
AD-A234 2
NASA Contractor Report 187528
ICASIE Report No. 91-19

ICASE
DOMAIN DECOMPOSITION WITH LOCAL
MESH REFINEMENT

William D. Gropp

David E. Keyes AR 29

Contract No. NASI-18605
February 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23665-5225

DISTRIBUTION STATEIVUNT A

Approvad for public releaso;
Dizgribiuion Unlimited 9 ~ 0

S)
DOMAIN DECOMPOSITION WITH LOCAL

MESH REFINEMENT'

William D. Gropp2 __ 7
Mathematics and Computer Science Division ;z . 0

Argonne National Laboratory 0.
Argonne, IL 60439 -

and
David E. Keyes3

Department of Mechanical Engineering Ai lt cod
Yale University 1 Zi,-Aji -dfor

New Haven, CT 06520

ABSTRACT

We describe a preconditioned Krylov iterative algorithm based on domain decomposition
for linear systems arising from implicit finite-difference or finite-element discretizations of
partial differential equation problems requiring local mesh refinement. To keep data struc-
tures as simple as possible for parallel computing applications, we define the fundamental
computational unit in the algorithm as a subregion of the domain spanned by a locally uni-
form tensor-product grid, called a tile. In the tile-based domain decomposition approach,
two levels of discretization are considered at each point of the domain: a global coarse grid
defined by tile vertices only, and a local fine grid where the degree of resolution can vary from
tile to tile. One global level and one local level provide the flexibility required to adaptively
discretize a diverse collection of problems on irregular regions and solve them at convergence
rates that deteriorate only logarithmically in the finest mesh parameter, with the coarse
tessellation held fixed. A logarithmic departure from optimality seems to be a reasonable
compromise for the simplicity of the composite grid data structure and concomitant regular
data exchange patterns in a multiprocessor environment. We report some experiments with
up to 1024 tiles, comment on the evolution of the algorithm, and contrast it with optimal
nonrefining two-level algorithms and optimal refining multilevel algorithms. Computational
comparisons with some other popular methods are presented.

1Major revision of Yale University Department of Computer Science Research Report 726, August 1989
version.

2The work of this author was supported in part by the Applied Mathematical Sciences subprogram of the
Office of Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the Office of
Naval Research under Contract N00014-86-K-0310, and by the National Science Foundation under Contract
DCR 8521451.

3The work of this author was supported in part by the National Science Foundation under Contracts
EET-8707109 and ECS-8957475 and by the National Aeronautics and Space Administration under NASA
Contract NAS1-18605 while the author was in residence at the Institute for Computer Applications in Science
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1. Introduction
The combination of domain decomposition with preconditioned iterative methods provides a

framework that extends the usefulness of numerical techniques for certain special partial differential
equation (PDE) problems to those of more general structure. Nonsmooth features, nonseparable
geometries, or massive sizes of practical problems limit the application of many "standard" numer-
ical techniques. Direct methods are rapidly defeated by problem size. "Fast" methods which take
advantage of special coefficient and grid structure often do not apply globally. Iterative methods
often depend for efficient implementation on regular grids that, if global in extent, are inconsistent
with accurate and economical resolution of the physics of the problem. However, the domains of
problems with these features can often be decomposed into smaller subdomains of simpler struc-
ture, increasing the utility of extant software libraries, particularly as components of precondition-
ers. Moreover, the domain decomposition can be made to produce a convenient mapping of many
problems onto medium-scale parallel computers. Our primary focus in this paper is the incorpo-
ration of spatially varying mesh refinement requirements into a domain decomposition algorithm
based on finite differences. We illustrate the convergence behavior of the algorithm on a variety of
two-dimensional elliptic PDE problems,

£u= f on fl, with au + bun =g on d1, (1.1)

including non-selfadjoint, nonseparable geometry cases. We also point out features of the method
that are relevant to a parallel implementation. We defer most discussion that would be distinctly
architecture- and performance-related to a companion paper [25].

Many PDE problems that are "large" in the discrete sense are so because the continuous
problems from which they are generated require resolution of several different length scales for the
production of a meaningful solution. The value of compromising between the extremes of globally
uniform refinement (which leads to simple and usually vectorizable algorithms but wastes time and
memory) and pointwise adaptive refinement (which minimizes the discrete problem size for a given
accuracy requirement but leads to complicated data structures) has been recognized for some time
and described in contexts too numerous to acknowledge fairly. Locally Uniform Mesh Refinement
(LUMR) characterizes one such class of discretizations, based on composites of highly structured
subgrids. Many treatments of LUMR in the literature pertain to explicit methods for transient
problems, a class with its own advantages (see [3] and references therein) and limitations [44]
which is somewhat distinct from ours. Implicit treatments of locally regular refinement for elliptic
problems include approaches arising out of classical multigrid ([7]; see [36] for a concise state-
of-the-art treatment), a nonconforming spectral technique [34], and methods rooted in iterative
substructuring for finite element problems [5, 15].

Computationally practical locally uniform grids are usually expressible as the union of a coarse
uniform tensor-product grid covering the entire domain with one or more refined tensor-product
grids defined over subregions, including the possibility of multiple, nested levels. Generalizations
of these grids within the LUMR framework include allowing the grids at any particular level of
refinement to themselves be the union of tensor-product subgrids, and reinterpreting "uniform" as
"quasi-uniform" to allow general curvilinear coordinates for custom body- or solution-fitting. Few
parallel implementations of schemes of this generality have been reported thus far. Selected for
consideration here is a structurally restricted form of LUMR in which refinement occurs exclusively
within complete cells of a quasi-uniform coarse grid, as described in Section 3 below.

The goal of the present contribution is an LUMR nethodology with starkly simple data struc-
tures for efficient portability to a variety of parallel machines. Current implementations on two
distributed- and two shared-memory parallel machines share approximately 98% common code
measured by line count, inclusive of comments, exclusive of standard libraries. The methodology

borrows from the mesh refinement and domain decomposition literature and from the authors' own
experience in these areas and in parallel computation [22, 23, 32]. The serial arithmetic complexity
bows somewhat to modularity, portability, and overall parallel performance, in which we include
both efficiency and total execution time. For example, by refining only in units of full coarse-grid
cells, we often impose a tendency towards refinement in subregions where it would be unnecessary
from the viewpoint of truncation error alone. As another example, the convergence rate of many
domain decomposition algorithms is mildly dependent upon a coarse-grid resolution which may be
chosen with criteria beyond convergence rate, such as the balance of work among multiple pro-
cessors. Our algorithm therefore does not scale (with constant problem size) to indefinitely large
numbers of processors, but it does sit comfortably on today's MIMD supercomputers. We comment
in the final section about a hybridized two-level algorithm suitable for massive parallelism on an
MIMD cluster of SIMD subclusters.

Prior to the discussion of LUMR, Section 2 describes a domain decomposition algorithm em-
ploying "nearly" parallel preconditioners in conjunction with generalized minimal residual (GM-
RES) iteration, a nonstationary method not dependent upon operator symmetry. In two dimen-
sions, the preconditioner involves three phases: a global coarse grid solve, independent solves along
interfaces between subdomains, and independent solves in the subdomain interiors. The global
coarse-grid solve is an essential feature, as it provides the only global exchange of information in
the preconditioner itself. We introduce a simple "tangential" operator preconditioning for the sub-
domain interfaces that is preferable to the interface probe preconditioning advocated in our earlier
work on convective-diffusive systems with stripwise decompositions [31]. We also prefer exact sub-
domain solves to incomplete factorizations. These "exact solves" can be performed by multigrid
if the subdomains become too large for direct methods. For multicomponent problems in which
source terms codominate with convection and diffusion, block incomplete factorization may also be
an economical subdomain solver.

The main body of the paper (Section 4) is the collection of numerical experiments on two-
dimensional elliptic boundary value problems (BVPs). The experiments include reentrant domains,
non-selfadjoint operators, and mixed boundary conditions. Up to 1,024 coarse-grid elements, called
tiles, are used. The last two subsections of Section 4 compare the boxwise decompositions used
throughout the paper with stripw'ze decompositions exploiting physical anisotropies, as well as
with some conventional undecomposed solvers.

Section 5 indicates some future directions for this methodology.

2. An Iterative Domain Decomposition Algorithm

Preconditioned iterative methods and domain decomposition provide a framework that includes
a wide class of algorithms. This framework comprises four elements:

1. a global operator arising from the discretization of the PDE (or system of PDEs);
2. an approximate inverse, or preconditioner, for the global operator;
3. an iterative method requiring only the application of the preconditioned operator; and

4. a geometry-based partition of the discrete unknowns so that size, locality, and uniformity can
be exploited in forming the action of the preconditioned operator.

Since the numerical analysis literature contains many successful discretization schemes and iterative
methods specialized for different operator properties, such as the presence or absence of definite-
ness and symmetry, the recent burgeoning effort in iterative domain decomposition algorithms has
concentrated primarily (though not exclusively) on the interaction of the second and fourth of these
elements. In the parallel context, this is a natural preoccupation because the bottleneck to paral-
lelism usually (though not exclusively) lies in the requirement of the global transport of information
in the preconditioner.

2

Subsection 2.1 establishes block matrix notation corresponding to the decomposition of the
domain. The rest of Section 2 supplies detail important to specialists and to implementors of the
algorithm, but can be passed over in a casual reading.

2.1. Iterative Methods and Operator Structure
Many of the numerical examples described in Section 4 rule out the use of iterative methods

based on symmetry but permit the assumptions of definiteness and diagonal dominance. In partic-
ulai, full or incomplete factorizations of preconditioner matrix blocks can be undertaken without
pivoting. Because of its robustness, we adopt the parameter-free generalized minimal residual
(GMRES) method [42] as the outer iteration. The main disadvantages of GMRES, its linear and
quadratic (in iteration index) memory and execution time requirements, respectively, must be mit-
igated by scaling and preconditioning. For other acceleration schemes, such as Chebyshev, the
memory and execution time requirements may be only constant and linear, respectively; however,
GMRES dispenses with the difficulty of estimating parameters. The recently proposed, parameter-
free, bounded recursion Bi-CGSTAB method [45] combines the above-mentioned advantages and
deserves further study. In preliminary tests we have found it usually to be competitive in execution
time with GMRES, but it can in some instances be substantially slower. Other methods for the
iterative solution of nonsymmetric systems, such as QMR [20], also deserve broader investigation.
In solving Au = b each of these methods requires an initial iterate for x that it improves through
repeated calls to a routine forming the product of A with a direction vector. For improved conver-
gence we employ a change of variables, iteratively solving (AB- 1)y = b for y and then Bx = y for
x. Here, B is a right preconditioner matrix, whose inverse action should be convenient to compute
and should cluster the eigenvalues of AB -1.A arises from an FD, FE, or FV discretization, with
a local stencil. The stencil is regarded as uniform in this section and generalized in Section 3.

The type of domain decomposition used here involves unit aspect ratio subdomains, as opposed
to thin strips joining opposite sides of a domain; therefore, interior subdomain vertices are created.
We denote all subdomain vertices "cross points" but distinguish between interior and boundary
cross points. Ordering the interior points as well as the physical boundary points other than cross
points first, the interfaces connecting the cross points plus the cross points on the boundary next,
and the interior cross points last imposes the following outer tripartition on the global discrete
operator A: AI AIB Alc

A (ABI AB ABC (2.1)
AcI AeB Ac

Note that the partitions vary greatly in size. If H is a quasi-uniform subdomain diameter and h a
quasi-uniform fine mesh width, the discrete dimensions of AJ, AB, and AC are 0(h- 2), O(I-lh-1),
and O(H- 2), respectively. The numerical experiments described below employ a five-point stencil,
(extended in [33] to second-order upwind differencing with a skew six- or seven-point stencil). No
cross-derivative terms appear; therefore, there are no corner points in the stencil, and blocks Ale
and A0 1 may be set to zero.

The outer structure of our preconditioner B may be a conformally partitioned block upper
triangular matrix:

B = BB ABC) (2.2)0 0 BC

whose components are elucidated in the next subsection. The application of B -1 to a vector
v = (VI, VB, Ve)T consists of solving Bw = v for w = (w, WB, we)T. It begins with a cross-point
solve with B 0 for wc. This updates through ABC the right-hand sides of a set of independent

3

interface solves for subvectors of WB. These, in turn, update the right-hand sides through AIB of a
set of independent interior solves for subvectors of wl. For a stencil with corner points, Ac would
be nnnzero, and the cross-point result would also update the interior block right-hand sides. Within
the preconditioner, however, there is no dependence of the interface solution upon the result of the
interior solution, or of the cross-point solution upon either. This fact distinguishes the method
from [6] and [9] and means that the O(h- 2)-sized block of the preconditioner is visited only once
per iteration.

A useful optimization is available when the tilde quantities in the top row are taken equal to
their tilde-free counterparts. In this case, it is readily verified that the right-preconditioned form
of the operator is

0 0
AB - = ABIA- (AB- ABIA7 1AIB)BB1 (I-(AB - ABIA7 1AIB)BB1)ABcBC1 . (2.3)

0 ACBB 1 (Ac - ACBBB1 ABC)B 0
1 J

The identity block row means that O(h- 2) of the unknowns in the Krylov vectors can go untouched
(except for scaling) throughout the entire solution process until the preconditioning is unwound in
the final step, after the interface and cross-point values have converged. Since A-1 is needed to
advance the solution on these separator sets, we cannot escape solving subdomain problems, but
substantial arithmetic work can be saved.

2.2. Components of the Preconditioner
The derivation of the coefficients of the preconditioner blocks is as follows. The cross-point op-

erator BC is simply an H-scale coarse-grid discretization of the continuous PDE. To accommodate
Neumann or Robin boundary conditions, we include physical boundary points lying at subdomain
vertices in the cross-point system in this step. (Later the boundary cross-point values are overwrit-
ten with the results of more accurate h-scale data from the interface solve. This distinction is, of
course, moot for Dirichlet data but important for boundary conditions involving spatial gradients.)
The cross-point system right-hand side at interior points can be taken as the injected vertex values
of the fine-grid right-hand side, though we remark on a better choice below. The current imple-
mentation supports a direct solve on the coarse-grid system. If strip Jecompositions are used, there
is no cross-point system, and the lower-right block of the preconditioner is simply the interface
system described next.

Unlike the coarse-grid and subdomain interior problems, which possess the full physical dimen-
sion of the domain of the underlying PDE and thus inherit a literature full of preconditionings, the
lower-dimensional interfacial equations are properly derived from a pseudo-differential trace opera-
tor. A theoretically well developed approach for preconditioning the interfaces has been developed
for the non-selfadjoint case in a setting requiring two sets of subdomain solves per iteration [9],
but we have experimented instead with three approaches referred to as tangential, truncated, and
interface probe. The tangential interface preconditioner is the one-dimensional discretization of the
terms of the underlying operator that remain when the derivatives normal to the interface are set
to zero. It is equivalent to solving a two-point BVP with boundary conditions inherited from the
interior cross-point values or from the physical boundary. The truncated interface preconditioner is
a discretization of the full underlying operator, with the coefficients associated with noninterfacial
unknowns set to zero. The interface probe preconditioner has been described elsewhere [10, 12,
31] as a low-bandwidth approximation to the true capacitance matrix of the interfacial unknowns
in the ambient matrix corresponding to the degrees of freedom of the interface itself and the two
subdomain interiors on either side. For all of the results in this paper, the tangential preconditioner
is used because it performed better than the others on average in our tests, as described in more
detail in [24].

4

The subdomain interior equations consist of approximate fine-grid discretizations of the PDE
over local regions, with physically appropriate boundary conditions along any true boundary seg-
ments and Dirichlet boundary conditions derived from the already-available wB at artificial inter-
faces. Only first-order interior differences are accommodated in the physical boundary conditions
of the preconditioner, though first- or second-order boundary conditions may be elected in the
operator A. The current implementation supports full LU Gaussian elimination with both banded
and sparse data structures, fast cyclic reduction, incomplete LU decomposition, and modified in-
complete LU decomposition. To maintain a reasonable scope, we concentrate on full elimination
results here. Full elimination on the interiors yields the best iteration counts, though not always
the best execution times (for large H/h). Like the interface solves, each subdomain interior solve
may be performed independently.

2.2.1. A Better Variant of the Cross-Point System
In keeping with an exposition that is as independent as possible of particular discretization

techniques, the right-hand side of the cross-point system was assumed above to be the injected
vertex values of the fine grid weighted by the subdomain areas instead of the grid-cell areas. It is
necessary, however, to rely on a finite element discretization with a hierarchical basis to properly
motivate the construction of a better cross-point system. In particular, we have obtained faster
convergence by using the function space decomposition approach of [6], which yields essentially the
same coefficient block BC but replaces the simple injection of fine-grid values with ramp-weighted
averages of interface values along all interfaces feeding a given cross point. Specifically, the element
of the right-hand side vc corresponding to an interior subdomain vertex is a discrete approximation
to one-quarter of the sum of four line integrals of the form

2 v(S) 1) ds , (2.4)

where s parameterizes the interfaces leading from the vertex in question. This leads to the following
sequence of steps to produce a preconditioned matrix vector product u from input v, where v =

(VI, VB, vC)T:

First, vc is reweighted according to (2.4). The reweighting has the matrix representation
v'= Cv, where

(1 0 0),
0K J

J is diagonal with all positive elements, all elements of K are nonnegative, and the row sums of
K and J together give unity. Then, as above, we solve for w = B - 1v' and multiply by A to get
u = Aw. Thus, the preconditioned matrix vector product is u = AB -1 Cv. Treating everything
apart from A itself as the effective preconditioner Q, we find that Q- 1 = B-IC, or equivalently,
Q = C-B. C- 1 is straightforwardly seen to be1 0 0)

C- 1 = I 0)

0_j-1K j-1

so that

0 -(KBB ABC
0-J-1KBB J-1 (BC- AC

. 0-... 00... D- .. -D •

.0...- -0- - 0 .. - 0-"
00100100001000000
. ... -D- -- -

. D-- .0-

... 0 .. - 0 -
00000000000000000
S ...- -0

0... 0- -- 0 - .. 0 •-

0010000 000000*000
.0 -0..... ... - .." .• "

... 0 .. "O •

Figure 1: A sample partition of the unknown vector u into
uc (circles), UB (squares), and ui (dots) for a 4 x 4 decom-
position of a square into tiles.

When tilde-free quantities are used in the first block row, AQ - 1 has a first block row equal to the
identity. Thus, the remark following equation (2.3) about not touching the upper portion of the
Krylov vectors, except for scaling, remains valid. TIhough the preconditioner with ramp weighting
of the right-hand side of the cross-point system is no longer strictly block triangular, it still requires
only one solve with Al per iteration.

2.2.2. A Simple Example of an (A, B) Pair
An example may be the most effective way to indicate how AB - I is applied to a vector, this

being the central action in any preconditioned iterative method for a finite local discretization of
(1.1). For simplicity, consider L as the negative of the Laplacian, b = g = 0, and fl as the unit
square partitioned uniformly into 4 x 4 subdomains of 4 x 4 cells each (i.e., h = 1/16 and H = 1/4),
and employ second-order finite differences. (We emphasize that for selfadjoint and/or constant
coeffcient problems such as this, several better techniques exist than the one now illustrated.)

As shown in Figure 1, there are 172 degrees of freedom, including 32 interior crosspoints in uc,
24 x 3 interior interface points in UB, and 16 x 32 regular interior points in uj. Of the remaining
64 boundary points, the 12 attached to interfaces are grouped with UB, and the balance with uj.
The matrix A is a simple permutation of pent{-1... - 1 4 - l... - 1}, except that boundary
rows are replaced with corresponding identity rows. The right-har~d side is the corresponding
permutation of h2foj, again with boundary conditions imposed in the appropriate rows. The block
BC is pentf-1... - 1 4 - 1... - 1}. BB is block diagonal with 24 copies of tri{-1 2 - 1}, some
augmented with boundary identity rows. AIBC is the corresponding block of A, and the entire
interior row set is that of A. Before B - I is applied to a vector v, the components vC are replaced
with the interface averages described above and scaled by H 2. Following the block triangular
backsolve with (2.2), a simple matrix-vector multiply is done with (2.1).

2.3. Parallelism in the Preconditioner
We note that the permutation into block matrix form described in this section is a purely

formal one for notational convenience. The data structure used in a computer implementation is
a local natural ordering of gridpoints within a natural ordering of tiles, as detailed in Section 3
below. The parallelism within Al and BB is not visible at the level of blocking in (2.2), but the
parallel bottleneck represented by communication-intensive BC and the sequential use of that result
in multiplications with ABC (and, generally, Ata) blocks is evident. We mention variants of the
algorithm that alleviate this bottleneck at the price of some extra local work and extra storage.

The solve with BC itself can be performed in any of three ways: redundantly on each proces-
sor after broadcasting the required coefficient data, with single-threaded code between collecting

6

the coefficients on a single processor and redistributing the results, or in a fully (or partially) dis-
tributed fashion. Determination of the most efficient technique is generally decomposition- and
network-dependent, since problem size and computation-to-communication ratios enter the com-
plexity estimate in nonisolable ways. Some global data exchange is necessary in this phase, so it
may be desirable to prevent idling on a given multiprocessor to allow the remaining local exchange
phases to proceed before the cross-point results are available.

The sequentiality of the cross-point solve can be broken by the following technique, which
exploits the relatively small size of the cross-point system. Lumping the balance of the unknowns
together, let (2.2) be condensed to

where Bh contains the upper 2 x 2 blocks of (2.2), and B11 is just another name for Bc. Consider
the application of the preconditioner

B(Wh) (Vh

with the sequential solution
W11 = BI 1 VH,

Wh = B-(vh - BhIIwH).

A preprocessing step can compute and store the vectors gk = (B-")(BhI1)ek, k = 1,...,K, where
there are K interior cross points and ek is the kth unit vector in this K-dimensional space. Once
wH = B 1VH and w(1) - B'Vh are independently solved for, we can (through local computations)

form wh h A(1) - Ek(WH)kgk. By construction, the support of each gk is limited to the four tiles
sharing vertex k, and the cross points possess a four-coloring that allows the gk to be computed
in just four sets of independent subdomain solves (for a scalar PDE). This process was inspired
by, and has an interpretation in terms of, function space decompositions. Indeed, the function
space framework is critical in generalizations to multilevel preconditioners, but for a two-level
preconditioner the algebraic description above is sufficient.

3. Mesh Refinement by Tiles

This section describes a simple mesh refinement philosophy based va a regular tessellation of
two-dimensional domains into subdomain "tiles." A tile is a tensor-product of half-open intervals
in each coordinate direction, except that a tile abutting a physical boundary along what would
ordinarily be one of its open edges is closed along that edge. Each tile possesses its own interior,
at least two of its four sides, and at least one of its four corners and is locally discretized on a
tensor-product grid. Although the specific convention is arbitrary, we assume for definiteness that
in its own local right-handed coordinate system, each tile contains its origin and its x and y axes
(see Figure 2).

We require that the cross points be embeddable in a tensor-product global quasi-uniform
coarse grid, from which only points lying exterior to the (possibly multiply-connected) boundary
are missing. Irregular tiling patterns such as in Figure 3b are ruled out for convenience in setting
up the coarse grid system and keeping the code that manages the interfacial data exchanges short.
However, there is no requirement that the domain itself be of tensor-product type; the decompo-
sition in Figure 3ais permissible. Without coordinate stretching and other body-fitted coordinate
transformations, the embedding requirement would generally enslave the granularity of the de-
composition to the geometric complexity of the domain, a situation that we wish to avoid since

7

Figure 2: The anatomy of a tile. Unless closed by a physical
boundary, a tile is open along its high-x and high-y perimeter.

..... : E..

(a) (b)

Figure 3: Sample tessellations: (a) is permissible, (b) is not.

granularity has important implications on load balance and convergence rate. Though we have yet
to fully implement them, domain-wide coordinate transformations represent a simple extension in
principle. From an algebraic point of view, an orthogonal body-fitted coordinate transformation is
indistiguishable from a perturbation to the operator coefficients. Preserving orthogonality should
create less of a strain on a mesh generator acting over local regions than it does in much current
practice using global mappings.

Associated with each tile is the data defined over a quasi-uniform grid covering its portion of
the domain and a set of operators for executing its block-row portions of the preconditioner solve,
as described in Section 2. In our object-oriented approach, these operators can vary widely from
tile to tile. In our present examples, however, we assume that the grids covering "ndividual tiles
share a common parent uniform tile (of arbitrary discrete size) and are refined only in powers of 2.
We can therefore later indicate refinement levels using the graphical shorthand of Figure 12 where
the integer indicates the logarithm of the refinement ratio.

3.1. Tile-Tile Interfaces
To minimize restrictions on the structure of adjacent tiles (and to eliminate redundant com-

munication between tiles in a multiprocessor implementation in which different tiles will generally
be assigned to different processors), each tile stores and maintains, in addition to its own data,
the data associated with a buffer region of phantom points equal in width to one-half of that of
its associated discrete stencil. Figure 4 illustrates the buffer unknowns for a five-point stencil,
superimposed on Figure 2. With the exception of these redundant phantom points, each point of
the domain is uniquely associated with a single tile.

8

I I I I I

I I I I I
I I I I I

Figure 4: Sample tile, showing the computational buffer re-
gion (dashed extensions) required for the completion of stan-
dard five-point stencils centered at the points of the local
grid.

Data at the phantom points is supplied in a manner dependent upon the internal structure and
refinement ratios of the associated adjacent tiles. A finer tile obtains biquadratically interpolated
data from its coarser neighbor. Since the problems studied here involve second-order operators,
this allows the use of conventional finite-difference techniques in generating the difference equations
at the subdomain interfaces. (Bilinear interpolation alone would limit the potential accuracy of
a second-order differencing scheme, as observed in some preliminary experiments.) A coarser tile
obtains its data by simple (unweighted) injection. That is, the value at the point in the finer
neighboring tile that lies on the extended coarser tile stencil is scaled appropriately and used in the
coarser grid.

We note that such a simple scheme neither guarantees discrete flux conservation nor delivers
a symmetric A for a selfadjoint L. However, the algebraic method does not depend on either
property. The focus of this paper is on the solution of a consistent set of discrete equations. More
careful attention to the conservation properties of the discretization has been given in the context
of locally regular refinement in [18] and [36], for instance.

Each iteration of GMItES requires multiplying with A, which involves at most nearest-neighbor
data exchanges between tiles to complete the local stencils, and solving with B, which likewise
requires only nearest-neighbor data exchanges to form right-hand sides, apart from the globally
cooperative task of solving with BC.

The selection of refinement criteria is a much-studied, yet still open problem; see [29] and
the collections [1, 19] for representative work in this area. The refinement criteria, however, are
orthogonal to the equation-solving aspect considered here, except to the extent that a part of the
computational work required by one of these tasks may be a by-product of the other. In the
examples, "good" refinement strategies can be done manually.

In general, tile interfaces can be the site of changes in the discretization besides just the
refinement level. For instance, the discrete stencil can change order at interfaces. Even the form of
the operators or the number can change at interfaces while still preserving the subdomaip uniformity
required for efficient subdomain solution algorithms. As a motivational example, a reacting flow
problem frequently consists of large regions in which there is only transport of mass, momentum, and
thermal energy but no reaction among stable constituents to all adequate orders of approximation.
In other regions it is essential to retain a full set of composition variables, including trace radicals,
and reaction terms must also be retained in the equations. To accommodate such generality, the
routines that pack the buffer regions are responsible for providing the necessary mappings.

9

L
I I I

II I
II I

Figure 5: One-dimensional schematic of the tile basis func-
tions.

3.2. Physical Boundaries
For generality, the equations for the physical boundaries are incorporated into the overall

system matrix, including Dirichlet conditions. Our implementation allows inhomogeneous Robin
boundary conditions at all boundary points, namely,

a~x, y)u + b~x, y)T = c(x, y).

Either first- or second-order one-sided difference approximations to tlhe normal derivative term may
be employed in the actual operator, but only first-order approximation is used in the preconditioners
(to preserve uniformity of bandwidth). Though tempting in their simplicity, Dirichlet boundary
conditions alone in the preconditioner were found to perform poorly in practice in mixed BC
problems, as expected. The hierarchical structure of the preconditioner renders the BC mismatch
between the operator and preconditioner difficult to study theoretically. The theory in [35, 39]
reveals that spectral equivalence is generally lost in such BC mismatches, but only a small number
of eigenvalues of the preconditioned operator may be responsible.

3.3. Comparison with Other Approaches
Before appealing to numerical experimention to illustrate the techniques presented above, we

briefly compare them with other known techniques arising from similar motivations.
The field of locally uniform mesh refinement is spanned by a continuum of resolution strategies

governed by clustering rules that control the size and shape of the refined subregions. Global
refinement lies at one extreme and pointwise adaptive refinement at the other. As soon as the global
tensor product mesh is abandoned, a host of difficult practical decisions must be made about data
structures and clustering algorithms. The logic required to handle the numerous types of subgrid-
subgrid interactions that can arise and to ensure the consistency of the possibly distributed data
structure can be a significant impediment to efficient parallelism. It is impractical to use domain-
based "horizontal" decompositions to obtain distributed parallelism if refined subgrids are allowed
to span the coarse grid in a general nested fashion. Instead, parallel decompositions of general,
multilevel, locally uniform composite grids should proceed by level, as argued and implemented in
[37]. H~owever, "horizontal" neighbor-neighbor interactions on a tensor-product grid of individually
refined tiles are simple.

The tile algorithm requires only one grid that possesses connectivity with arbitrarily distant
regions of the domain, namely, the grid of cross points. In the framework of the hierarchical basis

10

function technique [2, 47], we have simply a two-level hierarchy, but the higher level may be different
in different subregions. Figure 5 is a one-dimensional illustration. This represents a severe conden-
sation of the range of intermediate scales present in multilevel local uniform refinement, on which
the asymptotic convergence theory is based. Tiles are much closer to beir.g the software equivalent
of the "geometry-defining processors" (GDPs) of Dewey and Patera [13]. The tile algorithm shares
the philosophy of commercial structural analysis packages offering libraries of elements that an
engineer can assemble in composing a domain, though comparably transparent user interfaces have
yet to be written. Unlike most structural analysis packages, no global linear system involving all of
the degrees of freedom is formed, nor is an exact Schur complement derived through the expensive
process of static condensation. Rather, an iterative path to parallelism is elected.

In thi latter respect, the tile algorithm is similar to the original additive Schwartz method [14]
and the techniques of [6]. All three rely upon a single, coarse-domain-spanning grid. The main
differences between the techniques of [6] and [14] and the tile algorithm are in the treatment of the
interfacial degrees of freedom. In the additive Schwarz technique, interior problems are solved on
extended overlapped subdomains, so that the interfacial degrees of freedom of one subdomain are
interior points of another and thus demand no special consideration. In [6], good preconditioners
for the interfacial degrees of freedom of abutting subdomains are derived theoretically for selfadjoint
operators. Near optimal algebraic convergence for the refined case has been proved for both classes
of algorithms in [15] and [5], respectively, for selfadjoint systems. For non-selfadjoint systems,
convergence proofs for the uniformly refined case have been given in [8] and [9], respectively.

A disadvantage shared by all two-scale approaches is that the coarse grid - on which the
optimal approaches perform an exact solve, and on which we also prefer one - cannot necessarily
remain as coarse as one might like. In contrast, multilevel methods are not held hostage to a fine
coarse" grid. Even so, multilevel convergence estimates for non-selfadjoint operators are aided by

sufficiently fine coarse grids, and complex domain geometry or "ragged" coefficients can also make
a fine coarse grid desirable in practice.

General multilevel methods with a number of levels substanti.-lly larger than two maintain
their optimal convergence rates at the price of increasingly complex data-dependency patterns
with attendant degradation on multiprocessor architectures and intricacy of coding in practical
problems. The additive or asynchronous methods [36] relieve most of the interlevel data traffic
but do not obviate the need to collect data vertically across the levels at each iteration. The
ability of a two-level approach to obtain convergence rates only a log factor worse than optimal is
demonstrated in Section 4. Compelling overall superiority of approaches with a greater richness
of scales has not been established in production parallel software. In the course of establishing
it, experience on parallel computers with a two-level algorithm will be beneficial and will aid in
evaluating the complex tradeoffs.

We have too little experience with the full spectrum of methods discussed above to conjecture
about the sizes of the relevant constants in asymptotic complexity analyses or to provide experi-
mental comparisons (but see [9] for a comparison of the tile algorithm with additive Schwarz on a
model scalar convection-diffusion problem). It is clear, however, that the limitations of the tile al-
gorithm are shared to some degree by the optimal methods, while the b.mplicity of implementation
and straightforwardness of generalization are not universally shared.

4. Numerical Experiments

To illustrate the effectiveness of the tile algorithm in terms of the convergence of the iterations,
and the effectiveness of the locally uniform mesh refinement in terms of the convergence of the
discretization, we consider a suite of experiments.

11

(1,1)(7/8,1)

(3/8,1/2)(1)

(0,0) (0,0) (0,0)

(a) (b) (c)

Figure 6: The three domains considered in this paper.

4.1. Model Problems
We present ten model problems, each containing a single dependent variable and two indepen-

dent variables. Some of the problems below are selfadjoint and could be discretized in a symmetric
manner and perhaps solved more cheaply with conjugate gradients than with GMRES. Our main
interest, however, is in the more extensible formulation. In all the examples an exact solution of the
continuous problem Cu = f is specified. From this u(x, y), all of the source terms f and boundary
condition inhomogeneities g may be calculated. In cases where the expressions for f and g are
sufficiently simple, they are written out along with the solution. The ten problems are defined
over three different domains, pictured in Figure 6. Perspective surface plots of the solutions to the
problems are given in Figures 7 and 8.

The first two examples, with constant coefficients and an exact solution quadratic in each
independent variable, are extremely simple and possess second-order finite difference representations
free from truncation errors. They are identical except for the type of boundary conditions along
one side of their square domain. These problems are not candidates for mesh refinement; rather,
they were chosen to illustrate the deterioration in convergence rate caused when Dirichlet boundary
conditions are replaced with Neumann, and to allow controlled experimentation on the effect of
mismatched boundary conditions in the preconditioner. The poor convergence of #2 using the
preconditioner of #1 originally forced the decision to expand the cross-point system to include
physical boundary points in the general case.

Problem #1: Pure isotropic diffusion with all Dirichlet boundaries

V2u = 4

u(x, y) = x 2 + y2

Dirichlet data on Oil
= Unit square

Problem #2: Pure isotropic diffusion with a partial Neumann boundary

V 2u = 4
u(x, y) = X2 + y2

12

Dirichlet data on the three lower sides of Ofl
Ouau 1) =2

S2 = Unit square

The next example is included to study orientation sensitivity of the substructuring resulting
from anisotropic diffusion, for comparison with Problem 1, to which it is identical when a = 1.
It is of further interest in that the order-of-magnitude ratio between the diffusion coefficients in
the x and y directions is mathematically indistinguishable at the discrete level from an order-of-
magnitude physical domain aspect ratio in an isotropic diffusion problem. Thus, the discretized
version of Problem 3 covers two physical problem parameter extremes in one.

Problem #3: Anisotropic diffusion

S(Ou 0 2(a+ 1)TX TX y2

u(x, y) = x 2 + y2

a = 10
Dirichlet data on OR

S2 = Unit square

The fourth example is a prototype convection-diffusion problem: a passive scalar in a plug
flow that is well developed at the outflow. It is a companion problem to #2 in the sense of
possessing a smooth solution with one Neumann boundary, but it is asymmetric as a result of the
convection term. In that its anisotropy comes from a first- rather than second-order operator, it
also complements #3.

Problem #4: Plug-flow convection-diffusion with fully developed outflow boundary
Ott

-V2U + C = f

u(x, y) = sin(irx) sin (R)
c = 10

u =0 on the three lower sides of aQ
Ou

1)=0
= Unit square

The next two canonical examples (from the "population" of elliptic problems in [40, 41]) bring
in nonconstant coefficients, the latter in a non-selfadjoint way with Robin boundary conditions.*

Problem #5: Selfadjoint, nonconstant coefficient, Dirichlet boundaries

a (Ou\ a Y ou ~ u
T()+ T) +x+Y

u(x, y) = eXV sin(irx) sin(iry)
u = 0 on Oi

R = Unit square

*The more widely available reference [28] contains an identical listing of Problem 5 and a similar but not identical version
of #6. A typographical error in the latter renders it ill-posed.

13

(a) (b)

14

' 1

Figure 7: Surface plots of the test problem solutions: (a) #1'-
3, (b) #4, (c) #5, (d) #6.

Problem #6: Non-selfadjoint, nonconstant coefficient, Robin boundaries

a 2u + O)u Ou Ou

u(x, y) = .135(ez+y + (X2 _ X)2 log(1 + y2))

u - -n = g on 'S

S= Unit square

The derivative is the outward normal.
The seventh example, from [4, 30], is on an irregularly shaped domain with reentrant corners,

but possesses a smooth solution. It emphasizes how an irregular domain may force a minimum
granularity upon a tessellation comprising congruent tiles. For the problem at hand, however, the
minimum granularity is near the ideal one.

14

(e) (Ifi ,. %

(g)()

Figure 8: Surface plots of the test problem solutions: (e) #7,
(f) #8, (g) #9, (h) #10.

Problem #7: T-shaped domain

V2u 4 - 2 cos(y)e'

U(X' Y) = XI + y2 - xe' cos(y)
Dirichlet data on OR

fl = T-shaped region

The last three examples are obtained by taking three different values of the convection -
respectively, c = 0, c -1, and.c = 10 - in the convection-diffusion problem below.

Problems #8-10: Cylindrically separable reentrant corner convection-diffusion problem

_V2 u + C u
r 5r
15

c=O, a-2/3 c=-1, a=1/3 c=10. a=lO.Oq2

.20

., . .0.5 . .0 6. 0.5, 1. o1'0... 1.0

r r"

(a) (b (o)

Figure 9: Cross section of u(r) along the symmetry axis:
(a) Problem #8, pure diffusion, nondifferentiable at r = 0;
(b) Problem #9, convective inflow, strengthening the singu-
larity; (c) Problem #10, convective outflow, eliminating the
singularity.

u(x, y) =rc'sin (0 7 r)

where r = V(X - 1)2 + (y- 1)2

and 0= arg((x- 1)+ i(y- 1)), 0 < < 2ir

Dirichlet data on Oil
S1 = L-shaped region

The first of these corresponds to pure diffusion, and the second and third to convection in towards
the reentrant corner and away from it, respectively, at a rate inversely proportional to the radius.
The respective values of the radial eigenfunction exponent a are , , and approximately 10.04,3,3

equation formula a = +c 2+] /2. Figure 9 displays u(r) along the ray
0 = !, which is the symmetry axis of the three L-shaped problems. The first two solutions of this

4
trio lack derivatives at the reentrant corner. The last is everywhere twice differentiable, but the
solution is characterized by steep variation in the three nonreentrant corner regions, where r > 1.
Local mesh refinement is critical to improving the accuracy of a finite difference solution. In [24]
we show the complementary benefit of rediscretization of the tiles surrounding the reentrant corner
in Problems 8 and 9 to fit the discrete solution to the known power-law radial dependence of the
singular exact solution (see the problem statements above). Rather than making the customary
Taylor series assumptions, we take u(r) = uo + arP + br2p, where p is derivable from a local analysis.

4.2. Parameters Studied
Four categories of experiments are reported. First, a two-dimensional parameter space consist-

ing of coarse grid resolution and overall (uniform) resolution is explored by numerical experiment
for each problem. The goal of these experiments is the evaluation of the convergence of the algo-
r;thm, in terms of iteration count and execution time, over a range of resolutions for comparison
with a back-of-the-envelope complexity analysis in Section 4.3 and related theory in Section 4.4.
No adaptive refinement is performed.

Another set of experiments is performed on Problems 8-10 only with the goal of evaluating the
economy of the locally uniform refinement technique. We show that LUMR is capable of significant
CPU and memory savings with no sacrifice of accuracy relative to uniform refinement.

16

In a third set of experiments, the effect of orientation for nonunit-aspect ratio tiles is inves-
tigated. The limiting case of stripwise decompositions shows how physical anis,-t opies can be
exploited in the decomposition for improved convergence.

Finally, we compare the domain-decomposed preconditioner of this paper with some popular
global preconditioners and with the topologically related direct solve using a nested dissection
ordering [211.

Additional studies, including modular replacement of Ai or BB with some of the alternatives
listed in Section 2, are available in [24]. Use of two different orders of discretization in A and
B is explored in [33]. (This approach loses the identity block in (2.3) but delivers higher-order
upwinding while preserving monotonicity in the preconditioner.) In this study, we simply use
At = A1, AIB = AIB, and ABC = ABC and derive BB from the tangential terms of the differential
operator.

The timings given below are from a SPARCserver 390 with 64-bit reals. The code was written in
C except for low-level Fortran kernels, such as factoring or solving linear systems entirely resident
on one processor. Relative comparisons of CPU times for alternative formulations of the same
problem executed in the same hardware and software environment are an important part of our
results. It should be borne in mind while studying the results that different organizations of the
code and different compiler capabilities can account for large variations in execution times across
architectures and software releases; therefore, absolute execution times are not very meaningful.
We have run the same experiments (or representative subsets, to the extent supported by memory)
in scalar mode on seven other Unix machines and find that even the proportions of time spent in
factorization and solution phases may vary widely between machines. In spite of this, there are
surprisingly few shifts in the overall performance rankings of alternative decompositions. In other
words, while the timings in the tables are far from machine independent, the conclusions based
thereon are, until parallelism enters the picture.

4.3. Convergence as a Function of Coarse Grid Granularity
To test coarse-grid granularity over an interesting range, we fix the finest mesh spacing at

h- 1 = 128 (relative to the total length of the domain, whether that be 1 in the problems posed on
the unit square or 2 in the problems on the L-shaped domain) and investigate the tradeoff between
numbers of tiles and points per tile, as shown in Tables 1 and 2 and plotted in Figure 10. The mesh
is identical and uniform for all runs in these tables (with the obvious exception that pieces of the
circumscribing square are missing from it in Problems 7-10, whose columns therefore lack entries
at the coarsest tile subdivisions). The convergence criterion is a relative reduction in residual of
five orders of magnitude. Throughout these studies we use an initial iterate of zero. Table 1 shows
that the iteration count peaks in the middle of the granularity range, at 4 or 8 tiles per side, and
decreases to 1 in either degenerate limit of one tile per domain or one tile per point (not shown),
where a global direct solve results.

Table 2 shows the deceptiveness of iteration count alone as a measure of overall performance.
In execution time, the extreme runs, representing few-domain cases, suffer as a result of the high
cost per iteration, even though the number of iterations required is very small. This table is a
profound illustration of an earlier version of [11], entitled Domain Decomposition Beneficial Even
Sequentially. The most favorable total sequential execution times are found for multidomain cases
at 16 or 32 tiles per side.

The factorization of the banded matrix in the single subdomain case is the dominant contri-
bution to the overall time. In Problems 1-6, over six minutes are spent doing the factorization
alone. A similar penalty would accrue in an attempt to do direct solves on a very fine "coarse"
grid, in which each tile contains just one point. However, this second peak is not visible since the
table is truncated below tile sizes of H/h = 4. Even in modest-sized two-dimensional problems,

17

11i-1 11/h #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
1 128 1 1 1 1 1 1

2 64 10 14 18 25 26 17 - 12 11 4
4 32 11 15 24 25 32 21 - 15 16 15
8 16 9 12 25 21 29 16 11 14 15 16
16 8 7 10 22 18 26 12 10 11 12 13
32 4 6 7 15 14 21 7 8 8 9 8

Table 1: Iteration count as a function of number of tiles
per side of the circumscribing square, H-1 , and number of
mesh points along a tile side, H/h, at constant refinement
parameter, h- 1 = 128, for a reduction in the initial residual
of 10- 5.

11-1 11/h #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

1 128 371. 376. 371. 373. 371. 375. - - - -

2 64 109. 118. 127. 144. 145. 125. - 86.1 84.2 73.0

4 32 34.7 39.7 51.9 53.3 62.4 47.9 - 30.3 31.4 30.5

8 16 12.0 14.4 26.2 22.5 29.8 17.8 10.2 11.9 12.4 13.1

16 8 5.5 8.0 18.3 14.4 22.1 9.6 5.7 6.0 6.7 7.2

32 4 6.8 7.9 17.9 16.3 27.2 7.9 6.5 6.4 7.1 6.4

Table 2: Total execution time (sec), including both precon-
ditioner factorization and GMRES iteration, as a function of
number of tiles per unit length, H- 1, and number of mesh
points along a tile side, H/h, at constant h-1 = 128, for a
reduction in the initial residual of 10- 5.

No. of Iterations Total Execution Time (see)

400-

20

0 2 ,q 6 0 2 ,I 6
Log of No. of Tiles on a Side Log of No. of Tiles on a Side

Figure 10: Plots of Tables 1 and 2 (Problems 1-10 super-
posed), illustrating that the minimum execution time of the
serial algorithm occurs near H -i = 16 tiles on a side, though
the maximum iteration count occurs near this granularity.
(The dashed portions of the curves are extrapolated beyond
the data of the tables.)

direct solves on the undecomposed domain are inefficient relative to decomposition-preconditioned
GMRES. Of course, there are many alternatives to direct solves for solving a smooth elliptic equa-
tion discretized on a tensor-product grid problem on a uniprocessor, some of which are considered

18

- 1
- T h-I #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
2 16 6 9 11 11 12 11 NA 6 6 3
4 32 9 12 17 15 19 17 NA 12 12 10
8 64 9 11 22 18 23 15 10 12 13 14

16 128 7 10 22 18 26 12 10 11 12 13

Table 3: Iteration count as a function of number of tiles per
side of circumscribing square, H-1 , and refinement parame-
ter, h-1 , at constant number of mesh points along a tile side,
11/h = 8, for a reduction in the initial residual of 10- 5.

in Section 4.7, but most are not coded or parallelized as cleanly as domain-decomposed Krylov
iteration.

The behavior in Table 2 can be understood with reference to back-of-the-envelope complexity
estimates for the solution and factorization operators of the preconditioner. We observe that there
are O(H-2) cross points, interfaces, and interiors. Naturally ordered banded direct factorizations
and solves require O(Nb 2) and O(Nb) operators, respectively, where N is the number of unknowns
and b the bandwidth. For the cross-point system, N ,z 1- 2 and b ; H- 1 ; for the interfaces,
N = l/h and b = 1; and for the subdomain interiors, N = (11/h)2 and b = l/h. Thus, the interface
operation counts are always asymptotically subdominant and can be omitted in the following. From
choosing the larger of the cross-point and interior complexities, we see that factorization costs
max{Q(114), (l1 2h- 4)} and solves cost max{(H-3), (.9(Ih-3)). The first term grows with
j - 1 and the second decays with it. Quick calculations reveal that (to the resolution of the table)
the minima for both factorization and solve costs occur at or between H- 1 = 16 and 32 when
h- 1 = 128. The tendency of buffer overhead, neglected in these estimates, is to favor a slightly
smaller number of tiles per side than thus estimated. It is important to note that the memory
require-nents follow the solve complexities above. Thus, for a fixed memory size, an intermediate
cross-point grid granularity accommodates the largest problem in core. Of course, all of these
per iteration complexity estimates must be redone when the preconditioner blocks are other than
banded direct solves.

4.4. Convergence as a Function of Refinement
In contrast to the preceding section, we here investigate iteration count as a function of overall

resolution, for a fixed number of subintervals per tile. The results are shown in Table 3. The global
mesh grows in refinement from 16 to 128 while the number of points per tile remains constant at
8. Thus, the fine grid in the last row of Table 3 corresponds to the 11- 1 = 16 row of the earlier
tables. In spite of the fact that the truncation error improves with h- 2 in some of these problems,
we impose a constant convergence tolerance of 10- 5 on the tests in the upper rows of Table 3, in
order to focus on the algebraic convergence alone.

With the minor exception of #5, which has not quite reached its iteration maximum at 16
tiles per side, the experiments suggest that the iteration count is bounded as resolution increases
at constant H/h. In over half of the cases, the finest mesh results are even relatively better than
the immediately preceding coarser ones. This fact is not surprising since there is a price for this
favorable iteration count when H/h is held constant and h -1 is increased, namely, a larger cross-
point system. The theory for conjugate gradient iteration for selfadjoint problems [6] and for
GMRES iteration for'non-selfadjoint problems [9] contains similar results for abutting domains,
namely, constant upper bounds on the iteration count for constant 11/h.

As representative convergence histories, we present Figure 11 which follows the residual re-
duction over five orders of magnitude, and the time versus iteration count history for Problems 1
and 2. In the latter plots, the quadratic term in the GMRES work estimate (that comes from the

19

102 1 0'

101

o 4lo

W10.1 0: 10"1o 0 0-i
20-1 1,0-1

0 20

o 0 0 5 10

o (b)

0 0

0 2 0 0 to 10
Wc (d)

Figure 11: Convergence histories for Problems 1 and 2, for
11- = 16, H/h = 8, h-I = 128. (a) and (b) show the
normalized Euclidean norm of the residual versus iteration
count, and (c) and (d) show time versus iteration count.

need to orthogonalize each iterate over a subspace whose size grows linearly in iteration count) is
almost invisible. This is due to the exploitation of the identity row in (2.3). This pair of figures also
illustrates the poorer conditioning of Neumann problems, since the initial iterates and the solutions
converged to are identical, and so are the operators except for one Neumann boundary segment.

4.5. Economies of Local Mesh Refinement
Problems 8-10 can be used to illustrate the well-known benefits of local uniform mesh refine-

ment in elliptic problems: comparable accuracy in considerably fewer operations, compared with
global uniform refinement. We solve these problems at effective refinement levels of h-1 = 32, 64,
128, and 256, based on the global grid, but perform both global and local refinements for compar-
ison where possible. (The finest global refinement does not fit into the memory available, which
is, of course, another of the main motivations for LUMR, along with execution time savings.) All
of these computations were made with a reduction in the algebraic residual of 10-8, so that the
measure of the truncation error would not be contaminated. The choice of where to refine is made
manually.

Tables 4 through 6 compare global refinement results on the left, and local on the right. The

20

0000 3000
0 O0 0l 3 0100
0 0 0 1 3000
0 0 11 3000
01 11l3 30001

011 11 101 30000000

1 O 0 0 33333333

fo) (b)
Figure 12: Refinement levels, indicated by the logarithm
of the refinement ratio. The maximum (third level) local
uniform refinements are shown: (a) Problems 8 and 9, (b)
Problem 10. In second-level tests, all tiles showing "3" are
set to "2". In first-level tests, these are further reduced to
"1". In zeroth-level refinement, all tiles are set to "0", which
here corresponds to H/h = 4.

Global Local Ratio
h- 1 H/h NG eG IG TG NL eL IL TL TG/TL
32 4 833 1.30(-2) 18 2.6 833 1.30(-2) 18 2.6 1.00
64 8 3201 8.30(-3) 22 8.1 1817 8.30(-3) 22 5.5 1.47
128 16 12545 5.25(-3) 26 48.1 2409 5.26(-3) 23 7.9 6.08
256 32 - - - - 4745 3.33(-3) 28 31.8 -

Table 4: Number of unknowns N, sup-norm of the error e,
iteration count I, and execution time T (sec) for Problem
8 (reentrant corner, pure diffusion), globally and locally re-
fined, along with execution time ratios, for a reduction in the
initial residual of 10-8.

local refinement is as illustrated in Figure 12. Each set of columns lists the number of unknowns,
the sup-norm of the error, the number of iterations to reduce the discrete residual by 8 orders of
magnitude, and the total execution time thus required. The right-most column gives the execution
time ratios for each refinement level. Memory use ratios can also be estimated from the tile structure
of the discrete problem, but the present code records no explicit allocation measurements. All
entries share a constant value of H- 1 = 8 in order to fix in space regions of enhanced refinement
that do not shrink as h does. Therefore, the "global" iteration columns of Tables 4-6 incidentally
provide a constant-H traverse through convergence rate parameter space, complementary to Table 1
(a constant-h traverse) and Table 3 (a constant-H/h traverse).

The linear increases of iteration count with each doubling of global refinement in the selfadjoint
problem in Table 4 and the nearly selfadjoint problem in Table 5 are consistent with a logarithmic
growth in conditioning with h- 1. The locally refined examples likewise worsen mildly in condition-
ing with h- 1 when H is held constant, but the CPU time advantage, (TG/TL), of local refinement
increases with h - 1 overall. Comparing iteration counts of globally and locally refined problems at
the same effective refinement shows that the often drastically smaller number of unknowns in the

21

Global Local Ratio
h- 1 11/h NG eG IG TG NL eL IL TL TGITL

32 4 833 6.97(-2) 18 2.5 833 6.97(-2) 18 2.5 1.00
64 8 3201 5.65(-2) 23 8.7 1817 5.66(-2) 23 5.8 1.50
128 16 12545 4.53(-2) 28 51.3 2409 4.58(-2) 25 8.9 5.76
256 32 - - - 4745 3.67(-2) 28 31.9 -

Table 5: Same as Table 4, except for Problem 9 (convective
inflow).

Global Local Ratio
h - 1 11/h NG eG IG TG NL eL IL TL TGITL

32 4 833 7.35(-4) 19 2.9 833 7.35(-1) 19 2.4 1.00
64 8 3201 4.15(-1) 23 8.8 1609 4.30(-l) 22 5.1 1.73
128 16 12545 2.19(-1) 29 55.6 4697 2.40(-1) 27 20.1 2.77
256 32 - - - - 17017 1.98(-1) 34 170.2 -

Table 6: Same as Table 4, except for Problem 10 (convective
outflow). The error values here appear large but are, in fact,
small relative to the size of the solution (recall Figure 9c).

latter does not much affect convergence. This observation leads to the hypothesis that in the case
of variously refined tiles, (H/hnint) is the convergence-controlling parameter, with the details of
the tile size distribution important only in estimating the work per iteration.

The sup-norm of the error shows sublinear improvement in h in Problems 8 and 9, as one
expects with nondifferentiable solutions; and, though the solution of Problem 10 is smooth, the
first-order accurate treatment of convection leaves its signature instead.

4.6. Anisotropic Decoiapositions
Throughout the foregoing, we have considered decompositions of the problem domain into

uniform square tiles exclusively. More general decompositions are possible and should often be
considered. Varying the aspect ratio and the orientation of tiles can lead to significant variations
in convergence rate in anisotropic problems. Problems #1-4 of the test suite contain a sufficient
variety of operators and boundary conditions to illustrate this point. Table 7, based on these
four problems, provides a link between the boxwise decompositions studied in this report and the
stripwise decompositions employed in many of our earlier studies, such as [32]. Four different de-
compositions are considered in this table: vertical strips, horizontal strips, a boxwise decomposition
with the same number of tiles as the strip cases, and a boxwise decomposition whose tiles have the
same bandwidth as that of the most compact natural ordering of the strip cases. These decompo-
sitions are shown in Figure 13. In every case, the mesh spacing is held constant at h - 1 = 128; thus
these problems contain 16,641 discrete unknowns.

Among the two boxwise decompositions, the finer is always closer to the optimum found earlier
in Table 1 for iteration count and in Table 2 for execution time.

Contrasting the boxwise and stripwise decompositions, we note that for isotropic Problems 1
and 2 the isotropic (boxwise) decompositions lead to significantly better iteration counts than the
nonisotropic (stripwise) decompositions. The coarser boxwise decomposition nevertheless leads to
poorer execution times than either stripwise decomposition because of the large bandwidth of its
tiles resulting in large factorization costs in setting up the interior solves of the preconditioner. The
finer boxwise decomposition yields the best execution times.

22

8(b)

Figure 13: The four decompositions tested in Table 7: (a) ver-
tical strips, (b) horizontal strips, (c) "large" boxes with the
same granularity as the strips, (d) "small" boxes with the
same bandwidth as the strips.

_1 _ 2 43 _4
Case H.-I H; I I T I T I T I T

a 16 1 20 13.7 29 20.5 52 40.5 4 3.5
b 1 16 20 13.7 23 15.9 12 8.4 16 10.9
c 4 4 11 34.7 15 39.7 24 51.9 25 53.3
d 16 16 7 5.5 10 8.0 22 18.3 18 14.4

Table 7: Iteration count I and total execution time T (sec)
as a function of the tessellation parameters H; 1 and H "1, at
constant mesh parameter h- 1 = 128, for a reduction in the
initial residual of 10- 5.

For the nonisotropic Problems 3 and 4, one or both of the nonisotropic decompositions is
superior in both iteration count and execution time to both of the isotropic decompositions. In
Problem 3, we note the major advantage of handling the strong x-directional diffusive coupling
as implicitly as possible in the preconditioner when few (here 16) subdomains are employed. In
Problem 4, where the diffusive part of the operator is isotropic, the decomposition that is aligned
with the strong convection is superior. This is related to the relatively poorer performance of
the tangential interface preconditioner in problems where the convection is normal to the inter-
face rather than tangential to it [12]. In spite of the poor representation of the convection in the
interface blocks for Problem 4, case (b), the "wrong" stripwise decomposition is still slightly su-
perior to the best boxwise decomposition. Though the boxwise decomposition convergence rates
are asymptotically superior to the stripwise decomposition convergence rates (see the theoretical
arguments summarized in [30]), the crossover point is evidently strongly influenced by the physics
of the problem.

4.7. Comparison with Undecomposed Preconditioners
Tables 1 and 2 produced the observation that among preconditioners employing direct banded

23

Method #1 #2 #3 #4 #5 #6
GMRES(90)/ILU(0) 73 108 80 82 99 >
GMRES(90)/MILU(0) 22 77 19 147 39 >
GMRES(90)/ILU(1) 45 58 61 51 59 160
GMRES(5)/ILU(0) 351 312 227 > > >
GMRES(5)/MILU(0) 27 141 23 > 57 >
GMRES(5)/ILU(1) 139 150 140 213 244 >
Direct 1 1 1 1 1 1
GMRES(90)/DD 7 10 22 18 26 12
GMRES(5)/DD 8 10 28 25 39 12

Table 8: Iteration counts for problems #1-6 for seven dif-
ferent algorithmic combinations at a mesh parameter h -1 =

128, for a reduction in the initial residual of 10- s . '5" sig-
nifies more than 500 iterations.

factorizations for both the cross-point system and the subdomain interiors, a tessellation of in-
termediate granularity is much superior to one at either coarse or fine extremes. In other words,
domain decomposition-preconditioned GMRES methods are superior to bandsolvers even on se-
quential computers and even in two dimensions. It is of interest to attempt to strengthen such a
statement by comparing domain decomposition-preconditioned GMRES iteration with other can-
didate solvers in the sequential, two-dimensional context. For this purpose, a direct sparse matrix
solver and three popular incomplete factorizations have been implemented as alternative subdo-
main interior preconditioners and compared with the domain-decomposed preconditioner on the
first six problems of the test suite.

Table 8 lists the iteration counts and Table 9 the execution times for nine different solution
algorithms callable from the same code used to generate all previous tables. (The global domain
solvers contain just one tile.)

Six of these solvers are iterative methods based on GMRES and global preconditioners of
the incomplete factorization type, tested in two sets of three each. In each set, we test ILU(0),
ILU(1), and MILU(o) [16, 38], where the integer in parentheses denotes the number of diagonals
of extra fill-in retained adjacent to the original five-diagonal structure of the discrete operator
[46]. In the first set, the maximum size of the Krylov subspace used in GMRES is 90; in the
second set, the maximum Krylov subspace has dimension 5. In a majority of cases, the globally
preconditioned GMRES iteration converges in fewer than 90 iterations; thus, the first set consists
mainly of full GMRES convergence results. In practical applications, restarted GMRIES is often
used to conserve memory or defeat the quadratic term in the GMRES work estimate that arises
fiom orthogonalization over an ever-expanding Krylov subspace. GMRES(k) denotes a restart after
k steps.

One of the solvers is a direct method, the Yale Sparse Matrix Package [17] using a global
nested-dissection ordering (rather than the minimum degree ordering provided with YSMP), which
naturally converges in one step.

Finally, we test two domain-decomposed GMRES algorithms based on a 16 x 16 array of 8 x 8
tiles. Both are slight variants of the algorithm used in preceding sections in which the bandsolver
is replaced with the nested-dissection sparse solver. Full GMRES and GMRES(5) are considered.

Comparing first the convergence rates of the various global preconditioners, we observe that in
the diffusively dominated problems with Dirichlet boundary conditions (#1,3,5) the fill-capturing
modified incomplete factorization MILU(0) is much superior to ILU(0) and ILU(1). The existence
of a non-Dirichlet boundary segment weakens MILU (boundary conditions are the only difference

24

Method #1 #2 #3 #4 #5 #6
GMRES(90)/ILU(0) 121. 191. 142. 149. 183. -
GMRES(90)/MILU(0) 16.7 133. 13.5 256. 41.2 -
GMRES(90)/ILU(1). 54.2 83.1 90.1 66.7 85.4 297.
GMRES(5)/ILU(o) 195. 173. 126. - - -
GMRES(5)/MILU(0) 14.9 78.6 12.6 - 31.5 -

GMRES(5)/ILU(1) 82.8 90.7 84.3 128. 136. -
Direct/Nest. Diss. 71.2 70.1 70.1 70.1 70.0 71.6
GMRES(90)/DD/Nest. Diss. 7.1 9.9 23.8 18.7 29.7 12.0
GMRES(5)/DD/Nest. Diss. 8.2 10.4 25.0 23.2 34.2 12.0

Table 9: Execution times (sec) for problems #1-6 for ten dif-
ferent algorithmic combinations at a mesh parameter h- 1 =

128, for a reduction in the initial residual of 10- 5. The best
time in each column is italicized.

between #2 and #1), and the presence of convection weakens it substantially (#4,6). As expected,
ILU(1) uniformly requires fewer iterations than ILU(0) in these tests, and this 'convergence rate
advantage translates into an execution time advantage even after the marginally higher cost of the
ILU(1) preconditioner is taken into account. Experience with ILU(1) shows a law of diminishing
returns as I increases beyond a fairly small problem-dependent value. The tests with GMRES(5)
show how the higher iteration counts of a restarted method often translate into lower execution
times for well-conditioned problems, but how poorly conditioned problems may fail to converge
with too small a Krylov subspace.

Having noted the strong degree of problem dependence in the selection of the best global
preconditioner, we note that this problem dependence extends to the relative ranking of glob-
ally preconditioned GMRES and the direct sparse nested dissection factorization. In terms of
execution time, the nested dissection method loses out to the best global iterative method, GM-
RES(5)/MILU(0), in the odd-numbered problems, is close to the best global iterative method,
GMRES(90)/ILU(1) in Problem 4, and beats all globally preconditioned methods in Problems 2
and 6.

Comparison of the nested dissection rows of Table 9 with the rows of Table 2 at corresponding
granularity reveals, as expected, that the sparse direct subdomain solvers run faster than the
banded direct subdomain solvers on large problems (approximately 70 sec versus approximately
370 sec on 128 x 128 tiles) and slower than bandsolvers on small ones (by approximately 20-30%
on 8 x 8 tiles). The latter observation justifies our use of bandsolvers to perform the A lI solves
in the preconditioner throughout the majority of this report, where the focus is on relatively fine
granularity.

Finally and most significantly, we observe that domain decomposition-preconditioned GMRES
always beats the direct method, and it beats the best globally preconditioned method in all problems
except for #3, for which good preconditioners of both global and domain-decomposed varieties can
be found. Overall, it is the fastest executing method and performs reliably and evenly over the
range of problems considered. It is a compelling serial algorithm even apart from the virtues of
modularity and adaptability.

5. Conclusions and Future Directions

Experiments on a variety of model problems demonstrate that a two-level domain decom-
position algorithm with a single global coarse grid provides effective convergence and convenient

25

refinement and permits a data-structure amenable to parallel and vector implementations, as sum-
marized in closing below. Although often motivated by parallelization, domain decomposition
also yields runtime and memory use benefits as a sequential algorithm. Relative to traditional
global preconditioners, domain-decomposed preconditioners can dramatically improve convergence
rates. Furthermore, the simple structure of individual blocks of the domain-decomposed precondi-
tioner means that new applications are found for- the "standard solvers" in conventional software
libraries. The traditional economies of local uniform mesh refinement can be incorporated into
the domain decomposition framework at the small price of interface handlers with conditionals for
refinement differences between adjacent subdomains. Because of the highly modular nature of a
tile-oriented domain decomposition code, custom discretizations for certain classes of singularities
may be archived into applications libraries for reuse. For example, a discretization tailored to the
corner singularities in Problems 8 and 9 was easy to add by creating three different rotations of a
special tile in [24]. In short, software engineering is a major motivation for the restricted class of
algorithms explored here.

The applicable problem class is greater than the present examples indicate; for instance, the
tile algorithm has been extended to multiple-dependent variable cases. A two-independent-variable
streamfunction-vorticity formulation of the incompressible Navier-Stokes equations is considered
in [26, 27]. The nonlinearity in this problem is handled by a Newton method wrapped around
the domain-decomposed linear solver. The entire nonlinear code has been parallelized on shared-
and distributed-memory machines, and the linear and nonlinear portions are comparable in their
parallel efficiencies (which vary in the usual way from arbitrarily good to arbitrarily bad, depending
upon problem size relative to number of processors).

Extension of the tile algorithm to a brick algorithm in three-dimensional problems is concep-
tually straightforward. The software engineering motivation for restriction to a tensor-product grid
of substructure vertices is even more compelling in three dimensions than it is in two. One new
feature is the presence of two-dimensional interfaces, upon which preconditioner blocks could be
constructed by dropping normal derivative terms, by analogy with one-dimensional interfaces in
the plane. The effectiveness of this straightforward extension is not demonstrated at present. For
the theoretically endowed selfadjoint case it is known that the condition number of the hierarchi-
cally preconditioned system grows like the first power of (H/h), not merely like its logarithm. A
discussion anti some alternatives are presented in [43].

The tile algorithm is amenable to vectorization in either of two ways. The regular operation
sequences on the tensor-product subgrid arrays are precisely the type for which vectorizing compilers
were conceived. The vector lengths depend on the precise form of solvers used in the preconditioner
but would tend to be rather small for the rows of individual 8x8 or 16x 16 tiles found best in the two-
dimensional applications above. An alternative form of vectorization car. be realized by grouping
together all tiles of a given (discrete) size and shape and operating in lock step on corresponding
elements in each tile, assuming an identical solver is applied to each. A vector in this approach
consists of the ith element from each of the subdomains. Thus, 8 x 8 arrays of tiles deliver optimal
processing rates for machines with a vector length of 64.

Parallelization requires attention to the load balancer/mapper [26] and also to the coarse grid
solve in the preconditioner [23]. The main disadvantage of the two-level algorithm in the parallel
context is that the choice of coarse grid granularity is more of an "overdetermined" problem than
in serial. Communication cost per iteration and convergence properties potentially inveigh against
the lower bounds on the number of tiles imposed by domain geometry, solution and coefficient
roughness, and parallel load balance. The key determination for future applications of the tile
methodology will be whether this overdetermination is "consistent" in practice. Inasmuch as the

26

early examples are representative of one or two dependent variable problems, and parallel com-
munication costs generally comprise a relatively smaller proportion of the total work in coupled
multicomponent problems, there are substantial grounds for optimism that this will be the case.

Acknowledgments

We express our deep appreciation to Dr. Xiao-Chuan Ca for his influence on the refinement
of the tile algorithm through his mathematical insight and through his experience in using the
code and in adapting it to additive Schwarz-type preconditioning. We are also indebted to two
anonymous referees for constructively critical comments on an early version of this manuscript.

27

References

[11 i. Babu~ka, J. Chandra, and J. Flaherty eds., Adaptive Computational Methods for Partial
Differential Equations, SIAM, Philadelphia, 1983.

[2] R. E. Bank and H. Yserentant, Some Remarks on the Hierarchical Basis Multigrid
Method, T. F. Chan, R. Glowinski, J. Periaux, and 0. Widlund eds., Second
International Symposium on Domain Decomposition Methods, SIAM, Philadelphia,
1989, pp. 140-146.

[3] M. J. Berger and J. Oliger, Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations, J. Comp. Phys., 53 (1984), pp. 484-512.

[4] P. E. Bjorstad and 0. B. Widlund, Iterative Methods for the Solution of Elliptic Problems
on Regions Partitioned into Substructures, SIAM J. Num. Anal., 23(1986), pp.
1097-1120.

[5] J. H. Bramble, R. E. Ewing, J. E. Pasciak, and A. H. Schatz, A Preconditioning Technique for
the Efficient Solution of Problems with Local Grid Refinement, Comp. Meth. Appl.
Mech. Eng., 67(1988), pp. 149-159.

[6] J. H. Bramble, J. E. Pasciak, and A. H. Schatz, The Construction of Preconditioners for
Elliptic Problems by Substructuring, I, Math. Comp., 47 (1986), pp. 103-134.

[7] A. Brandt, Multi-level Adaptive Techniques (MLAT) for Fast Numerical Solution to
Boundary-Value Problems, H. Cabannes and R. R. Temam eds., Proceedings of the
Third International Conference on Numerical Methods in Fluid Mechanics, Lecture
Notes in Physics, 18, Springer-Verlag, 1973, pp. 82-89.

[8] X.-C. Cai, An Additive Schwarz Algorithm for Nonselfadjoint Elliptic Equations, T. F.
Chan, R. Glowinski, J. Periaux, and 0. Widlund eds., Third International Sym-
posium on Domain Decomposition Methods for Partial Differential Equations, SIAM,
Philadelphia, 1990, pp. 232-244.

[9] X.-C. Cal, W. D. Gropp, and D. E. Keyes, Convergence Rate Estimate for a Domain
Decomposition Method, Technical Report 827, Yale University, Department of
Computer Science, October 1990.

[10] T. F. Chan, Boundary Probe Domain Decomposition Preconditioners for Fourth Order
Problems, T. F. Chan, R. Glowinski, J. Periaux, and 0. Widlund eds., Second
International Symposium on Domain Decomposition Methods, SIAM, Philadelphia,
1989, pp. 168-172.

[11] T. F. Chan and D. Goovaerts, A Note on the Efficiency of Domain Decomposed Incomplete
Factorizations, SIAM J. Sci. Stat. Comp., 11 (1990), pp. 794-803.

112] T. F. Chan and D. E. Keyes, Interface Preconditiongs for Domain-Decomposed Convection-
Diffusion Operators, T. F. Chan, R. Glowinski, J. Periaux, and 0. Widlund eds., Third
International Symposium on Domain Decomposition Methods for Partial Differential
Equations, SIAM, Philadelphia, 1990, pp. 245-262.

[131 D. Dewey and A. T. Patera, Geometry-Defining Processors for Partial Differential Equations,
B. J. Alder ed., Architectures and Performance of Specialized Computer Systems,
Academic Press, New York, 1988.

[14] M. Dryja, An Additive Schwarz Algorithm for Two- and Three-Dimensional Finite Element
Elliptic Problems, T. F. Chan, R. Glowinski, J. Periaux, and 0. Widlund eds., Second
International Symposium on Domain Decomposition Methods, SIAM, Philadelphia,
1989, pp. 168-172.

28

[15] M. Dryja and 0. B. Widlund, On the Optimality of an Additive Refinement Method, J.
Mandel, S. F. McCormick, J. E. Dendy, Jr., C. Farhat, G. Lonsdale, S. V. Parter, J.
W. Ruge, and K. Stuben eds., Proceedings of the Fourth Copper Mountain Conference
on Multigrid Methods, SIAM, Philadelphia, 1989, pp. 161-170.

[16] T. Dupont, R. Kendall, and H. H. Rachford, An Approximate Factorization Procedure for
Solving Self-Adjoint Elliptic Difference Equations, SIAM J. Num. Anal., 5 (1968), pp.
559-573.

[17] S. C. Eisenstat, 11. C. Elman, M. H. Schultz, and A. H. Sherman, The (New) Yale Sparse
Matrix Package, Technical Report 265, Yale University, Department of Computer
Science, April 1983.

[181 R. E. Ewing and R. D. Lazarov, Adaptive Local Grid Refinement, Proceedings SPE Rocky
Mountain Regional Meeting, 1988. SPE No. 17806.

[19] J. E. Flaherty, P. J. Paslow, M. S. Shepard, and J. D. Vasilakis eds., Adaptive Methods for
Partial Differential Equations, SIAM, Philadelphia, 1989.

[20] R. W. Freund and N. M. Nachtigal, QMR: A Quasi-Minimum Residual Method for Non-
Iermitian Linear Systems, Technical Report, RIACS, NASA Ames Research Center,
1990.

[21] A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM J. Num. Anal.,
10 (1973), pp. 345-363.

[22] W. D. Gropp, Local Uniform Mesh Refinement for Elliptic Partial Differential Equations,
Technical Report YALE/DCS/RR-278, Yale University Dept. of Computer Science,
July 1983.

[23] W. D. Gropp and D. E. Keyes, Domain Decomposition on Parallel Computers, Impact of
Comput. in Sci. and Eng., 1(1989), pp. 421-439.

[24] , Domain Decomposition with Local Mesh Refinement, Technical Report YALE/DCS/
RR-726, Yale University Dept. of Computer Science, August 1989.

[25] , Parallel Performance of Domain-Decomposed Preconditioned Krylov Methods for
PDEs with Adaptive Refinement, Technical Report YALE/DCS/RR-773, Yale Uni-
versity Dept. of Computer Science, April 1990.

[26] , Parallel Domain Decomposition and the Solution of Nonlinear Systems of Equations,
Technical Report Mathematics and Computer Science Preprint MCS-P186-1090,
Argonne National Laboratory, October 1990.

[27] , Domain Decomposition Methods in Computational Fluid Dynamics, Technical Report
91-20, ICASE, February 1991.

[28] E. N Houstis, R. E. Lynch, and J. R. Rice, Evaluation of Numerical Methods for Elliptic
Partial Differential Equations, J. Comp. Phys., 27 (1978), pp. 323-350.

[29] II. Jarausch, On An Adaptive Grid Refining Technique for Finite Element Approximations,
SIAM J. Sci. Stat. Comp., 7(1986), pp. 1105-1120.

[30] D. E. Keyes and W. D. Gropp, A Comparison of Domain Decomposition Techniques for Elliptic
Partial Differential Equations and Their Parallel Implementation, SIAM J. Sci. Stat.
Comp., 8 (1987), pp. s166-s202.

[31] , Domain Decomposition Techniques for Nonsymmetric Systems of Elliptic Boundary
Value Problems: Examples from CFD, T. F. Chan, R. Glowinski, J. Periaux, and 0.
Widlund eds., Second International Symposium on Domain Decomposition Methods,
SIAM, Philadelphia, 1989, pp. 321-339.

[32] , Domain Decomposition Techniques for the Parallel Solution of Nonsymmetric Sys-
tems of Elliptic BVPs, Appl. Num. Math., 6 (1990), pp. 281-301.

29

[33] , Domain-Decomposable Preconditioners for Second-Order Upwind Discretizations of
Multicomponent Systems, Technical Report Mathematics and Computer Science
Preprint MCS-P187-1090, Argonne National Laboratory, October 1990.

[34] Y. Maday, C. Mavriplis, and A. T. Patera, Nonconforming Mortar Element Methods:
Application to Spectral Discretizations, T. F. Chan, R. Glowinski, J. Periaux, and 0.
Widlund eds., Second International Symposium on Domain Decomposition Methods,
SIAM, Philadelphia, 1989, pp. 392-418.

[35] T. A. Manteuffel and S. V. Parter, Preconditioning and Boundary Conditions, Technical
Report LA-UR-88-2626, Los Alamos National Laboratory, July 1988.

[36] S. F. McCormick, Multilevel Adaptive Methods For Partial Differential Equations, SIAM,
Philadelphia, 1983.

[37] S. McCormick and D. Quinlan, Asynchronous Multilevel Adaptive Methods for Solving Par-
tial Differential Equations on Multiprocessors: Performance Results, Par. Comput.,
12 (1989), pp. 145-156.

[38] J. A. Meijeriiik and 1. A. Van der Vorst, Guidelines for the Usage of Incomplete Decompositions
in Solving Sets of Linear Equations As They Occur in Practical Problems, J. Comp.
Phys., 44 (1981), pp. 134-155.

[39] W. Proskurowski, Remarks on the Spectral Equivalence of Certain Discrete Operators, T. F.
Chan, R. Glowinski, J. Periaux, and 0. Widlund eds., Second International Symposium
on Domain Decomposition Methods, SIAM, Philadelphia, 1989, pp. 103-113.

[40] J. R. Rice, E. N. Houstis, and W. R. Dyksen, A Population of Linear Second Order, Elliptic
Partial Differential Equations on Rectangular Domains - Part I, Technical Report
2078, Mathematics Research Center, Univ. of Wisconsin - Madison, May 1980.

[41] , A Population of Linear Second Order, Elliptic Partial Differential Equations on
Rectangular Domains - Part II, Technical Report 2079, Mathematics Research
Center, Univ. of Wisconsin - Madison, May 1980.

[42] Y. Saad and M. II. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856-869.

[43] B. F. Smith, Domain Decomposition Algorithms for the Partial Differential Equations of Linear
Elasticity, Technical Report 517, Courant Institute, NYU, September 1990.

[44] B. Swartz, Courant-Like Conditions Limit Reasonable Mesh Refinement to Order h2, SIAM J.
Sci. Stat. Comp., 8 (1987), pp. 924-933.

[45] I. A. Van der Vorst, Bi-CCSTA B: A More Smoothly Converging Variant of CG-S for the
Solution of Nonsymmetric Linear Systems, 1990. (Preprint).

[46] J. W. Watts, III, A Conjugate Gradient-Truncated Direct Method for the Iterative Solution of
the Reservoir Simulation Pressure Equation, Soc. Petrol. I, gin. J., 21 (1981), pp.
345-353.

[47] II. Yserentant, On the Multi-level Splitting of Finite Element Spaces for Indefinite Elliptic
Boundary Value Problems, SIAM J. Num. Anal., 23 (1986), pp. 581-595.

30

NASA Report Documentation Page
I, Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-187528

ICASE Report No. 91-19
4. Title and Subtitle 5. Report Date

DOMAIN DECOMPOSITION WITH LOCAL MESH REFINEMENT February 1991

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

William D. Gropp 91-19
David E. Keyes 10. Work Unit No.

9. Performing Organization Name and Address 505-90-52-01
Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering
Mail Stop 132C, NASA Langley Research Center NASl-18605
Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Contractor Report
Langley Research Center 14. Sponsoring Agency Code

Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Submitted to SIAM Journal of Scien-
Michael F. Card tific and Statistical Computation

Final Report
16. Abstract

We describe a preconditioned Krylov iterative algorithm based on domain decomposition for linear systems aising
from implicit finite-difflerence or finite-element discretisations of partial differential equation problems requiring local
mesh refinement. To keep data structures as simple as possible for parallel computing applications, we define
the fundamental computational unit in the algorithm as a subregion of the domain spanned by a locally uniform
tensor-product grid, called a tile. In the tile-based domain decomposition approach, two levels of discretisation
are considered at each point of the domain: & global coarse grid defined by tile vertices only, and a local fine grid
where the degree of resolution can vary from tile to tile. One global level and one local level provide the flexibility
required to adaptively discretise a diverse collection of problems on irregular regions and solve them at convergence
rates that deteriorate only logarithmically in the finest mesh parameter, with the coarse tessellation held fixed. A
logarithmic departure from optimality seems to be a reasonable compromise for the simplicity of the composite
grid data structure and concomitant regular data exchange patterns in a multiprocessor environment. We report
some experiments with up to 1024 tiles, comment on the evolution of the algorithm, and contrast it with optimal
nonrefining two-level algorithms and optimal refining multilevel algorithms. Computational comparisons with some
other popular methods are presented.

17. Key Words ISuggestIed by Authorlsi) 18, Dtribution Statement

domain decomposition, preconditioning, 64 - Numerical Analysis
Krylov methods, mesh refinement, elliptic
problems

Unclassified - Unlimited
19. Security Classif. lof this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price
Unclassified Unclassified 32 A03

NASA FORM 1109 OCT86 NASA-Langley, 1991

