
AD-A234 881

RADC-TR-90-404, Vol 11 (of 18)
Final Technical Report
December 1990

4

DISCUSSING, USING, AND
RECOGNIZING PLANS

Northeast A,,tificial Intelligence Consortium (NAIC)

Stuart C. Shapiro and Beverly Woolf

AR O,_D FOR PULI/C RELEASE DISTRIBUTION UNLIMITED

This effort was funded partially by the Laboratory Director's fund.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)

and is releasable to the National iechnical Information Services (NTIS). At

NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-90)-404, Volume Ii (of 18) has been reviewed and is approved

for publication.

APPROVED: ' LJfA

ShARON !. WALTER
Project Engin-er

RAYMOND P. URTZ, JR.
Technical Director

Directorate of Command & Control

FOR THE COMYANDER:

RONALD RAPOSO

Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your

organization, please notify RADC (COES) Griffiss AFB NY 13441-5700.

This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or

notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE ' FOMB N~o. 70-08

0"k HomW StAu 12C A*Uw VA -43= "~ m "m Offca d M-mguwoo " &MU Plom Redincn Pmpa =O7O 2. VWarWrgit DC 212

1 AGENCY USE ONLY (Leave BtanIO 2. REPORT DATE 3a REPORT TYPE AND DATES COVERED

I December 1990 Final Sep 34 - Dec 89

4. 7.TE AND SUBTITLE 5, FUNDING NUMBERS
DISCUSSING, USING, AND REC0C-.IZING PLANS C - F30602-85-C-0008

PE - 62702F

a A~n-IO(S)PR - 5581
TA - 27

Stuart C. Shapiro and Beverly Woolf W - 13

__(See reverse)
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
Northeast Artificial Intelligence Consortium (NAIC) REPORT NUMBER
Science & Technology Center, Rm 2-296 N/AI 111 College Place, Syracuse University
Syracuse NY 13244-4100

9. POSO N.,3~?, j~~fN~k.W~S) AND ADDRESS(ES) 10.SPONSORING?,ONflORiNG
Rome Air Development Cznter (COES) AGENCY REPORT NUMBER
Griffiss AFB NTY 13441-5700 RAflC-TR-90-404, Vol I

(of IS)

11 .SUPPLEMENTARY NOTES (See reverse)
RADC Project Engineer: Sharon Walter /COES/ (315) 330-3577

This effort was funded partially by the Laborator Director's fund.
1 2a. DISTRIBUIION/AVALABII1Y STATEMENT I DIST9IBUTI ON CODE

Approved for public release; distribution unlimited.

a ,ABSTRACTM-2.,--
The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force
Systems Command, Rome Air Development Center, and the Office of Scientific Research.
Its purpose was to conduct pertinent research in artificial la~lli~ence and to
perform activities ancillary to this research. This report describes progress during
the existence of the NAIC on the technical research tasks undertaken at the member
universities. The topics covered in general are: versatile expert system for
equipment maintenance, distributed AI for communications system control, automatic
photointerpretation, time-oriented problem solving, speech understanding systems,
knowledge base maintenance, hardware architectures for very large systems, knowledge-
based reasoning and planning, and a knowledge acquisition, assistance, and explanation
system.

The specific topic for this volume is the recognition of plans expressed in natural

language, followed by their discussion and use.

14SU6JECTTERMI8 Artificial Intelligence, User Interfaces, iI1PNUMBE OFPAGES

Hypothetical Reasoning, Planning, Natural Language, Plan } 138

Recognition ~~CC
17. SECURITY C.LASSIFJCATICON 18. ECURITY CLASSFICATION 1 aSECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF T4I3 PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFE T

NSN 7540.2905= Stwo Farn 28 Irv 2-4M
'0 b ANSI Sta Z39., 0

Block 5 (Cont'd) Funding Numbers

PE - 62702F PE - 61102F PE - 61102F PE - 33126F PE - 61101F

R - 5581 PR - 2304 PR - 2304 PR - 2155 PR -LDFP
TA - 27 TA - J5 TA - J5 TA - 02 TA 27
WU - 23 W - 01 WU - 15 wu - 10 wU- 01

Block ii (Cont'd)

This effort was performed as a subcontract by the State University of

Massachusetts at Amherst to Syracuse University, Office of Sponsored Programs.

2 DISCUSSING, USING, AND RECOGNIZING PLANS

Report submitted by:

Stuart C. Shapiro (UB)
Beverly Woolf (UMASS)

Syed S. Ali (UB)

Scott Anderson (UMASS)

David R. Forster (UMASS)
Juergen Haas (UB)

Deepak Kumar (UB)

James Pustejovsky (Brandeis U.)
Penelope Sibun (UMASS)

Department of Computer Science
SUNY at Buffalo(UB)

226 Bell Hall
Buffalo, NY 14260

Computer and Information Science
Graduate Research Center

University of Massachusetts(UMASS)
Amherst, MA 01003

.j ,.

TABLE OF CONTENTS

2.1 INTRODUCTION 5
2 .1.1 O bjective s .. 5
2 .1.2 O verv iew .. 6

2.2 MOTIVATIONS UNDERLYING OUR REPRESENTATIONS 9

2. 1.1 M otivation for intensional representations of plans 9

2.3 INTENSIONAL REPRESENTATIONS 11
2.3,1 Planning is different from inference .. 11
2.3.2 The distinction between "acts" and "actions .. 12
2.3.3 Prim itive and Com plex actions .. 16
2.3.4 Pre - and post--conditions .. 17
2.3.5 Types of actions ... 18
2.3.5 M odeling of external effects of actions .. 19

2A THE PLANNING PARADIGM 21
2.4.1 The acting executive ... 21

2.5 SYNTAX AND SEMANTICS OF CONTROL ACTIONS 23

2.6 MENTAL ACTIONS 27

2.7 CONDITIONAL PLANS 29

2.8 NATURAL LANGUAGE PLAN INSTRUCTION 31

2.9 USING PLANS 33
2.9.1 The natural language front-end to a blockworld 33
2.9.2 A n annotated exam ple .. 36
2.9.3 D iscussing plans ... 44
2.9.5 Extending the blockw orld ... 44

2.10 PLAN RECOGNITION

2.11 TUTORING AS PLANNING 61

2.12 UNDERSTANDING SITUATIONS 65

2.13 IMPLEMENTATION OF THE TUTORING OBSERVATION
MODULE 71

2.14 USING SNePS AT UMASS 83

2.15 DISCUSSION AND FUTURE WORK 85

2.16 TRIPS FUNDED BY RADC 91

2.17 NLP PUBLICATIONS IN 1989 93

2.18 SUNY at BUFFALO STUDENTS DIRECTLY FUNDED
BY NAIC, 1985-1989 95

2.19 DEPARTMENT STATISTICS, SUNY at BUFFALO,
ARTIFICIAL INTELLIGENCE 97

2.20 PH.D. GRADUATES IN ARTIFICIAL INTELLIGENCE,
SUNY at BUFFALO 99

2.21 MASTER'S DEGREES FROM THE DEPARTMENT OF
COMPUTER SCIENCE, SUNY at BUFFALO, 1984-1989 101

2.22 ARTIFICIAL INTELLIGENCE FACULTY, SUNY at BUFFALO 105

2.23 ARTIFICIAL INTELLIGENCE ADDITIONS TO THE DEPARTMENT
DURING THE PERIOD OF NAIC FUNDING, SUNY at BUFFALO 107

2.24 ONGOING ARTIFICIAL INTELLIGENCE DISSERTATIONS,
SUNY at BUFFALO 109

2.25 BIBLIOGRAPHY 113

APPENDIX 2.A TOM GRAMMAR 115
2.A.1 Verbal Elements in the SNePS ATN ... 115
2.A.2 The ATN ... 117

APPENDIX 2.B NO-COST EXTENSION 131

4

2 DISCUSSING, USING AND RECOGNIZING PLANS

2.1 INTRODUCTION

This project, also known as the Natural Language Planning project, has been a joint
project of a research group at SUNY at Buffalo (UB), led by Dr. Stuart C. Shapiro, and a
research group at the University of Massachusetts at Amherst (UMass) led by Dr. Beverly
Woolf. The project was devoted to the investigation of a knowledge representation design
compatible with the intensional knowledge representation theory previously developed by
Dr. Shapiro and his co-workers and capable of providing a natural language interacting
system with the ability to discuss, use, and recognize plans. The UB group was responsible
for: the development, improvement, and maintenance of the knowledge representation,
reasoning, and natural language processing software to be used in the project; for developing
a representation of plans and associated concepts; and for developing basic techniques for
discussing plans in English, and for plan recognition. The UMass group was responsible
for analyzing the chosen domains, principly the domain of tutoring interactions, for testing
the developments of the Buffalo group by trying to use plans in comprehending natural
language paragraphs, and for suggesting changes to the representation of plans. With the
support of the NAIC and of Texas Instruments, both groups used TI Explorers to do their
work.

2.1.1 Objectives

The objectives of this project were to:

1. design a representation for plans and rules for reasoning about plans within an estab-

lished knowledge representation/reasoning (KRR) system; enhance the KRR system
so that it can act according to such plans;

2. write a grammar to direct an established natural language processing (NLP) system to
analyze English sentences about plans and represent the semantic/conceptual content
of the sentences in the representation designed for objective (1); the resulting NLP
system should be able to: accept sentences describing plans, and add the plans to
its "plan library"; answer questions about the plans in its plan library; accept sen-
tences describing the actions of others, and recognize when those actions constitute
the carrying out of a plan in its plan library.

The KRR system used was SNePS [24], and the NLP system to be modified for this pur-
pose was CASSIE [30]. The UB group was responsible for enhancing SNePS/CASSIE
according to the objectives listed above, using the Blocksworld as an initial develop-
ment/testing domain. The UMass group was responsible for testing the enhanced system
in the specific domain of tutoring.

5

2.1.2 Overview

This report describes in detail how the oblectives outlined above were met. We discuss
the design, implementation, and use of representations for plans to model a cognitive agent
whose behavior is driven by its beliefs, desires, and intentions. We will give the moti-
vations underlying our representations for plans, goals acts, actions, pre-conditions and
post-conditions. These representations are designed to satisfy constraints posed by the is-
sues involved in fulfilling the tasks mentioned above (natural language understanding, belief
representation, planning and problem solving, plan recognition, and text generation).

We built a system that reads a paragraph about a situation in some domain and then
demonstrates its understanding of the paragraph by answering questions about the situ-
ation. Two domains were of primary interest: rocket launching, because of its potential
usefulness in machine-scanning reports of rocket launches; and tutoring, because its com-
plexity would drive the research and demand greater competence of the implementation.
The first domain was eventually dropped because of the impossibility of getting realistic
but "laundered" data, though we feel confident that our system could be made to handle
the rocket launch domizdn in a relatively short time.

The tutoring domain fulfilled its purpose, because we had to stretch our understanding
of planning and goal-driven behavior, and we were confronted with texts that required new
techniques of Natural Langu.,c Processing (NLP). This report reviews our research into
Tutoring as Planning (Section 2.11), and our NLP techniques for Understanding Situations
(Section 2 12), Next, it gives an overview of our implemented program, which we call
TOM, for Tutoring Observation Module. Section 2.13 also covers our implementation of
the grammar, the rules in the knowledge base, and the focussing algorithm.

SNePS, the knowledge representation/reasoning system used for this project, and its as-
sociated Generalized A ugmented Transition Network (GATN) grammar interpreter/compiler
were implemented in Franz Lisp when this project started. Significant steps had been taken
to redesign and reimplement the software, now to be called SNePS-2, in Common Lisp. This
was crucial for cooperation between the UB and UMass groups, since both were to use Com-
mon Lisp on TI Explorer Lisp Machines. However, when the project started, much work
was left to be done.

During the course of the project, the UB group implemented enough of SNePS-2 to
be useful (The inference package is still not complete, but is already a superset of Horn
Clause logic.), redesigned and reimplemented major portions of it, wrote a usable manual.
and, with the help of a related group at the Technical University of Lisbon, included belief
revision as a standard feature of SNePS, now called SNePS-2.1.

The UMass group received a copy of SNePS-2.0 early in the course of the project and
contributed to its debugging and development. However, mid-way through the project,
they ceased to keep up with the UB revisions, and maintained their own copy of the system
in order to more expeditiously pursue their major research objectives.

We then discuss our experiences with using SNePS at a new site, our laboratory at the
University of Massachusetts (Section 2.14). Finally, we review our research conclusions and
point to directions for future research.

6

Overview of the system

Our work is proceeding by implementing, experimenting with, and revising a system called

SNACTor. SNACTor begins with an empty knowledge-base. In the role of informant, we
interact with SNACTor using English sentences about the domain, instructing SNACTor

about the various actions that it can perform, and how to solve problems in that domain.

The input sentences are analyzed using a domain-specific grammar, the results of which are

new beliefs in the knowledge-base. A natural language generation grammar takes the new
beliefs and expresses them back in English to indicate SNACTor's understanding to the
informant. Requests to perform some action are sent to an acting executive that may then

generate and execute a plan to fulfill the request. The informant may also ask questions
about plans and the way the system would solve various problems.

A Generalized ATN grammar [25] is used for analyzing input sentences and for generating

Engli ;h responses. SNACTor currently operates in a Blocksworld domain.

7

2.2 MOTIVATIONS UNDERLYING OUR? REPRESENTATIONS

Our goals were to design and implement representations for plans to model a rationia]
cognitive agent whus- behavior is driven by its beliefs, desires, and intentions. \\e niow
give the motivations underlying our representations of plans, goals, acts, actions, pre
conditions and post-conditions. As mentioned before these representations are designed to

satisfy constraints posed by issues in natural language understanding, belief representation.
planning and problem solving, plan recognition, and text generation. A preliminary version
of this work appears as an extended abstract in '271. Since then, there have been changes
in the design of our representations and planning techniques used 28]. A detailed account
of the syntax, and semantics of our earlier representations can be found in !12'.

2.2.1 Motivation for intensional representations of plans

Georgeff (1987) mentions the importance of "considering planning systems as rational
agents that are endowed with the psychological attitudes of belief, desire, and intention"

and the problem of using appropriate semantics that give an intenszonal account of these
notions. SNePS is an intensional propositional semantic network system [3W that has been
used for cognitive modeling, belief representation and reasoning, belief revision, and natu-
ral language understanding. A basic principle of SNePS is the Uniqueness Principle-tha.
there be a one-to-one mapping between nodes of the semantic network and concepts (men-
tal objects) about which information may be stored in the network. These :oncepts are

not limited to objects in the real world, but may be various ways of thinking about a single
real world object, such as The Morning Star vs. The Evening Star vs. VCnus. They may be
abstract objects like properties, propositions, Truth, Beauty, fictional objects, and impos-
sible objects. They may include specific propositions as well as general propositions, and
even rules. Any concept represented in the network may be the object of propositions rep-
resented in the network giving properties of, or beliefs about it. For example, propositions
may be the objects of explicit belief (or disbelief) propositions. Rules are propositions
with the additional property that SNIP, the SNePS Inference Package, '17, 29, can use

them to drive reasoning to derive additional believed propositions from previous believed

propositions.
Plans are also mental objects. We can discuss plans with each other, reason about them.

formulate them, follow them, and recognize when others seem to be following them. An
Al system, using SNePS as its belief structure, should also be able to do these thins. Re-

quiring that the system be able to use a single plan representation for all these tasks puts
severe constraints on the design of the representation. For instance, understanding natu-
ral language dialogue involving plans requires building plan representations from natural
language input. In natural language, the explication of plans generally takes the form of a
sequence of rather simple rules (e.g., "If you see John, tell him I'm looking for him," "To
pick up a block, you must first clear it"). These rules can contain indefinite and detinite

9

noun phrases and anaphoric references corresponding to typed plan variables. The full
plan, including preconditions and effects of its compcnent acts, must be coy. tructed frojii
such a sequence of rules.

Once constructed, a plan must be usable as a specification for the behavior of the agent.
and must also be usable by the agent to understand other agents' actions. We are Ilot
treating plans as schedules of events for third parties (or multiple agents) [131,

10

2.3 INTENSIONAL REPRESENTATIONS

We now give an overview of our representations and the motivations that led to them. We
use -goal," "plan," "act," and "action" in particular ways, and distinguish among them.
A goal is a proposition in one of two roles--either the role within another proposition that
some plan is a plan for achieving that godl (making it true in the then current world), or
the role as the object of the act of achieving it.

2.3.1 Planning is different from inference

We view a plan as a structured individual mental concept, z.e., it is not a proposition or
rule that might have a belief status. A plan is a structure of acts. (Among which may be
the achieving of some goal or goals.) The structuring syntax for plans is a special syntax.

differing, in particular, from that used for structuring reasoning rules. This is important
both for semantic clarity and to allow a system to be implemented that can both reason and
act efficiently. For contrast, consider standard (non-concurrent) Prolog or some arbitrary
production rule system. Such a system relies on a semantic ambiguity between the logical
& and the procedural and then. For example,

(2.3.1) p(X) - q(X), r(X).

either means "For any X, p(X) is true if q(X) and r(X) are true" or it means "For any
X, to do p on X, first do q on X and then do r on X." Guaranteeing the proper ordering
of behavior :n the procedural interpretation is only possible by giving up the freedom to
reorder, for efficiency, the derivations of q(X) and r(X) in the logical interpretation. The
example is made more striking by appending

(2.3.2) q(Y) - s(Y), t(Y).

(2.3.3) r(Z) - s(Z), u(Z).

and considering the query
(2.3.4) ?- p(a).

Under the logical interpretation, it would be efficient for the system to try finding if s(a)
holds only once, instead of once when rule 2.3.2 is being used and once when rule 2.3.3
is being used. This is the way SNIP has been implemented (see [17]). However, under
the procedural interpretation, it may be perfectly reasonable to perform s(a) twice, so
the behavior that optimizes logical reasoning destroys procedural rule following. The fact
that SNIP is optimized in this way for reasoning, and so cannot use its reasoning rules as
procedural rules, was what originally motivated this project to design a planning/acting
component for SNePS.

Believing is a state of knowledge; acting is the process of changing one state into another.
!teasoning rules pass a truth or a hIlzcf status from antecedent to consequent, whereas acting

11

rules pass an intention status frm -erlier acts to later acts. A reasoning rule can be viewed
as a rule specifying an act-that of believing some previously non-believed proposition, but
the believe action is already included in the semantics of the propositional connective, and,
as pointed out above, there is no reason t6 believe a proposition more than once (unless
it's disbelieved in the interim). The distinction between "believing and acting" iD SNePS
was first outlined in [18].

2.3.2 The distinction between "acts" and "actions"

Lifschitz (1987) attempts to give a semantics of STRIPS by viewing STRIPS as a form
of logic and STRIPS operators as rules of inference in this logic. For us, an act is a
structured individual mental concept of something that can be performed by various actors
at various times. This is important for plan recognition-we must be able to recognize
that another agcnt is performing the same act that, if we were performing it, we would
be in the midst of carrying out one of a certain number of pians. By the Uniqueness
Principle, a single act must be represented by a single SNePS node, even if there are several
different structures representing propositions that several different actors performed that
act at different times. This argues for a representation of propositions more like that of
Almeida [2], rather than like more traditional case-based or frame-based representations.
In what we are calling "more traditional representations", there is a structure representing
the proposition with slots or arcs to the actor, the action, the object, etc. For example, to
represent the proposition,

(sl) John walked to the store.

there would be four representational symbols, one for John, one for walking (or PTRANS-
ing), one for the store, and one for the proposition itself, and the first three would be
connected with the fourth in nearly similar ways at similar distances (measured by path
leagth of arcs or slots). See Figure 2.3.1 for a SNePS representation based on Shapiro &
Rapaport (1987). Alneida, however, took seriously that one could follow (sl) by

(s2) Mary did too.

and understand by that that John and Mary performed the same act-that of walking to
the store. The representation for (sl) would have to introduce a fifth symbol, for walking
to the store, which would be connected to the representation of the proposition at the same
distance as the representation of John. Now, however, the symbols for walking and the
store would be further from the symbol for the proposition (see Figure 2.3.2). When (s2)
is processed, the symbol representing the proposition that Mary walked to the store would
be connected to the same symbol for walking to the store used for (sl) (node M7 in Figure
2.3.3). This symbol represents what we are calling an act, and using it in the representation
of both propositions follows by the Uniqueness Principle from interpreting (sl) and (s2) as
saying that John and Mary performed the same act. Moreover, if the network contains the
representation of any plan that involves walking to the (same) store, that same act node

12

M64! M.14,

OBJECT AAM G ENT ACT vj TO CLAS
01 L LCT

Mt D

SNFPSIGINSENG WNDOW

Figure 2.3.1: A traditional representation of "John walked to the store" (ignoring tense).
Node BI represents John; node B2 represents the store; node m6! represents the proposition
that John walked to the store.

PROe E f .3:AF OBJET f " a o the,*%% AC trOBJET AGNT ATIONCLASS

Figure 2.3.2: A representation of "John walked to the store" based on Alineida (19S7).
Node M7 represents the act of walking to the store; node M8! represents the proposition
that John walked to the store.

13

'. S, INSENG W..r OV.

Figure 2.3.3: The network of Figure 2.3.2 with a representation of "Mary did too." added.
Node M11! represents the proposition that Mary performed the very same act (represented
by node M7) that John did.

would be used in the structure representing that plan (see Figure 2.3.4). Thus, John and
Mary are directly connected to a plan that they may be engaged in.

An action is that component of an act that is what is done to the object or objects. In
(sl) and (s2), the action is walking. Achieving some goal is an act whose action is achieving,
and whose object is the particular proposition that is serving as the goal. Unfortunately
for our remaining discussion, but consistently with what has gone before, one can only
perform something that is an act (an action on an appropriate object), so instead of saying
"performing an act whose action is x," we will say "performing the action z," and hope
the reader will note the distinction between acts and actions.

Our representation of an act is a node with an ACTION arc to a node that represents
the action, and OBJECT1, ... , OBJECTN arcs to the required objects of the action. Thus,
the general syntax' of an act is

Syntax 1: act ::= ACTION: action
OBJECTi: objectl

OBJECTN: objectN

t Specific actions might have their objects on differently labeled arcs. For example, in Figures 2.3.2-2.3.4
the WALK action uses a TO arc, and in Figure 2.3.4 the BUY and OBTAIN actions use OBJECT arcs.

14

L ~~ ~4 RJC1 / 17 .. \TOJ~r/ LOCr B .CT 'I ACTION

PROPIER.NL %AM1 AG _N AMTON AMON0

ACTIONi rSSL1NCE ~ OB

L/X ACT i

I1MEMBER ME-ABER

PROPRNME
LEX- (? "A s

SNEPS)GIFISFY%'G WIN-DOW

Figure 2.3.4: The network of Figure 2.3.3 with a representation of the proposition that a
plan for obtaining some book is to walk to the store and buy the book. Node M19! repre-
sents the proposition using a syntax to be introduced in Section 2.5; node M18 represents
a sequence of two acts, using a syntax to be introduced in Section 2.4; the first act in that
sequence, represented by node M7, is the very same act that John and Mary did.

15

Semantics 1: act is a structured individual node representing the act whose action is

action and objecti, ... , objectN are the objects of action. For example, the SNePSUL

(the SNePS User Language) command for building a node representing the act of

saying "FOO" is:

(build action say objectl FOO)

2.3.3 Primitive and Complex actions

Any behaving entity has a repertoire of primitive actions it is capable of performing. We

will say that an act whose action is primitive is a primitive act. That an action is primitive

is a belief held by SNACTor after we tell it. The belief is represented in the form of an

assertion saying that the action is a member of the class of primitive actions. This is similar
to the MEMBER-CLASS proposition used by CASSIE [301. For example, the SNePSUL

command for asserting that saying is a primitive action is

(assert member say class primitive)

Non-primitive acts, which we will term complex, can only be performed by decomposing

them into a structure of primitive acts, the syntax of which is the same procedural syntax
as used in plans. That some plan p is a plan for carrying out some complex act a, is a

proposition we can assert to SNACTor using the following representation:

Syn. 2: plan-act-proposition ::= ACT: a
PLAN: p

Sem. 2: plan-act-proposition is a proposition node that represents that p is a plan for
carrying out act a.

p is a structure of acts. The structuring syntax for plans is described in terms of control
actions which are described later. That some plan p is a plan for achieving some goal g is

also a proposition we can assert to SNACTor:

Syn. 3: plan-goal-proposition ::= GOAL: g
PLAN: p

Sem. 3: plan-goal-proposition is a proposition node that represents that p is a plan for

achieving goal g.

g is expressed as a domain specific proposition. Examples of these are given in a later

section (see 2.5).
When the time comes for the agent to perform a complex act, it must find a plan

that decomposes it. Using the above representations SNACTor may be told such plans.

SNACTor is also capable of doing classical planning in case it does not already know any
decompositions for a complex act. This is discussed later.

16

2.3.4 Pre- and post-conditions

The remaining notions we must consider are preconditions and effects (postconditions).
Whether we think of them as pre- and post-conditions of plans or of acts is irrelevant since
plans are kinds of acts. A pre-(post-)condition is just a proposition that must be (will be)
true or false before (after) an act is performed. But the proposition that a proposition p is
false is itself a proposition, so we can say that a pre-(post-)condition is a proposition that
must be (will be) tre before (after) an act is performed. (We will rely on SNeBR, the
SNePS Belief Revision System [16] to remove inconsistent beliefs after believing the effects
of an act.) We have thus reduced the storage of pre- and post-conditions to two simple
kinds of propositions:

Syn. 4: precondition-proposition ::= ACT: a
PRECONDITION: p

Sem. 4: precondition-proposition is a node that represents that the pre-condition of some
act a is the proposition p.

For example,

(assert forall $block
ant (build member *block class block)
cq (build act (build action pickup objectl *block)

precondition (build property clear object *block)))

is the SNePSUL command to assert that before picking up any block first make sure that
it is clear (i.e. there is nothing on top of it).

Syn. 5: postcondition-proposition ::= ACT: a
EFFECT: p

Sem. 5: postcondition-proposition is a node that represents that the post-condition of some
act a is the proposition p.

For example,

(assert forall $block

ant (build member *block class block)
cq (build act (build action pickup objecti *block)

effect (build property holding object *block)))

is the SNePSUL command to assert that after picking up any block, it is being held.
Thus, effects and preconditions of an act are represented in the same way as other beliefs

about other mental objectf.; we do not need a special data structure (or an operator for-
malism) for acts in which pre- and post-conditions are special fields. Such a representation
also enables us to assert context-dependent effects of actions [38]; i.e., the effects of doing
some action are determined by the context in which the action is performed. For example,

17

(assert forall ($block $support)
&ant ((build member *block class block)

(build member *support class support)
(build rel on argl *block arg2 *support))

cq (build act (build action pickup objectl *block)
effect (build property clear object *support)))

asserts that if a block is on some support then after you pick up the block the support is
clear. The scope of the context being referred to is the set of beliefs held by the system at
the time the action is about to be performed. Using rules like these, context-dependency is
guaranteed by ensuring that the effect is conditional on the antecedents being true before
the act is performed. This is a more natural way of modeling actions and avoids the need
for specifying multiple operators for doing the same action in different situations, which is
a major criticism of earlier planners [5]. In Section 2.6.4 we demonstrate this feature.

2.3.5 Types of actions

We discussed three kinds of acts: a primitive act is unstructured and is in the repertoire of
the agent; a complex act is unstructured-to perform it, the agent must find a plan for it; a
plan is a structured act-the structure determines how the agent performs the component
acts.

The structure of a plan can determine how the agent performs the component acts,
because the structure, itself, is a primitive action.

Primitive actions fall into three classes:

* external actions that affect the world;

o mental actions that affect the agent's beliefs;

* control actions that affect the agent's intentions.

External actions are domain specific actions like pickup, putdown etc. in the Blocksworld.
The two mental actions that we have are believing a proposition, and disbelieving a propo-
sition. Our repertoire of control actions includes sequencing, conditional, iterative, and
achieve actions. A sequencing action represents the agent's intention to perform its object
actions in a given sequence. The conditional and iterative actions are modeled after Dijk-
stra's guarded-if and guarded-loop commands respectively [3]. The achieve action deduces
plans for achieving some proposition and forms the intention of performing one of them.
The conditional and iterative control actions enable the specification of non-linear partial
plans. We can also have an explicit representation of non-linear plans using an appropri-
ate control action. We have also designed a control action that can be used for posting
constraints on plan variables (as in [38]).

18

2.3.6 Modeling external effects of actions

As mentioned above, external actions are domain specific actions that affect the outside
world. For example, if the agent has an arm and is asked to pick up a block, the arm
actually moves to the block, grasps it, and then lifts it up. Depending on the set of
interfaces provided to the agent (like an arm, a speech synthesizer, etc.) we need to be
able to carry out the action in the external world. This is done by writing Common Lisp
functions that access the external interface. For instance, we can model the external effects
of the 'say' action by driving a speech synthesizer or by simply printing the message on
the screen. The define-primaction function enables us to do this. Thus, to model saying
something by printing it on the screen, we will have

(define-prinmaction say (n)
"n is the node representing the act of saying. The node at the
end of objectl arc is printed. choose.ns and pathfrom are

SNePS interface functions to access parts of a structured node."
(format t " -A " (choose.ns (pathfrom 'objecti n))))

Thus when the agent executes the action represented by

(build action say objecti FOO)

the above code for say is executed, resulting in 'FOO' appearing on the screen. How an

action gcts scheduled to be executed is discussed in the next section. Section 2.9.1 has
some more examples of modeling primitive blocksworld actions.

19

2.4 THE PLANNING PARADIGM

Besides having a current set of beliefs about the world, the system also has beliefs about
plans for achieving goals, and about how complex actions can be decomposed into partial
plans. The overall architecture of the system is similar to that of the PRS system [71
The acting executive (called an interpreter or a reasoning mechanism in PRS) manipulates
these components. It maintains an acting queue (referred to as a process stack in PRS)
that contains all the scheduled actions to be performed as a part of some plan and so it
represents the system's intentions. The system can also form its own intentions in response
to changing beliefs. SNIP, the SNePS inference package is used for several tasks: to find
plans for complex tasks; as part of the achieve action, to find a plan to achieve some
goal; and also as the truth criterion (also called the question answering procedure, see
[4]). Hence, it is used as the plan decision procedure in our system. SNIP is implemented
on a simulated multi-processing system. In the future, we will be able to do hypothetical
reaoniz-g using SNeBR [15] for state-based plan projection. SNeBR is currently being used
as a Truth Maintenance System. This facilitates the implementation of mentalactions and
conditionalplans as discussed below.

2.4.1 The acting executive

We want the system to carry out plans, as well as to discuss them, reason about them, and
recognize them. Certainly, since the system is currently without eyes, hands, or mobility,
its repertoire of primitive actions is small, but, for now, as shown above, we can simulate
other actions by appropriate printed messages. SNACTor, the acting system is composed
of a queue of acts to be carried out, and an acting executive. The queue of acts represents
the system's intentions for carrying out the acts on the queue in that order. Intentions are
formed by either an explicit request from a user to do something, or by committing to a
plan that needs to be executed to fulfill a complex act or a goal. Explicit requests are made
using the perform command. For example,

(perform (build action say FO0))

is an explicit request to the system to say 'FOG'. The act is put on the act-queue and the
acting executive takes charge. Currently, the acting executive is the following loop:

21

while act-queue is not empty do
if the first-act on the act-queue has preconditions

and they are not currently satisfied

then insert the achieving of them on the front of the act-queue

else remove the first-act from the act-queue;
deduce effects of the first-act,

and insert the believing of them on the front

of the act-queue;

if the first-act is primitive
then perform it

else deduce plans for carrying out the first-act
(using SNIP and available rules),

and insert the act of doing one of them

on the front of the act-queue

end if

end if

end while

Notice that the effects of the act about to be performed are retrieved and scheduled to
be believed before the act is actually performed. This guarantees that proper effects of
the act are retrieved depending on the context that exists at that time. This flexibility

in dynamically determining the effects of acts is what enables us to avoid having multiple
operators for the same action.

When preconditions for an act exist and some of them are found not to be true, we
schedule the achieving of all of them on the queue. The intention to perform the act is
now pushed behind the intention to achieve these preconditions. Once all the preconditions
are achieved, and we are ready to perform the act, they are checked again (just in case
achieving some precondition renders another one false).

From the above loop, it can be seen that we are assuming that a plan will be found for
every complex act, and that every act will be successful.

22

2.5 SYNTAX AND SEMANTICS OF CONTROL ACTIONS

We are now ready to examine the syntax and operational semantics of our current set of
control actions.

Syntax 6: sequence ::= ACTION: SNSEQUENCE

OBJECT1: act1

OBJECT2: act2

This means that a sequence act is represented by a node with an ACTION arc to the node
SNSEQUENCE, an OBJECTI arc to an act node, and an OBJECT2 arc to another act node.

Semantics 6: act2 is inserted on the front of the act queue, and then actl is inserted in

front of it.

For example, a plan to get a block on a support is to pick it up and then put it down on

the support. This can be derived using the plan-goal-proposztion and snsequence as

(assert forall ($block $support)

&ant ((build member *block class block)

(build member *support class support))

cq (build plan (build action snsequence

objectl (build action pickup objectl *block)

object2 (build action putdown

objecti *block object2 *support))

goal (build rel on argl *block arg2 *support)))

Another example of a sequence is represented by node M18 in Figure 4. Since either or

both of actl and act2 can themselves be snsequence acts, we have a general structure for

plans of sequential actions.

Syntax 7: do-one ::= ACTION: DO-ONE
OBJECT 1 :{ acti}

This means that a do-one act is represented by a node with an ACTION arc to the node

DO-ONE, and OBJECT1 arcs to an arbitrary number of act nodes.

Semantics 7: Chooses one actz and puts it on the front of the act queue. As currently
implemented, the choice is arbitrary.

For example, an act of giving an arbitrary greeting by saying "HELLO" or "JAMBO" or

"G-DAY" can be expressed as

23

(build action do-one

objectl ((build action say objectl HELLO)

(build action say objectl JAMBO)

(build action say objectl G-DAY)))

Syntax 8: do-all ::= ACTION: DO-ALL

OBJECTI: {acti}

Semantics 8: Forms the intention of doing all the actz by placing them on the front of the
act queue in some unspecified order.

For example, an agent's "things-to-do-today" list can be represented using such an act as

(build action do-all

objectl ((build action buy object BOOK)
(build action pay object PHONE-BTLL)

(build action see object NIAGARA-FALLS)))

Syntax 9: conditional ::= ACTION: SNIF

OBJECTI: {CONDITION: propositionz

THEN: actil

This means that a conditional act is represented by a node with an ACTION arc to the node
SNIF, and OBJECT1 arcs to an arbitrary number of nodes, each with a CONDITION arc to a
proposition node and a THEN arc to an act node.

Semantics 9: If no proposition is true, does nothing. Otherwise, a do-one act whose
objects are all :he acti having their corresponding propositiont true is put on the front
of the act queue. (Based on Dijkstra's guarded if [3)

For example, an act of saying "HELLO" contingent upon having permission cart be ex-
pressed as

(build action snif

objectl (build condition (build have permission)

then (build action say objectl HELLO)))

Syntax 10: iteration ::= ACTION: SNITERATF

OBJECTI: {CONDITION: propositionz

TH EN: acti}

Semantics 10: If no proposition is true, does nothing. Otherwise, puts on the front of the
act queue a sequence whose OBJECTI is a do-one act whose objects are all the actz
having their corresponding proposflzonz true, and OBJECT2 is the iteratiom node itself.

(Based on [)ijkstra's guarded loop :31.)

24

For example, the act of repeatedly saying "HELLO" contingent upon having "hello-permiss"on "'

and saying "THERE" contingent upon having "there-permission" can be expressed as

(build action sniterate

objectl ((build condition (build have hello-permission)

then (build action snsequence

objectl (build action say objecti HELLO)
object2 (build action forget

objectl (build have hello-permission))))

(ouild condition (build have there-permission)

then (build action snsequence

objectl (build action say objectl THERE)
object2 (build action forget

objectl (build have there-permission))))))

Syntax 11: achieve ::= ACTION: ACHIEVE

OBJECTi: proposition

Semantics 11: If proposition is true, does nothing. Otherwise, deduces plans for achieving
proposition, chooses one of them, and puts it on the front of the act queue.

For example, in order to achieve a state in which BLOCKA is clear we'll have the act

(perform (build action achieve
objectl (build property clear object BLOCKA)))

Thus, we can write plans for achieving goals as well as plans for decomposing a complex
act. The domain normally determines the kinds of plans required (i.e., goal-based or act-

decompositi, .i based or both). However, as we will see, in the case of the blocksworld,
and possibly in other domains, it may become hard to distinguish between something that
characterizes a state and something that expresses an act. For example, "Clear BLOCKA"

could be interpreted as a command to perform the act of clearing BLOCKA or a goal to
achieve a state in which BLOCKA is clear. In any case, if required, we can model and use
both interpretations.

25

2.6 MENTAL ACTIONS

As mentioned earlier we are using SNeBR as a Truth Maintenance system underlying the
knowledge-base. Beliefs currently held by the system are maintained in a belief context.
The ATMS ensures consistency of beliefs at all times. Effects of acts lead to adding or
deleting of new beliefs. We use the SNeBR operations add - to - context and remove -
from - context to add or remove new beliefs as a consequence of performing some act.

The calls to these operations are used to model the two mental actions of believing and
disbelieving

add - to - context adds a belief to the hypothesis set of the context. Similarly remove -
from-context removes a belief from the hypothesis set of the context. SNeBR ensures that
all derived beliefs that used the removed hypothesis as an assumption in their derivation are
also automatically removed. This is especially useful in the implementation of conditional
plans.

27

2.7 CONDITIONAL PLANS

A conditional plan, such as

"If a block is on a support then a plan to achieve that the support is clear is
to pick up the block and then put the block on the table."

is represented in SNePS as a rule approximately like the Predicate Calculus rule

Vx, y[Block(x) A Support(y) A On(x, y) ::

GoalPlan(Clear(y), Sequence(Pickup(x), Put(x, Table)))].

In a situation in which block A is on block B, and the system must clear B, it will derive
and store the plan,

GoalPlan(Clear(B), Sequence(Pickup(A), Put(A, Table))),

which says that a plan to clear B is to pick up A and put it on the table.

Since this plan is stored, it would seem that it would be retrieved as a plan for clearing B
in some later situation when C, for example, is on B, and this would be wrong. However,
our system is implemented in SNePS-2.1, which includes the assumption-based SNePS
Belief Revision System [16]. The plan

GoalPlan(Clear(B), Sequence(Pickup(A), Put(A, Table))),

is derived based on the assumptions Block(A), Support(B), and On(A, B). As soon as A is
picked up, the assumption On(A, B) is removed from the current context, and the plan is
unavailable until A is put back on top of B. Thus, the representation of conditional plans
is correct in systems that include an appropriate belief revision mechanism.

29

2.8 NATURAL LANGUAGE PLAN INSTRUCTION

During the work described in this report, it became clear that natural language sentences
about planning could be classified into groups, with associated syntactic natural language
markers. In the current domain, Blocksworld, we classify the sentences as follows:

1. Domain description These types of sentences are simple declarative statements about
the state of the domain, e.g., "A is a block", "A is on the table".

2. Constraint description These types of sentences are statements about the constraints
on objects in the domain, (e.g., "If a block is on a support then the block is not on
another support") independent of a the agents capabilities.

3. Act/Plan description These types of sentences define the types of actions the agent
(SNACTor) is capable of performing, their associated preconditions and effects as well
as how they are composed to build complex plans.

4. Performative requests These types of sentences are simple imperative requests to
perform an action, e.g., "Pick up A".

Type (1) sentences generaly are simple copular clauses, or 'There-is' introductory sentences
(e.g., "There is a table"). Noun phrases are generally definite, with proper name reference
being the rule, rather than the exception. Type (4) sentences are simple imperative requests
whose object noun phrases may be definite or indefinite, e.g., ("Pile A on B on C", "Put
A on a block").

Sentences of type (2) and (3) are rule-like (similar to FOPL rules), in their structure
and use of variables. In our domain, constraint description sentences map directly to FOPL
rules; e.g., "If a block is on a support then the block is not on another support" becomes

Vx,y, z[(Block(x)A Block(y) A Block(z)A On(x,y)) => -lon(x, z)]'.

AcL/'Plan description sentences have less direct mapping, but in both the treatment of def-
inite/indefinite noun phrases is the same. In the context of a sentence of these types an
indefinite noun phrase introduces a new variable of the type associated with the common
noun of the noun phrase. Definite noun phrases refer back to explicitly introduced (via an
indefinite noun phrase) variables in the same sentence. The syntax of these types of sen-
tences is well marked (by words like "before", "after", "then") and is highly decomposable
into simpler clauses of types (1) and (4). For instance a plan to pile three blocks consists of
three repeated type (4) sentences (e.g., "put the first block on the table", "put the second
block on the first block", etc.) expressed in the appropriate order with explicit sequence
separators ("... and then ... "). Similarly, preconditions and effects have antecedent and

'The conjunct z t y is not needed in the antecedent of this rule oecause SNIP uses the Unique Variable
Binding Rule (UVBR) [26] which prevents x and y from bindipg tcQ the same term.

31

consequent clauses of type (1). In both type (2) and (3) sentences, the noun phrase posi-
tions associated with component clauses are generally variables, although definite reference
to objects in the domain ("the table") also occur.

In this domain, sentences about plans display a useful compositionality, in that more
complex types of sentences (describing more complex types of knowledge) can be built
from the simple clauses associated with describing a domain and performing acts, where
they differed was in the treatment of definite/indefinite noun phrases as referring to and
introducing variables, respectively.

32

2.9 USING PLANS

In this section we will demonstrate how to model actions and do planning in the domain
of a blocksworld. We will model a blocksworld where there is a robot arm that can do two
primitive actions (pickup, and put). In an earlier report [31] we used a model based on
[191 th t had ;our primitive actions (pickup, purdown, stack, and unstack). [31' contai:.s -
SNePSUL version of a blocksworld with two primitives. In this report we will demonstrate
the capabilities of our system through natural-language interactions. We will also show
how the model can easily be extended through natural language interactions.

2.9.1 The natural language front-end to a blocksworld

The natural language understanding component is implemented in a Generalized ATN
grammar and is used for analyzing sentences and for generating English responses. SN-
ACTor begins with an empty knowledge-base. In the role of informant, we interact with
SNACTor using English sentences about the domain, instructing SNACTor about the vari-
ous actions that it can do, and how to solve problems in that domain. The input sentences
are analyzed using a domain-specific grammar, the results of which are new beliefs in
the knowledge-base. A natural language generation grammar takes the new beliefs and ex-
presses them back in English to show SNACTor's understanding to the informant. Requests
to do some action are sent to an acting executive that may then generate and execute a
plan to fulfill the request. The informant may also ask questions about plans and the way
the system would solve various problems.

As mentioned above, our model of the blocksworld consists of some rectangular blocks
on a table. The blocks are identified by names (like A, B, C, etc.). Beliefs about the current
state of the blocksworld are held using the following predicates:

clear(x) x is clear (i.e., there is nothing on top of it).

on(x,y) x is on top of y.

held(x) x is currently being held.

These are represented in SNePS using the property-object proposition case-frames and the
rel-argl-arg2 proposition case frames.

Syntax. 10: property-object-prop ::= PROPERTY: property
OBJECT: object

Semantics. 10: property-object-prop is a proposition node representing the proposition
that object has property property.

33

This can be used to represent the held and clear predicates. For example, to assert that
block A is clear and block B is being held,' we have

(assert property clear object A)
(assert property held object B)

Syntax. 11: rel-argl-arg2-prop ::= REL: relation

ARGi: object1
ARG2: object2

Semantics. 11: rel-argl-arg2-prop is a proposition node representing that relation holds
between argl and arg2.

This can be used to represent the on predicate. For example, to assert that block C is on
top of block A, we have

(assert rel on argl C arg2 A)

Thus when we tell the system in English

C is a block. C is clear. C is on the table.
A is a block. A is clear. A is on C.

the sentences are analyzed by the natu-al language understanding system and the following
SNePSUL commands are executed to assert the beliefs expressed by the sentences

(ASSERT MEMBER (BUILD LEX C)
CLASS (BUILD LEX block))

(ASSERT PROPERTY (BUILD LEX clear)
OBJECT (BUILD LEX C))

(ASSERT REL (BUILD LEX on)
ARGI (BUILD LEX C)
ARG2 (BUILD LEX table))

(ASSERT MEMBER (BUILD LEX A)
CLASS (BUILD LEX block))

(ASSERT PROPERTY (BUILD LEX clear)
OBJECT (BUILD LEX A))

(ASSERT REL (BUILD LEX on)
ARGI (BUILD LEX A)
ARG2 (BUILD LEX C))

'the fact that A and B are blocks is asserted in the knowledge-base using the member-class proposition
(30]

34

The LEX arcs are used by the system to represent that the name of the property (or rel) is
expressed in English (i.e., lexically) as "clear" or "on" etc. Thus appropriate morphological
analyses and syntheses can be applied to them during understanding and generation. This
is discussed in more detail in [301.

The generation component then takes over and expresses the resulting propositions in
English, which forms the system's response to demonstrate its understanding of what was
said

I understand that C is a block.
I understand that C is clear.
I understand that C is on table.
I understand that A is a block.

I understand that A is clear.

I understand that A is on C.

Modeling primitive actions

We can ask the agent to perform the following primitive actions

pickup(x) This is an action specifying that the agent is to pick up x where x is some
block.

put(x,y) This action is a request to put x on y. x is some specified block and y is some
specified support (blocks and tables are supports).

The external interface to the blocksworld is simulated in the form of an appropriate mes-
sage. The system also creates a graphics window that graphically shows the state of the
blocksworld at any given instant. The primitive actions are appropriately interfaced so as
to simulate their external effects in the graphics window. The following Common Lisp code
specifies external effects of these actions:

(definne-pri---ction pickup (n)

(format t "-&Now doing: Pickup -A.-Y,"
(choose.ns (pathfrom '(objecti lex) (node n))))

(bw-pickup
(eval (node-na (choose.ns (pathfrom '(objectl lex) (node n)))))))

(define-primaction put (n)

(format t "&Now doing: Put -A on -A.-%,"

(if (eval '(sneps:isbase.n ,(choose.ns (pathfrom 'object2 n))))
(bw-putdown (eval (node-na blocki)) table)

(bw-putdown (eval (node-na blockl)) (eval (node-na block2)))))

35

2.9.2 An annotated example

We will now show how the system is instructed about a blocksworld. We begin by getting
into SNePS

> (sneps)

Welcome to SNePZ-:.1
Copyright 1984, 1988, 1989 by

Research Foundation of State University of Neu York
8/8/1989 23:52:55

At this point we will load SNACTor, the parser, the ATN grammar, the lexicon, and
define the required arcs and paths. Now, we are ready to get into the parser and start
telling the system about our blocksworld. We begin by informing it about the primitive
actions.

2

*(A(parse - 1))

ATN parser initialization...
Input sentences in normal English orthographic convention.
May go beyond a line by having a space followed by a <CR>
To exit parser, write -end.

There is a table. The table is a support. Blocks are supports.
I understand that B1 is a table.
I understand that a table is a support.

I understand that blocks are supports.

Picking up is a primitive action. Before picking up a block the block must be clear. After
picking up a block the block is not clear and the hlock is held. If a block is on a support
then after picking up the block the block is not on the support and the support is clear.
I understand that pickup is a primitive.
I understand that before performing pickuap on a block,
the block must be clear.
& uderstand that after performing pickup on a block,

the block is not clear.

I understand that after performing pickup on a block,
the block is held.

2 Sentences in italics are inputs by the user. The rest are all system responses

36

I understand that if a block is on a support then
after performing pickup on the block, the block is not on the support.
I understand that if a block is on a support then

after performing pickup on the block, the support is clear.

Putting is a primtiwv acticn. Before putting a block on a support the block must be held
and the support must be clear. Afier putting a block on a support the block is not held and
the block is clear and the block is on the support. After putting a block on another block the
latter block is not clear.
I understand that put is a primitive.
I understand that before performing put on a block and a support,
the block must be held.

I understand that before performing put on a block and a support,
the support must be clear.
I understand that after performing put on a block and a support,

the block is not held.

I understand that after performing put on a block and a support,
the block is clear.

I understand that after performing put on a block and a support,
the block is on the support.

I understand that after performing put on a block and another
block, the latter block is not clear.

At this point we have successfully told the system about the two primitive actions and
their preconditions and effects. We now tell it about some plans.

A plan to achieve that a block is held is to pick up the block.
I understand that a plan to achieve that a block is held is

by performing pickup on the block.

A plan to achieve that a block is on a support is to put the block on the support.
I understand that a plan to achieve that a block is on a support is
by performing put on the block and the support.

If a block is on a support then a plan to achieve that the support is clear is to pick up
the block and then put the block on the table.
I understand that if a block is on a support
then a plan to achieve that the support is clear is
by performing pickup on the block
and then performing put on the block and a table.

A plan to pile a block on another block on a third block is to put the third block on the

37

table and then put the second block on the third block and then put the first block on the
second block.
I understand that a plan for performing pile on a block
and another block and another block is
by performing put on the third block and a table
and then performing put on the second block and the third block

and then performing put on the first block and the second block.

Now the system knows plans for decomposing some complex acts (like piling) as well as
plans for achieving some goals. We are now ready to describe a state of blocks in the blocks
world to play with.

A is a block. B is a block. C is a block. C is clear. C is on the table. B is clear. B
is on the table. A is clear. A is on the table.
I understand that A is a block. I understand that B is a block.
I understand that C is a block. I understand that C is clear.
I understand that C is on a table. I understand that B is clear.
I understand that B is on a table. I understand that A is clear.
I understand that A is on a table.

We now ask it to do some simple things.

Pick up C.
I understand that you want me to perform pickup on C.
Now doing: Pickup C.
Disbelieve C is clear.
Believe C is held.
Believe a table is clear.
Disbelieve C is on a table.

Put C on A.
I understand that you want me to perform put on C and A.
Now doing: Put C on A.
Believe C is clear.
Disbelieve C is held.
Believe C is on A.
Disbelieve A is clear.

At this point the world looks as shown in Figure 2.9.1 We now ask it to pile A on B
on C. SNACTor also has a built-in trace facility that allows it to speak what it is currently
doing (i.e. decomposing complex acts, searching for preconditions, etc.). It shows the sys-
tem's current intentions and what it is about to do.

38

oldL

Blocks World JTRBLE

Figure 2.9.1: A state of the blocksworld.

Pile A on B on C.
I understand that you want me to perform pile on A and B and C.

SNACTor now goes into its acting executive which realizes that piling is a complex act
and it needs to be decomposed. This is where it uses beliefs acquired from our earlier dialog
and finds decompositions:

I intend to do
performing pile on A and B and C.

About to do
performing pile on A and B and C.

I deduced
a plan for performing pile on A and B and C is
by performing put on C and a table
and then performing put on B and C
and then performing put on A and B.

This forms the system's current set of intentions and it now sets out to fulfill them.

I intend to do
performing put on C and a table.
performing put on B and C.
performing put on A and B.

About to do
performing put on C and a table.

Before it performs any action it checks to see if there are any preconditions and if they are
satisfied.

39

The act performing put on C and a table.

has the following preconditions:

C is held.

a table is clear.

They are not satisfied.

Want to achieve C is held.

I deduced
a plan to achieve that C is held is by performing pickup on C.

I intend to do

performing pickup on C.

performing achieve on a table is clear.

performing put on C and a table.

performing put on B and C.

performing put on A and B.

About to do

performing pickup on C.

The act performing pickup on C,

has a precondition:C is clear.

It is satisfied.

Now doing: Pickup C.

Disbelieve C is on A.
Believe A is clear.

Disbelieve C is clear.

Believe C is held.
Want to achieve a table is clear.

Already Achieved.

I intend to do
performing put on C and a table.

performing put on B and C.

performing put on A and B.

About to do

performing put on C and a table.

The act performing put on C and a table.

40

has the following preconditions:

C is held.
a table is clear.

They are satisfied.

Now doing: Put C on table.
Believe C is clear.
Believe C is on a table.

Disbelieve C is held.

I intend to do
performing put on B and C.

performing put on A and B.

About to do
performing put on B and C.

The act performing put on B and C.
has the following preconditions:

C is clear.
B is held.
They are not satisfied.

Want to achieve C is clear.
Already Achieved.

Want to achieve B is held.

I deduced

a plan to achieve that B is held is by performing pickup on B.

I intend to do
performing pickup on B.
performing put on B and C.
performing put on A and B.

About to do
performing pickup on B.

The act performing pickup on B.

has a precondition:B is clear.
It is satisfied.

41

Now doing: Pickup B.

I already believe a table is clear.

Disbelieve B is clear.

Believe B is held.

Disbelieve B is)i d table

I intend r-- do

performing put on B and C.

performir- put on A and B.

About to do

performin;, put on B and C.

Tht, act perirming put on B and C.
has the following preconditions:

C is clear.

B is held,

They are satisfied.

Now doing: Put B on C.

Disbelieve B is held.

Believe B is on C.

Believe B is clear.

Disbelieve C is clear.

I intend to do

performing put on A and B.

About to do

performing put on A and B.

The act performing put on A and B.

has the following preconditions:

A is held.

B is clear.

They are not satisfied.

Want to achieve A is held.

I deduced

a plan to achieve that A is held is by performing pickup on A.

42

I intend to do
performing pickup on A.

performing achieve on B is clear.

performing put on A and B.

About to do
performing pickup on A.

The act performing pickup on A.

has a precondition:A is clear.
It is satisfied.

Now doing: Pickup A.

Believe A is held.
Disbelieve A is on a table.
I already believe a table is clear.

Disbelieve A is clear.

Want to achieve B is clear.

Already Achieved.

I intend to do
performing put on A and B.

About to do
perfc-ming put on A and B.

The act performing put on A and B.

has the following preconditions:

A is held.
B is clear.

They are satisfied.
Now doing: Put A on B.

Disbelieve A is held.

Believe A is on B.

Believe A is clear.
Disbelieve B is clear.

43

2.9.3 Discussing plans

We have seen how we can instruct SNACTor about planning in a domain and how we can

describe situations to it and subsequently ask it to do things by cing the plans it derives.

We can also ask questions about plans and the various beliefs that it holds. For example,

Is A on B?
Yes, A is on B.

Is A on C?
I really don't know if A is on C.

The answer to the second query above is inconclusive because there is no way for the

system to confirm or deny the queried fact. To be able to do so, we can instruct the system

about domain-specific rules in English. For example, to answer the above query conclu-

sively it needs the following rule:

If a block is on a support then the block is not on another support.

I understand that if a block is on a support

then the block is not on another support.

Is A on C?
No, A is not on C.

Similarly we can ask the system to answer questions involving plans. SNIP, the plan

decision procedure, is used to derive an appropriate plan and respond to the query. For

example,

How would you pile A on C on B?

I understand that a plan for performing pile on A and C and B is
by performing put on B and a table

and then performing put on C and B

and then performing put on A and C.

Notice that in this case a plan is derived but not executed. So far we have demonstrated
that the system is able to interact with the user about its beliefs, it can understand natural

language domain descriptions of domain-specific rules and plans and acts, it can use the
domain rules to answer queries about the domain, it can also use the acquired beliefs to

plan and act in that domain.

2.9.4 Extending the blocksworld

Assume that the system has just finished making a pile as above and a new block D has
been introduced and the system now has beliefs about it too (see Figure 2.9.2). Let us now
ask the system to

44

B

Blocks World ITA L

Figure 2.9.2: State of the blocksworld aiter piling A on B on C.

Put D on B.
I understand that you want me to perform put on D and B.

I intend to do
performing put on D and B.

About to do
performing put on D and B.

The act performing put on D and B.
has the following preconditions:

D is held.

B is clear.
They are not satisfied.

Want to achieve D is held.

I deduced
a plan to achieve that D is held is by performing pickup on D.

I intend to do
performing pickup on D.

performing achieve on B is clear.

performing put on D and B.

About to do
performing pickup on D.

45

The act performing pickup on D.
has a precondition:D is clear.

It is satisfied.

Now doing: Pickup D,

Disbelieve D is clear.
Believe D is held.

Disbelieve D is on a table.

I already believe a table is clear.

Want to achieve B is clear.

I deduced

a plan to achieve that B is clear is
by performing pickup on A and

then performing put on A and a table.

I intend to do
performing pickup on A.

performing put on A and a table.

performing put on D and B.

At this stage block D is being held and the system has formed the intention of picking
up A. Currently it has no knowledge of the restrictions on the number of arms it has
or, for that matter, it has no conception of a hand. Thus it will go on and fulfill its
intentions and end up holding more than one block at the same time. This is fine if we
allow the system to assume that there is no shortage of hands. However, in the graphics
version of the blocksworld we have provided only one arm. Hence our initial description of
the blocksworld was not complete with regards to the graphics world (which is where the
system is "acting"). Consequently the following incorrect sequence of actions are performed
and as shown in the Figure 2.9.3, when the arm goes on to pick up A, D is left hanging.

About to do
performing pickup on A.

The act performing pickup on A.

has a precondition:A is clear.
It is satisfied.

Now doing: Pickup A.

Believe A is held.

Disbelieve A is on B.
Believe B is clear.

Disbelieve A is clear.

46

Blocks World

Figure 2.9.3: D is left hanging because the system has no knowledge about the arm itself.

I intend to do
performing put on A and a table.
performing put on D and B.

About to do
performing put on A and a table.

The act performing put on A and a table.
has the following preconditions:
A is held.
a table is clear.

They are satisfied.

Now doing: Put A on table.
Disbelieve A is held.

Believe A is clear.
Believe A is on a table.

I intend to do
performing put on D and B.

About to do
performing put on D and B.

The act performing put on D and B.
has the following preconditions:
D is held.

47

B is clear.
They are satisfied.

Now doing: Put D on B.
Believe D is clear.

Disbelieve D is held.

Believe D is on B.

Disbelieve B is clear.

We can easily correct the above situation by completing the description of the blocksworld

by telling the system about the hand and additional information it needs about it. At this
point we tell the following to the system:

There is a hand. The hand is empty. Before picking up a block the hand must be empty.
After picking up a block the hand is not empty. After putting a block on a support the hand
is empty. If a block is held then a plan to achieve that the hand is empty is to put the block
on the table.
I understand that B2 is a hand. I understand that a hand is empty.
I understand that before performing pickup on a block,
a hand must be empty.
I understand that after performing pickup on a block,
a hand is not empty.
I understand that after performing put on a block and a support,

a hand is empty.
I understand that if a block is held then
a plan to achieve that a hand is empty is

by performing put on the block and a table.

Now that it knows about the hand and related knowledge, we can ask the system to
perform a similar task as above and see if it has learned the above paragraph.

Put A on B.

I understand that you want me to perform put on A and B.

I intend to do
performing put on A and B.

About to do
performing put on A and B.

The act performing put on A and B.

has the following preconditions:

A is held.

48

B is clear.
They are not satisfied.

Want to achieve A is held.

I deduced
a plan to achieve that A is held is by performing pickup on A.

I intend to do

performing pickup on A.
performing achieve on B is clear.

performing put on A and B.

About to do
performing pickup on A.

The act performing pickup on A.

has the following preconditions:

a hand is empty.

A is clear.
They are satisfied.

Now doing: Pickup A.

Believe A is held.
Disbelieve A is on a table.

Disbelieve a hand is empty.
I already believe a table is clear.

Disbelieve A is clear.

Want to achieve B is clear.

I deduced

a plan to achieve that B is clear is

by performing pickup on D and

then performing put on D and a table.

I intend to do
performing pickup on D.

performing put on D and a table.

performing put on A and B.

About to do

49

performing pickup on D.

We are now at a similar situation as above. The arm is holding A and it has formed an

intention to pick up D. However, it has learnt new information since then that it can now

use as shown below:

The act performing pickup on D.

has the following preconditions:

D is clear.
a hand is empty.
They are not satisfied.

Want to achieve D is clear.

Already Achieved.

Want to achieve a hand is empty.

I deduced
a plan to achieve that a hand is empty is

by performing put on A and a table.

I intend to do

performing put on A and a table.

performing pickup on D.

performing put on D and a table.

performing put on A and B.

About to do

performing put on A and a table.

The act performing put on A and a table.

has the following preconditions:

A is held.

a table is clear.

They are satisfied.

Now doing: Put A on table.
Disbelieve A is held.

Believe a hand is empty.

Believe A is clear.
Believe A is on a table.

I intend to do
performing pickup on D.

50

performing put on D and a table.
performing put on A and B.

About to do
performing pickup on D.

The act performing pickup on D.
has the following preconditions:

D is clear.
a hand is empty.
They are satisfied.

Now doing: Pickup D.

Disbelieve D is clear.
Believe D is held.

Disbelieve D is on B.
Disbelieve a hand is empty.

Believe B is clear.

I intend to do
performing put on D and a table.
performing put on A and B.

About to do
performing put on D and a table.

The act performing put on D and a table.
has the following preconditions:

D is held.
a table is clear.

They are satisfied.

Now doing: Put D on table.

Believe D is clear.
Disbelieve D is held.
Believe D is on a table.

Believe a hand is empty.

I intend to do
performing put on A and B.

About to do

51

performing put on A and B.

The act performing put on A and B.

has the following preconditions:

A is held.
B is clear.

They are not satisfied.

Want to achieve A is held.

I deduced

a plan to achieve that A is held is by performing pickup on A.

I intend to do
performing pickup on A.

performing achieve on B is clear.

performing put on A and B.

About to do
performing pickup on A.

The act performing pickup on A.

has the following preconditions:

a hand is empty.
A is clear.
They are satisfied.

Now doing: Pickup A.
Believe A is held.

Disbelieve A is on a table.

Disbelieve a hand is empty.

I already believe a table is clear.

Disbelieve A is clear.

Want to achieve B is clear.

Already Achieved.

I intend to do
performing put on A and B.

About to do
performing put on A and B.

52

The act performing put on A and B.

has Lhe following preconditions:

A is held.

B is clear.

They are satisfied.

Now doing: Put A on B.
Disbelieve A is held.

Believe A is on B.

Believe a hand is empty.
Believe A is clear.

Disbelieve B is clear.

53

2.10 PLAN RECOGNITION

Our representations for plans and acts also facilitate plan recognition. We have imple-
mented a system which allows the deduction of a set of plans some agent might be perform-
ing from information about the acts that agent has been performing. This plan recognition
system has mainly been applied to a simple version of the Blocksworld, but was also used
for the tutoring domain in order to demonstrate how domain knowledge can be used to
narrow the number of possible plans some agent might be engaged in.

In order to explore the advantages and disadvantages of using node based inference and
path based inference, corresponding rules were implemented and tested in the Blocksworld.
The plan recognition system which uses node based inference was able to deal with complex
acts and subplans, i.e., it can identify a plan even if the reported acts are only implicitly
represented in complex acts for which there are separate plan-act rules which contain the
reported acts explicitly. The problem with node based inference for plan recognition is
that it generates a lot of nodes in order to make the component relations explicit, and it
cannot deal with uninstantiated plan-rules due to the current implementation of quantified
variables.

Using nested entailments, a left recursive representation for plans, and a special represen-
tation for the result of a plan recognition process, it was possible to use mainly path-based
inference, which increases efficiency and avoids some of the problems related to the quan-
tification of variables in plan-rules. The plan recognition rules were tested successfully
for instantiated and uninstantiated plan-rules and for plan-rules with complex acts and
corresponding subplans.

Assuming the plan recognition system described in this paper is part of SNACTor's
mind, the plan reccgnition process can be described as follows: SNACTor is told that a
third agent is performing certain acts. Using its knowledge base of plan-act and plan-goal
propositions SNACTor identifies those plans which contain the reported acts in the correct
temporal order and concludes that the agent might perform the corresponding acts or might
try to achieve the corresponding goals.

To demonstrate the plan recognition process in SNePS consider the following plan-act
proposition: A plan for piling a block on another block on a third block is to first achieve
that the first block is on the table and then achieve that the second block is on the first
block and finally achieve that the third block is on the second block. This proposition is
represented by the following SNePS structure:

55

(assert
forall ($blockl $block2 $block3)

&ant ((build member *blockl class block)

(build member *block2 class block)

(build member *block3 class block))

cq (build

act (build action pile

objectl *block3

object2 *block2

object3 *blockl)

plan (build

action (build lex snsequence)

object2 (build action achieve
objecti (build rel (build lex on)

argI *block3

arg2 *block2))

objectl (build

action (build lex snsequence)

object2

(build action achieve
objectl (build rel (build lex on)

argi *block2

arg2 *blockl))

objectl

(build action achieve

object1

(build rel (build lex on)

argl *blockl

arg2 table))))))

Since acts whose action is achieve are complex acts in this example, there will be othe:
plan-act propositions which express the decomposition of those complex acts into primitive

acts. E.g.,

(assert

act (build action achieve

objecti (build rel (build lex on)

argl blockb

arg2 blockc))

plan (build action (build lex snsequence)

object2 (build action (build lex put)
objectl blockb

object2 blockc)

56

object1 (build action (build lex pickup)
objectl blockb)))

The system has knowledge of several deduction rules, which are used to recognize plans.
E.g., the following rule says: if an agent performs a reported act, and that act is a compo-
nent of a plan for some other act, then presumably the agent is performing the second act
as well:

(assert

forall ($agent $reported-act)

ant (build agent *agent

act *reported-act)
cq (build forall $planned-act

ant (build plan-component *reported-act

act *planned-act)

cq (build presumably (build agent *agent

act *planned-act) '))

where plan-component is a virtual arc defined as follows:

(define-path plan-component

(domain-restrict

((compose action lex) snsequence)
(or (compose plan (kstar object1) object2)

(compose plan (kstar objecti)))))

In order to deal with complex acts and subplans, however, more deduction rules are
necessary. E.g., the following rules says:

If an agent performs a reported act and if the reported act is a component of a complex
act and this complex act is component of a third act then the agent presumably performs
the third act:

(assert

forall ($agent $reported-act)

ant (build agent *agent

act *reported-act)

cq (build forall ($complex-act $planned-act)
&ant ((build plan-component *complex-act

act *planned-act)
(build plan-component *reported-act

act *complex-act))

cq (build presumably
(build agent *agent

act *planned-act))))

,57

Assuming that SNACTor is now told that agent John picks up block B, SNACTor can
use these deduction rules to answer questions about what acts John might be performing,

Here is the reported act:

(add agent john

act (build action (build lex pickup)
objecti blockb))

Now we can ask SNACTor what acts John is presumably performing:

(deduce presumably (build agent john

act $planned-act))

SNACTor reponds with the conclusion that John presumably is achieving that block B
is on block C and that John presumably is piling A on B on C or B on C on A:

(M40! (PRESUMABLY
(M39 (AGENT JOHN)

(ACT (M16 (ACTION ACHIEVE)
(OBJECTI (M15 (ARG1 BLOCKB)

(ARG2 BLOCKC)

(REL (M13 (LEX ON))))))))))

(M120' (PRESUMABLY (M119 (AGENT JOHN)
(ACT (M45 (ACTION PILE)

(OBJECT1 BLOCKA)
(OBJECT2 BLOCKB)

(OBJECT3 BLOCKC))))))

(M122! (PRESUMABLY (M121 (AGENT JOHN)

(ACT (M73 (ACTION PILE)

(OBJECT1 BLOCKB)
(OBJECT2 BLOCKC)

(OBJECT3 BLOCKA))))))

If an agent is reported to perform two or more acts in sequence the following deduction
rule is needed: if the agent performs two acts reported-actl and reported-act2 in sequence

and if the plan for a third act planned-act contains two acts complex-actl and complex-

act2, where complex-actl occurs before complex-act2, and if reported-actl is a component of

complex-actl and reported-act2 is a component of complex-act2, then the agent presumably
is performing the act planned-act. Here is the SNePS representation of this rule:

58

(assert
forall ($agent $reported-act! $reported-act2)

ant (build agent *agent

act (build action (build lex snsequence)

obj ectl *reported-actl

obj ect2 *reported-act2))
cq (build forall ($complex-actl $complex-act2 $planned-act)

&ant (build plan-component
(build action (build lex snsequence)

objectl *complex-actl
object2 *complex-act2)

act *Planned-act)
cq (build &ant ((build plan-component *reported-actl

act *complex-actl)
(build plan-component *reported-act2

act *complex-act2))
cq (build

presumably

(build agent *agent

act *planned-act)))))

Where objectl is defined as virtual arc as follows:

(define-path obj ectl

(or (kplus objecti)
(compose (kplus object1) object2)))

object2 does not need a path definition since plans are assumed to have strictly left
recursive representations.

Using the rules and definitions above, it is possible to recognize plans even if the reported
acts are not adjacent in the plans, z.e., other acts may occur between two reported acts.

59

2.11 TUTORING AS PLANNING

One of the original intents of this project was to use plans to understand tutoring para-
graphs. It was felt that Dr. Woolf's tutoring expertise, the extensive work at SUNY Buffalo
on SNePS, and the availability at UMass of a planning system, GRAPPLE [11], would pro-
vide many of the pieces necessary for putting together a system to read and understand
paragraphs describing tutoring sessions.

Our first several months on this project were spent in an effort to reconcile these three
formalisms. At that time, there was no working SNePS system, so we concentrated on
designing a way to use GRAPPLE's plans to understand tutoring paragraphs.' This effort
resulted in our learning several things, discussed in detail in the rest of this section.

" Reading a story about people using plans is not the same as watching people use plans
(or being told how to use plans). GRAPPLE was designed for the latter, but we are
working on the former.

" Natural language input contains information (for example, tense, clausal connectives,
discourse focussing clues) that requires a recognition mechanism designed to capture
and represent it.

" Tutoring is a complex human activity, not amenable to representation by traditional
planning methodologies. We felt, however, that of all the planning paradigms available,
one closer to that called "reactive planning" best captures the way in which a tutor
works, since after each action, the tutor typically monitors the response of the student
and may consult other aspects of the current context.

" Recognizing a tutor's goals, through either direct observation or reading paragraphs,
is not furthered by recognizing, for example, that she asked a question. Instead,
understanding depends heavily on rich knowledge of both tutoring strategies and the
subject matter being taught.

How GRAPPLE Might be Integrated into TOM

Plan-based Natural Language Understanding usually takes a story as "understood" if it
has matched a story with a known plan or script so that it can infer actions and subgoals
that were not explicitly mentioned in the text. We had wanted to use GRAPPLE to match
the events in the input paragraph with a known plan. Clearly, GRAPPLE would have been
most useful had it been able to narrow its set of hypotheses to a single plan, and allow us
to recover an "instantiated plan," one that shows the order and hierarchy of accomplished
subgoals and what subgoals were matched with what actions. Unfortunately, GRAPPLE

'It should be noted that the version of GRAPPLE we examined in 1987 is perhaps quite different from
the current system.

61

suffered two deficiencies in this regard: abandoned plans and erroneous hypotheses that
were never purged; and redundant plans, one for each successfully matched step in the plan.
Additionally, GRAPPLE did not keep track of the order in which subgoals were achieved;
for its purposes, it was merely sufficient to know that they all were.

For tutoring, we would need abstracted plans that represent either choice points or
loops or both. As an example of the former, we wanted an abstract plan to cover a topic
which includes questioning the student, and depending on the answer, teaching the topic
or moving on to something different. As an example of the latter, we wanted an abstract
plan for presenting (as in a lecture) a series of examples, without hardwiring the number
of examples into the plan.

We came to the conclusion that we would not be able to rely solely on GRAPPLE output
for our understanding task, but would also, in some sense, need to save the parse. "Saving
the parse" means that we would be holding on to more information from our processing
of the input paragraph than the GRAPPLE plan(s) and the obvious instantiations of plan
variables such as "Tom" for "student." In general, we would need to save information that
GRAPPLE had no interest in and would throw away. More specifically, we came up with
two independent reasons for saving the parse.

First is in the event that GRAPPLE cannot provide us with a single plan, and thus,
presumably, returns us a set of plans. We would still want to be able to answer questions
about what went on: we would want to be able to give a full description of the actions
mentioned, even if we could not characterize the strategies (plans) behind them. It would
be very difficult and tedious to try to recover this description from a bunch of partially
instantiated GRAPPLE plans.

Second, there are times when the paragraph will describe all the actions that are to be
matched by GRAPPLE, but in a different order from their occurrence. For example, in
our tutoring paragraph, the first few sentences could be restated thus:

Nancy asked Tom if an inanimate object exerts a force. Nancy pointed to a
book on the table. She asked if the table exerts an upward force on the book.
Tom said no to both questions.

The order of occurrence of events is essential to plan understanding, and GRAPPLE
itself has no way to reorder steps, because it is designed for "real time" plan recognition.
Therefore, we would need to reorder as necessary in our own implementation. Assuming
we would be feeding GRAPPLE information after processing each sentence, we would be
faced with the possibility of having to backtrack in order to correctly order the steps.
Alternatively, we could hold onto all the results of the parse, do a reordering pass, and
hand the results to GRAPPLE in the correct order.

The first option would allow us to work incrementally, but would become wasteful when
backtracking occurred. The second option avoids wasted work, but disallows the possibility
of using GRAPPLE to form any predictions about upcoming input, which could conceivably
help the parsing process.

We found neither of these options attractive, and this situation, in addition to GRAP-
PLE's own problems, persuaded us that GRAPPLE would be of limited benefit to our

62

project. We therefore decided not to use it and turned our energies toward finding a
better-suited planning f'rmalism.

Condition-Action Pairs

Our study of the tutoring paragraph convinced us that to understand it our system need rely
only minimally on plans. A tutor may incorporate overarching strategies into her tutoring,
such as "examples are good" and "present easier material before harder," but when she
decides what action to take next in teaching a student, she typically examines the current
context rather than consulting some tutoring schema. This context includes what she has
already taught, what she believes the student understands, what the student's most recent
response was, what material is yet available to teach on the topic (domain knowledge) , and
what tutoring strategies may apply for teaching it.

Domain knowledge of Physics, for example, includes information that relates the concept
of "inanimate object exerting a force" to the concrete example "table exerting an upward
force on a book." The concept is also related to the anchor example (one that a student
is expected to understand because it involves his direct experience) of "hand exerting an
upward force on a book." The availability of such examples helps guide the tutoring process.

lutoring strategies can best be conceived of as Condition-Action pairs: for any tutoring
situation or set of conditions, any number of actions may be appropriate; conversely, an
action may be appropriate to any number of situations. A tutor will choose an action based
on the conditions. A system trying to understand a tutor's activity will match the tutor's
action and attempt to match a corresponding set of conditions. It is in this weak sense that
plans are used in our system. Figure 2.11.1 gives some sample conditions and actions.

We believe that the planning formalism being developed by Dr. Shapiro and his group at
SUNY Buffalo are adequate to represent these Condition-Action pairs. Using his paradigm,
the Condition-Action knowledge is implicitly incorporated in our inference rules.

63

CONDITION ACTION

student doesn't give anchor example
understand topic (found in KB)

tutor wants to bridge repeat question

go back to an earlier concept

give anchor example
(found in KB)

tutor wants to ask question about topic
introduce topic

tutor wants to give concrete example
test student's knowledge of topic

tutor wants to tell student
review a previous topic to explain topic

Figure 2.11.1: Sanple Condition-Action pairs.

64

2.12 UNDERSTANDING SITUATIONS

In this section, we discuss the definition and processing of words such as "situation," "ex-
ample," and "case." We have concluded that a Situation, the referent of this word, is an
aggregate of model objects picked out by a Situation Index. Situations are states of affairs
characterized by concreteness and tension. We show further that context must inform the
comprehension of this difficult lexical item.

Words such as "situation" are important because they occur frequently in natural dis-
course, and they are interesting because they are like anaphoric terms ("he," "it") and
deictic terms ("this," "that"), but they have a much richer semantics. Consider the follow-
ing usage:

Penni and Scott are writing an IJCAI paper. Their first draft was shot down
by their fellow researchers. In this situation, they squabbled more than usual.

Most people would agree that this paragraph contains a description of a situation, and
more importantly, that the lexical item "situation" successfully refers to it. However,
understanding the exact reference of the word "situation" is complicated by three factors:

1. "Situation" places significant, but ill-defined, constraints on its possible referents. This
example shows elements of concreteness (particular people writing a particular paper),
states (a bad first draft), and change (such as increased squabbling). These are much
more complex constraints than the simple number, person, and gender features of
pronouns.

2. "Situation" is nevertheless a weak descriptor, because situations come in so many
different kinds-different sets of entities can be referred to as a situation, depending
on the context.

3. Situations might not exist a priori, but instead be created a postemior. That is, the
set of objects that make up the situation may not previously have been aggregated.
The objects aggregated by "situation" reside in the Model,' which is constructed in
the process of understanding the text.

This section attempts to define the semantics and processing of situations.

'This Model is informed by, but is distinct from, our domain models, which contain world knowledge
of various possible domains of discourse. The Model may contain explicit structural or lexical information;
this needs to be saved for some understanding tasks (for example, Webber's discourse anaphora (1987)),
but it is not necessary for processing situations.

65

Types of Reference

Model Anaphora, which we define to be the determination of the reference of words such
as "situation," naturally extends other work on anaphora. Many researchers have studied
pronoun anaphora (coreference between a noun phrase and a personal pronoun): Hobbs
(1978), Grosz and Sidner (1986), [8], and [35]. Work on temporal anaphora (coreference
between temporal expressions) has been done by [21] and [91, among others. Webber has
also worked on the reference of demonstratives such as "this" and "that"; she has termed
this variously as "event reference" [36] and "discourse anaphora" (37]. The 1987 paper
also introduced the notion of individuating reference, which plays a key role in our Model
Anaphora.

Text comprehension involves reference, which we define as the link from an expression
in the text (for example, a noun phrase or a proposition) to a Model Object,' called the
referent. The arrows in Figure 2.12.1 are examples of such reference links.

Reference Links

4. .dnvng t ok

Model Text

Figure 2.12.1: the reference links from the text to the Model

Sometimes, the referent of an expression is a set of things in the Model. Such a set acts
as an individual, in that it can be referred to, can have qualities attributed to it, and can
participate in relations. [36] calls a reference that creates a new individual an individuating
reference, depicted in Figure 2.12.2. One can also view this as creating a new first-class
object, since only first-class objects can be referred to and predicated.

Not all aggregate model objects are the result of individuating reference: some aggregates
already exist as part of a domain model. For instance, the story of Romeo and Juliet is
clearly an aggregate, being composed of many people and events, but it is easily available
as a referent in discourse without being created anew.

2A Model Object is any first-class object in the Model (essentially, a first-class object is anything that
can be pointed to). Therefore, Model Objects include relations, events, states, and so forth, as well as
physical objects. Recall that the Model records our understanding of the text, and is distinct from domain
models.

66

Individuating
Reference

"dvmg Co "-,k

Model Text

Figure 2.12.2: An expression referring to a set of objects as though it
were an individual. The reference that creates this set is
called an ,ndividuating reference.

We believe that a situation is represented as an aggregate model object and that the word
"situation" is often used as an individuating reference. There are two issues to address:
defining just what can be termed a situation, and processing a reference to a situation
(which may involve an individuating reference). The next section deals with the problem
of a proper definition of this term, and Section 2.12 deals with processing.

The Definition of Situations

We have identified several factors which influence whether an expression describes a sit-
uation. Consider examples (1) through (4) below. When asked to judge which examples
can be characterized as situations, speakers generally agree that (4) can be a situation, but
(1) cannot. However, there is less agreement on whether the intermediate expressions may
refer to situations.

(1) running
(2) running the Boston Marathon
(3a) James running the Boston Marathon
(3b) James having run the Boston Marathon
(4) James having run the Boston Marathon last April

It is possible to imagine contexts in which any of these phrases describes a situation, but
in some cases, the contexts are more natural and more available than in others. We believe
that these expressions differ by their concreteness.

Concreteness is characterized in the psychological literature by imageability (for exam-
ple, [20]). In our examples, the increasing specificity supplies the details that aid in building

67

up a mental image. Specificity, however, is not the right measure of a situation. Consider
example (5):

(5a) playing a violin
(5b) playing a Stradivarius

Most people judge these as equally good (or bad) as situations, yet (5b) is clearly more
specific, though it is no more concrete (imageable). This is similar to [22] notion of basic
level categories; one formulation of a basic level is that it is the highest level for which the
prototype is imageable (hence, concrete). Thus, concepts at or below the basic level are
equally concrete, and therefore their concreteness equally affects judgements of whether
something is . situation.

Intuitively, a situation is a state of affairs-a description of the world (or some small
part of it) at some point in time. Note that the questions "What is the situation with X?"
and "What is the state of X?" will elicit similar, if not identical, descriptions. Certainly,
the description may combine present and past actions, especially those that are related
(causally or otherwise) to the current state of affairs:

The situation is that I dialed this long-distance number and it's been over
thirty seconds and it still hasn't rung. Strange.

Clearly, this situation includes the past action of dialing the phone. On the other hand,
a situation need not mention past actions. For example, the situation at the beginning of
Romeo and Juliet can adequately be described as the feud between the Montagues and the
Capulets, without mentioning any particular actions.

A situation usually contains tension, which we take as potential for change. In Exam-
ple (6) below, (6a) is a better situation than (6b) because there is a greater potential for
change. Most people consider (6b) too uninteresting to be a situation at all. Of course, in
certain contexts, (6b) could be considered a situation: a textbook on erosion might discuss
the changes in that situation.

(6a) A boulder teetering on the edge of a cliff.
(6b) A boulder sitting in the middle of a plain.

Example (6) also demonstrates that tension need not result from agents and their goals, as
it does in the Romeo and Juliet situation.

We conclude that situations are states of affairs characterized by concreteness and ten-
sion. Concreteness reflects how easily people can construct a mental image of the situation.
Tension reflects people's judgements of the potential for change.3 Obviously, judgements
of these characteristics will vary from person to person; nevertheless, they put significant
constraints on what can be a situation.

3 Some situations, unfortunately, seem to be ones in which people nevertheless judge there to be little
potential for change. For example, consider the situation of being trapped in the center of a row at a boring
lecture.

68

Processing

Situations are commonly referenced with phrases such as "the situation with X" or "the
X situation." Sometimes, depending on X, more specific phrases are used, as with "the
situation in the Middle East," which is preferable to "the situation with the Middle East."
These modifying phrases include the Situation Index for each of these Situations. A Situ-
ation Index is a key that picks the situation out of the Model, distinguishing foreground
from background, so to speak.

The situation index is usually some common or unifying aspect of the situation. Thus, if
we speak of "the IJCAI paper situation," (see our first example), the situation index unites
the situation. This situation is also successfully referred to by "the situation with Penni."
Indeed, the situation index need not be explicitly mentioned in the text. For example:

I was driving to work with the carpool, as usual, and the engine threw a rod.
It's shot, so now I've got to get a new one. That's the situation with my car.

This reference is successful because the mention of "driving" and "engine" bring "car"
into focus [32]. Furthermore, replacing the referring phrase with "the situation with the
carpool" does not as easily refer to the car situation. Therefore, we conclude that, to a
first approximation, it is elements in focus, regardless of explicit mention in the text, that
are available as situation indexes. We have found that the topic of the paragraph is usually
what is in focus by the end of the second sentence, and the topic is the most likely source
of the situation index.4

We take references that make explicit mention of the situation index to be the canonical
case; we process other references by first determining the situation index, thereby reducing
them to the canonical case. Thus, Model Anaphora is a two-step process:

1. Determine the situation index. Where this is explicitly mentioned, the determi-
nation is trivial. Otherwise, the situation index must be computed from the context.

2. Using the situation index, search the Model and look for matches. Since
we take as a departure point the actual result of parsing the text, the search will be
through a subspace of the Model. The matching Model Objects will yield a set of
candidates, some of which will be discarded because they are not states of affairs or
because they lack concreteness or tension. If this does not reduce the set of candidates
to a single situation, we choose the most recent candidate.

Our current research concerns the comprehension of the following paragraph, so we will
use it to illustrate Model Anaphora:

Nancy asked Tom if an inanimate object exerts a force. Tom said no. Nancy
pointed to a book on the table. She asked if the table exerts an upward force on
the book. Tom said no. Nancy placed the book on Tom's hand. Tom exerted
a great force to keep the book steady. Nancy asked Tom to compare the two
situations. Tom said the table exerted a force on the book.

4 See Section 2.15 for an alternative method of finding the paragraph's topic.

69

Nancy sets the topic of the paragraph with her first question to Tom. This marks
"inanimate object exerts a force" as the topic; the Model Objects inanimate object, exerts,
and a force are available as situation indexes. Because of our domain knowledge of physics,
we know that her second question, which is more specific, is subsumed by her first, and
does not change the topic. When Nancy refers to "the two situations" without supplying a
situation index, either "inanimate object" or "force" is probably the index she has in mind.

Supposing we take "force" as the situation index, we search in the Model for Model
Objects that match it. We find the first situation because "an upward force " is a kind
of force and Nancy has asked Tom whether the books exert an upward force on the table.
Hence, the books on the table is a situation. The second situation is found again because
force is explicitly mentioned, hence the books on Tom's hand is also a situation.' Although
force is mentioned in the first sentence, "if an inanimate object exerts a force," this is
discarded as a situation because it lacks concreteness.

Summary

We have outlined the two phases of processing Model Anaphora and have shown how we
can find the referents for "situation" in an sample text. The first step in the process is
finding a situation index, which we have defined as the key that picks the situation out of
the Model. The second step involves searching the Model for occurrences of the situation
index and determining whether any of these is part of a situation.

In conclusion, we claim that situations are states of affairs that exhibit concreteness and
tension, and that the process of referring to them involves a situation index. We believe
that Model Anaphora is a phenomenon common to a large class of nouns, including "case,"
"disaster," and "example." These nouns differ somewhat in their semantics, but they all
make individuating references to sets of Model Objects.

$Both situations are larger than we have described them here. For instaince, Nancy would include in her
representations the forces involved in the two situations. Tom will, too, once he understands the concept.

70

2.13 IMPLEMENTATION OF THE TUTORING OBSERVATION
MODULE

Our program, TOM (Tutoring Observation Module), reads a paragraph, using the SNePS
Augmented Tranition Network (ATN) to parse the sentences and represent their meaning
with SNePS nodes, which are automatically integrated into the SNePS network. Next, the
Sidner Focussing Algorithm is executed. This algorithm tracks the focus movement through
the paragraph, that is, as the focus changes from some element of the previous sentence
to some element of the current sentence. The focussing algorithm was originally designed
to work sentence by sentence and, although we considered implementing more dynamic
focussing, we decided to stay with sentence-based processing. This required us to make the
focussing algorithm a separate stage after the parser, since the ATN might backtrack at
any time. Because paragraphs in the tutoring domain will contain many indirect questions,
we decided not to trigger question-answering within the ATN. Instead, we look at the
topmost node that represents the meaning of the current sentence and, if it's a question,
we invoke the inference engine to deduce the answer. When this is completed, the answer is
printed. Since the research is not concerned with Natural Language Generation, the answer
is printed simply by looking up a sentence corresponding to the answer that was deduced.
This tec hnique is obviously deficient in the long run, but it enabled us to concentrate on the
primary task of text comprehension. We believe that the SNePS generator will eventually
be able to handle our generation demands. An outline of TOM's organization appears in
Figure 2.13.1.

Implementing the Grammar

The paragraph that we have studied most extensively and that TOM can now read contains
very natural English, and that presented some problems. Some phenomena are simply out-
side the scope of this research and are among the open problems in AI and NLP today. For

Loop forever
Read a sentence;
Call ATN to parse it;
Call Focussing Algorithm to update focus;
If sentence is a question then

Deduce answer;
Print corresponding sentence

end if

end loop

Figure 2.13.1: an outline of TOM's organization

71

example, the original paragraph made great use of modals: "Tom had to exert..." rather
than "Tom exerted...." To properly represent these meanings would demand represent-
ing possible worlds and intentions of agents, which would have been extremely complex.
Therefore, we simply rewrote these sentences in simpler language.

The first sentence originally read:

1. Nancy asked Tom if an inanimate object, such as a table, can exert a force.

The parenthetical expression "such as a table" presented unexpected difficulties. It could
be parsed, but there was much controversy over the meaning -f the expression, the repre-
sentation of that meaning, and the ultimate effect of that meaning. Eventually, we decided
that the effect of "such as" phrases is to focus the attention of the human listener or, by
analogy, to advise the computer's inference engine so that it can focus its inferences in a
particular way. In a way, it's as if the speaker expects that the hearer will attempt to
answer the question by using a case-based approach: examining case, of inanimate objects
and deciding if any of them can exert a force. The "such as" phrase prompts particular
kinds of cases to be examined. Consider asking a naive student whether a hammer or an
anvil can exert a force. The student is likely to say that the hammer can and the anvil
cannot, simply because the hammer is active and the anvil passive. Thus, the "such as" ex-
pression focusses the hearer's attention on passive inanimate objects, without articulating
that concept. Once we agreed that this is the correct view of the "such as" phrase, we also
knew that it could have no effect on the SNePS inference engine, since the SNePS inference
engine is not case-based and has no attentional mechanisms. Therefore, we dropped the
phrase; we would be parsing it to no purpose.

The second sentence is both very simple and very interesting.

2a. Tom said no.

Actually, the original sentence was

2b. Tom said he didn't think so.

We changed it because we considered the latter simply a needlessly complicated idiomatic
expression with essentially the same semantics as the former. The most important difference
in semantics is that the latter expression conveys Tom's doubt is his belief-a difference
we could not have accounted for, since the SNePS inference engine is a symbolic logical
system, not a probabilistic system with degrees of belief. Still, "Tom said no" is more than
interesting enough, because the key problem is determining what he said no about. He
is negating some proposition, but what proposition? We call this problem Propositional
Anaphora.' Properly understanding this sentence requires awareness of the continuity of
sentences at the discourse level, higher than the sentence level. In Section 2.13 we discuss
how we use an extension to Candy Sidner's focussing algorithm to handle Propositional
Anaphora.

'The same issue arises, of course, wi~h affirmatie sentences such as "John said yes."

72

m36

agent verb object
nam~e

b2 rm35 mn34

flex

ml I

Iex say equiv equiv

Torm FALSE #some-proposition

Figure 2.13.2: the parser's representation of the meaning of "Tom said no"

Because the focussing algorithm is executed after the ATN has finished parsing the sen-
tence, the representation of the meaning of "Tom said no" is as depicted in Figure 2.13.2.
The "#some-proposition" is just a convenient label for what is an atomic base node, mean-
ingful only by what points to it; for our purposes, it's just a placeholder. So, the network
reads "Tom said that <some proposition> is equivalent to False." "False," of course, is
a constant in the network. At this point, we don't know what he said was false. Later,
after the focussing algorithm runs, we get the network fragment in Figure 2.13.3. You can
see the need for the placeholder node, as it is the connection between 'False' and the node
M12, which is the focussed element.

The next interesting sentence is the following

7. Tom exerted a great force to keep the book steady.

In current Linguistics literature, the phrase "to keep the book steady" is known as a
ratzonale clause -40]. Rationale clauses are deemed to attach directly to the S node, rather
than to VP, as a relative clause would, yet they are like relative clauses in that there is
usually a trace--a item which is deleted because it is identical to something in the main
clause. In this rationale clause, the trace is the agent, Tom, who is the one keeping the book
steady. This sentence also exhibits a small clause, namely the phrase "the book steady."
We parse this into the proposition steady(book), which is then the object of "keep." It

makes sense for "keep" to take a state (the steadiness of the book) as its object. We do not
claim that our ATN can handle all small clauses and rationale clauses, but we have gotten
it to handle, in a robust and general way, sentences like this one.

The most difficult sentence we faced was the next one:

8. Nancy asked Tom to compare the two situations.

This has already been discussed at length in Section 2.12. The sentence also posed a
slight parsing problem, in that the phrase "to compare the two situations" can be read

73

m36

agent verb object m37name b2m3m4

lex

lequiv equiv

Ilex say

Tom equiv
#some-proposition m12

FALSE

ro11 obect m-8

class class

b6 m9 b7
m10 /lex m7

lex exert lex

Inanimate-Objects Forces

Figure 2.13.3: the representation of the meaning of "Tom said no" after the focussing
algorithm runs

as a rationale clause. We were forced to be much more rigorous in annotating verbs with
features to say what arguments they can or must have. In this case, we solved the problem
by having "ask" require a VP as its object. While the ATN and lexicon are somewhat
improved in their use of features to control the parsing, this continues to be a weakness
of the system. Ideally, the system would have a fairly complete set of subcategorization
frames and thematic grids, with a mapping from the former '4.. the latter, and have the
subcategorization frames take a much stronger role in the parsing, rather than letting the
structure of the ATN control the parsing.

The last grammatical problem we tackled was parsing the questions that follow the
paragraph:

Q1. Why did Nancy ask Tom about the book on the table?
Q2. Why did Nancy place the book on Tom's hand?
Q3. Why did she ask him if inanimate objects exert a force?

Previous SNePS implementations had concentrated on "wh-questions," such as "what did
Lucy pet," which would, as a side-effect of parsing, cause SNePS to search the network and
reply, for example, "Sweet Lucy petted a yellow dog named Rover." Because we believed
our domain would present us with indirect questions-statements such as "Nancy asked
Tom what the book weighed," we did not want the system to answer every question it read.
Therefore, we chose a simple representation for questions, and then, after the parsing, if
the topmost node of the representation of a sentence is a question node (which means it's

74

m90

rel argI

WHY m89

m2 agent

named object m62

member class

indirect-
bi m88 object m61

ml m4
lex

lex

le
b2 m3

ASK-ABOUT j Books

Nancy Ilex

Tom

Figure 2.13.4: the representation of the meaning of "Why did Nancy ask Tom about the
book on the table?"

a direct question, not an indirect question), we answer the question. Figure 2.13.4 shows
the representation for the first question.

Note that the verb in Figure 2.13.4 is "ask-about." We felt that "ask... about" could
be treated as a verb-particle combination, rather than a simple verb with a prepositional
phrase. Technically, it should be the latter, since "about" does not undergo particle move-
ment (one of the key diagnostics of a true particle construction). The change was motivated
primarily on semantic grounds, because we wanted "the book on the table" to be the object
of the sentence, so that it would fulfill the requirement that the verb "ask" take an object.
(See the discussion of sentence 2.13, above.) Moreover, several other functions also look for
the object of the sentence, and this change makes those functions simpler. The problem
arises because the system conflates syntactic and ser>antic roles in the label object. While
our solution works, it is not sufficiently general, and a uniform distinction between syntactic
positions (of subcategorization frames) and thematic roles (of thematic grids) would solve
the fundamental problem. Then, at the syntactic level, "the book on the table" can be the
object of the preposition "about," and yet be mapped to theme at the semantic level, and
all semantic functions can uniformly refer to theme rather than object.

Parsing the questions also required tis to substantially rewrite the grammar so that it

75

could handle the inversion, auxiliary-insertion and other syntactic phenomena of questions
in English. The resulting grammar has been tested on a large suite of sentences and is
quite robust. The whole ATN grammar is included in appendix 2.A.

Implementing Sidner's Focussing Algorithm

As described in Section 2.12, a major concern of our research has been developing a the-
ory of Model Anaphora. Since we considered this effort an extension of other theories of
anaphora resolution, and since, in particular, our theory depended on the notion of focus,
we decided to incorporate Candy Sidner's focussing algorithm (1979) into our system. Her
work remains one of the cornerstones of focussing theory, and since her algorithm is so
well-known, we thought it would be well-understood and easy to customize for our own
purposes.

Unfortunately, several difficulties arose from our assumptions. While implementations
are reputed to exist, we could not find someone actually able to give us one; Sidner's thesis
itself contains only an English version of the algorithm, which is obscure in some places.
Further, it became apparent that someone else's implementation would probably not help
us too much, since the implementation naturally depends greatly on the structure of both
the knowledge representation and the parser. So we eventually decided to implement the
algorithm from scratch, using the thesis as a guide. This exercise proved instructive of the
pitfalls of such an endeavor.

Sidner's focussing algorithm was motivated by a need to find ways to constrain the search
for cospecifications of anaphora in multi-sentential text. An anaphor is a lexical item that
derives its "meaning," or specification in a knowledge base, through association with some
other lexical item. The most common anaphora are definite noun phrases-pronouns and
noun phrases (NPs) with definite articles (such as "the"). Such NPs co~pecify with other
NPs in the text.' Thus, for example, in the following text "she" cospecifies with "Nancy"
and "the book" cospecifies with "a big red book."

Nancy was leafing through a big red book. She remembered fondly the time
she used the book to tutor Tom about physics.

The idea behind focussing is that only one item in the text can be in focus at a time.
What is in focus constrains the resolution of anaphora; conversely, use of anaphora signals
either continuation of the focus or the movement of the focus to some other item in the
text.3

The algorithm works by processing one sentence at a time. For each sentence, an ordered
list is constructed of all items that may come into focus at some point. For the first two
sentences, this is the Default Expected Focus list (DEF); for all subsequent sentences, this

2Most researchers refer to this phenomenon as coreference rathex than cospecification; Sidner prefers
the latter because in a program no referring to the real world is happening, only specification of particular
items in a knowledge base.

3For a much fuller discussion 'of these ideas, see [32].

76

is the Potential Focus list (PFL), which differs from the DEF by not including the agent of
the sentence. Each sentence's Alternative Focus List (ALFL) is the DEF or PFL from the
previous sentence. The processing of each sentence results in either confirming the focus
or moving it; the ALFL is one set of possible new focuses. If the focus is moved, the old
focus is pushed onto the focus stack. The focus stack is another source of new focuses. If
the focus is moved to one of these (that is, back to an item that has already been in focus),
the items above it in the stack are discarded. There is no focus for the first sentence, since
focus is a property of multi-sentential text. Processing for the second sentence, then, is a
matter of establishing the focus, rather than confirming or moving it.

The focussing algorithm has a companion focussing algorithm for actors that handles the
resolution of personal pronouns. We did not implement this because this issue is tangential
to our main concerns and a simplistic solution was already available by use of the SNePS
Uniqueness Principle. We did not implement the entire focussing algorithm, either, since
some of it was not needed for the paragraph we were understanding. Our implementation
also includes several extensions for cases not covered in the original, as described below.

The interface between SNePS and the focussing algorithm is not very clean. The al-
gorithm is called after each sentence is parsed, and handed a list of SNePS nodes corre-
sponding to phrases. Unfortunately, the algorithm depends on the syntactic roles of each
of the phrases in a sentence as well as the actual linear order in which the phrases appear.
The SNePS parser, on the other hand, is only concerned with the semantic roles played by
elements of the sentence, and therefore in principle does not save any syntactic information.
Hence, the first task of the focussing algorithm is to recover as much of this information as
possible. We also had to add to the parser a mechanism for explicitly recording the defi-
niteness of each NP, something to which SNePS is indifferent but which is clearly crucial
to the algorithm.

The rest of this section briefly sketches some of the interesting aspects of the algorithm,
as it functions in our tutoring paragraph, reproduced here.

(1) Nancy asked Tom if an inanimate object exerts a force. (2) Tom said no.
(3) Nancy pointed to a book on the table. (4) She asked if the table exerts an
upward force on the)ook. (5) Tom said no. (6) Nancy placed the book on Tom's
hand. (7) Tom exerted a great force to keep the book steady. (8) Nancy asked
Tom to compare the two situations. (9) Tom said the table exerted a force on
the book.

Sentence (2) immediately present. us with a type of anaphora not covered in the original
algorithm. When Tom says "no," he is negating some proposition, and to understand the
sentence we need to find out which proposition this is; thus, we call this Propositional
Anaphor-. Following the principles of the focussing algorithm, we believe that the propo-
sition being negated will be the one in focus, and indeed, "if an inanimate object exerts a
force" is the predicted focus at the second sentence.

This example demonstrates another extension we made to the algorithm: Sidner's ver-
sion did not account for sentences with subordinate clauses. We decided that subordinate

77

clauses, including the rationale clause in sentence (7), fill roles similar to those filled by
NPs, and so we could treat them equivalently. However, we also felt that the constituents
of a subordinate clause should be available to the focussing algorithm as well, so these are
also included in the DEF/PFL.

Our most interesting use of the algorithm occurs in sentence (8). Previously, the topic of
the paragraph was determined, at the second sentence, to be the element in focus, that is,
"an inanimate object exerts a force." The word "situations" triggers a part of the focussing
mechanism responsible for resolving such Model Anaphora (see Section 2.12). Any of the
elements of the topic, namely exert, inanimate object, and force, may be used as the
situation index; the current implementation uses the first of these. "The two situations" is
thus found to specify the aggregate of table exerts an upward force on the book and Tom
exerts a great force to keep the book steady. Each of these situations is itself an aggregate
of the entire situation and all of its elements.

At this point in the paragraph, during the processing of sentence (8), the focus is the
book cospecified by "the book" in sentence (7). The focussing algorithm includes a step by
which if a definite noun phrase in the current sentence (here, "the two situations") implicitly
. specifi the fo,.a.s, t.e focus is confirmed. Sidner defines implicit cospecification as a case
in which the definite NP specifies a Model Object that is closely related to the specification
of the focus. In this example, the book is a situation element of one of the two situations;
this relationship is close enough to warrant confirmation of the book as the focus.

Implementing Sidner's focussing algorithm and making the necessary extensions to it
proved to be more work than we had anticipated and in retrospect was probably a poor
design decision. The apparent appeal of an "off the shelf" algorithm was offset by the
difficulty of engineering the interface with SNePS, as well as the limited coverage of the
original algorithm. In fact, we learned the hard way that an off the shelf algorithm is a far
cry from off the shelf software, and we would have been better off in this case building a
mechanism of our own rather than trying to fit an algorithm to our needs.

Implementing the Knowledge Base

TOM's knowledge of tutoring and physics is represented as inference rules, stored in the
SNePS network and executed by the SNePS inference engine. They are triggered by the
need to answer questions asked of the system. Calling the inference engine results in new
nodes being asserted and returned, whereupon these nodes are mapped to sentences that
answer the user's question. This section will review the deductions involved in answering
the first question.

The representation of the first question was shown in Figure 2.13.4 (page 75). "Why"
questions are taken to ask what goal some action or plan is subserving. Therefore, we turn
that question into the following deduction:

78

(deduce plan (build agent bl

verb ask-about

indirect-object b2

object b9)

goal v1)

The node "Vi" is a new variable node, which will be bound to the node which is deduced
to be the answer to the question, which is essentially "what is the goal of this plan." The
call to DEDUCE initiates the backward-chaining ability of the SNePS inference engine. It
creates a pattern node which matches the consequent of rule 1, shown in Figure 2.13.5.

This rule is essentially knowledge about tutoring, for it concerns asking someone about
specific examples of a topic in order to probe his knowledge of the topic. Note that the
agent, x, which in this case is Nancy, is mentioned several times in the rule: Nancy did
the asking, so it's Nancy who wants (Nancy) to know Tom's knowledge of the topic. The
use of the agent is a philosophical difference between UMass Amherst and SUNY Buffalo,
since the UMass group believes it is important to mention the agent, so that the agent can
constrain the inferences and be represented in the answer. The UB grouP, on the other
hand, believes it is important to represent the commonality of different agents' plans and
not mentioning the agent in a rule produces more general inferences.

Once the inference engine has matched the consequent of rule 1, it wants to prove the an-
tecedents of that rule. The first antecedent is just the act itself and so is trivially true.4 The
second antecedent is that "B9" is a situation index for some (as yet unknown) situation "e."
B9 is a situation index (we determined so when processing the Model Anaphora in "Nancy
asked Tom to compare the two situations"), and so "e" is bound to the corresponding
situation, the node b19, shown in Figure 2.13.6.

Antecedent 3 is that "e" is a situation. This follows straightforwardly from its having
situation elements such as B9, so we won't go into this. The fourth antecedent, however,
is somewhat complicated, as it determines whether "e" is an example of Statics. That

matches the consequent of rule 4, shown in Figure 2.13.7, with "z" unified with "Statics."
This rule captures some of the program's knowledge of Physics, since it defines conditions

sufficient for an example of statics. The first antecedent is that "s" (which is our "e" from
rule 1) is a situation; we already know this is true. Second, we check that "s" has situation
elements "x" and "y." This binds "x" to b9 and "y" to bl0. Next, we check that both "x"
and "y" are physical objects. The variable "f," in the next antecedent, is open and will be
bound to something deduced from yet another rule (one which deduces that if "x" supports
"y," then there exists a force, "f," between them). We check that "f" is a force exerted by
"x"? on "y" and by "y" on "x." This completes the backward chaining through rule 4, and
we can now return to rule 1.

'Actually, it's not quite so trivial. The act is true because the parser asserted it to be true; that is, the
parser takes the statements it reads to be true. One could imagine a more suspicious system that might well
answer this question: "I'm not certain that Nancy did ask about the books on the table." This is a minor
quibble, as most AT systems believe what they're told, but it's worth mentioning why this proposition is
true.

79

(assert

forall ((new-variable-node x) ... y, z,. e, si, k)
&ant ((build agent (node-named x)

verb ask-about
indirect-object (node-named y)

object (node-named si))

(build argi (node-named si)
rel situation-index
arg2 (node-named e))

(build argi (node-named e)

rel situation)

(build argi (node-named e)

rel specific-example-of
arg2 (node-named z))

(build argI (node-named y)

rel (build lex know)
arg2 (node-named k))

(build argI (node-named z)
rel in-domain
arg2 (node-named k)))

cq (build plan (build agent (node-named x)
verb ask-about

indirect-object (node-named y)
object (node-named si))

goal (build argi (node-named x)
rel (lex want)

arg2 (build argI (node-named x)

rel (build lex know)

arg2 (node-named k)))))

Figure 2.13.5: Rule 1 from the Knowledge Base
If x asks y about si, which is a situation-index to the situation e, a specific example of z
(and there's a node k, which is y's knowledge of z), then the asking-about was a plan for
that goal.

80

m36
member m8class

argl b9 ' m35 lex Books

m82 argl m37 lex Tables
argi bl0

arg2 rel m81

b19 situation.

index

argl rel arg2

b9 on blO

Figure 2.13 6: The representation of "e," the example referred to in the first question with
the phrase "the book on the table?"

The next two antecedents of rule 1 involve a variable "k" which can be thought of as
the pupil's ("y's") knowledge of statics. The variable "k" gets bound to a node built by
another rule, part of the program's general world knowledge, that says there always exists
a node tu represent someone's knowledge of something. The backward chaining through
rule 1 is now complete. The consequent is asserted, which lets the system state that Nancy
wanted to know Tom's knowledge of statics.

This section has gone through part of one inference, the one which answers the first
question, in order to demonstrate the general technique, and to show the representation
of tutoring knowledge and Physics knowledge in the SNePS formalism. The complete
knowledge base is, naturally, much larger, and therefore is not included in this report.

81

(assert forall ((new-variable-node s)

(new-variable-node x)

(new-variable-node y)
(new-variable-node f))

&ant ((build argl (node-named s)
rel situation)

(build argi (node-named s)
rel situation-element
arg2 ((node-named x)

(node-named y)))
(build member (node-named x)

isa Physical-Objects)
(build member (node-named y)

isa Physical-Objects)
(build member (node-named f)

isa Forces)

(build rel exerts
argl (node-named x)
arg2 (node-named y)

arg3 (node-named f))

(build rel exerts

argl (node-named y)
arg2 (node-named x)

argZ (node-named f)))
cq (build argl (node-named s)

rel specific-example-of

arg2 Statics))

Figure 2.13.7: Rule 4 from the Knowledge Base
If s is a situation, and x & y are elements of s and are Physical-Objects, and f is a force,
and exerts(x,yf) and exerts(yx,f) then s is a specific example of Statics.

82

2.14 USING SNePS AT UMASS

Any time two research groups from different institutions attempt to cooperate there will
be difficulties as well as benefits. The UMass group feels that the benefits of working with
the SUNY Buffalo group were primarily intellectual: we were able to discuss our approach
to problems with interested, knowledgeable, and objective researchers; it was particularly
refreshing to work with a group that comes from a different background and therefore
challenged many of our assumptions about possible solutions. In retrospect, both groups
feel that we should have met more often so as to derive greater benefit from this interaction.

While we were all pleased with the intellectual interaction, there were difficulties with
system sharing, principally because the initial port of SNePS-2 was of a version too early
in its development and testing. Bugs were found, tracked down and fixed by both groups
simultaneously. This became especially difficult when it became apparent that the two
groups had such differences in philosophies of programming style that they refused to
use each other's changes. These differences involved: how extensively macros should be
used; whether Common Lisp functions like PUSH and POP should be shadowed in user-level
packages; whether Common Lisp characters like # and * should be used for other purposes
in the SNePS User Language.

83

2.15 DISCUSSION AND FUTURE WORK

Our goal is to model a rational cognitive agent whose behavior is driven by its beliefs,
desires, and intentions. We want our agent to understand natural language, reason about
beliefs, act rationally based on its beliefs, recognize plans, and do plan based text gen-
eration. Doing all these tasks in a single coherent framework poses several constraints.
We are discovering that SNePS and its underlying theories contribute effectively towards
our goal. We have designed and implemented intensional propositional representations for
plans. This is a major advance over operator-based descriptions of plans. Operator-based
formulations of actions tend to alienate the discussion of operators themselves. Operators
are usually specified in a different language than that used for representing beliefs about
states. Moreover, plans (or procedural networks) constructed from these operators can only
be accessed by specialized programs (critics, executors) and, like operators, are represented
in still another formalism. Our representations for acts, actions, goals, and plans build
upon and add to the intensional propositional representations of SNePS. This framework
enables us to tackle various tasks mentioned above in a uniform and coherent fashion.

Our current system is being advanced in several directions. In the context of planning,
there are issues associated with conjunctive goals [34], non-linear plans [23, 33, 4], and
dealing with the effects of actions.

Language used in planning contexts, is slightly more constrained than in arbitrary dis-
course. Sentences describing plans tend to be declarative, with a syntactically decomposable
structure involving goal, effect, and plan definition. Handling reference is simplified by the
assumption that common noun phrases correspond to typed variables. Indefinite noun
phrases introduce new variables, definite noun phrases refer to previously introduced vari-
ables. Natural language generation of plans and rules involves careful selection of relevant
attributes of these variables.

Sensory Acts and External Events

So far we have concentrated on the problem of designing representations suitable for dis-
cussing, using, and recognizing plans. We have demonstrated their use in a single-agent
world. We are now ready to explore issues involved in using our representations to model
rational cognitive agents that are capable of acting in the real world. The real world is
constantly undergoing change in the presence of several agents (including the modeled one)
as well as by natural phenomena. In order to behave as rational agents in a real world
they should be endowed with appropriate sensors as well as effectors. Thus we are ready to
explore issues concerning sensory acts, external events, and iow an agent's beliefs, desires,
intentions, and actions are affected by them.

85

Integrating Inference and Acting

In our current model (and in other state-of-the-art systems) reasoning is preformed by
some inference engine and acting is done under the control of an acting executive. In
order to achieve our goals we have come to the conclusion that inference and acting need
to be more tightly coupled. A survey of most systems wil reveal that it is somewhat

awkward to do acting in reasoning (or logic-based) systems (but it is convenient to talk
about representational and reasoning issues), and it is awkward to research reasoning and
representational issues in systems designed for acting/planning. We are beginning to take
the viewpoint that logical reasoning rules implicitly specify the act of believing, and the
process of reasoning can be treated as specialized (more efficient) acting. This will enable
us to integrate the acting and inference engines that can be driven by regular reasoning

r.-I-s as well as connectives that will transduce a belief status to an intention-to-act status.

e currently designing such connectives. Thus our future research will attempt to

c, ,y the relationship between inference and acting. This integrated approach used in

conjunction with the principles underlying propositional semantic networks will preserve

the power of acting, as well as reasoning systems, and provide a richer framework within
which one can experiment with various modeling issues in Al.

Structured Variables

Another direction for our future research involves a reexamination of the representation of
variables in SNePS. Consider again the conditional plan,

Vz,y[Block(z) A Support(y) A On(x,y)

GoalPlan(Clear(y), Sequence(Pickup(x), Put(, Table)))].

As in the FOPC representation of this rule, the SNePS representaticd. contains the subex-
pression Pickup(z). Although in SNePS, the variable z is connected in the network to its

restriction, Block(z), the variable z is still an "atomic" node, and the term Pickup(x) does

not contain the restriction on z as a subterm of it. The significance of ths is that the act
"pick up a block" is not represented by a single term in the plan express . Compare this

representation to something like:

GoalPlan (Clear(y:Support),
Sequence(Pickup(z:Block s.t. On(z, y:Support)),

Put(x:Block s.t. On(z, y:Support), Table))).

Here, each sub-expression is conceptually complete, For example, Pickup(x:Block s.t. On(x,
y:Support)) clearly represents the act of picking up a block that is on a s .pport. (It should

be noted that the SNePS representation, using a network syntax, wouit not be as redundant

as the linear representation.) We plan to investigate these representational issues further.

86

Applications to Simulated Agent

A more application-oriei.ted direction we may pursue is to apply our techniques of repre-
senting and reasoning about plans to simulate some human agent, and to try to predict
what that huma, agent would do in certain hypothetical circumstances.

Increased Plan Recognition

In order to recognize conditional or iterative plans, the relevant conditions which are true at
the time tht reported acts were performed must also be reported in addition to the reported
acts. The dediction rules for pln recognition would have to be extended to include the
control actions snif and sniterate-

Since SNACTor's acting executive automatically schedules acts to achieve preconditions
of other schtduled acts, presumably other agents do the same thing. I.e., a plan recognizer
should use the precondition rules to account for those acts which are not explicit in the
plan-act or plan-goal rules.

The belief revision system SNeBR can be used to implement incremental plan recog-
nition. The belief revision system can be used to discriminate between potential plans or
goa-s by establishing a separate context for each plan (or combination of plans) and keep-
ing track of the consistency of each context as more and more acts about the agent are
reported. The number of assumptions supporting a conclusion that the age t is performing
a particular plan or pursuing a particular goal indicates the probability of that conclusion
and thus can also be used to discriminate among competing plans or goals.

Understanding More Complex Paragraphs

We have shown that Model Anaphora requires more complex representation and more
subtle inference than other sorts of anaphora. Anaphora that involve human interaction,
plans, and goals are more complex and subtle yet. The paragraph below is typical of such
text.

(1) Last week, 32 shabby peasants appeared at the gates of the U.S. embassy
in Moscow. (2) They put a startling request to American diplomats: help us get
out of Russia. (3) Local authorities in Siberia had threatened to imprison the

adult members of the peasants' religious group. (4) With the vague notion that
a foreign embassy might help them, the Siberians had come by train to Moscow.
(5) The Americans listened sympathetically, but Ambassador Foy Kohler had
to stick to regulations. (6) He called the Soviet Foreign Ministry, explained the
situation and asked that the peasants be removed. (7) Embarrassed by the whole
thing, the U.S. oficials prevented foreign correspondents from photographing or
speaking with the visitors.

Two distinct Model Anaphora are used in this paragraph: "the situation in sentence (6)
and."the whole "hing" in sentence (7). Notice that "the whole thing" is more inclusive

87

than "the situation." Since our algorithm resolves each Model Anaphor in the course of

processing the sentence in which it appears, the additional structure that is part of "the
whole thing" will be built after "the situation" has been resolved, thus capturing this
difference.

As described in Section 2.12, we find the situations by first finding the situation index,
which is generally the topic of the paragraph. In the tutoring paragraph, the topic was
determined to be what was in focus by the second sentence; this happened to be the indirect

question of the first sentence, namely, "if an inanimate object exerts a force." However,
the topic of a paragraph need not always be given in the first sentence, so we need a more
sensitive mechanism for recognizing it than checking the focus at a particular moment.

The topic is generally strongly marked by some action. This may be, for example, a
demonstative action, such as pointing, or, as in the tutoring paragraph, a speech act (Nancy
asking a question). In the current paragraph, the topic is also marked by a speech act:

(1) Last week, 32 shabby peasants appeared at the gates of the U.S. embassy
in Moscow. (2) They put a startling request to American diplomats: help us get

out of Russia.

To put a request is to perform a speech act; the object of the request is a likely candidate
for the topic of the paragraph and is selected as the topic because it is the earliest candidate

in the text.
This analysis shows that the topic is functionally, rather than just structurally, deter-

mined. To get a better grasp on how "topic" is defined and how the topic of a paragraph is
determined, as well as related issues in resolving Model Anaphora, we suggest that future
research include testing modifications to the structure of the paragraph to discover how
different rhetorical or syntactic structures result in different specifications for the Model
Anaphora.

In Figure 2.15.1 we present our preliminary research into the goals and plans that may be
present in this paragraph. Future research should include refinement and implementation

of this work.

Integrating Systems

The work at UMass was not as well integrated with the work at UB as we would have
liked. However, merging the two streams of research offers some exciting possibilities for
the future. In particular, the UB work on describing plans in natural language would
have many applications in a. system designed to read and understand paragraphs. In the
tutoring domain, we could describe to the system condition-action pairs corresponding to
tutoring strategie. These condition-action pairs would later help the system recognize
these strategies when they are employed in the tutorin, situations described in paragraphs.

!~ ~ 8

(1) None.

(2) Peasants Goal be out of Russia
Plan ask American authorities for help

(3) Authorities Goal preventing peasants' religious practices
Plan threaten peasants

Peasants Goal keeping religion
Plan ??

(4) Peasants Subgoal ask a foreign embassy for help
Plan go to embassy in Moscow

(This is an elaboration of the plan in (2).)

(5, 6) Americans Goal stick to regulations
Plan ask Russians to remove peasants

Goal be nice to peasants
Plan act sympathetic

(7) Americans Goal cover up embarrassment
Plan keep reporters away

Figure 2.15.1: Plans and Goals in the "Shabby Peasants" paragraph

89

2.16 TRIPS FUNDED BY RADC

Workshop on Formal Foundations of Semantic Networks, Santa Catalina Island, CA, Febru-
ary 15-18, 1989: Shapiro

RADC Sponsor Meeting with U. Mass., Rome, NY, February 23, 1989: Shapiro, Kumar,
Ali, Haas

NAI C Committee Meeting, Rochester Institute of Technology, April 14, 1989: Shapiro

First International Conference on Principles of Knowledge Representation and Reasoning,
Toronto, Ontario, Canada, May 15-18, 1989: Shapiro

NAIC Committee Meeting, Syracuse, NY, June 28, 1989: Shapiro

RADC briefing and demonstration with U.Mass, Rome, NY, July 27, 1989: Shapiro, Ku-
mar Ali

Eleventh International Joint Conference on Artificial Intelligence (IJCAI), Detroit, Michi-
gan, August 20-25, 1989: Shapiro

Annual NAIC Meeting, Minnowbrook, NY, August 14-17, 1989: Shapiro

91

2.17 NLP PUBLICATIONS IN 1989

Shapiro, S. C. and The SNePS Implementation Group, "SNePS-2 User's Manual", Depart-
ment of Computer Science, SUNY at Buffalo.

Shapiro, S. C., (unpublished) "Formal Foundations of an Intensional Propositional Seman-
tic Network", Presented at the Workshop on Formal Aspects of Semantic Networks, Santa
Catalina Island, CA.

Shapiro, S. C., Kumar, D. and Ali, S., "A Propositional Network Approach to Plans and
Plan Recognition", Proceedings of the 1988 Workshop on Plan Recognition, AAAI-88, Mor-
gan Kaufmann, Los Altos, CA.

Shapiro, S. C., "The CASSIE Projects: An Approach to Natural Language Competence",
to appear in Proceedings of the 4th Portugese Conference on Artificial Intelligence, to be
held in Lisbon, Portagul, September 36-30, 1989.

Anderson, S. D., "Speaking of Elephants: Generating from Knowledge Representations",
COINS Technical Report 89-19, Computer and Information Science Department, Univer-
sity of Massachusetts, Amherst, MA 1989.

Woolf, B. P., "Hypermedia in Education and Training", Proceedings of the Artificial Intelli-

gence and Intelligent Tutoring Systems Symposium, University of Maine, Orono, ME, 1989.

Woolf, B. P., "Representing, Acquiring and Reasoning about Tutoring Knowledge," Pro-
ceedings of the Air Force Workshop on Intelligent Tutoring Systems, Southwestern Research
Institute, San Antonio, TX 1989.

Sibun, P. and Huettner, A. K. "Spatial Deixis in Generating Description," COINS Technical
Report 89-19, Computer and Information Science Department, University of Massachusetts,
Amherst, MA 1989.

93

2.18 SUNY at BUFFALO STUDENTS DIRECTLY FUNDED BY NAIC,
1985-1989

(Names in bold are supported in 1989 by RADC at SUNY Buffalo)

James Geller, Ph.D. 2/85 - 5/88 Research Assistant
Academia, USA 6/88 - 7/88 Research Associate
Permanent Resident (applied after graduation)

Mingruey Tale, Ph.D. 2/85 - 5/87 Research Assistant
Industry, USA 5/87 - 8/87 Research Associate
Permanent Resident (applied after graduation)

Joao P. Martins, Ph.D. 5/85 - 7/85 Research Associate
Academia, Portugal Post Doc. work Visiting Asst. Professor
Foreign

Scott S. Campbell, MS 8/85 - 9/87 Research Assistant
American 9/87 - 8/89 Programmer/Analyst

Jiah-shing Chen, MS 7/87 - 8/89 Research Assistant
Foreign

Amruth Kumar N. 1/88 - 8/89 Research Assistant
Foreign

Joongmin Choi 8/88 - 8/89 Research Assistant
Foreign

Deepak Kumar, MS 8/87 - 8/89 Research Assistant
Foreign

Syed S. Ali, MS 8/87 - 8/89 Research Assistant
Canadian

Juergen Haas 1/89 - 8/89 Research Assistant
Foreign

Sudip Nag 8/88 - 7/89 Research Assistant
Permanent Resident

95

Byung S. Yoo, MS 7/88 - 10/88 Research Assistant
Permanent Resident
Industry, IBM

David B. Satnik 7/87 - 5/88 Research Assistant
American
Industry, Seattle, WA

Richard W. Wyatt 8/87 - 1/88 Research Assistant
Permanent Resident
Ph.D., Psychology
Student, SUNY at Buffalo

Keith E. Bettinger, MS 5/87 - 8/87 Research Assistant
American
Student, SUNY at Buffalo

Kwong Yiu Yim 1/86 - 5/86 Research Assistant
Foreign

Jennifer M. Suchin, MS 6/85 - 8/85 Project Aide (Graduate)
American
Industry, Pittsburgh, PA

RADC Supported Ph.D.'s in Progress, SUNY at Buffalo

Kumar, Deepak
Planning in SNePS

Chen, Jiah-shing
Model-based Diagnosis Using Multiple Approaches

Choi, Joongmin
An Intelligent Reasoning System by Knowledge Migration and Shadowing

Kumar N., Amruth
Issues in Diagnosis: Sequential and Combinational

96

2.19 DEPARTMENT STATISTICS, SUNY at BUFFALO: ARTIFICIAL
INTELLIGENCE

YEAR AI Ph.D.'s Non-AI Ph.D.'s AI Master's Non-AI Master's

1989 (through June) None None 21 11
1988 5 None 23 12
1987 3 None 28 16
1986 1 2 24 7
1985 2 1 28 3
1984 None 2 27 9
1983 2 1

97

2.20 PH.D. GRADUATES IN ARTIFICIAL INTELLIGENCE, SUNY at
BUFFALO

(Names in bold were supported by RADC)

1988

James Geller Assistant Professor New Jersey Institute of Technology

Jonathan J. Hull Research Assistant Professor SUNY at Buffalo
Buffalo, NY

Ganapathy Krishnan Assistant Professor Stetson University
Deland, FL

Ching-Huei Wang Research Analyst Boeing Electronics Corp.
Seattle, WA

Zhigang Xiang Assistant Professor Dept. of Computer Science
Queen's College (CUNY)
New York, NY

1987

Michael J. Almeida Assistant Professor Penn State University
Dept. of Computer Science
Whitmore Lab
University Park, PA

George Sicherman AT&T Bell Labs
Middletown, NJ

Mingruey R. Taie AT&T Bell Labs
Middletown, NJ

1986

Ernesto Morgado Assistant Professor Dept. de Engenaria Mechanica
Instituto Superior Tenico
Lisbon, Portugal

99

1985

Radmilo M. Bozinovic GO Corporation
San Francisco, CA

Jeannette Neal Research Assistant Professor Caispan Corporation
Cheektowaga, N Y
Research (CUBRC)

100

2.21 MASTER'S DEGREES FROM THE DEPARTMENT OF
COMPUTER SCIENCE, SUNY at BUFFALO (1984-1989)

(Names in bold were supported by RADC)

Artificial Intelligence (1989, through June)

Ansley, William Dobes, Zuzana Majkowski, Bruce
Banerjee, Sarbani Goldberg, Neal Nag, Sudip
Chaluplsky, Hans Gucwa, John R. Po, Cherng-Fong
Chang, Han Yi Jain, Naresh Kumar Sin,Via Tong
Cohen, Edward Lee, Chieng Tan, Wan
Colucci, Paul Lin, Yi Chang Wu, Li Shin
Crovella, Mark E. Lombardo, Karen Yen, Shyh-Guang

CS Other than AI (1989, through June)

Arora, Rajendra Grupka, Laurette Sherman, Paul J.
Chang, Tien Kingsbury, Linda A. Williams, Francine
Delgado, Diane M. Liu, Paul C-W Wu, W-C Jevons
Fenrich, Richard Menon, Rajeev

Artificial Intelligence (1988)

Bansal, Surendra Haller, Susan Soh, Jung
Benz, David Hardy, Michael J. Strohmeier, Nancy
Bettinger, Keith Hou, Chien-Long Swerdloff, Lucien
Biernat, Catherine Kornacki, Edmund Vecellio, Gary
Chang, Adam Chih-Yen Kuan, Chic Chau Wan, Tzu-Horng Tom
Dznko, Paul Jr. Kumar, Deepak Williams, Francine
Debbins, Catherine Lew, Kurk Yoo, Byung
Govindaraju, Venugopal Lo, Ka-Chiu

CS Other than AI (1988)

Arora, Rajenda Duh, Ying Ying Lam, William
Azar, Chawki Hosangadi, Shrikant Mantharam, Mythili
Bahl, Vikram Lagona, Scott Sarraf, Elias
Desirazu, Shyam Lakshman, T.K. Wahl, Norman

101

Artificial Intelligence (1987)

Binkerhoff, Linda Gupta, Rakesh Schwartz, Margaret

Chan, Chung Man Jain, Hwejdar Siracusa, Thomas

Campbell, Scott Kim, Joong-Won So, Hon-Man

Chang, Cheng-Ping Kuo, Chung-Kuo Thomas, Timothy

Chen, Yung-Yuan Lang, Su-Jin Wang, Gretchen

Chun, Soon Ae Lee, Hui-Chung Wroblewski, Susan

DeVinney, George Li, Niacong Wu, Teng Yien

Dodson-Simmons, Onda Li, Peter Wu, Wei-Jye

Ehrlich, Karen Murty, Kurella

Feuerstien, Steven Schneck, Nelson

CS Other than Al (1987)

Boxer, Lawrence Gunning, Mark Nimmagadda, Venkata

Chang, Cheng-Ping Hiroi, Toshiyuki Rajan, Dayanand

Cheng, Tony H-Y Jang, Yong Ho Shende, Anil

Chow, Lawrence Lively, Richard Subrahmanyam, Pratap

Gaur, Yogesh Mackey, Niloufer

Girod, Allison Miller, Susan

Artificial Intelligence (1986)

Bross, Neal Lu, Wuhsiung Shin, Kwang Un

Deutschlander, Kenneth Ma, Pu-Kao Shyong, Beth M-F

Hull, Richard MacFadden, Douglas Swaminathan, Puducode

Jayanthi, Sarma McConnell, Jeffery Ting, Hungtau

Kailar, Sudah Murphey-Shelton, Anne Wang, Fen-Cheng

Krishnaswamy, Latha Murray, Deborah Winkowski, Danie

Krishnaswamy, Vijaykumar Rastogi, Ajay Wood, Gabriel

Lee, Gin-Wha Sauciunac, Christine Yang, Ching-Yun

CS Other than AI (1986)

Bharadhwaj, Rajeev Ramshankar, J.V. Schwartz, Mary

Kim, Dongsoo Rosenblum, Leonard Vassallo, Mario

Martin, Dennis

102

Artificial Intelligence (1985)

Allen, Kristen Kalnitz, Paul Pawlicki, Thadeus
Arora, Kulbir Kramarczyk (Kramer), Chrisopher Saks, Victor
Barback, Joseph Kuo, Chi-Kai Suchin, Jennifer
Baxter, William Li, Kuang Chieli Taie, Shwu-Fan
Chen, Li-Wha Lo, Mie-Ying Wang, Cbing-Ying
Clark, Michael Lung, Hsi-Hao Howard Wang, Der-Yuk
Hise, Denise Min Byoung Ho Wiebe, Janyce
Ru, Hai Hsu Niyogi, Debashish Yang, Jin-Tan David
I, Chih-Li Palumbo, Paul Yi, Myungzoon
Isaac, Reeba M.

CS Other than AI (1985)

Chi, Henjin Fu, Jing-sheng Olin, David

Artificial Intelligence (1984)

Chang, Chung Konakanchi, Krishna Nemirov, Hinda
Chen, Kwei-Jen Kung, Peter F. Phillips, Gretchen
Choy, Chi Chung Leu, Fang Rsiung Rapaport, William J.
Das, Mangobinda Lin, Han-Hong Shlossman, Paul
Haefner, Michael Liu, Ming Shen, Chien-Chih
HT1e Hung Chyi Liu, Peter (Sai-Ming) Su, Suyuan C.
Hsu, An-Mei Lo, Yt± Li Yang, Lien-Jang
Jou, Chen-Jye Lung, Hlsi-Hong Yao, Jo-Lan
Kellick, Diane Milich, Gregory Zayan, Alime

CS Other than Al (1984)

Alsam, Javaid Izard, Thomas Oviedo, Enrique
He, Hung Chyi Klee, Karl Welte, Martha
Hung, Ring Kai Leung, Chun Wah Zachopoulos, George

103

2.22 ARTIFICIAL INTELLIGENCE FACULTY, SUNY at BUFFALO

Stuart C. Shapiro Professor Knowledge Representation
Reasoning
NL Processing

Sargur N. Srihari Professor Knowledge-Based Systems
Computer Vision
Pattern Recognition

William J. Rapaporc Associate Professor Knowledge Representation
Philosophical Foundations
NL Processing

Shoshana Hardt Assistant Professor Expert Systems
Qualitative Reasoning

David Sher Assistant Professor Computer Vision

Deborah K. W. Walters Assistant Professor Computer Vision

Richard Wildes Assistant Professor Computer Vision

Jonathan J. Hull Research Assistant Professor Computer Vision

Jeannette G. Neal Research Assistant Professor Intelligent Interfaces
Senior Scientist, Calspan NL Understanding

Expert Systems

105

2.23 ARTIFICIAL INTELLIGENCE ADDITIONS TC THE
DEPARTMENT DURING THE PERIOD OF NAIC FUNDING, SUNY at
BUFFALO

New Artificial Intelligence Faculty Appointed

Michael Leyton Computer Vision 8/86 - 8/87
Assistant Professor

David Sher Computer Vision 8/87 - present
Assistant Professor

Richard Wildes Computer Vision 9/88 - present
Assistant Professor

Jeannette G. Neal Intelligent Interfaces 2/88 - present
Research Assistant Professor NL Understanding
Senior Scientist, Calspan Expert Systems

Jonathan J. Hull, Computer Vision 9/87 - present
Research Assistant Professor

New Artificial Intelligence Courses, SUNY at Buffalo

CS 514 Vision
CS 666 Introduction to Image Analysis
CS 676 Knowledge Representation

107

2.24 ONGOING ARTIFICIAL INTELLIGENCE DISSERTATIONS, SUNY
at BUFFALO

AI Students Past the Ph.D. Primary Area Examination

(Name in bold is currently supported by RADC)

Arora, Kulbir
Qualitative Reasoning about Physical Systems

Baxter, William
Multiresolution Edge Detection

Ehrlich, Karen
Automatic Acquisition of Natural Language

Kumar, Deepak
Planning in SNePS

Lively, Richard
Texture Segmentation of Images

Niyogi, Debashish
A Knowledge-Bases Approach to Analyzing Logical Document Structure

Pawlicki, Thaddeus F.
A Neural Network Approach to the Indexing Problems on Model-Ba'ed Computer Vi-
sion Systems

Srihari, Rohini
Integration of Information from Visual & Linquistic Sources

Wiebe, Janyce M.
A Computational Theory of Perspective in Narrative

Yuhan, Albert Ilanyong

Dynamic Computation of Reference Frames in Spatial Information Processing

109

Biblicgraphy

[1] A. Akmajian and F. W. Heny. An Introduction to the Principles of Transformational

Syntax. The MIT Press, 1975.

[2] . M. J. Almeida. Reasoning About the Temporal Structure of Narratives. PhD thesis,
Technical Report 87-10, Department of Computer Science, SUNY at Buffalo, 1987.

[3] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ,
1976.

[4] M. Drummond and A. Tate. AI planning: A tutorial and review. Technical Report
AIAI-TR-30, Artificial Intelligence Applications Institute, University of Edinburgh,
Edinburgh, November 1987.

[5] M. E. Drummond. A representation of action and belief for automatic planning sys-
tems. In M. P. Gcorgeff and A. L. Lansky, editors, Reasoning about Actions and Plans
- Proceedings of the 1986 Workshop, pages 189-212, Los Altos, CA, 1987. AAAI and
CSLI, Morgan Kauffmann.

[6] M. P. Georgeff. Planning. In Annual Reviews of Computer Science Volume 2, pages
359-400. Annual Reviews Inc., Palo Alto, CA, 1987.

[7] M. P. Georgeff. An embedded reasoning and planning system. In J. Webber, J. Tenen-
berg, and J. Allen, editors, Advance Proceedings of The Rochester Planning Workshop-
From Formal Systems to Practical Systems, pages 79-101, October 1988.

[8] J. Hankamer and I. Sag. Deep and surface anaphora. Linguistic Inquiry, 7(1):391-426,
1976.

[9] E. Hinrichs. Temporal anaphora in discourses of English. Linguistics and Philosophy,
9(1):63-82, 1986.

J1O] A. Huettner. Unpublished Ph.D. thesis, 1989. Linguistics Department, University of
Massachusetts at Amherst. A complete citation was unavailable at time of publication.

[11] K. Huff and V. Lesser. The grapple plan formalism. COINS Technical Report 87-08,

University of Massachusetts, 1987.

[12] D. Kumar, S. Ali, and S. C. Shapiro. Discussing, using and recognizing plans in
SNePS preliminary report - SNACTor: An acting system. In Proceedings of the Seventh
Biennial Convention of South East Asia Rtiional Confederation, pages 177-132, New
Delhi, India, 1988. Tata McGraw-Hill.

111

[13] A. L. Lansky. A representation of parallel activity based on events, structure, and
causality. In M. P. Georgeff and A. L. Lansky, editors, Reasoning about Actions and
Plans - Proceedings of the 1986 Workshop, pages 123-160, Los Altos, CA, 1987. AAAI
and CSLI, Morgan Kauffmann.

[14] V. Lifschitz. On the semantics of STRIPS. In M. P. Georgeff and A. L. Lansky, editors,
Reasoning about Actions and Plans - Proceedings of the 1986 Workshop, pages 1-10,
Los Altos, CA, 1987. AAAI and CSLI, Morgan Kauffmann.

[15] J, P. Martins and S. C. Shapiro. Hypothetical reasoning. In Applications of Artificial
intelligence to Engineering Problems: Proceedings of The 1st International Conference,
pages 1029-1042, Berlin, 1986. Springer-Verlag.

[16] J. P. Martins and S. C. Shapiro. A model for belief revision. Artificial Intelligence,
35(1):25-79, 1988.

[17] D. P. McKay and S. C. Shapiro. Using active connection graphs for reasoning with re-
cur.Ave rules. In Proceedings of the Seventh International Joint Conference on Artificial
Inteligence, pages 368-374, Los Altos, CA, 1981. Morgan Kaufmann.

[18] E. J. Morgado and S. C. Shapiro. Believing and acting: A study of meta-knowledge
and meta-reasoning. In Proceedings of EP14-85 ("Encontro Portugues de Inteligencia
Artificial"), pages 138-154, Oporto, Portugal, 1985.

[19] N, J. Nilsson. Principles Of Artificial Intelligence. Tioga Publishing Company, Palo
Alto, CA, 1980.

[20] A. Paivio, J. Yuille, and S. Madigan. Concreteness, imagery, and meaningfulness values
for 925 nouns. Journal of Expeimental Psychology Monograph Supplement, 76-J-25,
1968.

[21] B. Partee. Nominal and temporal anaphora. In Linguistics and Philosophy, 7(3):243-
286, 1984.

[22] E. Rosch, C. Mervis, W. Gray, D. Johnson, and P. Boyes-Braem. Basic objects in
natural categories. In Cognitive Psychology, 8:382-439, 1976.

[23] E. D. Sacerdoti. A Structure for Plans and Behavior. Elsevier North Holland, New
York, NY, 1977.

[24] S. C Shapiro. The SNePS semantic network processing system. In N. V. Findler, editor,
Associative Networks: The Representation and Use of Knowledge by Computers, pages
179-203. Academic Press, New York, 1979.

1251 S. C. Shapiro. Generalized augmented transition network grammars for generation from
semantic networks. The American Journal of Computational Linguistics, 8(1):12-25,
1982.

112

[26] S. C. Shapiro. Symmetric relations, intensional individuals, and variable binding.
Proceedings of the IEEE, 74(10):1354-1363, 1986.

[27] S. C. Shapiro. Representing plans and acts. In Proceedings of the Third Annual
Workshop on Conceptual Graphs, pages 3.2.7-1 - 3.2.7-6. The American Association
for Artificial Intelligence, Menlo Park, CA, 1988.

[28] S. C. Shapiro, D. Kumar, and S. Ali. A propositional network approach to plans and
plan recognition. In Proceedings of the 19R8 Workshop on Plan Recognition, page 21,
Los Altos, CA, 1989. Mcrgan Kaufmann.

1291 S. C. Ship;ro ; and D. McKay. Boi-directioudi inlerence. in Proceedings of
the Fourth Annual Meeting of the Cognitive Science Society, pages 90-93, Ann Arbor,
MI, 1982.

[30] S. C. Shapiro and W. J. Rapaport. SNePS considered as a fully intensional propo-
sitional semantic network. In N. Cercone and G. McCalla, editors, The Knowledge
Frontier, pages 263-315. Springer-Verlag, New York, 1987.

[311 S. C. Shapiro, B. Woolf, D. Kumar, S. S. Ali, P. Sibun, D. Forster, and S. Anderson.
Discussing, using, and recognizing plans-Annual Report for 1988. Technical report,
North-East Artificial Intelligence Consortium, 1989.

[32] C. Sidner. Towards a computational theory of definite anaphora comprehension in
English discourse. Technical Report TR-537, Massachusetts Institute of Technology,
1979.

[33] A. Tate. Generating project networks. In Proceedings 5th IJCAI, pages 888-93, 1977.

[34] R. Waldinger. Achieving several goals simultaneously. In D. Michie, editor, Machine
Inteligence 8, pages 94-136. Ellis Horwood, Chichester, England, 1977.

[35] B. Webber. So what do we talk about now? In M. Brady and R. Berwick, editors,
Computational Models of Discourse, pages 331-371. The MIT Press, 1983.

[36] B. Webber. Event reference. In Position Papers for TINLAP-S: Theoretical Issues in
Natural Language Processing-3, pages 137-142, Las Cruces, NM, 1987.

[37] B. Webber. Discourse anaphora. In Proceedings of the 26th Annual Meeting of the
Association for Computational Linguistics, pages 113-122, Buffalo, NY, June 1988.
ACL.

[38] D. E. Wilkins. Practical Planning-Extending the Classical Al Planning Paradigm.
Morgan Kaufmann, Palo Alto, CA, 1988.

113

Appendix 2.A TOM Grammar

2.A.1 Verbal Elements in the SNePS ATN

Our first attempt at handling verbal elements in English was a failure. We were trying
hard to go forward in a principled way, from CFG1 + TG2 rules to either a pure CFG or
an FSM.3 The problems mostly arose because as we multiply out the CFG + TG rules,
we first get a hefty explosion of rules, which then must be boiled down by looking for
identities or similarities between rules or states. Similarities between rules or states don't
really result in any reduction in the number of rules or states, but there is a reduction in the
size of the NOTATION, because you can parameterize the rules or states, resulting in an
identity, which can then be collapsed. But this is still really haid, and properly collapsing
the notation was very confusing.

This grammar presents a new approach, by trying to go directly from the CFG +
TG rules to an ATN, which is in consonance with the original intention of Woods' ATN
formalism. In fact, we will end up parameterizing the rules even more thap they are already!
These rules --re primarily drawn from [1].

We start with:

S -, NP VS VP-REST
VS -- (MODAL) (have) (be) V
plus the TG rules of Aux-Hopping, Negation, and Question For-
mation. And don't forget DO-support.

First, we note that for each of the auxiliaries, much the same thing is happening on
the resulting ATN arc, to wit: if the auxiliary is of the right category (MODAL, 'have,' or
'be'), and the auxiliary is in the right form (does it have the suffix which has hopped in
from the left?), traverse the arc. So let's simplify the CFG rule and add a constraint.

VS -* AUX* V

AUX --* MODAL I have be
Constraint: No auxiliary appears more than once. Auxiliaries
go in the following order: MODAL, 'have,' and 'be.'

The rule of Negation adds that if the auxiliary is the first one, it can be followed by a
negative morpheme. That simply goes into the constraint:

VS - AUXtnot* V
AUX - MODAL have I be
Constraint: No auxiliary appears more than once. Auxiliaries
go in the following order: MODAL, 'have,' and 'be.' Optionally,
'not' immediately follows the first auxiliary.

1Context-Free Grammar
2Transformational Grammar
3 Finite State Machine

115

Let's throw in DO-support:

VS --* AUXInot* V
AUX -- do IMODAL have I be
Constraint: No auxiliary appears more than once. Auxiliaries
go in ihe following order: MODAL, 'have,' and 'be.' If 'do' is

an auxiliary, then it is the first and only auxiliary (if you don't
believe in DO-support for positive declaratives, then 'do' must
be followed by 'not'). Optionally, 'not' immediate!y follows the
first auxiliary.

The second step is going to look weird, but bear with me. We want to handle Question
Formation. So, let's eliminate the ordering of subject and auxiliary from the CFG rules
and put it into the constraint:

S -+ VS VP-REST
VS---+ NP AUXInot*V
AUX --+ do MODAL I have I be
Constraint: No auxiliary appears more than once. Auxiliaries
go in the following order: MODAL, 'have,' and 'be.' If 'do' is
an auxiliary, then it is the first and only auxiliary (if you don't
believe in DO-support for positive declaratives, then 'do' must

be followed by 'not'), Optionally, 'not' immediately follows the
first auxiliary. NP appears exactly once and precedes or follows
the first auxiliary (together with 'not').

The third step is to convert this stuff into an ATN. We only need two states to deal
with the VS rule (the S rule is obvious), with the second of those states being trivial (it

reads the V). The arcs of the first state are: PUSH NP, CAT V, CAT NEG, and JUMP.
Why the JUMP? That's because many of these items are optional, and the JUMP is like
an epsilon transition in an NFA.

The constraints are implemented via registers in the ATN, plus lisp code in the tests and
actions on the arcs. The information about modals and auxiliaries is available when the
node is finally built (in VP-END), but is discarded at that point, since we don't know how
to represent tense, aspect and modal information. If someone has an idea, the information

is all there.

116

2.A.2 The ATN

(S
;; The words 'no' and 'yes' can be sentences on their own
(wrd (yes no) t

(setr propositional-anaphor 1*0)

(to YES-NO))

(cat wh-adjunct t
(initialize-vs-machine)
(setr mood :why-question)

(to VS))
(jump VS t

(initialize-vs-machine)))

(YES-NO

(pop (progn (lisp::push (cons 'contains-propositional-anaphora? 't)
sneps::*sentence-facts*)

(setr net
(build

equivl (lisp-escape

(new-base-node some-proposition))

equiv2 (lisp-escape

(if (string-equal
"yes"

(getr propositional-anaphor))
(build lex true)

(build lex false)))))

(getr net))

t))

(VS (PUSH NP (and (null (getr subj))

(member (length (getr auxes)) '(0 1)))

(sendr v v)

(setr prev (getr I*I))

(setr subj (getr I*I))

(new-case-frame :agent '1*1)
(if (and (null (getr auxes))

(null (getr v)))

(setr mood :declarative)

(if (null (getr mood))
(setr mood :yes-no-question)))

(TO VS))

117

(CAT MODAL (acceptable-verbal-ei.ement? :modal)

(process-auxiliary :modal)

(TO Vs))
(CAT V (acceptable-verbal-element? :do)

(process-auxiliary :do)

(TO VS))
(CAT V (acceptable-verbal-element? :have)

(process-auxiliary :have)

(TO VS))

(CAT V (acceptable-verbal-element? :be)

(process-auxiliary :be)

(TO Vs))
(CAT NEG

(e.nd (cql (length (getr auxes)) 1)

(member (getf ctgy (getr prey)) '(v modal))

;; the following means the ATN doesn't allow double

;; negatives, such as 'John can't not go to the party.'

;; or 'John can't be not going to the party.'

(null (getr neg)))

(setr prey *current-word*)

(setr neg t)

(TO VS))
(CAT V

(and (acceptable-verbal-element? :v)

The only main verbs that can appear before the subject

;; are 'have' and 'be.' See the test suite for examples.

(or (not (null (getr subj)))

(member (getr 1*1)
'("have" "be") :test #'string-equal)))

(talk 2 "main verb")

(setr v (get-lexical-feature 'root (getr features)))

(when (null (getr auxes))

(internal-setr
neg

(get-lexical-feature :negative (getr features))))

(if (and (null (getr subj))

(null (getr mood)))

(setr mood :yes-no-question))

(TO VS))
(JUMP VP-ARGS (and (not (null (getr subj)))

(not (null (getr v)))
(typep (getr mood) 'legal-mood))))

118

This node collects arguments of the verb.

(vp-args

(push np (or (getf trans v) (getf obj+pplocative v))

(sendr v v)

(setr obj 1*1)

(new-case-frame :object 'I*1)
(to vp-args))

(wrd if (getf condv v)

(to vp-if))

(cat adj (equal (getf root (getr v)) "be")

(setr predicate 1*I)
(setr type :predicate-adjective)

(to vp-adjuncts))

(push scomp (getf infinitive-scomp v)

(sendr case-frames case-frames)

(sendr subj obj)

(setr iobj obj)

(setr obj I*I)

(new-case-frame :object '1*1)

(new-case-frame :indirect-object 'iobj)

(to vp-adjuncts))

(push s (getf scomp v)

(sendr case-frames case-frames)

(setr obj i*i)

(new-case-frame :object 'l*i)
(to vp-adjuncts))

(cat prep (member (getr 1*I) (getf :particles (getr v))
:test #'string-equal)

(setr particle 1*)

(to vp-particle))

(push pp t

(sendr v (getr v))

(addr vmods 1*1)

(let ((node (cadr (getr Ile)))

(role (intern (the (and symbol (not null)) (car (getr i)))

keyword-package)))

(new-case-frame role node))

(to vp-args))

(jump vp-adjuncts t))

;;;This node ought to collect adjuncts to the verb, such as time/location

119

NPs and PPs or rationale clauses. It only does the last, since the PPs
are treated uniformly as vmods. and therefore are collected in the
VP-ARGS node.

(vp-adjuncts

(push rationale-clause t
(sendr subj (getr subj))
(sendr cabe-frames case-frames)
(setr rationale 11
(to vp-end))

(jump vp-end t))

This node assumes that if you have two NPs, the one preceding the
particle is the IOBJ and the one following is the OBJ.

(vp-particle
(push np t

(sendr v v)
(setr iobj obj)

(setr obj 1*1)

(new-case-frame :object '1*1)
(setf (car (member :object (getr case-frames))) :indirect-object)
(to vp-args))

For sentences like "'call John up"'
(jump vp-args t))

(.p-end

(pop (prvgn

(setr net
(lisp-escape

(if (eq (getr type) :predicate-adjecLiv",

(eval

'(build' t'(if *increment-time?*

'(stime ,(node-named sneps::stm)
etime ,(node-named sneps::etm)))

rel
,(build lex (lisp-escape (getr predicate)))
arg 1

,'lisp'-escape (getr subj))))
(eval

'(build ,C(if *increment-time?*

'(stime ,(node-named sneps::stm)

etime ,(node-named sneos::-etm))

120

agent

(lisp-escape (getr subj))

verb

,(if (getr particle)

(sneps-symbol
(string-append

(getr v) ... (getr particle)))

'(build lex (lisp-escape (getr v)

,; if an arc would point to NIL.

it's not built
indirect-object (lisp-escape (getr iob>)
object (lisp-escape (6etr obj))

rationale (lisp-escape (getr rationale))

.,(lisp-escape (getr vmods)))))))
(if (not (null (getr neg)))

(setr net (lisp-escape
(eval

'(build rel (build lex not)

argi ,(getr net))))))

(setr net

(lisp-escape

(ecase (getr mcod)

(:declarative (getr net))

(:yes-no-question

(eval '(build rel (build lex truth-value)

argl ,(getr net))))

(:why-question (eval '(build rel (build lex why)

argi ,(getr net))))

(:how-question (eval '(build rel (build lex how)

argi ,(getr net)))))))

(new-case-frame :case-frame 'net)

(liftr case-frames case-frames)

This works because VP-END will be the last node executed,
so the case-frames register will be right.

(setq sneps::*case-frames* (getr case-frames))

(when *increment-time7*
(build after (new-base-node sneps::nstm)

before (node-named sneps::stm))

(build after (new-base-node snep3::netm)
before (node-named sneps::etm))

(remember-node (node-named sneps::netm) sneps.:etm)

(remember-node (node-named sneps::nstm) sneps::stm))

121

(getr net))

(or (and (getf intrans v)

(nulIr obj)

(nulr iobj))

(and (getf trans v)

(riot (nullr obj))

(nalltr iobj))

(and (getf scomp v)

(not (nullr obj))

(nullr iJcbJ))

(and (getf infinitive-scomp v)

(not (nulir obj))

(not (nulir iobj)))

(and (getf obj+pplocative v)

(not (nulir obj))

(nulir iobj)

(not (riulir vmods))

(containIS-locatlVe-pp? (getr vinods)))

(and (getf small-clause v)

(not (nulir obj))

(nulir iobj))

(and (getf condv v)
'what?7)

(and (getf prop-att v)

'what??)

(VP--if
(push s t

(sendr case-frames case-frames)

(setr type 'tv)

(setr iobj obj)

(setr obj (lisp-escape (build argi (lisp-escape (getr *)
rel (build lex truth-value))))

(new-case-frame :if-obj 'obj)

(sneps : (lisp-escape (find arg2- (lisp-escape (getr obj))))

some-proposition)

(to vp-args)))

(scomp

(jump scomp-siibj W)

122

(scomp-subj
(wrd to t

This is much like (initialize-vs-machine), but omits some things

;; because we're in a more constrained situation.

(setr neg nil)
(setr mood nil)
(setr v nil)

(to scomp-to)))

(scomp-to

;; the following means the ATN doesn't allow double negatives in

,; infinitive complements,
;; such as 'Mary requested John to not not go to the party.'
(CAT NEG (null (getr neg))

(setr neg t)

(TO SCOMP-TO))

(CAT V ([umember :infinitive
(get-lexical-feature :untensed-forms (getr features))

englex:*legal-untensed-forms*)

(setr v 1*1)
(setr mood :declarative)

(to se.oap-v)))

(scomp-v
(push vp-args t

(sendr subj subj)
(sendr v v)

(sendr neg neg)
(sendr mood mood)
(sendr case-frames case-frames)

(setr predicate 1*1)

(to scomp-end)))

(scomp-end

(pop (progn (liftr case-frames)

(getr predicate))

t))

(comp

(cat v ([u]member :infinitive

123

(get-lexical-feature :untensed-forms (getr features))
englex: *legal-unt ensed-forms*)

(setr v 1*l)
(to vp-args)))

(rationale-clause

(wrd to t

(to rationale-clause-v)))

(rationale-clause-v

(cat v ([u]member :infinitive

(get-lexical-feature :untensed-forms (getr features))
englex :*legal-untensed-foorms*)

(setr v 1*)

(to rationale-clause-args)))

;;doesn't deal with double-object verbs:

(rat ionale-clause-args

(push np (and (getf trans v)
(not (getr obj)))

(sendr v v)
(setr obj 1*1)
(new-case-frame :rat-obj 'obj)

(to rationale-clause-adjective))

(jump rationale-clause-adjective t))

(rat ionale-clause-adj ective

(cat adj (getf small-clause v)
(progn "to deal with elided small-clause subjects, as in

'john lifted weights to keep <John> strong'"

(if (null (getr obj))
(setr obj subj)))

(setr obj
(build rel (build lex (lisp-escape (getr 1*1)))

argI (lisp-escape (getr obj))))

(to rationale-clause-adjuncts))
(jump rationale-clause-adjuncts t))

124

(rationale-clause-adjuncts

(push pp t

(sendr v v)

(addr vmods I*)
(to rationale-clause-adjuncts))

(jump rationale-clause-end t))

(rationale-clause-end

(pop (progn (setr rc

(lisp-escape

(eval
'(build agent (lisp-escape (getr subj))

verb (build lex (lisp-escape (getr v)))

object (lisp-escape (getr obj))

.,(lisp-escape (getr vmods))))))
(new-case-frame :rationale-clause 'rc)

(liftr case-frames)

(getr rc))
t))

(NP
(cat det t (setr art 1*1) (to np-art))

(jump np-art t))

(np-art
(cat quant t (setr quant 1*) (to np-quant))

(jump np-quant t))

(np-quant
(cat adj t

(addl adjs 1*I
(if (get-lexical-feature 'pos (getr features)) :pos :adj))

(to np-quant))

(jump np-adj t))

(np-adj
(cat npr t ; real noun

(setr nh

(find named-

125

(lisp-escape

(or (find (sneps::compose sneps::name sneps::lex)

(lisp-escape (getr 1*1)))
(build named

(lisp-escape (new-base-node dummy))

name
(build lex (lisp-escape (getr I*I))))))))

(lisp:assert (atom (getr nh)) (getr nh)

"NH should be a single node, not a list: -s" (getr nh))

(case (get-lexical-feature 'gen (getr features))

(m (sneps::=-fun (getr nh) 'most-recent-male))

(f (sneps::=-fun (getr nh) 'most-recent-female))

(T nil))
(setr n 1*)
(setr n-type :proper-noun)

(setr nu (get-lexical-feature 'num (getr features)))

(to np-n))
(cat pron t

(setr nh (case (get-lexical-feature 'gen (getr features))

(m (node-named most-recent-male))

(f (node-named most-recent-female))

(n (error "We don't deal with 'it'"))
(t (error "Unknown gender feature"))))

(lisp:assert (not (null (getr nh))) ()

"Couldn't find reference for pronoun.

Have we encountered a proper noun of the right gender yet?")

(setr n 1*0)
(setr n-type :pronoun)

(to np-n))

(cat n t ; real noun

(setr n 1*1)
(setr n-type :common-noun)

(setr noun-class (lisp-escape (class-name (getr 1*M))))

(if (equal (getr art) "the")
(setr nh

(lisp-escape

(eval '(let ((node
(find (sneps: :member- sneps: :class)

,(getr noun-class))))

(lisp:assert
(null (cdr node)) (node)

"'The X' should yield only a single node, -

126

not many: -s" node)
(if node

(progn (eval '(assert rel definite

defarg ,node))
node)

(progn
(assert class ,(getr noun-class)

member (new-base-node dummy))
(assert rel definite

defarg (node-named dummy))
(node-named dummy)))))))

(setr nh (lisp-escape
(eval '(progn (assert class ,(getr noun-class)

member (new-base-node dummy))
(assert rel indefinite

defarg (node-named dummy))
(node-named dummy))))))

(case (get-lexical-feature 'gen (getr features))
(m (sneps::=-fun (getr nh) most-recent-male))
(f (sneps::=-fun (getr nh) most-recent-female))
(T nil))

(setr nu (get-lexical-featurx% 'num (getr features)))

(to np-n))
(cat n nil ; for complex noun?

(setr n 1*1)
(addl adjs 1*1 :noun)
(to np-adj)))

;; In certain circumstances, proper nouns and pronouns can take PP
;; modifiers (e.g., ''Tom in the next room'' or ''You with the nose,'')
;; but allowing this usually means that the first parse is an unwanted
;; parse, so we are disallowing PP modification of nouns other than
;; common nouns.

SDA 5/10/89

{\tt \noindent

(np-n

(push pp ;; hack alert!

(and
(eq (getr n-type) :common-noun)
;; either both can apply to a physical object, or neither (hack!)
(eq (get-lexical-feature 'non-physical (getr features))

(get-lexical-feature 'non-physical (getr n))))

127

(sendr v v)
(build argl (lisp-escape (getr nh))

rel (lisp-escape (car (getr 1*1)))
arg2 (lisp-escape (cadr (getr 1*1))))

(to np-n))
(pop (progn

(lisp:assert (not (null (getr nh))) () "register NH is null")
(do* ((adjs (getr adjs) (cddr adjs))

(word (car adjs) (car adjs))

(prop (cadr adjs) (cadr adjs)))
((null adjs))

;; because of odd behavior by ADDL

(eval '(assert argl , (getr nh)
rel (build lex (case prop

((:adj :noun) 'has-property)

(:pos 'is-part)))

arg2 (build lex ,word))))

(getr nh))
adjs - adjectives -- associate via hasproperty-link

;;the predicate DETAGREE tests for agreement between
;;the ART and N registers to screen out ''a books''

and ''an table''
(detagree)))

(pp
(cat prep (not (member (getr 1*1) (getf :particles (getr v))

:test #'string-equal))
;;This code converts the prep to a relation
(setr tmp i*l)
(if (not (stringp (getr tmp)))

(error "preposition is not a string: -s" (getr tmp)))
(setr tmp (string-upcase (getr tmp)))
(setr tmp (intern (getr tmp) (find-package 'sneps)))

(if (not (relation? (getr tmp)))
(error "preposition is not a relation: -s" (getr tmp)))

(setr prep tmp)

(to pp-prep)))

(pp-prep
(push np (member (getf ctgy) '(n npr det adj))

;; predicate fails if the next word cannot begin an NP

(sendr v v)

128

(setr np 1*)
(to pp-np)))

(pp-np (pop (list (getr prep) (getr np)) t))

129

NAIC Final Report: Discussing, Using and

Recognizing Plans

No-cost Extension, September-November, 1989

Beverly Woolf
Computer & Information Science

University of Massachusetts
Amherst, MA 01003

During the period September-November, 1989, the University of Massachusetts
group adapted their system to use SNePS 2.1, and successfully completed tests parsing
the tutoring paragraph and questions relevant to the tutoring session. The tasks
carried out during this period include:

1. adaptation to SNePS 2.1

2. refinements to rules for answering questions

3. modifications to focussing to make it work exactly as advertised

4. refinements to representations generated by parser

5. merging of knowledge bases used to support answers to different questions.

Two problems interfered with completion of the work:

1. Massive amounts of trace output: During a test run, up to 12000 lines of output
could be generated, most of which concerns multiple deductions producing iden-
tical inferences. Wading through all the output is almost impossible, making
the task of off-line debugging very difficult.

2. Non-intuitive nature of trace output: It was very difficult to follow a chain
of reasoning, since the trace output is ordered accordib,8 , when inierences

131

are made. Consequently, the trace output was virtually useless to us, beyond
serving as proof that a deduction had been successfully made. The introduction
of a facility which shows the chain of reasoning would be invaluable.

These are not intended as criticisms of the SNePS system but rather as feedback
from users on how the system may be made more convenient to use.

Question 3: The UMass system is designed to answer three questions about a
paragraph that was parsed and comprehended by the system (see Final NAIC report).
Until very recently, we thought we had a solution to Question 3, but we now realize
that answering this question is much more complicated than we had thought. While
lxi 1o longer have time to devise and program a complete revised solution, we can
sketch out our thoughts on the problem.

Essentially, to answer the question

"Why did Nancy ask Tom if inanimate objects exert a force?"

the system must understand that Tom's knowing the domain of Statics is sufficient for
him to answer Nancy's question, and therefore the question is a good one for probing
his knowledge of the domain. We would like to be able to say that is it necessary and
sufficient that one know a domain in order to answer a question about it. However,
this is clearly not always the case; for example, Tom could cheat.

For the system simply to know that the question is about Statics is difficult,
because it is not enough to know that each term in the question is in the domain,
since the terms may be related in such a way that the composite meaning falls outside
the domain. Now, to some extent we can control which relations appear in the
composite meaning representation, via our control of the ATN, but this would be an
unsatisfactory ad hoc solution.

Because a realistic depth of understanding in the knowledge representation is so
difficult to achieve, we have simply chosen to leave this question for possible subse-
quent studies.

132

MISSION

of

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control, N
Communications and Intelligence (C3I) activities. Technical and

engineering support within areas of competence is provided to

N ESD Program Offices (POs) and othe- ESD elements to N
perform effective acquisition of C'I systems. The areas of
technical competence include communzcations, command and N

N control, battle management information processing, sur'eiltanc

sensors, intellgence data collection and handling, solid state

N sciences, elect romagnetics, and propagation, and electronic

reliabzlity/maintainabilt, and compatibility.

Nt N

