
AD-A234 884 -flIII!1 fIIIItI UllIlllllUll
RADC-TR-90-404, Vol V (of 18)
Final Technical Report
December 1990

DISTRIBUTED PLANNING FOR DYNAMIC
ENVIRONMENTS IN THE PRESENCE OF
TIME CONSTRAINTS

Northeast Artificial Intelligence Consortium (NAIC)

Susan E. Conry, Robert A. Meyer, Paul R. Cohen,
Victor R. Lesser DTIC

S ELECTE
S APR lIllJI

APPROVED FOR PUBLIOCRELEASE, DITRBUTIAON UNLIMITED

This effort was funded partially by the Laboratory Director's fund.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

91 4 17 022

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90-404, Volume V (of 18) has been reviewed and is approved
for publication.

APPROVED: 4/4 ' 9, .(.LA
NORTHRUP FOWLER III
Project Engineer

APPROVED: A
RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

BILLY G. OAKS
Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

omAprovedREPORT DOCUMENTATION PAGE 0o Nov0704-0188
Pub lic 1,g b.xonr" bu rd cit o rf :n'msge I , a. tmts pr mpa rchxdg Vv 'm f r More spw'wru g .w"rg *.ore
goo.g u-cl t**WdWmu t Ied u-cl'wr =Vtta vllrw tioncirlonkrw Swc rmat, ~. "Ch mm burd.egetirgo " cttw &som d"
cocki n of I to., I tJ fo adicdg u- burd: to Wuir* Haduc rts SavO i O rea fork torn nO Op smtr orc Repor 1215 Jwfso
DWW HOwW Suie 12 4 AlhW:% VA -4,3 Wcl to ft O1116 o MwegmWt vncl Budget PWuO* RedXuc0M Prmci (=4-M4O Wa rt DC 205=

1. AGENCY USE ONLY (Leave Blan) 2. REPORT DATE a REPORT TYPE AND DATES COVEREDDecember 1990 Final Sep 84 - Dec 89

4. TITLE AND SUBTITLE 5, FUNDING NUMBERS
DISTRIBUTED PLANNING FOR DYNAMIC ENVIRONMENTS IN THE C - F30602-85-C-0008
PRESENCE OF TIME CONSTRAINTS PE - 62702F

PR - 55816. AUTHOR(S) TA - 2 7

Susan E. Conry, Robert A. Meyer, Paul R. Cohen,
TA - 13

Victor R. Lesser (See reverse)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
Northeast Artificial Intelligence Consortium (NAIC) REPORT NUMBER
Science & Technology Center, Rm 2-296 N/A
ill College Place, Syracuse University
Syracuse NY 13244-4100

9. SPONSORINGMONITORING AGENCY NAME() AND ADDRESSES) 10. SPONSORINGMONITORING
Rome Air Development Center (COES) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700 RADC-TR-90-404, Vol V

(of 18)

11. SUPPLEMENTARY NOTES (See reverse)
RAXC Project Engineer: Northrup Fowler III/COES/(315) 330-7794

This effort was funded partially by the Laboratory Director's fund.
12. DISTBIBUTION/AVAILABtIIY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT mau* 2 -4
The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force
Systems Command, Rome Air Development Center, and the Office of Scientific Research.
Its purpose was to conduct pertinent research in artificial intelligence and to
perform activities ancillary to this research. This report describes progress during
the existence of the NAIC on the technical research tasks undertaken at the member
universities. The topics covered in general are: versatile expert system for
equipment maintenance, distributed AI for communications system control, automatic
photointerpretation, time-oriented problem solving, speech understanding systems,
knowledge base maintenpnce, hardware architectures for very large systems, knowledge-
based reasoning and planning, and a knowledge acquisition, assistance, and explanation
system.

The specific topic for this volume is the real-time simulation of a distributed
planning simulation in the context of a dynamic environment.

14. SUBJECT TERMS 11 NUMSgR OF PAGES

Artificial Intelligence, Distributed Planning, Plan Recognition, 3-
Temporal Reasoning t coou

17. SECURITY CLASSIFICATION 1l SECURTY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 754001 -2W.5= Stu Kim Form 298 (Rev 2 89)

Preusobo, by ANSI Std Z39-1-
29W1 132

Block 5 (Cont'd) Funding Numbers

PE - 62702F PE - 61102F PE - 61102F PE - 33126F PE - 61101F
PR - 5581 PR - 2304 PR - 2304 PR - 2155 PR - LDFP
TA -27 TA- J5 TA -J5 TA -02 TA -27
WU -23 tJU- 01 WU -15 WU -l1OIU 1O

Block 11 (Cont'd)

This effort was performed as a subcontract by Clarkson University and the
University of Massachusetts at Amherst to Syracuse University, Office of
Sponsored Programs.

Contents

5.1 Executive Summary. 2

5.2 Introduction. 3

5.3 Phoenix System Structure 3

5.3.1 The Phoenix Environment, Layers 1 and 2 4

5.3.2 Agent Design, Layer 3. 5

5.3.3 The Organization of Fire-Fighting Agents in Phoenix. 12

5.4 Scheduling the Timeline 13

5.4.1 "Traditional" Scheduling Strategies 16

5.4.2 An Alternative Approach 17

5.4.3 Viewing Time as a Resource. 19

5.5 The Multiple Fireboss Scenario 26

5.6 Status and Concluding Remarks 27

Accession For
NTIS GRA&I

DTIC T'ABU~nannouned

Justiicatio 0

Distribut ion/

YAvailability CodesIAvailcand/or
fDist special

5.1 Executive Summary

This task is one which started in August of 1988. Our primary goal has been one
of developing a testbed environment that is appropriate for research in real time dis-
tributed planning. The problem domain selected as an example context in which
to investigate the issues of real time distributed planning is forest firefighting. Con-
sequently, much of our activity has been devoted to development of a multiagent
firefighting simulation. This was necessary in order to provide an environment in
which agents can cooperatively plan to contain fires. In order to accomplish this
task, a number of issues related to timing, agent synchronization, management of
"thinking time" and "acting time", and agent capabilities have been addressed.

The testbed simulator has not been designed simply as a distribution of an ex-
isting centralized firefighting simulator. We found that the issues of time and agent
synchronization in a multi-agent environment necessitated a complete redesign of an
existing simulation. The new design permits multiple agents to work simultaneously
and independently. It includes a facility for defining the characteristics of communica-
tions among agents, with available communication media independently specified. In
addition, the new simulator reflects a much more realistic terrain representation and
a significantly improved fire model than were incorporated in the previous centralized
simulator.

The research efforts on this task have been concentrated on formulation and im-
plementation of an appropriate agent model and mechanisms for handling time in
general and reasoning strategies for adjudicating allocation of time among various
cognitive activities in the planner. It seems clear that time is a critical resource for
these types of problems. When time is viewed as a resource, proper allocation of time
among subtasks is critical in achieving reasonable performance. One problem central
to development of heuristics for determining time allocations is that of formulating
ways of handling the fact that time can be viewed in more than one way. It seems
evident that the CPU time associated with the planner is measured in seconds to
minutes, whereas the time associated with acquiring information regarding the state
of the fire may be measured in minutes or hours. Reasoning about actions in an
environment such as this requires that the planner understand and be able to deal
with these extreme differences in scale. Effectively, there are two types of time: "ex-
ecution time" and "action time" or "internal time" and "external time". These two
types of time share some attributes, but are fundamentally different in others (as
far as the planner is concerned). Research concerning a model of distributed plan-
ning, agent characteristics, and effective ways of modeling time has been initiated and
meclGd11i6111b fui experimenting with time (as perceived by the agents in the system)
have beer, incorporated in the simulator design. In addition, qualitative reasoning

2

about time allocation has been investigated and appropriate algorithms have been
implemented. Finally, an investigation of ways in which multiple "firebosses" can be
accommodated has been initiated.

5.2 Introduction

As has been mentioned, we utilize the firefighting domain as an example of a real
time planning problem in which time is a valuable resource that must be carefully al-
located. It seems evident that in any real time planning environment, it is imperative
that planning and situation assessment be handled in an appropriate manner. One
approach to the problem involves a system architecture that incorporates a planning
model that interleaves planning and monitoring tasks. The planner cannot achieve
reasonable performance levels without relying on a situation assessment "agent" to
provide timely information. Likewise, the situation assessment task is driven, in part,
by the planner. Computation time must be shared among the agents in an appropriate
manner.

In the firefighting domain, time can be viewed from two perspectivt . Computa-
tion time is utilized by the cognitive agents in determining what actions "lould be
taken to further their goals. Execution time is required to accomplish various tasks
in pursuit of those goals. Time management becomes a problem of managing both
computation time and execution time in such a way that each module is allocated
time "proportional" to its current ability to further the firefighting effort.

In the work that has been done, our attention has been focused on development
of a distributed firefighting simulator, on a design for an agent, on development of
strategies for sharing computational resources among cognitive agents in a dynam-
ically changing environment, and on distributing the fire controller's function. The
work discussed in this document should be viewed as a reflection of preliminary design
efforts. It is not yet mature. As this work does mature, it is anticipated that many
of these ideas may undergo significant revision.

In the sections that follow, we discuss our distributed firefighting system's struc-
ture, a preliminary design for the cognitive component of an agent, various aspects of
managing time in a real time environment, and factors that must be addressed when
top level control is distributed.

5.3 Phoenix System Structure

To- facilitate experiments our firefighting system, Phoenix, is built in four layers. The
lowest is a task coordinator that maintains the illusion of simultaneity among many
cognitive, perceptual, reflexive and environmental processes, on a serial machine.

3

The next layer implements the Phoenix environment itself-the maps of Yellowstone
National Park, and the simulations of fires. The third layer contains the definitions
of the components of agents--our specific agent design. The fourth layer describes
the current organization of agents, their communication and authority relationships.

5.3.1 The Phoenix Environment, Layers 1 and 2

The two lowest layers in Phoenix, called the task coordinator layer and map layer,
respectively, comprise the Phoenix discrete event simulator. We discuss the task
coordinator first. It is responsible for the illusion of simultaneity among the following
events and actions:

* Fires: Multiple fires can burn simultaneously in Phoenix. Fires are essentially
cellular automata that spread according to local environmental conditions, in-
cluding wind speed and direction, fuel type, humidity, and terrain gradient.

* Agents' physical actions: Agents move from one place to another, report
what they perceive, and cut fireline.

* Agents' "internal" actions: Internal actions include sensing, planning, and
reflexive reactions to immediate environmental conditions.

These tasks are not generated at the task coordinator level of Phoenix, just sched-
uled on the cpu there. Fire tasks are generated at the map layer, and agent tasks are
generated at the levels described in subsequent sections.

Typically, the task coordinator manages the physical and internal actions of several
agents (e.g., one fireboss, four bulldozers, and a couple of watchtowers), and one
or more fires. The illusion of continuous, parallel activity on a serial machine is
maintained by segregating each process and agent activity into a separate task and
executing them in small, discrete time quanta, ensuring that no task ever gets too far
ahead of or behind the others. The default setting of the synchronization quantum is
five minutes, so all tasks are kept synchronized to within five minutes of each other.
The quantum can be increased, which improves the cpu utilization of tasks and makes
the testbed run faster, but this increases the simulation-time disparity between tasks,
magnifying coordination problems such as communication and knowing the exact
state of the world at a particular time. Conversely, decreasing the quantum reduces
how 'out of synch" processes can be, but increases the running time of the simulation.

The task coordinator manages two types of time: cpu time and simulation time.
CPU time refers to the length of time that processes run on a processor. Simulation
time refers to the "time of day" in the simulated environment. Within thc prcdefined
time quantum, all simulated parallel processes begin or end at roughly the same

4

simulation time. To exert real-time pressure on the Phoenix planner, every cpu second
of "thinking" is followed by K simulation-time minutes of activity in the Phoenix
environment. Currently K = 5, but this parameter can be modified to experiment
with how the Phoenix planner copes with different degrees of time pressure.

The fire simulator resides at Phoenix's map layer; that is, the map layer gen-
erates tasks that, when executed by the task coordinator, produce dynamic forest
fires. Phoenix's map, which represents Yellowstone National Park, is a composite of
several two dimensional structures, and stores information for each coordinate about
ground-cover, elevation, features (roads, rivers, houses, etc.), and fire-state. The fire
itself is implemented as a cellular automaton in which each cell at the boundary
decides whether to spread to its neighbors, depending on the local conditions just
mentioned and global conditions such as wind speed and direction (currently, we do
not model local variations in weather conditions). These conditions also determine
the probability that the fire will jump fireline and natural boundaries.

The Phoenix discrete event simulation is generic. It can manage any simulations
that involve maps and processes. For example, we could replace the forest fire en-
vironment with an oil-spill environment. We could replace our map of Yellowstone
with oceanographic maps of, say, Prince William Sound. Fire processes have spatial
extent, and spread according to wind speed, direction, fuel type, terrain, and so on.
They could easily be replaced with oil-slick processes, which also have spatial extent,
and spread according to other rules. Similarly, we could replace the definitions of
bulldozers and airplanes with definitions of boats and booms.

5.3.2 Agent Design, Layer 3

The third layer of Phoenix is our specific agent design, which is constrained by the
forest fire environment. Because events happen at two dramatically different time
scales, we designed an agent with two parallel and nearly-independent mechanisms
for generating actions. One generates reflexive actions very quickly-on the order of a
few seconds of simulated time-and the other generates plans that may take hours of
simulated time to execute. This longer-term planning can be computationally inten-
sive, because it incurs a heavy time penalty for switching contexts when interrupted.
For this reason, the cognitive component is designed to do only one thing at a time
(unlike sensors, effectors, or reflexes, where multiple activities execute in parallel).
Both the cognitive and reflexive component have access to sensors, and both control
effectors, as shown in Figure 1.

The agent interacts with its environment through its sensors and effectors, and
action is mediated by both the reflexive and the cognitive components. Sensory infor-
mation may be provided autonomously or may be requested, and sensors' sensitivity
may be adjusted by the cognitive component. Effectors produce actions in the world

5

trigger sensors dataf low cognitive component'
state

program program memory plan library
S reflexive /r Jg a prog ameduleror

omnponent [dtimeline cognitive
dalaflowscheduler

programommunication
program effectors

other agents

Figure 1: Phoenix agent design

such as information gathering, building fireline, and moving.

Reflexes are triggered by output of sensors. They change the programming of
effectors to prevent catastrophes, or they fine tune the operation of effectors. For
example, a bulldozer is stopped by a reflex if it is about to move into the fire, and
reflexes handle the fine tuning necessary for the bulldozer to follow a road. Reflexes
are allotted almost no cpu time, and have no memory of events, so they cannot
produce coordinated sequences of actions. They are designed for rapid, unthinking
action. Although some researchers have suggested that longer-terni plans can emerge
from compositions of reflexes [1, 2], we do not believe that compositions of reflexes
can handle temporally-extensive planning tasks such as resource management, or
spatially-extensive tasks such as path planning with rendezvous points for several
agents. Thus, we have adopted a design in which reflexes handle immediate tasks
and a cognitive component handles everything else.

The cognitive component of an agent is responsible for generating and executing
plans. Instead of generating plans de novo, as classical hierarchical planners did,
the Phoenix cognitive component instantiates and executes stored skeletal plans. We
believe this is a good design for the forest fire environment because, first, a rela-
tively small number of skeletal plans is probably sufficient to cope with a wide range
of fires; and, second, the store/recompute tradeoff suggests relying on stored plans,
rather than computing them, in real-time situations. In addition to controlling sen-
sors and effectors, the cognitive component handles communications with other agents
(including integrating sensor reports), and it responds to flags set when reflexes exe-

6

cute. It also engages in a wide range of "internal" actions, including projection (e.g.,
where will the fire be in 20 minutes?), plan selection and scheduling, plan monitoring,
error recovery, and replanning. Our implementations of some of these capabilities are
quite rudimentary, and leave much room for improvement.

In overview, this is how the cognitive component works: in response to a situati .,
such as a new fire, an appropriate plan is retrieved from the plan library and placed
on the timeline. State memory stores information, such as weather, resource condi-
tions, and sensory input, that helps the cognitive agent select appropriate plans and
instantiate the variables of the chosen plan for the current situation. For example, if
the fire is small and nearby, and the weather is calm, then a one-bulldozer plan will be
retrieved and instantiated with situation-specific information such as the wind speed
and the current location of the fire. The actions in a plan are eventually selected
for execution by the cognitive scheduler, to be described shortly. At any time during
this process, sensory data may trigger reflexive actions. For example, if the cognitive
component is executing a command to move to a destination, and a sensor reports
fire ahead, then the reflexive component will send a command to reverse direction.
This happens very fast relative to the cycle time of the cognitive component, so the
reflexive component sets a flag to tell the cognitive component what it did. When the
cognitive component notices the flag, it might modify its plan. The analogy here is
to our own reflexes, which yank us away from hot surfaces long before our cognitive
apparatus becomes aware of the problem.

With this overview in mind, we consider the operation of tile cognitive component
in detail. We will focus on the operation of the fireboss agent, which plans the
activities of other agents such as bulldozers and crews. Each of these, in turn, plans
how to carry out the directives of the fireboss. Because bulldozers and crews have the
same architecture as the fireboss (namely that shown in Figure 1), they can reason
in exactly the same way. In the following discussion, we first describe planning when
things go according to plan, and then describe error handling, interruptions, and
other unexpected events.

When a fire is reported, an action called "deal with fire" is retrieved from the
plan library and used to create a timeline entry, in this case called "deal with fire
27", which is added to the timeline (Figure 2). Actions are general representations
of the cognitive activities the agent can perform, such as path planning or communi-
cation, and describe applicability conditions, resource constraints and uninstantiated
variables. Creating a timeline entry instantiates an action: binding its variables and
adding the temporal constraints that relate it to other actions the agent has chosen
to execute. Although timeline entries represent actions, it is not quite accurate to say
they are executed (although we will use this terminology where the accurate descrip-
tion is too awkward). In fact, when a timeline entry is created, it inherits a set of
execution methods from the action it instantiates. Each of these methods will execute

7

step 1:
-lectlon ection:

deal wih fie 27

TIMELINE

Figure 2: Contents of fireboss's timeline after being notified of a new fire: action to
search for a plan to deal with the fire

the desired action; they differ along dimensions such as the time they require and the
quality of their outputs. For example, a single action "plan a path" points to several
path-planning algorithms, some which run quickly and return adequate paths, and
some that run longer but produce shorter paths. When a timeline entry is selected
for execution, the execution method most appropriate to the current circumstances is
chosen. By delaying the choice of methods, the cognitive scheduler can reason about
its own use of time, and select execution methods that are suited to emerging time
constraints.

If there are entries on the timeline (e.g., "deal with fire 27") then the cognitive
scheduler of the Phoenix cognitive component currently makes three decisions:

* Which action to execute next

* How much time is available for its execution

e What execution method should implement the action

The cognitive scheduler always selects the "next" action on the timeline to execute,
but often, several actions have this distinction and a choice must be made. Actions
on the timeline may be unordered (and thus equally entitled to "go first") for several
reasons: skeletal plans often leave actions unordered so that the cognitive scheduler
has flexibility at execution time to select the best order. Or, frequently, the agent is
executing several plans simultaneously. This happens, for example, when several fires
are reported. The planner formulates plans for each, but doesn't specify temporal
constraints among actions from different plans, in the current example, however, the
only action on the timeline is "deal with fire 27," so the cognitive scheduler determines

8

selection action:
deal wfth fire 27

step 2: execution method: find and filter plan

plan plan action:
library 2 BD surround

TIMELINE

Figure 3: The fireboss executes timeline action, deal with fire 27, which searches the
plan library, sclects the 2 BD surround plan as appropriate for dealing with new fire,
and places the new plan on the timeline

how much time is available to execute it and selects an execution method. In this
case, it selects a method called find and filter plan (step 2, Figure 3). Its effect, when
executed, is to search the plan library for a plan to "deal with fire 27." First it finds
all plans for dealing with fires of this type, then it filters the infeasible ones, then
selects from the candidates to find the most appropriate one, and lastly, it adds a
new action to the timeline called "2 BD surround." (This plan involves sending two
bulldozers to a rendezvous point, then to the fire, after which they cut fireline in
opposite directions around the fire.)

Once again, the cognitive scheduler selects an action (the only one is "2 BD sur-
round") assesses how much time is available, and selects an execution method. In
this case, the method is expand plan. The result is to add a network of actions, par-
tially ordered over time, to the timeline (step 3, Figure 4). The network starts with
a placeholder action, s, followed by two unordered actions that allocate bulldozers 1
and 2, respectively. The next action determines the rendezvous point for the bulldoz-
ers. Then two unordered actions bind the variables in the plan with the current wind
direction and the previously-determined rendezvous point. Space precludes showing
the rest of the plan in Figure 4.

The cognitive scheduler again looks at the timeline, and now must make a decision
about which action to select. The "allocate bulldozer" actions are unordered, so one

9

aewo plan e on:2 SD surround

step 3: execution method: expandplan

Threekindsof acions tanve dciffntite byte rieffetivte timlne:he

allocata BD e selection acti l on: get wind directio hon fs rendezvoust
plan prlmllvn action: BD a"nd BD2 srrmtiv cston:

library acis a te D 2 l e in rendezvous
point.

TIMELINE

Figure 4: The fireboss executes timeline action, 2 BD surround, which expands into
a network of plan steps

must be selected to go first. Then, as before, the cognitive scheduler assesses the
available time and selects an execution method.

Three kinds of actions can be differentiated by their effects on the timeline when
they are executed: selection actions, like "deal with fire 27" result in a search of the
plan library, after which a plan action such as "2 BD surround" is posted on the
timeline. Plan actions are placeholders for plans; executing them results in plan ex-
pansions being posted on the aimeline. Many of the actions in a plan are of the third
type: primitive actions that result in a computation (e.g., calculating a route), or a
command to a sensor or effector. But a plan can contain any of the three types of
actions; for example, the expansion of "2 BD surround" contains a selection action.
When executed, it will result in a search of the plan library for a plan to rendezvous

the two bulldozers. Plans can also contain plan actions, which, when executed, add
subplans to the network. This is our mechanism for representing hierarchical plans.
Lastly, plans may contain just a single, primitive action, such as finding the ren-
dezvous point for two bulldozers.

We have discussed how actions are scheduled and executed when everything goes
according to plan, but in the Phoenix environment it rarely does. Phoenix agents
have three abilities, all rudimentary, to handle unexpected events. Reflexes, operating

on a very short time scale, can halt or modify potentially injurious actions, such
as straying into the fire. By design, reflexes do very little processing, and return

10

very little information. When a reflex halts a bulldozer, it simply posts a flag for
the cognitive component; it does not interrupt the cognitive component to explain
what it did. The cognitive component doesn't become aware of the change until it
executes a regularly-scheduled status-checking action. In fact, by design, nothing ever
interrupts a cognitive action. This is because the cost of saving state and switching
context may be prohibitive. Instead, the reflexive component of a Phoenix agent is
expected to deal with situations as they arise. Most, like staying parallel to a moving
fire, will never require the attention of the cognitive component anyway; but even
when a serious problem comes up, the reflexive component is designed to keep the
agent functioning until the cognitive component finishes its current task.

The second mechanism for handling unexpected situations is error recovery and
replanning. Errors are unexpected events that preclude completion of an action or
a plan. For example, bulldozers will travel to their designated destinations but fail
to find a fire, path planning will sometimes fail to generate a path, selection actions
will search the plan library but fail to find a plan that satisfies all constraints, and so
on. Currently, over a dozen types of error can arise in Phoenix, although we do not
have plans to deal with them all yet. The error handling mechanism is to post on
the timeline a "deal with error" selection action, which, when executed, generates a
plan for dealing with the error. Currently, error recovery involves very little tinkering
with the actions that are currently on the timeline, that is, no serious replanning.

Lastly, Phoenix agents have limited abilities to monitor their own progress. This
is accomplished by generating expectations of progress, and matching to them actual
progress. In the near future, this mechanism will enable Phoenix cognitive coinpo-
nents to predict failures before they occur.

In sum, planning is accomplished by adding a selection action to the timeline to
search for a plan to address some conditions. Executing the selection action places
an appropriate plan action or primitive action on the timeline. If this new entry is
a plan action, then when it is executed, it expands into a plan by putting its sub-
actions onto the timeline with their temporal inter-relationships. If it is a primitive
action, execution instantiates the requisite variables, selects an execution method,
and executes it. In general, a cognitive agent will interleave actions from the several
plans it is working on.

This style of planning is "lazy skeletal refinement"-lazy because some decisions
are deferred until execution time. Specifically, plans are not selected until selection
actions are executed, and execution methods are selected only when an action is
about to execute. This style of planning and acting is designed to be responsive
to a complex dynamic world by postponing decisions, while also grounding potential
actions in a framework (a skeletal plan) that accounts for data, temporal and resource
interactions. The combination of a reflexive and cognitive component is designed
to handle time scale mismatches inherent in an environment that requires micro

11

actions (e.g., following a road) and contemplative processing such as route p'-.nning,
which involves long search times and integration of disparate data. We must stress,
however, that Phoenix is too early in its development to claim that our agent design
is necessarily the best one for the Phoenix environment.

5.3.3 The Organization of Fire-Fighting Agents in Phoenix

The fourth level of the Phoenix system is currently a centralized, hierarchical orga-
nization of fire fighting agents. Because all agents have the same architecture, many
other organizations of agents are possible. Our centralized model is neither robust
(e.g., what happens if the fireboss is disabled?) nor particularly sophisticated. But
it is simple, a great advantage in these initial phases of the project. One fireboss
coordinates all fire fighting agents' activities, sending action directives and receiving
status reports, including fire sightings, position updates, and actions completed. The
fireboss maintains a global view of the fire situation based on these reports, using
it to choose global plans from its plan library. It communicates the actions in these
plans to its agents, which then select plans from their own plan libraries to effect the
specified actions. Once their plans are set in motion, agents report progress to the
fireboss, from which the execution of global plans is monitored. All communication in
this centralized implementation is between the fireboss and individual agents - there
is no cross-talk among the agents.

The fireboss maintains global coherence, coordinating the available fire fighting
resources to effectively control the fire. It is responsible for all the work required
to coordinate agents, such as calculating rendezvous points, deciding how to deploy
available resources, and noticing when the fire is completely encircled with fireline.
The plans in its plan library are indexed by global factors, such as the size of the
fire and the weather conditions. The actions in its plans are mostly concerned with
coordinating and directing other agents. The fireboss' state memory records the
current environmental conditions, where agents have seen fire, what actions have
been taken, what agents are available, and how well global plans are progressing.
The fireboss is currently implemented without any sensors, effectors, or reflexes. It

a cognitive agent that relies solely on communication for its knowledge of what
develops in the outside world, although it does have a map of the static features of
Yellowstone.

Each of the other fire fighting agents has a local view of the environment based on
its own sensory input. They have access to maps of the static features in Yellowstone
such as ground cover, roads, and rivers, but only know about dynamic processes such
as the fire from what they see or are told by the fireboss. Sensors have a limited
radius of view, though agents are able to remember what has been perceived but is
no longer in view. The fireboss's global view is available to an agent only through
communication. A bulldozer is an example of an agent type. It has a movement

12

effector that can follow roads or travel cross-country. When it lowers its blade while
moving, it digs fireline and moves more slowly. It has a sensor that sees fire within a
radius of 512 meters. Another sensor picks up the contour of a fire (within its radius
of view). When a bulldozer is building fireline at the contour, it uses the follow-
fire sensor in combination with the movement effector (with lowered blade) and a
reflexive action that helps maintain a course parallel to the contour. As the contour
changes, the contour sensor registers the change, which triggers a reflex to adjust
the movement effector's course. The bulldozer's plan library has plans for simple
bulldozer tasks such as following a given path or encircling a fire with fireline.

Although all agents have the same architecture (i.e., timeline, cognitive scheduler,
plan library, state memory, sensors, effectors, and reflexes) they do not have the same
plans, reflexes, sensors or effectors. The difference between the fireboss and other
agents lies in their views of the world and the types of plans each knows. The lines of
authority and division of responsibilities are clear: The fireboss maintains the global
picture, based on the local views of its agents, and it executes plans whose effects
are to gather information, send directives to agents, and coordinate their activity via
communications. In contrast, the agents execute plans whose actions program sensors
and effectors, which in turn effect physical actions in the world. In some sense the
fireboss is a "meta-agent" whose sensors and effectors are other agents.

5.4 Scheduling the Timeline

Since the system may be dealing with multiple fires concurrently, the timeline may
have many actions that are "eligible for execution" at any given point in time. As
has been mentioned, the cognitive scheduler decides:

o which action to do next

o how much time should be allocated to its execution

0 what execution method should be used to implement the action

This section deals with mechanisms used to decide which action to do next. It
should be noted that the strategies described in this section have been formulated
as initial strategies for dealing with these problems. We expect that as we gain
experience with the allocation problems that are encountered, these strategies will
undergo significant revision.

This section of the report has three major components. In the first, we outline the
major parameters that must be specified in designing a time management strategy.
We also mention the kinds of information the cognitive scheduler must have in order to
make an appropriate scheduling decision. We then mention some relatively traditional

13

scheduling strategies that can be applicable in this type of system and give some
indication as to how they might be applied. An alternative approach to scheduling
that blends traditional mechanisms with qualitative reasoning about time allocation
is then outlined. Finally, we discuss a model of time that views time as a resource.
Viewing time from this perspective gives us a basis upon which to build algorithms
for implementing a hybrid time management scheme.

At the most abstract level, the decision as to what to do next is always based
on some scheduling strategy. The scheduling strategy used biases the scheduling
decisions and perhaps the methods used to implement basic planning tasks (e.g.,
selecting and instantiating plans). Thus the scheduling strategy should be adaptive
so that it can respond to the needs of a planner operating in a dynamic environment.
For example, when the planner is running far behind schedule, a panic mode strategy
might be appropriate so that only the most important actions get scheduled and
only the quickest methods for doing them are selected. On the other hand, when
the situation is less time-critical, a scheduling strategy that is able to construct more
nearly optimal time allocations should be used.

At any given time, the timeline contains all the cognitive actions the agent would
like to perform. In addition, the timeline contains precedence constraints among the
mental actions and deadlines for some actions. The scheduling problem can be stated
as follows:

Given the timeline and information about the real-time nature of each
mental action, decide which mental action to perform next, and how much
time to allocate to that action.

At any given time, there is a current scheduling strategy in effect. This strategy is
selected within the top level loop of the cognitive scheduler. Methods for choosing
which action to do next are provided with the strategy.

In the paragraphs which follow, we use F to denote the function that decides
which action to do next and the amount of time to allocate to that action. Clearly,
F is defined by the current scheduling strategy. As has been mentioned, one possible
scheduling strategy involves "panic-mode" activity. When in panic-mode, time is at
a premium, so all decisions, including scheduling decisions, must be made as quickly
as possible. Thus F would simply return the first action it finds that can be executed,
and allocates the minimum time necessary to that action. A more typical strategy
may be a "minimum-slack-time-first" (MSTF) strategy. MSTF calculates the slack
time available for each action in the timeline. F then returns the action with the
smallest slack time. Slack time can be allocated to actions based on some priority
scheme, or saved for the future when there may be a higher demand for comp,'tes.

It is important to recognize that there may be a high start-up cost associated with
any change in scheduling strategies. Scheduling algorithms often require particular

14

data structures to maintain scheduling information and gathering that information
may require searching the entire timeline. Consequently, it is not likely that schedul-
ing strategies will be switched frequently.

In order to completely specify a scheduling strategy, each of the following param-
eters must be clearly defined:

context/applicability: When is this strategy appropriate? For example, "lots to
do in a short time."

initialization-function: Some initialization of the scheduler's global state is re-
quired for each scheduling strategy. For example, with an MSTF strategy, a
initial pass through the timeline must be done to calculate slack times.

Scheduling function, F: Given the timeline and the scheduler's global state, cal-
culate which action to do next and how much to allocate to it.

update-function: Any changes to the timeline made by the selected actions must
be processed. In the case of MSTF, for example, this function would update
slack times.

monitor?: This describes how to decide if it is time to try another scheduling strat-
egy.

The scheduler has several sources and types of information available to assist in
the decision making process. Among these are:

Precedence constraints: The timeline contains information about the order in
which mental actions must be done.

Deadlines: The timeline contains information about desired start and end times for
mental actions. Since the deadlines may be soft, a more detailed description of
the deadline may be given. Is the deadline strict (start/end at a specific time)
or relative (start/end after/before a time)? How hard is the constraint? Is it
OK to be a little late?

Durations: Associated with each action (or method for performing an action) is a
set of durations.

Priority: How important is each action? This may be used, for example, to allocate
slack time in MSTF.

Atomic/Preemptable: Some actions can be preempted and resumed later; others
cannot.

Local scheduling preferences: Actions may have specific scheduling preferences.
For instance, some actions would like to be done as late as possible.

15

5.4.1 "Traditional" Scheduling Strategies

Some of the potentially useful scheduling strategies can be adapted from techniques
that have been develop. d in other contexts. Examples of some of these are given
below.

Panic-mode: Panic-mode scheduling is applicable when there is mental overload.
In this situation, we want to spend as little time thinking about scheduling as
possible. Panic-mode allocates as little time as possible to the task with the
highest priority. (Of course, this may be exactly the wrong strategy to apply. It
may be necessary to do careful reasoning about the timeline to decide exactly
which tasks can be safely delayed and which ones cannot. On the other hand,
we do not want the system thrashing in the scheduler).

Minimum Slack First: Minimum slack time first is based on one of the set of
scheduling algorithms that come from a traditional PERT/CPM analysis. When
using MSTF, the scheduler does a forward and backwards pass through the
timeline to calculate the earliest start time (EST) and latest start time (LST)
for each mental activity. By definition, slack time (ST) can be calculated as
ST = EST-LST-duration. When the slack time for any task is negative, it is
impossible to come up with a schedule that meets all its deadlines. Assuming the
schedule is feasible (positive slack time for all tasks), this scheduling strategy
executes the action with the minimum slack time first. The amount of time
allocated to the task is a function of the time required by the task and the
amount of slack time in the system. Since tasks with small slack time are more
sensitive to the uncertainties in the "mental time domain", they are executed
first.

There are some problems with this approach. First, when the knowledge about
deadlines is bad (uncertain), measures of slack time are not very meaningful.
Second, there is no obvious definition of slack time when activities cannot be
done in parallel. The slack time depends on the order that actions are executed.
Finally, what do we do when the schedule is infeasible? Negative values of slack
time tell us how late an action will be.

Earliest Latest Finish Time First: ELSTF is another PERT/CPM algorithm. In
this case we calculate the latest time each action can conceivably be finished
and execute the action whose deadline is earliest first. (Theoretically speaking,
when there is a feasible schedule, ELSTF can generate schedules that violate
deadlines whereas MSTF always guarantees feasibility). This approach is sub-
ject to the same problems as MSTF. ELSTF requires about half as much time
to execute as does MSTF.

16

5.4.2 An Alternative Approach

An alternative approach to scheduling the timeline involves a hybrid scheduling strat-
egy that blends qualitative reasoning about time allocation with more traditional
scheduling mechanisms. Such an approach employs flexible decision making and con-
trol strategies that should not incur the high degree of overhead associated with
changes of scheduling strategy that has been mentioned previously.

This approach to scheduling assumes (as do the other strategies that have been
discussed) that actions on the timeline have estimates of computation time and ex-
ecution time associated with them as well as an assessment of their criticality. This
strategy differs from others in that each action type also has a set of hetiristic rules
associated with it. These rules are used to assess the degree to which it is advisable
to schedule an action. They reflect qualitative factors associated with each action, as
opposed to such metrics as slack time, which are quantitative. When triggered, an
assessment rule places a positive or negative endorsement [3] on some action being
considered by the scheduler.

The fundamental scheduling strategy can be summarized as follows:

1. Endorse actions on the timeline with the aid of heuristic assessment rules.

2. Perform a cost/benefit analysis based on strength of endorsement, criticality o1
action, computation time required, and execution time required.

3. Rank actions based on the cost/benefit analysis.

4. Schedule on the basis of the ranking, consistent with the partial order of the
timeline.

There are some obvious difficulties with a strategy such as this. The most sig
nificant of these difficulties is that there may not be sufficient time available to the
scheduler to perform thorough analysis relative to deriving endorsements. To obviate
some of these difficulties, the use of progressive reasoning [6] is incorporated.

If there is an imminent emergency, the scheduler has no time to "think" and all
analysis relative to endorsement is bypassed. Scheduling is performed based only on
the assessment of criticality associated with each action (and, of course, the partial
order inherent in the timeline).

For cases in which there is time for the scheduler to think, we have identified three
levels of reasoning that appear to be relevant. At the first level, all rules that can
be applied without requesting additional (or more recent) information or performing
computations are triggered, and a first level assessment is made. On the second level,
a "request list" is formed. This request list reflects information that would help the

17

scheduler arrive at a more informed (hence better) schedule. This level is concerned
with updating old information and/or verifying parameters on the request list. A
(more informed) assessment is made at the end of this level of reasoning. Finally, in
the third level, paranictrs perceived to be inaccurate or less accurate than desired are
recomputed, and a final assessment is made. If the scheduler's time to think expires
during a particular level of reasoning, the ranking determined at the previous level is
returned. •

As has been mentioned, our hybrid time management strategy assumes that its
input consists of a set of proposed actions, each of which has associated with it an
estimate of its time requirements as well as any relevant deadlines. There may be
temporal precedence relationships among some of these proposed actions. The task
faced by the time manager is one of allocating time among the proposed actions in
such a way that adaptive, time sensitive global problem solving is promoted.

We assume that the proposed actions fall into a fixed, domain specific set of action
types. In addition, for each action type, there is a set of (domain specific) asssessment
rules to be used in evaluating the importance and benefit of performing actions of
that type. Preconditions in these rules deal with dynamic, time varying domain
characteristics and are associated with criticality factors to be used in progressive
reasoning by our time management strategy. As the result of rule firing, qualitative
assessments of utility are associated with the relevant actions. These assessments are
dependent on those preconditions that triggered the rule firing.

The overall hybrid time allocation algorithm is structured as follows:

1. Respond to emergency situations immediately, without delay.

2. If there are urgent (not emergency) situations, apply knowledge-poor strategies
to allocate time for them.

3. If there are no emergencies and available deadlines indicate that thinking about
time allocation is in order:

(a) Determine how much time to allocate this cycle, based on available dead-
lines and the degree of dynamic change in the environment.

(b) Set k to the maximal criticality factor present.

(c) While there is still time for thinking about time allocation:

i. Trigger any eligible assessment rules based on preconditions with at
least the current criticality factor;

ii. Decrement the current criticality factor considered;

(d) Perform cost/benefit analysis to determine relative utility of actions.

(e) Allocate time proportional to perceived utility.

18

During the last year, we have focused our attention largely on that part of the
overall control loop associated with step 3 above. The criticality factors associated
with preconditions are reminiscent of the ABSTRIPS criticality factors [5]. Rather
than using criticality factors to yield increasingly detailed plans, though, we use them
to give us increasingly more knowledgable assessments of the utility of performing a
given action. The intuition behind the mechanism depends on the observation that
humans often make decisions based on partial information (when there is no time
to gain more complete knowledge). As time permits, human problem solvers make
assessments that are based on an increasingly complete and accurate picture of the
problem state. Thus we reason until there is no more time to reason then make
decisions based on the most recently determined evaluations (which are presumably
those that are the most informed). This model of the human decision making process
is reflected in the algorithmic strategy outlined above. Use of progressive reasoning
in this way extracts a spectrum of decision making activity ranging from a purely
reactive mode in time critical situations to a reflective mode when there is time to
think.

Progressive reasoning applied in this context should embody the reactive-reflective
spectrum of decision-making employed by the cognitive scheduler. It is interesting to
note that the planning and monitoring tasks become interwoven in the second and
third levels of reasoning. For example, projections about the extent of the fire in a
certain area, or updates of the front of the fire, may be requested by the scheduler
during these levels, as the scheduler may need this data to make a more informed
decision. The problem we see is to characterize and take advantage of this interaction
rather than attempting to avoid it.

5.4.3 Viewing Time as a Resource

In order to gain perspective as to how time can be allocated using this hybrid type of
strategy, we view time as a resource, and consider the scheduling problem as one of
allocating a scarce resource. In this section we identiiy three different types of "time
resources", discuss some of their properties, and describe interactions among them.
We then mention a number of constraints arising in this resource allocation problem,
several sources of contention for resources, and finally, discuss some heuristics for
allocating time.

As has been mentioned, we define three types of time: act-time, think-time, and
idle-time. Loosely speaking, act-time corresponds to the time it takes to perform a
"real world" action, think-time is computation time, and idle-time is characterized as
the absence of either think-time or act-time (depending on the subtype). We further
assume that there are three "reasoning agents", the scheduler (S), the planner (P)
and a monitoring agent (M). The system also has some number of "effector agents,"
agent1, ... , agentk for some k. These effector agents represent the agents in the field

19

performing actions to control the fire. Examples include bulldozers, crew, helicopters,
and planes. The "reasoning agents" consume think-time and idle-time; the "effector
agents" consume act-time and idle-time. (For the time being, we assume that effectors
are "brainless", acting only at the behest of the reasoning agents.) With respect to
time allocation, our hybrid scheduling strategy has the following goals: to maximize
useful "effector agent" actions, taking advantage of as much parallelism as possible,
to maximize the usefulness and efficiency of CPU usage, and to minimize all idle-time.

Suppose that we are given an interval of time, (t, T). This gives rise to a "pool" of
time resources available, for some value of t and T. This pool (call it R) can be viewed
in two different ways. In one sense, R can be viewed as an interval divided lengthwise
into two bands, one labeled "think-time" and one labeled "act-time." The act-time
band is further divided lengthwise into k bands, one for each effector agent. When
all think- and act- time has been allocated, these bands will have be..: divided into
resources, much as an interval can be divided into subintervals. In agenti's act-time
band, the division would correspond to the time agenti takes to complete any actions
it performs within (t, T), as well as the position within (t, T) in which they were
performed. Any "gaps" would correspond to idle-time. Initially, before any resources
are allocated, the bands are undivided.

We may also consider R as a collection of sets of possible resources to allocate, only
one element of which is ultimately realized when the available time interval has been
allocated. This is evident when we consider an example. Clearly, act-time and think-
time are measured in different units. It takes linger for a bulldozer to get to a location
than it does to decide to send it there. For the sake of illustration, suppose act-time is
measured in 2-second intervals, and think-time in 1-second intervals. Further assume
that the total length of the interval (t, T) is 6 seconds. Then think-time may be
divided among the reasoning components as follows: 1(S) + 1(M) + 1(P) + 3(idle),
which means that the scheduler has 1 second of CPU time, then the monitor, then
the planner, followed by a three second interval when the CPU is idle. The same
6 second interval could also have been allocated as I(M) + 2(S) + 3(idle), or as
1(S) + 1(M) + 1(P) + 1(M) +2(P). In order to consider all possibilities, one must
consider all partitions of 6, along with all permutations allowing for different orderings
of usage, as ,has been partially illustrated. Using the same example scenario, agentl's
act-time could be divided up as follows: action1 takes 4 seconds, action2 takes 2
seconds; or agent1 is idle for 2 seconds, action1 takes 4 seconds, etc. To obtain
one set of possible resources in R, we take one particular allocation for think-time,
together with one allocation for each effector agent's act-time. All possible such sets
together comprise R.

The problem of optimally allocating time (when it is viewed in this manner) is
clearly intractable. With this view of time, the process of allocating time can be
viewed as one of progressively eliminating sets from R, with the goal of having an

20

"optimal" set remain as the single set finally left in R. Heuristics that reduce the
remaining alternatives in R very quickly are necessary.

In the following paragraphs, we summarize various observations that we have
made concerning properties of time (when viewed as a resource to be allocated among
various tasks). We anticipate that these observations will result in further refinement
of our model of time and in development of heuristics for effective time allocation.

5.4.3.1 Characterizations of Time Resources Time, when viewed as a re-
source, has a number of significant attributes. Some of these attributes are common
to all "types" of time, while others are specific to one kind of time. Various attributes
of importance in time allocation are mentioned in this section.

Act-time

1. consumed by "effector agents"

2. allocated by the scheduler

3. a specific instance of allocated act-time has 3 properties:

(a) length of duration

(b) position within a time interval (t, T)

(c) "effector agent" associated with it

4. for a given "effector agent" an instance of act-time, once consumed, cannot be
re-used

5. within any given subinterval of (t, T), there may be several instances of act-time
currently being consumed (by different agents)

6. measured in units of r(act), probably given in units of minutes to hours

7. can be consumed concurrently with think-time (though there are some restric-
tions, which will be noted later)

8. purpose is to effect an action; at the end of an instance of act-time, the agent
using it has performed an action

Think-time

1. consumed by "reasoning agents", the scheduler, monitor, and planner

2. allocated by the scheduler

21

3. a specific instance of allocated think-time has two properties:

(a) length of duration

(b) position in (t, T)

4. a specific instance of think-time, once consumed, cannot be re-used

5. within any given subinterval of (t, T), there may be sequential but not concur-
rent instances of think-time being consumed

6. measured in units of r(think), probably given in units of seconds to minutes

7. can be consumed concurrently with act-time

8. purpose of think-time is decision making and computation

Idle-time

1. there ere 3 types of idle-time:

(a) (think) CPU is not in use

(b) (act) a particular agent is not acting

(c) (act) no agent is acting

2. idle-time is not allocated specifically, but is defined as the absence of either
think-time or act-time being consumed

3. a specific instance of idle-time has 2 properties, the precise characteristics of
which are determined by the allocation of think-time and act-time:

(a) length of duration

(b) position within (t, T)

4. idle-time of the "act variety" has an "effector agent" associated with it

5. measured in units of either r(act) or r(think), as appropriate

5.4.3.2 Interactions Between Types of Time It is clear that act time, think
time, and idle time all share some attributes, while each type of time has some
features that distinguish it from the others. It is also possible to identify several
forms of interaction among these types of time.

1. All act-time instances must be preceded by some think-time instances. Thus, an
act-time instance must be preceded by some scheduler think-time and possibly
some planner or monitor think-time specific to that action.

22

2. Some think-time instances may be preceded by an act-time instance. This could
happen, for example, if the scheduler needed more information for decision-
making. (This constitutes an example of the interweaving of monitoring and
scheduling mentioned previously).

3. Some act-time may be allocated within scheduling.

4. Idle-time's precise characteristics are determined by the those of the surrounding
think-time or act-time.

5. Think-time and act-time may be consumed concurrently, when thinking is rel-
ative to implementing future actions.

Since the ratio r(act)/r(think) is often large, there are two consequences of obser-
vations (2) and (3). First, act-time should not be allocated within scheduling unless
the total amount of time allocated to the scheduler is large, and can be measured
in terms of r(act). Secondly, should this kind of act-time be allocated, the scheduler
would issue a request for information and could not continue on its current line of
thought until that information is provided. Thus there is the potential for existence
of a large piece of idle-time in the think-time band. This could result in a significant
loss of usable computation time. Measures to avoid this type of scenario must be
devised.

5.4.3.3 Contention for Time Resources Time is a scarce resource in real time
environments. Agents compete for computation time, as do tasks within an agent.
This section summarizes a number of observations concerning the nature of contention
for time.

Act-time

1. Inter-agent

(a) there is no contention for act-time between different "effector agents" for
independent, non-mutually exclusive actions

(b) for mutually exclusive actions: only one of the agents may be allocated
act-time

(c) if partial ordering of actions is known in advance, the allocated act-time
position property must behave accordingly

2. Within an agent

(a) for mutually exclusive actions, effect of allocated act-time must be consid-
ered in advance, and act-time must be allocated with that in mind

23

Think-time

1. Sources of contention for think-time:

(a) scheduler for decision-making

(b) planner for determining details of implementing an action

(c) monitor for determining details of implementing an action

(d) monitor for computations, such as projections of fire, etc.

(e) planner and monitor for replanning, enable a new decision-making cycle

(f) updating a database describing the state of the fire

2. None of the above can be done concurrently.

3. High level of contention for think-time resources. All activities mentioned in
(1) are necessary.

Idle-time

1. no contention; nobody wants idle-time!

5.4.3.4 Constraints on Time Allocation Many of the constraints on allocat-
ing different types of time resources have already been mentioned. In particular,
interactions between instances of time give rise to constraints, as do certain aspects
of contention among resources. To some extent, these constraints may already be
reflected in the timeline.

As already noted, an act-time instance must be preceded by its corresponding
think-time, as well as scheduler decision-making time. If there is a deadline by which
the action must be completed, this constrains:

9 amount of scheduler decision-making time

* allocation of think-time relative to the action

* allocation of think- and act- time relative to other actions

If there is no such constraint on an action, the "beginning point" of its act-time
is constrained to be after the "end point" of its think-time (in "wall time").

In addition to the difference in scaling, think-time and act-time have another
fundamental difference that can be seen as a kind of constraint. Once an instance
of think-time is allocated, there is no potential for extending the total length of that
instance. For example, if the scheduler is allocated 5 seconds of think-time, beginning

24

at a particular point in "wall time," then after those 5 seconds are consumed, control
of the CPU is granted to the next "reasoning agent." However, if bulldozerl is given
10 minutes to get from PointA to PointB, and it takes 12 minutes to do so, in some
cases this is fine, and bulldozerl is allowed the full 12 minutes to complete the action.
This means that there is less control over an "effector agent" consuming precisely the
resource it is given than with a "reasoning agent."

5.4.3.5 Criteria for Allocating Time as a Resource Heuristics are clearly
needed in allocating time well. An approach to scheduling that explicitly considers
time as a resource attempts to blend qualitative reasoning with more traditional
scheduling heuristics. In this section, we mention some of the parameters that affect
these heuristics.

Broadly speaking, there are two types of actions considered in this type of system:
one that brings about an "effect" in the "real world" and one that increases kn.owledge.
In addition, actions may have originally been placed on the timeline and they may
reflect scheduler requests for information.

Factors affecting time allocation for actions placed on the tirneline:

* Contextual reasons for wanting the action to be performed:

Does the situation in question merit this action, and how strongly? Are there
reasons that the action is warranted, considering what we know (or think we
know) about the future? These kinds of concerns are captured in the rules of
our system, and through the use of endorsements.

e Other factors to consider:

Is there a time constraint on when action must be completed? If not, will the
CPU be tied up too long before this action is given a chance? How much think-
time is involved in this action? These concerns are incorporated in specific
efforts to rank actions, and to consider time itself as a, cost in the cost/benefits
analysis.

Factors associated with allocating act-time during scheduling:

* Length of allotment of act-time should not be "too large" (so determine an
upper bound).

9 Can the concurrent think-time be used constructively? We do not want the
CPU to be idle for long periods of time.

* If a request for information is issued by the scheduler and n time units are
allotted, the scheduler will wait no longer than n time units for that result.

25

In this case, the scheduler is more likely to want to allocate this time if it is
reasonably certain it will get a result within the time allotted.

It is clear that during each scheduling cycle, the scheduler needs at least some
minimal time to think, if only to decide to sidestep the full-blown process. Similarly,
the global database should be updated on a regular basis. The planner and monitoring
functions need some amount of time for replanning purposes, so the amount of time
given to these activities must be determined. Not all actions currently listed on the
timeline will necessarily be allocated CPU time. The position in "wall time" and
length of an instance of think-time will, to some extent, be decided by the amount of
time requested. For example, an action that takes very little CPU time would tend
to have higher priority than something that is very computation intensive.

Algorithms that implement a time management strategy based on this model have
been designed and implemented. Experimental data concerning the behavior of these
algorithms under typical scenarios found in the firefighting domain is being collected.

5.5 The Multiple Fireboss Scenario

The bulk of the work that has been done in the firefighting domain to date has as-
sumed that there is one fireboss whose job is to direct activity relative to containment
of the fire. This would imply that there is a single high level planning agent whose
responsibility is to (centrally) generate a plan for fire containment.

We have also been investigating issues that arise when we admit the possibility of
multiple firebosses, each of which has rimary responsibility for firefighting activity
in some geographic region. Under this set of operating conditions, the firebosses each
have only limited knowledge about the state of the fire outside their region of respon-
sibility and each may have limited communication bandwidth available to ascertain
the status of a fire that extends beyond its own regional boundaries. Environments
involving multiple firebosses clearly require a different kind of planning strategy than
those in which there is a single overall fireboss.

Construction of a multiple fireboss planning environment requires that several
issues be addressed. Among them are the communication protocol that is utilized
by the firebosses, mechanisms for determining when cooperation among firebosses is
advisable, and mechanisms to be utilized by a fireboss in determining the form of
assistance that it is willing to offer a neighboring fireboss in the event that aid is
sought.

We presently have formulated preliminary strategies for handling multiple fireboss
scenarios. The current method of evaluation dictates that a fireboss use only a fire's
location as a factor in determining whether to request aid. If the fire is located near
a regional boundary, aid is sought from the appropriate neighboring fireboss. Each

26

neighbor fireboss responds to a request for aid by indicating that it cannot help out
("No") or that it can be of some assistance ("Yes"). An affirmative answer is based
only on the number of bulldozers available. If an affirmative response is sent, the
number of bulldozers that can be contributed to the effort is also indicated.

It is clear that a decision to respond positively to a neighbor's request for aid
requires that a fireboss agent be able to assess its own status relative to that request
in a reasonable fashion. It must be able to determine what the costs (to itself, in terms
of resource it will not have available) of sending aid. These costs may be measured
in terms of its own reduced firefighting capacity, in terms of the likelihood of fire
occurring it in its region, and in terms of the costs associated with relocating its own
bulldozers (i.e. the time it would take to reposition them if need be).

An agent must also be able to assess the potential benefits of sending aid to a
neighbor. In some cases, sending aid to a neighbor in a timely fashion could serve to
contain the fire before it spreads in to this fireboss's region of responsibility.

5.6 Status and Concluding Remarks

At the outset, we mentioned that the research efforts on this task have been con-
centrated on formulation and implementation of an appropriate agent model and
mechanisms for handling time in general and reasoning strategies fo radjudicating
allocation of time among various cognitive activities in the planner. An appropriate
agent model has been formulated and incorporated in a (centralized) planner for the
firefighting domain [4].

We have also seen that time is a critical resource for planning in this type of
environment. When time is viewed as a resource, proper allocation of time among
subtasks is critical in achieving reasonable performance. We have noted that one
problem central to development of heuristics for determining time allocations is that
of formulating ways of handling the fact that time can be viewed in more than one
way.

On reflection, it seems evident that the CPU time associated with the planner is
measured in seconds to minutes, whereas the time associated with acquiring informa-
tion regarding the state of the fire may be measured in minutes or hours. Reasoning
about actions in an environment such as this requires that the planner understand
and be able to deal with these extreme differences in scale. Effectively, two types of
time: "execution time" and "action time" or "internal time" and "external time".
These two types of time share some attributes, but are fundamentally different in
others (as far as the planner is concerned).

Research concerning a model of distributed planning, agent characteristics, and
effective ways of modeling time has been initiated and mechanisms for experimenting

27

with time (as perceived by the agents in the system) have been incorporated in
the simulator design. In addition, qualitative reasoning about time allocation has
been investigated and appropriate algorithms have been implemented. Finally, an
investigation of ways in which multiple "firebosses" can be accommodated has been
initiated. Activity continues relative to all of these problems.

28

References

[1] P. E. Agre and D. Chapman, "Pengi: An Implementation of a Theory of Activ-
ity", Proceedings of the Sixth National Conference on Artificial Intel-
ligence, August 1987, pp. 268-272.

[2] R. A. Brooks, "A Robust, Layered Control System for a Mobile Robot", IEEE
Journal of Robotics and Automation, RA-2 (1), 1986, pp. 14-23.

[3] P.R. Cohen, Heuristic Reasoning about Uncertainty: An Artificial In-
telligence Approach, Pittman Publishing, Inc., 1985.

[4] P. R. Cohen, M. L. Greenberg, D. M. Hart, and A. E. Howe, "Trial by Fire:
Understanding the Design Requirements for Agents in Complex Environments",
AI Magazine, Volume 10, Number 3 (Fall 1989), pp. 34-48.

[5] E. Sacerdoti, "Planning in a hierarchy of Abstraction Spaces", Artificial Intel-
ligence 5, pp. 115-135.

[6] M. L. Wright, M. Green, G. Fiegl, and P. Cross, "An Expert System for Real
Time Control", IEEE Software, March 1986, pp. 16-24.

29

MISSION

of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (C3I) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C31 systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state
sciences, electromagnetics, and propagation, and electronic
reliability/maintainability and compatibility.

