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3 THE VERSATILE MAINTENANCE EXPERT SYSTEM (VMES)
RESEARCH PROJECT

3.1 TECHNICAL OVERVIEW

3.1.1 Executive Summary (1984-1989)

The State University of New York at Buffalo started its participation in the Northeast
Artificial Intelligence Consortium in 1984 with the objective of developing a versatile expert
system for equipment maintenance. A prototype expert system originally projected to be
a rule-based system was designed to advise a maintenance technician on testing. tIowever.
during the course of this project, it evolved into a more versatile system by incorporating
features such as model-based reasoning and communication capabilities such as natural
language and graphics. The new system came to be known as the Versatile Maintenance
Expert System (VMES).

VMES research is concerned with the development of a system that could diagnose
faults in an electronic circuit and interact with a maintenance technician. Versatility has
been the main goal of our research. VMES is designed to be versatile across a range of
target devices in the circuit domain, across most of the possible faults, across different
maintenance levels and across a variety of user interfaces. To achieve these versatilities,
the device model-based approach has been followed. VMES has been implemented in
SNePS, the Semantic Network Processing System and has several modules: an expandable
component library as its knowledge base, an inference package with diagnostic rules, an
active database for diagnosis, a user interface for intermediate users to adapt VMES to new
devices by incrementally updating the component library, and a multimedia user interface
for end users to interact with VMES for fault diagnosis.

Our accomplishments during the lifetime of the project (1984-1989) can be classified into
the following seven categories. (1) Device modeling - structural and functional knowledge
and efficient representation, (2) Graphical interface for end users to interact with VALES.
(3) Model-based reasoning for diagnosis - initial candidate ordering, reordering and elimi-
nation, (4) Sequential circuit representation and a general control structure for diagnosis.
(5) Representation and diagnosis of a real device, (6) Migration of deep knowledge to shal-
low knowledge and (7) Enhancements of SNePS, the system used for the implementation
of VMES. In the remainder of this summary, a few more details in each are given.

3.1.2 Device Modeling

VMES uses structural and functional descriptions of devices to avoid difficulties of empirical
rule-based diagnosis systems in knowledge acquisition, diagnosis capability and system
generalization. Bascd on the requirements of expressibility, buildability. computer-usability
and expandability, a device in the circuit domain has been modeled as a hierarchically
arranged set of subparts from both logical and physical perspectives. Wires and points of



contact (POCONs) have been explicitly represented in order to perform the diagnosis of
faults in circuit connections.

3.1.3 Interfaces

The usability of VMES would be enhanced greatly if it were to communicate with the
maintenance technician graphically as well with text. Toward that end, we developed a
general theory of "Graphical Deep Knowledge," defined as declarative knowledge that is
projectively adequate (adequate for drawing) as well as deductively adequate (adequate for
deducing relevant spatial information). We also made major progress in the field of Natural
Language Graphics, the attempt to design a knowledge representation that may be used for
graphical deep knowledge and for meaning structures that underly the comprehension and
generation of natural language. Using these theories, we designed and implemented graph-
ical interfaces for VMES that can draw the devices being tested, and that can graphically
show the reasoning process that VMES is pursuing to diagnose the device.

An interface for encoding devices represented using structural templates and instanti-
ation rules has been implemented to facilitate fault diagnosis. This is user-friendly and
robust, providing for as few key-strokes from the user as possible. It fills in most of the
invariant template, documents the code and stores it in the appropriate file for the user. It
was encoded in Franz Lisp on - VAX to begin with, and was transferred to Common Lisp
on a TI Explorer.

3.1.4 Model-based Reasoning

A major step in model-based fault diagnosis has been the generation of candidate sub-
modules which might be responsible for the observed symptom of malfunction. After the
candidates are determined, each submodule can then be examined in turn. It is useful to
be able to choose the most likely candidate to focus on first so that the faulty parts can
be located sooner. We have developed a systematic method for candidate ordering that
takes into account the structure of the device and the discrepancy in outputs between the
observed and expected values. However, because the same good/bad output pattern of a
device always gives rise to the same initial ordering, the method has its limitation. For any
device and good/bad output pattern, it is easy to come up with an example on which the
method does poorly in the sense that the actual faulty part is in the last place of the initial
ordering.

To fix this problem, more dynamic methods, candidate reordering and elimination,
have been developed. Both methods modify the candidate list as new information becomes
available. Reordering moves components connected to the inconsistent inputs of the cur-
rent candidate to the front of the candidate list and those connected to the consistent
inputs to the tail. Elimination removes components which no longer have any non-error-
propagating paths to incorrect primary outputs after the current candidate is found not
error-propagating. It has been proved that under the single fault assumption, the average
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number of components to checked is O(iogn), where n is the number of components in
the circuit under test. And in general, klogn components will be checked when there are
k faults in the circuit. As to the implementation, all the above-mentioned theories have
been implemented in our VMES system. Also the system has been successfully ported from
our UNIX machine using SNePS-79 arid Franz Lisp to TI Explorers using SNePS-2 and
Common Lisp. The improvement in preformance is enormous. It runs at least ten timcs
faster than before.

3.1.5 Sequential Circuit Diagnosis

In order to incorporate sequential circuit diagnosis into VMES. the following steps have
been taken: (1) change in device knowledge representation; (2) change in contro! structure
and inclusion of assumption relaxation; and (3) candidate generation based on electrical
behavior. The change in representation was essential for better organization of the devic'
knowledge and the incorporation of sequential components. Devices no more have any
physical hierarchy, and logical hierarchy is not related to physical details of the device.
This has enabled arbitrary number of logical levels, a d has allowed arbitrary grain of
focus for diagnosis. Wires were no more represented e..licitly. Diagnosis of wires and
POCONs was intended to be hard-coded into VMES. Assignable variables were found to
be necessary to represent states in sequential components. Since SNePS is bailt on the
philosophy of logical programming, it did not allow for such variables. Hence, the new
scheme of representation had been developed in CommonLisp.

The control structure has been streamlined so as to accept various options such as shal-
low reasoning and diagnosis with multiple symptoms. Explanation is a very necessary part
of an expert system and hence, an explanation generation system was also incorporated.
The criteria upon which the system should discard single-fault and non-canceling fault as-
sumptions has been worked out and partially implemented. The new system VMES II.
with the above modifications, runs considerably faster than the previous system.

Since sequential circuit diagnosis is harder than combinational, the stage of candidate
generation had to be exploited to the maximum so as to narrow the focus of diagnosis
as much as possible. Therefore, candidate generation based on electrical behavior was re-
searched and implemented. In this method, given the symptom, the system works backward
through the subdevices to come up with a probable candidate list. The scheme is based on
the assumption that one could shorten the suspect-list by eliminating those of the relevant
inputs that can in no way contribute to the observed symptom at output. This knowledge
can be conveniently expressed for small devices as fault characteristics and was exploited
during diagnosis of large systems.

Sequential circuit diagnosis poses many special problems. A sequential circuit has feed-
back loops, and, therefore, it is necessary to specify the start and end of the loops for
proper simulation of states. Moreover, during simulation and candidate generation, more
than one (as many as the clock cycles) value has to be stored with each device-port. Fault
characteristics are not as well behaved for sequential circuits and are to be specified for the

7 u m nao u nnnwuo um u numn ~ a n ln m nnmn nmunnn u u



superdevice too. These and many other related problems have/are being solved towards

incorporating sequential circuits.

3.1.6 Diagnosis of Printer Buffer Board

Although VMES was intended to be adaptable to a wide range of devices in the domain of

digital circuits, selection of a realistic device was essential as a test bed. Upon recommenda-
tion by RADC, a Heathkit Printer Buffer Board was selected. This test device, assembled

locally, is of reasonable complexity to work with. It consists of an eight-bit microprocessor,

two sets of serial and parallel ports, memory and latches. This device has been represented

hierarchically at various levels of abstraction to facilitate diagnosis. A device of this kind

helped spur new ideas, extensions and refinements to the diagnosis theory.

3.1.7 Migration of Deep Knowledge to Shallow Knowledge

Deductive reasoning systems, including automatic fault diagnosis, usually make use of vast

numbers of rules to infer new knowledge from existing knowledge. Different rules may be

at different levels of generality. In particular, a method of rule nesting enables a rule to

contain a subrule in its consequent. If some instance of the anteccdent of the outer rule is

satisfied, that instance of the subrule will be asserted in the knowledge base. This subrule

has a lower level of generality than its dominating rule. We call this phenomenon the

migration of deep to shallow knowledge.

As more specific knowledge emerges from the general knowledge, the speed of inference

might become slower if the system tries to use both specific and general rules for similar

problems. We need a proper scheme to take advantage of specific knowledge to avoid dupli-

cate inference branches and, in the long run, to realize fast inference. An idea of shadowing

general knowledge has been suggested and implemented by exploiting its instance infor-
mation accumulated in the previous reasoning. A list of instances containing the binding

information was maintained for each rule so that this rule can be blocked in the next in-
ference if instances of that rule are already activated with the same binding information.

This shadowing strategy is tested for wire-faulty detection rules of the M3A2 circuit, and

the result shows a significant improvement in diagnosis speed for the same types of wires.

3.1.8 Enhancements of SNePS

During the course of this project, we have continued the development of the Semantic

Network Processing System. This effort resulted in a new major version of the system

called SNePS-2.0, and a new minor version, called SNePS-2.l. SNePS-2 represents a major

redesign of SNePS, and is implemented in Common Lisp, for maximal portability. SNePS-

2.1 incorporates an assumption-based belief revision system (SNeBR) as a standard feature

of the systeai. SNeBR is designed to reason the consistency of rules and hypotheses de-

fined within a particular context or belief space. SNeBR was applied to fault detection



in electronic circuits [Campbell and Shapiro, 1986]. We have ported SNePS to, and have
maint.Lined it on over seven different computer systems.

3.1.9 Possible Extensions

The current VMES system can be enhanced in a number of ways. The control structure
can be generalized to include various schemes of diagnosis. For instance, a retry method,
or direct isolation or intersection isolation can be applied in a sequence to diagnose a cir-
cuit. This involves the developmeitt of direct and/or intersection isolation techniques and
its implementation. Model-basei reasoning can be enhanced by incorporating heuristic
knowledge in the reasoning process. It is also worthwhile to investigate the effect of multi
ple tests, test generation techniques, and mixing of procedural and declarative knowledge
in diagnosis. The versatility of VMES can be further enhanced by the development and in-
tegration of analog circuit component dipagn sis. Diagnosis of intermittent faults is another

area that needs further investigation.
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3.2 DEVICE REPRESENTATION

3.2.1 Introduction

A versatile fault diagnosis system is an expert system that is capable of diagnosing a
variety of faults on a wide range of devices in its domain. In this work, issues about
knowledge representation for versatile fault diagnosis are investigated with digital circuits as
the experimental domain. This domain consists of numerous types of devices with different
configurations and functionalities. Automatic diagnosis of faults in digital circuits is highly
desirable due to their widespread use and relative short market life cycles as well as the
general shortage of qualified maintenance technicians. Our aim is to develop a knowledge
representation formalism which is capable of supporting a versatile fault diagnosis system
whilh still retaining the effectiveness of fault diagnosis.

Versatility in diagnosis is multifold: ability to adapt to different devices without ex-
tensive knowledge engineering; capability of diagnosing a wide range of common faults;
capability of operating at different maintenance levels; and capability of interacting with
the user through various media.

Device representation is the task of modeling a device and abstracting it into a repre-
sentation formalism suitable for a specification-based system. As knowledge engineering is
to empirical-rule-based systems, device modeling/representation is the key to the success of
a device-model-based fault diagnosis system, since its major power comes from knowledge
about the structure and function of a device. While much work has been done in the area of
knowledge engineering for empirical-rule-based systems :Feigenbaum, 1979, Quinlan, 1982.
Waterman, 1979, Williams, 1986, ttle has been done in device representation for device-
model-based systems, and most current device representation schemes are either improper
or insufficient for fault diagnosis. Computer hardware description languages such as ISP
,Siewiorek, 197-1a., PMS Siewiorek, 1974b': and Zeus [German and Lieberherr, 19851 are

designe l for communication between computer designers, but not for the purpose of fault di-
agnosis Barl);acri and T-ehara, 1 9S5, C'hu, 197.ti. Other existing d-vice description schemes
for fault diagnomsis are either ad hoc or insufficient to support a versatile fault diagnosis
svst,,m Flxaipls are the predicate logic representation used by Genesereth Genesereth.
)41 aid the schtheiatic diagram representation language designed by Davis Davis and

Shrobe, 19,'3 .

3.2.2 Knowledge of Versatile Diagnosis

It iias been argued that the perfornance of an expert system depends mostly on the contents
nd the forms, of its knowledge, since It is the major resource of its reasoning 'Buchanan and

ShYrtliffe. 19' t , HIaveJs-t,,t , ,t.I 9S3, Michie, 1980 . In this section, we first analyze the
knowldge fr t roubleshooting electronic ciruits, ard identify the core knowledge for ver-
satile fault lia~nsi. Ae dilcuss how domain experts coordinate different views of a same

11



device in diagnosing and repairing it, and the difficulties they might have in coordinating
the different views.

Knowledge Analysis and Characterization

In analyzing the knowledge used in circuit diagnosis, we suggest that the knowledge be cat-
egorized as device-specific empirical associations, generic domain knowledge, and a device
model.

Device-specific empirical associations relate observed symptoms to possible fault hy-
potheses for a specific device. Such rules are highly device specific, and cannot apply to
other devices in the same domain, since devices in the same domain may have different
structures.

Generic domain knowledge is the general knowledge in the designated domain that
domain experts use for fault diagnosis. A very primitive piece of generic knowledge for
circuit fault diagnosis is that "when an output of a device deviates from the expected value
regarding to the known inputs, it implies that the device is malfunctioning". Another one
is that "to locate the faulty component(s), one should first identify the signal flow paths
from inputs to the bad output, this can be efficiently done by back-tracing the connections
from the bad output to the relevant inputs". The domain knowledge is not necessarily very
primitive, it may also relate to higher human perception as in the example of "a burnt
appearance of a component implies that the component is a potential faulty part".

A model of the target device, which consists of the structural and functional information
about the device, is maintained by the technician when troubleshooting electronic circuits.
Though the model is device specific, unlike device-specific empirical associatiuns, a model
of a device is "public" knowledge which is highly structured and readily available at the
time when the device is designed. This model is sometimes referred to as a "mental model"

of the device since it is the technician's view of a device when troubleshooting it [Rasmussen
and Jensen, 19741. This model is also referred to as a "design model" of the device, since it
usually reflects, though not always necessarily, the design of the device [Genesereth, 1982].

kp X nowLUge of Versatile Fault Diagnosis

In analyzing the knowledge used by maintenance technicians for troubleshooting electronic
equipment, it turns out that human experts use all kinds of knowledge described above,
viz., device-specific empirical associations, generic domain knowledge, and a model of the
target device, in an intermixed manner.

In attempting to combine all knowledge to facilitate diagnosis, a two-level architecture
has been proposed for neurological diagnosis [Xiang and Srihari, 19861, which suggests that
the system that the system first works on the empirical-association-based module, and then
turns to the device-model-based module if the problem can not be successfully solved by
the first module. Two reasons convince us that we will not adopt this i(lea. First, human
experts usually use all sorts of their knowledge in an interleaving or mixed manner for
fault diagnosis. A sharp partition of knowledge into two separate working modules seems

12



unrealistic to us. Second, our research is to develop a device representation scheme to
support a versatile fault diagnosis system, and the inclusion of empirical associations at
this point may impair the construction of such a versatile system.

As meaitioned before, versatility of an automatic fault diagnosis system is extremely
important in an electronic circuit domain due to the fast rate at which new products
are introduced and their relatively short market lives. In noticing that an experienced
technician is able to effectively troubleshoot an electronic device by using the schematic
diagrams of the device and his general knowledge about troubleshooting devices in the
domain and without having to learn how the device may fail, we define an automatic
versatile fault diagnosis system as an expert system which behaves like an experienced
technician who is competent in diagnosing devices he has never seen before. A major point
here is that a versatile fault diagnosis system should be ablc to b,- dapted to n,- devices
easily, just like an experienced technician does.

Device-specific empirical associations are quite different from the knowledge of a device
model in both the contents and the representation forms. Device-specific empirical asso-
ciations are assertive knowledge (or propositions) relating symptoms to possible faults. It
is natural to represent them as production rules. Knowledge of a device model is basi-
cally descriptive, and can be best represented as semantic networks or as frames. There
are two major hurdles in including the device-specific empirical associations in a versatile
fault diagnosis system: techniques in acquiring it by interviewing with domain experts
through knowledge engineering have to be improved so that this process will not slow down
the adaptation of the system to other devices; and the capability of an expert system in
selecting and using proper knowledge at proper time from a knowledge-base (or knowledge-
bases) containing various types of knowledge in different forms has to be achieved so that
the system can have an acceptable performance.

One major consideration in developing a versatile fault diagnosis system is the system's
ability in adapting itself to other devices. It is improper to include the device-specific
empirical associations in a versatile maintenance system, since this may impair system
versatility, and moreover, this kind of knowledge is not available at all for newly designed
devices. Therefore, only the generic domain knowledge and the knowledge of a device
model should be incorporated into a verqatile failt diagnosis system In mimicking the
versatility of experienced maintenance technicians in troubleshooting devices they had never
seen before, the generic domain knowledge is transformed into the search algorithms and
diagnosis rules of the fault diagnosis system, and the knowledge of a (levice model, which
is the basis of the system's reasoning, becomes the core knowledge of the system.

3.2.3 Logical and Physical Knowledge in Diagnosis

The emphasis of most previous research on the device-model-based approach to fault di-
agnosis has been on using the logical structure of a target device. Such a representation
emphasizes the functional interrelations of components but not the physical interrelation-
ships, e.g., functionally unrelated components may be physically related (adjacent. in the

13



same area, etc.). However, knowledge about physical device structure often plays an im-
portant role in fault diagnosis performed by human technicians. This research explores
the representation and use of knowledge about both logical and physical structures of tar-

get devices in a versatile maintenance system. In particular, we examine the relationships
(cross-links) between logical and physical structures.

The use of physical structure in a diagnostic problem in the medical domain, viz., neu-
rological diagnosis based on a niodel of neural pathways in the human spinal cord, was
explored by Xiang and Srihari [Xiang and Srihari, 1985]. In their system, two functionally
unrelated paths may be examined due to their physical proximity. In the domain of cir-
cuit diagnosis there is little in the literature on physical structure representation with the
exception of references made by Davis [Davis and Shrobe, 1983, Davis, 19841. He suggests
including a physical description based on the notion that different paths of interaction or
adjacency should be represented to diagnose different kinds of faults. A particular appli-
cation of utilizing the physical structure description of the device is demonstrated as the
diagnosis of bridge faults under the assumption that bridges can only occur between two
adjacent pins of an IC (integrated circuit) chip. Although the result is effective and im-
pressive, there are two limitations. First, human experts can visually locate a bridge fault
easily by exhaustively searching (looking around) the suspected local area without the com-
plicated reasoning i.e. suggested. When computer vision techniques are unavailable, it may
be proper to rely on the user to pinpoint the bridge fault without the strict assumption
that bridge faults can only occur between two adjacent pins of an IC chip. Based on this
argument, a better role of the automatic fault diagnosis system is to locate and direct the
user to the suspected area. Moreover, we find that human experts do maintain a model
of the physical structure of the device being diagnosed, but they use it in a more general
manner, which is not limited to troubleshooting a bridge fault.

Human diagnosticians for electronic devices seem to simultaneously maintain models of
the logical and physical structures of the target device. They carry out most of the diag-

nostic reasoning over the logical structure of the device due to its functional association.
While carrying out the reasoning, the logical structure is apparently mapped to the physical
structure from time to time. Tests and measurements are first initialized using the logical
structure, and then are realized and executed on the physical structure. Repair, which is
usually done by replacing a physical unit or by fixing a physical connection, is planned and
done on the physical structure. In other words, maintenance technicians use a model of
physical structure of the target device, which is a hierarchically arranged set of replaceable

physical components at various maintenance levels such as field-level and depot-level. By
mapping the logical structure of the device to its physical equivalent, maintenance tech-
nicians are able to terminate the diagnostic process at the right moment and to form an
adequate repair plan.

Given that the mapping between the logical structure of the device and its physical
eqiivalent happens throughout the diagnostic process at all hierarchical levels, the speed
in carrying out the mapping is critical to the time needed to locate faults. This implies that
objects on both the logical level structure and the physical structure of the device should
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be closely linked to each other so that the mapping is done efficiently. Even experienced
technicians may have difficulty in locating a point of a schematic diagram on the real device,

where the schematic diagram represents the logical structure of the device, and the form of
the real device is the physical structure; which is attributable to a lack of cross-links at all
hierarchical levels of the device in human memory. On the other hand, when modeling and
representing a device in an automatic fault diagnosis system, the cross-links between its
logical structure and physical structure can be modeled and represented to an appropriate

level of detail.

3.2.4 Structural Representation

In our system, a device is abstracted as a hierarchically arranged set of objects, and each
object is abstracted at two levels. At level-1 abstraction, an object is modeled as a module
with ports; and at level-2 abstraction, the structures of the object is envisioned. An object

is represented according to these two abstraction levels from both logical and physical

perspectives. Abstractions of an object at these two levels are represented by SNePS rules
and SNePS assertions. The former are categorized as instantiation rules and the latter as
structural template. The representation for cross-links between the logical structure and
the physical structure is also discussed.

Instantiation Rules as the Level-1 Abstraction

At level-1 abstraction, knowledge about a component type is represented as a SNePS rule.
The rule is used later on to instantiate an object of the component type as a module
with its own ports and associated functional descriptor. The functional descriptor contains

information about the functional description of the component type. The instantiation
rule for a physical component type is a little bit simpler in that it contains no functional

information of the component type.

Logical Structure

The instantiation rule for objects of the M3A2 type is shown in the SNePSUL (SNePS User
Language) command form in Figure 3.2.1. The first three lines of the instantiation rule says
that "if x is an MN3A2-type object, which is a logical object, and it is to be instantiated at ;ts

level-1 abstraction (IRfL1), then do the following". The next five "cq's" will instantiate the

ports of the object when this rule is executed. I/O ports of an object are the places where

the input/output values of the object are stored. Measured (observed) 1/0 values depict the

real behavior of the object, and calculated I/O values show its expected (normal) behavior.

The last two "cq's" create the functional descriptors of the object; functional descriptors
are pointers to the representation of the function of the object. The first one says "in order
to simulate (calculate) the value of the first output, use the function M3A2outl which
takes three parameters, viz., the inputs of the object x in order". The "tolrnc" denotes

the tolerance allowed for a measures value when compared to the calculated value. This is
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(build avb $x
ant (build object *x type M3A2 abs-lv IRfL1 modality logical)

cq (build modality logical

object (build type I-PORT port-of *x id inpl

signal (build type D bit-width 2))) = vINP1
cq (...)

cq (...)
cq (...)
cq (build modality logical

object (build type 0-PORT port-of *x id out2
signal (build type D bit-width 5))) = vOUT2

cq (build object *vOUT1 sfunc M3A2outl

tolrnc 0 pn 3 pl *vINP1 p2 *vINP2 p3 *vINP3)

cq (...))

Figure 3.2.1: Instantiation rule for M3A2 type objects

especially important for analog components, and is usually set to zero for digital devices.
Similar functional descriptors can be included for the input ports if the inference of input
value from outputs is desired (these are not shown in the figure).

Physical Structure

The instantiation rule for objects of the MAC3200 type is shown in Figure 3.2.2 "MAC3200"
is the physical equivalent of the logical component type "M3A2". The first three lines
of the instantiation rule says the "if x is an MAC3200-type object, which is a physical
object, and it is to be instantiates at its level-1 abstraction (IRfL1), then do the following".
The next twenty "cq's", which are shown in partial to save space, will instantiate the

(build avb $x
ant (build object *x type MAC3200 abs-lv IRfL1 modality physical)
cq (build modality physical

object (build type P-PORT port-of *x id ))

cq (build modality physical

object (build type P-PORT port-of *x id 2))

cq (build modality physical

object (build type P-PORT port-of *x id 20)))

Figure 3.2.2: Instantiation rule for MAC3200 type objects
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twenty ports of the object when this rule is executed. The instantiation rule for a physical
component type is quite similar to that for a logical type component type except that all

ports of a physical object are P-PORTs, which are functional (logically) neutral, and thus
no functional descriptors are associated with these ports.

Structural Templates as the Levei-2 Abstraction

At level-2 abstraction, a structural template, which is implemented as a SNePS assertion,
is used to describe the subparts of a logical object at the next hierarchical level, and the
wire connections between t.he object and its subparts, as well as those among the sub-
parts themselves. Since wires are eliminated from the physical abstraction, the structural
templates of a physical component type only contain descriptions of its non-wire subparts.

Logical Structures

The structural template representation is shown in Figure 3.2.3. The representation can
be viewed as consisting of five parts-an identification section, a subparts section, a con-
nections section, a part-links section. The last two sections in a structural template, whose
contents are missing in the above SNePSUL command, concern the cross-links between the
logical structure and the physical structure of a device, and are discussed later.

The identification part, which consists of the first three lines of the SNePSUL "build"

command if Figure 3.2.3, denotes that the representation is the structural template for the
logical component type M3A2 at the level-2 abstraction (STfL2). The subparts section
describes the subparts of the component type at the next hierarchical level. A new case-

frame, "id/type", is introduced to describe the subparts of a logical component type within
its structural template. The "id" is composed of the name of the component type. i.e.,
M3A2, and a unique id, such as M3, Al, and W6, within the component type. It identifies
the subpart in the rest of the structural template; it also serves for name extension of the

subpart when it gets instantiated. For instance, if DI is an M3A2 device, and its first
subpart, which is identified as M3A2-Ml in the structural template, is being instantiated,
the subpart will be instantiated with a name of "D1-M1". The part "type" of the subpart
specifies its component type; this information is needed when the subpart is to be instan-
tiated. The connections section of the structural template specifies the connections. Note

that connections by port superimposition and by POCON (point of contact) are treated

differently as discussed in [Tale and Srihari, 1987].
A structural template provides the necessary knowledge about the sub-structure of all

objects of same component type without representation overhead. Unlike instantiation
rules, structural ternplates are never executed (fired) to produce a representation for any

specific object. When reasoning on the sub-structure of an object is required, instead of

instantiating the sub-structure (all the subparts and connections) and then reasoning on
the resulted representation, we do it directly on the structural template of the object. If

suspicious subparts are located, they (but not all subparts) instantiated at their level-1
abstractions using proper instantiation rules for further examination.
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(build

type M3A2
abs-lv STfL2

modality logical

sub-parts ((build id M3A2-M1 type MULT)
(build id M3A2-M2 type MULT)
(build id M3A2-M3 type MULT)
(build id M3A2-Al type ADDER)
(build id M3A2-A2 type ADDER)

(build id M3A2-WI type WIRE3)
(build id M3A2-W2 type WIRE3)
(build id M3A2-W3 type WIRE3)

(build id M3A2-W4 type WIRE2)
(build id M3A2-W5 type WIRE3)

(build id M3A2-W6 type WIRE2)
(build id M3A2-W7 type WIRE2)
(build id M3A2-W8 type WIRE2))

connections

((build equiv (findorbuild type B-PORT port-of M3A2-Wi id 1

signal (findorbuild type D bit-width 2))
equiv (findorbuild type I-PORT port-of M3A2 id inpi

signal (findorbuild type D bit-width 2)))

(build contact (findorbuild type B-PORT port-of M3A2-W2 id 2

signal (findorbuild type D bit-width 2))
contact (findorbuild type I-PORT port-of M3A2-M1 id inpl

signal (findorbuild type D bit-width 2)))
..

part-links (.....)

port-links (.

Figure 3.2.3: Structural template for M3A2 type objects
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(build

type MAC3200

abs-lv STfL2
modality physical

sub-parts ((build id MAC3200-U1 type MCOO nmtn-lv DEPOT)
(build id MAC3200-U2 type ACOO mntn-lv DEPOT)
(build id MAC3200-U3 type MCOO mntn-lv DEPOT)

(build id MAC3200-U4 type ACO0 mntn-lv DEPOT)))

Figure 3.2.4: Structural template for MAC3200 type objects

Physical Structure

The structural template representation is shown in Figure 3.2.4. Unlike the structural
template for a logical type, which consists of five sections, the structural template for a
physical component type has only two component sections: the initial section and the
subparts section. This is because the wires are eliminated from the physical representation
of a device, thus no connection is to be specified, and because the cross-links between the
logical structuze and the physical structure have been specified at the structural template
of the logical component type or elsewhere as will be discussed later.

The identification part, which is the first three lines of the SNePSUL "build command",
denotes that the representation is the structural template for the physical component type
MAC3200 at its level-2 abstraction (STfL2). The subparts section describes the subparts
of the component type at the next hierarchical level. A new semantic network case-frame,
"Iid/type/mntn-lv", is introduced to describe the subparts of a physical component type
within its structural template. The meaning and use of part "id" and part "type" are the
same as those in a structural template for a logical component type as described in the
last section. The "nintn-lv" indicator shows the intended maintenance level of the subpart,

the maintenance level where the subpart, if found faulty. is replaced without further
diagnosis. These informations are used for instantiating a physical subpart.

Knowledge about the intended maintenance level is associated with the physical struc-
ture of a device because the repairment of a device is performed based on the physical model
of the device. It is adequate to store the "mntn-lv" (maintenance level) tag of an object at
the subpart section of the structural template of the object's super-part. A more straight-
forward way is to store the "mntn-lv" tag at the instantiation rule of each component type,
out this may cause problems. The reason is that "'mntn-lv" values of objects with same
component type may be different when they are used in different devices. For instance,
as ACO0 chip (an adder) may have a different "mntn-lv" value of DEPOT when it is a
subpart of Air-Force-Device-I, and have a different value as FIELD when it is a subpart of
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Navy-Device-3. This implies that the "mntn-lv" value of an object is not only complexity
dependent but also environment-sensitive, and thus it should be stored at the subpart sec-
tion of structural templates rather than at the instantiation rule. Though currently, only
FIELD and DEPOT levels are used in VMES, "mntn-lv's" and the corresponding system
parameter VMES-IML, which stores the intended maintenance level of a diagnostic session,
can be set to any arbitrary maintenance level by the user if desired.

Cross-Links between Logical and Physical Structures

There are two kinds of cross-links between the logical and physical structure of a device.
The first kind is the cross-links for components. The second kind is the cross-links for ports.
Like representing the level-2 abstraction of a device for its sub-structures, the cross-links
between the logical and the physical structures is implemented as structural templates to
remove any representation redundancies. The cross-links for components are specified in
the part-links section of the structural template of the logical object, and the cross-links
for ports are specified in the port-links section as partially shown in Figure 3.2.5.

3.2.5 Functional Representation

The function of an object in the electronic domain can be best abstracted as the relationship
between its inputs and outputs. The functional description should be usable to simulate
the component behavior, i.e. to calculate the values of output ports if the values of the
input ports are given. It should also be usable to infer the the values of the input ports
in terms of the values of other I/O ports. This is important if hypothetical reasoning is
used for fault diagnosis. Though at this stage, VMES only uses the functional description
to calculate values at output ports, our representation scheme can be used both ways.

As depicted by the instantiation rule for M3A2 type, a functional descriptor of a port
contains a pointer to its functional description as well as other information concerning the
use of the functional description. The functional description itself is implemented as a
LISP function which calculates the desired port value in terms of the values of other ports.
Every port of a component type has such a function associated with it. The functional
descriptions for the output ports of the component type M3A2 are shown in Figure 3.2.6.

Some different ports of different component types might have the same function, some
functions can be shared. For instance, the simple function "ECHOback", which simply
returns its input, can be shared by several different component types, viz., by the type
"super-buffer", the type "wire" and the type "one-to-one transformer". All these compo-
nent types show the same behavior at out level of component abstraction: they echo the
input to the output.
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(build

type M3A2

abs-lv STfL2
modality logical

sub-parts ( ..... )

connections ( ..... )

part-links ((build object M3A2-M1 inside MAC3200-U3)
(build object M3A2-M2 inside MAC3200-U3)

(build object M3A2-M3 inside MAC3200-U1)

(build object M3A2-A1 inside MAC3200-U4)

(build object M3A2-A2 inside MAC3200-U2))

port-links ((build equiv (findorbuild type I-PORT port-of M3A2-M1 id inpi

signal (findorbuild type D

bit-width 2))

equiv (findorbuild
bit (findorbuild type P-PORT

port-of MAC3200-U3

id 1)
lo-bit (findorbuild

bit (findorbuild

type P-PORT
port-of MAC3200-U3

id 3))))

Figure 3.2.5: Cross-links between logical and physical structures
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(defun M3A2outl (inpi inp2 inp3)
(plus (product inpi inp2)

(product inpi inp3)))

(defun M3A2out2 (inpi inp2 inp3)
(plus (product inpi inp3)

(product inp2 inp3)))

Figure 3.2.6: Output functions for M3A2 type objects
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3.3 INTERFACES

3.3.1 Natural Language Graphics'

Introduction

Natural Language Graphics (NLG) deals with diagram generation driven by natural lan-
guage utterances. This investigation applies the methods of declarative knowledge repre-
sentation to NLG systems. Declarative knowledge that can be used for display purposes as
well as reasoning purposes is termed "Graphical Deep Knowledge" and described by sup-
plying syntax and semantics of its constructs. A task domain analysis of Graphical Deep
Knowledge is presented covering forms, position, attributes, part, parts, classes, reference
frames, inheritability, etc.

Part hierarchies are demonstrated, and criticism of traditional inheritance-based knowl-
edge representation formalisms is derived from this finding. The "Linearity Principle of
Knowledge Representation" is introduced and used to constrain some of the presented
knowledge structures. The analysis leading to Graphical Deep Knowledge also results in
the description of two fundamental conjectures about knowledge representation.

The (;ricean maxims of cooperative communication are used as another source of con-
straints for NLG systems. A new maxim for technical languages is introduced, the "Maxiin
of Unnecessary Variation". It is argued that common symbolic representations like circuit
board diagrams have not yet been described in literature by explicit feature analysis, and
that this in necessary to give a system knowledge about the meaning of the diagram it is
(lisplavin g.

Part of the levt'loped theory has been im pletnented as a g,,en rator proigraiii that creates
pictures from knowledge structures and as an ATN grammar that creates knowledge struc-
tire. frorn limited natural language input. The fuinction of the picftire generation program

* TINAI ;t, a user i nt erface for a VMES has ben (lemonsil rated. An oider version of TINA
inCorporates a module of "Intelligent Machine Drafting" (IMID), a completely new subfield
(,f AI that has ben initrodiiced in this research and that relates to ('onputer Aidel l)e -
,1tn (CAD). The IMD program does layout and routing for the niemIners of a simple clas.-
of functional circuit diagrams based on a policy of symmetry and eqial distribution over
the available space. This layoutirouting is based on cognitive requirements as opposed to
phyical requirements used by CAD systems.

''",is, section is a -onIltnsation ,f a paper by J ( ;o-!lr. -Natural Langutiage (;rap hics for 11 uman (Col-
putr Interaction" Suhnitted to the Inr'niitional Journal of Man-.aThin, .<t hid -.,
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Representational Constructs of Graphical Deep Knowledge

Form Knuwledge

A number of different scientific subfields and fields have been interested in the representation
of forms. Among these are computer vision, computer graphics, and imagery, but also solid
modeling computer aided design (CAD) and character recognition. We argue [Geler, 19881
that no representation in any of these fields satisfies the requirements for graphical deep
knowledge. These requirements are:

" The representation should be projectively adequate.

" The representation should be deductively adequate.

" The representation should be based on conceptual primitives that seem natural to
the human observer.

* The representation should support relations between primitives which are natural to
humans.

" The representation may contain redundant information.

To fulfill these requirements a representation that consists of basic forms (icons) and
asserted relations is used. The basic forms are (supposed to be) meaningful to human
observers. Every basic form is represented as a procedure that has three properties. (1)
The procedure consists of calls to graphics primitives. (2) Executing a procedure of the
name <name> results in the drawing of an object that is described by <namie>. (3) The
procedure <name> is accessible as a concept in the knowledge representation system, i.e.,
it functions simultaneously as a node in a semantic network. The representation of a basic
form is therefore projectively adequate and also a conceptual unit. Relations between icons
are represented propositionally.

The SNer3S syst -m is used in the follcwing way to accommodate the described form
representation. The name of every basic form in the system is a base node in the SNePS
semantic network. The SNePS inference machine treats it as a conceptual unit and permits
reasoning about it. At the same time every SNePS node is also an 'ininterned LISP atom.
This atom refers2 to a LISP function made up of calls to graphics primitives from a LISP
graphics package. Objects and forms are separate nodes, linked by an asserted proposition.
This conceptual separation of forms and objects makes i possible to associate a form with
a class of objects. instead of a single object.

tPart [ierarchies

Part hierarchies have been of fundamental importance in a number of differ -nt areas of
artificial intelligence. Knowledge representation has dealt with them as well as hardware
niodeling in maintenance and research in computer vision.

2 The linkage (f the function has been handled differently depending on the dtialect t,f LISP used. Oir
faverite .oluition has bet n to use the function cell of an interned atom of the same name as the node.
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Our interest in part hierarchies is motivated by the need for a method to decide "what
content" to put on the screen of an NLG system and "how to organize zt, " to be optimally

useful to a viewer. In KBUIMS (knowledge based user interface management system)
design this complex of problen s has been referred to as "presentation planning".

Part hierarchies permit a strategy to decide what to show and how to avoid information
overload: don't show all the parts of a requested object. If a simple display is expected, just
show an integral object. If a more informative display is expected, then show the integral
object with its parts. More generally, control the complexity of a display by selecting the
number of levels of the part hierarchy that are shown on the screen.

The Class Hierarchy

In our theory a non-tangled class hierarchy is used for standard downward inheritance.
Htowever, we also supply a limited upward inheritance facility. We find justification for this
in the psychological research on categorization. The cognitive science literature reports
three different approaches to categorization the classical approach, the prototype approach

and the exemplar approach. The classical approach has been but totally rejected from a
cognitive point of view. It requires that every member of a class is described by necessary
and sufficient conditions.

The prototype view as developed by E. Rosch Rosch, 1978] describes a "prototype" as
a summary descr;ption of all the members of a class. The third theory of categorization
is the exemplar view. The exemplar view differs from prototype theory in the following

way. The summary description used by prototype theory is not necessarily identical to any
existing member of the category. Exemplar theory on the other hand postulates the use of
one or more stored real exemplars of the category, in other words no summary description
exists.

The exemplar view of categorization permits us to think in terms of upward inheritance
from an individual to a class, because if we do not assume a summary description we may
not associate attributes with it, and then the only source to derive inherited attributes
from are other exemplars. This implies that it must be possible to inherit attributes from
one exemplar upwards to a class and then back downwards to another exemplar.

For example, a knowledge base in our system might contain an object with no specified
foriii that belongs to a class hierarchy. ( jassical downward inheritance would search up in

the hierarchy until at some higher level a form is encountered. However. it might happen
that no form is found anywhere in the hierarchy. In our interpretation of the exemplar

theory it is valid to do a "down" search in the hierarchy for an object that belongs to the
same class as the current focus object, and to inherit an existing form with -up-,and-du' n

inhcrltance" for it.
The idea of up-inheritance is not popular in Al. It is either ignored or explicitly pro-

hibited. For instance, knowledge representation of the NETL style 'Fahlinan, 1979 which
is based on marker passing, prohibits the idea of inheritance according to an up-and-down-
movement because if one would permit markers to move up and down in the network the
whole network would eventually be marked.
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One is tempted to interpret up-and-down inheritance by considering the first step (the
up-inheritance) as a form of generalization or inductive learning. However, this is not what
we have in mind, because the representation of the class itself is "not" changed by a step
of up-and-down inheritance. If a class should have many members only one of which has a
form, and if this form should be changed after one application of up-and-down inheritance,
then the second application of this inheritance rule will supply the new form, not the old
form. Were we talking about a step of generalization, then the class would preserve the
form after the first use of up-inheritance.

Are we then making a decision for the universal use of exemplar inheritance and against
prototype theory? Clearly this is not our intention, because up-and-down inheritance is
"only" used when no sufficient information is associated with the classes used for inheritance
i.e., when our version of a summary description fails. We do not eliminate the use of a
summary description!

For practical purposes we have limited the use of up-and-down inheritance in two ways.
Up-search is done only from the lowest level, the level of the individuals, to the level
immediately above it, i.e., to the lowest level of classes. If there is no other member in
this class, or if the other members do not carry the desired information, then up-and-down
inheritance fails. One can argue that this does not make complete use of the class hierarchy,
but it seems like a reasonable compromise, because humans use hierarchies that are flat and
bushy. Rosenfeld has even argued that it is not necessary to view operations on hierarchies
as recursive to an arbitrary depth, because this constitutes an unnecessary effort if one has
only a flat hierarchy.

Secondly, up-and-down inheritance is used only for information that is urgently needed,
and not as the default case. In a graphics system the one item of information that is

obviously needed most is the form of an object, for which no "reasonable defaults" can be
supplied. We will now formally define up-and-down inheritance which we also refer to as

exemplar inheritance.

Definition: Exemplar Inheritance. If an individual is missing information about an

important property, and this property cannot be derived by inheritance from a su-
perclass of the individual, then the property may be inherited from any of the other

members of the immediate superclass of the individual.

In our domain only "forms" are considered important, and we have therefore decided not
to represent the fact that a property is important by an explicit assertion.

It is not yet clear what happens when several members of a class offer different properties

for upward inheritance. In such a case a combined strategy of majority and recency may

be used.

Reasoning

The major reason for introducing the notion of graphical deep knowledge as separate from
graphical knowledge has been the interest in doing rP.soning about graphical structures.

The first step of making a corpus of representations accessible to logic based reasoning is
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to transform it into a well formed declarative format with a defined syntax and semantics.
It has been the approach of this investigation to limit the procedural representations which
at some point are not avoidable in graphics to a small area, namely to iconic primitives.
All conceptual relations between these iconic primitives are represented declaratively.

The second step is to formally define reasoning patterns. SNePS provides two different
facilities for doing so, a system of rules and a system for defining paths. Although the rules
that can be defined are very powerful and permit quantification as well as the use of non-
standard connectives we have chosen to concentrate in our implementation on the use of
paths which are more.efficient.

Path based inference in SNePS assumes that one has a node of a well specified category
available (typically an "object") and follows the arcs that are pointing to this node back-
wards until one hits a node describing unknown and interesting information (for instance
a "form" or one coordinate of a position). The well specified case frames of GDK assure
that if the required information exists at all in the network, then it will be reachable by a
well defined path.

Maintenance Interface

The use of the TINA program as a graphics interface of the VMES project is described in
,his section. The VMES system consists of a maintenance reasoner and a graphics interface.
The graphics interface is an application of an older version 3 of the TINA program. The
task of the maintenance reasoner is to identify a faulty component in a given device, usually
a circuit board. The maintenance reasoner and the display program share a knowledge base
realized as a SNePS network.

During the process of identifying a faulty component in a device, the M'aintenance
reasoner repeatedly updates the shared knowledge base. It categorizes components as
being in a "default state", being in a state of violated expectation, being recognized fau!ty
or being suspected to be faulty. Information abont any of these states is asserted in the
network, using the attribute case frame described earlier on. Whenever the maintenance
reasoner wants to express changes in its state of knowledge about the analyzed device, it
executes a call to TINA. TINA presents the current state of the maintenance process to the
user. This is (lone by mapping attributes into signal colors (red = faulty, blue = default,
green = suspect, magenta = violated expectation).

Typically a device will be displayed completely blue in the beginning. After finding
a violated expectation, for instance a port that has a wrong voltage value, this port will
receive an attribute "violated expectation". The device will now be blue, except for the port
in question which will be magenta. Finally, after several steps of reasoning and redisplay,
the device will be shown in blue'with the faulty component(s) in red.

The procedural interface between maintenance reasoner and display program consists of
the TINA function only! All other communication is done through the shared knowledge
base that both parts of the program have access to. Our experience with this type of

3 Based on a VAX 11/780 and a GIGI graphics terminal.
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I
programming has been that it is exceedingly easy to combine two independently developed
modules. To our own surprise no integratory debugging was necessary!

3.3.2 Frontend: User Interface to Encode Devices

FRONTEND is a user-friendly piece of software designed to help encode circuit devices in
the representation, to perform the diagnosis. In it, basically, the user is:

(1) asked to specify what he wants to encode: ph-;sical or logical instantiation-rule,
structural-template, or cross-links;

(2) asked questions to elicit the details of the device being represented. The segments
of representation code that do not change from device to device are automatically filled in.

(3) led through the various segments of device representation, in order. Thus, any
possibility of missing out on some segments of the representation, is totally avoided.

(4) informed to the extent possible, what type of an answer is expected for each question.
e.g., D(igital) / A(nalog). Questions are framed as clear"ly as the topic permits. eg., "What
is the physical bit corresponding to the MSB of the remaining 5 bits? ".

(5) offered the ease of answering in as few key-strokc s as possible. The emphasis of the
package is on cutting to a minimum, the drudgery of thr: author.

The following are the special features of FRONTEND :
(1) Files are named, opened and closed automatic;. ly. When a device is completely

coded, the name of the file where the representation of t':.e device can be found, is displayed
for convenience.

(2) Each file is documented automatically. Docum-nItation includes the last name of
the author, the date of encoding and a brief explanati 'a as to the nature of the contents
of the file. This information is patched to the beginnini. of the file created.

(3) The representation code generated is pretty-pri ited. This makes reading the code
easier. However, this also results in a much larger file tG an is strictly necessary.

(4) Most of the questions asked not only specify the iature of the answer expected, but
also reject unacceptable answers. For example, if a fixe,, point number is typed in where a
non-negative integer was expected, the question is repc, ted till an integer is entered.

FRONTEND was originally written in FranzLisp oi, VAX 11/785 and is about 13K in
size. It has been now transported to Common Lisp on the TI Explorer 2. It uses about
forty functions, most of which have been named in a self-documenting style. The code can
be easily changed to incorporate future extensions in rr-presentation.
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3.4 DIAGNOSTIC REASONING USING MEASUREMENTS

3.4.1 Introduction

In model-based diagnosis, there are three major steps: discrepancy detection, candidate
generation and candidate ronc n'~ 'nfrmn it ion. Discrepancv detection is the pro-
cess of identifying the discrepancy between1 the predicted and observed values at certain,
places, e.g., at the primary outputs of a circuit. After a discrepancy is detected, the failure
symptom is used tgeraeastof canididates which cnpotentiallyto~r) t a etca explain the 1,soerves.
symptom when some of them are faulty. H~ere we use the Siimples;t c andiilat e generatio-
procedure which collects components Cori roc 1tlhL to an' vlt1 1ia thle Candt ao

gfeneration procedure produces miore than ,iie c 1(Iiloir it s-Ilpt'

call1s for the needI to discriminate or corifirit ' li-'- a xrlti L i((
m-ost likely candidate to test first. The latte' IWo~\ite f tliii or U of caridi'(&it>

based on structure and symnptomn inforniati T, nn pl e p r 1)- a! C i udOtu

-t c:od1date are used to deterniine, if, "tip,'vp ue'' -~-'~ test_.

\leasureinen ts are used not- Con ov Z~u' -'' . . ca ( ~

ai- \L ai.-

d-1~r;J)1(e for a di1igifostit'~t

v h fa I I pitr t.S ran 1  ]rtu euh..................
a s ibtuioiile I s mio re lIl k - o bcf" v1 C ia...

a '.'tttO(& i s less likelt nIfl T1 0 1'

Initially, candlidates are ordere r ,t1 ;~1 1'-' 1 ~ ' t

primiary outputs as dlescribed.

While the initial candidate orriri :17 ;rtniitt T1'r . t t 00 at 1 acll
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3.4 DIAGNOSTIC REASONING USING MEASUREMENTS

3.4.1 Introduction

In model-based diagnosis, there are three major steps: discrepancy detection, candidate
generation and candidate discrimination/confirmation. Discrepancy detection is the pro-
cess of identifying the discrepancy between the predict dJt and observed values at certain
places, e.g., at the primary outputs of a circuit. After a .1iscrepancy is detected, the failure
symptom is used to generate a set of candidates which ci, -i potentially explain the observed
symptom when some of them are faulty. Here we use :he simplest candidate generation
procedure which collects components connecting to any violations. Usually, the candidate
generation procedure produces more than one candida! , for a particular symptom. This
calls for the need to discriminate or confirm candidate as well as the need to select the
most likely candidate to test first. The latter motivateI the initial ordering of candidates
based on structure and symptom information. Simple p >obes at the inputs and outputs of
a candidate are used to determine if it is actually fault, under the current test.

Measurements are used not only to determine the -tatus of a candidate but also to
determine the relative fault possibilities of other candi(d tes. As more measurement infor-
mnation becomes available, some candidates become mo- 'likely, less likely or impossible to
be faulty. This intuition is the foundation on which ca cltidate reordering and elimination
are based. New measurements are also used to determnile when a diagnosis can be termi-
nated without making the single fault assumption. A ,iagnosis can be terminated when
there are no more violations which cannot be explainec 7)y the faults found so far.

Some assumptions are made throughout the discuss'_n. We assume the faults are non-
intermittent so that measured values are independent of ,ime. Probing at any intermediate
points of a circuit is assumed to be always possible. We .so assume there is no bridge fault
and the directions of inputs and outputs are correct. "however, single fault assumption is
not required.

3.4.2 Candidate Ordering, Reordering and Elir:ination

This section summarizes the principles of candidate or-' ering, reordering and elimination.
A complete account for these topics can be found in [Chc', and Srihari, 1989]. As mentioned
earlier, when more than one candidate is produced in .he candidate generation step, it is
desirable for a diagnostic system to be able to focus on tL',- most likely candidate first so that
the faulty parts can be located earlier. Intuitively, we h:x'e the following two heuristics: (1)
a submodule is more ilkely to be faulty if it is connecte' to more bad primary outputs and
(2) a submodule is hss likely to be faulty if it is connec d to more good primary outputs.
Initially, candidates are ordered according to their relat -nships with incorrect and correct
primary outputs as described.

While the initial candidate ordering looks promisin,, there is no guarantee that actual
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procedure diagnose (CL: an ordered candidate list)
while CL is not empty do

Instantiate the first candidate at its level-1 abstraction
Measure its inputs and outputs
if it has violated outputs then

if its corresponding physical object is at IML then
Issue repair order for the physical object

else
Instantiate it at its level-2 abstraction
Generate and order suspected components of it using its structural description
Call diagnose on the ordered suspected components

endif
else

Claim that the current candidate is intact
endif
Eliminate candidates
Reorder the remaining candidates
Propagate measurements to update predications, violations and CL

endwhile
Report findings

endprocedure

Figure 3.4.1: Control structure of VMES

faulty components are ordered in the front of the candidate list. In fact, for any de,:c.., and
,ood/'bad output pattern, it is not difficult to come up with a counterexample oil which
our method does poorly in the sense that the actual faulty component is put at the last few
places in initial ordering. To fix this problem, we reorder or eliminate candidates whenever
some intermediate values are measured.

After the inputs of current candidate are measured, some candidates become more. lik'l
to be faultv than others. Obviously, candidates connecting to inconsistent inp rI I ipu~ts are more

likely to he faulty than those to consistent ones. Therefore. candidates connected to its
incorrect inputs are shoved to the front of candidate list and can(lidates connected to correct
inputs but not to incorrect inputs are shoved to the tail.

In addition, some candidates may become impossible to be faulty after new measure-
ments are known. As a result, candidates that no longer have a path to any violations can
be removed from the candidate list.

3.4.3 Termination of Diagnosis

The control structure of VMES is shown in Figure 3.4.1. It starts from the top level of
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the structural hierarchy of the diagnosed device by instantiating the device at its level-I
abstraction. It then tries to find the device's output ports that violate their expectations
(i.e., output ports that have different observed values from expected ones). A candidate is
claimed to be intact (with respect to the current inputs) if it has no violated outputs.

After detecting violated outputs of the current candidate, the system determines if it
is necessary to examine the components of the candidate based on the idea of "intended
maintenance level" (IML). The candidate is declared faulty and a repair plan is formed for
its corresponding physical object if the physical object is at the intended maintenance level
selected by the user at the beginning of the diagnosis session.

Otherwise, the candidate is instantiated at its level-2 abstraction. The structural de-
scription is then used to find, at the next lower hierarchical level, a subset of its components
which might be responsible for the violated outputs of the current candidate. These sus-
pected components are ordered according to the initial ordering criteria. This diagnosis
process is then recursively called for the new ordered components.

After the current candidate is checked, its input and output measurements are used
to reorder and eliminate some of the remaining candidates as described earlier. Also the
measurements are propagated toward the primary outputs of its super-part at the next
higher hierarchical level so that the predicted values are up-to-date. As a result, the
violations and candidate list are updated too. The diagnosis terminates when there are no
more candidates, i.e., when there are no more unexplained violations. This strategy enables
the system to diagnose multiple faults without the explicit enumeration of all multiple fault
hypotheses and yields good prefo-mance in terms of the number of checked components as
discussed in the next section.

3.4.4 Analysis

To show that candidate reordering and elimination really help shorten the length of a
diagnosis, we compute the average number of components that have to be checked before
the culprit is founJ, under single fault assumption (SFA). Note that under SFA, shoving
candidates connected to incorrect inputs of current candidate to the front of candidate list
is equivalent to removing other candidates as far as the length of diagnosis is concerned.
The culprit is guaranteed to be among those being shoved to front since they contribute to
some violations while others don't. Throughout the analysis, the probability distribution is
assumed to be uniform. For example, each candidate has equal failure rate and a candidate
has a probability of 0.5 of being non-error-propagating if it is not faulty.

Let len(n. k) denote the average length of a diagnosis (number of components checked)
when there are n components and k faults in the diagnosed device. Then len(n, 1), the
average length of a diagnosis under SFA, is given by the following recurrence relation:

1
len(n, 1) = -1

n
n-I 1 n-1

. . . . . _l e
n ' n-
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n-i 1_ i1 1

n 2 n-1

The first term represents the case that the first candidate is faulty (with probability 1/n)
and only one component is checked. If the first candidate is intact (with probability (n -
1)/n) and non-error-propagating (with conditional probability 0.5), 0 to n - 2 candidates

may be eliminated (i.e., 1 to n- 1 candidates are left) and each case has an equal probability

of 1/(n - 1). The average number of checked components for this case is computed by the

second term. Similarly, if th,- first candidate is intact (probability = (n - 1)/n) and error-
propagating (probability = 0.5), 1 to n - 1 candidates may be shoved to the front of

candidate list. This is described by the last term. The above expression simplifies to
i

len(n, 1) = - + len(n - 1, 1)
n
i 1

= -+-+len(n -2,1)
n n-i

1 1 1
= -+ +.+ +

n n-1 2

i=1I

= log n.1

This is much better than random or sequential examination whose expected length is -n.

Our diagnostic reasoning procedure does not make SFA, and a closer examination of
the above analysis reveals that SFA is not necessary in the analysis either. The analysis

applies to the average number of checked components to find the first fault in a device with

n components. Therefore, len(n, k) can be generalized to denote the average number of

checked components to find the first k faults in a device with n components and at least k

faults.
Let pi(> 0) be the probability of the first fault being found at the i' h time (i 1,...,n).

Then, ZF_ , p= 1 by the definition of probability and E", pi i I = len(n, 1) logn
according to the analysis for single fault cases. Now len(n, 2) can be described as follows:

n

len(n, 2) p Vi . [I + len(n - i, 1)],
i=I

where [i + lcn(n - i, 1)] is the average checked components when the first fault is found at

the ith attempt and pi is the probability of tb;s case. Since len(i, 1) log i,
n n

len(n, 2) = pi •i + Xpi - log(n -i

i=1 ,=1=log n loglI( -I~p

'The base of all logarithm functions in this section is the natural number.
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Number of Number of Last fault Length of
faults candidates position diagnosis

1 11.55 3.27 1.93

2 12.22 8.08 3.46

Table 3.4.1: Average results of 100 trials

By geometrical inequality, 11l (n- i)p. -< pi " (n - i). Since the function log is mono-
tonically increasing,

n

i=1

= log n+ log[n - pi " 1
:=1

= logn + log(n - logn)

< 2log n.

By mathematical induction, we have

len(n, k) :S k log n,

where 1 < k < n. This means that the length of diagnosis, when the number of faults
is relatively small (which is true for real diagnostic problems), grows logarithmically with
respect to the number of components.

3.4.5 Simulation Results

The performance of candidate ordering, reordering and elimination is analyzed by sim-
ulation on a 4-bit comparator (see Figure 3.4.2) with 15 components. Each time some
randomly selected components are made faulty by complementing some arbitrarily chosen
outputs of those components. The number of initial candidates, the last position of those
components in the initial candidate ordering, and the actual number of checked components
are recorded for analysis.

The average results of 100 trials for both one and two fault cases are summarized in
Table 3.4.1. The third column indicates that initial candidate ordering performs well for
the first fault but not necessarily for the second fault. The last. column shows that the
average length of diagnosis for two faults, 3.46, is less than twice of that for single faull.
1.93. This is consistent with the asymptotic analysis presented in the previous section.

3.4.6 Discussion

We have presented a model-based diagnostic reasoning procedure which uses measurement s
to locate faults, shorten candidate list and terminate a diagnosis. Probing is not the only
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Figure 3.4.2: Logical diagram of a 4-bit comparator
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way to obtain additional information. Board swapping, which is commonly used by human
technician, can also be used for those tasks.

Instead of probing the inputs and outputs of the first candidate, we can replace the board
containing it with a known good board. Then, we apply the same test to the primary inputs
and compare the output vector after the replacement with the old one. If the two vectors
are identical then the original board was not faulty and the diagnosis proceeds with the
remaining candidates which are not contained in the board. If they are different and the
new one is correct then the original board was faulty and the diagnosis can be terminated.
Otherwise, the original board was faulty and there are still unknown faults. The diagnosis
continues on the remaining candidates reordered according to the new symptom.

Applying a different test to the device is yet another approach. Shirley and Davis devel-
oped a method for generating tests to discriminate candidates using hierarchical models and
symptom information [Shirley and Davis, 1983]. It generalizes traditional path sensitiza-
tion by using hierarchical and symptom information to avoid or "tunnel under" candidates.
One restriction of their method is the single fault assumption. An extension of the method
by relaxing the single fault restriction is currently under investigation
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3.5 REPRESENTATION AND DIAGNOSIS OF SEQUENTIAL CIRCUITS

3.5.1 Introduction

Constraint based representation of structure and behavior has been traditionally used to
localize faults in combinational circuits [Davis, 1983]. This scheme was extended to repre-
sent sequential circuits, with the use of layers of temporal granularity and a vocabulary of
signals appropriate to the circuit [Hamscher and Davis, 1984]. Expectation violation has
been used for candidate generation in combinational circuits. The same procedure, when
applied to sequential circuits, was found to be indiscriminate. Single stepping was sug-
gested as a divide and conquer strategy to localize faults in sequential circuits. Structural
detail was however proposed to make candidate generator discriminating [Hamscher and
Davis, 1984].

Here, we present the details of using structural detail to diagnose sequential devices.
We outline candidate generation based on electrical behavior, using fault characteristics
which conveniently express structural details. We detail representation and handling of
sequential circuits, its unique problems and theoretical / technical solutions. Further, we
sketch the diagnostic steps necessary for sequential devices, over and above those used for
combinational devices. Finally, we talk about assumptions, and how they should be relaxed
in a multiple-symptom case, so as to make diagnosis efficient and correct.

3.5.2 Representation of Sequential Circuits

Hierarchical representation of circuits aids proper focusing of diagnosis. It makes details
available on an as-necessary basis, so that there is neither glut nor dearth of information
during diagnosis. Therefore, the structure of circuits has been represented in layerc of
hierarchy.

Sequential circuits are admittedly more complex than combinational circuits because
they have an added time dimension. Their behavior may vary with time because of in-built
memory. To conveniently model sequential circuits, this time factor must be taken into
account. Therefore, we proceeded to propose a temporal hierarchy for sequential circuits.

The following algorithm lays the rules for temporal hierarchy among circuits. It starts
with the most basic blocks and builds layer by layer, up to the most complex circuits.

(1) Basic gates are represented at two levels: the gate delay level which is necessary
for analysis of faulty devices causing racing conditions in circuits; and at the input-output
relation level. This maybe truth-table or boolean expression. For most purposes the second
representation will be adequate. Moreover, since VMES does not deal with parametric
faults, the first representation has been ignored in the current VMES system.

(2) Flip-flops are represented at two levels: the clock period level and the overall be-
havior level. The overall level may be transition diagram. state table or just a function.
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(3) Any complex unit such as a chip, which is at the basic maintenance level is repre-
sented as in (1) or (2) depending on whether it is sequential or combinational.

(4) Complex modules such as boards are represented at two levels, if possible: at the
level lowest among the highest levels of representation of the immediate sub-modules; and
at the overall behavior level of the board.

The different levels of time representation chosen are however expressible as integral
multiples of the more basic levels. Also note that the two levels of representation suggested
may be the same for some devices. This scheme is applicable to most general cases of
synchronous circuits.

3.5.3 Handling Feedback in Sequential Circuits

Sequential circuits are made up of sequential and combinational components or subdevices.
These components interact closely to constitute the behavior of the whole circuit. By virtue
of this close interaction, subdevices of a sequential circuit are better addressed from the
perspective of the encompassing superdevice. As we will see along this section, this applies
to the representations of function and fault characteristics and handling of states of compo-
nents in a sequential circuit. The terms 'circuit' and 'superdevice' are used interchangeably
in the following discussion, as are the terms 'component' and 'subdevice'.

Sequential circuits have feedback, also termed memory. Memory is dealt with as the
state of the device. Output of a sequential device depends not only on the inputs but also
on its state. The state of a device is in turn, a function of its outputs in the previous clock
cycle. Hence, representation of a sequential component should provide for the storage of
the state of the device. This storage variable should be initialized at the beginning, and

re-assigned after every clock cycle.
Initialization of a circuit involves initializing all the sequential subdevices constituting

the circuit. Initialization of a component consists of setting its state variable(s) to a value.
This value is either a fixed number or a function of some inputs of the superdevice. Ini-
tialization routines for bubdevices are stored with the superdevice and are executed upon
entry into the superdevice.

Functions of sequential conponents are expressed at the lower level of temporal hier-
archy of the encompassing superdevice. For instance, if 8 bit adder is a subdevice in a
sequential multiplier, and the temporal hierarchy of the sequential multiplier consists of (1)
functional level : outl = inl * in2 and (2) clock cycle level, the function of tne 8 bit adder
is expressed per clock cycle. During simulation of the superdeVice, the functions of the
subdevices are executed in topological order as many times as the number of clock cycles

in the superdevice. We note that application of function in sequential components involves
states besides input and output ports. The value of state may be used as an input or the
state variable maybe treated as on output for the component function.

Due to the necessity of feedback, sequential circuits usually have closed loops in their
topology. However, to carry out simulation and reasoning step by step, (at the relevant
temporal unit) these loops must be severed appropriately to provide pseudo-input and
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pseudo-output ports. In other words, it is necessary to recognize the subdevice(s) that store

the state of the superdevice, and count the inputs and outputs of these subdevices as pseudo-

outputs and pseudo-inputs of the superdevice respectively. Loopbre.aks are the pseu0o-

inputs of the superdevice that carry the previous state of the superdevice for purposes of

function application. L 1,7rtak hsa 's are the subdevices whose outputs are the pseudo-
inputs of the superdevice. During simulation of the superdevice behavior, the following

steps are carried , ,t in order:

(1) The supc-aevice and its relevant sequentidi subdevices are initialized

(2) First tin. , around, starting with primary inputs of the superdevice and outputs of
the loopbreak-h-ids, functions of every subdevice is xecuted in topological order. (This

order may not ,; strict and may involve backtracki~ig) The topological order stops either

at primary outputs or after loopbreak-heads.

(3) On subseqii,_it rounds, one of two procrciares may be followed: If the superdevice

takes in a fresh set )f inputs on every round, p ocedure (2) is repeated. If however, the
superdevice works on oi.'- one set of inputs (i.: ., those taken in on the first round) procedure

(2) is carried out with tl.e out,, Ls -)f tf- su )devices connected to the primary inputs of
the superdevice substituting for the primary inputs of the superdevice. Step (3) is repeated

for as many times as the function of the superdevice warrants. For instance, for the 4 bit
sequential multiplier that takes 4 clock cycles to calculate the product, each of the above

rounds may be taken as one clock cycle. Thus, representation and simulation of sequential
circuits is considerably different from that of combinational circuits because of the inherent

feedback.

3.5.4 Candidate Generation based on Electrical Behavior

Sequential circuit diagnosis is admittedly hard. Therefore, every opportunity to narrow
down the list of possibly faulty devices should be exploited to the maximum. With this

goal in mind, we propose candidate geieration based on electrical behavior.

Candidate generation based on electrical behavior rests on the following observation:

Not all the inputs of a component will be responsible for some ,:.served wrong value at its
output; Further, many of these inputs that are not responsible for the faulty output can

be identified and eliminated from further consideration with full certainty. The knowledge.
which inputs are not responsible, or in other words, which inputs may be responsible for an

observed wrong value at the ou'put of a component, is expressed as the fault characteristics
of the component. For complex devices, i.e., superdevices, fault characteristics also capture

the list of subdevices that are possibly faulty, given some faulty values at the outputs of

the superdevices. In short, fault characteristics are indicators of culpability. For example.

fault characteristics for an AND gate are as follows. In the table, output values are mea-

sured, input values are expected and the last column specifies the inputs to suspect and to

propagate backwards from.
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AND gate Fault Characteristics
OUT1 INI IN2 SUSPECT / PROPAGATE

0 1 1 either inl or in2 or both
1 1 0 input supposed to be 0 in2

1 0 1 input supposed to be 0 inl
1 0 0 none if single fault assumption unless inputs tied

Following are some note-worthy observations about fault characteristics:

(1) Knowledge of the value of the faulty output is necessary to apply fault characteristics.

The characteristics vary with the faulty value. Moreover, characteristics are particular to
the output of the component, and change from one output to another, unless the function
(and in cases, the internal structure) of the outputs are the same.

(2) Depending on the nature of the device, fault characteristics are helpful to varying
degrees. For example, for the AND gate, they are helpful in all cases except when both
inputs are 1. However, for the exclusive OR gate, as seen below, they are not of much help
except to point out that only one input could be wrong in any given case.

Ex-OR gate Fault Characteristics

OUT1 INl IN2 SUSPECT/ PROPAGATE
1 0 0 either inl-> 1 or in2-> 1
1 1 1 either inl ->0 or in2 ->0
0 0 1 either inl -> or in2 ->0
0 1 0 either inl ->0 or in2-> 1

(3) For all simple devices, fault characteristics could be pre-computed and pre-compiled.

With this information readily available, diagnosis can be sped up considerably.

(4) Since sequential circuits have closely interacting components, fault characteristics
can less apply to individual components than to complex superdevices. The fault charac-
teristics of a superdevice specify which subdevices to suspect, given some violation at the
outputs of the superdevice. Again, these characteristics are expressed at the higher level of
temporal representation of the superdevice. The lower level of representation is typically
utilized for candidate elimination. For example, for the 4 bit sequential multiplier, fault
characteristics are expressed in terms of the possible products that may appear at the out-
puts of the multiplier. Iowever, user is asked for measurements at the clock cycle level, so
that measured and computed values can be compared for candidate elimination.

(5) Fault Characteristics capture the internal structure of devices, especially for se-
quential devices. They introduce structural information into sequential circuit diagnosis.
thereby making the task more feasible. Therefore, not only the function but also the internal
structure of a component is required to generate fault characteristics for the component.

Fault characteristics can be easily formalized for only the simpler devices that reside at
the lowest level ,f otructural hierarchy. For more complex devices, it is hard. even infeasible

and unnecessary to have pre-computed fault characteristics. Instead. fault characteristics
for the device, for the observed faulty output, is computed on the run from the charac-
teristics of the subdevices, and as part of the diagnostic procedure. 'his procedure is as
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follows:

FOR each faulty output of the device

get all the devices connected to it

FOR each device connected to the output
get its fault characteristics
find all the inputs responsible for the faulty output of the device
recurse on each of the inputs

END-FOR
END-FOR

The fault characteristics so computed simply constitute the list of candidates that need
to be checked. The above procedure could be tuned to further narrow down this list by
incorporating forward reasoning in case of single fault assumption. In essence, this means
that when a new subdevice is added to the list, the algorithm reasons forward from the
subdevice towards the primary outputs of the superdevice. If this reasoning ends at any
good output of the superdevice, then the subdevice can be eliminated from the list right
away. This procedure is based on the observation that a bad subdevice output cannot
contribute to a good superdevice output when single fault assumption is made. This has

not been built into the system VMES yet.

Candidate generation based on electrical behavior is significantly different from candi-
date generation based on topology [Chen and Srihari, 1989. Li the topological procedure.
only the knowledge of whether an output is faulty or not suffices for candidate generation.
However, in the electrical procedure, we will also need the details as to how the output is
faulty (i.e., measured values). In diagnosis, it is reasonable to assume the availability of
this information. Topological procedure is heuristic, whereas electrical procedure is algo-
rithmic. The advantages and disadvantages of heuristics versus algorithms mostly apply to
the comparison of the two procedures as well. Whereas topological procedure works fine
without any knowledge of the functions of the subdevices in the circuit, electrical behavior
cannot do without the information. Since electrical procedure utilizes more information
about the circuit in question, it can be expected to perform at least as well and possibly
better than the topological procedure. However, the associated cost (in terms of extracting
fault behavior, and using electrical behavior for candidate generation) is also higher.

3.5.5 Diagnosis of Sequential Circuits

The following control structure of VMES was adequate to diagnose combinatiorial circuits:

REPEAT

Simulate the circuit at the next structural level
Single step once down the structural hierarchy
Generate candidates by constraint elimination
Eliminate candidates by asking for more information

UNTIL circuit diagnosed or basic level of structural hierarchy reached.
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However, Sequential circuits have temporal complexity in addition to the structural
complexity found in combinational circuits. Therefore, temporal hierarchy was proposed
earlier for sequential circuits. The control structure had to be suitably modified to handle
this hierarchy and exploit its advantages. The new control structure reads as follows:

REPEAT

Initialize the subdevices with states (at the next lower structural level)

Simulate the superdevice at its next lower temporal level, if possible.

Apply fault characteristics to narrow down the subdevice suspect-list

Single step once through temporal hierarchy (if possible);

Single step once through structural hierarchy;

Eliminate candidates by asking for more information;

UNTIL fault diagnosed or basic level of structural and temporal hierarchy reached.

In the above algorithm, note that: (1) Representation scheme and control strategy are
designed to be compatible.

(2) Stepping down the temporal hierarchy may not always be possible, because, a device
may have only one level of temporal representation.

(3) Fault Characteristics are applied at the superdevice level, and at the superdevice's
higher temporal level.

During candidate elimination, assuming complete visibility, measured values are asked
at the ports of the candidates. These measured values are compared with expected val-
ue, that are computed during the simulation stage of the device. Finally, the following
algorithm is used to diagnose / eliminate candidates from further consideration:

For the device at hand:

IF output not as expected

IF output cannot be explained by inputs

IF device has subdevices

generate suspects among subdevices
and recurse on each of them.

ELSE declare device to be faulty

ELSE declare device to be correct

ELSE declare device to be correct

For example, Suppose a 4 bit sequential multiplier outputs 49 on inputs 6 and 8. (see
Fig. 3.5.1) The algorithm simulates the multiplier, at its next lower structural and temporal
level, i.e., at subdevice level, for each clock cycle. Next, fault characteristics are applied on
the superdevice, i.e., the multiplier to narrow down the list of subdevice suspects. Now, the
algorithm steps down the structural hierarchy to the subdevice level (adder. 4 bit register.
driver etc.) and down the temporal hierarchy to clock cycles. The user is asked for the
values of the suspect subdevices during different clock cycles. These values are compared
with the values computed during simulation earlier, to come up with a diagnosis.
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Figure 3.5.1: 4 Bit Sequential Multiplier

3.5.6 Assumptions and their Relaxation

Assumptions are technical conveniences used to make diagnosis easier and faster at the
expense of completeness. Some of the common assumptions made during diagnosis are

(1) Single Fault Assumption

(2) Non-Canceling Fault Assumption
(3) Non-Aintermittent Fault Assumption
However, in real-life diagnosis, these assumptions are simplistic. They could potentially

lead to failure of diagnosis and are hence undesirable. Therefore, assumptions are a matter
of trade-off between efficiency and completeness. Ideally, the system VMES should carry
on with the assumptions until it is infeasible to do so. This way, the system will have best
of both worlds.

We outline a procedure below to relax single fault assumption when many sets of symp-
toms (input-output pairs) are available for diagnosis.

FOR every symptom DO
find the suspect-list
find the intersection of this list with
that generated through previous symptoms
IF intersection is null, relax single-fault assumption

END-FOR
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IF assumption still holds, use only the intersection set
ELSE use the union set.

Assuming complete state visibility allows us to take two more liberties:
(1) We can relax non-intermittent fault assumption. The inputs and outputs of all

subdevices are available during every clock cycle. Further, candidate elimination algorithm
outlined earlier checks if measured output is justified by measured inputs. If this check
yields false, irrespective of whether the fault is visible in other clock cycles, it is trapped.

(2) We can relax single fault assumption. Since all ports of all subdevices are measurable,
faults can be contained and detected by measurement alone. When the measurements of
a subdevice satisfy fault criteria of the candidate elimination algorithm, irrespective of
whether other subdevices are faulty, the current subdevice can be declared faulty.

It should be noted that the assumption of complete visibility is simplistic. Ideally, the
system VMES should be prepared to deal with situations where no values can be measured
off some device. It should be able to work with measured values from only a few of the
requested clock cycles. One solution would be to embed information about accessibility of
ports and devices so that the system steers the diagnosis towards asking only those values
that can be measured. Another would be to make the system flexible so that it can work
with partial / alternate data. These ideas have not yet been incorporated into the current
system.

3.5.7 Conclusion

We have proposed an algorithm to represent complex sequential circuits so as to facilitate
diagnosis. Having outlined candidate generation based on electrical behavior, we have
extended it to introduce structural information into sequential device diagnosis. With the
proposed control structure of structural and temporal single-stepping, we have attempted to
exploit the advantages of complete state visibility. Finally, we have produced an algorithm
to relax single-fault assumption towards making diagnosis efficient and correct.
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3.6 NEW TEST DEVICE

3.6.1 Introduction

Although this project is intended to develop a ;ystem that is adaptable to a wide range of
devices in the domain of digital circuits, it was essential to consider a device of reasonable
complexity to verify the theory and effectiveness of our diagnosis methodology. Upon
recommendation by RADC, a Heathkit Printer Buffer Board was selefcted as a test bed.

The following criteria were used to select this device:

" combinational circuitry

* sequential circuitry

" analog circuitry

" a variety of component types

* many logical components (> 50)

" complexity sufficient to subdivide into numerous levels of hierarchy

The printer buffer board was assembled locally. Since we built the printer buffer from
a kit we know more about its physical construction than we have about any of the other
test devices. Due to the fact that we actually ha;. the physical device, it was anticipated
that we can cause faults in the device ir. a more natural way. For instance, we can inject
faults by removing or "damaging" components in a number of ways. This is in contrast to
earlier situations where there was no physical device to check the diagnosis on, and faults
were created in the representation by software.

3.6.2 Physical Desceiption

Model SK-203 printer buffer is enclosed in a sheet metal housing with the front and rear
panels exposing the controls and fixtures. On the front panel are 11 pushbutton switches.
three 7-segment LED displays and an LED above the "Swap" pushbutton. On the rear
panel are a rocker switch, a power jack, two male DB 9 serial port connectors, and two
female DB 25 parallel port connectors. Also, there is an external transformer that plugs
into a 120 VAC wall receptacle and outputs 8 VAC, I ampere to a plug that mates with
the power jack on the rear panel.

Within the enclosure are two circuit boards connected by two 20-pin right angle plugs.
The smaller circuit board mounts all of the components that are visible in the front panel
of the enclosure. The main circuit board mounts the rest of the components of the printer
buffer. This includes a 64180 CMOS microprocessor, eight 64K -: 1 bit (yfnainic RAAMs, an

8K ROM, and many logic and decoder IC's. In addition to these digital components there
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If the unit is inoperative, check power supply connections;
If the display is random, IC's in Display section have been wrongly installed;
If display fails to indicate free memory, certain jumpers are wrong.
The current VMES has incorporated these rules in its representation in the form of

SNePS rules.
Though VMES can diagnose the printer buffer board at its intermediate and lowest levels

by means of its model-based reasoning capability, actual diagnosis has not been carried out.
The main limitation is the complexity in the representation of functional knowledge at the
intermediate level. The main effort at the intermediate level so far has been in identifying
the failure modes and the representation of functionality of the various modules at this
level. Some of the functional failures the VMES representation can handle are: CPU
failure, defective memory and port controller failure. We have analyzed the printer buffer
board and attempted to to acquire the functional knowledge of some of the modules at the
intermediate level. For example, consider the RAM Controller module consisting of chips
U115, U116, U117, U118, U119 and its associated circuitry. Its functionality can be defined
by first identifying the inputs and outputs. The inputs to this module are the Address and
the Select lines. Outputs are Read/Write control and other timing signals. The functional
knowledge of this module can be defined as: for a specified address input, a specific chip
select signal goes high and memory read or memory write is enabled. This knowledge can
be used to test the RAM controller module in the model-based diagnosis approach.

3.6.5 Conclusion

The printer buffer board has served as a good test bed for the VMES research. It has pro-
vided an opportunity to test our methodologies and effectiveness of our diagnosis approach.

It has revealed the difficulties of acquisition of functioial knowledge at intermediate lev-
els of representation and other limitations of migrating theory into practice. More work

is required for the acquisition and representation of functional knowledge in model-based
diagnosis of circuits of arbitrary complexity.
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3.7 A SCHEME FOR SHADOWING GENERAL KNOWLEDGE BY ITS
INSTANCES

This section describes new schemes for general AI reasoning systems focusing on the im-
provement of reasoning performance.

3.7.1 Introduction

The performance of an expert reasoning system is mainly dependent upon how it repre-
sents knowledge and how it controls reasoning. Control is needed to resolve knowledge
conflicts in which more than one rule is applicable in some problem solving situation. Most
expert systems tend to prefer rules of more specific features over rules of more general
features as a way of conflict resolution [Sauers, 1988]. This brings the issue of generality
in knowledge asking how the system distinguishes between more general and less gen-
eral knowledge? In rule-based systems, the level of generality or specificity of a rule is
determined by recognizing special case relationship between rules. A relative specificity
between rules is defined by McDermott and Forgy [McDermott and Forgy, 1978] : a rule
rl is more specific than another rule r2 if (1) the two rules are not equal, (2) ri has at
least as many antecedent clauses as r2, and (3) for each antecedent clause in r2, with
constant elements C 1 , ..- ,Cn, there exists a corresponding antecedent in ri, with constant
elements Ci, ... ,CI , such that {C1, -,Cn} is a subset of {C',-.- ,C'}. According to this
definition, a rule A(a,b) & B(a,b) = C(a,b) is treated as more specific than other rules like
A(a,b) =:; C(a,b), Vx {A(a,x) & B(a,x) =t C(a,x)}, or Vx,y {A(x,y) &, B(x,y) - C(x,y)}.
This definition helps us to capture some abstract sense of what is meant by more general
or less general in knowledge.

The concept of knowledge generality may be extended toward the depth of knowledge.
In other words, we now intend to classify knowledge in terms of how it qualitatively con-
tributes to solve problems. Some knowledge has the form of Observation =- Conclusion
which directly associates inputs with some actions, but does not necessarily provide a rea-
son for the relation between a pair [Chandrasekaran and Mittal, 1983. We refer this kind
of knowledge as shallow knowledge. In general, shallow knowledge has no underlying
representation of causality or basic physical principles rHart, 1982;, instead it. is just a
collection of heuristic information such as statistical intuition or past experience of hu-
man experts [Reiter, 1987]. Shallow knowledge is usually represented by IF-TttEN-like
production rules. A typical system which uses shallow knowledge is MYCIN Shortliffe.
1976]. MYCIN's knowledge base contains a collection of rules describing the relationships
between symptoms and disease hypotheses, without specifying the causal links between
them [Sembugamoorthy and Chandrasekaran, 1986;.

For instance, MYCIN's steroid rule 'Clancey, 1983 is represented as

IF (1) the infection which requires therapy is meningitis,

(2) only circumstantial evidence is available for this case,
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(3) the type of the infection is bacterial,

(4) the patient is receiving corticosteroids,

THEN there is evidence that the organism which might be causing

the infection are e.coli (.4), klebsiella-pneumoniae (.2),

or paeudomonas-aeruginosa (.1)

On the other hand, deep knowledge contains lower-level, causal, and functional infor-
mation using a qualitative model of the system [Yoon and Hammer, 1988]. There seems to
be no strict form for deep knowledge structure, but several alternatives of representing deep
knowledge can be summarized in [Chandrasekaran and Mittal, 1983] as : mathematical and
simulation models, fundamental physical laws, functional and structural models of a device,
causal networks, and sequences of cause effect rules which deduces consequences of events.
In medical applications, CASNET [Weiss et al., 1978] is an example system that is based
on causal network. A CASNET model consists of observations of a patient and disease
categories, which are also components of MYCIN, but it also maintains pathophysiological
states that are associated with observations. These states form a network of cause-effect
relationships, and patterns of states in the network are related to individual disease clas-
sifications. CASNET can explain more deeply the basis on which the final decisions are
made about possible diseases.

So far we have discussed various descriptions about the general and specific knowledge
distinction and also the deep and shallow knowledge distinction. While the former deals
with only the syntactic features by concentrating on the format of the knowledge, the
latter is a rather semantical interpretation with vast number of model-theoretic definitions.
We will mainly consider the general and specific knowledge distinction since it is easily

recognized by the system, but we also expect some of the deep and shallow knowledge
representations can be handled with a little modification.

It has been claimed that systems with deep or general knowledge can solve problems
of greater complexity than systems with specific knowledge can [Hart, 1982]. But that is
not the oniy requirement for any expert system. We sometimes give more priority to the
goodness of the answer, or the reasonable cost to get the answer, rather than the broadness
of solving power [Feigenbaum et al., 1971]. It is widely admitted that reasoning by specific
knowledge causes less system overload since several intermediate steps are omitted. As
a result, specific knowledge will significantly contribute to the good performance of the
system. While specificity is needed in a viewpoint of an expert system developer, generality

is also needed for a problem-solving researcher.

We propose a systematic way to satisfy both requirements by recognizing generality
relations in knowledge. Our approach is divided into 3 different issues : (1) Construction
of a multi-level knowledge base by integrating different kinds of knowledge at different
levels of generality, (2) Automatic migration of specific knowledge from general knowledge
during a reasoning process, and (3) Shadowing general knowledge to select the most specific
knowledge when several candidates are applicable.

A multi-level knowledge model is suggested to get benefits from both general knowledge
and domain-specific shallow knowledge. It is intended to give the system the power of

50



generaliz; U.ity as well as good performance. Mostly deep or general knowledge is domain-
independc: , which implies that solving a problem by deep knowledge will need some
additional steps of inference. For expert systems of real domains that require a large
number of rule activations, we can expect that domain independent knowledge leads to
serious performance degradation. Our goal is to use domain specific knowledge as far as
possible, but the problem is how to relate the general knowledge to its specific counterpart.

3.7.2 Automatic Migration of General to Specific Knowledge

A motivation for the idea of migration comes from the observation of the knowledge deriva-
tion mechanism in a deductive reasoning system. The main task of a deductive reasoning
system is to derive implicit knowledge from existing knowledge which are known to be true.
After derivation, deduced information will be asserted into the knowledge base. In addi-
tion to directly derivable knowledge, however, we may get extra information which could
be useful for the future reasoning.

To explain this, consider as an example a rule describing the characteristics of a tran-
sitive relation between two objects.

Rulel : VR {transitive(R) =: Vx,y,z {R(x,y) & R(y,z) R(xz)}}

Rulel reads: For any relation R which has the property of transitivity, if the relation R
holds between x and y, and holds between y and z, then the relation R also holds between
x and z. In order to show how the reasoning system automatically deduces new facts,
consider a knowledge base contains the following facts as well as Rulel.

Fact1 : transitive(supports).
Fact2 : supports(a,b).
Fact3 : supports(b,c).

Fact4 : supports (c,d) .

Now we want to infer supports(a,c) from this knowledge base. A natural deduction
derivation [Bibel, 1986] could generate a sequence of inferencing to make supports(a,c)
true :

Propl {transitive(supports)
Vx,y,z {supports(x,y) & supports(y,z) > supports(x,z)}}

from Rulel by Universal Instantiation
with a binding {supports/R}'

41
Prop2: Vx,y,z {supports(x,y) & supports(yz) =' supports(x,z)}

from Propl and Factl by Modus Ponens

4
Prop3 : {supports(a,b) & supports(b,c) =:- supports(a,c)}

'A binding has a form of {terml/varl, term2/var2, }
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from Prop2 by Universal Instantiation
with a binding {a/x, b/y, c/z}

Prop4: {supports(a,c)}
from Prop3, Fact2, and Fact3 by AND-introduction
and Modus Ponens

Note that Prop2 is a useful rule to keep around, and we call it Rule2.

Rule2: Vx,y,z {supports(x,y) & supports(y,z) =:' supports(x,z)}

Although initially not requested, the derivation of Rule2 can be justified according to
the cognitive aspect of human reasoning. This means that since the relation supports

becomes known to be transitive in this reaoning, from now on any cognitive agent also
should know the nature of transitive relationship for supports by Rule2. Rule2 is an

instance of Rulel, and it is a more specific rule than Rulel by the specificity definition
introduced in Section 3.7.1. So after the derivatin, we could assert Rule2 into the knowledge
base as well as supports(a,c) . This is an example of a migration of general to specific
knowledge during the inference.

As shown by the format of Rulel, the concept of migration raises the importance of
a scheme of representing a nested rule, or an embedded rule. The specificity level of a

migrated rule will be determined by tlhe form of a more general rule represented by nesting
with some quantifiers. A semantic interpretation for the rule nesting might say that the

embedded definition delivers the intention of a rule builder about the usage of the rule. In

the aforementioned example, Rule2 is migrated during the derivation of supports(a,c)
according to the form of Rulel such that only R is universally quantified at the outmost
level. The intention of this rule can be interpreted as finding transitive relationships between
objects without having any particular objects in mind.

To explain this more, suppose Rulel is represented with different quantifier declarations
such as Rulel or Rulelb :

Rulela VR,x {transitive(R) => Vy,z {R(x,y) & R(yz) R(x,z)}}

Rulelb VR,x,y {transitive(R) & R(x,y) =- Vz R(y,z) R(x,z)}}

Rule2a and Rule2b might be migrated from Rule1, and Rulelb, respectively, in the deriva-

tion of supports(a,c) .

Rule2,, 'Vy,z {supports(a,y) & supports(y,z) - supports(a,z)}

Rule2b : Vz {supports(b,z) =. supports(a,z)}

These rules may also be useful for some particular applications in which the rule builder has
some specific objects in mind. or the knowledge base has many entries about the relationship

between particular objects. In this example, Rule2,1 focuses on the object a. and Ruie2.
on a and b. Note that Rule2, Rule2a, and Rule2b have different levels of generality. This
implies that different rules at different levels of generality can be migrated from the sam:

kind of rule with just different declarations of universal quantifiers.
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Factl: transitive(supports)

Fact2 supports(a,b)

Fact3 supports(b,c)

Fact4 supports(c,d)
Fact5 supports(a,c)

Rulel VR {transitive(R) = Vx,y,z IR(x,y) & R(y,z) =: R(x,z)}}
Rule2 Vx,y,z {supports(x,y) & supports(y,z) =:> supports(x,z)}

Figure 3.7.1: A knowledge base after the derivation of supports(a,c)

The mechanism of representing rule nesting is not emphasized in most automated rea-
soning systems, especially those systems based on resolution and unification. Although the
definition of a well-formed formula in the resolution-based system [Robinson, 1965! allows
embedded representations, those rules need to be translated into clause form in order to
apply the resolution strategy. During this process of translating embedded representations
into a flat structure such as clause form, the system loses the information about the rule
nesting.

For instance, in a resolution-based system, Rulel is translated into clause form by a
sequence of transformations :

transitive(R) V - holds(R,x,y) V - holds(R,y,z) V holds(R,x,z) 2

There is no difference among Rulel, Rulela, and Rulelb in this system since all three rules
are uniformly transformed to the same clause form. Some specific rules might be migrated
from this kind of system, but it has no ability to recognize which one is useful in a particular
reasoning. This observation leads to our claim that any system which intends to realize
the concept of migration is supposed to have a method of utilizing the characteristic of
embedded representations with quantifiers.

3.7.3 Shadowing General Knowledge by Its Instances

This section proposes a method of recognizing general and specific knowledge from a col-
lection of knowledge at various levels of generality. A scheme of shadowing is suggested
to select the most specific knowledge whenever several candidates are waiting for rule a(-
tivation. This is important to accomplish our goal of performance enhancement, and it
also makes it possible to apply only domain dependent rule'; as far as we can in the expert
system applications.

A motivation for the dea of shadowing is illustrated by reconsidering th.- transitive rela-
tion example. In Section 3.7.2, a natural deduction derivation is made to infer supports(a,c'
from a given kno~vledge base. After the derivation, the system experiences a knowledge aug-
mentation by asserting support s(ac) and Rule2 into t !,e k nokledge base. The expand ed

knowledge base is shown in Fig 3..1.
Now we want to derive another implicit fact supports (b , d) from this knowledge

'holds predicate is introduced to be consistent with a first-order 1,,glic
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base. A natural deduction for this problem is expected to be divided into two branches,
where one branch of the derivation starts from Rulel just like the previous derivation of
supports(a,c), and the other branch considers Rule2 first. A sequence of the deduction
in the first branch is described as :

Prop5: {transitive(supports) =e

Vx,y,z {supports(x,y) & supports(y,z) =' supports(x,z)}}
from Rulel by Universal Instantiation
with a binding {supports/R}

4
Prop6: Vx,y,z {supports(x,y) & supports(y,z) =: supports(x,z)}

from Prop5 and Fact1 by Modus Ponens

4
Prop7: {supports(b,c) & supports(c,d) =: supports(b,d)}

from Prop6 by Universal Instantiation
with a binding {b/x, c/y, d/z}

Prop8: {supports(b,d)}

from Prop7, Fact3, and Fact4 by AND-introduction
and Modus Ponens

The second deduction branch is described as

Prop9: {supports(b,c) & supports(c,d) -: supports(b,d)}
from Rule2 by Universal Instantiation
with a binding {b/x, c/y, d/z}

4
ProplO: {supports(b,d)}

from Prop9, Fact3, and Fact4 by AND-introduction
and Modus Ponens

Note that these two branches form a OR-branch such that supports(b,d) can be
derived by either one of two branches.

Several important points are worth mentioning from this observation. First of all, there
are some duplicate reasoning steps in the first branch using Rulel, compared with the
derivation of supports(a,c) . The similarity in the reasoning steps between these two
derivations is expected since two reasonings share the same constant supports, which
means they are in the same specific domain of supports. Another notable phenomenon is
in the second branch. The reasoning steps in this branch are reduced to 2 for the derivation
of supports(b,d), compared with 4 steps in the previous inference of supports(a,c) and
also in the first branch of supports (b,d) . Nothing goes better if we should be able to
activate only this second branch with cutting off the first branch. This is the main objective
of the shadowing -cheme.

The issue now is how to svstemat icallv relate more general knowledge to its instances.
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In order to take advantage of the previously acquired information, we need a way of mem-
orizing instances with respect to the corresponding general knowledge. At this point, a
method of saving the instances looks important. What we suggest to maintain is a list of
instance information for each rule. Each instance element in the list has at least two kinds
of information : the identification or the name of the instance, and a binding information
explaining how the instance is related to the rule.

More formally, an instance list for a rule G has the form of

(S,.)(Sa) v(S.,9On)

where n is the number of known instances of G, Si is the name of the Ith instance of G,
and oi represents a binding which unifies G and Si. In fact, S can be either a name, or a
pointer to the actual structure of the jth instance depending on particular implementations.
All lists are initially empty, and they are dynamically updated as the inference goes on. In
the transitive relation example, Rulel will be attached with an instance list after deriving
Prop2 such as ((Rule2, {supports/R})) .

Once we defined the method of storing instances, the next step is to formulate a way
of how to use them. Suppose a rule P has a list of known instances ((S,, 0'), (S., o'),
... , (S,,, o,,)) as defined above. Each binding in a known instance list oi contains only
free variable substitutions. Also assume fv-list = { fv,, fv.,. . . , fv, } is a list of free
variables of P. If, at some stage in a derivation, a proposition is deduced from P by universal
instantiation with a binding 0, we check the information in 0 with each o0- (1 < i < n)
before any further action is made. We can stop this branch of derivation if the condition
for shadowing is satisfied :

The rule P will be shadowed from the inference in the case that for any one of i(1
i < n), each substituted value for a free variable in ori is the same as the value for the same
variable in 0.

Determining whether a variable in 0 is free is done by checking the list membership for
fv-list. For instance, consider the first deduction branch of supports(b,d). When Prop5
is being made from Rulel, we have a situation in which

0 = {supports/R}

r-= {supports/R}

fv-list = {R}.

Since R is the only free variable of Rulel, and the bound values for R in € and o- are
the same, the shadowing condition is satisfied. At this point, we have enough evidence
that there is a more specific rule solely capable of deriving the given fact more efficiently.
Therefore, the first branch is blocked here and will not be proceeded any fufther.

The evaluation of the shadowing may be made in two wavs. Firstly. we can antici-
pate the shadowing makes the inference of supports(b,d) faster than in a non-shadowing
normal inference because it is clear that there is some reductions of reasoning steps with
the help of shadowing. Secondly, we hope that the improvement goes further so that the
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inference of supports(b,d) is even faster than the first inference of supports(a,c) if the
shadowing is adopted. Consequently, the system is now equipped with some intelligence
which automatically prunes some inference branches using the previous reasoning experi-
ence.

3.7.4 An Implementation : SNePS

SNePS is a knowledge representation/ reasoning system using an intentional semantic net-
work formalism [Shapiro, 1979]. SNePS is equipped with the ability to represent nested
rules in any levels of depth. The inference package of SNePS (SNIP) provides an object-
orient style of reasoning with assigning a process to each network node and maintaining
several registers to keep information necessary for the message passing between processes.
These registers are useful to save the instance information for shadowing.

Some peculiar features embodied in SNIP [Hull, 1986] are described in detail.

" SNIP treats inference as an activation of the network itself, rather than a compilation
of the network into a distinct active connection graph of processes. (The latter method
was adopted in old version of SNIP [Shapiro, 1977])

" There is a smaller set of processes and the types of processes are limited to the types
of nodes found in the network. Current version of SNIP has 3 types of processes, that
is a proposition node process, a rule node process, and a user process.

" Node processes are directly attached to the network nodes and the communications
are made through channels which are incoming and outgoing paths between pro-
cesses.

There are two types of messages which will be sent between node processes, reports and
requests. The reports message contains substitutions which represent instances which are
known to be true. The requests message contains desired substitutions, and the necessary
information to set up the channels through which reports of these instances can be sent.

Each node process has a set of registers which actually set up the channel for message
passing. Processes send and receive messages, and perform inferences based only on these
messages and the register information. Some of the registers are described here.

* known-instances - the collection of instances of this node which are known to be
true (both positive and negative)

" reports - the collection of reports received from other node processes
" requests - the collection of requests received from other node processes
* incoming-channels - the set of channels which will be feeding instance reports to

this node
* outgoing-channels - the set of channels to which this node is to report instances

that are discovered

A view of a message passing between two processes is shown in Figure 3.7.2.
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node process1 node process2

registers : registers :

known-instances request-message known-instances
reports reports
requests requests
incorning-channels incoming-channels
outgoing-channels report-message outgoing-channels

Figure 3.7.2: A message passing between SNIP processes

To illustrate how SNIP realize the mechanism of the migration and the shadowing, we
visit the transitive rule example again. Figure 3.7.3 (a) shows SNePSUL (SNePS User
Language) format to represent the knowledge used in the example, and SNePS internal
representation for these rules are described in Figure 3.7.3 (b). Here M represents a molec-
ular node, and ! symbol indicates that the node is asserted at the top level. P and V denote
a pattern node and a variable node, respectively [Shapiro, i979].

Actual reasoning for supports(a,c) is done by deduce command as shown in Fig-
ure 3.7.3 (a), which builds an unasserted node M6 and initiates a backward chaining to
derive M6 from the given knowledge base.

SNIP assigns a process to each SNePS node when it is involved during the inference. The
inference is performed solely by message passing between processes via channels. Channels
between two processes are created if their corresponding nodes are pattern matched or, in
case of rules, one node is unifiable with the consequent of the other node. Those channels
made by rules are used for implementing rule chaining. The deduction of supports(a,c)
in SNIP proceeds with the following steps.

Initially a user process is created and invokes process M63 . M6 sends a request to P4 by
setting the requests register of P4 to a substitution {supports/V1, a/V2, c/V4}. Since
P4 is the consequent of P5, P4 sends the request to P5 with {supports/Vl , a/V2, c/V4}.
P5 is a rule node, but no known instances exist. So P5 sends the request to its dominating
rule node Ml! with {supports/V1}, since V1 is the only free variable in P5. Ml! is an
asserted rule node. So M1! sends the request to its antecedent P1 with {supports/Vl}. P1
is matched with asserted proposition node M5!. P1 sends a report back to Mi! by setting
the reports register of Ml! to M5!, which then is sent back to PS. Now the free variable of
PS is bound to supports. A migration takes place at this point. A new rule M7!. which is
an instance of P5, is now asserted and the known-instances register of P5 is set to M7!.
The SNePS representation of tie newly instantiated rule M71 is shown below.

3 Processes are named after their corresponding S.NePS node names
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(assert forall $r
ant (build member *r class transitive)

cq (build forall ($x $y $z)
&ant ((build agent *x act *r object *y)

(build agent *y act *r object *z))
cq (build agent *x act *r object *z)))

(assert agent a act supports object b)
(assert agent b act supports object c)
(assert agent c act supports object d)
(assert member supports class transitive)
(deduce agent a act supports object c)

(a)

(Ml! (FORALL V1)
(ANT (P1 (MEMBER VI) (CLASS TRANSITIVE)))

(CQ (PS (FORALL V2 V3 V4)
(WANT (P2 (AGENT V2) (ACT V1) (OBJECT V3))

(P3 (AGENT V3) (ACT VI) (OBJECT V4)))
(CQ (P4 (AGENT V2) (ACT VI) (OBJECT V4))))))

(M2! (AGENT A) (ACT SUPPORTS) (OBJECT B))

(M3! (AGENT B) (ACT SUPPORTS) (OBJECT C))
(M4! (AGENT C) (ACT SUPPORTS) (OBJECT D))

(M5! (MEMBER SUPPORTS) (CLASS TRANSITIVE))
(M6 (AGENT A) (ACT SUPPORTS) (OBJECT C))

(b)

Figure 3.7.3: SNePS representations for the transitive relation example

58



FUSER

S 0 -- ' process

request

2 flf19  report

number: the order of chaining

4 1 P 1 17

M _! I P3
8 111j 12  15116

1 7

Figure 3.7.4: Process activation graph for supports(a,c)

(M7! (FORBALL V2 V3 V4)
(&ANT (P6 (AGENT V2) (ACT SUPPORTS) (OBJECT V3))

(P7 (AGENT V3) (ACT SUPPORTS) (OBJECT V4)))
(CQ (P8 (AGENT V2) (ACT SUPPORTS) (OBJECT V4))))

The exact content of the known-instances register of P5 will be

*KNOWN-INSTANCES* = ((((P5 . M7!) (V1 . SUPPORTS)) . SNIP::POS))

This says M7! is a positive instance of P5 with the binding of {supports/V1}. Notice that

the known-instances register has not only the name of the instance, but also the binding

information for free variables, which is necessary to verify the appropriate instances. After

migration, the inference goes on. P5 now sends a request to its antecedents, P2 and P3.

Since P2 and P3 are matched with M2! and M3!, respectively, reports are sent from P2
and P3 to P5. The report from P5 is sent back to P4, then to M6, and then to the user

process. Finally M6 is asserted as M6!. This process activation with messages passing

through channels is drawn in Figure 3.7.4.
Now suppose we want to infer supports(bd). SNePS builds M8 for this node and

starts a deduction.

(M8 (AGENT B) (ACT SUPPORTS) (OBJECT D))

The inference procedure becomes more complicated because the knowledge base now

has a migrated rule M7! as well as Ml!.

Initially a user process is created and invokes process M8. M8 is matched with both P4
and P8. So now the inference goes with two branches. While a request is sent from M8 to
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Figure 3.7.5: Process activation graph for supports(b,d)

P4 with a substitution {supports/V1, b/V2, d/V4}, M8 sends another request to P8 with
a different substitution {b/V2, d/V4}. Note that there is no substitution for V1 because
P8 has no such variable. Since P4 is the consequent of PS, P4 sends the request to process
P5 with {supports/V1, b/V2, d/V4}. P8 is also the consequent of M7!, so P8 sends the
request to M7! with {b/V2, d/V4}. These steps of requests sending can proceed in parallel.

When process P4 is sending a request to P5 with the substitution of {supports/V1,
b/V2, d/V4}, the requests register of P5 is set to :

*REQUESTS* = ((((P4 . M8) (V1 . SUPPORTS) (V4 . D) (V2 . B))

NIL P4 OPEN))

This structure tells that a request is sent from P4 via an open channel, and the requested
substitution is {supports/V1, b/V2, d/V4}. Now we check the shadowing condition men-
tioned iii Section 3.7.3. Since the process P5 has M7! as an instance in the known-
instances register, the next step is to verify that M7! is a useful instance in this particular
inference. The filtering process compares the binding information for free variables in both
registers. Eventually M71 is accepted as a proper instance because the substitution for free
variable V1 of P5 in the requests register is identical to that in the known-instances
register. Finally the activation of PS is blocked and the process M7! will be responsible for
the remaining inference. Process activation graph for this part is drawn in Figure 3.7.5.

We ran this example by SNIP on TI Explorer, and Table 3.7.1 shows the time com-
parisons for the execution of these rules. We compare the time between supports(a,c)
and supports(b,d), and also between the case that the shadowing is implemented and the
case without shadowing. The execution of supports(b,d) is (lone after the more specific
rule is generated by supports(a,c).
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unit seconds

without with
shadowing shadowing

supports (a,) 6.85 5.92
Ssupport s(b, d) 10.37 3.85

Table 3.7.1: Execution time comparisons for the transitive relation rule

w1
in 1

i MULT w4

ADDER Outi

in2 MULT w5

w8

ADDER w8 out2

MULT w6

Figure 3.7.6: A logical abstraction for M3A2

In this table, we will see the reduced time for supports(b,d) from 10.37 to 3.85 by
shadowing. Furthermore, we can also notice from the column named with shadowing that
the inference of supports(b,d) is even faster between supports(a,c) . This result tells
the real performance enhancement obtained by applying the scheme of shadowing.

3.7.5 An Application

Some diagnostic expert systems use a model of devices which is structural or functional
[Davis, 1984, Taie, 1987]. This approach has been used to find a faulty component in a
digital combinational circuit like M3A2. M3A2 is a simple circuit which has 3 multipliers
and 2 adders as shown in Figure 3.7.6.

The values of outputs are determined by inputs as

outl = inl * in2 + inl * in3
out2 = inl * in3 + in2 * in3

If the calculated values of outputs from given inputs are differnt from the measured values,
a violation is detected and the diagnosis starts to locate the faulty components. The
component could be a device or a wire, so we need diagnostic rules for such components.

An example we will show is a wire faulty detection for M3A2. There are several typs f
wires used in this circuit analysis. For instance, WIRE3 denotes a type of wires connected
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(M2! (FORALL V1)

(ANT (P1 (TYPE V) (TYPE-CLS WIRE)))

(CQ (P1l (FORALL V2 V3 V4)
(kANT (P2 (OBJECT V2) (TYPE V1))

(P3 (BI-PORT1 V2) (OBJECT V3))

(P4 (BI-PORT2 V2) (OBJECT V4)))
(CQ (P1O (FORALL VS V6)

(kANT (P6 (OBJECT V3)

(ATTR (PS (ATRB VS)

(ATRB-CLS N-VALUE)
(MODALITY LOGICAL))))

(P8 (OBJECT V4)

(ATTR (P7 (ATRE V6)
(ATRB-CLS M-VALUE)

(MODALITY LOGICAL)))))

(CQ (P9 (OBJECT V2) (TYPE VI)

(ATTR (MI (ATRB FAULTY)

(ATRB-CLS STATE)

(MODALITY LOGICAL))))))))))

Figure 3.7.7: SNePS representation for a wire-faulty detection rule

to three different components, and WIRE2 denotes a different type of wires connected to

two different components. In Figure 3.7.6, v4, w6, w7, and w8 fall under the category of

WIRE2, and wl, w2, v3, and v5 have WIRE3 property. We can build a diagnose rule for

detecting wire faults which generally applies to different types of wires.

VT { Wire-type(T) =
VO,P1,P2 { T(O) & Bi-port(O,P1,P2) & value(P1) $ value(P2)

= - faulty(O) }}

A SNePS representation for this rule is shown in Figure 3.7.7.

Suppose the first diagnose is for w7 of WIRE2. After migration, a specific rule is

generated for wires of type WIRE2 by replacing the free variable T of the general rule by

WIRE2.

VO,P1,P2 { Wire2(O) & Bi-port(O,P1,P2) & value(P1) $ value(P 2 )
== faulty(O) }

A SNePS representation for this migrated rule is shown in Figure 3.7.8.

This rule will shadow the original rule when another reasoning is performed for a wire
of the same type w8. Table 3.7.2 show the improvement of performance by comparing two

executions with or without shadowing.

Shadowing can be very effective especially for the applications which perform diagnosis

about sinilar components many tines. So far we illustrate the potential applicability of
the migration and the shadowing scheme to the real domain of applicatio.s. We would like
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(M1O! (FORALL V2 V3 V4)

(kANT (P2 (OBJECT V2) (TYPE WIRE2))

(P3 (BI-PORT1 V2) (OBJECT V3))

(P4 (BI-PORT2 V2) (OBJECT V4)))
(CQ (P1O (FORALL V5 V6)

(kANT (P6 (OBJECT V3)

(ATTR (PS (ATRB VS)

(ATRB-CLS M-VALUE)
(MODALITY LOGICAL))))

(P8 (OBJECT V4)

(ATTR (P7 (ATRB V6)
(ATRB-CLS M-VALUE)

(MODALITY LOGICAL)))))

(CQ (P9 (OBJECT V2) (TYPE WIRE2)

(ATTR (Ml (ATRB FAULTY)
(ATRB-CLS STATE)

(MODALITY LOGICAL))))))))

Figure 3.7.8: SNePS representation for a migrated wire-faulty rule

unit : seconds

without with
shadowing shadowing

faulty (w7) 39.18 38.93
faulty(w8) 43.22 27.10

Table 3.7.2: Execution time comparisons for wire faulty detection rule
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to explain in the next section the details about the implementation.

3.7.6 Conclusion

An automatic scheme is suggested for migrating specific knowledge and for shadowing

deep knowledge by its instances in an expert reasoning system. The motivation of this

work is to make the inference faster in a multi-level knowledge system in which various

kinds of knowledge are present. Migration and shadowing schemes enable the system to

accomplish the performance improvement as well as the system generalization. Most specific

knowledge is preferred to be selected among candidates at each stage of the inference.

Experimental results have shown that the inference speed is significantly improved with

shadowing method. Applicability to real complex domain should be further tested.

64



3.8 CONCLUSION

We have developed a prototype system called Versatile Maintenance Expert System (VMES)
to diagnose a variety of common electrical faults in electronic circuits. This system eas-
ily adapts to new devices. VMES consists of an integrated knowledge base and a device
independent inference engine. The inference engine is implemented in Semantic Network
Processing System (SNePS). The current version of VMES demonstrates its strength in
diagnosis by incorporating features such as Model-Based Reasoning, and communication
capabilities such as Natural Language and Graphics. It is also capable of diagnosing se-
quential components and systems of the complexity of a microcomputer.

3.8.1 Accomplishments

VMES, when it was first conceived in 1984, was designed as a rule-based system to advise
a maintenance technician on testing. However, it has been felt that versatility is extremely
important in an electronic circuit domain due to the fast rate at which new products are
introduced and their relatively short market life. VMES was built to be versatile across
a broad range of target devices in the circuit domain, across most of the possible faults.,
across different maintenance levels and across a variety of user interfaces. In order to
achieve such versatilities and to avoid the difficulties of empirical rule-based diagnosis,
VMES adopted a device model-based approach for diagnosis. VMES uses both structure
and functional descriptions of devices by modeling a device in the circuit domain as a
hierarchically arranged set of subparts from both logical and physical perspectives.

A major step in model-based fault diagnosis has been the generation of candidate sub-
modules which might be responsible for the observed symptom of malfunction. After the
candidates are determined, each submodule can then be examined in turn. It is useful to
be able to choose the most likely candidate to focus on first so that the faulty parts can
be located sooner. We have developed a systematic method for candidate ordering that
takes into account the structure of the device and the discrepancy in outputs between the
observed and expected values. More dynamic methods called candidate reordering and
elimination have been developed to overcome the limitations of initial candidate orderingz.
The new method modifies the candidate list as new information becomes available.

Sequential circuit diagnosis is another major aspect of VMES. In order to incorporate
sequential circuit diagnosis into VMES, the following steps have been taken: (I ) change in
device knowledge representation; (2) change in control structure and inclusion of assump-
tion relaxation; and (3) candidate generation based on electrical behavior. The change in
representation was essential for better organization of the device knowied-ge and the incor-
poration of sequential components. Diagnosis is based on logical hierarchy and the relation
between the logical and physical hierarchies has been deemphasized. This has enabled
arbitrary number of logical levels and has allowed arbitrary grain of focus for diagnosis.

A significant aspect of the later part of VMES research is the consideration of a complex
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commercial system as a test bed. Upon recommendation by RADC, a Heathkit Printer
Buffer Board was selected. This test device, assembled locally, consists of an eight-bit
microprocessor, two sets of serial and parallel ports, memory and latches. This circuit
has been analyzed and represented at various levels of abstraction. At the topmost level,
several rules concerning the failure of the device have been identified and incorporated
in the system. At the intermediate level, certain failure modes have been identified and
functional knowledge of some of the modules is obtained. A device of this kind helped spur
new ideas, extensions and refinements to the diagnosis theory.

During the course of this project, there has been continuing development of SNePS.
Migration of deep knowledge to shallow knowledge to enhance the speed of inference has
been researched during the later part of this project. Some of the possible extensions to
our research is discussed next.

3.8.2 Possible Extensions

The current VMES research has fulfilled our original objectives of efficient device knowl-
edge representation and versatile diagnosis. It has successfully diagnosed circuits of the
complexity of a four-bit magnitude comparator, a signal converter circuit (PCM4), and a
four-bit sequential multiplier. It has the capability of diagnosing circuits of the complex-
ity of a prin~er buffer board. However, VMES has some limitation in actual diagnosis of
circuits of arbitrary complexity. This is due to the fact that the acquisition and represen-
tation of device knowledge at arbitrary grain of abstraction is quite complex. Due to the
nonavailability of the design and simulation details of the printer buffer board, a complete
diagnosis of this circuit was not possible in the given time frame. A good understanding of
the design of a given circuit is required to perform diagnosis of complex circuits.

There are a number of ways by which the capabilities of VMES could be enhanced.
We discuss two categories of enhancements: (1) enhancements of the diagnosis theories
developed in this project, and (2) development of new theories to advance the concept of
diagnosis.

We first discuss category ( 1). The candidate generation theory developed in this research
is based on the assumption that only a single sympton is available. Our theory can be
refined to include multiple symptoms, test generation and circuits with feedback loops.

The reasoning niethodology in model-based diagnosis can be improved by incorporating
heuristic knowledge gained by technician's experience. The unification of procedural and
declarative knowledge in diagnosis is also a problem worthy of consideration. An example

for such a requirerment is the concept of boar,! swapping which requires both algorithmic
and heuristic knowledge.

Most cornnercial vsteims are sequential in nature. Therefore. diagnosing svst ems with
internal states iP an imporlant proble'm. Sequiential circuiits should be represented in ternt-

poral, functional an:d strlctural levels. More research is required to represent the functional
knowledge of sequential circtit s lnderstanding of systems from its design perspective and
utiliziig that knowledge for the representation ard diagnosis will e a new direction in
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model-based diagnosis.
Enhancements in category (2) are summarized below: Most of the candidate generation

techniques in the literature use a breadth-first or depth-first search to reduce the suspect
set. More efficient algorithms such as the divide and conquer techniques can be employed
to reduce the runtime diagnosis time. This is a new theory and needs investigation.

In today's systems diagnosability is often built into the systems. However, due to the
tradeoff between the diagnosability and hardware costs associated with it, systems have
very limited diagnosability. Model-based diagnosis in such systems can benefit from the
diagnosable and testable design details. Another future direction in this area is the utiliza-
tion of error logging information. Error logging details usually contain some information
about the internal states of the system which can be used in diagnosis.

The current version of VMES does not consider the diagnosis of analog circuits. Analog
circuit diagnosis will be different from digital circuit diagnosis since there is no clear-cut
hierarchy in analog circuits. However, due to the mix of analog and digital circuitry in
most of the systems, diagnosis of analog circuits will be a significant adv ince. Diagnosis of
intermittent faults is another area that needs further investigation.

The control structure of VMES can be generalized to include various schemes of di-
agnosis. For instance, a retry method, or direct isolation or intersection isolation can be
applied in a sequence to diagnose a circuit. 1his involves the development of direct and
intersection isolation techniques and its implementation.

VMES project has also seen several enhancements in SNePS, the system used to im-
plement VMES. Concepts such as migration of deep knowledge to shallow knowledge and
shadowing rules will be pursued further to speed up the inference mechanism of VMES.

One of the major goals of our research was to design a system that is versatile and
capable of diagnosing circuits of the complexity of a microcomputer and beyond. Although,
VMES in its current form has such a capability, more research is required to make \VMES
applicable to practical circuits of arbitrary complexity.
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Based on an Integrated Knowledge Base", IEEE Software V 3, N 2, P 48-49, March
1986.

Shapiro, S. C. and Srihari, S. N. and Tae, M. R. and Geller, J. "VMES: A Network-
Based Versatile Maintenance Expert System", Proc. of Ist International Conference
on Applications of Al to Engineering Problems P 925-936, Springer-Verlag, New York,
April 1986.

Taie, M. R. and Srihari, S. N. and Geller, J. and Shapiro, S. C. "Device Representation
Using Instantiation Rules and Structural Templates", Proc. of Canadian Al Con-
ference - 86 P 124-128, Presses de I'Universite du Quebec, Montreal, Canada, May
1986.

Shapiro, S. C. and Geller, J. "Knowledge Based Interfaces", AAAI-86 Workshop on In-
telligence in Interfaces Bob Neches, Tom Kaczmarek, P 31-36, August 14, 1986.

Taie, M. R. and Srihari, S. N. "Device Modeling for Fault Diagnosis", Proc. of the 2nd
Expert Systems in Government Symposium P 144-150, IEEE Computer Society Press,
Washington, D. C., October 1986.

Shapiro, S. C. "Symmetric Relations, Intensional Individuals, and Variable Binding",
Proceedings of the IEEE 74 P 1354-1363, October 1986.

Shapiro, S. C. and Geller, J. "Artificial Intelligence and Automated Design", Proc. of the
SUNY Buffalo Sympos.',m on CAD: The Computability of Design SUNY at Buffalo,
NY, December 1986.

Tale, M. R. and Geller, J. and Srihari, S. N. and Shapiro, S. C. "Knowledge Based
Modeling of Circuit Boards", Proc. of 1987 Annual Reliability and Maintainability
Symposium P 422-427, IEEE, Philadelphia, PA, January 1987.

Taie, M. R. and Srihari, S. N. "Modeling Connections for Circuit Diagnosis", Proc. of
The 3rd IEEE Conference on AI Applications P 81-86, IEEE Computer Society Press.
Orlande, FL, February 1987.

Srihari, S. N. "Applications of Expert Systems in Engineering", Erijincrzng Progrcss of
Western New York 6, 2 P 17-21, Faculty of Engineering and Applied Sciences. S'NY
at Buffalo, Winter-Spring 1987.
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Taie, M. R. "Representation of Device Knowledge for Versatile Fault Diagnosis", Tech-
nical Report 87-07 (Ph.D. Dissertation) Department of Computer Science, SUNY at
Buffalo, Buffalo, NY, May 1987.

Geller, A. J. and Taie, M. R. and Shapiro, S. C. and Srihari, S. N. "Device Representation
and Graphics Interfaces of VMES", Knowledge Based Expert Systems for Engineer-
ing: Classification, Education and Control (a paper collection from the Second Inter-
national Conference on Applications of Al in Engineering) D. Sriram, R.A. Adey, P
15-28, Computational Mechanics Publications, Boston, MA, August 1987.

Geller, J. and Shapiro, S. C. "Graphical Deep Knowledge for Intelligent Machine Draft-
ing", Proc. of the 10th International Joint Conference on Artificial Intelligence P
545-551, Morgan Kaufmann, Milan, Italy, August 1987.

Shapiro, S. C. and Geller, J. "Artificial Intelligence and Automated Design", Computability
of Design Yehuda E. Kalay, P 173-187, John Wiley & Sons, New York, NY, 1987.

Geller, J. "A Knowledge Representation Theory for Natural Language Graphics", Tech-
nical Report 88-15, (Ph.D. Dissertation) Department of Computer Science, SUNY at
Buffalo, Buffalo, N'U, July 1988.

Srihari, S. N. "Applications of Expert Systems in Engineering", the first chapter of
Knowledge-Based System Diagnosis, Supervision and Control S. G. Tzafestas, 1988.

Chen, J. S. and Srihari, S. N. "A Method for Ordering Candidate Submodules in Fault
Diagnosis", Technical Report TR-8736, Northeast Artificial Intelligence Consortium,
Syracuse, NY, 1988.

Srihari, S. N. and Xiang, Z. "Spatial Knowledge Representation", Journal of Pattern
Recognition and Artificial Intelligence, Vol. 3, No. 1, March 1989.

Chen, J-S. and Srihari, S.N. "Candidate Ordering and Elimination in Model-based Fault
Diagnosis", Proceedings of the Eleventh Annual International Joint Conference on
Artificial Intelligence Detroit, Michigan, August 20-25, 1989.
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3.11 TRIPS FUNDED BY RADC

Executive Committee Meeting and Principal Investigator Meeting, Rochester Institute of
Technology, April 14, 1989: Srihari, Shapiro.

NAIC Committee Meeting, Syracuse, NY, June 28, 1989: Shapiro.

Annual RADC Meeting, Minnowbrook, NY, August 14-17, 1989: Srihari, Shapiro, Upad-
hyaya, Choi.

Eleventh International Joint Conference on Artificial Intelligence (IJCAI), Detroit, Michi-
gan, August 20-25, 1989: Shapiro, Upadhyaya, Chen.
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3.12 STUDENTS DIRECTLY FUNDED BY NAIC, 1985-1989

(Names in bold are supported in 1989 by RADC at SUNY Buffalo)

James Geller, Ph.D. 2/85 - 5/88 Research Assistant
Academia, USA 6/88 - 7/88 Research Associate
Permanent Resident (applied after graduation)

Mingruey Taie, Ph.D. 2/85 - 5/87 Research Assistant
Industry, USA 5/87 - 8/87 Research Associate
Permanent Resident (applied after graduation)

Joao P. Martins, Ph.D. 5/85 - 7/85 Research Associate
Academia, Portugal Post Doc. work Visiting Asst. Professor
Foreign

Scott S. Campbell, MS 8/85 - 9/87 Research Assistant
American 9/87 - 8/89 Programmer/Analyst

Jiah-shing Chen, MS 7/87 - 8/89 Research Assistant
Foreign

Amruth Kumar N. 1/88 - 8/89 Research Assistant
Foreign

Joongmin Choi 8/88 - 8/89 Research Assistant
Foreign

Deepak Kumar, MS 8/87 - 8/89 Research Assistant
Foreign

Syed S. Ali, MS 8/87 - 8/89 Research Assistant
Canadian

Juergen Haas 1/89 - 8/89 Research Assistant
Foreign

Sudip Nag 8/88 - 7/89 Research Assistant
Permanent Resident

77



Byung S. Yoo, MS 7/88 - 10/88 Research Assistant
Permanent Resident
Industry, IBM

David B. Satnik 7/87 - 5/88 Research Assistant
American
Industry, Seattle, WA

Richard W. Wyatt 8/87 - 1/88 Research Assistant
Permanent Resident
Ph.D., Psychology
Student, SUNY at Buffalo

Keith E. Bettinger, MS 5/87 - 8/87 Research Assistant
American
Student, SUNY at Buffalo

Kwong Yiu Yim 1/86 - 5/86 Research Assistant
Foreign

Jennifer M. Suchin, MS 6/85 - 8/85 Project Aide (Graduate)
American
Industry, Pittsburgh, PA

RADC Supported Ph.D.'s in Progress

Kumar, Deepak
Planning in SNePS

Chen, Jiah-shing
Model-based Diagnosis Using Multiple Approaches

Choi, Joongmin
An Intelligent Reasoning System by Knowledge Migration and Shadowing

Kumar N., Amruth
Issues in Diagnosis: Sequential and Combinational
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3.13 DEPARTMENT STATISTICS: ARTIFICIAL INTELLIGENCE

YEAR AI Ph.D.'s Non-Al Ph.D.'s AI Master's Non-Al Master's

1989 (through June) None None 21 11
1988 5 None 23 12
1987 3 None 28 16
1986 1 2 24 7
1985 2 1 28 3
1984 None 2 27 9
1983 2 1
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3.14 PH.D. GRADUATES IN ARTIFICIAL INTELLIGENCE

(Names in bold were supported by RADC)

1988

James Geller Assistant Professor New Jersey Institute of Technology

Jonathan J. Hull Research Assistant Professor SUNY at Buffalo
Buffalo, NY

Ganapathy Krishnan Assistant Professor Stetson University
Deland, FL

Ching-Huei Wang Research Analyst Boeing Electronics Corp.
Seattle, WA

Zhigang Xiang Assistant Professor Dept. of Computer Science
Queen's College (CUNY)
New York, NY

1987

Michael J. Almeida Assistant Professor Penn State University
Dept. of Computer Science
Whitmore Lab
University Park, PA

George Sicherman AT&T Bell Labs
Middletown, NJ

Mingruey R. Tale AT&T Bell Labs
Middletown, NJ

1986

Ernesto Morgado Assistant Professor Dept. de Engenaria Mechanica
Instituto Superior Tenico
Lisbon, Portugal

1985

Radmilo M. Bozinovic GO Corporation
San Francisco, CA

Jeannette Neal Calspan Corporation
Cheektowaga, NY
Research (CUBRC)
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3.15 MASTER'S DEGREES FROM THE DEPARTMENT OF
COMPUTER SCIENCE (1984-1989)

(Names in bold were supported by RADC)

Artificial Intelligence (1989, through June)

Ansley, William Dobes, Zuzana Majkowski, Bruce
Banerjee, Sarbani Goldberg, Neal Nag, Sudip
Chaluplsky, Hans Gucwa, John R. Po, Cherng-Fong
Chang, Han Yi Jain, Naresh Kumar SinVia Tong
Cohen, Edward Lee, Chieng Tan, Wan
Colucci, Paul Lin, Yi Chang Wu, Li Shin
Crovela, Mark E. Lombardo, Karen Yen, Shyh-Guang

CS Other than Al (1989, through June)

Arora, Rajendra Grupka, Laurette Sherman, Paul J.
Chang, Tien Kingsbury, Linda A. Williams, Francine
Delgado, Diane M. Liu, Paul C-W Wu, W-C Jevons
Fenrich, Richard Menon, Rajeev

Artificial Intelligence (1988)

Bansal, Surendra Haller, Susan Soh, Jung
Benz, David Hardy, Michael J. Strohmeier, Nancy
Bettinger, Keith Hou, Chien-Long Swerdloff, Lucien
Biernat, Catherine Kornacki, Edmund Vecellio, Gary
Chang, Adam Chih-Yen Kuan, Chic Chau Wan, Tzu-Horng Tom
Danko, Paul Jr. Kumar, Deepak Williams, Francine
Debbins, Catherine Lew, Kurk Yoo, Byung
Govindaraju, Venugopal Lo, Ka-Chiu

CS Other than AI (1988)

Arora, Rajenda Duh, Ying Ying Lam, William
Azar, Chawki Hosangadi, Shrikant Mantharam, Mythili
Bahl, Vikram Lagona, Scott Sarraf, Elias
Desirazu, Shyam Lakshman, T.K. Wahl, Norman

83



Artificial Intelligence (1987)

Binkerhoff, Linda Gupta, Rakesh Schwartz, Margaret

Chan, Chung Man Jain, Hwejdar Siracusa, Thomas

Campbell, Scott Kim, Joong-Won So, Hon-Man

Chang, Cheng-Ping Kuo, Chung-Kuo Thomas, Timothy

Chen, Yung-Yuan Lang, Su-Jin Wang, Gretchen

Chun, Soon Ae Lee, Hui-Chung Wroblewski, Susan

DeVinney, George Li, Niacong Wu, Teng Yien
Dodson-Simmons, Onda Li, Peter Wu, Wei-Jye

Ehrlich, Karen Murty, Kurella
Feuerstien, Steven Schneck, Nelson

CS Other than AI (1987)

Bo> _ awrence Gunning, Mark Nimmagadda, Venkata

Chang, Cheng-Ping Hiroi, Toshiyuki Rajan, Dayanand
Cheng, Tony H-Y Jang, Yong Ho Shende, Anil
Chow, Lawrence Lively, Richard Subrahmanyam, Pratap

Gaur, Yogesh Mackey, Niloufer
Girod, Allison Miller, Susan

Artificial Intelligence (1986)

Bross, Neal Lu, Wuhsiung Shin, Kwang Un

Deutschlander, Kenneth Ma, Pu-Kao Shyong, Beth M-F

Hull, Richard MacFadden, Douglas Swaminathan, Puducode

Jayanthi, Sarma McConnell, Jeffery Ting, Hungtau

Kailar, Sudah Murphey-Shelton, Anne Wang, Fen-Cheng

Krishnaswamy, Latha Murray, Deborah Winkowski, Da-ie

Krishnaswamy, Vijaykumar Rastogi, Ajay Wood, Gabriel

Lee, Gin-Wha Sauciunac, Christine Yang, Ching-Yun

CS Other than Al (1986)

Bharadhwaj, Rajeev Ramshankar, J.V. Schwartz, Mary

Kim, Dongsoo Rosenblum, Leonard Vassallo, Mario

Martin, Dennis
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Artificial Intelligence (1985)

Allen, Kristen Nalnitz, Paul Pawlicki, Thadeus
Arora, Kulbir Kramarczyk (Kramer), Chrisopher Saks, Victor
Barback, Joseph Kuo, Chi-Kai Suchin, Jennifer
Baxter, William Li, Kuang Chieh Taie, Shwu-Fan
Chen, Li-Wha Lo, Mie-Ying Wang, Ching-Ying
Clark, Michael Lung, Hsi-Hao Howard Wang, Der-Yuk
Hise, Denise Min, Byoung Ho Wiebe, Janyce
Hu, Hai Hsu Niyogi, Debashish Yang, Jin-Tan David
I, Chih-Li Palumbo, Paul Yi, Iyungzoon
Isaac, Reeba M

CS Other than AI (1985)

Chi, Henjin F1, Jing-sheng Olin, David

Artificial Intelligence (1984)

Chang, Chung Konakanchi, Krishna Nemirov, Hinda
Ch, :, Kwei-Jen Kung, Peter F. Phillips, Gretchen
Choy, Chi Chung Leu, Fang Hsiung Rapaport, William J.
Das, Mangobinda Lin, Han-Hong Shlossman, Paul
Haefner, Michael Liu, Ming Shen, Chien-Chih
He, Hung Chyi Liu, Peter (Sai-Ming) Su, Suyuan C.
Hsu, An-Mei Lo, Yu Li Yang, Lien Jang
Jou, Chen-Jye Lung, Hsi-Hong Yao, Jo-Lan
Kellick, Diane Milich, Gregory Zayan, Ahme

CS Other than AI (1984)

Alsam, Javaid Izard, Thomas Oviedo, Enrique
He, Hung Chyi Klee, Karl Welte, Martha
Hung, Hing Kai Leung, Chun Wah Zachopoulos, George
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3.16 ARTIFICIAL INTELLIGENCE FACULTY

Stuart C. Shapiro Professor Knowledge Representation
Reasoning
NL Processing

Sargur N. Srihari Professor Knowledge-Based Systems

Computer Vision
Pattern Recognition

William J. Rapaport Associate Professor Knowledge Representation

Philosophical Foundations
NL Processing

Shoshana Hardt Assistant Professor Expert Systems
Qualitative Reasoning

David Sher Assistant Professor Computer Vision

Deborah K. W. Walters Assistant Professor Computer Vision

Richard Wildes Assistant Professor Computer Vision

Jonathan J. Hull Research Assistant Professor Computer Vision

.Jeannette G. Neal Research Assistant Professor intelligent Interfaces

Senior Scientist, Calspan NL Understanding

Expert Systems
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3.17 ARTIFICIAL INTELLIGENCE ADDITIONS TO THE
DEPARTMENT DURING THE PERIOD OF NAIC FUNDING

New Artificial Intelligence Faculty Appointed

Michael Leyton Coraputer Vision 8/86 - 8,/87
Assistant Professor

David Sher Computer Vision 8/87 - present
Assistant Professor

Richard Wildes Computer Vision 9/88 - present
Assistant Professor

Jeannette G. Neal Intelligent Interfaces 2/88 - present
Research Assistant Professor NL Understanding
Senior Scientist, Calspan Expert Systems

Jonathan J. Hull, Computer Vision 9/87 - present
Research Assistant Professor

New Artificial Intelligence Courses

CS 514 Vision
CS 666 Introduction to Image Analysis
CS 676 Knowledge Representation
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3.18 ONGOING ARTIFICIAL INTELLIGE ,E DISSERTATIONS

AI Students Past the Ph.D. Primary Area Examination
(Name in bold is currently supported by RADC)

Arora, Kulbir
Qualitative Reasoning about Physical Systems

Baxter, William
Multiresolution Edge Detection

Ehrlich, Iaren
Automatic Acquisition of Natural Language

Kumar, Deepak
Planning in SNePS

Lively, Richard
Texture Segmentation of Images

Niyogi, Debashish
A Knowledge-Bases Approach to Analyzing Logical Document Structure

Pawlbcki, Thaddeus F.
A Neural Network Approach to the Indexing Problems on Model-Based Computer
Vision Systems

Srihari, Rohini
Integration of Information from Visual & Linquistic Sources

Wiebe, Janyce M.
A Computational Theory of Perspective in Narrative

Yuhan, Albert Hanyong
Dynamic Computation of Reference Frames in Spatial Information Processing
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MISSION -
t~of

RilC

Rome Air Development Center

RADC plans and executes research, development, test and

selected acquisition programs in support of Command. Control,

Communications and Intelligence (C3I) activities. Technica! and

S engineering support within areas of competence is provided to

ESD Program Offices (POs) and other ESD elements to

perform effective acquisition of C3I systems. The areas of

technical competence include communications, command and

control, battle management information processing, surveillance ,

sensors, intelligence data collection and handling, solid state

J sciences, electromagnetics, and propagation, and electronic

relia bilitv/maintaina biltv and compatibility.
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