Example domain knowledge about applicable and tests-done is given in justification form in
Figure 4. In order to express this knowledge, several additional predicates have been introduced.
Changes made during editing are used to conjecture whether the test strategy should be standard
or not (rules J1-J2). The non-monotonic rule J1 can be read "In the absence of information to
the contrary, if substantive changes are made during editing, then a standard testing strategy is
appropriate." Testing strategy determines whether normal testcases are relevant (rules J4-J5);
base cases are always relevant (rule J3). Rules J6-47 establish that cases that are relevant are
applicable unless they are specifically excluded (as they would be if infected by some catastrophic
bug that is not yet fixed). Rule J8 states that typically cases are not specifically excluded.
Tests.done does not hold until all applicable testcases have been tried (J9-J10). Note that both
monotonic and non-monotonic justifications have been used; the meaning of the testing strategies
is defined monotonically, for example.

These justifications are predicated upon being able to determine the extent of changes made to
the source code for a system during editing. The easiest way to do this is to measure the difference
between the source of the baseline for the system and the source of the system, which can be done
at the time of linking (when it is known for certain that all source editing is completed). That
means that the link action should actually be a command language script that both calls the
link editor and performs the difference operation. In this way, substantive-changes is a predicate

15

Operative Test Strategy
Ji: substantive changes(Sys) EXCEPT not standardtest(Sys) -> standardtest(Sys)
J2: EXCEPT standard test(Sys) -> not standard test(Sys) %/*weak testing = not standardtest

Relevancy of Cases, By Category
J3: type(Case,base) -> relevant(Case,Sys)
J4: type(Case,normal) and not standardjtest(Sys) -> not relevant(Case.Sys)
J5: type(Casenormal) and standardjtest(Sys) -> relevant(Case,Sys)

Applicability of Cases
J6: relevant(Case,Sys) and not spec_excluded(Case.Sys) -> applicable(CaseSys)
J7: EXCEPT applicable(Case,Sys) --> not applicable(Case,Sys)

J8: EXCEPT specexduded(Case,Sys) -> not specexcluded(Case,Sys)

Completion of Testing
J9: applicable(CaseSys) and not caseitied(CaseSys) -> not testsdone(Sys)
J1O: EXCEPT not testsdone(Sys) -> tests.done(Sys)

Figure 4: Example Justifications

that can be set by the effects of the link operator.

TMS justifications bear a strong resemblance to rules in default logic [691, an alternative,
and more general, approach to non-monotonic reasoning. In default logic, a rule is written

A:MB/C to mean that if A is provable and B is consistent (i.e., B is not provable), then C can
be concluded. A TMS translation would be A EXCEPT B-C. This simple translation hides
fundamental differences, and their practical implications. The TMS deals with validity (truth in

a model), while default logic deals with provability (validity in all models); for the approach to
open worlds described here, the TMS facilities are adequate. (The formal relationship between

the two systems has yet to be studied in detail [32]). As an example of practical implications
of these differences, consider a rule set in default logic and the equivalent rule set expressed in
TMS form Since an extension is the default logic concept corresponding to a TMS labeling, we

might expect the extension and labeling to give the same answers. However, they do not always

do so: for example, there are rule sets having multiple extensions and exactly one labeling [603.

6.3.1.1.6 Representing World State in the TMS

Justifications provide a way to derive the extended state from the core state. When the justifi-
cations are instantiated, and the truth values for core state propositions entered (with premise

justifications), the truth maintenance process will label the nodes, giving a read-out on the truth
values for the extended state propositions. When the core state changes as a result of an ac-

tion, the premises will change, nodes will be relabeled, and the extended state propositions may

change; in this way, the extended state propositions may vary over time. The TMS will also

determine whether the truth value of a given proposition is certain or by-assumption. A propo-
sition is certain unless one or more non-monotonic rules were used to determine its truth value.

(The truth values of propositions that are certain cannot be changed in order to reconcile an

16

TC3nJma :: 1one or more nodes

have been omitted

S EXCEPT E --- C

Figure 5. Instantiated Justifications

interpretation).

As an example, consider a situation where the building of" system version SV has progressed
to the point where testing is in progress; suppose also that the source editing changes were
substantive. Let there be three testcases, where TCI is a base case, and TC2 and TC3 are
normal cases; suppose TCl has been run. The state of instantiated justifications is given in
Figure 5, showing that standard testing is assumed to be opera tive (conclusion of Ji), that TC2
and TC3 are assumed to be applicable in testing SV (conclusions of two instances of J6), and that
testing is not done as there are (two) applicable cses that have not yet been run (conclusions of
two instances of J).

It should be noted that this use of a TMS is somewhat different from traditional uses. In
a tra ditional TMS a pplica tion, the problem solver using the TMS is constantly discovering new
justifications; this discovery process is guided by the current state of the TMS. At any given
time, the current justifications represent oly'partial knowledge concerning the interrelationships

17

"'7" not mmmmm lllal

Assumptions
about Predicates

Needed in Operators

Empirical Knowledge

Figure 6: Knowledge in Justifications

among the facts about the world. And, the TMS is used to model successive approximations of
the same state of the world, not successive states. Our use of the TMS differs in two ways. First,
all justifications are predefined; there is no dynamic discovery of new interrelationships expressed

in new justifications. Second, the TMS is used to model successive states of the world (shown
clearly by the fact that premises can be retracted).

6.3.1.1.7 Implications for Deeper Domain Modeling

We have shown how justifications and the labeling mechanism of a TMS can be used to extrap-

olate from observable information to fill in missing facts about the state of the world that are
needed to define domain operators. We need to characterize the nature of the domain knowledge
that is captured in the justifications in order to understand why this approach allows deeper
domain modeling. We do so by first discussing some of the characteristics of the example we
have developed, and then generalizing.

The justifications shown in Figure 4 are all directed at supplying truth values for the predi-
cates applicable and testing-done; these predicates are needed in the operators run.one-case and
run-cases respectively (as shown in Figure 3). It turns out that neither of these predicates can
be estimated directly from observable predicates. Rather, there is a whole chain of reasoning
that leads to approximating the predicate applicable, and that predicate is then available to be
used in the approximation of testing.done. This reasoning, embodied in justifications J3-47 and

J9-10, captures background knowledge about the programming process domain. In this case, the
background knowledge involves such notions as testing strategies, and how the operative testing
strategy affects test case selection.

In order to be able to apply this background knowledge, other predicates have to be ap-
proxinated; without a way to evaluate standardtest or spec..ezcluded, the background knowledge
cannot be exploited. The justifications that do this (JI-2 and J8) capture empirical relation-
ships. Justification J1, for example, cites a correlation between substantive editing changes and
the standard testing strategy, without explaining the correlation in any way.

From this description, we can see that the knowledge captured in the justifications is of two
sorts: background knowledge capturing fundamental principles about the domain, and empirical

18

knowledge about observed relationships. As shown in Figure 6, the background knowledge by
itself is incomplete, and the empirical knowledge is needed to fill the gaps. It is the background
knowledge, not the empirical knowledge, that actually contributes to deeper domain modeling; if
only empirical knowledge were involved, there would be no deeper understanding of the domain.
The empirical knowledge is the source of the uncertainty in the reasoning. (In our example,
the two justifications J7 and J10 are in non-monotonic form for convenience; the uncertainty in
applicable and tests-done actually arises from justifications 1, 2 and 8).

Although the primary objective of capturing additional domain knowledge was to define
selected predicates that were needed in operator definitions, the approach we have taken has
actually resulted in the definition of a much larger set of new domain predicates, as well as the
definition of relationships (theoretical and empirical) among these predicates. Many of the new
predicates do not appear directly in operator definitions, but their truth status affects that of
predicates in the operators. In this way, the justifications capture knowledge about the context
for actions and allow plausible inference within this previously-inaccessible context.

6.3.1.1.8 Impact on Plan Recognition Architecture

In a conventional plan recognition algorithm, propositions describing the world state evaluate to
true or false, the evaluation is known to be certain, and thus interpretations are either valid or
invalid. With the introduction of TMS justifications, there is a middle ground between valid and
not valid-described by degree of credibility. In this section, we discuss how a plan recognizer
can capitalize on this new information, as well as deal with the fact that assumptions about the
state of the world may be wrong.

Effective plan recognition involves making timely and knowledgeable choices between com-
peting interpretations. Deferring decisions, thereby allowing further actions to narrow the field,
restricts the ability to make inferences about the current situation. Making arbitrary choices is
computationally expensive since they often have to be re-visited. In [49], the domain-independent
assumption that the preferred interpretation contains a minimal number of top level plans is used
to make reasoned choices in the presence of uncertainty. In [17], both domain-independent and
domain-dependent heuristics could be expressed and used to guide choices. Credibility represents
an additional source of discrimination knowledge, as described below.

6.3.1.1.9 Use of Credibility

As an example of the use of credibility, consider the following scenario. Let building of system
version SV be in progress as described in Figure 5, where substantive changes were made during
source editing, standard testing is assumed operative, cases TC1-TC3 are assumed applicable,
and only case TC1 has been run. Further, let there be assumptions that new testcases are needed,
and that archiving is not waived. The state of the plan for building SV is shown in Figure 7. Let
the next action be edit. Given the operator library of Figure 3, there are two interpretations for
edit editing to make a new testcase and editing to get source code ready.

Consider the interpretation of edit as part of making new testcases; in this interpretation
(Figure 8), edit continues the work of building system SV. Edit itself has no preconditions, but
it inherits the precondition newcasesneeded from make.one.newcase. Since newcases.needed is
true by-assumption, this interpretation has high credibility-it depends on (one) extended state

19

so has-Oxred orhido
ote n eed ed (S)

Irun_cases

tests d one

KEY
!v

W Unsatisfied
subgoal run-one-ca-se

Satisfied caetried
_su bgal (TSf]mSubgoal Involving

assumption~s

Figure 7: A Plan in Progress

20

no t edSV(V

soue-V rSO ady(tsV) (V) acido

[~SV)

Figue 8:Edit as es aigT cases ru

21dyora

proposition that is assumed to be satisfied. Note that if newcasesneeded had been true with-
certainty, then the interpretation would be valid absolutely.

Now consider the interpretation of edit as part of getting source code ready; in this inter-

pretation, edit starts a new top level plan (shown to the right in Figure 9). Again, edit has no
preconditions, and make.newmodule has no preconditions, but make-source has a precondition
that the baseline system (on which this new system version is to be based) is built. Built(SV)
is not true, but there is a plan to achieve it that is in progress. Three assumptions enter into
believing that this plan is not finished. They are that new testcases are needed (affecting the first
subgoal of test), that testing is not done (affecting the iterated subgoal of run.cases), and that
archiving is not waived (affecting the last subgoal of build). Thus, the interpretation of edit as
part of starting a new build plan has low credibility-it conflicts with three current assumptions.

Credibility is a basis for distinguishing the relative likelihood of these two competing inter-
pretations, establishing a clear preference for edit as making testcases. Had it been the case
that newcases.needed was false by-assumption, then the interpretation involving edit as making
testcases would conflict with one current assumption. In this case, both interpretations violate
current assumptions, so the user could be notified that the edit action is possibly in error and
given the chance to reconsider performing that action. If the user chooses to perform the edit,
then the interpretation of edit as making testcases is (still) the most credible interpretation

It so happens that discrimination based on the domain-independent heuristic preferring inter-
pretations with the minimal number of top level plans reinforces the preference for edit as making
testcases, although in other cases there will be conflicts between credibility and the minimal-plans
criterion. The best discrimination decisions will result from combining the evidence from mul-
tiple, independent perspectives. Credibility represents a new perspective, derived from deeper
modeling of the context of actions.

6.3.1.1.10 Reconciliation

Reconciliation is the process of revising assumptions to make the world state conform to the
requirements of an interpretation. This is only necessary when the "best" alternative (considering
all available discriminators) still violates a few assumptions about the state of the world, or when
other more attractive alternatives were originally chosen but were subsequently disqualified. The
standard approach to reconciliation would be to adopt the necessary assumptions (by giving
them new justifications), and propagate the consequences through the TMS. This may lead to
contradictions (a node and its negation both IN), which can then be resolved via dependency-
directed backtracking i76] as implemented for TMS's [28].

The standard approach to reconciliation misses an important opportunity-the opportunity
to explain why the desired assumptions should hold. Each node N to be brought rN during
reconciliation is simply provided with a new justification without re-assessing why N failed to
be IN (i.e., without re-assessing any of the labels on nodes appearing in tle currently invalid
justifications for N). This means that clues that other assumptions are wrong will be ignored.
That is, since no attempt is made to bring N IN by making one of its currently invalid justifications
valid, no assumptions in the foundations of N that might have been wrong will be revise .

As an example, consider how to explain that testing is in fact done given the sicuation
diagrammed in Figure 5; this is one part of reconciling the interpretation shown in Figure 9.
To bring tests-done(SV) IN, we must force not tests-done(SV) OUT (see justification J10); that

22

sore has-ezec archived rn source_ O has-exec
(S) wavtd(SV) red(V) (SVI)

n.%Vca~ s- ca esmrunsource

run caves mako-nowmadul*

Su)goale Cflafinig
~sumptions that eiCuld be revised to run one case

ccrnolet* built(SV)
withlout further cetsd
actons (TCISV)

Figure 9: Edit aS Preparing Source

23

J4l

notlabeovan uecoxl

Figure 10: Example of Reconciliation

means forcing OUT both the nodes appticable(TC2,SV) and applicable(TCS,SV) (covering both
instances of justification J9). This can be done in two ways. One way (involving justification 36
and JS) is to bring IN both spec.ezcluded(TC,SV) and spec.ezcluded(TC3,SV) by adding two

"dummy" justifications to support these nodes. The other way (involving justifications 31, :J2
34 and 35) is to block justification 31 that currently supports standardest(SV); note chat this

change aff'ects only this instance of rule Ji, not any other instances. This latter alternative is
heuristically preferred, since it involves one rather than two changes. The result of choosing and
installing this alternative is shown in Figure 10.

This approach to reconciliation attempts to achieve a more complete integration of new
information into the TMS. The idea of finding explanations for desired beliefs is based on non-

monotonic reasoning in the following sense: if a proposition is found to be true, then typically one
of existing justifications for the proposition should be valid. This type of reasoning is appropriate
when all the possible reasons for a proposition being true are represented by justifications in the
TMS, which is true for this application, but not for TMS applications in general. Reconciliation
can be implemented by extending the algorithm for dependency-directed backtracking to include
making invalid justifications valid as well as making valid justifications invalid.

No matter what approach is used for reconciliation, it is possible for reconciliation to fail.
This happens when an interpretation depends on assumptions that cannot hold in the current
world state. In this event, the interpretation should be rejected.

24

blockM Jmmm. T 2

6.3.1.1.11 Summary

We have shown that missing state information is a barrier to achieving substantive support in an
intelligent assistant. In an open world, the only way to exploit additional background knowledge
about the context for actions is to introduce uncertainty, in the form of empirical knowledge
that makes plausible assumptions about missing data. We have shown how to formalize this
additional knowledge (theoretical and empirical) using a TMS to implement non-monotonic rea-
soning. Then, we have shown how a plan recognizer is affected when the underlying state of the
world includes both certainties and assumptions. Assumptions determine the credibility (rather
than validity) of competing interpretations, and credibility can be used to make reasoned choices.
We have also shown that the plan recognizer will sometimes find its assumptions to be faulty,
and we have introduced a new method for revising assumptions in response to this.

25

6.3.1.2 Implementing an Incremental Hierarchical Plan Recognition System

The task of incremental plan recognition can be computationally expensive, even in a simple
domain. Deriving all possible meanings of a particular action, given the limited context of
previous actions, can lead to an explosion of competing interpretations, many more than
expected at first glance. There are at least two causes. Some interpretations have to be
considered viable because unbound parameters are possibly consistent, and multiple top-level
goals can be in progress simultaneously. We examine a set of techniques that can be used
to contain the proliferation of alternative plan interpretations as soon as possible during the
recognition process. These ideas are implemented in a system called GRAPPLE, which is a
hierarchical plan recognition system used in an intelligent interface for recognizing user goals
from low-level actions.

6.3.1.2.1 Introduction

GRAPPLE recognizes a series of user actions in order of occurrence and incrementally builds
reasonable interpretations for the actions. Operators in GRAPPLE are hierarchical and are
assumed to be complete. (Research directed aL relaxing the assumption that the plan recognizer
has complete state information is described in [461 and [44]). GRAPPLE uses the hierarchy to
build interpretations through liking of operators (goals of some match subgoals or preconditions
of others). By recogni-ing the possible goals of a user and the alternative ways to achieve them,
GRAPPLE identifies the rationale of a proposed action. It then uses its picture of what the user
is intending to do in order to to give assistance. Information is provided to the user before a
proposed action is actually put into effect. In the case where a proposed action would not be
consistent with either the existing state of the world or with previously executed actions, the
user is advised of the problem and can specify an alternate action.

The key problem in plan recognition is that the large number of plan derivations implied
by even a few actions in a simple world requires careful and quick control of computation.
GRAPPLE does aggressive checking to rule out invalid interpretations, it then applies heuristic
knowledge to focus on preferred alternatives among those that appear viable. Domain knowledge
which is already available is fully exploited. Syntactic and semantic checks on expressions in
the operator definitions (preconditions, constraints, and goals) are used to prune out nonviable
interpretations. Additional checks, based on the heuristic that the user prefers to act rationally,
are used to discard interpretations. These assume that a user will not reachieve a goal already
achieved, that a user tends to continue on-going plans, and that a user prefers short plans over
long plans. Consequently, only reasonable or plausible interpretations of actions are constructed.

GRAPPLE has been tested in a blocks-world environment and in a simple case of a software
development environment [45]. Domain knowledge is contained in the set of operator defini-
tions and associated state schema; the language used for these definitions is based on classical
hierarchical planning formalisms [70][85] with some extensions [47]. The state of the world, rep-
resented by objects and axioms involving these objects, is implemented using Knowledge Craft.'
The recognition algorithms themselves are domain-independent. Therefore in order to consider
a new or changed domain only the set of operators and the state schema need to be changed.

Plan recognition is performed automatically, without recourse to the user for information
beyond the action sequence. At any given time GRAPPLE may be working with incomplete

'Knowledge Craft is a trademark of Carnegie Group Incorporated.

26

information. Variable values for higher level operators are often not yet determined. Because
not all the actions have been seen, the system does not know what the future will bring. The
only input to the program are the primitive actions and the user determines their order, which
may be wrong. In consequence error detection is a critical objective of the system.

A simple example consisting of a sequence of actions in the blocks-world demonstrates the
techniques used to control the recognition process. GRAPPLE applies checks as paths are con-
structed from au action to new top-level goals or pending goals. It continues to check as variables
are bound, plans are extended, and action effects are simulated. Some checks are syntactic and
semantic: checks for inconsistent bindings, precondition violations, and constraint violations and
some checks use the heuristic that interpretations should be plausible: checks for looping pians,
redundant plans and on-going plans. All of these checks are applied as soon as possible in order
to quickly discard nonviable interpretations and reduce overall computation.

6.3.1.2.2 Operator Definitions

Operators in GRAPPLE are hierarchical. Those used to demonstrate the examples in this section
are given in Figure 11. There are three levels of operators. At the lowest level (stack, unstack)
there is no mention of structures, rather just the positions of the blocks. At the middle level
(start-struct, extend-struct, remove-top-block, disnantle-struct) the concern is with
which blocks are in which structures and with a block's role within a structure. At the top
level (make-red-tower) the concern is with what type of structure exists. GRAPPLE uses the
hierarchy to build interpretations.

An operator is composed of a goal, preconditions, subgoals, constraints and effects. The
linking of operators (goals of some match subgoals or preconditions of others) enables the con-
struction of interpretations. Operators are either primitive or complex. A primitive operator is
an explicit user action; it has no subgoals. A complex operator has one or more subgoals and is
not an explicit action. In the blocks world stack is a primitive operator and make-red-tower
is complex. It is useful to look at complex operators as referring to higher level concepts and
activities. The purpose of complex operators is to decompose more complicated goals into simple
ones, allowing a hierarchical view of domain activities.

The preconditions of an operator define the state from which the operator can legally be
executed. Consequently all preconditions of an operator must be true simultaneously before any
action is taken to satisfy the operator's goal or subgoals. This implies that the preconditions of
a complex operator must all be true before any primitive action in the expansion of one of its
subgoals begins. There are two kinds of preconditions, normal and static. A normal precondition
can intentionally be satisfied by taking actions while a static precondition can not. A precondition
which is not explicitly defined as static in the operator definition is understood to be normal.

By using subgoals a complex operator is decomposed into subproblems, each of which must
be satisfied before the effects of the operator are achieved. For example, make-red-tower is a
complex operator having two subgoals. It is divided into the subproblems of starting the tower
and finishing it. In the case when an operator has more than one subgoal, the order in which
subgoals should be satisfied is determine solely by the state of the world and the preconditions
of the operators being used to satisfy the subgoals. The only restriction is that all subgoals which
are labeled "final" must be true simultaneously to enable installing of the effects clause.

Constraints restrict the bindings in the operator. They must not be violated from the time the

27

operator's preconditions are true until the time its effects are posted. Effects are the changes to
the data base (the "world") which result from executing an action or from completing a complex
operator. New objects can be created, attribute values can be set, new predicates can be added,
and old ones deleted. Further, an effect can be made conditional on the state of the world. Not
only do the effects of an operator cause its goal to be true, but often additional changes are made
in the state of the world. These are side effects.

The rprntrition algorithms regard the goal of an operator as the main purpose for an oper-
ator's execution. The plan network which is built by matching operator goals to subgoals and
normal preconditions of other operators is central to the recognition process. In particular, the
purpose of an operator might be seen as the achievement of a subgoal of a second operator which
might in turn be satisfying the precondition of another operator. The reason, then, of carrying
out a series of actions can be to satisfy the goal of some top-level operator; a top-level operator
is one whose goal does not satisfy a precondition or subgoal of any other operator.

6.3.1.2.3 The Recognition Cycle

After GRAPPLE is first initialized, an initial worid state is input to the program. The actions
are then processed one at a time. Before an action is actually completed and in consequence the
state of the world is changed, GRAPPLE builds interpretations of the proposed action. These
are used by the program to decide whether or not an action should be taken and what, if it
should, its purpose would be. A context is a world view. Different contexts provide alternative
world views; each is a separate data base state. An interpretation for an action or sequence
of actions is a tree of operators where top-level operator goals are linked to primitive actions.
When all the variables of the linked operators in an interpretation are bound to values, the
interpretation is complete. At any given time during the recognition process there might be
a number of alternative interpretations for the sequence of actions, all with operator variables
partially bound. When no interpretations for an action exist, the user is advised to take another
action. When many exist, focusing decisions are made to pick preferable interpretations.

GRAPPLE can consider actions leading to more than one top-level goal simultaneously.
However in the case where a particular action leads to two or more top-level goals at the same
time only one is the "purpose" of the action in a particular interpretation and the others are side
effects.

A broad outline of the plan recognition cycle is given below.
Initialise GRAPPLE: establish links between operators.
While: there is a proposed new action.

For each active context:
Find all valid possible interpretation paths from action to top-level goal.

If. No interpretations in context, go to next active context.

Else:
For each interpretation in context:

Make new child context and instantiate operators.
Test extended interpretations for inconsistent bindings.

Test for possible constraint or precondition violation.

If interpretation Invalid:

refute context.

28

go to next interpretation.

Else:

Assert effects of the action in the interpretation.

Evaluate all task preconditions, constraints, and subgoals.

Assert effects of enabled complex operators.

Monitor constraints, looping and redundancy.

If interpretation invalid: refute context.

Go to next interpretation.

When no more interpretations in context:

Focus: prefer child contexts with extended interpretations.

Parent context is superseded.

Go to next active context to interpret action.

When no more active contexts:

Further focus: prefer child contexts where all actions are interpreted as

extensions.

If action can be interpreted:

Establish new group of active contexts.

If action can not be interpreted in any context.

Inform user.

Restore previous group of active contexts.

Get new action.

6.3.1.2.4 Initializing GRAPPLE

GRAPPLE is initialized by establishing the links between the operators in the library. A graph
showing the links between operators is shown in Figure 1. For simplification the graph does

not show all links. For example, remove-top-block also links to unstack through its normal

precondition, (clear ?x). For each logical expression that is a subgoal or normal precondition

of an operator, alternate achievers are computed. An alternate achiever is an operator whose
goal, when true, achieves the expression; a set of variable mappings is determined with each

alternate achiever. The operator stack is an alternate achiever of the subgoal (on ?top-block

?base-block) of start-struct and the mapping is ?x -, ?top-block, ?y - ?base-block. Two things

can be observed: only part of an operator's goal need match the condition for it to satisfy the

expression and an operator's goal can achieve a condition in more than one way. For example,

dismantle-struct achieves the precondition (clear ?y) of stack with a mapping ?base-block
?y and a mapping ?top-block -* ?y. In this case there are two alternate achievers involving

dismantle-struct. In the current implementation of GRAPPLE, when an operator's goal only
partially satisfies a subgoal or precondition of a second operator, a link is not formed.

Once links are established they are used to generate paths from primitive actions to top-level
goals. When a user action is proposed and its preconditions and constraints are not violated,

possible interpretations are generated. A possible interpretation is a path, linked through goals

and logical expressions from the action to a top-level goal.

29

laCf L(Cfrer

f nR~P.ED-O~L:

STTRM-ETPSO

Figure 1: The Plan Library

30

6.3.1.2.5 Limiting Possible Interpretations When an Action is Proposed

The strategy used in GRAPPLE is to limit the number of possible interpretations by aggressive
checking to throw away those that can not be valid. GRAPPLE does not consider possible inter-
pretations when it can predetermine that a higher level operator's preconditions or constraints
are violated, that an already satisfied goal will be resatisfied or that endless cycles exist. Check-
ing starts as the interpretations are generated; the viable interpretations are then instantiated
and checked further as described in section 6. In the identification of all possible paths from the
action to the top-level goal an interpretation is discarded if any of the conditions listed below are
violated. These conditions are tested as each operator is linked upward. The values of the vari-

ables used in the tests are those given as parameters to the action; these values are propagated
up through the links. For example, the action (unstack cube3 cubel) leads to dismantle-struct
with ?top-block=cube3 and ?base-block=cubel. The construction of a particular path upward
is discontinued as soon as any operator fails the tested conditions. The result is that the compu-
tation involved in generating possible interpretations, and the number of these interpretations,
is greatly reduced.

Tested syntactical and semantic conditions in the bottom-up generation of possible paths:

" If an operator is linked, either directly or indirectly, to the action through one of its subgoals
then none of its preconditions can be false. The truth of a precondition is determined by
querying the data base. If all the variables in the precondition are bound to values, the
precondition must be true. For example, if in the initial state cube3 is on cubel, then
the goal of the action, (unstack cube3 cubel) satisfies the subgoal of dismantle-struct,
the variable mapping is cube3 --+ ?top-block and cubel -+ ?base-block. If any of the

preconditions of dismantle-struct are false with this variable mapping, such as cube3 not
being in a structure, then no possible path can be derived which starts by unstack linking
to dismantle-struct in this way.

" No constraints of an operator are violated. Again the bindings are those taken from the
action (as propagated up through the path link via the mappings). Since there are no
constraints on dismantle-struct, the test will not apply. If cubel eventually maps into
?first-cube of make-red-tower, then it must be red to satisfy the top-level constraint,
(color ?first-cube red).

Tested conditions, based on the heuristic that the user prefers to be rational, in the bottom-up
generation of possible paths.

" No goal of an operator having all its variable values bound from the parameters of the
action when propagated upward is already true in the current state of the world. The
user's action in such a case would serve no purpose since the intent of the action is seen
as satisfying an already satisfied goal. If a goal is already true, any interpretation which
reachieves it should be discarded.

" No linked precondition or subgoal of an operator is already true in the current data base
state. For example the path starting as follows (unstack cube3 cubel) leading to the subgoal
(not (on ?top-block ?base-block)) of dismantle-struct leading to the precondition (clear
?y) of stack with cube3 = ?top-block = ?y will be discarded because cube3 is already clear

in the current state.

31

1Cur, Conte*9

CUKI~

Figure 2: The Initial State and Context

a No loops exist in the interpretation. No operator is revisited on a path with identical
variables bound to the same values or with identical variables unbound. This insures that
possible interpretations in which cycles occur are not considered. For example, the operator
(stack cube2 ?y) can not occur more than once in a path, although both (stack ?x ?y) and
(stack cube2 ?y) could appear.

In order to inhibit endless searching a given cutoff level or maximum number of operator links
allowed is input to GRAPPLE. This is based on another "rationality" heuristic: that the user
will not prefer long paths to top-level goals when shorter ones exist. There are some instances
when an action taken in a given data base state can not lead to any top-level goal through a
reasonable number of links. When this occurs or when there are no valid possible interpretations,
the action can not be recognized and the user is so advised.

6.3.1.2.6 Exploiting Available Constraints

The process of limiting the derivation of interpretations and checking those that remain is best
understood by looking at a particular example. The illustrations in the figures are actual output
from the program. Figure 2 shows the initial state of the world for the example, There is only
one context, the initial world state, in which" to interpret the first action. The first action is
(unstack cube3 cubel). Four possible interpretations leading to the goal of completing a red
tower are derived. Nineteen possible interpretations are discarded while testing the conditions
(described in section 5) in the process of finding these potentially acceptable paths.

The four interpretations are instantiated before further analysis is done to see if there are
additional reasons to discard them. Each interpretation is tested in turn. For each, the original
parent context is copied to a new context. Every operator of the interpretation within the
new context is instantiated as a separate task (instantiated operator) and its preconditions and
subgoals are expanded. The original parent context, replaced by new ones, is superseded. When
an interpretation within a context is found to be invalid, the context is refuted. In the example,
there are four ways to interpret the first action in the parent context ; four new contexts are
created. Figure 3 shows the context tree after the instantiation of the four interpretations of the
first action. Figure 4 shows the instantiation of an interpretation in a particular context.

As stated previously, preconditions of operators linked to the action thrdugh a subgoal must

32

AC~5 We5 IACT IAFUE

Figure 3: State and Contexts after the action (unstack cube3 cubel)

In.tero.taciof ret

S-7-ART -STRUCT3

IVISnAHTILE-STRUCT3

Pr PrePr

Figure 4: Interpretation in Context2 after the action (unstack cube3 cubel)

33

be true for the interpretation to be valid. No interpretations with operators having false precon-
ditions and bound variables survived the derivation, but there may exist operator preconditions
with unbound variables which are false because values do not exist for those variables in the
existing data base state which will make the expressions true. Because it is necessary that all
preconditions of a complex operator be true before any action is taken which leads to one of its
subgoals, the program allows the binding of variables through preconditions from the existing
state of the data base when such an action is proposed. Any variable values which are found in
this way must not violate the constraints of the operator. If a variable is propagated up through
links of the interpretation and is included in other operator constraints or preconditions which
must also be true (when the operator is linked through a subgoal), then these expressions further
the restrictions on the bindings. The result is a query to the data base with a set of logical
expressions which must all be true simultaneously. This query constrains the search for plans in
three ways. It throws out invalid interpretations, it binds variables when the bindings are unique,
and it provides constraints on variables when the bindings are not unique.

In the first interpretation of the example (unstack cube3 cubel) satisfies the subgoal of
dismantle-struct (all its preconditions are true with bound variables from the action); dismantle-
struct satisfies the normal precondition, (on-table cubel) (clear cubel), of stack; stack leads
to the subgoal (on cubel ?base-block) of start-struct; and start-struct leads to a subgoal
of make-red-tower. In the solution all the preconditions of start-struct must be true for
the interpretation to be valid. The data base is queried with the two precondition clauses of
start-struct and the relevant constraint clauses of make-red-tower. As a result the variable
?base-block of start-struct is bound to cube2 from the data-base; this is the only value in the
data-base which is on the table, not equal to cubel and satisfies the constraints (?first-cube being
a cube and red) of the operator make-red-tower.

When there are no values for the variables in the data base which satisfy the query, the
precondition is false. This is what happens in the fourth interpretation which is instantiated
in context5 (see Figure 3). The path from the action, (unstack cube3 cubel), is unstack -.
dismantle-struct -* stack - extend-struct -* make-red-tower. Extend-struct leads to
the subgoal (add-pyramid) of make-red-tower. The variables ?top-block and ?base-block of
extend-struct are both unbound. The data base is queried using the preconditions of extend-
struct and relevant constraints of make-red-tower. The query fails because the expressions can
not be solved simultaneously. This is because ?lower-block and ?base-block both are bound to
cubel which violates the precondition that they can not be equal. The interpretation is discarded
and the context refuted. Notice context5 in Figure 3 is refuted. When more than one value can
be bound to a variable, the alternative possible values of the variable are added as a constraint
on the task. The effects of any task which affect or use such a variable are not activated until
one of the multiple values is actually forced on the interpretation by a subsequent action. The
additional constraint on the variable may restrict the possible extensions of the interpretation.

By exploiting the constraints in the example, GRAPPLE determined that there were only
three possible interpretations for the proposed first action.

Finally it should be emphasized that GRAPPLE binds variables in only three ways: from an
overt action and the linking of operators, from asserting effects which create new variable values,
and from a query to the data base with expressions which must be true.

34

6.3.1.2.7 Monitoring Constraints, Looping, and Redundancy with Data Base Changes

Some interpretations may be discovered to be invalid only after the effects of the action are
simulated. For instance, a side effect of an operator could cause the violation of a precondition
or constraint of another operator (upward on the path).

The state of the world actually changes in each active (neither superseded or refuted) context
when the effects of an action or operator are asserted. (In GRAPPLE all the contexts which are
active are carried forward). Afterwards every task (instantiated operator) in the context is then
processed to see if previously unsatisfied preconditions or subgoals are now satisfied due to the
data base changes. Tasks exist in varying stages of completion- :trying-to-achieve-preconditions,
:trying-to-achieve-subgoals, or :accomplished. When all of the tasks in a context are accom-
plished, the top-level goal is achieved. If the state of a task is :trying-to-achieve-preconditions,
the preconditions having bound variables are tested. When all of a task's preconditions are true
simultaneously, the state of the task is changed to :trying-to-achieve-subgoals. If the state of
a task is :trying-to-achieve-subgoals, the subgoals having bound variables are tested. Once the
subgoals are satisfied and the truth of all the task constraints on the interpretation path is es-
tablished, the effects of the task are asserted. The effects of complex operators are automatically
asserted when its subgoals become true and that primitive operators are overt actions which

must be taken by the user.
Redundant plans or actions and looping may be discovered as variables are bound. One of

the ways a context can be refuted is by the discovery that there exists two different tasks in the
context which are instantiations of the same operator and which either have matching bindings
or have the set of bindings for one task subsumed by the bindings of the other. This means that
these two tasks are combined in some other context to form one interpretation or that looping
occurs. Notice that it is possible that a precondition or subgoal can become true as a result of
asserting the effects of a task even though the goal of the task in the interpretation is not to
satisfy that particular condition. No variables are bound during the process of checking the truth
of preconditions or subgoals of a task; an expression is true only if its variables are bound.

There is an additional re;,son to discard a context when the data base is altered. Changes in
the world state may violate operator constraints. Therefore, when any constraint is found to be
false while processing the tasks, the context is refuted.

Consider the example. There aie three active contexts for the first action after the effects
are posted in each (see Figure 3). The interpretation in context2 is illustrated in Figure 4. After
the action (unstack cube3 cubel) the tasks unstack3 and dismantle-struct3 are completed; and
the preconditions for stack3 are true. The task, start-struct3, is in the state :trying-to-achieve-

subgoals as is the task make-red-tower3. Three subgoals need to be satisfied in order to achieve
the top-level goal. If all the child contexts (context2, context3, context4) are refuted the primitive
action can not be recognized and the user is is so advised. This does not happen in the example.
In the example none of the simulated effects of the first action caused GRAPPLE to discard an

interpretation. The action is taken in each active context.

6.3.1.2.8 Narrowing Interpretations with Additional Actions

Additional actions reveal more of the plan and provide information which is used to discard
existing interpretations.

35

CUCE I

(RED)

r'igure 5: State after the action (sLack cubel cube2)

After the first P-tion is processed in all active con.exts GRAPPLE asks the user for the
next action This action is considered in each active context in turn. In the example (stack
cubel cube2) is the second action; it is interpreted in context2., context3, and context4. Possible
interpretation paths are! derived and discarded as before 'There is a differepce though and that
is: a path can lead to az. operator corresponding to q instantiated task which is pending (not
yet complete) in the context as well as to a top-level c-perator. For example: since stack3 is a
pending task in context2, a possiole interpretation le.,ds to stack. In each context of the example
four possible interpretations out of eight surviv.d the derivation.

Each surviving candidate interpretation can either be an extension of an existing interpre-
tation or, if it leads to a top-level goal, the start of a new interpretation in the given context.
An interpretation which does not lead to, a top-level operator must necessarily be an extension.
An interpretation which does lead to a top-level operator might be an extension if it leads to au
unsatisfied precondition or subgoal of a partially satisfied top-level task. Alternatively it might
be the start of a new interpretation to a top-level goal.

There may be reasons to reject an extended interpretation before tasks are instantiated.
When the bindings of the new action are inconsistent with the existing bindings of the top-level
task, when the new bindings will cause a constraint violation in the existing interpretation or
when a precondition of a task linked through its subgoal is violated with the new bindings added,
the interpretation is not considered as an extension. For example, in both context4 and context3
two of the possible interpretations, one leading to stack and another leading to start-struct
are thrown out due to inconsistent bindings.

For each remaining candidate interpretation, whether it is an extension or a new interpre-
tation, the active context is copied to a new context along with the pending tasks. The parent
context is superseded. The analysis done in each surviving context is the same as is described
for the first action. Contexts are refuted if necessary preconditions can" be true. Pending tasks
are processed, effects are asserted and further tests are done to refute contexts.

In building new interpretations, there is a chance that redundant plans evolve. In cases where
an interpretation can be viewed as both an extension , nd the start of a new interpretation, a test
is done to see if the two interpretations are in fact the same. If the top-level goals are identical
and the variable bindings of the new interpretation are subsumed by those of the extension, the
context corresponding to the start of a new interpretation is refuted. This -swhat happens when
the final action of the example is interpreted as the start of a new plan in context9 (described in
the next section).

Looking at the example, the action (stack cubel cube2) can be interpreted as an extension
of the existing interpretation in context2. The bindings are consistent and no constraints or
necessary preconditions are violated. Those interpretations where bindings are inconsisten , con-

36

C~w-~wLC~iL(COHEX12 fiT1 OrxlCOMET3' C4TEX74tX

ACTIV E REU EFUE IREFUTED Ii CI I T1CIZV E

Figure 6: Contexts after the action (stack cubel cube2)

straints are violated or preconditions violated are not pursued. The effects of stack are asserted,
accomplishing stackil and start-structlO and achieving a subgoal of make-red-towerl0. Figure 7
shows the task tree for the interpretation. Of the possible interpretations of the action in context2
three child contexts, contexti0, contextil, and context12 are refuted because two instantiations
of the operator stack exist with identical bindings in the context. Figure 6 represents the context
tree after the second action. In context3 the action (stack cubel cube2) can not be interpreted
as an extension because the bindings are inconsistent. The only interpretation allowed in this
context is one leading to a new top-level goal of making a red tower.

As it stands the program does not resolve the problem which arises when achieved precon-
ditions or subgoals of a task are violated prematurely by asserting the effects of later actions.
In this case a decision should be made whether to go ahead with the action or retract it. If an
.,ction is retracted, it must be retracted in all contexts. On the other hand when the action is
taken, previously satisfied conditions which are violated must be resatisfied by future actions.
The existence of conditions in a context that are violated in this way could also be used to focus
the recognizer. The focusing heuristic is: the user prefers plans in which conditions do not have
to be resatisfied.

6.3.1.2.9 Focusing on Extended Interpretations

Another way of controlling the plan recognition process is to focus on selected interpretations
while saving others for future development. When a new user action is proposed, GRAPPLE
first focuses on interpretations where the action extends an existing plan. The program prefers to
assume that the user has a plan or set of plans in mind [17]. Irrefuted contexts in which an action
can be interpreted as extending an existing plan are made active; other irrefuted contexts are
made inactive. An inactive context, neither refuted or superseded, is saved for future processing.
In the example, context8 is made inactive because (stack cubel cube2) can not be interpreted as
an extension, but it can be interpreted as the start of a new plan. When there are no cortexts
in which the action can extend a plan, all contexts where the action starts a new plan are made
active.

When there are no contexts in which an action can be interpreted, the action can not be
recognized. Consider the situation shown in Figure 5. The second action of the example has

37

c~rcreec:cs Iree

DIA-SMHTucz WI

STRtr Ir r e W ivc

Figure 7: Interpretation in Context9 after the action (stack cube]. cube2)

pyp

CUME

(RD)l

Figure 8: State after the action (stack pyri cube].)

38

SWE,,ED 54PcpicD

rD"1XJo j;'UjE~T1 FOII 1CO,IEXIM lei CONT EXTCOTE

/ ,N', c ' >T T:-,, /,: .-"

Figure 9: Contexts after the action (stack pyrl cubel)

been processed. If the user then proposes an action such as (stack pyrl cube3), GRAPPLE can

not find a way to interpret the action in any active context. It then makes all inactive contexts

active, processes the unprocessed actions in the newly activated contexts and tries again to

interpret the given action. If the action still can not be recognized, the user is informed. The
interpretations and contexts are then changed back to the state that existed before the original

action was proposed. The above scenario is not illustrated in the example.
The third action of the example is (stack pyrl cubel), as shown in Figure 8; it is processed

in the active contexts, context9 and context7 and is added to the list of unprocessed actions in

the inactive contexts, context8 and context6. All the candidate interpretations in context7 are
found to be invalid. The action, interpreted as an extension, in context9 achieves the subgoal of

extend-struct3 which achieves the second subgoal of make-red-towerl7. The action, interpreted
as the start of a new plan, in context9 gives a redundant interpretation. The top-level goal is
accomplished in context;14. The final context tree is shown in Figure 9 and the final interpretation
in Figure 10. The plan is recognized.

6.3.1.2.10 Multiple Plans

The ability to limit possibilities is even more valuable when there are multiple plans being carried
out in parallel. GRAPPLE can recognize more than one plan simultaneously. When a top-level
operator, make-blue-tower, is added to the set of operators, actions for building a red tower
and a blue tower can be interleaved and the program recognizes the purpose of the actions.
For instance, the first action of unstacking a blue cube from a red cube will have an additional

interpretation of dismantling the original structure in order to build a blue tower.

6.3.1.2.11 Conclusion

We have found that incremental hierarchical plan recognition is more computationally expensive

than expected. Even in a simple domain the task can quickly get out of control.
In a simple _xample nineteen possible interpretations for the first action are reduced to three

39

InterDretation Iree

flAE-REL-TOIJER2,_

rExfEto-S ur S,-1 - IM 1

Prt~~~r PrP PrP c

40-

(of these twelve are discarded based on the heuristic that the user will behave rationally and
interpretations are plausible). Checking and focusing reduces the number of interpretations for
the first followed by the second action from twenty-four to two (of these eleven are discarded
based on the "rationality" heuristic). Finally, GRAPPLIE finds only one way to interpret the
sequence of three actions out of ten possible interpretations (of these two are discarded based on
the "rationality" heuristic).

Non-trivial mechanisms are required to control the combinatorial explosion of possible inter-
pretations. There is a need to exploit constraints quickly and to focus on reasonable or plau-
sible interpretations. With the techniques described here incremental plan recognition becomes
tractable.

41

Figure 11: Example Blocks World Operators

unstack

(defplan. unstack (?x ?y)
(goal (not (on ?x ?y)))
(precondition on-x-y (on ?x ?y) :static)
(precondition clear-x (clear ?x))
(precondition not-eq (not (- ?x ?y)) :static)
(subgoal (primitive))
(effects (add (clear ?y))

(add (on-table ?x))
(delete (on ?x ?y))))

remove-top-.block

(deiplan remove-top-block (?top-block ?block2 ?structure)
(goal (and (clear ?top-block) (on-table ?top-block)

(cleat ?block2)))
(precondition not-on-table (not (on-table ?block2)) :static)
(precondition in-structi (in ?block2 ?structure) :static)
(precondition in-struct2 (and (in ?top-block ?structure)

(top ?structure ?top.block)) :static)
(precondition on-blk (on ?top-block ?block2) :static)
(precondition not-eq (not (= ?top-block ?block2)) :static)
(subgoal unstack-blks (not (on ?top-block ?block2)) :Inal)
(effects (delete (top ?structure ?top-block))

(delete (in ?top-block ?structure))
(add (if (old (not (base-block ?structure ?bl"!L)))

THEN (top ?structure ?block2)))
(delete (if (old (base-block ?structure ?block2))

THEN (in ?block2 ?structure)))
(delete (if (old (base-block ?structure ?block2))

THEN (base-block ?%tructure ?block2)))
(set (type-struct ?structure unknown))))

disinantle-struct

(defplan dismantle-struct (?top-block ?base-block ?structure)
(goal (and (cleat ?base-block) (on-table ?base-block)

(clear ?top-block) (on-table ?top-block)))
(precondition in-structi (and (in 'base-block ?structure)

(base-block ?structure ?base-block)) :static)
(precondition in-struct2 (and (in ?top-block ?structure)

(top ?structure ?top-block)) .static)
(precondition on-bik (on ?top-block ?base-block) :static)
(precondition not-eq (not (= ?top-block ?base-block)) :static)
(subgoal unstack-blks (not (on ?top-block ?base-block)) :final)
(effects (delete (top ?structure ?top-block))

(delete (in ?top-block ?strulcture))
(delete (in ?base-block ?structure))
(delete (base-block ?structure ?base-block))
(set (type-struct ?structure unknown))))

stack

42

(defplan stack (?x ?y)
(goal (on ?x ?Y))
(precondition not-com3 (and (on-table ?x) (clear ?x)))
(precondition not-pyr-y (not (pyramid ?y)) :static)
(precondition clear-y (clear ?y))
(precondition not-eq (not (= ?x ?y)) :static)
(subgoal (primitive))
(effects (add (on ?x ?y))

(delete (clear ?y))
(delete (on-table ?x))))

start-struct

(defplan start-struct (?base-block ?top-block ?structure)
(goal (and (on ?top-block ?base-block)

(top ?structure ?top-block)
(base-block ?structure ?base-block)
(in ?top-block ?structure)))

(precondition on-table (on-table ?base-block) :static)
(precondition not-eq (not (= 'base-block ?top-block)) :static)
(subgoal stack-blks (on ?top-block ?base-block) :final)
(effects (new (?structure structure))

(add (top ?structure ?top-block))
(add (in ?top-block ?structure))
(add (in ?base-block ?structure))
(add (base-block ?structure ?base-block))
(set (type-struct ?structure unknown))))

extend-struct

(defplan extend-stnict (?lower-block ?top-block ?base-block ?structure)
(goal (and (on ?top-block ?lower-block)

(top ?structure ?top-block)
(in ?top-block ?structure)
(base-block ?structure ?base-block)))

(precondition in-struct (in ?lower-block ?structure) :static)
(precondition in-structi (base-block ?structure ?base-block) :static)
(precondition not-eqI (not (=?base-block ?top-block)) :static)
(precondition not-eq2 (not (=?lower-block ?base-block)) static)
(precondition not-eq (not (= ?lower-block ?top-biock)) :static)
(subgoal stack-blks (on ?top-block ?lower-block) :Inal)
(effects (add (top ?struacture ?top-block))

(add (in ?top-block ?structure))
(delete (top ?structure ?lower-block))
(set (type-struct ?structure unknown))))

make-red-tower

(defplan make-red-tower (?structure ?frst-cube ?second-cube ?pyramid)

(goal (redtower ?structure))

(subgoal build-foundation (and (on ?second-cube ?frst-cube)

(in ?second-cube ?structure)

(base-block ?structure ?first-cube)) fInal t)

(subgoal add-pyramid (and (in ?pyramid ?structure)

(base-block ?structure ?frst-cu be)

43

(on ?pyramid ?second-cube)) :inal t)

(constraints (pyramid ?pyramid) (cube ?fMrst-cube) (cube ?second-cube)

(color ?pyramid red) (color ?first-cube red)

(color ?second-cube red))

(effects

(set (type-struct ?structure tower))

(set (color ?structure red))))

44

6.3.1.3 Planning for the Control of an Interpretation System

Interpretation is a complex and uncertain process which requires sophisticated evidential rea-
soning and control schemes. We have developed a framework which models interpretation as a
process of gathering evidence to manage uncertainty. The key components of the approach are
a specialized evidential representation system and a control planner with heuristic focusing.
The evidential representation scheme includes explicit, symbolic encodings of the sources of
uncertainty in the evidence for the hypotheses. This knowledge is used by the control planner
to identify and develop strategies for resolving the uncertainty in the interpretations. Since
multiple, alternative strategies may be able to satisfy goals, the control process can be seen to
involve a search. Heuristic focusing is applied in parallel with the planning process in order
to select the strategies to pursue and control the search. The control plan framework allows
the use of a flexible focusing scheme which can switch back and forth between strategies
depending on the nature of the developing plans and changes in the domain.

6.3.1.3.1 Introduction

Interpretation is the process of determining a high-level, abstract view of a set of data based
on a hierarchical specification of possible viewpoints. Hypotheses representing interpretations
of some subset of the data are developed using the hierarchical support relations to identify
the legal "evidence" for the hypotheses. Complex interpretation tasks require sophisticated
evidential reasoning and control schemes which can deal with the uncertainty inherent in the
interpretation process. For example, combinatorial considerations preclude complete construction
and evaluation of all potential interpretations: control must be exercised over the creation and
refinement of hypotheses. This means that the system must compare alternative hypotheses
based on partial knowledge without being sure whether it has even created all of the correct
interpretations. In many domains the uncertainty is compounded by the volume of data being
too large to be completely considered and/or by the data being uncertain and possibly incorrect.

We have developed an interpretation framework based on a model of interpretation as a
process of gathering evidence to manage uncertainty. The key components of the approach
are a specialized evidential representation system and a control planner with heuristic focusing.
The evidential representation scheme includes explicit, symbolic encodings of the sources of
uncertainty in the evidence for the hypotheses. That is, evidence provides uncertain support
for a hypothesis because there are conditions under which the evidence may fail to support the
hypothesis: the sources of uncertainty in the evidence. For example, while some piece of sensor
data in a vehicle monitoring system can be used to support a particular vehicle hypothesis, the
resulting evidence is uncertain because the data may actually be due to a sensor malfunction or
may support a competing, alternative vehicle hypothesis. Our model of interpretation associates
a set of sources of uncertainty with the evidence for the hypotheses: partial evidence, uncertain
evidence inference, uncertain evidence premise, alternative evidence interpretation (representing
the relations between alternative hypotheses), conflicting evidence, etc. This knowledge is used
by the control process in elucidating strategies for meeting the problem-solving goals since the
purpose of interpretation actions is to resolve the uncertainty in the hypotheses. The evidential
representation scheme is discussed in section 6.3.1.3.2.1.

Control decisions are made through an incremental planning process which identifies, selects,
and implements problem-solving strategies. The available strategies are defined as a hierarchy of
control plans. Control planning involves determining the subgoals of the current plan which must

45

be satisfied next and then matching each subgoal to the possible control plans to determine how it
might be satisfied. Primitive control plans represent actions and have corresponding functions for
executing the actions. Planning and execution are interleaved (i.e., the plans are only elaborated
to the point of selecting the next action-because the outcome of actions is uncertain). In
general, there will be many partial control plan instances which could be further elaborated at
any point in the processing (i.e., many possible strategies for pursuing the system goals) The
alternative control plan instances represent the choices of which hypotheses to resolve uncertainty
in, what sources of uncertainty to eliminate, and how to do it. Thus, one of the major issues for
interpretation systems is the development of an effective focus-of-attention scheme. In our system
focusing is accomplished as part of the multi-stage process of refining and elaborating the control
plans. Maintaining a framework of control plan instances allows the system a great deal of control
flexibility since the focus-of-attention can move back and forth between strategies by refocusing
in the plan instance hierarchy. Refocusing decisions are based on data-directed factors such as
the outcome of control plans, the characteristics of the developing interpretation hypotheses, and
data availability. Control planning and focusing are discussed in section 6.3.1.3.2.2.

The work presented here grew out of our experience developing a focusing scheme for plan
recognition [17]. Plan recognition systems have tended to ignore the practical aspects of focusing
the interpretation process and of comparing alternative hypotheses to determine just what it is
that the system believes. The scheme we developed used an explicit record of the application of
focusing heuristics to guide the system and allow it to revise its interpretations. However, the
granularity of the control was too coarse for many domains, the focusing assumptions informa-
tion was of limited value in controlling backtracking, and hypothesis uncertainty was confused
with the control decisions (see [16]). Of interest to us also has been work on planning for control
by Clancey [19], Hayes-Roth [42], and Durfee and Lesser [30]. However, none of these systems
provide a completely suitable framework for interpretation. Clancey's tasks and meta-rules are
really control plans and their substeps. The framework is limited by the fact that meta-rules
directly invoke subtasks so there is no ability to search for and consider alternative strategies;
focusing is implicit in the meta-rule preconditions. Of course, this may be fine for classification
problems [20] which can be more exhaustive than can interpretation systems. The Hayes-Roth
work on blackboard systems for control is more general than our work (which concentrates on
interpretation). However, this generality means that little guidance is provided in how to struc-
ture control knowledge (e.g., the need for uncertainty knowledge as a basis for elaborating control
plans). Another drawback of the control blackboard approach is its reliance on an agenda mecha-
nism which must consider all possible actions on each loop. By contrast, focusing in parallel with
the control plan hierarchy as we do provides, in effect, a partitioned agenda: only those actions
immediately applicable to the in-focus plan or goal are considered. The incremental planning
approach of Durfee and Lesser builds abstract models of the interpretation data and uses these
models to guide further processing. This idea cn be handled as one type of problem-solving
strategy in our system with the addition of appropriate abstract operators and control plans rep-
resenting the strategy. Most work on evidential representation systems relies on having a fixed set
of alternatives among which to partition belief (as in classification problems) and having atomic
hypotheses. As we discuss in section 6.3.1.3.2.1, this is not the case for interpretation so such
work is not directly applicable. Our use of symbolic representations of uncertainty was inspired,
in part, by Cohen's work on symbolic representations of evidence called endorsements [211. These
symbolic representation of uncertainty make it possible to understand the relations between the

46

Control Plan Interpretation
SpecificationFge Specifiction

nHeuristic uonditioval i
Fousing Fotu ing i

3PPlanning Functions Forms Evidential
KSs I.nference KSs

Plans t Controller Hypothese s
Blackboard Blackboarda o

*" Data Gathering
Control Data Sensors. nSs

Figure : Architecture of System

hypotheses and the methods applicable to resolving the uncertainty. Thiss r important because
numeric summaries of evidential uncertainty do not provide the kind of information needed to
understand how to go about resolving the uncertanty in the hypotheses.

6.3.1.3.2 Planning to Resolve Uncertainty

Figure 1 illustrates the major components of our system. The controller is responsible for ex-
ecuting the basic control loop (see Figure 4). Control plan instances created by the planning
process are maintained on the Control Plans Blackboard. The expansion of the control plans is
accomplished using Planning KSs which are created from the Control Plan Specifications. Inter-
pretation hypotheses are developed by executing interpretation actions using the corresponding
Evidenti 1 inference KSs and the Data Gathering KSs. The hypotheses are maintained on the
Interpretation Hypotheses Blackboard along with information about the evidence supporting the
hypotheses, the uncertainty in that evidence, and the relations between the hypotheses. The
Heuristic Focusing Functions'are defined as part of the Control Plan Specifications and are ap-

plied to the control plans under the direction of the controller. The Conditional Focusing Forms
are essentially demons which can be defined by the focusing heuristics in order to modify the
flow of control and refocus within the control plan hierarchy. The satisfaction condition of each
of these functions is checked following the execution of an inference or data gathering KS.

6.3.1.3.2.1 Evidence and Sources of Uncertainty

For each class of interpretation hypothesis, H, the interpretation hierarchy specification defines
both a set of sets of lower-level, support hypotheses, {{Si}j, and a set of higher-level, explanation
hypotheses, fEi4. Hypotheses may be supported by multiple sets of supporting hypotheses to
model those domains in which there can be multiple sources of edence. For example, in vehicle
monitoring, vehicles might be supported by data from a variety of sensor types so that {Sill
might represent the support from acoustic sensors and f Si}2 that from radar. The lowest-level
units in the hierarchy correspond to the data to be interpreted. The highest-level units represent
the most abstract interpretation of the data and require no explanation for their occurrence.

47

The model of evidence that we use is based on the requirements for control (i.e., that the
sources of uncertainty for each hypothesis can be used to drive the control process). At any
point during the interpretation process, each hypothesis instance is based on a set of evidential
inferences of the form: Sk, =: H (supporting evidence) or E =: H (explanation evidence) where
Sk, E {Si}, {S,}i E {{Si}j}, and E E {Ei}. There are then the following potential classes of
sources of uncertainty for the correctness of a hypothesis:

" Incomplete Evidence:

- The set of supporting evidential inferences {S,}1 (where Sk, E {Sj}1)
may be incomplete (i.e., {Sj}i C {Sill).

- There may not yet be any explanation evidence.

" Uncertain Evidence:

- The premise hypothesis of an evidential inference may be uncertain (i.e.,
some Sk or Ek is uncertain).

- There may be alternative interpretations for the evidence-that is,
for some Skin{Sill the correct inference may be Sk, = H'.

- There may be alternative explanations for the hypothesis.
- It may be uncertain whether an inference satisfies the hierarchy constraints (i.e., it is

uncertain whether {S,}i C {S} 1 or whether E E {E} for H).

" Conflicting Evidence:

- Support evidence doesn't exist (i.e., some Sk, doesn't exist for H).
- Explanation evidence doesn't exist (i.e., no E E {E} matches H).

As evidential inferences are made by the interpretation process, symbolic expressions are
created which represent the specific instances of these classes of uncertainty which exist in the
evidence. These symbolic expressions represent the sources of uncertainty in the evidence and
are associated with the hypothesis the evidence supports. For example, the Attack hypothesis
in Figure 2 includes the expression, (Alt-Interp "track" "recon"), to represent the uncertainty
in its supporting track evidence due to the existence of an alternative interpretation for the
track (the Recon hypothesis). Further examples of the symbolic sources of uncertainty may
be seen in Figure 5 as the result of the plan Get-Sources-of-Uncertainty (which determines the
sources of uncertainty which exist in the specified hypothesis). We have also used this framework
to extend the knowledge typically found in an interpretation system by including sources of
uncertainty for the evidential relations which do not result from alternative interpretations due
to interpretation hypotheses. For example, acoustic sensor data in a vehicle monitoring system
provides uncertain support for a vehicle because the data may be the result of a sensor malfunction
or a weather disturbance. We can specify such factors as sources of uncertainty for particular
evidence even though these factors are not explicitly included as interpretation hypotheses (there
is no sensor malfunction hypothesis in the interpretation specifications). Because we represent
these uncertainty factors, knowledge can be applied to confirm or disconfirm the uncertainty.
However, when the methods for discounting these uncertainties require evidential reasoning and
interpretation, then the factors must be included as additional interpretation hypotheses (e.g.,
ghost tracks).

48

Attack

support ! Recon

Track = ac

I'st sppoos

Vehicle Vehicle
Ot=i Ot=2 I

Figure 2: Hypothesis Representations

Interpretation hypotheses are compound structures because they may include parameters.
The values of a hypothesis' parameters are defined in terms of the parameters of its support and
explanation hypotheses. The inclusion of parameters (with continuous values) is one of the key
characteristics of interpretation problems which distinguishes them from classification problems.
Clancey '20] contrasts classification problem- solving in which a solution is selected from a fixed
set of alternatives with what he calls "constructive" problem solving in which a solution must
be "formulated." He also points out that most medical "diagnosis" expert systems are really
doing classification and are only usable for routine diagnosis in which the possibility of multiple,
interacting diseases is ignored. Interpretation is clearly a form of constructive problem solving.
We don't simply gather evidence to decide among a set of predetermined alternatives, but must
gather evidence just to determine what the set of alternatives consists of. For example, in vehicle
monitoring there is no way of knowing a priori how many vehicles the data might support nor
where the vehicles might be. Sensor evidence for vehicle hypotheses not only supports the belief
in a vehicle, it also defines the vehicle tracks by constraining the vehicle type and position.

Clancey mentions that the difference between classification and constructive problem solving
has important consequences for choosing a knowledge representation. Gathering evidence for
an interpretation hypothesis not only ju~stifies the interpretation hypothesis, it also refines it
by constraining its parameter values. Thus, every time evidence is added to a hypothesis it
may result in a change in the parameter values of the hypothesis. However, since the evidence
is uncertain, there may be alternative evidence which must also be pursued. Consequently,
multiple versions of each hypothesis, called ezten.sions, must be used to represent the alternative
hypothesis refinements supported by the (uncertain) evidence. As part of our representation of
the uncertainty in the hypotheses, we have developed a scheme for representing the alternative
extensions of hypotheses and the interrelations between these extensions and between competing
hypotheses. The advantage of this framework is that we can simultaneously reason about the
uncertainty in a hypothesis due to alternative possible extensions of the hypothesis and due to
competing hypotheses. Figure 2 shows a simple example of such an extension framework. In
this example, there are four extensions of the Track hypothesis, each of which is caused by -the
addition of evidence which further constrains the Track. Of particular interest are the alternative
extensions created by the competing interpretations of Track as support for an Attack mission
or a Recon mission. These alternative extensions are used to recognize the alternatives relation
between the support evidence for the Attack hypothesis and for the Recon hypothesis. The

49

Name Eli nate- Sourc- of-Uncertainty
Description Eliminates the sources of uncertainty fro-n the hypothesis 'hyp

until the belief in ?hyp is greater than ?belief.
Goal Form (Have-Eliminated-SOUs ?hyp ?belief)
In Variables (?hyp ?belief)
Out Variables ()
Temp Variables (?sou)
Subgoals ((Have-Source-of-Uncertainty (Have-SOU ?hyp ?sou))

(Have. Eliminated-SOU . (Have-Eliminated ?hyp ?sou)))
Sequence (ITERATION (GREATER (belief ?hyp) ?belief)

(SEQTENCE H&e-Source-of-Uncertainty Have-EiixninatedoSOU))
Constraints ()

Figure 3: Control Plan Specification

representation framework also allows us to represent the relations between evidence at different
levels in the evidential hierarchy. For instance, additional evidence gathered for one of the
vehicle hypotheses may constrain that hypothesis in such a way that it is only consistent with
either the Attack hypothesis or the Recon hypothesis-but not both. Since this evidence is
uncertain. though, it cannot be assumed that it is correct. The representation creates alternative
extensions of the relevant hypotheses in order to represent the relations created by the addition
of this evidence.

The power of this representation comes from its usefulness for differential diagnosis. The ba-
sic strategy for resolving interpretation uncertainty is to gather support and explanation for the
hypothesis (or else explain why the evidence cannot be found) and then do differential diagnosis
to discount alternative uses of the data. Having complete support and explanation evidence for a
hypothesis provides necessary evidence for the hypothesis, but it does not confirm the hypothesis
because there still may be alternative explanations for all of the evidence. Thus the only way
to gather sufficient evidence to confirm the hypothesis is to do differential diagnosis on the evi-
dence. The explicit sources of uncertainty information in conjunction with the representation of
hypothesis extensions provides the basis for doing this. In the example ii, Figure 2 the knowledge
of the alternatives relation between the evidence for the Attack and Recon hypotheses allows us
to understand why each is uncertain and what must be done to resolve the uncertainty. It also
allows us to understand that each of these hypotheses negatively aflects the belief in the other.
Thus instead of trying to directly support a hypothesis we might aso resolve its uncertainty
indirectly by disproving its alternative.

Uncertainty in a plan hypothesis is typically resolved by gathering evidence to directly elim-
inate the sources of uncertainty for the hypothesis. However, in some domains it may also be
possible to resolve uncertainty by gathering independent evidence for a hypothesis (i.e., using
alternative sources of evidence). It should be noted, though, that evidence is not necessarily
independent just because it is based on a separate source; independent evidence must include
independent sources of uncertainty. For example, if evidence from radar and from radio emissions
detection could both be affected by the same kind of weather disturbances then one source of
evidence could not be used to resolve this source of uncertainty in evidence from the other source.

6.3.1.3.2.2 Control Plans and Heuristic Focusing

Control plans are defined using specifications like the one in Figure 3 for the plan Eliminate-
Sources-of-Uncertainty. The goal of the plan is specified by the Goal Form, (Have-Eliminated

50

repeat: Pursue-Focus on each element of Current-Focus-Set until nil.

Pursue- Focus(focus)
case on type(focus):

plan Focus on variable bindings to select plan instances for Current-Focus-Set.
Expand plan nstances to next subgoals.
Focus on subgoals to select subgoals for Currmt-Focus-Set.

subgoal Match goal to applicable plans.
Focus on plans to select new focus elements for Current-Focus-Set.

primitive Execute primitive plan action to get result.
Update plan states and select new focus element for Current-Focus-Set.
Check refocus and subgoal conditions.

Figure 4: Control Planning Loop

SOUs ?hvp ?belief). All of the variables in the goal form must be listed in either the Input
Variables clause or the Output Variables clause of the specification. Input Variables must be
supplied to the plan when it is instantiated and Output Variables are bound upon completion of
the plan to return results. Many actions are capable of returning multiple bindings for variables
(e.g., determining an available sensor unit). To deal with this fact, variables are allowed to take
on multiple valued values which represent a set or range of bindings. Focusing then determines
the value(s) to use in subsequent plan expansion. This example has the input variables ?hyp and
?belief in the goal form and no output or result variables. In addition to the input and output
variables, the plan specification also includes a Temp Variables clause which lists variables used
to hold any subgoal results that are not part of the plan goal form. Here, the temporary variable
?sou is used to hold the source of uncertainty being worked on by the plan. Each plan is realized
by a sequence of subgoals. The subgoals of the plan are defined in the Subgoals clause in
terms of the goal forms for the subgoals. These goal forms are used to identify control plans
applicable to satisfying the subgoals by unifying the subgoal goal forms with the control plan
goal forms of all possible control plans. In the example, there are two subgoals, Have-Source-of-
Uncertainty and Have-Ehminated-SOU, whose goal forms are specified. The subgoal sequence is
specified in the Sequence clause. This clause uses a shuffle grammar to express strict sequences,
concurrency, alternatives, optional subsequences, and iterated subsequences. Eliminate- Sources-
of-Uncertainty iterates a sequence of the two subgoals until the required level of belief in ?hyp is
reached. The two subgoals represent the actions of identifying the current sources of uncertainty
in ?hyp and eliminating a source of uncertainty in ?hyp. The plan thus proceeds by identifying
the sources of uncertainty, selecting (through focusing) a source of uncertainty to be eliminated,
eliminating the source of uncertainty, and repeating this sequence as necessary. The sequencing
constraints of the Sequence clause can be augmented with additional ordering constraints and
constraints on the subgoal variable values by placing additional conditions in the Constraints
clause.

The basic control planning loop is detailed in Figure 4. An example control plan instance is
represented in Figure 5 as an AND/OR tree of plan and subgoal nodes. The situation represented
is such that the top-level plan to solve the interpretation problem has created a subgoal of
resolving the uncertainty in the Attack hypothesis of Figure 2. In order to pursue this subgoal,
the subgoal form is unified with the goal forms of the defined control plans to determine which
plans are applicable to satisfying the subgoal. In this case, only a single plan is relevant to
satisfying this goal, Eliminate-Sources-of-Uncertainty, the plan whose specification was shown
in Figure 3. In general, there would be multiple matches corresponding to multiple possible

51

Have-Resolved-Hyp-Uncertainty
?hyp = "attack"

Elffiminate-Sources-of-Uncertainty
?hyp = "attack"

Have-SOU Have-Eliminated-SOU

'hyp = "attack" = "attack"
'?sou = Vehicle-ID-Constraint'

I---------------------------- --------- ----------

Get-Sources-of-Uncertainty min - "attack"

?hyp = "attack" ?sou = Vehicle-ID-Constraint

{ Vehicle-ID-Constraint Have-Created-Evidence
Altitude-Constraint ?target = "attack"

(Alt-Interp "track" "recon") ?etype vehicle

(Prenmse "track")}
SG at her- lRadar- Evidence LGather-Acoustic- Evidience

?target = "attack"] ?target ="attack"
?etype =vehicle ?crypt vehicle

Have-Radar-Data Have-Acoustic-Sensor-Data
- It

---------F - ------- - ------ -------

Subgoals

Figure 5: Control Plan Instance

strategies for satisfying the goal and focusing knowledge would be applied to select the plan(s) to
focus on. Pursuing an in-focus control plan means expanding the control plan to create subgoals
representing the substeps of the plan which need to be satisfied next. The first two subgoals of
the Eliminate-Sources-of-Uncertainty plan are shown in Figure 5 even though they are sequential
steps (signified by the horizontal arrow between their arcs). The first subgoal, Have-SOU, can
be satisfied by the primitive plan, Get-Sources-of-Uncertainty. Primitive plans represent actions
which may be carried out with corresponding Knowledge Sources. Primitives may generate
information for the planning process (e.g., determining an available sensor to generate new data)
or may generate interpretation evidence (e~g., to create an evidential inference). Actions may
fail or may succeed and return results. In the case of Get-Sources-of-Uncertainty here, the action
succeeds and returns a multiple-valued value consisting of the symbolic representations of the
current sources of uncertainty in the attack hypothesis. This result is bound to the variable ?sou
of the primitive and the status of the plan is set to complete. The outcome of the action (the
change in status and the variable bindings) is propagated to the subgoal the primitive satisfies
and then in turn to the plan containing the subgoal. The change in the state of the subgoal may
mean that this plan has failed or has succeeded which would cause additional propagation In the
example, it simply changes the state of the plan so that it is expecting the next subgoal (Have-
Eliminated-SOU) and binds the temp plan variable ?sou (which will be used to bind the subgoal

52

variable ?sou). Multiple-valued values such as that just bound to ?sou are used to represent a
set of alternative bindings for a variable (i.e., uncertainty over the correct value). Because ?sou

is used as an input to the next subgoal and because it has a multiple-valued value, it is necessary
to apply focusing knowledge at this point to select the value(s) to be used for further expansion.

The single-value version(s) of the subgoal are then used to match and select applicable control

plans. In the example, the heuristic focusing knowledge in the Eliminate-Sources-of-Uncertainty
control plan which is associated with the variable ?sou, has selected the source of uncertainty

Vehicle-ID-Constraint as the (sole) in-focus binding for ?sou.
Focusing heuristics represent meta-level knowledge relative to the knowledge in the control

plans. Whereas control plans embody problem-solving strategies for interpretation, focusing

heuristics embody strategies for selecting the appropriate problem-solving strategies. In our
framework, focusing heuristics are associated with particular control plans. There are several
points at which focusing decisions must be made so we partition the focusing knowledge into
four different classes: variable, subgoal, matching, and updating. Variable focusing knowledge is
associated with each of the variables of the control plan environment and is used to select among

competing bindings for a variable. This occurs when actions return multiple-valued values (as
discussed above). Subgoal focusing knowledge is used to select among multiple active subgoals fo:
a plan instance. Control plans can specify that certain subgoal sequences are able to be carried
out in parallel, however, it still may be preferable to sequence the subgoals due to uncertainty
over their satisfaction and results. Matching focusing knowledge is used to select among the
multiple plans which are applicable to satisfying a subgoal when there are multiple plans goal
forms which match a subgoal form. Updating focusing knowledge is associated with each subgoal

of a control plan and is used to decide how to proceed when a plan for satisfying the subgoal
completes (succeeds or fails). In general, plan expansion is not exhaustive so completion of a
plan will leave alternative expansions of the plan and alternative matching plans which might

be pursued to try to satisfy a subgoal. Updating heuristics decide whether to accept a result
and propagate it or to pursue existing alternatives instead. Thus this knowledge is partially

responsible for controlling "backtracking" of the system.
A common problem with meta-level focusing knowledge is conflicts. That is, we may have

heuristic knowledge that says to "Prefer A" and other knowledge that says to "Prefer B" instead.
The cause of such a conflict is the generality of the heuristics which fails to provide information
about the proper context in which to apply the knowledge. For example, general heuristics for

selecting the "best" data to use to create evidence might say to prefer data that is: well sensed,
in time slices with a small number of data clusters, in tight dusters, etc. These heuristics may
very well conflict by preferring different data. However, if we understand the purpose for which
the evidence is to be used, we can avoid this problem because we understand that certain data

characteristics a:-e most important in particular contexts. Thus, the number of time clusters is
less critical for extending a track than for creating evidence of a new track since the existing
track constrains the data selection. Hierarchical control plans provide context with which to
disambiguate heuristics since the control plan structure represents the purpose of the plans.
Thus, by associating heuristic focusing knowledge with particular control plans and allowing the
heuristics to examine the control plan hierarchy we provide the context to disambiguate the

heuristics.
The basic control process described above is highly top-down and depth-first. However, the

uncertainty of the interpretation process requires a strong bottom-up control component as well.

53

We accomplish this with several extensions to the basic focusing scenario which make it possible
for the system to shift its focus between competing strategies in response to the characteristics
of the developing plans and factors such as data availability. Focusing is extended by allowing
variable and matching focus decisions to be: absolute, postponed, or preliminary. Absolute
focusing heuristics simply select a single path to be pursued-subject, of course, to potential plan
failure (which is handled by the updating process). However, focusing heuristics may not always
be able to select a single "best" path to pursue. Instead, they may need to partially expand each
of several competing strategies to gather more specific information about the situation before
being able to select the best alternative.

We handle this nondeterminism by allowing multiple paths to be expanded with postponed
focusing. In order to postpone focusing and pursue multiple paths, we must specify the conditions
under which the alternatives should be reevaluated and how to reevaluate them. A postponed
focusing decision creates a refocus form which specifies the paths to be pursued, the conditions
for refocusing, and a refocus handler. Refocus conditions are evaluated following the execution of
any action (only actions generate new knowledge). When they are satisfied, the refocus handler
is invoked and reevaluates the choices within the new context in order to eliminate the multiple
foci. An example of a postponed focusing decision occurs late in the refinement of the control
plan in Figure 5. There are two control plans applicable to satisfying the subgoal Have-Created-
Evidence: Gather-Radar-Evidence, which uses radar data to create the desired evidence, and
Gather-Acoustic-Evidence, which uses acoustic sensor data. The system is uncertain about how
to proceed because it cannot be sure which source of evidence will provide the best track evidence
without knowing more about the actual data which is available. To handle this situation, the
focus decision is postponed until the first subgoal of each alternative plan is satisfied (i.e., until
the potential data is determined). The refocus handler is then used to evaluate the focusing
alternatives in light of the additional information by evaluating the relative quality of the available
data for each alternative plan.

Preliminary focus decisions are similar to postponed decisions except that refocusing involves
a reexamination of all of the original alternatives as opposed to just those that were initially
focused on. Preliminary focus decisions are used when one alternative is likely to be the best-

subject to certain reservations about its progress or under a particular assumption about the
situation. The refocus conditions can then monitor the progress of the choice or the validity
of the assumptions. For example, they may be used to limit the amount of effort expended on
one alternative by including refocus conditions which set a limit on the amount of time to be
expended or the level of completion to be reached. This is important in plans like Eliminate-
Sources-of-Uncertainty shown in Figures 3 and 5. Resolving the uncertainty in one particular
hypothesis to the exclusion of all other alternatives could result in the system missing important
domain activities or losing the opportunity to gather useful data. Thus such a plan would be
selected with a refocus form which limits the amount of time spent on the plan or causes the
choice of the plan to be reconsidered following each plan iteration.

Preliminary focus decisions may be combined with postponed decisions in order to pursue
multiple options, refocus among them, and still limit the entire choice. They make it possible to
define opportunistic methods for refocusing. Preliminary and postponed focus decisions also con-
trol the system's backtracking since they effectively define the backtrack points and the conditions
under which the system backtracks. This provides the system with a form of nonchronological
backtracking for a domain where dependency-directed backtracking is ineffective [16]. Toward

54

this end, the refocus conditions rn~y also refer to plan failure.

6.3.1.3.3 Conclusion and Status

This work is a further example of the utility of making control decisions through planning.
It expands on existing research with respect to planning for the control of an interpretation
system in three significant ways: the control task is viewed as being driven by the need to
resolve uncertainty, the uncertainty of the interpretation hypotheses is represented explicitly and
symbolically, and the process of finding the correct control plan may be seen to involve a search
process which requires focusing. The combination of control plans with parallel focusing and
a symbolic representation of the interpretation uncertainty provides a flexible framework which
can be used to implement sophisticated control strategies.

The use of control plans changes the nature of interpretation control reasoning. Typically,
control decisions have involved first rating all of the interpretation hypotheses and the data
to select the "best" item to pursue and then determining how to pursue it. Such decision!
are extremely complicated since they have to simultaneously consider a variety of factors an
they obscure the strategies being used since the strategies are implicit in the ratings functions.
The fundamental problem with focusing on hypotheses is that it's really impossible to decide
which hypotheses to pursue-let alone how to pursue them-without understanding why you are
pursuing them (i.e., without knowing what purpose they serve with respect to the overall system
goal). Rather than trying to include such knowledge (along with heuristic focusing knowledge)
within a complex rating function, the control planning process described here expresses the
problem-solving strategies as explicit control plans. The selection of hypotheses to pursue and
the methods to pursue them then flows naturally from the selection of strategies to meet the
current problem-solving goals and the instantiation of these strategies. In addition, hierarchical
focusing in conjunction with plan refinement makes it practical to express the focusing heuristics
explicitly as well. This is because only a limited number of alternatives are considered at any
point and because the control plan structure provides detailed context information.

Currently, we have a prototype implementation of the interpretation framework presented
here, which simulates a system for monitoring aircraft. A variety of data sources such as acoustic
sensors, radar, and emissions detectors are included. Additional sources of evidence such as
terrain, air defense positions, and weather information are also available. Active control over
evidence gathering can be effected through control of the operations of some of the sensors.
Interpretation hypotheses cover a variety of missions including those involving coordination of
multiple aircraft. One of the areas of current research in this project is the issue of languages for
expressing focusing knowledge. In particular, we are looking into the factors needed for focusing
in real-time applications. This includes such things as estimated processing and elapsed times
and estimates of the quality of the evidence from alternative strategies.

55

6.3.1.4 Planning with Worlds

A sequence of actions may be viewed as a series of state transitions. Existing context
mechanisms (worlds) provide an efficient means for recording and inspecting this series of
related states. Similarly, planning systems require a representation of the state at each point
in an evolving plan. However, existing world mechanisms do not correctly capture the more
complex semantics imposed by nonlinear, hierarchical plans. We examine the shortcomings of
existing worlds systems when used for planning and present a modified world system design
which overcomes these difficulties.

6.3.1.4.1 Introduction

The planning process involves the generation of a sequence of operators or actions to achieve
a desired goal state starting from a given initial state. Planners must represent the plan as it
evolves. The states in the plan comprise a set of related but distinct contexts in which queries
can be made. Mechanisms such as truth maintenance systems (TMSs), assumption-based truth
maintenance systems (ATMSs) and worlds systems provide a substantial basis for an efficient,
powerful representation of such a series of related contexts.

From its inception, difficulties were recognized in using an ATMS to model time and action.
In de Kleer's own words, ". .. problem solvers act, changing the world, and this cannot be modeled
in a pure ATMS in which there is no way to prevent the inheritance of a fact into a daughter
context."[51] Worlds systems were developed, in part, as "an approach to applying the ATMS to
the task of representing the actions."[59] Further work has attempted to use the worlds mechanism
in nonlinear, hierarchical planning [34, 53].

Our experience with using a worlds mechanism in such a planning system, however, has
revealed that existing worlds systems fail to fully and correctly capture the semantics implicit in
nonlinear, hierarchical plans. Briefly, there are three problems. The semantics are unacceptably
affected by the order in which assertions are made. This results from an untenable assumption
about "effectiveness" of actions [59]. Planners also require a richer set of network manipulation
primitives than those present in the worlds mechanism. In particular, the planning process
requires adding and deleting inheritance links and creating and deleting worlds. Finally, the
query mechanism in the worlds system is based only upon ancestor worlds while planners must
also consider worlds that are not now, but may later be ancestors. Here, our goal is to describe
these shortcomings and present a modified world system design which overcomes these difficulties.

In the following section, we describe the requirements imposed upon worlds systems in order
to support planning. An extended query mechanism for nonlinear planning is developed in
Section 6.3.1.4.3. Section 6.3.1.4.4 explains the extensions necessary to correctly support plan
network modifications.

6.3.1.4.2 Using Worlds for Planning

In general, nonlinear hierarchical planners represent plans as directed acyclic lattices of plan
nodes, with partial temporal orderings among the nodes. The nodes contained in these plan
networks represent both primitive actions and more abstract goals. To refine a plan, the planner
expands the plan network by either phantomizing or expanding the goal nodes. A goal node may
be phantomized by either recognizing that its goal is already satisfied at its current point in the

56

plan or by imposing additional orderings between nodes in order to assure the goal's satisfaction.
If the goal cannot be phantomized, an activity is selected to accomplish the goal and a plan
network representing that activity replaces the goal node in the original plan.

To perform this style of planning, a planner must be able to determine if a (goal) fact is true
at a particular point in a plan and, if not, what additional constraints could be imposed on the
plan to assure that it is true. We call this part of the planner a query mechanism. The planner
must be able to transform the plan so that it satisfies additional constrainms. These additional
constraints may be discovered by the query mechanism or derived from domain knowledge and
heuristics about it. The heuristics and domain knowledge used by a planner are crucial, but
beyond the scope of our discussion here. There are three types of constraints which the plan
network must accommodate. Temporal ordering or parts of the plan is the first constraint type.
Asserting that a fact is true (or false) at some point in the plan is the second type. Binding a
variable to another variable or a domain object is the final constraint type. Since hierarchical
planners search a space of partial plans it is also important to be able to undo any of these
transformations.

Thus, in order create and maintain a plan network [7], one must be able to:

1. Generate a partially ordered, acyclic plan network;

2. Inquire whether a fact is necessarily true as some point in a plan or whether it can me
made true by imposing additional constraints;

3. Expand any action in the plan into a network of actions;

4. Add arbitrary additional orderings between actions (such that they do not violate any
existing orderings); and

5. Bind variables to other variables or domain objects.

Existing worlds systems are almost, but not quite, ideally suited for such a task. In this
section we show how current worlds systems fail to correctly capture the semantics of these
nonlinear plans and how their functionality must be augmented to support this type of planning.

To represent the state of the domain at each point in a plan, a world hierarchy may be
constructed corresponding to the developing plan network. Thus, for each node in a plan network
there exists a corresponding world. Temporal "successor" links between nodes in the plan network
are mirrored by "descendant" links between the corresponding worlds in the world hierarchy.

As we will see, the functionality of current worlds systems must be modified and augmented
to provide this support. In particular, existing query mechanisms must be modified and network
modification facilities must be extended. In the following sections, we examine the semantics
required by plans more closely and present modified query and network modification mechanisms
in detail.

6.3.1.4.3 The Semantics of Queries

In order to understand the semantics imposed upon a worlds system by a nonlinear hierarchical
planner, we must first define the semantics of such a plan. We begin by defining a plan as a linear
set of plan states linked by actions. We then extend this to allow variable references within the
actions. Finally, we further extend the definition to include nonlinear plan networks.

57

6.3.1.4.3.1 Queries in Linear Plans

Our initial definition of a linear plan closely follows that of [65]. First, we define:

1. C is a set of all possible wffs;

2. WV is the set of all possible world states, (i.e., all possible subsets of C);

3. .1 is a set of initial states such that I E C;

4. 9 is a set of goal states such that 9 E C;

5. 0 is a set of operators (or actions) where 0, E 0 and o, -< P, D, A > where P is the set
of preconditions; D is the set of deleted wffs; A is the set of added wffs; and P, D and A
are each subsets of C;

6. For each operator o,, we define an 6,n such that:
m (\D) uA if PE S

I I otherwise

Thus, a linear plan may be defined as the vector ol ... on. We evaluate a fact f for a plan
1 -..., using a query function Q where:

Q(0o ... On, f) M f E1o ... o 6s)for all s E I.

6.3.1.4.3.2 Queries in Linear Plans with Variables

We next consider the case where variables are contained in either the query or the wffs. A plan
now requires both the previously defined operator vector as well as an interpretation function
to represent bindings on the variables. The query mechanism must therefore take the current
interpretation into account and return the set of all minimal extensions of this interpretation
under which the queried fact is true. If the set of returned extensions is empty, the queried fact
is false; if the set contains exactly the current interpretation, the fact is true; otherwise, the fact
;q only true when the current interw,'atation function is extended to include any of the returned
interpretations.

6.3.1.4.3.3 Realistic Queries in Nonlinear Plans

The linear query mechanism can be extended to nonlinear plans by considering all linearizations
of a partially ordered plan network. In addition to the extended interpretation function described
above, the query must now also return the set of acceptable linearizations. If the queried fact is
true for all possible linearizations and the returned set of interpretations contains exactly exactly
the current interpretation, the fact is true; if there is no acceptable linearizations or if all of the
acceptable ones contain no possible interpretations, the fact is false; otherwise, the fact is only
true when one of the returned linearizations and interpretations are chosen.

Traditional world systems do not consider interactions between parallel worlds2 until the
point in the hierarchy, if any, at which they merge. Because planning systems can impose an

2We will refer to worlds as "parallel" if there is no ordering between them in a given world hierarchy. This does
not imply that they must remain unordered, only that such an ordering is not currently specified.

58

ordering between currently parallel worlds, such interactions must be considered. Thus, queries
about the state of a world must consider the possible effects of assertions and deletions in parallel
worlds. In this section we introduce a realistic query for nonlinear plans.

As pointed out in [59], the "truth" of a fact in a merge world can be ambiguous and may
be interpreted in several different ways. In an optimistic merge, a fact is true if there are any
linearizations of the parallel worlds in which the fact is true. Conversely, in a pessimistic merge, a
fact is true only if it is true in all pinearizations. For planning systems, the potential for ambiguity
exists not only at merge worlds, but at any world that is parallel to some other world. Realistic
queries account for these potential interactions with parallel worlds and return the conditions
under which a fact f true in a world w.

Consider first an optimistic query of a fact f' in world w. The function qo(f', w) returns the
set of worlds which caused f' to be true at w. That is, f' was asserted at each of these worlds,
w', and was not added or deleted at any world between w' and w.
Formally, the optimistic query is defined:

q.(f', w) = {w' I -,after(w', w) A Add(f', w') A

-3w" I efore(w", w) A before(w', w")A

Add(f', w") V Delete(j', w")) }

where "before" and "after" indicate strict orderings and where Add(f, w) indicates that the fact
f was asserted in world w and Delete(f, w) indicates that the fact f was deleted in world w.

Furthermore, the fact being queried may contain variables. An asserted fact need not be
exactly equal to the queried fact in order to make it (possibly) true. We must therefore consider
the assertion (and deletion) of facts which unify with the queried fact.

A query can be satisfied by finding a fact which unifies with the queried fact and is believed
to be true in the world in which the query is made. More formally, qu(f, w) returns the set of
pairs of facts and worlds (< f', w' >) such that f', which was asserted in world w', unifies with
f, and f' is optimistically true in w.

qu(f,tw) = {<f',w'> U(f,f')Aw'Eqo(f',W)}

This, however, is too optimistic. The function d computes the set of worlds at which deleted
facts might make the query false (i.e., the "deniers" of the queried fact). We identify these worlds
to allow the planner to prevent these worlds from interfering. This can be done either by "linking
out" these worlds, or by constraining variable bindings so that the asserted facts, the deleted
facts and the queried fact do not all unify.

More formally, given a query of fact f at world w and a fact f' which unifies with f and is
added at world w', the function d returns the set of worlds that may be between u; and w' and
at which f" (which unifies with both f and f') is deleted, thereby possibly making f false at w.3

d(f,, f',uw') {< f",w" >f Delete(f",w") AU(f,f',f") A

-nbefore(w", w') A -after(w", w) }
3Even if a fact is queried at the same world in which it is made true, there may be a parallel world at which

it is denied. If this semantics is not what is desired, (i.e., if a fact should always be considered rue in a world at
which it is asserted, then a clause requiring that w and w' be different can be added).

59

Finally, the realistic query of fact f at world w returns tuples containing assertions which

could make f true at w and sets of worlds which potentially defeat those assertions.

q,(f,w) = { < f',w',d(f,w,f',w') >I< f',w' >E qu(f,w)}

The results of a query to q, may be interpreted as follows:

1. If no tuples are returned by q,(f, w), there is no known way to make f true in world w.

2. f is known to be true in world w if and only if the returned set of tuples contains at least
one element such that:

(a) the third element (i.e., the set of deniers) is empty,

(b) w' is strictly before w, and

(c) f = f'

3. If neither of the above conditions hold, each tuple represents a way in which f can be made
to be true in w. to accomplish this, w' must be made strictly before w and the following
must be done for at least one tuple:

(a) variables in f' must be bound so that f' = f, and

(b) for all deniers in the tuple, either:

i. variables in f" must be bound such that -U(f', f"), or

ii. orderings must be imposed between worlds such that t" occurs either strictly
after w or strictly before w'.

Note that for a tuple where the deniers cannot be removed (i.e., adding the required world
orderings is not possible and no satisfactory bindings can be made) the tuple offers no support
for the fact and may be deleted.

6.3.1.4.4 Modifying the Plan Network

Plan networks are modified by changing world states and by changing the structure of the plan.
The order in which these changes are made should not affect the semantics of the resulting plan.
That is, given an initial state of the world hierarchy and a set of transformations, a realistic
queryj on the world state resulting from any ordering of these transformations produces the same
result. However, the semantics of existing worlds systems are affected by the order in which
both of these types of transformations are made. The following section explains how the realistic
query is implemented so that it is independent of the order in which adds and deletes are made.
Section 6.3.1.4.4.2 explains how the network modification primitives are madd order independent.

6.3.1.4.4.1 Dependence on Assertion Order

In existing worlds systems, the effectiveness assumption prevents assertions and deletions from
being recorded unless they change the state of the world in which they are made. This results in
queries being sensitive to the ordering in which the assertions and deletions are performed. No

60

such assumption is made in our system and the resulting query mechanism is therefore completely
independent of the ordering of the transformations. This is accomplished by maintaining lists of
worlds in which a fact is asserted. When a deletion is performed, the list of assertions for that fact
is searched and ineffective assertions are modified to obtain the correct semantics. An analogous
modification is needed to correct the semantics for deletions performed before additions of the
same fact.

6.3.1.4.4.2 Modifying the Plan Structure

Implicit in existing worlds systems is the assumption that the structure of a world hierarchy will
only be modified by the addition of new leaf worlds. This assumption of monotonicity in existing
worlds, as embodied by the effectiveness assumption, is not valid when using the world hierarchy
to represent a plan. First, ordering links may be added between existing worlds, corresponding
to the addition of temporal orderings of plan nodes. Second, new worlds may be created which
have existing worlds as children, such as during the replacement of an existing goal node with
its expansion.

Consider the case in which a fact is asserted in one world and deleted in a parallel second world.
The deletion is represented by causing the assumption that the fact is asserted to be inconsistent
with the world in which it is deleted. The ATMS representation of such an inconsistency is called
a "nogood" set. If the worlds become ordered as a result of the planning process such that the
"deleting" world precedes the "asserting" one, the existing set of nogoods would make the fact
appear false in those worlds below and including the original join world. To compensate for this,
certain nogoods can be removed. This set of nogoods is determined as follows.

Consider a world hierarchy containing two nodes, wh and wt (for head and tail) which are
not currently ordered but are to be linked such wt is made a child of wh. We first define the
maximal common ancestors of these two nodes, mca(wh, wt), to be the set of worlds, w., before
both wh and wt such that there is no intervening world, wi, which comes strictly after w. but
before both wh and wt.

mca(wvh, wt) = {w. I before(w., wh) A before(w., wt) A

-(3wt) I (before(w1 , Wh) A before(wi, wt)A

before(tw., w1))}

Similarly, minimal common descendants of the nodes, mcd(w;h, wt), are the worlds, wd, which
both wh and t, are before such that there is no intervening world, wi, which comes strictly before

Wd but both wh and wt are before.

mcd(wh, wt) = {Wd I before(wh, wd) A before(wt, wd) A

-,(3wl) I (before(wh, wi) A before(wt, wi)A
before(Wio, wod)) }

Next we need to find the worlds in which assertions and deletions could possibly be affected.
For asserts, we find worlds, W+(tWh, Wt), which come before Wh and which is strictly preceded by
at least one maximal common ancestor. For deletions, the worlds, W -(Wh, Wt), must be preceded
by wt and must strictly precede at least one minimal common descendant.

W+(Wh,wt) = E (w.Emca(wh,Wt)) I

61

before(wa, w) A before(w, Wh)}

W-o(Wh,Wt) = {jw (3Wd E mcd(wh,wt))

before(w, wv) A before(wt, w)}

Finany, the set of "nogoods", ng(wh, Wt), may be expressed as triples (If, w', w") such that f
is a fact, w' is a world contained in w+ in which f is asserted, w" is a world contained in w- in
which f is deleted, and there is no known ordering between w' and w".

ng(wh, Wt) = {(f,w',w") It' E l+(wh,t) A " E -(wh,t)

AAdd(f, w') A Delete(f, w") A parallel(w', w")}

6.3.1.4.5 Conclusions

We have shown that a worlds mechanism, as previously described, is not powerful enough to serve
as a plan representation for hierarchical nonlinear planning. Starting from a detailed analysis
of these problems, we have derived a modified world semantics to support planning. We have
implemented a worlds system incorporating these extensions and this system has been used to
build a working planner demonstrating that these extensions are sufficient.

62

6.3.1.5 Plan Execution Using Human Agents

Most planning systems have been applied to simple domains. In complex domains, the
autonomy of human agents and the dynamic nature of realistic settings give rise to fre-
quent exceptional occurrences (exceptions). Rather than using a traditional error recovery
approach, we advocate the use of plan recognition techniques to identify the purposeful be-
havior underlying an exception and its contribution to an ongoing plan. We discuss a model
of plan execution and exception handling, and describe SPANDEX, an implementation of this
approach. The SPANDEX system produces explanations consisting of rationales and amend-
ments to incorporate exceptions into the current plan, allowing planning and execution to
continue.

6.3.1.5.1 Motivation

Planners can potentially be used to automate or support a variety of complex tasks [53, 70, 84i.
Most planning research, however, has been done in very simple domains (e.g., the blocks world)
The dynamic and unpredictable nature of many real world domains suggests that sophisticated
monitoring of plan execution is vital and systems should have the capability to respond to unex-
pected change. Recovery measures such as those of [1, 41, 84] have been proposea to effectively
replan around an unanticipated domain state change, allowing resumption of the task while
preserving as much of the plan as possible.

In our work, we are concerned with the special requirements of domains where a planner is
used to support the cooperative work of one or more human agents [53]. In such environments,
human input is required to guide the development of a plan for a task. In addition, execution of
plan steps will be performed by human agents as well as by the planning system. The natural
intelligence and familiarity of humans with the application domain means that their actions, even
when inconsistent with system expectations, are generally purposeful. That is, human-generated
plan exceptions should be incorporated into the developing plan, rather than "undone" using
replanning techniques.

A planner employs a set of axioms that defines the planning process and a predefined set of
domain activities and objects to generate valid plans that accomplish a particular goal. While
restricting a potentially explosive search space, the plans that are produced are stereotypical
and may not be adequate predictors of subsequent execution behavior. Our approach is to
make a conventionally produced plan "elastic" in response to exceptions and to thus allow the
continuation of planning and execution [12, 9, 11]. The domain knowledge base is used in an
attempt to transform the current plan into a valid alternative, or, put another way, to recognize
an alternate plan. During this process, additional domain knowledge may be acquired. The
overall goal of our approach is to allow the system to continue planning and execution while
incorporating the exceptions that occur in real dorains.

Here we give a detailed formulation of plan execution and the exception problem. We then
describe iterative and interactive algorithms which provide explanations for ixceptions by estab-
lishing plausible rationales and proposing corrective measures. In the final section, we describe
the implementation of these ideas in the SPANDEX exception handling system using an example
from the software development domain.

63

6.3.1.5.2 Planning

In this section, we give a formalization of the planning problem and define terminology which
is relevant to plan execution and exception handling. Our definition of the planning task of a
hierarchical nonlinear planner is similar to that proposed in [651:

Given:

w o: an initial world state

* A. a set of activities, some of which are primitive (Ap) and others which are
complex (A.);

g: a desired final goal state;

E: a set of available agents;

Determine: a partial ordering P of primitive activities AP in A which, when executed
in an initial state w by agents in E, will produce a new state containing the final goal
state g.

Activities are considered complex if they can be elaborated by the planner into sub-activities
primitive activities are associated with executable actions. The partial ordering P which rep-
resents the final plan for a task is the result of a series of transformations of the initial goal
specification g. The result of each of these manipulations is represented by a plan network,
which represents the current version of an evolving plan. A plan network is a strict partial order
and consists of the following elements 4 :

* N: a set of nodes, where each node represents a goal or activity;

* L: a set of temporal links which establish a partial ordering among the nodes;

•W a set of world states, which are snapshots of the dynamic domain knowledge
base Two of these world states are attached to each node in N to describe
the world states believed by the planner to hold before (before-world) and after
(after-world) the execution of that node;

1 1: a set of protection intervals, where each interval specification designates a
partial world state and the temporal range during which it must be maintained.

Plan networks can also be described in terms of the stage of their execution. Since the
domains we are concerned with generally interleave planning with execution, plan networks are
often partially executed. Associated with each plan network is a set of expected action nodes
which are the nodes which can be executed next. A node is in this set if and only if5 :

• it is a primitive activity node;

• all of the conditions -pecified in the node's before-world are satisfied;

• all of the node's necessary predecesso rs are complete and awaiting successors.

'More detailed descriptions of each of these elements can be found in [53].
'A more complete definition of "ready nodes" wbich defines "conditions' and "necessary predecessors" in detail

can be found in [53].

64

The process of planning is viewed as iterative transformations on plan networks. A complete
plan is a plan network which has been fully ordered, and every node is either a phantome or it
is a primitive activity node that has already been executed. Thus, a plan network represents a
class of complete plans; there are multiple possible complete plans that may result depending on
the choices of elaborations and operations that are subsequently applied. As a plan network is
further elaborated and executed by the plan network maintenance system (PNMSf53]), a plan
history is built up since a new plan network results each time a PNMS operation is performed.
PNMS operations include node expansions, the imposition of temporal orderings and protection
intervals, etc. The complete plan history is the set of all intermediate plan networks created by
the planner. Thus, the plan history is a partial order of plan networks ordered within planning
time, where the distinguished upper bound is the eventual complete plan. The relation is a partial
order since backtracking may be allowed. The plan history maintains a record of all planning
actions performed in the production of the final plan.

We define the concept of a plan wedge' in order to be able to refer to the portion of plan
history that represents the abstractions and subsequent refinements which introduced a given
node n into the plan. The concept of a wedge is important both for general replanning and in
establishing a rationale for how an unanticipated event may be relevant to the plan history. A
plan wedge for a node n is a set of nodes defined as follows:

Given the following recursive functions:

1. node-ancestors(n) which returns set of nodes containing the parent node which
produced the expansion containing n as well as all node-ancestors(parent
node), and

2. node-descendants(n) which returns all children nodes which form the expan-
sion of n, as well as all node-descendants(child) for each of the children
nodes,

a plan wedge consists of a distinguished node in node-ancestors(n) which is chosen
as the apex of the wedge, and the set of nodes in node-descendants(apex).

6.3.1.5.3 Plan Execution and Exceptions

We can now describe how exceptions arise during the planning and execution process. We sketch
the system loop in order to provide an overall context:

1. The planner completes an elaboration cycle of the current plan network.

2. An action is executed and incorporated into the plan network.

3. Inconsistencies in the plan network resulting from the executed action.are calculated.

4. Rationales are generated as justifications for the inconsistencies, along with proposed
amendments that will restore a consistent system state.

'A phantom node [8i] is a goal node which has been determined to be true at its position in the plan without
further expansion and execution.

'Our definition is similar to the definition of a wedge used by Wilkins [84] and produces the semantic equivalent.

65

5. A rationale and an amendment are chosen through an interactive dialogue with the user.
If no explanations are produced or considered acceptable, the exception may represent a
user error. SPANDEX is also capable of interpreting a limited set of common user errors,
which are based on models of procedural error types or "slips" [43, 67, 681.

6. Any inconsistencies which might rem-tin are handled by standard replanning techniques.

7. Planning and execution resume (new elaboration cycle).

In the remainder of this chapter we describe in detail the detection and explanation of ex-
ceptions.

6.3.1.5.3.1 Detection of Exceptions

Given a plan network p with an identified set of expected action nodes, an action a may be
executed with the resulting world state w. The execution event is denoted by (a, w). The
activity descriptor a consists of an operator and parameters. The operator name is assumed to
uniquely identify the activity and the parameters refer to domain knowledge base objects which
are being manipulated by this activity. For example, a might be compile-file(module-I). The
operator in this case is compile-file, where the file being compiled by this activity is module-1.

If the specification of a unifies with one of the expected action nodes, that expected action
node is processed accordingly to reflect that it has been executed, and no further changes are
made at this time to the plan network. Otherwise, a node representing a is inserted into the
network at the current point in execution time, so that it occurs after all executed nodes and
prior to any expected action node, and resulting inconsistencies are calculated.

Therefore, the problem now posed to the SPANDEX exception handling system can be stated
as follows:

Given:

* p: a partially executed plan network;

e (a,w): an event-result token;

* I: a set of calculated inconsistencies.

Produce a new successor plan-network pf which meets the following criteria:

* The set of executed nodes in p1 include all executed nodes in p;
* pt contains a node representing the exceptional action;

* pt contains no inconsistencies.

9 p/ has the same high-level goal as p.

Our general approach to this problem is to manipulate available domain knowledge to generate
plausible explanations which indicate how the current network and domain knowledge base can be
transformed to eliminate inconsistencies resulting from the occurrence of (a, w). Inconsistencies
must be one or more of the following:

1. The action type of e doesn't match with the types of any of the expected action nodes.

66

2. The action type of a matches with the type of one of the ezpected action nodes, but the
parameters of a and the parameters of the expected action node do not match.

3. As a result of changes reflected in the new world state w, the plan network may now be
inconsistent. In other words, a violation may be detected of one or more of the plan network
consistency criteria defined below:

(a) All before-worlds and after-worlds in W are internally consistent with respect to do-
main constraints.

(b) The preconditions of each plan step are satisfied in its before-world.

(c) The after-world of each plan step must be consistent with the goal of the plan step.

(d) All protection intervals in I must hold.

(e) The set of temporal ordering specifications L must be consistent.

The procedure followed up to this point (exception detection, insertion of a node representing
the exception, and subsequent problem computation) is very similar to that followed by SIPE's
exception handling component [84]. SIPE and other systems [1, 41] have also categorized po-
tential plan "flaws"' that may be introduced as a result of an unexpected state change. These
flaws can be shown to be a subset of the above categorization of inconsistencies. In SIPE, all
exceptions are treated as "mother nature" occurrences, handled by simple insertion into the plan
network followed by generic recovery actions. Neither SIPE nor other replanning systems make
any attempt to establish any correlation between an unexpected event and other elements of
the ongoing plan, whereas the remainder of the SPANDEX task is to do exactly that. In the
next section, we discuss how explanations are constructed to justify exceptions and eliminate
inconsistencies.

6.3.1.5.3.2 Explanation generation

In the previous section we have enumerated the types of inconsistencies that can result from
an unexpected user action. Explanations for these inconsistencies are generated by the con-
trolled application of a set of plausible inference rules (PIs). Each PI maps from an inconsistent
state specification S to an explanation E. S consists of a set of identified inconsistencies which
are constrained by one or more specifications of relations between domain knowledge base ob-
jects. For example, the inconsistent state specification S of the PI which is used in the example
in Section 6.3.1.5.4 is the following: "If the inconsistency is unexpected-action-type(a), and
specialization-of(action-type(a), action- type(expected-action)), then ..." The explanation E also
has two components: a rationale, and an amendment. The rationale gives a semantic basis for
the exception, suggesting its contribution to the ongoing plan. Examples of rationales are:

" This is an alternative way of performing an expected action.

" This is an alternative way of accomplishing an abstract goal or activity which is in-progress,
which means that one or more of the subnodes of the abstract node has been executed.

" This is an alternative action which represents a shortcut in the plan (some steps may be
skipped).

67

" Actions are being performed out of order and ordering may be relaxed.

" This is a new action which was not known to be part of the plan and should be added to
the static task description.

An amendment prescribes the changes to be made in order to establish the rationale and
restore system consistency. It consists of one or more of: a predefined set of plan network alter-
ations, and primitive modifications on the domain knowledge base. The plan network alterations
are composed of the primitive plan network operations delete-node, insert-node, expand-node,
and establish-ordering. Examples of plan network alterations include: 1) replacing one of the
expected actions with a node representing the unexpected action, 2) replacing a wedge containing
one of the expected actions with a node representing the unexpected action, and 3) replacing a
later activity node with a node representing the unexpected action and deleting the intervening
nodes. The modifications that may be made to the domain knowledge base include the addition
or deletion of values to a field of an object, adding or deleting a taxonomic link, or modifying a
constraint.

The most likely explanations will be generated by the application of PI rules whose incon-
sistent state specification S holds completely in the current world model, and are referred to
as complete explanations [9]. However, since we are interested in adding to an inherently in-
complete domain model, we want also to consider rules whose inconsistent state criteria are not
entirely met; we attempt to establish the missing information through interactive dialogue, thus
producing additional plausible explanations while adding to domain knowledge. In order to in-
telligently control the application of PI's, we use a set of heuristics similar to those applied to
plan recognition problems [17]:

" Completeness: Prefer a plausible inference rule which has more components in its in-
consistent state specification S that are true in the world model to a rule with fewer true
components.

" Locality: Prefer a plausible inference rule that considers an expected action (or wedge) to
one considering a later action (or wedge).

" Cost: Prefer a plausible inference rule that proposes fewer modifications in its amendment
to one proposing more modifications.

A threshold is set to limit Lhe number of explanations produced. These most likely expla-
nations are presented to the user in an interactive fashion and a choice is requested. If none of
these explanations are acceptable, the process is iterated and the next set of e..planations are
produced and presented, until an explanation is selected. If no explanation is selected, SPAN-
DEX attempts to fit the exception into one of its known common error classes. If an explanation
is selected, the amendments are applied, and SPANDEX must check the resulting network for
consistency. Any remaining violations are handled through standard replahning techniques or
through an interactive acquisition session with a human agent.

6.3.1.5.4 Example

In this section we present an example from the domain of software engineering, one of the domains
which is currently implemented in SPANDEX.

68

The overall goal of the example task is to create a new version of a software system, incor-
porating desired changes and additions. A partial plan network is generated for this task, and
is executed in conjunction with the relevant agents. Three ordered subgoals are generated for
this task: (decide-on-changes (the programmer must decide which particular changes to make),
make-changes (the editing must be performed on the appropriate modules)) are expanded and
accomplished, and have-consistent-system (the entire software system must be updated so that
changed modules are recompiled and the system is relinked).

After expanding and accomplishing the first two subgoals, the planner attempts to achieve
the third subgoal have-consistent-system by selecting the activity update-software-system. Upon
requesting verification from the user to perform the first primitive action in this activity expansion
(compile the first changed file), the user denies verification and instead initiates a unix-make
action. SPANDEX determines that an action mismatch has occurred, implying a possible attempt
at an action substitution or an out-of-order action8 . An exception record (see Figure 1) is created
to summarize the exception. The exception analyst module of SPANDEX then uses a heuristic
rationale.selector to choose a method to generate rationale records for the exception.

Unit-name: ACTION.TYPE.MISMATCH.01
Unit-comment: "The type of action performed did not match an expected action type."
Exceptional-action: unix-make-01
Exception-summary:

"The target action: compile-file-01 did not occur;
unix.make-O1 was performed."

Target.action:compilefile-O1
Perceived.action uniz.make.Ol
Rationales: alternative.action.rationale, out.of.order.action.rationale

Rationale.selector: rationale.selector.method

Rationale.records: alternative.action.rationae.01

Figure 1: Exception record (ACTION.TYPE. MISMATCH .01)

In this example, a single applicable plausible inference rule is retrieved, and SPANDEX con-
structs one rationale record, whjh represents a complete explanation (see Figure 2). In this
particular case, the record states that since the activity unix-make is a known specialization of
the activity update-software-system, the unexpected action may be a substitution for the more
abstract activity node.

An amendment record is next constructed for the explanation which specifies the changes
that must be made to the current plan network and domain knowledge in order to restore
consistency to the system. The implementation of this rationale record involves replacing the
wedge of the plan network subsumed by the more abstract parent node (update-software-system-

01) with the unexpected action (unix-make-Cl). As a side effect, the nodes in the expansion of
update-software-system-01 are deactivated from the planner's predictions (see Figure 3).

'These implications are derived from relevant plausible inference rules, as described in section 6.3.1.5.3.2.

69

Unit-name: ALTERNATWE.ACTION.RATI0NALE.O1

Unit-comnment: "The unexpected action is an alternative
to an in.progress.parent.node of an expected action."

BRationale-summary: "The unexpected action unit-make-O1 is sufficient
since its activity type is a specialization of an in-progress activity node
update-software-aystem.O1."

Status: complete
IRationale.type: Alternative.action.rationale
Subrationale.type: Specialization.ofin.progress.node
In. progress.parent.activity: update-software-system-Oi
Pending.goal.achieved: updated(SPANDEX)
Unexpected.action.goal: consistent(SPANDEX)
Hierarchy.level.difference: 2
Amendments: Replace.plan.wedge.O1

Figure 2: Rationale record for ACTION .TYPE.MISMATCH.01

Unit-name: REPLACEPLAN.WEDGE.01
Unit-comment: "Replace a wedge of the plan subsumed by a single node by a new node."
Amendment-summary: "Replace the plan wedge subsumed by

update-aoftware-ayten-O1 with uniztrnoke-Ol."
Implementation: (do

(replace-wedge update-saftware-system-0i unix-make-Ol)
(deactivate compile-file-Ol compile-file-02 compile-fl~e.03
llnk-system.Oi))

Figure 3: Amendment record for ALTERNATIVE .ACTION . LATIONA LE .01

70

6.3.2 Knowledge Acquisition

6.3.2.1 Knowledge Acquisition as Knowledge Assimilation

The assimilation of information obtained from domain experts into an existing knowledge
base is an important facet of the knowledge acquisition process. Knowledge assimilation re-
quires an understanding of how the new information corresponds to that already contained
in the knowledge base and how this existing information must be modified so as to reflect
the expert's view of the domain. Here we describe a system, KnAc, that modifies an exist-
ing knowledge base through a discourse with a domain expert. Using heuristic knowledge
about the knowledge acquisition process, KnAc anticipates modifications to existing entity
descriptions. These anticipated modifications, or ezpectations, provide a context in which to
assimilate new domain information.

6.3.2.1.1 Introduction

An often overlooked aspect of the knowledge acquisition process is the assimilation of information
presented by the domain expert into an existing knowledge base. Typically, knowledge bases are
currently constructed through a series of dialogs between an expert, or experts, in the applica-
tion domain and a knowledge engineer familiar with the target expert system. The knowledge
engineer's task is the modification of the expert system's knowledge base so as to reflect the
domain expert's knowledge. To a large extent, this knowledge acquisition task may be viewed
as a recognition problem. All of the problems facing other recognition systems are present here
as well, including: noisy data (i.e., incomplete or inaccurate information), ambiguous interpre-
tations, and the need to produce intermediate results before all the data is available. Thus, a
significant portion of this interactive knowledge acquisition task is a matching problem: How does
th% expert's description of the domain correlate with the description contained in the knowledge
base? How should the knowledge base be modified based on new information from the expert?
What should be done when the expert's description differs from the existing one?

KnAc is a system that we have developed that implements this knowledge assimilation ap-
proach to knowledge acquisition. It was developed to assist in the construction of knowledge
bases for the POISE ([27]) intelligent interface system. These knowledge bases use a frame-like
representation, described more fully in [531 and [52], to describe tas., objects and relationships
in the application domain. POISE's initial knowledge bases, for the office automation and soft-
ware engineering domains, were created by hand from interviews between a knowledge engineer
and the appropriate domain experts. Transcriptions of these interviews were examined and the
results served as the basis of the KnAc system.

It is important to note that the goal of the domain expert was not to modify POISE's
knowledge base; this was the knowledge engineer's role. The expert simply presented the domain
information, (e.g., descriptions of tasks, objects, etc.), and responded to questions and comments
from the knowledge engineer. The burden of assimilating the information, that is, recognizing
where it fit into the existing knowledge base and what additions or modifications were needed,
was not placed upon the domain expert. (Contrast this to approaches such as [31], [381, and
[48].)

KnAc supports the domain expert by trying to assume much of the responsibility for assimi-

lating the expert's information. To accomplish this, KnAc models the knowledge engineer's role

71

EVENT TAKE-A-TRIP-AND-GET-PAID

STEPS: (TAKE-A-TRIP GET-REIMBURSED)

TEMPORAL-RELA TIONSHIPS:
((TAKE-A-TRIP before GET-REIMBURSED))

CONSTRAINTS: (...)
ATTRIBUTES: ((TRAVELER...) (COST ...) (DESTINATION ...

Figure 1: Knowledge Base Event Description

by anticipating modifications to the existing knowledge base using heuristic information about
the knowledge acquisition process. As will be described later, these anticipated modifications
allow KnAc to focus on "relevant" portions of the knowledge base and provide a context in which
to integrate the information provided by the domain expert.

Consider the opening portion of a discourse in which the expert, the principal clerk of an
academic department, is describing the procedure for being reimbursed for business-related travel
expenses.

"O.K. - on travel. The proper way of doing it, if it's out of state, is that a travel
authorization should be issued before the trip."

From this information one can conclude that some unnamed task consists of two temporally
ordered steps. Rather than simply adding this information to the knowledge base, it may be
desirable to modify an existing task description. However, it is not clear what modifications need
be made to the knowledge base to reflect this additional information.

If the knowledge base (prior to this interview) is examined, a description of the reimbursement
process will be found (see Figure 1). In this simplified view of the task, which knows nothing
about a "travel authorization," the traveler simply goes on a trip and gets reimbursed Though
the knowledge engineer may realize that the clerk and this existing description are describing the
same task, it is not readily apparent from the two descriptions. Matching such descriptions, and
recognizing the implied modifications, are central to the assimilation process,

To accomplish the '.,similation of this new information, KnAc was required to perform two
basic tasks: 1) recognizing where the expert's information fits into the existing knowledge base,
and 2) appropriately modifying the existing knowledge so that it reflects the expert's view of the
domain. Determining where the expert's information fits into the existing knowledge requires that
the new information be matched against the existing information. To avoid matching the new
information against the entire (existing) knowledge base, the most likely candidate matches must
be selected. Furthermore, since the goal of a knowledge acquisition discourse is the modification
of the knowledge base, exact matches between the new and the existing information are not
always expected.

Thus, the procedure for matching the expert's entity descriptions with those already in the
knowledge base must be specialized for knowledge acquisition. KnAc's aatching and match
evaluation procedures are described in Section 6.3.2.1.3. Discrepancies between the expert's
descriptions and the existing ones may imply needed modifications and need not degrado a
match, especially if the discrepancies (or the implied modifications) can be predicted. Anticipated
modifications, or expectations, arise from an understanding of the knowledge acquisition process.

72

They can be derived from the state of the existing knowledge base, from cues in the discourse, from
previous modifications to entity descriptions, or from the state of the knowledge acquisition task.
The generation and management of these expectations is described in Section 6.3.2.1.4. Finally,
the status of this work and its contributions to the knowledge acquisition task are summarized
in Section 6.3.2.1.5.

6.3.2.1.2 The KnAc System

In this section, the basic architecture and functionality of the KnAc system 9 is presented. During
each cycle of the KnAc system, descriptions of domain entities are accepted from the user (1)
and compared with entities in the existing knowledge base (2). (Figure 4 contains a portion of
this knowledge base.) These candidate entities (3) are selected based on KnAc's expectations of
changes to the knowledge base. The comparisons (4) are evaluated both in terms of how well
they match and the extent to which the differences between them were expected (5) within the
context of the match. Once the best matches are selected, the implied modifications (6) are made
to the existing entity knowledge base (7), after being verified with the user (8), if necessary.
Expectations of further modifications are generated from a variety of sources, including the
information obtained from the discourse (9), the state of entities in the knowledge base (10),
previously made modifications (11) and the state of the acquisition process.

The descriptions obtained from the expert must be presented to the matcher in the knowl-
edge base's representation language. The purpose of the discourse manager / user interface is
twofold: to permit a more "user-friendly" specification (e.g., natural language, graphics, menus,
etc.) of these descriptions, and to provide KnAc with any available cues as to the state of the
discourse. Note that the focus of this work is not the translation of the expert's knowledge into
the representation used by the underlying knowledge base. Rather, KnAc addresses the issue of
how to integrate this knowledge once it is in such an accessible form. Currently, the natural lan-
guage protocols are translated by hand into the system's representation language. Only minimal
discourse cues, such as "topic" information, are assumed to be available.

Thus, the discourse fragment presented in Section 6.3.2.1.1 translates, approximately, into
the structures shown in Figure 3. These structures may then be compared with selected entities
from the existing knowledge base.

To avoid having to examine the entire knowledge base in order to assimilate the new infor-
mation, entities that are most likely to be modified are selected as candidate matches. Thus,
if there exists an expectation of some modification to a given entity description, that entity is
compared to the new information from the expert. The way in which these modifications are
anticipated will become clearer in Section 6.3.2.1.4. Initially, the only expectations available are
based on the discourse cue recognizing that TRAVEL is a topic of interest. Hence, the entities
semantically close to TRAVEL in the knowledge base are selected as candidate matches. These
entities include TAKE-A-TRIP-AND-GET-PAID, shown in Figure 1.

The system then compares the expert's descriptions with the selected ma'tch candidates. The
matching process, described more fully in Section 6.3.2.1.3, determines the similarities and differ-
ences between a pair of entity descriptions. The results of these comparisons are then evaluated
in order to select the best match for each of the expert's entity descriptions. Section 6.3.2.1.3.2

'Figure 2 contains the architecture of the KnAc system. The parenthesized numbers in this paragraph (e.g.,
(I)) refer to this figure.

73

Discourse Manager / User Interface V

Discourse Entity (8) Modification
(9) Topics Match Descriptions Verifcation

CandidateSelector

Match (3) (6)
E Candidates Macee

P (10)E State Comparison

C Entity Evaluator V4dEniT Results(4

A State

T Descriptions KI ()Match

0 Expected Modifications EvaluatorN
S

Matches 6

K w plied Mods

KB KB(Verifier
2)IB EntitisE jty M ,odifier Verified I

Eniis Modifications KB Mods L" -

KnAcI
KB
Modifications

Knowledge Base

Figure 2: The KnAc System Architecture

T4

EVENT EVENT-1

STEPS: (ISSUE-TRAVEL-AUTHORIZATION TAKE-A-TRIP)

TEMPORAL-RELA TIONSHIPS:
((ISSUE-TRAVEL -AUTHORIZATION before TAKE-A-TRIP))

CONSTRAINTS: ((DESTINATION outside-of STATE))

ATTRIBUTES: ((TRAVELER ...) (DESTINATION -..))

EVENT ISSUE-TRAVEL-AUTHORIZATION EVENT TAKE-A-TRIP

OBJECT TRAVEL-AUTHORIZATION]

Figure 3: Discourse Manager Output

-- A
object tr eat - ptiontkip

thke k trip
&aid get paid

with the existing taskak dec&to TAEA tripNGEPAD gthcotnsfeahildftee

reimbursed

compaed. I the teps ied thy avel oneenityicomn(AEATI)adehhsoe

i teaerausteo

go somewhere reevto a

-.-..-..-. requtest

.......atio.n I .8ormatio.

ifoT)mr aioa isoti t part-of

Figure 4: A portion of the knowledge base

describes the evaluation process, which rates the match results on a field-by-field basis and com-

bines these ratings to produce an overall rating for egch match.
For example, when the unnamed task described by the expert, labeled EVENT- 1, is compared

with the existing task description TAKE-A-TRIP-AND-GET-PAID, the contents of each field of these

structures (e.g., parts, generalizations, temporalrelationships, pre- and post-conditions etc.) ae
compared. In the steps field, they have one entity in common (TAKE-A-TRIp') and each has one
entity not found in the other (ISSUE-TRAVEL-AUTHO&IZATION in EVENT- 1 andl GET-REIMBURSED
in TAKE-A-TRIP-AND-GET-PAID). They have several attr ibutes in common (TRAVELER and D-ES-
TINATION). Their temporal-relationships are mutually consistent, though different. Both entities
are specializations of EVENT.

The ratings for these field matches is shown in Figure 5. Remember, these ratings reflect
not only the degree to which the fields match, but more importantly (from the point of view of

75

EVENT-i vs. TAKE-A-TRIP-AND-GET-PAID

Field Rating
generalizations 1.000
parts 0 '33
attribute-names 0.055
constraints 0.007
Match Rating 0.299

Figure 5: Ratings for field matches

knowledge acquisition) the likelihood of the modifications, in future parts of the dialog, required
to make them match.

From these ratings, the best matches are selected. If there is significant ambiguity, the
matches are verified with the expert. If there are no acceptably good matches for one of the
expert's entity descriptions, a new entity is added to the knowledge base.

When the best matches have been selected, the differences between the expert's description
and the existing one are used to modify the knowledge base. For instance, the "extra" step in
EVENT-I, (i.e., ISSUE-TRAVEL-AUTHORIZATION, is added as a step of TAKE-A-TRIP-AND-GET-

PAID). The extent to which this modification requires confirmation from the expert depends on
the level of autonomy granted to the system. At various levels, all such modifications could be
verified with the expert or only unexpected ones or only deletions, etc.

Once the knowledge base has been modified, new expectations are generated to be used in
interpreting the next "discourse frame." The generation and management of these expectations
is described in Section 6.3.2.1.4.

6.3.2.1.3 Matching for Knowledge Acquisition

In order to match entity descriptions provided by the domain expert to those already known
to the system, KnAc must be able to compare these structures and evalaate the results. This
matching process, while in some ways similar to that found in most recognition/interpretation
systems, displays certain characteristics unique to knowledge acquisition. In particular, since the

goal of a knowledge acquisition dialog is the modification of the knowledge base, the information
provided by the domain expert should not completely match the existing entity descriptions. The
matching process must be modified so as to be able to recognize and, where possible, anticipate
these discrepancies. The matching techniques presented in this section make these discrepancies
explicit; the evaluation of these match results, described in Section 6.3.2.1.3.2, incorporates the
extent to which these discrepancies were anticipated into its rating procedure.

6.3.2.1.3.1 Matching Entity Descriptions

POISE's knowledge base is represented in a frame-based language, similar to that used by systems
like Knowledge Craft® ([90], [15]). Comparison of these knowledge structures requires matching
on a field-by-field basis. Each field may be considered to be one of two types of structures: a set
of elements such as steps and generalizations of an event, or a collectin of constraints such as
the temporal relationships and the pre- and post-conditions. KnAc contains matching techniques

76

for each of these types of structures.

Set Matching

Determining how well two sets of elements match is not difficult; neither is determining h ,w
"different" they are (e.g., see 18 21). For knowledge acquisition purposes, however, the relevant
question is "How likely is it that they can be modified so as to match?" To determine this, KnAc
examines not only the elements in each (set) field of the knowledge structure, but also makes
use of information about that field (i.e., meta-information or facets). In particular, information
about the size of each field and the range of the elements in that field permit KnAc to calculate
the probability that the extra elements in one of the structures will be added to the other.

Consider the comparison of the steps of EVENT-i and TAKE-A-TRIP-AND-GET-PAID. A typical
measure -'nilarity is:

1 if Set, = Set 2 =-
match-rating = ISet1 n Set 2 l otherwise.

ISet1 U Set 2I

With one step out of the three unique steps betweer them in common, the similarity of these fields
would be 1,'3. How likely is it, however, that the "extra" step in the expert's description (i.e.,
ISSUE-TRAVEL-AUTHORIZATION) will be added to the existing description? Without requiring a

deep understanding of domain-specific semantics, some additional information can still be used.
If events usually have few steps (as specified by the meta-information about the step field of
EVENT), the addition of this particular step is less likely than if there are many more steps still
to be added. Similarly, if a step is going to be added, the range of possible steps will affect the
probability of the desired one being added. This range is determined by combining the "type
restriction" meta-information about the slot (i.e., a step of an EVENT must be an EVENT) with
the existing knowledge base (i.e., the number of EVENT descriptions known to the system".

Thus, KnAc rates each set match based on the likelihood of the modifications implied by tb2
match. The likelihood is determined from the anticipated size and range of the sets and requires
no additional semantic information about their content. The derivation of these ratings is fully
described in [52].

Constraint Matching

Although comparing (or combining) arbitrarily constrained sets of entities is a difficu- problem
often requiring substantial domain knowledge, KnAc compares sets of constraints, pairwise related
by a common relation, in a purely mechanical fashion.' ° This section describes a mechanism for
comparing such constrained sets; the mechanism is independent of the particular relation. requi-.
ing only a description of its algebraic properties, (i.e., whether or not the relation is reflexive,
symmetric and/or transitive).

First, any implicit constraints are made explicit by propagating the specified constrairts
using the relation's algebraic properties. The temporal relation before, for example, is only
transitive; if the constraints (A Lefore B) and (B before C) were specified, then (A before C)

"0 The current system checks each relation separately; it does not handle interaction between di.Terent relations,
though it is able to combine relations with their inverses. For instance, before and after constraints are handled
together.

77

could be deduced. When the constraints are thus propagated, inconsistencies may be detected
by checking the results for any of the prohibited properties of the relation (i.e., non-reflexive,
non-symmetric and non-ti insitive). If each set of constraints is internally consistent, the two
sets may be merged and r propagated, and this combined set of constraints may be checked for
consistency.

If two sets of constraints are mutually -onsistent, a measure of their similarity may be ob-
tained by determining the changes required to make them equivalent. Simply adding each set
of constraints to the other would ac-omplish this, but this may add more information than is
necessary. For instance, if the first set of constraints contained (A before B) and (A before C) and
the second sets contained (B before C), the.L only (A before B) need be added to the second set.
Requiring the addition of both constraints from the first set would imply a larger discrepancy
between the sets thaA actually exists. Obtaining the minimal set of constraints that need to be
added is not a trivia, problem. KnAc contains a new approach to generating these sets, called
"opensures"", based on their algebraic properties.

Thus, as with fields containing sets, KnAc is able to r-*, constraint matches by determining
the likelihood of the implied modifications. This rating is based on the algebraic properties of
the relationships involved and requires no additional semantic information. Kn.c's methods for
constrainiL -ropagation, determination of consistency, and generation of opensures are presented
in [52j.

6.3.2.1.3.2 Match Evaluation

Aft- comparing each of the entity descriptions provided by the domain expert against those
candidate entities selected from the existing knowledge base, KnAc evaluates these match results
in two passes. First, the likelihood of two entities matching, based on the extent to which they
differ and the probability of these differences heing corrected, is determined as described above.
This "degree of fit" is a relatively inexpensive means of priming the set of possible matches.

The second pass of the march evaluation takes into account the context in which the com-
parison is being made. In addition to how the descriptions differ, i, considers whether these
differences are expected in a particular situation. The extent to which the modifications implied
by the differences between the structures are expected serves as a "context-dependent" measure
of the match. The anticipation of such modifications is a crucial part of the KnAc system and is
described in the following section.

Consider, for example, the addition of the step ISSUE-TRAVEL-AUTHORIZATION to the descrip-
tion of TAKE-A-TRIP-AND-GET-PAID. The addition of such a step could have been foreseen for
several reasons. First, since there were fewer steps in the existing description than are typically
found in events, adding another step was reasonable, More impor:antly, upon examining the
existing description to see if it was consistent and complete, it was discovered that a precondi-
tion of the step GET-REIMBURSED, describing the traveler as the recipient of funds, could not
be satisfied by the only earlier step in the task (i.e., TAKE-A-TRIP). This further supported the
addition of another step (occu.-ring before GET-REIMBURSED) to the task.

"i.e., the inverse of "closures"

78

6.3.2.1.4 Anticipating Modifications

KnAc provides a context in which to interpret information provided by a domain expert by
anticipating modifications to an existing knowledge base. These anticipated modifications, or
expectat.ons, are derived from KnAc's heuristic information about the knowledge acquisition pro-
cess. This sect'on describes how these expectations are generated, how they are used to provide
a context in which matches may be evaluated, and how they ranked and managed.

6.3.2.1.4.1 Generating Expectations

KnAc contains a body, of heuristics about the knowledge acquisition process. These heuristics,
obtained through the analysis of several knowledge acquisition dialogs, allow KnAc to anticipate
modifications to an existing knowledge base. These heuristics may be divided into four categories.
The first group is based on the state of the knowledge, both that already contained in the
knowledge base and new information provided by the expert. The second category depends on
modifications previously made to the existing knowledge base. The third set makes use of a
model of the discourse process, while the final set incorporates knowledge about teaching and
learning strategies.

Since it is expected that the collection of heuristics will be modified, both as a result of
improved understanding of the knowledge acquisition process and through the addition of domain
specific heuristics, KnAc allows heuristics to be added (or removed) in a straight-forward way.
Most of KnAc's current heuristics are quite simple and domain-independent; the addition of
more complex, application-specific heuristics may improve the system's performance in certain

domains.
KnAc's state heuristics are based on the assumption that the information contained in the

knowledge base should (eventually) be complete and consistent. Obviously, such attributes can
be measured in a variety of ways, some dependent on the application domain. some dependent
on the knowledge representation, and some rather generic. Consider a simple heuristic based on

one measure of incompleteness.

Heuristic S2: Field; with too few components will &e augmented.

This heuristic states that if information is detected co be missing from a field of some entity
description, the addition of that information may be expected. One simple approach to detecting
such missing information compares the number of entries in a field of a knowledge structure with

the field's expected cardinality. If the field is determined to contain too few values, additional
values (of the appropriate type) will be expected. The expected field size may come, in order
of specificity, from meta-information about a given field of a given entity, via inheritance from a
generalization of the entity, from the default information for the type of the entity, or from an
overall field default size. This size information may be static or determined dynamically by the
system. An expectation generated by this heuristic is:

Exp146: Expecting (certainty 0.360):
MOD: ADD ?New-part<is-a-knac-structure-p> to the

Parts field of Take-a-trip-and-get-paid

Derived from Take-a-trip-and-get-paid and HS2.

79

Other state heuristics exploit references to unknown entities, unsatisfied preconditions of task
steps, and range/value conflicts to detect inconsistencies in the knowledge base and anticipate
changes. One example of such heurist.cs,

Heuristic S3: Unsatisfied step preconditions will be satisfied.

uses incompleteness in an event description to anticipate the addition of a step and a temporal
constraint placing it before the existing step with the unsatisfied precondition.

In addition to the state of the knowledge, changes made during the knowledge acquisition
process may imply additional modifications. For instance, two modification heuristics are trig-
gered when a new entity description is added:

Heuristic MI: Detailed information usually follows the introduction of a new entity.

Heuristic M2: Contezt information usually follows the introduction of a new entity.

Additions of information to specific fields of entity descriptions (e.g., attributes, steps, con-
straints, etc.) form the basis for other more specific modification heuristics. Examples of such
heuristics include:

Heuristic M5: Adding two parts to an entity usually implies a relation between them.

Heuristic M4a: Parts of Events are usually temporally constrained after being intro-
duced.

Cues from the discourse manager, such as the topic cf discourse or recently referred to enti-
ties, are the key to KnAc's discourse heuristics. Because the current system lacks a sophisticated
discourse manager, we do not rely heavily on discourse cues. Thus, the only discourse heuristics
being used are:

Heuristic DI: Entities close to specified topics are tikely to be referenced or modified.

Heuristic D2: Referenced entities are likely to be modified or referenced again.

These heuristics generate expectations of some unspecified modification to the referenced
entities or to those semantically close to them. "Closeness" is determined by the number and
types of relationships (i.e., links) separating two entities.

6.3.2.1.4.2 Managing Expectations

As the number of expected modifications to the knowledge base grows, KnAc's ability to use
the expectations to focus its attention diminishes. Thus, a means of selecting the most Likely
expectations (for a given point in the acquisition discourse) is required. This is accomplished bv
assigning a rating to each expectation and pruning the set of heuristics based on this rating.

80

Each heuristic is responsible for determining a rating for each expectation it generates. This
rating depends on the quality of the data and the specificity of the heuristic. Since different
types of heuristics generate expectations based on different types of data (e.g., state information,
previous modifications, etc.), each heuristic has its own function for determining ratings. For
example, Heuristic D1 (shown above) includes the semantic "distance" from the specified topic
in its rating calculation; Heuristic S2, which is based on "missing information," incorporates the
system's certainty that the information is actually missing.

In addition to the initial ratings assigned to each expectation, each heuristic contains a
function that specifies how these ratings will change with time. For instance, certain expectations
are important when they are created but become less valid with the passage of time; others
become more critical as time passes. Some become more (or less) significant based on some state
of (or change to) the knowledge base; others are always valid. KnAc's current set of predefined
functions for specifying the change in rating includes: fade, increase, until, while, after, for,
always and never.

6.3.2.1.5 Status and Conclusions

In this chapter we have examined an often overlooked aspect of the knowledge acquisition process:
the assimilation of information presented by a domain expert into an existing knowledge base.
Though a fundamental part of the current conventional knowledge base development process,
the issue of automatically locating and appropriately modifying existing knowledge to conform
to the domain expert's descriptions has received little, if any, emphasis. Most current knowledge
acquisition tools place this burden on the domain expert, forcing him to take over part of the
knowledge engineer's task. By automating this assimilation process, the KnAc system better
insulates its user from the knowledge base.

KnAc accomplishes this assimilation by: 1) comparing entity descriptions provided by the
domain expert with existing knowledge base descriptions, 2) evaluating these matches in the
context of the knowledge acquisition discourse, 3) making the modifications to the existing de-
scriptions implied by the expert's information, and 4) generating (and managing) expectations
of further changes to the knowledge base.

This work has developed several generic matching (and match evaluation) techniques espe-
cially adapted for knowledge acquisition. They shift the focus of matching from exarmning how
closely two entities match to exploring the likelihood of their being modified so as to match.
This is accomplished by matching procedures (for sets of entities and collections of constraints)
which determine differences as well as similarities, an evaluation technique which explores the
probability of the modifications required to make entities match and the degree to which these
modifications are expected, and a means of anticipating modifications to the knowledge based
on heuristic information about the knowledge acquisition process.

The KnAc system is implemented in Common Lisp running on a TI Explorer®'. Its current
use is still experimental, though it has been able to assimilate a 20 step dialog on the travel
reimbursement process, correctly constructing an internal representation of the plan in the POISE
knowledge base. A complete description of the implementation and the sample dialog can be
found in '52.

81

6.3.2.2 Knowledge Acquisition For Planners

Previous work in knowledge acquisition has primarily addressed rule based expert systems
and concept hierarchies in knowledge bases. The special constraints in the acquisition of
knowledge for planners have not been explicitly identified. Here, we identify the requirements
that situation calculus-based planners pose on the knowledge acquisition process and compare
these requirements to the techniques currently used or proposed for rule-based expert systems.
We then propose a framework for the human representation of subject performed tasks. To
verify the validity of the framework, we conducted several experiments with more than 150
subjects. The last part of this chapter describes the DACRON plan acquisition interface
which is based on the framework.

6.3.2.2.1 Introduction

The majority of research in knowledge acquisition has concentrated on the acquisition of rules and
concepts for rule-based expert systems [58, 48, 8]. Domain-independent planners r54 i are another
type of knowledge-based system whose performance in real environments depends critically on
knowledge acquired from end users. Despite this, little attention has been paid to plan acquisition.
The knowledge in a planning system is different both in its structure and its use than the IF-
THEN rules in expert systems. The basic unit of plan knowledge, sometimes called a plan
schema, contains information about the goal, preconditions, subgoals and effects of the action
it represents. Figure 1 shows a plan schema from the POLYMER planning system developed
at the University of Massachusetts [22]. It describes how to purchase an item .rnd specifies
causal dependencies, responsible agents, constraints, and affected objects as well as the goal and
precondition information.

goal: have(item,self)

decomposition: fill-out(order-form), file(copy), mail(order-form),

receive(item), pay(invoice)
precondition: have(money,self), have(order-form,self)
side-effects: have-less(money.self), have(copy.self)
causal depend. : enables(fill-out(order-form), file(copy)),

enables(fill-out(order-form), mail(order)),
enables(mail(order), receive(item)),

enables(receive(item), pay(invoice))
agents: purchase-clerk

objects: order-form, item, copy, money

constraints: item-price < money-available

Figure 1: Purchase task as POLYMER plan.

To acquire plans, we have to carefully review the stages of knowledge acquisition, including
explaining to a domain expert what we want to acquire, eliciting the knowledge, coding the
knowledge, displaying the knowledge, and debugging the knowledge. The psychology of pro-

82

gramming [64] gives us a framework for defining the stages of plan knowledge acquisition and
discussing the differences between acquisition for planners and for expert systems. This is done
in the next section.

In order to build a plan acquisition system, we have to have a model that links the elicitable
knowledge of the domain experts to the requirements of the planner. Having such a model allows
us to design the plan acquisition system with some confidence that domain experts will be able to
use it. We present a model for the recall of plans in Section 6.3.2.2.3 and discuss the impications
of the model in Section 6.3.2.2.4. In Section 6.3.2.2.5, we present the DACRON plan acquisition
system which is based on the approach outlined. DACRON is designed to be used in conjunction
with the POLYMER planning system, and issues such as the construction of plans, execution of
plans, and handling of exceptions are POLYMER's responsibility. The main goal of DACRON
is to allow domain experts to specify plan knowledge that can be used as a starting point, even
if it is incomplete or incorrect. The final section discusses our future research plans.

6.3.2.2.2 Knowledge Acquisition: Planners versus Expert Systems

We view knowledge acquisition as an instantiation of general programming techniques. The
psychology of programming can therefore be modified to accommodate knowledge acquisition
[641. Pea and Kurland identify four stages in the process of software development:

* understanding the problem;

" solving the problem;

* coding the solution;

" debugging the code.

The problem that has to be solved and coded in the general software environment by a pro-
grammer corresponds to a particular piece of domain knowledge that has to be acquired, (i.e.
specified by a domain expert to the acquisition system). The programmer understanding the
problem therefore corresponds to making the domain expert understand what particular knowl-
edge the system wishes to acquire.

Solving the problem corresponds to the domain expert recalling a piece of knowledge. Gruber
coined the term acquirable form for knowledge in this stage [40].

The actual process of coding this knowledge (operationalization) means translating the ac-
quirable form into a form meaningful to the system. In general programming this means trans-
forming an algorithm to a programming language; in the case of knowledge acquisition it means
expressing the acquirable form in terms of primitives of the acquisition system.

Once the knowledge is operationalized, it might be displayed in a different way than it was
entered. Th-. adds another stage to the process of knowledge acquisition. Users have to under-
stand what they actually have specified Only then can they understand how this new piece of
information is viewed by the system, which in turn enables them to debug it.

We can summarize the stages of knowledge specification, which will serve to identify differ-
ences in the knowledge acquisition process between expert systems and planners:

• Request: Description of particular knowledge to be acquired;

83

" Elicitation: Recalling knowledge;

" Operationalization: Coding the recalled knowledge;

" Display: Echoing the coded knowledge;

" Debugging: Correcting the coded knowledge.

To acquire a rule, most existing knowledge acquisition systems for expert systems start at the
first stage of this theory and follow the stages sequentially for each rule that is to be acquired. To
acquire a single plan, domain experts have to move back and forth between these stages. Users
might start the operationalization of the goal, move on to the request stage of the decomposition
and then debug the precondition of a single plan.

Rules usually :o a causal or temporal relationship. Plans usually consist of more elabo-
rate information. Tlherefore units of knowledge are smaller in expert systems than in planning.
This fact facilitates the request phase in expert systems.

Rule based expert systems have to elicit the IF part of the rule and the THEN part of the
rule. Once the experts have recalled the knowledge that corresponds to each of these parts of
the rule, they can start to specify it. Techniques used to accomplish this elicitation are ustally
based on association, comparison or cueing [8, 58]. As plans have a more complex structure
than rules (goal, subgoals, precondition, constraints, temporal and causal orderings, etc.), the
elicitation process must be less uniform. Additional requirements for plan acquisition are a clear
conceptual distinction between components of the plan, specific techniques to elicit particular
components and an overall framework to integrate the components. Techniques developed for
rule based expert systems, like repertory grids, heuristic classification, certainty ranking or choice
annotation are of no help in this case. Certain forms of cued recall and structured fraL-nes seem
to be most appropriate for the various demands in plan acquisition [56].

The largest problem in both areas is the operationalization of the elicited knowledge. The
techniques applied most commonly are editors that specialize in the syntax of knowledge repre-
-entation formalisms. This technique will not work as well in the acquisition of plan knowledge
from domain experts because of the conceptually different slots of plans and the experts lack of
knowledge representation skills. In planners, each slot needs to be addressed in a semantically
correct way that is also immediately understandable to the domain expert. We found that elec-
tronic forms questionnaires as mentioned by Gruber and by Musen in conjunction with iconic
representation of objects work best to fulfill all these requirements [40, 62].

Specified knowledge can either be displayed in the same form that it was entered or it can be
set into the context of other knowledge in the system. For expert systems, this usually means
displaying a rule network. The different reasoning mechanism in planners leads to a different
display strategy, namely that of a hierarchy Such a component is mandatory for successful
debugging.

The above discussion shows that the acquisition of plan knowledge is coksiderably different
than the acquisition of rule knowledge. In addition, there exists no model linking the humans
subjective view of a task to a knowledge representation formalism. In this work, we try to build
a plan acquisition system based on the implications of these differences.

84

6.3.2.2.3 A Framework for the Recall of Tasks

We would like to acquire plan knowledge from domain experts about the way they execute tasks.
A task is an activity which is viewed by the human as a unit at a certain level of abstraction
(e.g., purchase an item or receive reimbursement for trave). This focus eliminates many existing
models of human cognition as possible candidates because either they make no predicitions on the
task level [2, 3, 72], or they evaluate work done with computer systems themselves [14, 66 or they
address interaction and discourse issues only [77, 78, 74]. None of these theories makes statements
about structures and processes involved in the recall of complex tasks from long term memory.
Therefore, we started a series of interviews and experiments to build a framework for complex
task recall. Interviewing domain experts about how they conduct certain complex tasks usually
leads to a description of an example. In these examples, we observed the grouping of operations,
which are the lowest level of description, into units. These units fit what is called Handlung by
German psychologists and philosophers. A Handlung is a conscious, goal-directed act of a human
being, controlled by will, directed towards shaping reality. It contains three aspects: an intended
goal, an analysis of means for its achievement and the decision to do so. 12 A Handlung contains
operations, conducted by a human, which transform states of reality into other states, serving a
certain purpose [50]. (Clearly a Handlung is more complex than the English equivalent act. In
the remainder of this chapter we will refer to it as act, though).

The act is the smallest coherent unit in the description of a task that appears to be at the
appropriate level of abstraction. This individually perceived appropriateness of the act as the
smallest unit, varying from person to person and from task to task, makes the concept very
suitable for our purpose. It also distinguishes the act from GPS-operators 163]. While operators
are established by task analysis, acts are the representation of the human's perception of these
tasks.

As the above definition of acts does not lend itself to immediate operationalization, we try
to formalize its properties in information processing terms [73]. The representation of an act
consists of four properties which are discussed below.

The first property of an act is the conscious goal; in our case it is the intention to complete
a certain task. In our staged theory of knowledge acquisition, this intention is equivalent to
understanding what is to be acquired. During work on one task, this goal remains the same, only
situations (states) change, not intention. People consciously know about this goal and should be
ready to report it without difficulty.

The current state of reality, as mentioned in the above definition [50], constitutes the second
property. We call this property the pre-situation. During execution of the same task (same goal)
the situation determines which operations are to be applied. Only when the task is completed
or interrupted does the goal change. When people are actually performing a task, they directly
perceive the pre-situation. During recall, the content of the working memory mirrors this state.
People who are imagining working on a certain task should be readily able to report what the
current state of affairs is.

The third property of the definition is the decision to generate behavior, which in turn is
observable. We represent this as a list of names of the operations to be generated. As we are
not concerned with actual execution of tasks, but only the part of them that can be reported
by recall, we must be satisfied with the name the person ascribes to a certain operation. The

12Definition from: Der grosse Brockhaus; 17th Edition. Translation by the authors.

85

mapping of theses names to primitives of the system is a question of coding and will thus be
discussed in the next section.

The result is also available in the recalled act. We call this fourth property, describing the
situation after the application of operations, the post-situation. The post situation is described
in the same terms as the pre-situation but it includes the changes caused by the operations. The
justification for this property comes from the explanation that acts transform states of reality
into other states of reality.

The complete representation of a formal act is given by the structure in figure 2. We are aware
that the operationalization of such a complex concept as an act can not capture every nuance
in meaning and must fall short in certain aspects of description. The structure we present here
will certainly have to be amended. Acts are the product of recall of deeper cognitive structures.

Goal: Intention of the Whole Act

Pre-Situation: List of Properties

Operations: List of Operations

Post-Situation: List of Properties

Figure 2: Operationalization for acts

We assume that recall can be directed to decompose and sequentialize acts. Sequentialization is
the process of finding a sequence of acts that leads from one state of the world to another one,
Decomposition is the process of breaking an act into lower level acts, making the higher level act
the goal and generating all its constituting operations as lower level acts. As our framework is
concerned with the existence of recall processes and structures and not with low level, underlying
cognitive processes, we make no assertions as to how this is accomplished. It is sufficient for oir
purposes to know that these processes and structures exist at all, not how and why.

In addition to the recall of activities, we assume the recallability of objects, relations and states
of the world. As these entities comply to a certain degree with those items usually encountered
in recall experiments, we need make no additional assumptions.

With the operationalization of acts and the proposed subprocesses, we were able to propose
and test the following hypotheses about the recall of subject performed activities from long term
memory. It is important to realize that these are only one set of many possible Iescriptions for
the phenomena occurring but that they seem to be a reasonable one for our purpose.

1. A general task (goal) and a specific situation (pre-situation) will result in the recall of a
specific set of operations.

2. Changing the pre-situ-,tion or the general task (goal) will result in the recall of different
operations.

3. A goal, a start situation and an end situation will result in the recall of a sequence of
acts. This sequence leads from the start situation over intermediate situations to the end
situation.

86

4. An operation may itself be composed of acts and those acts are recallable (decomposition).

5. If the pre-situation of an act is not achievable, other acts with the same goal but different
pre-situation can be recalled instead (alternative acts).

6. Operations can be distinguished from the post-situation created by these operations.

7. Causal dependencies between operations can be indicated.

To test these hypotheses, we first conducted a pilot study with four departmental secretaries
and then a larger series of experiments. Our subjects in those experiments were 153 undergrad-
uate and graduate students at the University of Massachusetts and Smith College. We could
verify all hypotheses. Special care had to be taken with hypotheses number six (distinguishing
post-situation from operations). Subjects were able to report the post-situation if asked directly
about it. They could not report the post-situation if queried in general terms. For a detailed
discussion of the experiments and their results see [56].

6.3.2.2.4 Implications of the Framework for the Acquisition of Plan Knowledge

The properties of the act framework can be used to create design criteria for the plan knowledge
acquisition system.

The most important implication of the framework is that humans react to a situation differ-
ently with different intentions and that they do not set up recursive goal stacks but go step by
step. People are guided by context and fine tuned by the current situation. In the explanation
phase, a domain expert could be instructed to specify a certain piece of knowledge by just stating
the goal of the plan.

The human description of a plan consists of a sequence of acts. This acquirable form can be
directly translated from the elicitation phase to code. A plan definition system should allow the
specification of each of these acts separately. The decomposition of acts into primitive plans and
subgoals follows as a consequence of the primitives of the system. The act is either a primitive
plan the system understands, or it has to be explained in terms of those primitive plans.

The problem of breaking a plan down into hierarchies of goals and subgoals should therefore
not be forced on the user but evolve from the user's perspective. Decomposition and sequential-
ization are the processes to employ in this situation. The experiments show that a complex act
can be decomposed. People can also give a sequence of acts from a start state to an end state.
A combination of both techniques, decomposition and sequencing, seems to be most appropriate
for the specification of complex plans.

People deal with one act at a time. The system should therefore not force the user to specify
the sequence of acts as a whole. The specification of a new act should only begin when the last
one is completely defined. This guarantees completeness and consistency of the individual pieces
of knowledge and supports the human desire for closure.

The versatility of a planner can be greatly enhanced if there are numerous plans that achieve
the same goal under different preconditions. People are able to report various acts to achieve
a goal. The list of operations and the different preconditions are the major difference between
these alternative acts. A plan specification system should solicit as much information as possible.
It should therefore in the process of acquiring a plan also acquire alternative plans that meet the
same goal.

87

Our experiments show that the specification of effects is more dependent on the interaction
technique than others. People seem to assume that the effects of an operation or act are implicitly
understood by the system. Though people can answer all questions about effects correctly, they
cannot report and specify them easily. An approach where users have to fill in forms or create
forms yielded the best results.

The last property of the model was the indication of dependencies between operations. Our
experiments show that though people think of and report their operations sequentially, they can
indicate causal dependencies and thereby provide information for the parallel execution of plans.
The specification of dependencies is best done graphically. Arrows indicating causal dependencies
between acts are more easily understood than verbal or other methods.

6.3.2.2.5 The DACRON Plan Specification Interface for Domain Experts

DACRON is a plan acquisition system with an emphasis on immediate usability for the domain
expert. DACRON addresses every aspect of the knowledge specification process introduced in
section 2. We developed DACRON on the implications of the framework for task recall. Our
goal was a system that would help domain experts to specify their knowledge in a way closest to
their individual view of operational knowledge (acts) in the domain.

DACRON provides users with an act type to specify tasks. The act type appears as an
icon. This icon can be opened and presents the user with a graphic form editor (figure 3). The
editor shows compartments that refer to the pre-situation ("before-compartment"), the oper-
ations ("action-compartment") and the post-stuation ("after-compartment") of the particular
act, which correspond directly to the same entities in the framework. These compartments are
ready to accept other icons as input.

The second construct is the object/relation type. Object/relation types represent objects and
relations, which are used in the description of tasks. Object/relation types appear also as icons
and can be opened to present their code in a form editor. The editor for object,/relation types
shows rows to hold names for arguments and primitive data types for arguments (figure 3). The
icon for the object/relation type differs from that for the act type, as figure 3 shows, in that the
act icon has extensions for arguments. Icons carry a label to make them distinguishable

To specify a new task, users can either copy and modify an existing act icon or begin with
a blank one. Users start by naming the act type (e.g., purchase-item-1 (figure 4)). Then they
can specify the goal by moving one or more object/relation types to the goal compartment and
setting the arguments of these types to the desired goal-values, for example: moving the icon
for item to the goal comp-trtment, opening it and setting the value of oumer to self (figure 4).
Moving object/relation icons into the "before compartment" (pre-situation) and the "after com-
partment"(post-situation) and act icons into the "action compartment" (operations) specifies
those slots of the plan. Causal dependencies between acts in the action compartment are indi-
cated by arrows. Constraints are placed in the compartment that contains the object to which
a certain constrain' applies. In the case of inter-object constraints which might apply to objects
in different compartments the users might choose the more convenient one.

Another implication of the framework was the decomposition of the goal of a general task
into a sequence of acts. As the granularity of these acts is dependent on the view of the domain
expert, DACRON does not enforce a decomposition hierarchy but lets the users follow their own
decomposition path. The users give the sequence of acts at a level they think is appropriate. The

88

Situation__Before __ActionsStart INSTANCE.Or

O-SiEC FIC-OE

I 'POSSESSED By

wO-SICCIlF I ¢'0

Figure 3: Icon and box representation for act type and object/relation type

users do this by specifying an act type. DACRON guarantees completeness of this specification
by prompting the user for unspecified compartments.

Every item in the knowledge base is represented by an icon. A permanent window, called
the archive, presents at any given moment a part of the knowledge base (figure 5). To see
different parts of the knowledge base, the archive can be moved over the knowledge base, which
is represented as a two-dimensional plane filled with icons. In addition, users may zoom in and
out on the knowledge base.

89

PRr ,SE T,- I

i
y

r

E-OR

f

FILE MAIL R/ECE PAY

Figure 4: Icon and box for the purchase-task (with goal-value set).

To reorganize the clustering of icons in the knowledge base, users may employ the retriever.
The retriever allows users to order the icons in the knowledge base by certain keys like name, date
of creation, etc. or to search for icons by goal, constituent parts, etc. These retriever commands
can be invoked by opening a special icon that is always present Upon opening this icon, users
can pick commands from a menu and provide the desired options. The help icon is close to the
retriever and provides general and specific help functions such as animated introduction to the
system and help with special commands and tasks.

90

ITEIDT RISLOt

FIL Li IJ

I(~i

fir r1.
SCIEE 'PR 1 ,E

HFRECENE F.(PRC

PRYY

Figure 5: Archive

DACRON has two other facilities which are intended to aid users at the display stage and
the debugging stage of the knowledge acquisition process. A debugger can be invoked to give an
animated demonstration of the specification process of a type. The animation shows how the
type was cr,-ated, in which order arguments were given, what icons were placed into the type,
etc. As this debugger is interactive, it is possible to stop it at any given moment and change the
specification of the type shown. The animation can also be used for training purposes, teaching
new users how DACRON is used.

The second facility is the reviewer. It is used to present sequences of plans and alternatives
at crucial points in the planning process to the users. In this situation, we use the DACRON
interface not only for the specification of activities, but also for the presentation of the planning
process in POLYMER.

6.3.2.2.1i Future Work

We currently have the display components and rudementary acquisition components of the
DACRON system implemented. We can show existing objects and activities in the DACRON-
format. In the nearer future we will concentrate on the completeness of the acquisition compo-
nent. Later work will be devoted to the animated presentation of planning processes and the use
of animation in debugging the description of activities. We are also investigating the use of color
as a coding technique for constraint definition.

We are planning to test and evaluate DACRON with users in a local office environment.

91

These user studies would involve the specification of office tasks by clerks and secretaries using

DACRON and at a later point the display of whole office activities to office workers in the process

of accomplishing complex tasks.

92

6.3.3 Cooperative Problem Solving

6.3.3.1 Planning and Execution of Tasks in Cooperative Work Environments

Problem solving has long been recognized as an important component in many work env ron-
ments. The potentially complex and often cooperative nature of even apparently "routine"
tasks has led to attempts to use planning techniques to support work in real-world domains.
This chapter describes the work being done by the POLYMER project to construct a planning
system to assist in the performance of multiagent, loosely-structured, underspecified tasks.
Specifically, we present a representation for modeling tasks, agents and objects within such
environments and describe the architecture and implementation of a planning system which
uses these models to support cooperative work. We conclude with a description of how this
planning system is being used to support further research in areas such as exception handling,
negotiation and knowledge acquisition.

6.3.3.1.1 Introduction

Problem solving has long been recognized as an important component in many work environments
!5, 33, 35]. The potentially complex nature of even apparently "routine" tasks has motivated the
use of planning techniques to support work in real-world domains [18, 71]. However, the work in
many environments is cooperative in nature. In such settings, tasks often cannot be performed
by an individual; the coordinated effort of a group of people is needed to accomplish a desired
goal. The size and complexity of certain tasks and the limited abilities, knowledge, skills a.d
resources of any individual often make a cooperative approach the only way to achieve results.
Offices, design teams, management structures, and factories are all examples of cooperative work
environments.

As the scope and complexity of the problems addressed by computer-based support systems
grows, the need for planning and knowledge-based approaches becomes more apparent. While
traditional tools have been adequate to support single-person, small scale tasks (e.g., mail systems
and forms tools in offices, compilers and debuggers in software development, etc.), supporting
cooperative work requires the coordination of multiple agents using a variety of tools. By using a
model of the tasks, objects and agents in an application domain to generate multi-agent plans, the
POLYMER planning system [22, 23, 26] can coordinate interdependent activities in complex,
underspecified domains.

Cooperative tasks are often "loosely structured" in that there may be a typical way (or ways)
in which certain goals are accomplished, but the specifications are far from algorithmic. For
instance, some steps within a task may be optional, there may be only a partial ordering of
steps, any of several tasks may be used to achieve a goal, various agents may be able to perform
a particular task, etc. The domain representation language and the associated planner must be
able to capture and utilize any structure that is available but must also be able to cope with this
flexibility.

This approach to supporting cooperative work addresses important research issues arising
in several related fields, including distributed AI, the coordination of multiple agents (both
cooperating and competing), and the attempt to reconcile strategic planning with situated actions
f37, 39, 5T, 80].

The use of planning to support cooperative work has just begun to be explored. The POLY-
MER project has focused on constructing a planning system to assist in the performance of

93

multiagent, loosely-structured, underspecified tasks. Such a system requires flexible models of
the activities and objects in the application domain, and a means of using these models to heip
users achieve their goals.

In addition to serving as an aid to performing cooperative tasks, the POLYMER plan-
ner is being used as a testbed to support further research in the development of cooperative
work environments (e.g., the SPANDEX, DACRON and GENEVA systems described in Sec-
tion 6.3.3.1.4), and the development of advanced application domains (e.g., office automation
environments, being developed both in our own research environment and by independent re-
searchers).

In this chapter we present an overview of the POLYMER system, show its use in supporting
cooperative work, and describe the current research centered around POLYMER. The follow-
ing section describes the architecture and functionality of the POLYMER system. It presents
POLYMER's model of an application in terms an example from the journal editing domain and
shows how this model is used by the planner. Section 6.3.3.1.3 describes the planning process.
It shows how a plan is interactively generated and what happens when problems arise. Sec-
tion 6.3.3.1.4 presents a brief overview of research projects which are extending the POLYMER
planner to develop an integrated cooperative work environment. Finally, the current status of
the POLYMER project is summarized in Section 6.3.3.1.5.

6.3.3.1.2 The POLYMER system

Over the past two years, the POLYMER system has been developed as a testbed for support-
ing cooperative work. Using descriptions of domain tasks and objects, POLYMER combines
strategic and reactive planning [801 and interacts with its users to generate a plan to accomplish
a specified goal. POLYMER's domain description language evolved from one developed for the
POISE intelligent interface system [25]. Using this formalism, POLYMER performs the type
of hierarchical, non-linear planning described in NONLIN [81] and SIPE [841.

The POLYMER system has been developed using the KEE system 13 running on TI Explorers. 4

POLYMER uses KEE's frame-based knowledge representation to encode domain activity, agent
and object descriptions (see Section 6.3.3.1.2.1). KEE's assumption-based truth maintenance sys-
tem (ATMS) is used to record all planning decisions and support dependency-directed backtrack-
ing (see Section 6.3.3.1.3.3). We have extended KEE's "world" system to permit the construction
of a world hierarchy graph to represent the state of the application domain at each point in a
POLYMER plan (see Section 6.3.3.1.3.2). Finally, KEE was selected to obtain an added degree
of portability, especially in the design of POLYMER's interface.' s

The overall architecture of the POLYMER system is presented in Figure 1. The domain
representation and planning methodology are presented below. POLYMER's exception han-
dling capabilities and knowledge presentation and acquisition facilities are discussed briefly ;n
Section 6.3.3.1.4.

"KEE is a registered trademark of IntelliCorp, Inc.
"Explorer is a trademark of Texas Instruments Inc.
"5A version of POLYMER has recently been ported to Sun (trademark of Sun Microsystems, Inc.) workstations

by Olivetti.

94

Worker

I Ap-caOther Workers

AppliatcotTool
[Acainnterface -. Application Tools

Execution Monitor

Application Planner

Descriptions

A Relations S

I C A
R N

Agents D
NE

Activities

Objects ATMS / Worlds

Figure 1: The POLYMER Planning System

6.3.3.1.2.1 Representing the application domain

POLYMER models an application domain though the description of activities, objects and
agents within the domain. In this section we focus on the description of domain activities. A
grammar for the POLYMER activities appears in Figure 2; a sample activity description from
journal editing is shown in Figure 3.

The representation includes both the goal and preconditions of an activity as well as a decom-
position of the activity into smaller steps. The steps are usually goals for which other activities
will be selected during the planning process, but may also be specific activities or tool invocations

(i.e., "actions"). Causal relations between steps may be specified and these relations are used to
generate temporal ordering constraints as well as protection intervals. 16 Control flow among the
steps (e.g., looping, iteration, etc.) may also be specified directly.

Consider an example from the domain of journal editing. When a paper is submitted for
publication in a journal, the editor of that journal must select appropriate reviewers for the
paper, invite them to review the paper, collect their reviews, make a decision based on the

"Proteciou intervai. uaintain a certain state of the world during a portion of the plan on the assumption that
a state generated at one point will be needed at some later point. See [84].

.q5

activity ACTIVITY activity-name activity-clause*
activity-clause goal-clause # [preconditions-clause] # [effects-clause] #

[decomposition-clause] # [rationale-clause] # [control-clausel #
[agents-clause] # [constraints-clausej

goal-clause GOAL world-predicate
preconditions-clause PRECONDITIONS world-state*

effects-clause - EFFECTS effect-spec*
aecomposition-clause :- DECOMPOSITION step*

rationale-clause PLAN-RATIONALE enables-relation*
control-clause CONTROL control-construct*
agents-clause :- AGENTS agent-spec*

constraints-clause = CONSTRAINTS world-state*
step :- step-spec [done-by agent-spec]

step-spec (goal step-name world-state) I
(activity step-name f activity-name I (one-of activity-name'))
(action step-name action-name parameter-list [world-state])

agent-spec := world-state I kb-entity
parameter-list ({vanable, }* variable)

control-construct before{step-name, } step-name I
if world-state then step-or-net [else step-or-net]

optional step-or-net star step-or-net) plus step-or-net
repeat step-or-net repeat-bounds [iterate-when world-state]

repeat-bounds while world-state I until world-state I times integer
for variable in ({value, }* value) I
with variaie suchthat world-state

step-or-net step-name I (step-name to step-name)
enables-relation enables({step-name, }+ step-name)

effect-spec (effect-action world-state)
effect-action set Iadd I delete

world-state := predicate (kb-term, kb-Lerm) I not(world-state)
and({world-state, }* world-state) I or({world-state, }* world-state)

kb-term := predicate (kb-term) I kb-entity I value I variable
predicate := system-predicate I kb-predicate

system-predicate member subclass I equal
value := string I number I symbol-not-a-var

variable unconztrained-variable I constrained-variable
unconstrained-variable any symbol whose first character is a

constrained-variable ?(symbol-not-a-var {world-state I kb-entity})
symbol-not-a-var any symbol whose first character is not a

Figure 2: A Grammar for Activities, Objects, and Agents

96

ACTIVITY: REVIEW-PAPER
Goal: reviews(?submission, ?reviews)
Preconditions:

member(?paper,papers)
edits.journal(? editor, ?journal)
submitted.to(?submisison, ?journal)
paper(?submission, ?paper)

Decomposition:
GOAL reviewers-selected =

and(reviewers(?submission, ?reviewers),
sufficient-reviewers (?journal, ?reviewers))

GOAL paper-distributed = has(?reviewer, copy-of(?paper))
GOAL have-review = has(?editor, review(?reviewer))

Plan Rationale:
ENABLES reviewers- selected paper-distributed
ENABLES paper-distributed have-review

Con-
trol: repeat (paper-distributed to have-review)

for ?reviewer in ?reviewers
Agents: ?(editor, editors)

Figure 3: A POLYMER Activity Description

reviews, and inform the author of the decision. Figure 3 shows a high-level POLYMER activity
description for reviewing a submitted paper. It contains subgoals which are named and specified
in terms of states of domain objects. The subgoals are causally (and therefore temporally) linked
since a reviewer must be selected before a copy of the ;aper can be sent to the reviewer and the
reviewer must receive the paper before the editor can get a review back. The two latter steps
are roneated for each reviewer selected in the first step.

Using these domain descriptions, POLYMER interactively generates hierarchical, partially-
ordered plans to accomplish a stated goal. The planning process, described below, is unique
in its use of a combination of "script based" and "goal directed" descriptions of activities to
overcome the rigidity of scripts while greatly reducing the cost of purely goal driven systems. It
interleaves planning and plan execution in order to overcome the ambiguity inherent in complex,
underspecified domains.

6.3.3.1.2.2 Preprocessing of domain descriptions

In order to make efficient use of the domain descriptions during the planning process, a certain
amount of preprocessing is necessary. First, the external forms of the domain descriptions (shown
above) are parsed and converted into Activity, Object, and Agent (KEE) units. Then, the activity
descriptions are further processed to convert their information into a form more conveniently used
during planning.

As we will see in the following section, POLYMER represents a plan as a partially ordered
network of plan nodes called a plan network. To simplify the generation (and expansion) of

97

this plan network, POLYMER creates a plan network to represent each activity during the
preprocessing phase. Thus, all the information in an activity description is converted into a
partially ordered set of plan nodes. A more formal description of POLYMER's Plan Network
Maintenance System appears in [7].

To generate a plan network for an activity, POLYMER first creates a plan node for each
step in the activity's decomposition. Goal, activity and action nodes are generated for each
corresponding step type. In addition, structural nodes are generated to represent the start and
finish of the entire activity. Next, a partial ordering is established among the nodes (using
the node's "predecessor" and "successor" fields) based on information in the activity's control
clause. The more complex control constraints (e.g., if, optional, star, plus and repeat) result in
the insertion of additional structural nodes.

Next, the causal relations in the plan rational clause are used to generate additional ordering
constraints and protection intervals for the plan network. rinaly, the activity's preconditions
tre transformed into constraints on the network's start-node, the activity's effects are placed on
the network's finish-node, and any additional constraints specified in the activity description are
placed on appropriate nodes within the network.

An example of the plan network generated for the activity description in Figure 3 is shown in
Figure 4. A grammar for the specification of POLYMER plan networks and plan nodes appears
in Figure 5.

SPaper -- HaveI

Sat Reviewesb-- L"--" Lop n
elected [_ S p

Figure 4: The "Referee Paper" Plan Network

In order to reduce the search for an activity to accomplish a goal during the planning process,
one further preprocessing action is taken. For each goal node within an activity's plan network,
POLYMER compares the value of the goal node to the goal of each known activity description.
By finding and recording (during preprocessing) the set of all activities which could possibly
satisfy each goal node, the planning process is made more efficient.

6.3.3.1.3 Interactive plan generation

To help a user achieve a desired goal, POLYMER attempts to generate a plan to accomplish
the goal. To accomplish this, the goal and the required parameters must first be presented to
the planner which then constructs the plan in a hierarchical manner. The planning proceeds in
a top-down (in terms of plan abstraction), left-to-right (in terms of step ordering) fashion as far
as possible without ambiguity. When the planning cannot proceed with certainty, it attempts
to resolve the ambiguity by either 1) executing an action node (if any are "ready" as explained
below) or 2) obtaining information from the user (such as which of several possible tasks it

98

plan-network PLAN-NETWORK network-name
start-node # finish-node # from-activity

start-node (start plan-node)
finish-node (finish plan-node)

from-activity (from-activity activity-name)
plan-node PLAN-NODE node-name node-info
node-info goal-node I activity-node]action-node I structural-node
goal-node generic-node # (type goal) # (goal world-state) #

(possible-activities activities-and-bindings) #
(selected-activity activity-name) #
(expansion-network plan-network)

activity-node generic-node # (type activity) # (goal world-state) #
(selected-aetivit y activity-name)

action-node generic-node # (type action) # (goal rworld-state) #
(code fn-name)

structural-node generic-node # (type structural) # (loop-info loop-controller)
generic-node (predecessors (node-name*)) # (successors (node-name*)) #

(from-node node-name) #(from-activity activity-name) #
(before-world world-name) #(after-world world-name) #
(start-time time-range) # (finish-time time-range) #
(split-type {and I or}) #(join-type {and I or}) #
(level number) # (step-name step-name) # (agent agent-spec) r
(status { unseen I expanded I pending I phantom

complete I looping }) #
(repeat-from (node-name*)) #(repeat-after (node-name*))
(conditions world-state*) #(if-bound-conditions world-state*) #
(effects effect-spec*)

activities-and-bindings (activity-and-bindings*)
activity-and-bindings (activity-name bindings-list)

bindings-list ((variable kb-term)*)
loop-controller = LOOP-CONTROLLER controller-name loop-controller-info

loop-controller-info (initial-list (kb-term*)) # (initial-value kb-term) #
(current-list (kb-term*)) # (current-value kb-term) #
(variable variable)

time-range - (time-spec, time-spec)
time-spec number [time-unit)
time-unit seconds I minutes I hours I days I weeks I years

Figure 5: A Grammar for Plan Networks and Nodes

99

"'" r ,. iiiI ~ ~. "..

Z'g-, , IM

.

<D.r"wi T a-u r"l In Wis i
I

-- illo i- -~ wm1 11#I il li

(lUmUO JffO)

(.(amornn' uue aW S

Ii p.....l U i .F11P] Oii --

" ! • -* u. ... n

.'3 ,."-, a ,s l -, .,

Figure 6: The POLYMER Developer's Interface

should use to accomplish an outstanding goal). In this section we describe how an initial goal
is presented to the planner, how a plan network is interactively constructed to satisfy this goal,
and what happens when difficulties arise during the generation and execution of the plan.

6.3.3.1.3.1 Statement of goal via an application interface

In a given application domain, there will typically be a fairly common set of goals that a particular
user wishes to accomplish. For instance, in the journal editing domain, the editor of a journal will
want to generate a request for papeis, referee a submitted paper, modify a database of potential
reviewers, etc. A reviewer will choose whether to review a particular paper and submit reviews
to the editor. An author will write papers, submit them to journals, and rewrite the papers as
necessary.

For a particular class of users in a particular domain, the user interface must allow the user to
select the goal they want to accomplish and to specify the necessary parameters. Thus, a journal
editor's interface allows the editor to state that he wishes to referee a paper and to specify the
paper The current system contains both a menu-driven "developer's" interface (Figure 6) and
an iconic "end-user's" interface for the office domain (Figure 7).

Because each goal may require an extended period of time to accomplish, a user will most
likely want to interleave several tasks. Thus, the interface allows the user to suspend the current
goal and select another (new or previously suspended) one.

Once a goal is selected, POLYMER generates a top-level plan network to represent that
goal. It consists of a single goal node contained between a pair of "start" and "finish" structural
nodes. The user's parameterized goal is used as the goal-value of the goal node; any initial state
information is added to the top-level start-node. Planning begins by expanding this plan network
as explained below.

100

Figure 7: An Office Worker's Interface

6.3.3.1.3.2 Expanding the plan network

The POLYMER planner hierarchically constructs a plan by expanding a plan network. This
expansion is performed by alternately selecting a plan node to process and then processing that
node. The way in which a node is processed is determined by the node type.

Selecting a plan node

Because POLYMER constructs its plans in a top-down, left-to-right fashion, it selects the highest
level (i e., most abstract) node that is "ready" to be processed. In order to assure left-to-right
processing, a node is "ready- Lo be processed if and only if 1) the node has not already been
processed, 2) all of a node's necessary predecessors are complete and awaiting successors, and
3) all of the node's conditions are satisfied. A predecessor node is complete if its processing has
been completed or if it does not need to be processed (i.e., a phantom goal node, as explained
below)." A node's conditions are evaluated in the node's "before-world" ' to assure that the
node is applicable at this point in the plan.

To ensure top-down processing, each node is assigned an abstraction level denoting its "depth"
from the original top-level goal. Thus, the nodes in the top-level network are assigned a level of
0; when a goal node is replaced by an activity network (as explained below), the level of the new

"?A node's join-type determines whether it is necessary for all of the node's predecessors (for an "and" join)

or merely any of them (for an "or" join) to be complete in order for the node to be "ready." Similarly, a node's
split-type determines whether it is awaiting a successor: A node is awaiting successors until all of its successors
are processed if it is an "and" split, or until any of its successors are processed if it is an "or" split.

"The "world" corresponding to the point in the plan immediately before the plan node is called its before-world;
its after-world occurs immediately after the node.

101

nodes is 1 greater than the goal node they replace I'
Once the "ready" nodes are sorted by abstraction level, they are ordered by node type.

Structural nodes (except for loop-iteration nodes) are processed first, followed in order by goal
nodes, activity nodes, action nodes and finally loop-iteration nodes. If more than one node of a
given type are ready to be processed, the planner can either select one based on a (modifiable)
set of heuristics (e.g., specificity of the node's conditions, a priori preierences dm;ng tasks. ctc.)
or ask the user to select which node to process next.

Processing a plan node

Once POLYMER selects a plan node, the way in which the node is processed depends upon
its type. For instance, it checks whether goal nodes are already satisfied by evaluating the goal
node's value in the node's before-world If the goal is already satisfied (either accomplished by
some earlier steps or true in the initial world state), the node status is se . to "phantom" and no
further processing of the node takes place. If the goal is not satisfied, POLYMER determines
if it can add additional ordering constraints to the existing plan network in order to place the
node where its goal will be satisfied. If it is unable to achieve this, the planner must select an
activity to achieve the goal.

As described in Section 6.3.3.1.2.2 above, each goal node template contains a list of all activ-
ities which may possibly satisfy the goal. These activities are now checked to see if their goals
match that of the instantiated goal node and whether their preconditions are satisfied in the goal
node's before-world. If more than one activity still qualifies as a means of accomplishing the goal.
the planner can select ,ae heuristically (using, for example, the closeness of the match between
the activity's goal and that of the goal node, the specificity of the activity's preconditions, etc.)
or by asking the user which activity should be performed.

Once an activity is selected for a goal, the plan network for that activity is _;-:' .ntiated and
spliced into the current plan network in place of the goal node. Instantiating the network includes
the instaii:.at-on oIF each of the nodes in the network, creation of KEE worlds corresponding to
the new nodes, assertion of each node's effects in its after-world, and instantiating any needed
protection intervals on these worlds. In addition to splicing the new nodes into the existing plan
network, the new worlds are spliced into the existing world hierarchy.

A,_tivity nodes are processed in a similar . ,-, except that. the selection of an appropriate
activity is obviated. Action nodes require the invocation of tools (or interactions with other
agents) and are handled by the execut:on monitor. The tools are invoked as specified in the
"code" portion of the action node and the results are recorded in the after-world corresponding
to the action node. Note that action nodes can be processed before the plan network is completely
expanded. This permits the interleaving of planning and plan execution in order to prevent the
planner from becoming swamped by the potentially explosive combinatorics of purely strategic
planning in an underspecified and often ambiguous environment.

Most structural nodes simply serve as a means of demarcating activity boudndaries and are the
appropriate locations to place constraints and effects that belorg at the beginning or end of an
activity. Thus, an activity's preconditions and effects are placed on the activity's start and finish-
nodes, respectively. The processing of these nodes only requires checking that their conditions
are valid in order for them to be "complete." Structural nodes used to control looping, generated

"Therefore, nodes which are "higher" in terms of abstraction have "lower" level numbers.

102

from certain control constructs, are more complex. For each loop construct, a loop-controller
-bject is created and the loop-iteration and loop-termination nodes have conditions and effects
.hich utilize the loop-controller. Thus, if the conditions of a loop-iteration node are satisfied.
an additional instantiation of the nodes which comprise the body of the loop are created and
inserted into the plan network. If a loop-termination rode is satisfied, both the loop-iteration
node and the loop-termination node are marked "complete" and the looping terminates.

6.3.3.1.3.3 Detection and correction of plan problems

The expansion of the plan network and the execution of actions interleaved with plan generation
can both cause problems to arise in the plan. These may be detected as 1) actions perforined
which were not expected as part of the plan, 2) goals selected bv a user which were not curr-miv
expected, or 3) inconsistencies in the world modcl arising from violated protection intervals or
failed constraints.

These problems can indicate an error on the part of the planner, "exceptional- behavior by
the user. or simply a user error. The handling of exceptional behavior (i.e.. intentional actions bv
the user that are not covered by the planner's domain model), is described in Section 6.3 3.1.4 1
In order to correct errors in the existing plan. POLYMER first considers the addition of node
ordering constraints to resolve the problem. If this fails and the problem was caused by a violated
goal. it considers reinstating the goal at a point after it was violated and before it is needed.

I' POLYMER is unable to resolve the problem by manipulating the existing plan network. it
is forced to backtrack and undo some of its previous planning decisions (e.g , the selection of an
activity for a goal, a choice of alternative goals, etc.). Because POLYMER uses KEE's ATMS
to justify and record each of its planning decisions, the planner needs to redo only those portions
of the plan that led to the problematic results (i.e., dependency-directed backtracking).

6.3.3.1.4 Beyond the basic planner

While we believe that a planner such as POLYMER is an essential component to support
work in cooperative environments, we also see the planner as the core of a set of sophisticated
support tools. Several research projects are currently underway that build upon POLYMER's
functionality and aim to extend its overall utility. These projects, described below, include
systems to handle exceptional behavior, to present and acquire models of application domains.
and to support conflict resolution.

6.3.3.1.4.1 Exception handling

Because POLYMER's domain model is inherently incomplete (as is any model of a "real-world"'
domain), there will be situations where the planner does not correctly anticipate a user's desired
action(s). By combining the domain model with heuristic knowledge about how plans may
deviate, the SPANDEX system '10 uses a process of plausible Mference to generate ezplanations
of how a user's exceptional behavior can be reconciled with an existing POLYMER plan. Using
these explanations, SPANDEX constructs the necessary amendments to the domain model to
incorporate this new behavior.

103

6.3.3.1.4.2 Knowledge presentation and acquisition

Though POLYMER's domain model may never be complete (or even necessarily correct), the

ability to make modifications (e.g., additions, corrections) in a simple fashion is extremely im-

portant. In order to make such modifications by end users feasible, the domain model must

be presented to and manipulated by the users in an "understandable" fashion. The DACRON

project '55, has investigated how typical end-users perceive tasks and objects within their do-

mains and has been able to map this more "natural" model onto the POLYMER formalism. An

interactive, animated, iconic interface is being developed to permit the presentation of informa-

tion Lo these users and allow them to modify existing information as well as to specify additional

tasks, objects, etc.

6 3-3.1.4.3 Conflict resolution

Because cooperative work environments require the interaction of multiple agents (as well as

the planner), conflicts between agents will inevitably arise. Differing goals, limited knowledge

about the domain, varying capabilities and incomplete models of other workers can lead one

agent to perform in a way that another agent does not expect. The resolution of such conflicts
is often difficult and usually occurs though negotiation between the affected agents 161. The
GENEVA project '24 has begun to explore ways in which POLYMER's models of the domain
and of the current plan can be used to support the negotiation process. In particular. it aims
to assist in 1) initiating negotiation (by identifying the needed agents and presenting them with
an appropriate view of the conflict), 2) maintaining the state of current and past negotiation
sessions, 3) suggesting and allowing the exploration of solutions, and 4) verifying that proposed
solutions actually resolve the conflict.

6.3.3.1.5 Surnmmary

The POLYMER planning system has been designed and implemented as the core of an environ-

ment to support cooperative work. The current prototype has been used to interactively generate
plans in such diverse areas as journal editing, software development and house purchasing. A

preliminary version of the system has been delivered to an Olivetti research laboratory where it
is being used to develop advanced applications in the area of office automation.

In addition to the development of further applications, POLYMER is serving as a testbed

for several research projects. These projects are exploring the use of knowledge acquisition.

exception handling, and computer-mediated conflict resolution as part of an effort to develop an

integrated environment for the support of cooperative work.

104

6.3.4 Tutoring Systems

Representing, Acquiring, and Reasoning about Discourse Knowledge This five-yez.-
project was concerned with understanding human/machine communication in terms of the dis-
course actions, user modeling, and tutoring strategies. We have developed architectures and
tools which facilitate the representation and acquisition of such knowledge. The tools have been
incorporated int(a generic and consistent foundation which has enabled us to represent, acquire,
and reason about discourse and tutoring across several domains and from within several sites.
Our goal is to enhance this framework and ultimately to produce a system in which "just plain
folk," including psychologists, instructional scientists, teachers and domain experts, can work
directly on the machine to modify and upgrade tutors without the need for knowledge engineers.

The big payoff has been that we can now apply the framework and evolving theory to several
domains. We are not invested in promoting a particular discourse strategy, nor do we advocate a
specific intelligent tutoring system design. Rather, we build tools that allow for a variety of system
components, teaching styles, and intervention strategies to be combined into a single framework.
For example, Socratic tutoring, incremental generalizations, and case-based reasoning are just a
few of the teaching strategies we have experimented with using this formalism. Ultimately, we
expect the machine to reason about its own choice of intervention method, to switch teaching
strategies, and to use a variety of tactics and teaching approaches, while making decisions about
the most efficacious method for managing one-on-one tutoring.

We are aided in our work by colleagues in three states who apply the tools we develop to new
domains and new user groups.2 ° For example, colleagues at San Francisco State University have
sent us several carefully built physics simulations on top of which we placed the tutoring formalism
described here. 21 These colleagues help us evaluate the tutors. Using an iterative methodology
in which formative evaluation augments tutor development, we have designed systems that tutor
about statics, thermodynamics, time management, statistics, genetics, algebra word problems,
and explanations. In this section we describe that methodology along, with the generic tutoring
foundation.

Development of intelligent tutors, like development of any artificial intelligence system, re-
quires several iterative cycles: computer scientists and instructional designers first collaborate
on the design and development of the system, additional collaboration is required to test the
system with students, and then the original implementation is modified and refined based on
information gained through testing. This cycle is repeated as time permits.

For exampie, a professor at City College of San Francisco used the statics tutor (Section 6.3 5.1 1)
in a classroom and noticed weaknesses in the simulation's ability to inform the student. She aug-
mented the system with verbal discourse, adding examples or explanations, making diagnoses,
and clarifying system response. She gave us a list of her additional discourse moves to be incor-
porated into the next version of the tutor.

2°Participant institutions include San Francisco State University, San Francisco City College, Trinity College in

Hartford, CT, and State Univer-ity of New York at Plattsburgh, NY.
2 San Francisco State University, the University of Masachusetts, and the University of Hawaii are members of

the Exploring System Earth Consortium (ESE), a group of universities and industries working together to build
intelligent science tutors. The consortium is supported by the Hewlett-Packard Corporation.

105

Tutoring Goal

Selection

Topic
Selection

6oresentation s

ExamplesSelections

Topicsesespoes

Figure 1: Representation and control in a tutoring system.

6.3.5 Representation and Control

Knowledge bases for human-machine communication might store concepts, activities, relations
between topics, and other quantities needed to make expert decisions. For tutoring, they might
store a variety of lessons, topics, presentations, and response selections available to the tutor
(see Figure 1). The control structures might be specified at the four levels indicated in Figure 1,
separately defining control for selection of lesson, topic, presentation, and response selection.

Currently, our control structures are motivated by specific instructional and diagnostic goals;
thus, for example, one control structure produces a predominantly Socratic interaction and an-
other produces interactions based on presenting incrementally generalized versions of new con-
cepts or examples. Control structures are specific to a particular level of control and are used
separately to define the reasoning to be used for selecting a lesson, topic, presentation, or re-
sponse.

Acquiring and encoding this large amount of knowledge, or the knowledge acquisition process.
is difficult and time consuming. We have built a number of tools that facilitate representating,
acquiring, and reasoning about tutoring knowledge (see Figure 2). For each knowledge base
(lessons, topics, presentation, or response) we consider the nature of the knowledge that must
be accessed, such as the examples or questions (from the presentation knowledge base) or the
activity the tutor must engage in, such as to motivate or teach a topic, or to provide follow-up.
We have built tools, shown at the bottom of Figure 2, to support most activities listed in the
figure. Only a few such tools will be described in this section, namely TUPITS, Exgen, Response
Matrix, DACTN, and multiple views.

We divide the discussion into two parts, separately describing tools for representing tutoring
primitives (lessons, topics, and presentations) and then tools for representing discourse knowl-

106

FUNCTIONS Topics~ .

10 7

UI I i i I i I

_rIn__ _'_ i-tatics E

Figure 1: Statics tutor.

6.3.5.1 Tools for Representing Tutoring Primitives

We define tutoring primitives as basic elements needed for communicating knowledge,
such as topics to be taught, specific tutoring responses, and possible student errors. Our
knowledge bases hold a variety of examples, knowledge types, tasks to be given to the student,
and discourse states describing various human-machine interactions.

6.3.5.1.1 Example Tutoring Primitives

As an example of how tutoring primitives are used, we describe two tutors we have built in
conjunction with the Exploring Systems Earth (ESE) Consortium 129]. These tutors are based
on interactive simulations that encourage students to work with "elements" of physics, such as
mass, acceleration, and force. The goal is to help students generate hypotheses as necessary
precursors to expanding their own intuitions. We want the simulations to encourage students
to "listen to" their own scientific intuition and to make their own model of the physical world
before an encoded tutor advises them about the accuracy of their choices. These tutors have
been described elsewhere [87, 893 and will only be summarized here.

Figure 1 shows a simulation for teaching concepts in introductory statics. In this example,
students are asked to identify forces and torques on the crane boom, or horizontal bar, and to
use rubber banding to draw appropriate force vectors directly on the screen. When the beam is
in static equilibrium there will be no net force or torque on any part of it. Students are asked to
solve both qualitative and quantitative word problems.

If a student were to specify incorrect forces either by omitting force lines or by including
the wrong ones, the tutor makes a decision about how to respond. There are many possible
responses depending on the tutorial strategy in effect. The tutor might present an explanation

or hint, provide another problem, or demonstrate that the student's analysis leads to a logical
contradiction. Still another response would be to withhold explicit feedback concerning the

108

".me I

=usages:

E.........

Figure 2: Thermodynamics tutor.

quality of the student's answer, and to instead demonstrate the consequence of omitting the
"missing" force (i.e., the end of the beam next to the wall would crash down). Such a response
would show the student how his/her conceptions might be in conflict with the observable world
and to help him/her visualize both an internal conceptualization and the science theory.

A second tutor is designed to improve a student's intuition about concepts such as energy,
energy density, entropy, and equilibrium in thermodynamics. It makes use of a very simplified but
instructive simulated world consisting of a two-dimensional array of identical atoms (Figure 2;
~41. Like the statics tutor, the thermodynamics tutor monitors and advises students about their
activities and provides examples, analogies, or explanations. In this simplified world the atoms
have only one excited state; the excitation energy is transferred to neighboring atoms through
random "collisions." Students can specify initial conditions, such as which atoms will be excited
and which will remain in the ground state. They can observe the exchange of excitation energy
between atoms, and can monitor, via graphs and meters, the flow of energy from one part of the
system to another as the system moves toward equilibrium. In this way, several systems can be
constructed, each with specific areas of excitation. For each system, regions can be defined and
physical qualities, such as energy density or entropy, plotted as functions of time.

6.3.5.1.2 Representing and Reasoning about Tutoring Primnitives

For each domain described above, topics, examples, explanations, and possible misconceptions
are represented in the four knowledge bases described in Section 6.3.5. We use a network of
Knowledge Units frames to explicitly express relationships between topics such as prerequisites,
corequisites, and related misconceptions (Figure 3). An important notion about the network
is that is declarative-it contains a structured space of concepts, but does not mandate any
particular order for traversal of this space.

The network describes tutorial strategies in terms of a vocabulary of primitive discourse

109

/EIIBRiUM!

;estlofn$

DIRECTION usslotsr

OF ~ ~ ~ O MAC7 nesil SpoSe

SUMM RIZE/MTO 1-DiaVose I s

Anserslii
misconeosO UI

''"se I." I"V

Figure 3: Hierarchy of frames.

moves such as teach, motivate, contrast, and summarize. It is implemented in a language called
TUPITS2 2 which was built as a framework to facilitate development of numerous tutors. It
is an object-oriented representation language that provides a framework for defining primitive
components of a tutorial discourse interaction. These components are then used by the tutor to
reason about its next action.

As shown in Figure 3, each object in TUPITS is represented as a frame and each frame
is linked with other frames representing prerequisites, corequisites, or triggered misconceptions.
The primary objects in TUPITS are:

* Lessons which define high-level goals and constraints for each tutoring session;

* Knowledge Units (KUs);

SMIS-KUs, which represent comm~on misconceptions, wrong facts or procedures, and other
types of "buggy" knowledge;

* Examples, which specify parameters that configure an example, diagram, or simulation to
be presented to the student;

* Questions, which define tasks for the student and how the student's behavior during the
task mig3t be evaluated; and

m Presentations, which bind an example together with associated questions.

coTUPITS (Tutorial discourse Primitives for Intelligent Tutoring Systems) was developed by Tom Murray and
runs on both Hewlett-Packard Bobcats and Apple Mackintosh IIs.

110

NIS-KUs, or "Mis-Knowledge Units," represent common misconceptions or knowledge "bugs"
and ways to remediate them. Remediation is inserted opportunisticaLy into the discourse. The
tutoring strategy parameterizes this aspect of Knowledge Unit selection by indicating whether
such remediation should occur as soon as the misconception is suspected, or wait until the current
Knowledge Unit has been completed.

Control is achieved through information associated with each object which allows the system
to respond dynamically to new tutoring situations. For instance, Knowledge Units, or topics
represented as objects, have procedural "methods" associated with them that:

* teach their own topic interactively;

" teach their own prerequisites;

" explain knowledge didactically;

" test students for knowledge of that topic;

* summarize themselves;

" provide examples of their knowledge (an instantiation of a procedure or concept):

" provide motivation for a student learning the topic; and

" compare this knowledge with that of other Knowledge Units.

A specific tutoring strategy manifests itself by parameterizing the algorithm used to traverse
the knowledge primitives network based on classifications of and relations between knowledge
units. Several major strategies have thus far been implemented. For example, the tutor might
always teach prerequisites before teaching the goal topic. Alternatively, it might provide a
diagnostic probe to see if the student knows a topic. Prerequisites might be presented if the
student doesn't exhibit enough knowledge on the probe. These prerequisites may be reached
in various ways, such as depth-first and breadth-first traversal. An intermediate strategy is to
specialize the prerequisite relation into "hard" prerequisites, which are always covered before the
goal topic, and "soft" prerequisites, taught only when the student displays a deficiency.

Control and Reasoning about Examples. Another example of reasoning about tutoring
primitives is shown by the activities of ExGen [79, 88] ExGen takes requests from various
components of the tutor and produces an example, question, or description of the concept being
taught. For example, the two configurations in Figure 2 and the two "universes" in Figure 4 can
be produced by ExGen. A "seed" example base contains prototypical presentations of each type.
ExGen's modification routine expands this into a much larger virtual space of presentations
as needed. The goal is to enable the tutor to have flexibility in its presentation of examples
and questions/tasks that accompany those examples, without needing to represent all possible
presentations explicitly.

ExGen is driven by example generation specialists, or knowledge sources, each of which
examines the current discourse and student model and produces requests (weighted constraints)
to be given to ExGen. Example generation specialists may be thought of as tutoring rules,
encoding such general prescriptives as "when starting a new topic, give a start-up example," or
"ask questions requiring a qualitative response before those involving quantities."

111

requests examples

trateg topicJ € Studet

Figure 4. Reasong about examples.

Requests input to ExGen are expressed as weighted constraints called requests (see Figure 4).
The constraints are written in a language that describes logical combinations of the desired
attributes of the example, and the weights on them represent the relative importance of each of
these attributes. Attributes include boom angle or boom length tur the statics tutor and universe
size and density for the thermodynamics tutor. The returned examnple generally meets as many
of the constraints as possible in the priority indicated by the weights.

The tutoring strategy impacts on this layer of presentation selection by prioritizing the relative
importance of the recommendations produced by each of the example generation specialists.
Within a strategy, each specialist has a weight multiplied by the weight of the requests produced
by the specialists. Altering the behavior of the presentation control is simply a matter of changing
the weights on the specialists by selecting a new strategy.

For instance, one specialist requests that presentations describing the current Knowledge .
Unit be given and another requests that the student be questioned. These competing requests
are ordered by the current tutoring strategy. We are also examining strategies for temporal
ordering of the presentation of examples, such as Bridging Analogies [13, 61] and Incremental

Generalization.

Acquiring Tutoring Primitives Knowledge. Knowledge acquisition of' tutoring primitives
knowledge or acquiring and encoding the questions, examples, analogies, and explanations used
in a particular domain is still a difficult problem. We need to know not only the primitives used
by the expert, but also the reasoning he/she uses to decide how and when to use each rrnmtive.
We achieve knowledge acquisition for tutoring primitives through a graphical editor built into
TUPITS which is used by the instructional designer to encode and modify both primitives and1121

the reasons why one primitive might be used over another. The graphical editor allows a teacher
to generate and modify primitives without working in a programming language. The system
currently presents a user with a sheaf of "cards" listing a series of primitives. The user chooses
a card and brings the primitive into an edit window, from which he/she builds new primitives.

113

_ESPOSE Vo os © _ .- /

cr.,, answer X X X t
real.ansef

challenge
I-. fhints

elaborate I V I I X

6 0 c
0E - - U

D e

on't do e[RESPONSE TACTIC
Oon't care

Figure 1: Reasoning about discourse.

6.3.5.2 Tools for Representing Discourse Knowledge

Our tutors are beginning to represent and reason about alternative responses to the student.
Choices are concerned with how much information to give and what motivational comments
to make. For instance, the machine must decide whether or not to:

* talk about the student's response;

" provide motivational feedback about the student's learning process;

" say whether an approach is appropriate, what a correct response would oe, and why the
student's response is correct or incorrect;

* provide hints, leIading questions, or counter-suggestions.

Motivational feedback may include asking questions about the student's interest in continuing
or providing encouragement, congratulations, challenges, and other statements with affective
or prelocutionary content. Control is modulated by which tutoring strategy is in effect, which
in turn places constraints on what feedback or follow-up response to generate. The strategy
may also specify that system action be predicated on whether the student's response was
correct, or whether any response was given.

Reasoning about Discourse Level. As a start to this process we have defined several high-
level response strategies and tactics (see Figure 1). For example, we have designated an informa-
tive response tactic as one in which the machine will elaborate, give reasons, aid congratulate
the student. For each concept represented in the machine, some of these primitive responses are
available and the machine will generate the requested tactic. However, we also advise the system
about strategies such as Socratic tutoring, being brief, and being verbose. Here we indicate a

priority ordering; thus to be Socratic, the machine must place highest priority on the tactic called
coy and secondary rating on the tactic to be informative. If there is a conflict between the checks
and the crosses in the model shown in Figure 1, that notation with the highest priority will win-

114

/ -

----...------

/

cIr C

$4

I us - .1 cc

Figure 2: Discourse ACtion Transition Network: DACTN.

6.3.5.2.1 Managing Discourse

We realize that a more flexible and responsive discourse management technique is critical to a
tutoring or consultant system. By discourse management, we mean the system's ability to main-
tain interactive discourse with the user and to custom-tailor its responses beyond the generalized
discourse levels suggested above. Ideally, the system should tailor its response to the idiosvn-
crasies of a particular user. Machine discourse and response need not be in natural language to
be effective f751.

For example, the system should ensure that an intervention relates directly to an individual's
personal history, learning style, and on-line experience with the system. It should dynanically
reason about a user's actions, the curriculum, and the discourse history. In doing this the tutor
should make each user feel that his/her unique situation has been responded to appropriately
and sensitively. In this way the system simulates one-on-one human tutoring behavior. The
mechanism we use to do this is called a DACTN, L.iscourse ACtIon Transition Network,23 which
represents and controls human-machine dialog. Figure 2 shows a DACTN for responding to a
user about an inventory test of questions that he/she took in a consultant system called TEV.
which advises people about setting priorities and using time effectively. This graphic is taken
directly off the screen of that system.

Sometimes the intervention steps designated by a DACTN are based on a taxonomy of fre-
quently observed discourse sequences which provide default responses for the tutor 89'. The
discourse manager reasons about local context when making discourse decisions. Here local
context is an aggregate of the client profile and response history.

The DACTN represents the space of possible discourse situations: Arcs track the state of
the conversation and are defined as predicate sets while nodes provide actions for the tutor.
The discourse manager first accesses the situation indicated by the arcs, resolving any conflicts

"SRhymes with ACT-IN.

115

PHASE I: PHASE 2:
Initial Client Intervention/
Assessment Evaluation

INTERACTIVE CONSULTING WITH CLIENT

0
QUESTION/

4 ANSWERS , -

n CURRICULUM INTERVENTIONS ON-LINE PROFILE

4 'NORM OFw90 1 11,000 'T KS"' - ;7

0 PEOPLE HU= SKILLS
w BEHAVIORS

Figure 3: Two phases of the consultant.

between multiply-satisfied predicate sets, and then initiates the action indicated by the node at

the termination of the satisfied arc.
Arcs represent discourse situations defined by sets of predicates over the client profile and

the state of the system. For instance, the value of the arc "CLIENT-IS, AVOIDING" (top-half
of Figure 2) is determined by inferring over the current state of the profile and recent client
responses. Placing actions at the nodes rather than on the arcs. as was done in the AIN 86.
allows nodes to represent abstract actions which can be expanded into concrete substeps when
and if the node is reached during execution of the DACTN. For example, the node "EXPLAIN
RESULTS" (middle of Figure 2) expands into yet another complete DACTN to be executed if
this node is evaluated m the course of the intervention.

Each user response causes the user model, or in this case the personality profile, to be updated.
which in turn affects the interpretation and resolutions of subsequent interactions. DACTNs
allow discourse control decisions to be based on a dynamic interpretation of the situation. In this
way the mechanism remains flexible, domain-independent, and able to be dynamically rebuilt-
decision points and machine actions are modifiable through a graphics editor DACTNs have been
implemented in two domains, c e which f ne-tunes explanations for specific users and discourse
history and one which trains people to improve their time management skills.

116

Bibliography

1 Ambros-Ingerson, J.A., Steel, S. "Integrating Planning, Execution, and Moritoring,"
Proceedings of AAAI-88, Minneapolis-St. Pal. Minnesota, pp. 83-88.

2. Anderson, J.R., "Architecture of Cognition," Harvard University Press, 1983.

3 Anderson, J.R. and Bower, G.H., "Human Associative Memory," Winston and Sons.
1973.

4 Atkins. T.. The second law, San Francisco: Freedman, 1982.

5' Barber, G.R., "Supporting Organizational Problem Solving with a Work Station."
ACM Transactions on Office Information Systems, 1, pp. 45-67, 1983.

'61 Bartos, O.J., "Process and Outcome of Negotiation," Columbia University Press. New
York, 1974.

'7' Beetz, M. and Leflowitz, L.S., "Reasoning about Justified Events: A Urified Treat-
ment of Temporal Projection, Planning Rationale and Domain Constraints." Techni-

cal Report CSL-89-6, Collaborative Systems Laboratory. Computer and Information
Science Department, University of Massachusetts, Amherst MA, 1989.

8' Boose, J., "Personal construct theory and the transfer of human expertise." Proceed-
ings of the national conference on artificial intelligence, Austin, Texas, 1984.

9' Broverman, C.A. and Croft, W.B. "Plausible Explanations to Cope with Unantic-
ipated Behavior in Planning," COINS Technical Report 88-56, University of Mas-
sachusetts, Amherst, Ma. June 1988.

'10" Broverman, C.A. and Croft, W.B., "Reasoning about Exceptions during Plan Execu-
tion Monitorirg," Proceedings of the .4A.41-87, 1987.

11' Broverman, C.A. and Croft, W.B. "SPANDEX: An Approach Toward Exception Han-
dling in an Interactive Planning System," COINS T-L-c..cal 'eport 87-127, University
of Massachusetts, Amherst, Ma. December 1987.

'12' Broverman, C.A., and Croft, W.B. "Exception Handling During Plan Execution Mon-
itoring," Proceedings of AAAI-87, July 1987, Seattle, WA.

117

131 Brown, D, Clement, J. & Murray, T., "Tutoring specifications for a computer pro-
gram which uses analogies to teach mechanics," Cognitive Processes Research Group

Workng Paper, Department of Physics, University of Massachusetts, Amherst. MA,
1986.

114 Card, S.K., Moran, T.P. and Newell, A., The Psychology of Human-Computer Inter-
action, Lawrence Erlbaum, 1983.

i15i Carnegie Group Inc. "Knowledge Craft Users Manual," 1986.

16' Carver, Norman, Evidence-Based Plan Recognition, TR 88-13, Computer and Infor-
mation Science Department, University of Massachusetts, 1988.

!17 ' Carver, N., Lesser, V.R., and McCue, D., "Focusing in Plan Recognition," Proceedings

of AAAI-84, 1984, 42-48.

"18' Chapman, D., "Planning for Conjunctive Goals," Artificial Intelligence, 32, pp 333-
377, 1987.

19! Clancey, William, "From GUIDON to NEOMYCIN and HERACLES in Twenty Short
Lessons," Al Magazine, 7 (3) 1986, 40-60.

'20] Clancey, William, "Classification Problem Solving," Proceedings of AAAI-8d, 1984,
49-55.

[21J Cohen, Paul, Heuristic Reasoning About Uncertainty: An Artificial Intelligence Ap-

proach, Pitman, 1985.

r22" Croft, W.B. and Lefkowitz, L.S., "A Goal-based Representation of Office Work "' Pro-
ceedings of the IFIP Conference on Office Knowledge, 1988. (Also in Office Knowledge:
Representation, Management, and Utilization, North Holland, 1988.)

'231 Croft, W.B. and Lefkowitz, L.S., "Knowledge-based Support of Cooperative Activi-
ties," Proceedings of the 21st Hawaii International Conference on System Sciences,
January 1988. (Also in Readings on Distributed AI, Morgan Kaufmann, 1988.)

'241 Croft, W.B. and Lefkowitz, L.S., "Computer-Mediated Conflict Resolution," Tech-
nical Report, COINS Department, University of Massachusetts, Amherst, Mas-
sachusetts, May 1988.

725! Croft, W.B. and Lefkowitz, L.S., "Task Support in an Office System," A CM Trans-
actions on Office Information Systems, Vol. 2, July 1984.

[26] Croft, W.B, and Lefkowitz, L.S., "Using a Planner to Support Office Work," Proceed-
ings of the A CM Conference on Office Information Systems, March 1988.

[27] Croft, W.B., Lefkowitz, L.S., Lesser, V.R. and Huff, K., "POISE: An Intelligent
Assistant for Profession Based Systems," Proceedings of the Conference on Artificial
Intelligence, Oakland University, Michigan, 1982.

[28! Doyle, J., "A Truth Maintenance System," Arttficial Intelligence, 12(1979), 231-272.

118

[291 Duckworth, W., Kelley, J., & Wilson, S., "AI goes to school," Academic Computing,
1987.

;30] Durfee, Edmund, and Victor Lesser, "Incremental Planning to Control a Time-
Constrained, Blackboard-Based Problem Solver," IEEE Transactions on Aerospace
and Electronic Systems, September, 1988.

[31] Eshelman, L., Ehret, D., McDermott, J, and Tan, M., "MOLE: A tenacious knowl-
edge acquisition tool," Proceedings of the Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Alberta, Canada, !986.

'32] Etherington, D.W. "Formalizing Nonmonotonic Reasoning Systems," Artificial Intel-
ligence 31 (1987), pp. 41-85.

[331 Fikes, R.E., "A Commitment-based Framework for Describing Informal Cooperative

Work," Cognitive Science, 6, pp. 331-347, 1982.

'34 Fikes, R., Morris, P. and Nado, B., "Use of Truth Maintenance in Automatic Plan-

ning," DARPA Knowledge-based Planning Workshop, Austin, TX, 1987.

35] Fikes, R.E. and Henderson, D.A., "On Supporting the Use of Procedures in Office
Work," Proceedings of the AAAI-80, 1980.

[36] Genesereth, M.R. and Nilsson, N.J. Logical Foundations of Artificial Intelligence, P alo
Alto, CA: Morgan Kaufmann, 1987.

[37] Georgeff, M.P., "Reasoning about Plans and Actions," Exploring Artificial Intelli-
gence, H. Shrobe (editor), pp. 173-196, Morgan Kaufmann, 1988.

L381 Ginsberg, A., Weiss, S. and Politakis, P., "SEEK2: A Generalized Approach to Au-
tomatic Knowledge Base Refinement," Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, pp. 367-374, 1985.

[39] Grosz B. and Sidner, C., "Distributed Know-How and Acting: Research on Collabo-
rative Planning," Proceedings of the DARPA DAI Workshop, 1988.

[40] Gruber, T., "Acquiring Strategic Knolwedge from Experts" Proceedings of the Knowl-
edge Acquisition for Knowledge Based Systems Workshop, pages 10.0-10.18, American
Association for Artificial Intelligence, 1987.

L41] Hayes, P.J., "A Representation for Robot Plans," Proceedings IJCAI-75, 181-188.
1975.

[42] Hayes-Roth, Barbara, "A Blackboard Architecture for Control;" Artificial Int- !i-
gence, 26, 1985, 251-321.

[43] Hollnagel, E., "Action Not as Planned: The Phenotype and Genotype of Erroneous
Actions," draft, Computer Resources International, Copenhagen, Denmark, 1987.

119

[44] Huff, K.E. Plan-based Intelligent Assistance: An Approach to Supporting the Soft-
ware Development Process, Ph.D dissertation, University of Massachusetts, Septem-
ber 1989.

[45] Huff, K.E., Lesser V.R. "A Plan-based Intelligent Assistant That Supports the Soft-
ware Development Process" in Proceedings of the Third A CM Symposium on Software
Development Environments, Boston, November, 1988.

[46] Huff, K.E., Lesser V.R. Plan Recognition in Open Worlds, COINS Technical Report
88-18, University of Massachusetts, Amherst, MA., December 1988.

[47] Huff, K.E., Lesser V.R. The GRAPPLE Plan Formalism, COINS Technical Report
87-08, University of Massachusetts, Amherst, MA., 1987.

[48] Kahn, G., Nowlan, S. and McDermott, J., "MORE: An Intelligent Knowledge Ac-
quisition Tool," Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, pp. 581-584, 1985.

[49] Kautz, H. and Allen, J., "Generalized Plan Recognition," Proceedings AAAI-86,. Palo
Alto, CA: Morgan Kaufmann, pp. 32-37, 1986.

[50] Klaus, G. and Buhr, M., "Philosophishes Woerterbuch," VEB Deutscher Verlag der
Wissenschaften, Ost-Berlin, GDR, 1972.

[51] de Kleer, J., "Problem Solving with the ATMS" Artificial Intelligence Vol. 28, pp. 197-
224, 1986.

[52] Lefkowitz, L.S., "Knowledge Acquisition through Anticipation of Modifications," PhD
thesis, University of Massachusetts, Amherst, MA, 1987.

[53] Lefkowitz, L.S. and Croft, W.B., "Planning and Execution of Tasks in Cooperative
Work Environments," Proceedings of the 5th IEEE Conference on Artificial Intelli-
gence Applications, 1989.

[54] Charniak, E., Riesbeck, C. and McDermott, D., "Artificial Intelligence Program-
ming," Lawrence Erlbaum, Hillsdale, 1980.

[55] Mahling, D.E. and Croft, W.B., "An Interface for the Specification of Office Ac-
tivities," Proceedings of the IFIP Conference on Office Information Systems, Linz,
Austria, August 1988.

[56] Mahling, D.E. and Croft, W.B., "Relating Human Knowledge of Tasks to the Re-
quirements of Plan Libraries," Technical Report 88-33, University of Massachusett,
at Amherst, 1988.

[57] Malone, T.W., "What is Coordination Theory?," presented at the NSF Coordination
Theory Workshop, 1988.

[58] Marcus, S.J., McDermott, J. and Wang, T., "Knowledge Acquistion for Constructive
Systems," Proceedings of the Ninth International Conference on Artificial Intelligence,
Los Angeles, California, 1985.

120

[59] Morris, P.H. and Nado, R.A., "Representing Actions with an Assumption-based Truth
Maintenance System," Proceedings of the AAAI-86, 1986.

[60] Morris, P. "Curing Anomalous Extensions." Proceedings AAAI-87, Palo Alto, CA:
Morgan Kaufmann, 1987, pp. 437-442.

[61] Murray, T., Schultz, K., Clement, J., & Brown, D. (in press), "Dealing with science
misconceptions using an analogy based computer program: In Soloway, E. (Ed.),"
Interactive learning environments, NJ: Ablex Publishing.

[62] Musen, M., Fagan, L., Coombs, D. and Shortliffe, E., "Using a Domain Model to Drive
an Interactive Knowledge Editing Tool," Proceedings of the Knowledge Acquisition
for Knowledge Based Systems Workshop, pp. 33.0-33.11, American Association for
Artificial Intelligence, 1986.

[63] Newell, A. and Simon, H., "Human Problem Solving," Prentice-Hall, 1972.

[64] Pea, R.D. and Kurland, D.M., "On the Cognitive Prerequisites of Computer Pro-
gramming," Technical Report TR 18, Bank Street College New York, 1983.

[651 Pednault, E.P. "Formulating Multiagent, Dynamic-World Problems in the Classical
Planning Framework," Proceedings of the 1986 Workshop on Reasoning About Actions
and Plans. Timberline, Oregon, pp. 47-82.

[66] Poison, P.G. and Kieras, D.E., "A Quantitative Model of the Learning and Perfor-
mance of Text Editing Knowledge," In L. Borman and B. Curtis, editors, Human
Factors in Computing; CHI '85, ACM, Inc., New York, 1985.

[67] Rasmussen, J. "What Can Be Learned from Human Error Reports?" In K. Duncan,
M. Gruneberg, and D. Wallis (Eds.), Changes in Working Life. John Wiley: London.
1980.

[68] Reason, J., Mycielska, K. Absent-Minded? The Psychology of Mental Lapses and
Everyday Errors. Prentice-Hall, Inc., 1982.

[69] Reiter, R. "A Logic for Default Reasoning." Artificial Intelligence, 13 (1980), pp.
81-132.

[70] Sacerdoti, E.D. A Structure for Plans and Behavior, Elsevier North-Holland, Inc.,
New York, NY, 1977.

[71] Sathi, A., Morton, T.E. and Roth, S.F., "Callisto: An Intelligent Project Management
System," AI Magazine Vol. 7, No. 5., 1986.

[72] Schank, R.C., Dynamic Memory, Cambridge University Press, 1982.

[731 Schank, R.C. and Abelson, R.P., "Scripts, Plans, Goals and Understanding,"
Lawrence Erlbaum, 1977.

[74] Schmidt, C.F., "Understanding Human Actions," Conference on Theoretical Issues
in Natural Language Processing, 1975.

121

[75] Servan-Schreiber,D., "Artificial Intelligence in Psychiatry," Journal of Nervous and
Mental Disaease, 174, pp. 191-202, 1983.

[76] Stallman, R.M., and Sussman, G.J., "Forward Reasoning and Dependency-directed
Backtracking in a System for Computer-aided Circuit Analysis," Artificial Intellz-
gence, 9 (1977), pp. 135-196.

[77] Suchman, L.A., "Office Procedures as Practical Action," ACM Transaction on Office
Information Systems, 4:320-328, 1984.

[781 Suchman, L.A., "Plans and Situated Actions: The Problem of Human-machine Com-
muniation," Technical Report ISL-6, Xerox Corporation, 1985.

[79] Suthers, D. & Rissland, E., "Ex. Gen: a constraint satisfying example generator,"
Computer and Information Science Department Technical Report #88-71, University
of Massachusetts, Amherst, MA., 1988.

[80] Swartout, W. (editor), "DARPA Santa Cruz Workshop on Planning," Al Magazine
Vol. 9, No. 2., 1988.

[81] Tate, A. "Generating Project Networks," Proceedings IJCAI-77, Boston, 888-893,
1977.

[82] Tversky, A., "Features of Similarity," Psychological Review, 84(4):327-352, 1977.

[83] Wilkins, D.E., "Practical Planning: Extending the Classical AI Planning Paradigm,"
Morgan-Kauffman Publishers, San Mateo, CA. 1988.

[84] Wilkins, D.E., "Recovering from Execution Errors in SIPE," SRI Technical Report
346, 1985.

[851 Wilkins, D.E. "Domain-Independent Planning; Representation and Plan Generation."
Artificial Intelligence, 22 (1984), 269-301.

[86] Woods, W., "Transition network grammars for natural language analysis," Commu-
nications of the ACM, Vol 13:10, 591-606, 1970.

[87] Woolf, B., &Cunningham, P., "Multiple knowledge sources in intelligent tutoring
systems," IEEE Expert, Summer, 1987.

[88] Woolf, B., Suthers, D., &Murray, T., "Discourse control for tutoring: Case stud-
ies in example generation. To be published as a Computer and Information Science
Department Tech Report," University of Massachusetts, Amherst, MA.

[89] Woolf, B. & Murray, T., "A framework for representing tutorial discourse," Interna-
tional joint conference in artificial intelligence (IJCAI-87), Los Altos, CA: Morgan
Kaufmann, 1987.

[90] Wright, M. and Fox, M.S., "SILL 1.5 User Manual," Intelligent Systems Laboratory,
Carnegie-Mellon University Robotics Institute, 1983.

122

MISSION

of

Rome Air Development Center

RADC plans and executes research, development, test and

selected acquisition programs in support of Command, Control,
Comm unications and Intelh'gence (C-I) activities. Technical and

engineering support within areas of competence is provided to

ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C3I systems. The areas of

technical competence include communications, command and
control, battle management information processing, surveillance

. sensors, intelligence data collection and handling, solid state

, sciences, elect romagnetics, and propagation, and electronic
reliabilityimaintainability and compatibility.

