AD-A234 524

RADC-TR-90-290

Final Technical Report
Movember 1990

CONTENT ADDRESSABLE
MEMORY PROJECT

Rutgers University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. 6403

APFPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the U.S.
Government.

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign nationms.

RADC-TR-90-290 has been reviewed and is approved for publication.

n ?
APPROVED: / / (LL‘;//)Z/XZ/L/L/\LL N

DAVID M. GUBBINS
Project Engineer

o et 1)

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: %ﬂv ’ﬁ ' %“%@

IGOR G. PLONISCH
Directorate of Plans & Programs

If your address has changed or if you wish to b2 removed from the RADC
mailing list, or if the addressee is no longer employed by your
organization, please notify RADC (COTD) Griffies AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be¢ returned.

7

<

ficessgion Fay /

IR iV
7 O -
. -

- - « - '
Uagncur g I
JudtdYiretlon o o]

L}
i e e e a7 e s X
H

CONTENT ADDRESSABLE MEMORY PROJECT vatian b e fe s

Saul Y. Levy ;
J. Storrs Hall !

D st
Donald E. Smith :Qxe\

Contractor: Rutgers University

Contract Number: F30602-88-D-0027

Effective Date of Contract: 13 September 1988

Contract Expiration Date: 30 January 1990

Short Title of Work: Content Addressable Memory Project
Program Code Number: 8E20

Period of Work Covered: Sep 88 - Jan 90

Principal Investigators: Dr. Saul Y. Levy and Dr. J. Storrs Hall
Phone: (201) 932-3523

RADC Project Engineer: David M. Gubbins
Phone: (315) 330-2158

Approved for public release; distribuiton unlimited.

This research was supported by the Defense Advanced Research
Projects Agnecy of the Department of Defense and was monitored
by David M. Gubbins, RADC (COTD), Griffiss AFB NY 13441-5700
under Contract F30602-88-D-0027.

REPORT DOCUMENTATION PAGE | G wo ovosose

7 UOeC 1 £0OMING DXI0eN FOr LS coleon of (FNMXon 15 eSUTLEd [OIVerage | NS Dex 12S00Nse NCLNg e OTe [revewng Nstucars, Searchng exsinG X >0aces
SANANG and TG e CA2 Nee0eq aNG CamEeetng 3nd (evew g the colecion of rTONMMoN Send COMIMents reGIrang U s OLUroen esImite o Ay OO 3500G X IS
Lolecon o Nonmaon NAANG UGGeStons [eaung s Surcen to Wasnngion Heaoguanass Senvees, Jrecoae for rfonmmuon Cperations anoReoonts, « 31 S ventarson
Jvs Hghwey Sude 1204, Arinagon VA 22002 4202, and o the Cifice of Maragement and Buoget. Pacerwark Reaucton Proect (0704-0168), Washngon 0C 2252

1. AGENCY USE ONLY (Leave Blank) ,2' REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1990 Final Sep 88 - Jan 90

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS)

CONTENT ADDRESSABLE MEMORY PROJECT C - F30602-88-D-0027 / y

PE - 62301E

6. AUTHOR(S) PR - F403

Saul Y. Levy, J. Storrs Hall, Donald E. Smith ‘Tﬂ} - gi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING CRGAMNIZATICHN

Rutgers University REPORT NUMBER

Lab for Computer Science Research

New Brunswick NJ 08902

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING

Defense Advanced Rome Air Development Center (COTD) AGENCY REPORT NUMBER

Research Projects Agency Griffiss AFB NY 13441-5700 TR0

1400 Wilson Blvd RADC-TR-90-290

Arlington VA 22209-2308

11. SUPPLEMENTARY NOTES

RADC Project Engineer: David M. Gubbins/COTD/(315) 330-2158

The Prime Contractor for this effort was: Syracuse University, Skytop Ofc Bldg,
Syracuse NY 13244,

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maxmum 200 wores)

The Content Addressable Memory Project consists of the development of several
experimental software systems on an AMT Distributed Array Processor (DAD) for
evaluation and research purposes. The resultiny determinations of the stren:ths

and weaknesses of the DAP are discussed. Two new machine architectures were developed
in an attempt to consolidate the strengths and overcome the weaknesses. The effort
led to the analysis of certain parallel algorithms from a new point of view, and

thus to a new class of parallel algorithms, the semiserial algorithms.

14, SUBJECT TERMS mf;pa«uen OF PACES
Content Addressable Memory, Parallel Architecture ~
18 PRAICE CODE
17 SECURITY CLAGSIFICATION VIU uECUﬂer CLASSIFICATION 119, SECURITY CLASSIFICATION 120, LIMITATION CF AUSTIIACT
OF nEPOnT OF THIS P c ! OF AUSTRACF EAd ’ <! CF AU o
UNCLASSITLED UNCLASSILFIED UNCLASSLFIED SAR
Hal 71540 Q1 (U0-5%00 Sl G FQm (8 e Jird

Prescitna Ly ANSESLG $2918
8@

Content Addressable Memory Pro ject

Annual Report for 1989

Table of Contents

A. Executive Summary

B. The Short Stack: A Highly Integrated SIMD Architecture

C. Linear C: A C superset for SIMD Parallel Processing

D. CAMI: Programmer’s Manual

E. von Neumannizing the Multi-search Content Addressable Memory
F. DAP Codes

G. Scan on DAP is Order VN

Overview

We have explored massively parallel architectures based on the concepts of
Content Addressable Memory. We took as a point of departure a virtual machine
architecture which we will refer to as the CAM.

QOur research objective was twofold:

¢ Develop a single-chip massively parallel processor with a suitable architecture
as a vehicle for these applications. Experiment with the relationship between
the algorithms and the architecture, arrd with various tradeoffs in the imple-
mentation.

¢ Implement a programming environment using algorithms from a variety of
different fields. We did not require anything beyond the current state of the art
in any of these fields, but it would be significant to bring the existing results
together in an integrated environment under a single parallel computational
paradigm.

History

Involved in the CAM project are Professor Saul Levy, P.I.; Josh Hall, research
scientist, Don Smith, research assistant professor, Miles Murdocca (AT&T Bell
Labs) and three graduate assistants. Previously, primarily under the auspices of
AFOSR, we had developed the CAM architecture and a low-level programming
language, CAML, primarily with an eye to implementation as an optical computer.

The CAM model is similar to a conventional machine. In its essence it is simuply
a processor and a2 memory. However, where in a conventional machine the processor
specifies loading and storing in memory by a single address at a time, the CAM
processor can specify conditions, rariges, and collective functions.

The CAM memory consists of a set of words which are addressed either conven-
tionally or associatively. The conventional addressingis extended to allow specifying
ranges. Where in a conventional machine one can specify, “word {256, in the CAM
we can specify “words {201 through 5557 inclusive”, or, addressing the words by
their contents: “al/ words containing a number greater than 17",

If we can specify a selected subset of the words in memory at once, we can
do something to them at once. For example, we can set them all to a new value
(it must be the same value), or add something to each one (it must be the same
something). We can alsc discover the address (instantly) of the first word which we
have specified in some way, ie, “give the address of the first word whose contents
are greater than 17 and less than 39."

Furthermore we can divide the memory into sections and use a different value
in each section: “Add 20 to all words in section 1, 52 to all words in section 2,
etc.” The sizes of the sections are restricted; they must correspond with the tree
structure (see below). Furthermore, the value to be used with each section must
come from a word in that section.

The collective functionality reflects a hardwired tree of simple ALU’s termi-
nating in the processing elements (words). It can perform certain functions (sum,
maximum, etc) of the active words by direct configuration.

Up to the beginning of 1989 we had accomplished the following with the CAM
architecture:

e We had developed techniques for digital design which allow us to embed ar-
bitrary circuits into the regular interconnection patterns required by the free-
space regime.

e We had developed a class of computer architectures that take advantage of the
massive parallelism implicit in the optical switching technology.

¢ We had developed a programming model and methodology to be able to use
our architectures effectively.

We had produced a preliminary design of a CAM machine for optical tech-
nology. Fragments of the design were being implemented and tested (in multiple
quantum well SEED technology) at Beil Labs. (Note that the recently announced
optical processor from Bell Labs was built by the very group we were collaborating
with. Although much too small to use any actual CAM architecture, the processor
was designed using some of the techniques referred to above.)

To prove the general usefulness of the CAM, we had investigated algorithms
from many areas of computer science, including numerical analysis, combinatorial
optimzation, systems programming, programming language compilers and optimiz-
ers, and artificial intelligence. Not only had we found the CAM model to be conge-
nial to all of these areas, but the rising interest in massive parallelism has engendered
such widespread results that the question of general usefulness is well on its way to
having been put to rest.

We had produced geod results in non-numeric programming fields such as graph
theory, network optimization and computational geometry. The set operations basic
to these algorithms are near-primitives on the CAM. We had algorithms for:

o Min, max, member, insert, delete, intersection, union, find.

o Spanning trees, shortest path, connectivity, depth and breadth-first search,
transitive closure, etc.

o Convex hull, 3-D convex hull, Delaunay triangulation, line and curve fit-
ting.

o Sorting and searching (although sorting is usually rendered unnecessary
and searching is usually a simple primitive operation).

o Means, medians, modes, histogramming, generation of permutations, bi-
nomial coefficients, random numbers, and so forth.

A New Emphasis

At the beginning of 1989, DARPA procured for us a DAP 510 massively parallel
processor to be used in architectural experimentation. The DAP proved to be
something of a challenge, and we were forced to change our focus from the more
theoretical approach we had been following, to a practical, experimental regime.

Our progress reports give a flavor of the sequence of events:

[1Q] “We have begun to develop the ParaSol architecture, based on the mesh-of-
trees concept. We are giving a paper on the subject next week in the Massively
Paralle] Processing Symposium at U. of S. Carolina. We have received the
DAP supplied us by RADC/Syracuse and have succeeded in bringing it up to
a usable state. This required significant effort on our part since AMT software is
a few releases behind the current release of the host Sun software, in use on our
existing systems. We are now doing extensive benchmarking and architectural
analysis.”

The ParaSol (the paper is included in this report) was an extension in which
the “highways” of the DAP were developed into trees so that collective functionality
(which is present in the DAP only in very rudimentary form) could be exercised in
orthogonal dimensions.

(1Q] “We appear to be the only site in the US trying to use a DAP without FOR-
TRAN. This unique situation caused us some additional headaches in addition
to the above. AMT was helpful, to the extent of giving us FORTRAN free;
however, we believe we now know more about DAP software than AMT’s ser-
vice techs. We now have a working system, and can indeed program it solely
in assembler. We are implementing a variety of algorithms, to determine "the
edges of its envelope”; we have implemented line drawing algorithms, for ex-
ample, that are significantly faster than the supplied graphics library.”
Specificlly, the AMT software techs had originally shipped us the FORTRAN

compiler and the assembler, but not their common preprocessor, under the impres-

sion that the preprocessor was the FORTRAN compiler. Then when they “gave”
us “FORTRAN?” the only new file was the preprocessor, which we simply used to
run the assembler.

[2Q] “We have developed the ParaSol architecture and presented it at the Parallel
Processing Symposium at Univ. of South Carolina. This is a generalization
of the structure of content addressable memory which is particularly useful for
numerically-based recognition algorithms such as neural networks and hidden
Markov models. We are also, out of pure frustration, designing a rational
version of the DAP architecture.”

ParaSol is a great architecture for the specific mentioned problems, but by

that time we were tangling heavily with the problems of implementing language -

control structure and general-purpose code on the DAP. We realized that many of
the architectural blunders of the DAP we had blissfully copied right over into the
ParaSol. This “rational DAP,” of course, ultimately developed into the Short Stack.
(2Q] “We have designed a higher-level language for the CAM model that expresses

the associative and parallel operations of the machine naturally within the

5

rigorous framework of sparse array theory. We have implemented on the DAP

a suite of primitive functions which is to form the core of an implementation

for the language, and have attained 2 fair amount of expertise in systems-level

details of its operation. We are also attempting to port an implementation of

C to the DAP.”

“Primitive” here means things like subroutine linkage convention— not terribly
glamorous but it must be efficient if there is to be any hope of an efficient machine.
This suite of functions ultimately formed the core of our C implementation.

[3Q] “A half-year’s experience programming the DAP has exposed the major weak-
ness of its architectural type for general-purpose use (the DAP is sold as a
special-purpose machine). This weakness is a decoupling of the control flow
from the actual parallel processing. We have been developing a small-scale ar-
chitecture, the SHORT STACK, which addresses this weakness and also address
software portability issues, which we have heretofore paid insufficient attention
to.”

A simple example: the DAP has a 1024-bit-wide bandwidth to memory, but
when the registers are to be saved (as in a subroutine call) they must be stored one at
a time, using three cycles per store. The reason is a bottleneck between the register
file and the array plane. In the Short Stack the register file is part of the array
plane, so that all the registers can be saved or restored at once. This enhances the
ability to port ordinary serial software to the Short Stack; any parallelism available
in the program may be taken advantage of without having to split the data involved
off into a separate parallel engine.

(3Q] “All our software effort for the period has been spent on our DAP C compiler.
We started with an (allegedly) retargetable C compiler for conventional ma-
chines and have been modifying it to output DAP assembly language. Our
present status is a compiler that can handle some small programs but it is all
too easy to uncover bugs. The machine model of the DAP differs just enough
from the conventional model to cause problems without any compensating ad-
vantages. Ergo SHORT STACK above.”

Silly things, like being unable to use a negative offset with an index register.
More important things, like being unable to modify the size of a process once it had
been created, due to an archaic address-mapping mechanism.

Results

We have learned a lot from our experience with the DAP, and it has all gone
into the design of the Short Stack. The rest of this report deals in detail with the
systems we directly implemented on the DAP. The development of the systems was
slow and piecemeal, since we would constantly be taking them apart and analyzing
all the low-level algorithms, and trying other techniques, and so forth. This was,
after all, what we were here for; to analyze the machine from the point of view of
the low-level software.

It turned out, as isn’t uncommon in basic research, that there was a better way

than the approach we had proposed at the outset. There were many mistakes to be
made in architectural tradeoffs we did not see as the year began. Among these is
the concept of the single-bit processing elements. We can show now that there are
much more cost-effective ways of using the same hardware. This has cost us a year

of work on a frustrating machine, but we consider the knowledge gained cheap at
the price.

Bibliography

Advanced Micro Devices: AMI99C10 Content Addressable Memory: Device Descrip-
tion, AMD, Sunnyvale CA 1988

Bacha, Hamid: Beyond the WAM: A PAM for the CAM, CASE Center TR-8816
Syracuse University 1989

Batcher, K. E.: The Multidimensional Access Memory in STARAN, IEEE Trans.
Comput., ¢-26 (1977), pp 174-177.

Blair, Gerard M.: A Content Addressable Memory with a Fault-Tolerance Mechanism,
IEEE JSSC, vol SC-22, no. 4, pp 614-616, Aug 1987

Blelloch, Gary: Scans as Primitive Parallel Operations, pp 355-362, Proceedings of the
15th International Conference on Parallel Processing, Pennsylvania State University
Press, University Park, 1987

Foster, Caxton C.: Content Addressable Parallel Processors Van Nostrand Rein-
hold, New York, 1976

Fountain, Terry: Processor Arrays: Architecture and Applications, Academic
Press, London, 1987

Murdocca, M. J., Hall, J. S., Levy, S. Y, and Smith, D: Proposal for an Optical Con-
tent Addressable Memory, Optical Society of America Topical Meeting on Optical
Computing, Technical Digest Series 1989 (to appear)

Hall, J.S. & S. Y. Levy: Von Neumanizing the Multi-Search Content Addressable
Memory, The Fifth Annual CSCI Symposium on Massively Parallel Processing,
University of South Carolina, 1989

Hall, J. S., Levy, S. Y, and Murdocca, M. J.: Design Techniques for an Optical Connec-

. tion Machine, Proc. AIAA Computers in Aerospace IV, Wakefield Mass., October
1987 '

Hall, J. Storrs: System Design and Programming Methodology for a CAM-based Gen-
eral-purpose Computer, LCSR-TR-16, Rutgers University 1982

Hall, J. S. and Dunn, M.: CAML Programming Language User’s Manual,
Department of Computer Science, Rutgers University 1987

Hall, J. Storrs: A General-Purpose CAM-based System in VLSI Systems and Com-
putations H. T. Kung, Bob Sproull, and Guy Steele Computer Science Press,
Rockville MD 1981

Hillis, W. Daniel: The Connection Machine MIT Press, Cambridge, 1985

Hillis, D. and G. L. Steele, Data Parallel Algorithms, Communications of the ACM,
December 1986

llgen, Sener and Isaac D. Scherson: Parallel Processing on VLSI Associative Memory,
pp 50-53, Proceedings of the 15th International Conference on Parallel Processing,
Pennsylvania State University Press, University Park, 1987

Kohonen, Teuvo: Content-Addressable Memories Springer-Verlag, Berlin, 1980

Koo, J. T.: Integrated Circuit CAM, pp 208-215, IEEE J. Solid State Circuits, SCS5,
1970

Kruskal, Clyde P, Larry Rudolph, and Marc Snir: The Power of Parallel Prefiz, pp
180-184, Proceedings of the 12th International Conference on Parallel Processing,
Pennsylvania State University Press, University Park, 1984

Langé, R G: High Level Language for Associative and Parallel Computation with
Staran, in Proceedings of the 1976 International Conference on Parallel
Processing

Levy, Saul Y: A System for Handling Task Swapping in a Multiprogrammed, Multi.
processor Environment. RCA Labs Internal Report, 1968

Levy, Saul Y: U.S. Patent 3470540: Multiprocessor Computer System with Special
Instruction Sequencing.

Murdocca, M. J. and N. Streibl, A Digital Design Technique for Optical Computing,
Optical Society of America Topical Meeting on Optical Computing, Technical Digest
Series 1987, 11, pp 9-11,

Murdocca, M. J., A. Huang, J. Jahns, and N. Streibl: Optical Design of Programmable
Logic Arrays, Applied Optics, 27, (May 1, 1988)

Scherson, Isaac and Smil Ruhman: Multi-operand Arithmetic in a Partitioned Asso-
ciative Architecture, Journal of Parallel and Distributed Computing 5, (1988) pp
655-668.

Stolfo, Salvatore J. and Daniel P. Miranker: DADO: A Tree-Structured Architecture for
Artificial Intelligence Computation, pp 1-18, Annual Review of Computer Science,
Annual Reviews, Palo Alto, 1986

Thurber, K. J.: Large Scale Computer Architecture Hayden, Rochelle Pk, NJ,
1976

Thurber, Kenneth J and Peter C Patton: Data Structures and Computer Ar-
chitecture: Design Issues at the Hardware/Software Interface Lexington
Books, Lexington, Mass., 1977

Potter, J. L. ed: The Massively Parallel Processor, MIT Press, Cambridge, 1985

Wexelblat, R. (private communications) Wexelblat implemented a proprietary (ITT-
ATC) object recognition system which had teachability and partial pattern recog-
nition capability similar to a neural network model but was based on the collection
and recombination of well-defined statistical parameters of the domain.

The CAM virtual machine model

Data structure: arrays of records.
Records are separated into fields.

D
-1 Parallel operations are supported
> between fields, i.e. add C to D
in each record.

Activity control (F) allows data-
dependent “skipping" of records.

|
Vv

Collective functions such as
sum (A), max, scan, etc, are
supported for the values of
a given field in all records.

|
VIV

Data motion (B), at least shifting.

NN SIS SN V7
|

vV Parallel application of collective
+ functions to subianges.

This model is sufficient to parallelize a very wide
range of computing tasks--so wide that it can be
considered a completely general-purpose paradigm.

10

Implementations of CAM

Vi

N0000000

4
Something ﬁ

n0000000

g

no000000

Machine "Something"

STARAN Flip Network
DAP, MPP square mesh
Conn. Mach. hypercube

U.Mass IUA pyramid
Rutgers

CAM tree
ParaSol mesh of trees

00000000

ALU

registars
: & RAM

o

11

CAML

CAML is a simple, elegant language designed to
express algorithms for the CAM machine model.

We implemented a CAML compiler and wrote
CAM versions of algorithms from many areas
of computer science.

(includes: set theory operation primitives
typical graph operations
network optimization
computational geometry
statistical and numerical codes
sorting and searching (database)
compiler algorithms
memory management
other systems software)

Linear C is an unlovely hybrid language which imports

the CAM programming model into a fromework that will
support unmodified existing C code and allow for moving
to parallel algorithms incrementally statement by statement.

12

Linear C

Expresses the same paraliel algorithms as CAML
(Ie, reflects the CAM machine model).

A superset of C

Same source code efficiency as C

Programs can be ported incrementally

Datastructures exactly the same

Identical declarations

The "substitutable imperative"
Arrays vs Vectors -

Array: a structure of storage

Vector: a structure of operations

13

Plans for Future Work

Instruction Set for Short Stack
Linear C compiler (to simulate)

Register transfer level simulator
for the Short Stack

Linear C compiler (for real
instruction set).

Higher level language definition

14

The Short Stack

A SIMD processor architecture

As mentioned elsewhere, the Short Stack was originally conceived as as a ra-
tionalization of the sort of cellular array processor represented by the NASA MPP,
ICL DAP, ITT CAP, etc. The major impetus was the observation that the array-
to-memory bandwidth represented a resource that was being almost entirely wasted
during many common system functions, such as subroutine linkage.

The classical method of dealing with this problem is to decouple the system
functions even further, in the hopes that the overhead operations can be overlapped
with array manipulations. The Connection Machine, for example, follows this strat-
egy.

The Short Stack is the concept of a machine built to test the opposite hypoth-
esis: that by integrating the control functions even more closely to the array, the
processing power, and more importantly perhaps, the memory bandwidth of the
array could be brought to bear on the system functions.

This would have the major advantage that the necessity of tearing a program
apart into "parallel” and "serial” portions would be avoided, and thus porting pro-
grams onto the architecture would be easier. Another big advantage would simply
be the speed gained in the system functions themselves, assuming that the band-
width could be harnessed appropriately. That would allow efficient executions of
some paradigms which are completely lost on the decoupled style of array proces-
sor. For example, Prolog execution consists almost entirely of its form of subroutine

linkage.

Architecture

The DAP consists of an array, generally thought of as a square matrix of
single-bit processors, and a more-or-less conventional set of registers upon which
serial instructions are executed. The departure represented by the Short Stack is to
identify rows of the array with registers. Thus the entire register set can be saved or
restored in a single memory cycle, greatly simplifying and speeding up operations
like subroutine calling.

The DAP also has a mode of operation in which the rows of the array are
operated as words, although it isn’t strongly supported-word-mode operations are
considerably slower than the bit-mode ones. Even 5o, we found word-mode oper-
ation to be superior to bit-serial for several algorithms, and this prompted us to
investigate abandoning bit-serial mede altogether. We now believe this te be a good
idea and the Short Stack architecture has no bit serial modes at all. Among other

things, this obviates the conversion between different formats for scalar and vector
data.

15

We therefore refer to the Short Stack as a "word-parallel” machine as distin-
guished from a bit-serial one. This leaves a 1k-pin memory bandwith representing
32 32-bit words instead of 1k 1-bit ones, but still able to process 1k 32-bit words
in 32 cycles, same as the bit-serial. The tradeoffs are complementary: the word-
parallel machine handles shorter arrays of 32-bit data better, the bit serial handles

1k arrays of shorter data better. System functions consist almost entirely of the
former type of operation.

Collective Functions

The feature of our original CAM virtual machine architecture that gave it its
algorithmic flexibility was the set of collective functions that was to be implemented
directly in the hardware, and those are similarly a feature of the Short Stack. The
collective functions are such operations as "sum all the words,” which produce a
result that depends on the value of each word.

The Short Stack has the collective functions as register set to register set op-
erations, implemented to be efficiently chainable for operations over longer vectors.
(The parallel scalar operations are similar.) This allows both the processing of long,
memory- resident arrays, and the optimization of short-array algorithms designed
to use the Short Stack memory bandwidth to best advantage.

An example is simply searching for a key value in a memory-resident data
structure. The collective function that might match this problem is "find first value
greater than or equal to”. We can compare algorithms for this task on serial, word
parallel, and bit serial architectures. (The serial machine is disadvantaged from the
outset by its limited memory bandwidth, and may be viewed as a control; the two
parallel alternatives are intended {o represent two different ways of arranging the
same amount of hardware resources.) '

For concreteness, let us assume we are searching a table of a billion entries for
keys which are 32-bit quantities. In the serial machine, we implement a binary tree
of depth 30, which we can then probe in 30 memory cycles.

In the bit serial machine, we can form a 1024-ary tree that is only 3 levels
deep! However, it takes us 32 cycles to read one node, bit serially, so that even if
the key-finding in the node is instantaneous, it takes 96 cycles to probe the tree.

In the word-parallel machine, node size is 32 and thus the tree is 6 levels deep.
However, node reading is a single-cycle operation, yielding a 6-cycle search.

If, that is, we can find the key position in the 32-value node with a similar
alacrity once we have the node in a register set. This is a collective function, and
it shows the necessity of being able to do that function fast. We could search the

node itself by a binary search, but that would take 5 probes, reducing the whole
algorithm back to the serial machine performance!

A similar proviso applies to the case of the use of the word- parallel machine
for applications like Prolog or Ops-5. The advantage gained over the serial machine
is likely to be no more than 10, as far as indexing and searching are concerned, and
thus it is critically important to avoid losing the cycles back to collective functions.

16

Ep————

Instruction Set

The Short Stack takes an advantage of SIMD in having a much smaller instruc-
tion than data bandwidth. Thus instructions can be kept in the same memory as
data with only a minor impact on overall speed. Even running straight-line code
with no loops, the 1k-bit machine (the smailest we envision) would get one plane
with 32 words of instructions at a time, and not need another for many cycles.

The instruction format has not been fixed yet. Present indications are that a
long-instruction-word format, able to choreograph the several major functionalities
of the machine, is desireable. At the very least, memory read/writes, parallel scalar

register-to-register operations, and collective functions could be overlapped and/or
pipelined.

Data Format

The DAP, we opine, went too far in the direction of trying to squeeze the last
bit of efficiency out of variable precision data. The Short Stack limits this to the
same 8-, 32-, and 64-bit objects as a conventional processor. In order to avoid the
problems of conversion that plague the DAP, we lay the memory addressing out in
a pattern that allows operations between vectors of different sized objects without
any inter-processor communication. This is a simple interleaving scheme but must

be hardware-supported (by local barrel shifters in the memory data path) if the
speed advaniage is to be retained.

Semi-Serial Algorithms

The major advantage of the Short Stack architecture for systems code and
“general purpose” use is that its most efficient modes correspond to the most com-
monly performed functions. However, there is also a particular class of algorithms
where the word-parallel architecture has a theoretical advantags over the bit-serial
one. We call these the “semi-serial algorithms.”

A semi-serial algorithm is one in which a vector of results can be calculated in
parallel using one operation (say, multiplication), or calculated serially using a less
expensive operation (say, addition). This is exactly the class of algorithms that is
susceptible to the well-known optimization of “reduction in strength.”

A simple case suffices for an example: consider calculating 1k values in an
arithmetic progression. The serial algorithm is to add the difference value again
and again, and the parallel algorithm is to multiply that value by 0, 1, 2, ..., 1023.
Now consider a 1k-bit-wide machine: if it is arranged as 1k bit-serial processors
operating in parallel, each will have to do a multiplication, a 1k-cycle operation if
the data are of 32-bit precision!

A word-parallel arrangement of the same hardware would do instead 32 32-bit
adds in one cycle, and 32 32-bit mults in 32 cycles. (Please note that the raw
operations-per-cycle of the machines is the same: 1k adds in 32 cycles, 1k mults in
1k cycles.) However, the word-parallel machine can calculate 32 values in parallel,

17

taking 32 cycles, and then follow with 31 cycles of 32 additions each, using the serial
formulation, for a total of 63 cycles.
There are many other pairs of operations which fall into the same category,’ so

that similar results can be expected in set- and graph-based algorithms, and other
non-numerical applications.

! See Paige, Robert: Formal Differentiation: A Program Synthesis Tech-
nique, UMI Press, 1981

18

Scale

Associative Parallel Processors

GF11
IUA CM1
MasPar

MPP

llliac IV

DAP

AsPro
Am939C10

GAPPs

CM2

—R

Generality

19

uniprocessor

Short Stack Architecture

Instruction
Bus

ALUFile

Register Set
(per ALU)

Crossbars

Memory

UL

UL

[HEAN

T

i

-

) A A A AR A A A4
S T 7

20

Short Stack Architecture

Collective fns

Shift / broadcast ‘/ﬁ\

| L1
|
Word-wide ALUs
& register sets
Instruction queue T T T T T T T T
to memory
Word-parallel -- no separate controller

Allows parallel operations on scalar data.

Increases speed on algorithms with
low parallelization.

Allows incremental parallelization.

Enhances associative control flow operations
(Prolog, OPS5, object-oriented languages).

21

Short Stack architecture

Collective function tree
Shifter (orthogonal xbars)

/

32-bit ALU and register set

gy =

32-bit ALU and register set

-

32-bit ALU and register set

z 4

32-bit ALU and register set

32-bit ALU and register set

pr -

32-bit ALU and register set

-

32

32-bit ALU and register set

o 4

32-bit ALU and register set

... 128 in ali

22

Semi-serial Algorithms

Three architectures, each with the equivalent
circuitry of 1024 full adders:

A) 1024 bit-serial one-bit ALUs
cycles to add: 32

cycles to multiply: 1024

B) 32 word-parallel 32-bit ALUs

cycles to add: 1
cycles to multiply: 32

C) 1 full 32x32 fast multiplier

cycles to add: 1
cycles to multiply: 1

Problem: compute some parallelizeable but
strength-reducible function for 1024 points.

Eg. Y=mx+b for x=1.2,3, ..., 1024,

Machine | mults @ |adds @ | cycles
A 1 1024 0 32| 1024
B 1 32| 31 1 63
C 1 111023 1 | 1024

23

Linear C: A C superset for SIMD parallel processing

J. Storrs Hall
Laboratory for Computer Science Research?
Rutgers University

Abstract

Linear C is a C language extension for incremental portability of C programs
to a parallel machine. Other parallel extensions to C require redesigp of algorithm
and data structures to take advantage of parallel operations. Linear C is designed
to obviate this necessity.

! Supported by Air Force Office of Scientific Research under AFOSR-86-0294
and DARPA under RADC t.n. B-8-3615 and B-8-3616.

24

The Substitutable Imperative

Linear C is a language designed to allow the incremental extension of C pro-
grams to a parallel machine. There are many parallel extensions to C, but all of the
ones we are aware of require the programmer to redesign the algorithm and data
structures of his program to take advantage of the parallel operations. In Linear C,
on the other hand, the translation to parallel form can be done incrementally, that
is, one statement at a time. There are several benefits to this approach:

a) There is no high initial investment in reprogramming necessary.

b) Only the most critical and/or easiest parts of the application need be converted
at all.

¢) Since system functions and libraries using parallelism interact seamlessly with
serial code, substantial advantage can be obtained with no translation whatso-
ever.

(It should be mentioned that Linear C is a language designed with a specific
(SIMD) parallel architecture in mind, namely one which allows such a tight cou-
pling between serial and parallel code. This is not true of many existing parallel
architectures, even the SIMD ones.)

The principle behind the design is what we call “the substitutable imperative”.
That is to say the declarations of a Linear C program are exactly the same as
C; the data structures are identical. For any given Linear C program there is an
equivalent C program, statement for statement; the state of the data structures
between corresponding pairs of statements is identical. To put it another way, you
could substitute at random corresponding statements of the two programs and get
the same results. (This is called the “substitutable imperative” since it only makes
sense for the imperative statements, the declarations already being the same.)

Vectors vs Arrays

To understand the parallel extensions that constitute Linear C, one must realize
that the array as defined in C is not a “first class citizen”. If A is the name of an
array in C, it actually denotes the address of the array, i.e., a pointer. A+1 means
the address of the second element, not any operation on the array itself; and A=1 is
illegal.

In Linear C we introduce a new collective type that is the opposite of the array.
The array cannot take part in arithmetic operations: the vector can. The array can
be stored into and is non-volatile: the vector cannot and is ephemeral.

With the restrictions imposed by the “substitutable imperative”,-it was im-
possible to perform some of the elegant generalizations of the other C extensions.
However, the syntax and semantics of C are relatively ad hoc to begin with, and the
Linear C extensions are quite consistent with its spirit. Furthermore, they are few
in number. For example, the following implementation of strecpy() (string copy)
in Linear C, while cryptic-

b[#Q!x#ta] = *#a;

25

~is not particularly more so than the “standard” code from Kernighan and Ritchie:
while (*b++ = *a++);

(Although the experienced C programmer will of course recognize the latter as a
cliché of C programming.)

Vectors

A vector is a sequence of C objects that is to be operated on in parallel. The
programming model we are using is essentially a machine with a vector register and
perfectly ordinary memory, whose contents are described by perfectly ordinary C
data structures. However, while a statement is being executed, the vector register(s)
may be operating on a sequence of values in parallel, although the results must be
placed back into the ordinary C arrays at the end of the statement.

vector: A sequence of values which takes part in arithmetlic operations as ar-

gument or result

array: A sequence of storage locations into which values may be stored between
operations

The simplest way to specify a vector is simply to list the elements so:
&,,b,,c,,d .o

(Double commas are used because single comma is already an operator in C.) The

items can be scalars (ordinary C values) or vectors themselves, in which case they
are concatenated together.

However, the basic vector form is
*i
In this basic form, i must be of an integer type, and #i is interpreted as a vector
of i successive integer values starting at 0. Thus the value of #6 is
o,,t,,2,,3,,4,,5
The most commonly used form of vectors, however, is a binary operator:
a#b
which simply means a + #b (if b is an int). Thus a#b equals
a,,atl,,a+2,, ... ,,atb-1
If a and b are ints, this is a vector of integer values; but if a is a pointer (such as

the name of an array) this is a vector of pointers to the first b elements of the array,
by standard C pointer arithmetic.

Mized Operations

Whenever a standard C operation is done between a scalar and a vector, the
scalar is broadcast to be operated on in parallel with each element of the vector.

Thus,
4 + (5%6)

4 + (5, ,6,)7’)8))9))10)
. == 9,,10,,11,,12,,13,,14

26

If a unary C operator is applied to a vector, the value is a vector of the operator
applied to each element of the original vector. Thus, remembering that a#b i a
vector of pointers to the b first elements of a, *(a#b) is a vector of the first b
elements of a. Remembering that “*(a+b)” in C is identical to a[b],

*() == *(& yy atl ,, a+2)
== *2 ,, *(a+1) 9 *(&+2)
== a[O],,a[ﬂu&[zl

If a standard C operator is applied to two vectors, they must be of the same
length, in which case the operation will be done elementwise, or one or both of them
must have indeterminate length. If one is indeterminate, the length of the other
will be used; if both are, the result is also of indeterminate length.

The semantics of # used as a unary operator depend on the type of its argument.
If i is an int, #i <==> O#i. If ais a declared array with length 1, #a <==> a#l, ie,
a vector of pointers to the elements of the array:

int a[3];
#a == a®3
= a,, atl ,, a+2
&a(0], ,&al1],,&a[2]

If a is a pointer declared with * instead of [], the length of the vector is indeter-
minate, and must be inherited from another part of the vector expression. (Note:
*#a can be seen to denote the elements of array a as a vector:

int a(3];
“Xa xm *(a#3)
== *(a ,, a+l ,, a+2)
xx *a ,, *(a+1) ,, *(a+2)

=m a[o],,a[i],,a[ﬂ

This is a very common usage.)
Assignment

In C, the left-hand side of an assignment must be a valid argument to the &
operator. You cannot say 3 = x or a = x (if a is an array). Neither can you say
3#5 = x or a#5 = x. You can say *(a®#5) = x, the same way you can say *(a+5)
= x. In the first case, if x is a scalar, each of the first 5 elements of a is set to x. If
x is a vector (a vector expression, there are no vector variables) then it had better
be of length 5 (or indeterminate) and the assignment is elementwise.

27

<a is an array containing 1 2 35 7 11 13 17>
x(a+2) = 65;

<a now contains 1 2 55 5 7 11 13 17>
«(a#4) = 55;

<a nov contains 55 §5 55 55 7 11 13 17>
=(a#q4) = =(a+4#4q);

<a now contains 7 11 13 17 7 11 13 17>

This last could also (and would usually) have been written
al#4] = ala#4];

(It is interesting to note that + and # associate; i.e., (a+b)#c and a+(b#c)
have the same value.) The behavior of vector assignment, above, is exactly what
you would expect from extrapolating the normal C rules for assignment and the
Linear C rules for mixed vector expressions. Such a strict extrapolation causes
some operations to be trivialized when you didn’t expect it. For example, when
you assign a vector into a scalar, all the elements of the vector are assigned into the
same location!

Other Linear C Operators

(In the following, v represents some expression evaluating to a vector, and s
denotes a scalar. a denotes an array, i an int. + is used to denote any associative
C operator (ie, +, =, &, |, ~, &&, |1)):

i /\ v (vector): the first i elements of v

i \/ v (vector): v with first i elements removed

v // w (vector): those elements of w that correspond to nonzero elements of v

??v (scalar): the length of v

s ?? v (scalar): the number of occurences of s in v

v @ 8 (scalar): the index of the first occurrence of 8 in v

v 08 s (vector): the indices of all occurences of s in v

ov (scalar): the index of the first nonzero element of v

@@v (vector): the indices of all nonzero elements of v

+/v (scalar): the + reduction (e.g. sum) of v

+\v (vector): the + scan of v, ie, the sums of the sequence of initial substrings

$v (vector): the elements of v in reverse order

i $ v (vector): v cyclically shifted i places (to the left)

Vectors distribute properly across “... ? ... : ...” - in particular, this
expression allows for “associative” or “content addressable” operations. Similar
parallel control structure can be obtained by using &% or || on vectors. The “lazy
evaluation” semantics of these operators allows an operation (say, with side effects)
to be done on some elements of a vector and not on others.

Vector expressions involving modification assignment (“+=" etc.) distribute the
same way that = does, but notice that if a vector is assigned into a scalar, the result
is no longer a triviality:

28

z += *¥a <==> z += +/x@ta <==> z = z+al0]+ali1]+...

Vectors do not normally distribute across the “,” operator (it is difficult to see
what semantics would be implied!). However, if the “,” expression is part of a “?

:” expression (or && or ||), the implied “activity control” is propagated into all
the subexpressions.

Ezamples

It is now possible to explain the strepy() implementation exhibited earlier:
b{#Q!*#a] = =#a;

It is assumed (in both forms of the code) that a and b are pointers into strings
of characters which are considered null-terminated. The expression *#a (it occurs
twice in the statement) denotes the sequence of values starting where a points (but
requiring a length specification to be supplied). The ! is simply C word-negation,
@ finds the non-zero negation of the null terminator, and the unary # produces an
index string of that length.

This form of the expression copies the string without the null terminator; that
could be copied by

bli#Q!=#a] = =#a;

As a more thoroughgoing example, here is the Dijkstra’s algorithm translated
from the CAML version we have displayed in the past: (We use “_" to represent a
“min” operator.) :
main ()

{struct {int x,y,t; float a,u;} edge[NEDGES];
int k;
/* edge.x and edge.y are set up to represent the graph
edge.a is the weights =/
*#edge.y==STARTNODE ? *#edge.u=*#edge.t=0 :
(*#edge.u = +INF, *#edge.t = 1);
k = STARTNODE;
vhile (||/+%edge.t)

{*#edge.t && *¥edge.x == k ?

*#edge.u _=» *#edge.a + _/(*#edge.y=xk)//*#edge.u;
k = edge.y[+#edge.u @ _/+#edge.t//*#edge.ul;
edge.t[*#edge.y 00 k] = O;
}

29

Bibliography

FORTRAN-PLUS Language, AMT Ltd. DAP Series Documentation num-
ber “man002.03"

Budd, T. An APL Compiler, Springer-Verlag, NY, 1988
Hillis, W. D., The Connection Machine, MIT Press, Cambridge, 1985
Iverson, K, A Programming Language, Wiley, NY, 1962

Kernighan, B., and D. Ritchie, The C Programming Language, Prentice
Hall, Englewood Cliffs, NJ, 1988

Steele, Guy. L., Jr., “Languages for Massively Parallel Computers”, Proc.
2nd Frontiers of Massively Parallel Computation, Oct, 1988, IEEE cat. no.
88CH2649-2

30

CAML Programmer’s Manual

J. Storrs Hall
Laboratory for Computer Science Research
Rutgers University

Introduction

CAML is a systems-level programming language intended for use on machines
with content addressable memory. It supports the special features of such machines
with a simple and integral data structure model.

The capabilities that CAML assumes do not correspond to a specific architec-
ture, but to a set of related architectures. Thus CAML has an implied specification
for a “least common denominator” machine on which it will run. There is consid-
erable latitude in the specification for variation in the implementation of particular
features.

Consider “systems programming” languages such as C, Bliss, or Pascal. These
languages have a close relation to the architecture and capabilities of conventional
processors. Yet between the specific machines in the class thus defined, there can be
orders of magnitude of difference in power and throughput. The languages abstract
away the inessential detail such as register number, bus width, linkage conventions,
and suchlike. Nevertheless they are close enough to the programer’s idea of what is
“really going on” that they are often called “portable machine languages”. CAML
is a portable machine language for content addressable machines.

CAM Architecture

The CAM model is similar to a conventional machine. In its essence it is simply
a processor and a memory. However, where in a conventional machine the processor
specifies loading and storing in memory by a single address at a time, the CAM
processor can specify conditions, ranges, and collective functions.

The CAM memory consists of a set of words which are addressed either conven-
tionally or associatively. The conventional addressing is extended to allow specifying
ranges. So where in a conventional machine one can specify, “word 42567, in the
CAM we can specify “words {201 through 5557 inclusive”, or, associatively, “all
words containing a number greater than 17",

If we can specify a selected subset of the words in memory at once, we can
do something to them at once. For example, we can set them all to a new value
(it must be the same value), or add something to each one (it must be the same
something). We can also discover the address (instantly) of the first word which we
have specified in some way, ie, “give the address of the first word whose contents

31

are greater than 17 and less than 39.”

As far as actual data motion in the memory, we require only that there be
the ability to shift data up and down in one dimension, all words moving the same
distance. We do not specify the speed with which this must be done, although
obviously the faster the better.

It might be wondered why one would want to build what is essentially a highly
parallel processor with such a limited communication structure. The theory which
CAML is designed to develop (and to test) is that many useful computations can
be implemented on a SIMD architecture where the collective functions available in
the communications scheme are simple but fast. The communications available on
existing machines is flexible but slow, on the order of milliseconds. Our contention
is that a much more limited functionality operating on the order of microseconds
has a usefulness as yet unexplored.

This functionality reflects a hardwired tree of simple ALU’s terminating in the
processing elements (words). It can perform certain functions (sum, maximum, etc)
of the active words by direct configuration. It is synchronously controlled, and at
no time are “messages” or “packets” sent over it.

Overview of CAML

The basic data construct in CAML, besides scalars of various types, is the
array of records. A pseudovector is the occurences of some field in a subset of the
records of the array. In an array foo of records with two fields foo.a and f0o0.b, a
pseudovector is something like all the foo.b’s where f£oo.a is greater than 17. In
CAML this would be written foo[la>17].b. Only one array can be the basis of
the pseudovectors in any one statement, so the fieldnames are used alone after the
initial mention of the array. For example, foo(2:34 | x>22 & y=z].z := x-17
means “in records 2 through 34, inclusive, of foo, in which the x field is greater
than 22 and the y field is equal to the z field, place in the z field the value of the x
field minus 17.” Indexing is zero-based.

CAML allows operations between psrudovectors only where these can be done
in parallel on the hardware. Thus, like other systems level languages, program
text remains a fairly good indication of efficiency. Primitive functions include those
which are implemented at the microcode level, ie arithmetic between fields in par-
allel, count responders (\#foo[lx>3]), address of first responder (8foo[]x>3]),
etc.

Control constructs in CAML also reflect the capabilities of the CAM. Iteration
through a pseudovector, for example, is included since the deaddressing capability
allows this to be done in time that depends on the number of items in the pseu-
dovector, but which does not depend on the length of the base array (the original
array in which the selected records lie).

32

CAML Syntax

CAML is defined in terms of functions, statements, and expressions. The ex-
pressions are conventional in form; the statements follow a two-dimensional syntax.
This syntax is merely a formalization of the indentation commonly used in pro-
gramming languages to indicate levels of nesting in recursively defined statement
constructs.

Formalized Indentation

Consider the following fragments of Common Lisp code:

(cond ((null a2) 0) ((numberp a2) (incf n)) ((memq a2 ’(oi
02 03 04 o5 06)) (or (cdr (assq a2 regs)) (cdar (setq regs
(acons a2 (incf n) regs))))) (t (setf (gethash a2 memmap)
(inct 1n))))
and
(cond ((null a2) 0)

((numberp a2} (inct n))

((memq a2 (o1 02 03 04 o5 06)))

(or (cdr (assq a2 regs))

(cdar (setq regs (acons a2 (inct n) regs))))
(t (setf (gethash a2 memmap) (incf n)))))

The point of interest is that the first fragment is right and the second is wrong-
it contains a parenthesis error. Nowadays most programming language code is
maintained in display editors which parse it and indent it automatically. But when
the code is changed, the indentation can look correct while the actual syntactic
nesting is wrong. Often the user forgets to re-indent the code after changing the
parentheses.

CAML syntax is an attempt to sidestep the problem: if the indentation looks
righit, it is right. It is simple to parse the indentation, and since the code is main-
tained in a display editor anyway, it is as easy to change the indentation as it would
be to add parentheses.

A sequence of lines bearing the same indentation is called a group. The line
just above a group which is less indented is called its headline. The headline defines
a syntactic unit and all the lines in the group are part of that unit. A line may be a
headline for more than one group, if its syntax allows for double nesting. Compound
assignment statements are an example of this:
1.| arraylindex].field := expression
2. .stream := face
3.1 .meadov := figure
4. | [preface] .field := gloop
5.1 .stream := frog
6.1 (title].meadow := 0

Line 1 is the headline for the all the groups. The first group cousists of lines 2 and

33

3. We often refer to the subexpression of the headline at the same level as the other
statements in the group, as part of the group. Thus we might say that the part of
line 1 beginning “.field” is part of the group with lines 2 and 3.

Similarly there is a group at the level of “[index] ...”, “[preface] ..."”, and
“[title] ...". Finally, line 4 is the headline for the group consisting of the subline
of line 4 starting “.field ...” and of line 5.

Comments

Any left parenthesis “(” which is the first non-blank character on a line intro-
duces a comment. The comment continues to the matching right parenthesis “)”.
A comment may span several lines. No code other than comments may fall on the
same line as a comment. The leftmost characters of continued comment lines may
fall to the right, but not under or to the left, of the opening paren.

(This is a worthless comment which doesn’t explain anything.
It only demonstrates the syntax of comments.)
array(index].field := expression
(This very important comment is indented.)
.stream := face
.meadow := figure

Declarations

Declaration statements may occur at the beginnings of environments (such as
function bodies). Such a declaration creates an environment containing the variables
declared. Declaration types are:
env <array>[<length>](type)

<array>[<length>] .<field>(<type>) .<field>,.<field>(<tvpe>)

scalar <var>(type) <var>,<vard>,<var>(type)

scalar <array>[<length>](type)

scalar <array>[<length>] .<field>(<type>)

1. An associative array, ie, one that will be stored in cam, is merely named and
typed, e.g. £00[50] (int).

2. An associative array of records is similar, but the fields are typed individually.
Field names are preceded by dots in declarations, e.g. £00[10] .p,.£(bit)
.n(int) to make them easy to distinguish visually from variable names.

Arrays may be multidimensional, e.g. a[5,10]. This extends both dimen-
sions along the associative memory, i.e. it is as if we had declared a(50].
Fields may also be given dimension, e.g. £00[1000] .hash[50] (bit).
This dimension is orthogonal to the associative memory, and is not asso-
ciative. (L.e. we could do foo[| hash[12] & hash([33]] but something
like “£00[333] .hash & f00[666].hash” is meaningless.

]

3. Scalar variables rarely need to be declared since this is the default in CAML.
The default type is int, but for scalars there is little difference between the inte-
ger types (including char, similar to C). Furthermore, some type extrapolation
is done, so most undeclared variables will be treated properly.

4. The concept of a scalar array may seem odd, but merely means that the array is
held in normal memory and cannot be used in associative operations. Otherwise
the declaration is similar to the associative ones.

5. “Scalar” arrays of records are also allowed for completeness.

For example, we might declare a matrix as
env a[20,20] (float)

but for a large and sparse matrix, we need only store the nonzero elements.
We could store their indices explicitly, and address them associatively.
Thus we might declare

env a[500] .i,.j(short) .x(float)
Then we could refer to all of row 14 by a[]j=14].x.

Types are int, short, char, bit, and float in the preliminary version. Variables
and fields need not be typed explicitly throughout the program, but are typed by
the compiler at each occurrence. The type of the value associated with a variable
name may vary throughout the program, but the type at any one occurence of that
name must be fixed, even though it is only implicit. The same is true for the values
of expressions.

In general, the programmer need only specify as much information as necessary;
the compiler will supply it if it is obvious from the program. for example, in
{fo0(1000] .x .y .z}

foo.x := 3.1415926
.2 = x<y*2.718281828

the compiler can easily tell that foo.x and foo.y are floats and fo0o.z is a bit.
It was necessary for the programmer to declare them as fields, however, since field-
names and scalars are ambiguous in the syntax. If such a name occurs free (ie,
without having been declared), it is taken to be a scalar.

A declaration establishes an environment coincident with the group
of statements it controls, ie, those just below it indented farther than it is. A
more complete explanation of variable environments is to be found in the function
and program organization section.

Temporary Declarations

There is a kind of declaration which declares temporary additions to exsting
arrays. The idea is for there to be a field to be used in some calculation but which
need not hang around afterward. The syntax is:

env array + .field := optional initialization

35

Suppose we are doing depth-first search in a digraph which has been de-
clared

env graph[1000] .from,.to(short)

(ie., a list of edges). To do the DF'S algorithm we need a “mark bit” which
tells if we have seen a vertex yet. We might declare

env graph + .visited(bit) := 0
and then proceed with the DFS algorithm.

where the initialization may use fieldnames of the original array.

Another kind of temporary declaration changes the dimensionality of an array.
This allows a dynamic basis for local collective operations. This declaration does
not allocate any space but merely changes the way an existing variable is addressed.

There are two variants:
env foo = [21;37;59;hike]

bar = baz[36;24;36]

The first temporarily “rearranges” foo to be of the new dimensions (note that

variables can be used). The second introduces a new name bar to be used with the
new dimensions of baz so the old name (and dimensions) can still be used.

Operations
factor := variablel constant I (ezpression)
term ::= factor | factor * term I factor / term
sum = lerm I term + sum | term - sum
comp = sum sum > comp sum < comp
sum = comp sum "= comp
sum >= comp sum <= comp
~ comp
condition := comp |comp & condition ' comp V condition
comp X condition

These operations, at least in terms of scalars, are quite conventional through
the factors, terms, and sums. The comparison operators, however, have an extended
interpretation in compound expressions. a<b<c means a<b & b<c and so forth. This
is more natural than most programming language syntaxes and is straightforward—-
with one possible exception: a”=b~=c is interpreted with the same rules, and thus
a may equal ¢ and the expression will still be true.

The comparison operators (including ~) always produce a bit value. The logical
operators &, V, and X may not. They will return one of their operands as a “true”
value-& returns its right operand if both are true, V returns its left if it is true, and
if one operand of X is true and the other false, the true one is returned.

Assignment is specified by :=, and modification assignment is denoted by plac-
ing the scalar operation between the : and the =. Thus a :+= b is the same as

36

a := a + b. (We could even write “bit :“=” as a complete statement, meaning
complement bit in place.)

Arrays

References to arrays are by index and/or selection. We write array(indez] . field
(scalar-valued), or array[rangelcondition] . field (pseudovector-valued). Range is
indez:indez, Condition is a bit-valued pseudovector compatible with array. If we
write array. field, i.e. leaving out the range and condition altogether, we mean the
whole array, i.e. that field in every record.

One base array reference is allowed in any statement. All pseudovectors in the
statement must be compatible with it (with the exception of those in scalar-valued
expressions). All the pseudovector references in the statement are given merely as
fieldnames of fields of the base.

Assignment Statements

Pseudovector assignment statements may specify more than one field compat-
ible with the base. These are specified by specifying a different field name under
the first one given in the base, starting with the period, lining up the period. For
example,
foollp].bar := 12

.baz := 13

This means to set the bar field to 12 in those records of foo where p is true; and
set the baz field to 13 in the same records. Note that the selection is only done
once, before any assignment is done. In:
fco[|bar=baz].bar := bar+i

.baz :x baz-1

.dat := 0

the bar, baz, and dat fields are changed in exactly the same set of records, re-
gardless of the fact that bar and baz aren’t equal in those records after the first
assignment has been made, and the new bars and bazzes may now be equal in

other records. Note on the other hand that the assignments are sequential and
cumulative:
foo.bar := baz

.baz := bar

does not exchange the bar and baz fields; the values of bar have been wiped out
in the first assignment. (The exchange may be accomplished by the special purpose
construct foo.bar :=: baz.)

There may be several clauses to an assignment statement, each with a different
base. The array must be the same in each case, and is omitted in all the clauses
but the first. These line up vertically below the subscript/selector in the primary
clause. This allows for the “catchall” selector “{]1” in the final clause which means
“any record not selected yet™:

37

foo[|x=1].bar := first
.baz := last

[|x=2] .bar := second

.baz := penult

{].bar := general
.baz := random

However, there is more going on than meets the eye. Consider the following
assignment statement:
env foo[n] .bar,.baz(int) .dat(float) .p(bit)
foo[0:k | bard>baz]l.p :&= dat-66 <= bar+baz
.dat :+= bar
[l p].bar := dat-66
Foo is the base array for the selection [0:k | bar>baz], and the pseudovector
foo[0:k | bard>baz] is the base for references to p, dat, etc. But the base for
the selection [| p] is all the records not selected by [0:k| bar>baz]. Thus even if

several p’s got set to 1 in the first clause, none of those records would be affected
by the third one. (If we had wanted them to be, we could merely have written

fooll p].bar := dat-66

as 4 completely separate statement.) This feature is known as ezclusive selection.

We are simulating a chamber filled with moving particles. Each particle
has x, y, and z positions and velocities. There is a wall in the middle
which represents a potential gradient delta. We want to find particles
which have hit the wall in the last iteration (let us say, the plane z =v).
The particles from the low side (z <w) may bounce if they aren’t energetic
enough; those from the high side always cross, and are accelerated. The
trick is not to mistake particles we've just processed for ones which hit the
wall from the opposite direction:
particle[|ix<v & x-vd>=vl.x :+= delta=(w-x)/v
.v :-= delta
[Ix>v & x-v<=v & v<deltal.v := -v

X 1= 2%Y~X
[lx>w & x-v<xu & v>delta].x :+= delta*(w-x)/v
.v :-= delta

Exclusive selection makes this statement work; otherwise particles which
have had their interaction might become candidates for another. Exclu-
sive selection also allows the compiler to collapse the first and third cases
without changing the semantics.

Scalar-vaiued Functions of Pseudovectors

38

The size of a pseudovector, written #foo[| something], is the number of items
in it. Note that no field need be specified here; that would be superfluous. Note
also that a scalar valued function of a pseudovector is no different from any other
scalar expression; it can be used freely inside statements involving pseudovectors of
an entirely different base. .

An important scalar function is address-of-first. Written @foo[|expression],
this returns the index in foo of the first record in foo where the expression is true.

Whereas # and @ are functions of the structure of a pseudovector, other func-
tions require some field with values, and are essentially vector-to-scalar functions.
We write, for example, <foo[|bar].xyz for the minimum value of the xyz field
among records in foo in which the bar field is true.

Often we want the value of some field from the record with the min (or max)
of another field; say we wanted the value of the abc field from the record with the
minimum xyz field where bar was true — we could write

foo[@(foollbar] .xyz= <fool[lbar].xyz)].abec
but since this is a fairly common case we introduce a contraction:
foo[lbar|<xyz] .abc

The sum of a field is written +/foo[|bar].£1d. This diction is borrowed from
APL, and is used for all the functions where a similar “summation” is done:

Function diction
sum +/foo[lbar].£1d
and &/toollbar].£1d
or V/foolibar].£1d
parity X/too[lbar].£14

Non-Scalar Pseudovector Functions

Ancther borrowed APL diction is +\\foo.£1d. This means the pseudovector
of which each element is the partial sum of the elements up to (and including) that
element of the argument.

Control Structures

A control statement is typically a keyword followed by a statement or expres-
sion. It is the headline of a group of statements which it controls. For example:
for i := 0foo[|bar]

<statement in the for loop>

<another stmt in the loop>
<statement not in the loop>

The semantics of this is that the pseudovector foo[|bar] is iterated through.
The condition bar is only evaluated once. i takes on the value of the index of

39

the successive elements in the original pseudovector. Compare this form of the
for statement with the while statement. In the for statement, the expression “i
:= @fo0...” is not a real assignment but part of the syntax of the for. Whereas
we can write while i := Q@foo[|bar] which doesn’t modify the semantics of the
assignment at all, but merely loops until there aren't any bar’s left in foo (see
below). For can also take a conventional-style “i := 3 to 17" construct. “” is
equivalent to “to” in this context.

The if, unless, while, and until constructs take conditions which can be
either bit scalar values or any pseudovector. A pseudovector used as a condition is
“true” if there are any elements and “false” if there are none.

The if statement is as follows:
if <condition>, <statement>

<statement group>
elf <condition>, <statement>
<statement group>
else, <statement>
<statement group>
<statement not controlled> N

The elf section may be repeated or omitted; the else may be omitted. elf merely
means else if. The unless statement is merely the opposite of the if without
the e1fs (elves?).
unless <condition>, <statement>
<statement group>

but, <statement>

<statement group>
<gtatement not controlled>

The while and until forms are likewise a conjugate pair, and simpler, since
there are no subsidiary clauses:
vhile <condition>, <statement>
<statement group>
<{statement not in the loop>
until <condition>, <statement>
<statement group>
<statement not in the loop>

It is important to remember the difference between these and the associative for .
construct. In the for, the condition is evaluated once, and the resulting pseudo-
vector iterated through. In the while, the condition is evaluated at every iteration,
and looping continues until the condition is false throughout (or true somewhere in
the case of until). -
The syntax of any of the above has a variant:
keyword <condition>,
<statement group> .

for cases where the line becomes too crowded.

40

Any of the integer types (int, short, char, and bit) may be used wherever a
condition is called for, with the expected semantics that 0 means false, anything
else means true.

There are two auxiliary statements that can be used in any of the iterative con-
structs, exit <tokens> and next <tokens>. In either case, <tokens> is matched
with the opening of the enclosing forms and then that form is exited, or skipped
to the next iteration. Exit can be used with non-iterative constructs as well, such
as if and functions. The initial keyword in <tokens> may be omitted if this is
unambiguous.

Functions

A function call consists of the function name, followed by a fixed number of
arguments separated by commas, and optionally preceded by another argument.
A function definition headline has the same structure, preceded by the keyword
function. Function definitions may not be nested. A function headline may be the
first line in the function:

function foo a,b,c

or it may be included in a declaration environment if one wishes to declare the
parameters there:
env scalar parm(bit) ai(float)
c(86] .a, .b(int)
function parm gronkulate ai,c
<function text...>

(Note that in these examples parm and a1 are scalars but ¢ is an associative array.)

Caml functions are called, and return their values, by value; that is to say that
functions cannot affect the values of their arguments in the calling environment.
Variable scoping is lexical, but closures are not possible bacause functions cannot
be nested.

41

Example CAML Algorithms

Many areas of programming can benefit from the abilities of a CAM, taking

advantage of the parallel processing to simplify algorithms or to gain speed. First
an example of simplification:

A Compacting Garbage Collector

This is a garbage collector for a conventional heap, with blocks of pointers.

There are N words. There are two sets of comments; those on the same lines as
the code tell what the purpose of the code is in terms of the algorithm, and those
under the statements tell what they do in terms of the machine and data.

env mem[n] .f,.g(bit) .ptr(int)

(this is the heap itself)
scalar root

(this is the root pointer from which pointers are traced)

function collect

env scalar bot

(moves through memory in the compacting phase)
(memory-~~is full of blocks with pointers.

The first word in a block has tha length of the
block (not counting itself) instead of a pointer)

men.fl.g := 0
(clear mark bits)
mem[root].f := 1

(mark phase: mark from the root)
vhile i := Qmem[|{£]
(find half-marked cell, ie not marked from)
mem(i].g := 1
(indicats fully marked)
for k := i to mem[i].ptr
(half-mark everyone it points to)
mem [mem[k+i] .ptr].£ := 1
mem(|g].f := 0
(remove halfmarks from fullmarked cells)

(sveep phase:)

bot := 0

mem.f := g

(£ nov means relocated. setting it to g
guards the lengths, which skouldn’t be)

42

for i := Cmem{|g]

(find the first marked place)
mem[i].g := O
(unmark it)
for k := 0 to mem[i].ptr
(move down)

mem[bot+k] := mem[i+k]
mem[{“f & ptr=i].f := 1

.ptr := bot

(relocate all pointers to it)
bot :+= mem[bot].ptr
(move up for next)

The conventional form of the same garbage collector is much more complex,
requiring forwarding addresses, an extra relocation pass, and an extra pointer per
record. However, there is no asymtotic speedup.

Graph Algorithms

The garbage collector is much simpler on the CAM, and runs faster by some
constant. factor, but is still a reflection of a data structure designed for a conven-
tional machine. In some cases, we can speed up an algorithm by a linear factor by
appropriate rearrangement of the data structure. Here, for example, is Dijkstra’s
algorithm for shortest path in a digraph (basic labelling algorithm).

[1. initialize] There are n vertices. we are looking for the shortest path from vertex
1 to all the rest. Array u(n): u(l) = 0, u(i;1) = +infinity. Array a(n,n): a(i,j)
is the arc length from vertex i to vertex j. The set T contains all vertices except
(vertex number) 1. Set k to 1.

[2. update u] For all i in T u(i) := min(u(i), u(k)+a(k,i))

(3. new k] K :=1i such that u(i) is a minimum for i in T. Remove k from T. Repeat
steps 2 and 3 until T is empty.

In a straightforward implementation steps 2 and 3 are each linear time in the
size of T, so the whole thing is n? in number of vertices. We can get around this,
however, by rearranging the datastructures. The trick is to distribute u and t
around to the edges so we can do the update u operation in parallel. This leaves
us with a copy of u(i) for each edge leading into vertex i, with the “true” value of
u(i) being the minimum of that set. Likewise t is represented by a t for each edge
coming into a vertex; these all change in parallel, so each is the “true” value.

43

env edge(n-2) .x,.y(int) .a,.u(float) .t(bit)

(0.

[(initialize])

(assume fields x, y, and a have been initialized)
(assume there is at least one record with y=1;)

(3.

(if not, a dummy may be inserted.)
edge[ly=1].u := 0

.t =0
[J.u := 999999

while edgel|t]
(2.

[update u])

(essentially the same as above, but we only update
the copy of u(i) associated with (k,i).)

edge[|t & x=k].u :min= min(edge[ly=k].u)+a

[new k])

(taking a ‘‘grand total’’ minimum of all the u’s
instead of doing each u(i) incrementally)

k := edge[|tImin(u)l.y

edge[ly=k].t := 0

This new form of the algorithm runs in time proportional to n, the number of

vertices. It remains to prove that it works:

Every vertex with at least one incoming edge has at least one u.value since the
u’s are stored corresponding to the y’s.

The successive values of u(i) in the conventional version correspond to the
values assigned at the various incoming edges in the CAM version.

(a] The current value of a u(i) at any point in the conventional form is a
running minimum of the values presented. Thus the min(u) is the same
as a “grand total” min over all the u’s in the paralle]l form.

[b] The fact that the u’s for all the y=i have not been updated does not
matter, since the u used in the addition is the result of the grand total
min as per [a], and value of u for this edge can only be higher or equal the
“correct” u(i) for the vertex.

The t values are manipulated only by —y=k and are thus set and tested only
in blocks corresponding to the individual bits in the serial version.

Minimal Spanning Tree

Like the garbage collector, the minimal spanning tree algorithm gains a mar-

velous simplicity (compared with an efficient conventional version), but it gains a
major speedup as well. The algorithm is one well suited to a CAM: Pick edges of
minimum cost that don’t form a cycle until all vertices are connected.

44

A sophisticated conventional implementation is nlogn in the number of edges
in the graph; this CAM algorithm is linear in the number of edges in the eventual
spanning tree.
env tree(] .x,.y(int) .cost(float)

function span tree
env tree + .bx := x
by =y
-mstp(bit) :x 0
(find edge of min cost which doesn’t form a cycle)
vhile i := Qtree[|bx~=by|<cost]
tree[i] .mstp := 1 \
(put this -odgo in tree, and change the partial tree
number on one of the subtrees to the other one)
new := tree[i].bx
old := tree(i].by
tree[|bx=0ld].bx := nev
tree[|by=0ld]l.by := new

45

von Neumannizing the Multi-Search
Content Addressable Memory

J. Storrs Hall and Saul Y. Levy
Laboratory for Computer Science Research?
Rutgers University

Abstract

Bit-parallel VLSI associative memories can compare each of a set of k keys
with each of a set of n values in time independent of n and k but proportional to
number of bits in a value. However, the results of a search cannot be used as keys
in subsequent searches in parallel. This severely limits the usefulness of associative
memory for SIMD parallel algorithms.

We analyze the architecture of the associative memory and illuminate the rela-
tion of its interconnection scheme to the requirements of multiple associative search.
Then we re-interpret the associative memory as a SIMD parallel processor and show
that the new formulation is more robust as a vehicle for extended algorithms. The
critical element of the approach is to be able to use the results of one stage of
computation as control information for the next (hence the title).

! Supported by Air Force Office of Scientific Research under AFOSR-86-0294
and DARPA under RADC t.n. B-8-3615 and B-8-3616.

46

Introd yction

Content addressable memories are by far the form of parallel processing with
the smallest cost per processor. The typical processing element consists of one bit
of memory and an XOR gate[2]. However, CAMs have found themselves in a no-
man’s-land of commercial development; too expensive when viewed as memory, not
powerful enough when viewed as parallel processors.

Part of the reason CAMs have remained a backwater is that algorithm designers
are used to thinking in terms of numbers, comparisons, and arithmetic operations
like addition and multiplication; whereas to utilize the parallelism of the CAM one
must break these down into the component bit operations. Consider, for example,

multiple comparison in the partitioned associative architecture of Scherson and
Ruhman(4] (see figure 1):

[0] key memory contains k keys, data memory contains n items, each
vith a k-bit flag field.
Set the entire flag field in all words to 1’s.
i:=0.

[1] form a bit vector f comsisting of the ith bit of each key.

AND £ into the flag field of each word in which bit i of the
data item = 1.

[2] £ := NOT f£.
AND £ into the flag field of each word in which bit i of the
data item = 0.

[3] increment i and loop to [1] until all bits are done.

Multi-compare algorithm for CAM.

Another drawback to CAM for the conventional algorithmicist is that the CAM
has annoyingly obscure limitations on its parallelism when operations are described
in higher-level terms. For example, we could formulate the following algorithm for
simulating an NDA on a string of input: (The NDA is represented by a set of triples
of the form (from,label, to) which mean it accepts symbol label and goes from state
from to state to.) (see figure 2.)

47

[0] Let S be a bit vector with =z bit for every state, all O except
for the initial state.

(1] Select every triple whose FROM field is some state in S.
(this is a multi-search followed by a mismatch probe
for all 0’s in the flag field.)
Read an input symbol and further select those triples whose
LABEL field matches the symbol.

[2] Set S to the union of the states represented by the TO fields
of the selected triples.

(3] If there are any more symbols to read, goto [i]. Otherwise,
if S contains a terminal state, the string is accepted;
it it does not, the string is not accepted.

Naive NDA algorithm using Multi-Compare.

The first problem with this algorithm is it requires moving a set of values
from primary to key memory. This can be done in a time depending only on the
number of values moved, but that still degrades the complexity of the algorithm to
sequential running time.

This problem can be overcome with the structure in Figure 2. We let the from
and tc fields be of length the number of states, and denote which by a single 1 bit
in the field. Now we cannot use multi-compare, (since being bit-serial it would
increase running time to worse than sequential) but with the representation thus
“blown out” a standard associative probe suffices. Then S can be formed by the
standard ORring read of selected o fields.

However, we have creaied a worse problem: the representation is so verbose no
reasonably-sized problem would fit in a reasonably-sized CAM! Since the sequential
speed penalty can never exceed the number of states, the only NDAs worth running
in parallel are relatively large ones. But the size of the CAM required by the new
representation is > 2EV, ie, quadratic in the size of the graph.

Consider what happens when we extend the NDA to handle a more realistic
interpretation problem. Let each input be a vector of probabilities corresponding to
all the symbols in the recognized set. Further let each edge in the state graph have
an attached probability as well. Then at a given step in the interpretation process,
state i has probability S;, there is input probability I, for each symbol ¢, and each
edge from state ¢ to j bearing label ¢ has probability Ef;, then for the next step
the state probabilities are

S; = (Y SiEz)

. The CAM, even with a count-responders circuit(2] allowing a single overall sum-
mation, would not be able to perform the “multi-summation” implied.

48

The Structure of Communication in Pure CAM

In the standard CAM model, each bit of storage and its associated comparator
undergoes the following interactions (see Fig. 3):

1. It receives data from the CPU on the major data bus, which data.is also sent
to all the other bits in its column;

2. it sends data to the CPU along the major data bus, which may be ORred with
data from other bits in its column;

3. it receives data from its response flag (the word-enable line), which is also sent
to all the other bits in its row; and

4. it sends data to its response flag, which is ORred with similar data from all
the bits of its row.

It is plain that at an abstract enough level, the rows and columns of the CAM
are interchangeable, as long as the functions of the CPU bus word and/or the
response bit vector are properly accounted for.

A second feature to notice is that in the multi-compare operation, the flags
field is being used in parallel at every stage of the operation, whereas the data field
is being iterated through a bit at a time, just as are the keys. It should again be ap-
parent that in an abstract enough view, the data and keys are interchangeable, and
that the flags field forms an n-by-k array of one-bit elements doing nk comparisons
one bit at a time.

Scherson[4] also shows how to do “multi-operand arithmetic” with the CAM,
but this means adding (say) each data item to one of the key items (in parallel),
rather than doing nk arithmetic operations at once. However, there are many
problems in which it would be advantageous to be able to do the complete “cross
product” set of operations; and since we have nk processing elements, however
minimal, it would seem reasonable to try to do this.

The ParaSol Architecture

Thus we want to look at an architecture that consists of a rectangular grid of
processing elements, where we are able to broadcast to the rows and the columns,
and take the OR of the rows and the columns. These functions can both be repre-
sented as a single wire (as in the standard CAM model) or as a tree; as the size of the
array grows, the tree with its logarithmic time operation becomes more attractive
compared to the wire with its linear propagation time. (See Fig. 4)

At this point we can depart from a strict interpretation of the original CAM
functionality and ask what the architecture is capable of in terms of a greater range
of operations, such as the “cross product” arithmetic operations mentioned above.
If the non-terminal nodes of the trees are considered to be processing elements,
the trees are themselves capable of non-trivial computation in support of the base
array. In particular, if a one-bit ALU is provided at each node, then the elements

49

of each row (or column) of the base array can be summed by a pipelined carry-save
bit-serial operation.

This gives us an architecture capable of supporting a generalized “dot-product”
operation directly. One vector can be sent down the column trees, and another
down the row trees. In the processing elements of the array, each element of one
is combined with each element of the other with some operation (equality test, for
multi-compare). The results are then accumulated by one set of the trees under
some other operation (OR, for multi-compare), giving the results.

The only further thing that need be done is to make the operations cascadable,
“yon Neumannizing” the architecture. This is simply done by bringing the roots
of the column trees and the row trees together in a vector of processing elements.
(Thus row 1 and column 1 have a common root node; row 2 and column 2 have
a common root node, etc.) We will also add a single tree whose leaves will be
this diagonal vector of roots of the row/column trees, for reasons that will become
apparent later.

Technology Constraints in Associative Arrays

A major problem with associative memory is that while it allows the highest
parallelism for a given amount of hardware, it must be loaded serially. For many
problems, this destroys the parallelism. Associative processor arrays have tended to
try to get around this by simulating the associative word by a bit-serial processing
element, and having at least one pin for each PE on the chip. Examples are the
MPP[5], the DAP[6], and the Connection Machine[7]. However, the bit-serial nature
of the PEs means that the multi-compare operation no longer works[4].!

Can we use the same trick and retain the parallel multi-compare operation?
The answer is yes! The orthogonal broadcast allows the same data to reach the PHs
as reach the bits in the flags field of the original algorithm.

However, we have the same problem as any associative array processor, that
of pinout.[3] For the ParaSol structure, a chip with n-by-n PEs needs n? memory
pins of this kind. This acts to reduce the hardware efficiency of the architecture
considerably over that of pure CAM; one typically ends up with (say) 64 PEs per
chip instead of 12000.(8]

There are two functions immediately clamoring for space on the chip, given
that PEs are to be so few and far between. The first is making the PEs themselves
multibit ALUs, and the other is local memory. At first it seems silly to make a
multibit ALU that is fed by a single bit-serial pin; however, examining the algo-

! In all fairness, it must be pointed out that the DAP etc. are capable of the
multi-compare operation, in much the same way it works on the ParaSol. Indeed,
a Connection Machine with its ronters could simulate a ParaSol fairly well, except
that its general communication scheme reduces bandwidth along the critical paths
to a fairly-substantial degree.

50

-'hms we describe below reveals that the operation done most often at the PEs is
= yltiplication. Multiplication on one-bit ALUs is a disaster.? Thus a 32-bit ALU
and a few words of local memory makes an enormous difference in the time each PE
takes to do such operations. Our preliminary design for such a PE with 16 words
of local memory comes to about 5000 transistors, for a total for 320,000 for the 64
PEs.

The processing element consists of a 32-bit “accumulator” and 16 words (see
Fig. 5). Two of the words are shift registers, tied to the bit-serial lines to the
tree and memory. These allow data to be clocked in from either or both of these
sources independently while other operations are being done. In the basic multiply
operation, the multiplicand is in one of the words and the multiplier is coming in
from one of the trees LSB first. As each bit arrives, it is anded with the multi-
plicand and added to the product, which is shifted to the right and the LSB sent
up the orthogonal tree. (If it is desired to save the lower bits of the product they
can be reflected through the “tree in” line and shifted into the “tree in” register.)
Simultaneously the “memory i/0o” register may be reading the multiplicand for the
next operation.

The seven-node trees connecting each 8-element row and column of such a chip
are easily included. It is advantageous to be able to run the trees both directions
simultaneously, so there are two pins per tree for 8 row trees and 8 column trees.
This comes to 96 pins per base array chip, leaving room for a good double handful of
control lines in even an average pin grid array. The upper levels of a row or column
tree could easily be placed on a single chip, complete with appropriate registers to
convert from Ltit-serial to parallel and vice versa. With a 32-bit bus for its root
connection, and twe nins for each of 32 subtrees, this chip has the same number of
data lines as the base a 'vay chip.

Using the tree chip pinout as a limiting factor, a full blown ParaSol would have
64K base array PEs. It would require 20 boards, 16 containing 8 by 8 base array
PE chips (and memory) and 4 containing 8 by 8 diagonal PEs. (See Fig. 7). It
is possible to arrange the boards in three-space so that each diagonal PE board is
adjacent (at least diagonally) to all the base array boards it communicates with;
and the interconnection technology (“button boards”, see []) exists to build the
machine in that configuration. This configuration would be capable of well over ten
billion multiplications per second at peak rates.

Using the ParaSol

Let us now repair to the example problem of parsing an input string with
a nondeterministic finite state automaton (NDA). The multiple search operation

2 Multiplication of 32-bit quantities on a 1024-element DAP achieves a peak rate
barely higher than that of its serial controller; Thinking Machines rather than do
number crunching on the one-bit PEs added Weitek floating point chips to the CM.

51

combined with a simple data structure implemented a linear-time algorithm for
this problem, but the lack of self-referentiality in proposed CAMs precluded it. A
modification of the pure CAM, along with a more complex coding scheme, suf-
ficed but remained brittle, being insufficient for, e.g., an NDA with weighted edges
encoding a hidden Markov model® with transition function

Si=Y. IC(Z S:ES ;).

(See the Introduction.) This boils down to be the multiplication of the matrix £
by the vector S for each symbol ¢ (with a different E for each ¢), taking the vectors
thus formed together to form a new matrix, and multiplying that one by the vector
I to form the result.

Multiplication of a matrix by a vector is very nearly the primitive operation for
the ParaSol." The matrix is stored in base array memory; the vector in the diagonal
processors. The vector is then broadcast down the columns (for M x V; down the
rows for V x M)! and the broadcast value multiplied by the stored value at each
PE. Then the values are summed up the row trees (column trees for the commuted
case) to the diagonal PEs.

Another increasingly common application is the simulation of neural network
models. In the standard formulation of these models, a matrix of weights is mul-
tiplied by a vector of input values (and then the result vector is subject to some
non-linearizing function, such as a threshold for perceptrons or Hopfield nets, or a
sigmoid function for the popular backprop model.) Oddly enough, when this matrix
multiplication is put onto the ParaSol architecture in the standard way, each row
tree ends up doing exactly the summation of one “neuron” unit in the neural net
model.

What happens if we have a bigger neural net (or indeed any matrix multipli-
cation problem) that is bigger than the physical ParaSol? Luckily, the structure
of this operation is remarkably congenial to division into smaller matrix multipli-
cation problems. And herein lies the real power of the ParaSol. Any matrix M
may be viewed as the tesselation of smaller matrices m;; and any vector V as the
concatenation of smaller vectors v;. (Assume all the small matrices are k-by-k and
all the small vectors length k; and that our machine is k-by-k.) Now every element
in the overall product, (M x V);, is seen to be the sum of corresponding elements
of products of the submatrices and subvectors,

MxV).—ZM,,V EZ(mab)cd v)d Zmabva)c

where a = |i/k] and ¢ = i(mod k).

! Such models occur commonly in interpretation algorithms in fields such as
speech recognition; see, e.g., (8] p. 137.
! For clarity, we will use x to indicate matrix multiplication.

52

References

[1] Batcher, K. E., “The Multidimensional Access Memory in STARAN", IEEE
Trans. Comput., ¢-26 (1977), pp 174-177.

[2] Foster, Caxton C.: Content Addressable Parallel Processors, Van Nos-
trand Reinhold, New York, 1976

[3] Fountain, Terry: Processor Arrays: Architecture and Applications,
Academic Press, London, 1987

[4] Scherson, Isaac and Smil Ruhman: “Multi-operand Arithmetic in a Partitioned
Associative Architecture”, Journal of Parallel and Distributed Computing 5,
(1988) pp 655-668.

53

bit vecror

k keys {‘
/ bits
ndata
items

data flags flag from [abel 0
Fig 1. Scherson’s partitioned Fig 2. "von Neumannized"
associative memory and the associative memory and the
multi-compare operation. algorithm for NDA interpretation.

write, compare (broadcast)

CH G
PR

= e
e

] |] N
word %4
res‘gond
(OR) uJ L#%

i
14 Ul

R R N ' i}

M

read (bR) Fig 4. The ParaSol architecture.
Each row tree [i] meets column
tree [i] at the ith diagonal PE.

. S (the upper-level tree connecting
Fig 3. structure of communications the diagonal PE's is not shown

in hardware associative memory. for cla;‘gizy,

figures for
von Neumannizing the Mult-Search Content Addressable Memory

54

Tt 1 Tree out
D 4 T Add/Load
Carry, Shift
Q’flow, l
A A
Response /X A\ Invert/Carry
l_ Tree in

'__‘_j 5] I — — L/R/O/nul

M\

... 16 words total __R/W
L Memory in/out
¢ 5 _—
T = L/R/O/nul
(Fig. 5) One ParaSol Processing Element
Up Down
Carry
Save
Bit
L] Shift
= register
(for scan)

/]
Up / / Down Up\ \ Down

A Tree Node

55

——
[\Tee
an—————

<
\L -
A=
@ PE
o
PE
i —
PE
SRR —
lL PE
=
PE
e —
| PE

A”F
|| pE
T
PE
_\-———-"‘r___
Q PE
\ e
PE
|
PE
-‘:'[._/
PE 1 PE
—
PE
—
PE

56

_IT[\\\II__

m wm /] wm
AINBENBERNEIRRE SJNE
h)
o

m m| [\l w
o Ale L Alg el A B A e L&) -
AR | | —p I — 1

—]
=]
[—
PE
" +FD>—
PE ,
PE
e —
PE
?bl_
PE

Fig 6: One ParaSol base array chip

Logical arrangement of boards.
"p0, p5, pA, and pF" represent
boards containing diagonal PEs.

Other boards contain up to 8x8
base array chips and memory.

Q) |0 |~ | O
O [\© (W
m | o |
||| W

AP0 = 4/ﬂ«f/‘5 -
g

Fig 7: 3-D arrangement of ParaSol boards j

"Button board" technology allows arranging boards in space as shown.
In practice, the two center planes would each be one larger board.
Note that each diagonal processor board is at worst adjacent by a

3-d diagonal from every array board on its row or column.

57

FoFoFtut |

S Y SN N) RE—

Fig 8: The recursive breakdown of
Matrix multiplication.

A AN

L] 0 o o o O

Fig. 9: Shifting using a row
or column tree.

58

DAP codes

1 Interface for using C on the DAP

The DAP software/hardware interface is lacking many of the features required of a general
purpose computer, most notably the ability to read from a keyboard or write to a terminal.
An interface that provides many of these features has been designed and implemented.

The interface is designed to function with the version of C we have developed for the
DAP; however, the functions composing the design may be called from Fortran or APAL.

1.1 Communication Interface

The design has two communication interface modules, one running on the DAP and the other
on the host machine, in our case a SUN. Actions that cannot be performed exclusively on
the DAP are "simulated” by requesting the host SUN perform the desired action and report
the results back to the DAP. This interaction between the DAP and SUN is controlled by a
protocol emjloyed between the communication interface modules. These requests are trans-
mitted between the machines using the DAP supplied routines "amt5stop”, "amt5start”,
"dapsen”, and "daprec”.

The process is initiated by the DAP writing the required data into a communication buffer
and transferring control to the SUN using the "amt5stop” command. When control has been
returned to the SUN it issues a "daprec” command to read the communication buffer. Once
read the data is interpreted and the required actions performed by the SUN. Any data to
be returned to the DAP is stored and upon completion of the operation transmitted to the
DAP using the "dapsen” command. The final action of the SUN is to issue the "amt5start”
command which returns control to the DAP at the point where it had given control to the
SUN. The DAP then reads the communication buffer and performs the actions required to
complete the operation.

The C code in Figure 1 is an example of when such interactions are required. It reads
two integers from the keyboard and print them on the screen. Since the DAP has no support
for reading the keyboard or writing to the screen, the communication interface must provide
these facilities. ‘

scanf("%o %x”",&il,&i2);
printf("%d %d \n”,il,i2);

Figure 1: C code requiring DAP communication to host SUN

The DAP half of the interface processes the three arguments of the scanf and passes them
along with a request for a scanf operation to the host SUN. The SUN half of the interface
decodes the request, performs the required scanf using C’s standard IO package, and returns
any resulting data to the DAP. Finally, the DAP stores the returned values in the specified
locations. The communication interface handles the printf in a similar fashion.

60

1.2 Running C on the DAP

Once the DAP C code has been compiled, assembled and linked to form the DAP executable
image it can be run using a standard interface. The interface accepts the name of the file
containing the DAP executable image (include the extension), loads the file onto the DAP,
sets up the necessary interface between the host SUN and the DAP, and transfers control
to the DAP. The compiler has included in the executable image the necessary prologue,
epilogue, and subroutine packages to execute the compiled C code as though it were on a
general purpose machine.

Interface

Interface (spelled with a capital I) is the SUN code that is used to initiate a DAP C
program. It accepts the file name containing the executable image from the command line
or, if necessary, prompts the user for a file name. It then establishes contact with the
DAP using the DAP command dapcon and finally transfers control to the DAP at the label
DAPmain.

DAPmain

DAPmain is the program which provides the epilogue and prologue for all DAP C code.
DAPmain first gets the ids of the the host SUN’s three standard IO files (i.e. stdin, stdout,
stderr), it then initializes DAP memory for use by malloc and other related memory handling
functions. Once the prologue is completed it calls main (the main procedure provided in the
C program). When the C program has completed, control is returned to DAPmain which
cleans up the dynamic memory used by the program and returns control to the host SUN.

1.3 Interface routines callable from C

For each operation that requires the communication interface (e.g. scanf, printf, ReadMouse,
etc.) two functions must be written, one for the DAP half of the interface and one for the
SUN half. Currently there are eleven functions supported by the interface. Additional
functions can be added by writing the necessary pair of functions, including them in the
interface package, and updating the SUN’s main interface control. The functions supported
are fopen, fclose, feof, GetSTDs, DAP_Exit, printf, fprintf, scanf, fscanf, OpenMouse, and
ReadMouse.

fopen, fclose, feof

These three functions operate as defined in C’s standard IO package.

GetSTDs and DAP_Exit

61

These two functions provide the necessary "hidden” interfaces to the host SUN. GetSTDs
initializes the DAP so it can use the default files stdin, stdout, and stderr. DAP _Exit
terminates the DAP program returning control to the host SUN.

printf and fprintf

These two functions operate as defined in C’s standard IO package. A call of printf is
simulated using fprintf with stdout as the file id. The DAP half of the interface parses the
format statement and sets up a data structure containing, the format statement, the data to
be written, and a structure to contain any returned results(recall that some printf conversion
specifications return values). It passes this data structure along with a request for an fprintf

to the SUN.

The SUN half of the interface also parses the format statement. It performs the specified
translations using C’s standard IO interface and stores the results in the structure it received
from the DAP. Upon completion it returns this information to the DAP. The data returned
is copied into the proper DAP locations using the data structure set up during the initial
parse of the format string.

scanf and fscanf

These two functions operate as defined in C’s standard IO package. A call of scanf is
simulated using fscanf with stdin as the file id. The DAP half of the interface passes the
format statement along with a request for an fscanf to the SUN.

The Sun half of the interface parses the format statement. It performs the specified
translations using C's standard IO interface and stores the results in a structure to be
returned to the DAP. Upon completion it returns this information to the DAP. Upon return,
the DAP code parses the format statement and stores the results i the proper DAP locations.

OpenMouse, ReadMouse

These two functions are used to control the mouse. OpenMouse opens the host SUN’s
mouse device and flushes all pending IO events from that device. It then establishes a correct
sync for the mouse and returns control to the DAP.

ReadMouse reads the next "significant event” from the mouse. The DAP half of the
interface is a simple request for input, the SUN half processes the actual mouse input and
constructs "significant events” for transmission to the DAP. These events are seen from the
DAP as a four tuple: the first item is a two’s complement integer given the change in the x
coordinate since the last call of ReadMouse, the second is is the change in the y coordinate,
the third is an encoded button status, and the fourth is an encoded indication of which
button has changed since the last call of ReadMouse.

The encodings of the button information is done using the low order three bits. The 1
(low order) bit represents the right button, the 2 bit represents the middle button, and the-

62

4 bit (high order) represents the left button. The button status is formed by setting a bit to
1 of the button is down and to 0 if the button is up. The change in bu..on status is set to
1 if a button has changed and set to 0 if it has not changed. For example, a button status
of 5 and a changed button status of 3 indicates that the left and right buttons are currently
depressed and the left and middle buttons have changed since the last call to ReadMouse.

The need of transmitting "significant events” arises due to the high latency in the com-
munication interface between the host SUN and DAP. The latency problem is inherent in
AMT’s interface routines "amtdstart”, "amt3stop”, "dapsen”, and ”daprec” which require
a minimum of several milliseconds to complete the simplest operation. Due to this latency
we designed an interface that would reduce the number of transmissions. This was done by
forcing the SUN to transmit only significant events.

A event is significant in one of two ways: it is either an event that changes the button
status or it is the last event in the SUN’s mouse queue. This definition allows the input
queue for the mouse to be compressed by combining all pending events that are exclusively
mouse movement events into one significant event. This substantially reduces the number
of transmissions performed and improves the performance of the mouse interface.

2 Memory Allocation for DAP C

Most C programs require the ability to allocate and free memory dynamically. In order to
support these operations a package of five functions was built. Three of these function are
callable from DAP C and are named and operate just as their equivalent C versions. These
functions are malloc, free, and realloc. The other two functions, Initialize.Allocate and
Terminate_Allocate, are used to initially configure the memory and to record use statistics
before termination. The user is unaware of these function since they are called by DAPmain.

The functions are implemented by reserving a fixed amount of memory when a program
is initiated and allocating and freeing from this memory. This approach is limited by the
inability to dynamically obtain memory from AMT’s operating system for the DAP; how-
ever, other than this limitation, the memory management routines work exactly as their C
counterparts. In addition, these procedures keep statistics on the use of dynamic memory by
recording data describing each call to malloc. For each call the system records the amount
of memory requested, the size of the free block from which it was obtained, the length of the
free list at the time of the call, and the number of free list elements scanned. This data is
buffered before being sent to the host and can be read using the program AllocStats.

2.1 APAL support of the Memory Allocation Package

The operation of the memory manager is controlled by three assembly variables: PlaneCnt
which specifies the number of planes to reserve when a program begins, StatsBL which
specifies the buffer size used for recording statistics, and Epsilon which specifies, in planes,
the smallest number of planes that can be allocated. This memory is maintained as a set

63

of contiguous planes (i.e. 32 words) using a linked list of available sections, a map of the
allocated planes, and a link from the last available piane of section to the first available plane
of that section. The sections are kept maximal is size by compacting planes as they are freed
by the user.

The linked list of free blocks is maintained in the same memory that is allocated to the
user. This overlap of memory is feasible since unallocated planes of memory are, by design,
not accessible by the user. Using this scheme the user and memory manager have mutually
exclusive use of planes of the memory; however, it is possible for a user to accidentally write
over the package’s free list. The map of each block’s status is maintained in an area of
the DAP memory accessible only to the memory manager. Each plane of available memory
requires a halfword of memory in this table. The link from the last plane of an available
section to the first is overlapped with the users memory as is the linked list.

Data Representation

Each available plane has four field known to the memory manage. These fields are only
significant when the plane has not been allocated. Once allocated the fields are not used by
the manager. The fields are shown in Figure 2.

Forward: a forward link to the next available free section
Back: a backward link to the previous availatle free section
Size: the number of planes in this section

Up: a link to the first plane of this section

Figure 2: Fields used by Memory Manager

The first three fields are used to form the linked list of available sections. The last field
(i.e. Up) is used to link the last plane of a section to the first plane of the section. Initially,
the linked list contains one section of memory that holds all planes available.

The map of allocated blocks is kept as a vector of half words that are initially zero. When
a section of memory is allocated the half word corresponding to the first plane is set to the

number of planes allocated. The half word corresponding to the last plane of memory is set
to -1.

malloc

This function accepts one argument, the number of words requested, and returns the
address of the first words allocated or a zero to indicate that the allocation was not possible.
This functions requires a time proportional to the number of sections in the linked list. In
addition to allocating memory malloc keeps a record of each allocation request.

In order to find an available section, malloc performs a sequential search of the lirked list
using a first fit algorithm. As soon as a section that contains at least the requested number

64

planes is found the algorithm terminates its scan and allocates the required planes.

If the sections is an ezact fit to the request, the entire section is allocated. If the section
is larger than the request, the section is partitioned into two sections with one being the
size of the request. The number of planes allocated is entered in the halfword of the map
corresponding to the first plane in the allocated section and a -1 is entered in the haliword
corresponding to the last word of the section. The linked list is updated to indicate the
change in either the size of an available section or the number of available sections.

free

The functions accepts the address of a section of memory that has been allocated to the
user and returns that section to the free list. It provides no return value. Free checks that
the address has been allocated by testing to see if the plane map has a value other than 0
or -1. If the section had been allocated, free proceeds to free the section, compacting it with
other sections if possible. These checks, as well as the ensuing compactions, can be done in
constant time using the data structures described.

realloc

This functions accepts two arguments, The first is the address of memory that is to be
reallocated, and the second is the number of words required in the reallocation. It returns
the address of the reallocation if it was successful, otherwise it returns a 0. Conceptually,
this function is a hybrid of malloc and free. Realloc attempts to satisfy the request using
a sequence of options. First it decides if the request is for expanding or contracting the
section. If the request is for contraction, the algorithm frees the planes at the end of the
current section.

If the request is for expansion realloc attempts to eztend the current section by adding
planes at the end. If this fails, it looks for a block large enough to satisfy the request. If
found, the contents of the current block is copied to this newly allocated block, the current
block is freed, and the address of the newly allocated block is returned. If there is no block
large enough to satisfy the request, realloc attempts to eztend the current section by adding
planes to the beginniag of the section. If extension is possible in this directions the data is
copied as required and the memory restructured.

If all these attempts fail, realloc returns a zero indicating that the requested act’on
was not possible. In fact there is one condition that could enable an extension that is not
considered by our code. This case is when all checks mentioned have failed but there are
two sections, one preceding and one following the current section. If the sum of the lengths
of these two section plus the length of the current section is sufficient to meet the request,
the data could be moved and the request satisfied. It was decide that this case was so rare
that it would not be implemented.

65

of contiguous planes (i.e. 32 words) using a linked list of available sections, a map of the
allocated planes, and a link from the last available plane of section to the first available plane
of that section. The sections are kept maximal is size by compacting planes as they are freed
by the user.

The linked list of free blocks is maintained in the same memory that is allocated to the
user. This overlap of memory is feasible since unallocated planes of memory are, by design,
not accessible by the user. Using this scheme the user and memory manager have mutually
exclusive use of planes of the memory; however, it is possible for a user to accidentally write
over the package’s free list. The map of each block’s status is maintained in an area of
the DAP memory accessible only to the memory manager. Each plane of available memory
requires a halfword of memory in this table. The link from the last plane of an available
section to the first is overlapped with the users memory as is the linked list.

Data Representation

Each available plane has four field known to the memory manage. These fields are only
significant when the plane has not been allocated. Once allocated the fields are not used by
the manager. The fields are shown in Figure 2.

Forward: a forward link to the next available free section
Back: a backward link to the previous available free section
Size: the number of planes in this section

Up: a link to the first plane of this section

Figure 2: Fields used by Memory Manager

The first three fields are used to form the linked list of available sections. The last field
(i.e. Up) is used to link the last plane of a section to the first plane of the section. Initially,
the linked list contains one section of memory that holds all planes available.)

The map of allocated blocks is kept as a vector of half words that are initially zero. When
a section of memory is allocated the half word corresponding to the first plane is set to the
number of planes allocated. The half word corresponding to the last plane of memory is set
to -1.

malloc

This function accepts one argument, the number of words requested, and returns the
address of the first words allocated or a zero to indicate that the allocation was not possible.
This functions requires a time p oportional to the number of sections in the linked list. In
addition to allocating memory malloc keeps a record of each allocation request.

In order to find an available section, malloc performs a sequential search of the linked list
using a first fit algorithm. As soon as a section that contains at least the requested number

66

2.2 Obtaining statistics about Memory Allocation performance

The statistics recorded by malloc can be reviewed by calling the program AllocStats. This
program prints out a list, with headers, of the requests made of malloc. The data is kept in
the file .allocate.states and is cumulative. If the data in the file is no longer needed the file
can be deleted and the statistics will begin to accrue from the time of this deletion.

3 Low level support for DAP

Low level support macros and functions have been developed to assist in the development of
DAP C. They provide a simple method to perform the repetitive operations required within
a program (e.g. linking conventions and accessing the system stack).

The macros developed are divided into three major class. Each of these classes is available
to any APAL program; however, the design of each mac:o is done with the intent to support
either the running or development of the DAP C environment.

The functions developed are used to support integer division within C and to provide
access directly from DAP C to AMT’s Low Level Graphics Library.

3.1 Macro support of Calling Conventions for DAP C

The set of macros described in this section are used primarily for controlling the linking
between subroutines during run time. The macros provide a uniform method for accessing
parameters and returning values.

Linkage conventions for DAP C

The linkage conventions used to implement DAP C were design to facilitate the calling of
C programs from C programs while at the same time allowing C to reasonably interface with
APAL and AMT’s Fortran Libraries. In all cases the conventions were kept consistent with
AMT’s basic conventions so psam (i.e. AMT’s run time debugger) could be fully utilized.

The conventions used are shown in figure 3.

Entering

This macro is used to establish the necessary linkage between the calling and-called
program. [t should be called immediately upon entry to an APAL procedure. It accepts one
argument which specifies how many arguments are passed by a fortran call. If the call is
from a DAP C or an APAL program the number of arguments is determined at run time.

This macro determines the calling convention used, establishes the necessary linkages,
and sets up the current activation record as defined in Figure 3. There are 7 different calling

67

on entry:
m0: callers return address
ml: in C - first argument
m2: in C - second argument
m3: in C - third argument
m4: in C - fourth argument
m5: address of the activation record of the called procedure
m6: low order 5 bits - identification of the calling convention
high order 27 bits - address of the activation record of the calling procedure

during execution:
m6: address of current activation record
m7: address of next available word in the stack

on return:
m6: address of callers activation record

Activation Record:
offset 0: address of previous activation record
offset 1: high order 5 bits - calling convention
low order 27 bits - return address
offset 7: in C - address of next available word in stack
offset 8: in Fortran -address of return value
offset 9: first argument
offset 10: second argument
offset n+8: n** argument

Figure 3: Calling Conventions

conventions supported: AMT’s fortran or system convention, Rutgers APAL convention,
and § variants for DAP C. The C variants differ only in the number of arguments passed
in registers (i.e. 0 through 4). This macro determines the calling convention at run time so

that one procedure that can be called from a variety codes using different conventions (e.g.
Fortran or DAP C).

Exiting

This macro is the complement of Entering. It restores the callers activation record, sets
up the return value as required by the calling convention in use, and returns control to the

caller.

IsItC

68

This macro determines if the calling convention used is one of the DAP C variants. It
accepts one parameter, a register number, ¢ and set that register to 1 if the calling convention
is a DAP C variant or to 0 otherwise.

GetArgValue

This macro retrieves the value of an argument passed by a calling program. It distin-
guishes between a DAP C call and a fortran or system call and uses the necessary convention
to obtain the value. It accepts two argument, the number of the register in which to place
the value and an integer that specifies which argument to retrieve.

GetArgAddress

This macro retrieves the address of an argument passed by a calling program. It does
not distinguish between a DAP C call and a fortran or system call since the call by reference
format is the same for both. It accepts two argument, the number of the register the address
will be placed in and an integer that specifies which argument to retrieve.

StoreReturnValue

This macro records a value for return to the calling function. It distinguishes between a
DAP C call and a fortran or system call and uses the necessary convention for returning the
value. The macro accepts one argument, the number of the register containing the value to
be returned. The register must contains this value when StoreReturnValue is invoked; the
macro sets up the return value but the value is not returned until the exit macro is invoked.
If this macro is called more than once during the execution of an APAL routine the value
returned will be that specified in the last use.

Calling

This macro is used when an APAL routine needs to call another procedure. It accepts
five argument: the name of the procedure to call, a list of local registers to protect across
the call, a list of argument address to be passed to the called routine, the address at which
the return value is to be placed, and the type of calling convention used.

The calling convention is one of the 7 conventions supported by this package and is used
to determine how the argument and return values are processed. Fortran and system calls
are assumed to be call by reference while DAP C calls are call by value.

CallingC

This macro is used to call a procedure that has been compiled using DAP C. It accepts
4 arguments: the name of the procedure to call, the type of C call to use (i.e. the number
of arguments that are passed in registers, a list of local registers to protect across the call,
and a list of arguments to pass to the called procedure.

69

CallingFort

This macro is used to call a procedure that has been compiled using AMT’s Fortran. It
accepts 4 arguments: the name of the procedure to call, a list of argument address to pass
to the called procedure, the address of the location in which the return value is to be stored,
and a list of local registers to protect across the call.

CtoFinterface

This macro provides an interface between DAP C and AMT’s fortran libraries. Each
library module that is to used from DAP C must have an entry in the DAP C library. This
entry is used to translate between the Fortran and C calling conventions. The macro accepts
two arguments: the name of the Fortran function to be called, and a list of the argument
types passed from DAP C.

Each element of the list of argument types specifies the type of the corresponding argu-
ment. The letter V indicates that the call is by value and the letter R indicates that the call
is by reference. The necessary translations is performed and the Fortran function is then

called.

The convention used in naming such DAP C function is to prepend “C.” to the Fortran
function. For example if a DAP C program needed to call the Fortran graphics function
Start_Graphics it would instead call the function C_Start_Graphics which would perform the
necessary conversions and call the desired Fortran function.

EnteringC and ExitingC

These macros are used by the DAP C compiler to provide the necessary linkage between
DAP C functions. The calling convention used is controlled by this macros so that efficient
code can be generated.

PushAddr

This macros pushes the address specified into the system stack. It accepts two arguments;
the address to be pushed and a working register in which to compute the address. The address
includes both an offset field and an index register.

PushContents

This macros pushes the word specified into the system stack. It accepts two arguments;
the word to be pushed and a working register used to store the value to be pushed. The
specified word may be a register or a memory address containing an offset field and index
register. If it is a register, that register’s contents is pushed onto the system stack, otherwise
the contents of the memory word at the specified address is pushed onto the stack.

70

GetWordArg

This macro is used to retrieve a word passed using the fortran convention. It accepts two

arguments; the number of the parameter to be retrieved, and the register in which to store
the value.

3.2 Macro support of debugging in DAP C

During the development of this package it was necessary be able to pause execution so that
the system state could be read. In order to allow for control of these pauses without the
need to edit or recompile the system we developed a uniform interface for controlling such
pauses. The method employed uses AMT’s pause mechanism under the control of a local
decision based on global flags. The user can change the global flags during run time and
thereby control which pauses will be enabled and which will be disabled.

DiagnosticPause

This macro causes an APAL program to pause if the specified global switch is set and to
continue normally otherwise. It takes two arguments; an identifying number to display if a
pause is required and the varijable to determine if the pause should be executed.

3.3 Macro support for APAL programs

PushReg and PopReg

These two macros push a register onto the system stack and pop the top of stack into a
register. They each accept one argument, the register number to be pushed or popped.

SaveRegs and RestoreRegs

These macros push or pop a list of registers onto or off of the system stack. They each
accept one argument, a list of registers to push or pop.

GetFirstStackValue and PutFirstStackValue

These two macros function much like PushReg and PopReg; however, they do not change
the number of items in the system stack. Each takes one argument, the register number
involved in the operation. GetFirstStackValue copies the value in the top of stack to the
specified register; the stack is not changed. PutFirstStackValue writes the specified register
at the top of stack location. The number of items in the stack is unchanged; however, the
value that was at the top of stack location is overwritten.

GetSecondStackValue and PutSecondStack

71

These macros functions similarly to GetFirstStackValue and PutFirstStackValue. They
each accept one argument, the register number involved in the operation. These functions
copy or replace the second value in the stack.

StoreArgs and LoadArgs

These macros write or read a list of arguments to or from a contiguous areas of memory.
Their intended use is to setup or read arguments used when calling procedures. Each takes
two arguments; the first is a list of memory addresses, the second is the address of the
contiguous memory area. Both addresses allow offset and index register specification. Data
is transferred between the addresses specified in the first list and the contiguous memory
area.

GetAsciiValue

This macro converts a character to its ascii value. It takes one argument, the character to
be converted and sets the assembly variable AsciiValue to the integer value that corresponds
to the specified character.

MakeCstring

This macro converts an ascii string into a packed version of that string. It accepts two
arguments, The first is the address of the location to hold the packed string and the second
is the ascii string to be packed. It assumes the string is a simple format string used by a C
printf treating the \ as an escape character.

3.4 Support of Integer Division for DAP C

Support of Integer Division for DAP C is accomplishes using two subroutines. One performs
signed division and the other unsigned division.

divsi3

This routine performs signed division using the same rules a C. All values involved in the
computation are represented by 32 bit fields passed in registers. The dividend is passed in
register m1 and the divisor in m2. The quotient is returned in m1 and the remainder in m2.

udivsi3

This routine performs unsigned division using the same rules a C. All values involved in
the computation are represented by 32 bit fields passed in registers. The dividend is passed
in register m1 and the divisor in m2. The quotient is returned in ml and the remainder in

m2,

72

3.5 Interface to Low Level Graphics Routines

The following routines provide access from DAP C to the Low level Fortran graphics functions
provided by AMT. These routines assume that the caller will use normal C calling conventions
passing fixed size arguments by value and arrays, strings, and place holders for return values
by reference. The functions currently supported are C_Start.Graphics, C_Stop-Graphics,
CSet Lut, C_PutLut, C_Get_Lut, C_Put_Frame, C_Start_Sequence, C_Stop.Sequence, and
C-ClearScreen.

4 Filling enclosed regions on the DAP

Fill is a procedure that works in conjunctions with other graphic primitives to provide a
basic graphics interface. Fill colors closed regions of a plane based on the specifications
provided by the user. The algorithm is adapted specifically for the DAP’s fast IO interface
to a color monitor. Fill performs the specified functions using a combination of serial and
parallel techniques adapted for the DAP 510’s configuration.

The screen is a two dimensional grid of 1 Meg pixels (1024 by 1024). The data for each
pixel is stored in eight bits, providing 256 possible values for each pixel. The DAP represents
this data by grouping the screen into 1024 (32 by 32) dapels (our term) each of which contains
1024 (32 by 32) pixels. The 8 bits for each pixel are stored vertically in the memory stack
resulting in one pixel‘s worth of information being spread over 8 planes of memory, with each
plane contains one bit of information for each pixel in that dapel. On a DAP 510, a machine
with a 32 by 32 processor array, one plane of one dapel is easily manipulated within the the
processor array.

The algorithm is initiated by seeding one or more pixels in one or more closed regions.
These points form the start of the fill pattern. The filling proceeds out from these points until
all pixels contained in the same closed regions have been filled. The filling is performed one
dapel at a time. If more than one dapel requires filling, the dapel with the largest number
of seeds is processed first. This scheduling is performed using a priority queue.

Each dapel is filled using a parallel algorithm. This algorithm begins at all filled pixels
within the dapel and, in parallel, fills all orthogonal neighbors of each of these pixels. If a
neighbor is a part of a boundary it is not filled. This process continues until convergence
(i.e. until the filled pattern does not change from step to step). Once the dapel has been
filled, the neighboring dapels are checked to see if the edges of this dapel will effect the edges
of its neighbors. If any pixel on a neighboring dapel is affected, that pixel is added to the
seed information. Once all neighboring dapels have been updated, the next available dapel

is filled:

73

4.1 Interface to user

All access to fill and related operations are obtained through function calls. These calls
all return 0 if no error is noted and non-zero otherwise. This non-zero return contains
information as to the exact cause of the failure.

InitFill

Called once when the graphics packages is initiated. It initializes the priority queue and
sets the fill state to idle. The error returr indicates the state that fill was in when init was

called.

SetFillMode and SetUnfillMode

These functions set the filling mode and should be called before any pixels are seeded.
SetFillMode sets the mode to fill using the fill color while SetUnfillMode sets the color to the
background color providing an approximation to erasing a filled region. Note that in both
cases the region is actually colored by a predefined color, it is never actually erased. The
error code indicates the state that fill was in when the function was called.

SeedPixel

This function places a pixel into the the queue. The pixel value is passed as two argu-
ments, the x coordinate as the first and the y coordinate as the second. The coordinate
system is screen oriented with the upper left pixel being 0,0 and the lower right pixel being
1024,1024. An error code of -1 indicates that a boundary pixel was specified for seeding,
‘otherwise the state that fill was in is returned.

PerformPFill

This function processes all the seeded information and fills (or unfills) the regions as
specified. An error code indicates the state that fill was in when the function was called.

Abor:iFill
This function empties the priority queue and resets fill's state. An error code indicates

the state that fill was in when the function was called.

4.2 Priority queue macro and function interface

The priority queue used by the fill routine is accessed via macro that implement a call to
the necessary functions. Currently, the macros perform only a subroutine call and assume
that all linkages and returns are handled directly by the code. The calling conventions for

74

the queue are non-standard and designed to reduce the number of cycles required to access
the queue. The queue is limited to 1024 elements each with an id between 0 and 1023.

initPQ and initPQop

This macro/function pair is called once to initialize the priority queue operations. The
queue is set empty by this call.

incpriPQ and incpriPQop

This macro/function pair is called to enter an item into the queue as well as increase the
priority of an item already in the queue. The function accepts 2 arguments, the element
name in register ml and the amount to increase the priority by in register m2. It returns
a zero in register ml if the operation is successful, otherwise it returns a non-zero value. If
the element being incremented is not currently in the queue, it is inserted with the priority
specified in the call.

delmaxPQ and delmaxPQop

This macro/function pair is called to remove the highest priority element from the queue.
The element id is returned in register ml.

emptyPQ and emptyPQop

This macro/function pair is called to test if the queue is empty. It returns, in register
ml, a 0 if the queue is not empty, and -1 (i.e. all bits set to 1) if the queue is empty.

5 Reading and writing the DAP’s memory from the
host

The DAP 510's memory is a 3 dimensional array of bits. The array is 32 by 32 by depth,
where depth is determined by the amount of memory installed in the system. The functions

described in this sectior are used to interface to such a memory and provide read and write
capability between C and the DAP.

All these functions are available in C on the host SUN’S system. The DAP memory is
modeled in the C program using the three dimensions labeled rows, columns, and tunnels.
The number of different tunnels is the number of 32 by 32 bit planes available on the DAP.
The DAP’s memory may be transferred to and from the C image as required.

ClearDapMatrix

75

This function clears the DAP memory and sets bounds for the number of errors or
warnings for which the user will be notified. It accepts three arguments; the first is the
number of planes of memory to be used, the secord is the bound on the number of errors,
and the third is the bound on the number of warnings.

GetDapMatrix Length

This function returns the number of significant words currently stored in the SUN’S
image of DapMatrix. This function is used to determine the amount of data that must be
transmitted to the DAP.

SendDatatoDap

This function sends the data stored in DAPmatrix to the DAP. It accepts one argument,
the name of the area in DAP memory to which DAPmatrix is to be copied.

GetDataFromDap

This function reads the data stored in the DAP into DAPmatrix. It accepts one argument,
the name of the area in DAP memory from which DAPmatrix is to be copied.

PutValuelntoTunnel

This function writes a value into a tunnel of DapMatrix. It accepts 5 arguments; the
first three are the indices of the row, column, and tunnel at which the first bit of the value
is to be stored. The fourth is the value to be stored and the fifth is the number of bits to be
stored. These bits are selected from the low order end of the value.

GetValueFromTunnel

This function reads a value from a tunnel of DapMatrix. It accepts 4 arguments; the
first three are the indices of the row, column, and tunnel at which the first bit of the value
is to be stored. The fourth is the number of bits to be stored. These bits are written into
the low order portion of a word which is then returned to the caller.

PutValueIntoRow and GetValueFromRow

These functions work as do their counterparts for operating on tunnels of DapMatrix.
Their arguments are exactly the same with the only difference being that the value is oriented
along a row rather than along a tunnel.

PutValuelntoColumn and GetValueFromColumn

76

These functions work as do their counterparts for operating on tunnels of DapMatrix.
Their arguments are exactly the same with the only difference being that the value is oriented
aleng a column rather than along a tunnel.

VectorToDapMatrixRM

This function writes a list of values into the DapMatrix oriented along successive tunnels.
It accepts 5 arguments; the first is the vector of values to be written, the second is the number
of elements to be written, the third is the number of bits to be written per value, and the
last three are the indices of the row, column, and tunnel that will contain the first value.

VectorFromDapMatrixRM

This function reads a list of values from the DapMatrix oriented along successive tunnels.
It accepts 5 arguments; the first is the vector to contain the values read, the second is the
number of elements to be read, the third is the number of bits to be written per value, and
the last three are the indices of the row, column, and tunnel that will contain the first value.

6 Drawing Lines on the DAP

The line drawing capabilities are supported by a two level drawing algorithm. The lowest
level draws stfaight line segments and can be called directly or through the curve drawing
routine. The higher level is an algorithm that draws Bezier curves and uses the straight line
drawer to put a piecewise linear approximation to the specified curve on the screen.

6.1 Drawing Straight Lines on the DAP

The Draw-line function is a primitive of the graphics system. Given a plane number and
the coordinates of two points, the function will draw a straight line between the points on
the specified plane. The input points can be selected by the mouse, loaded from a file, or
passed by other functions (e.g. Draw-curve). The coordinate system used is the same as the
conventional system, i.e., the lower left corner of the screen is 0,0 and the upper right corner
is 1023,1023. The algorithm is designed to make use of the parallel properties of DAP 510’s
configuration.

Initially, the algorithm employs a division table to compute the slope of the line. The
value of the slope is then used to determine if the line should be treated as a horizontal or
vertical segment. If the slope is less than or equal to 1, the segment is treated as horizontal
(i.e. a column scan of dapels is employed); otherwise the segment is treated as vertical (i.e.
a row scan of dapels is used). A line segment can be contained entirely within one dapel or
spread across two adjacent dapels.

The pixels on each line segment are drawn in parallel but successive segments of a line

77

are drawn serially. This approach yields a parallel/serial hybrid algorithm that is extremely
efficient on a grid based SIMD processors such as the DAP. The maximum time to draw an
arbitrary line is only 4000 machine cycles.

Access to Draw-line is obtained through function call Drawline.d. Drawline_d has five
arguments (x1,y1,x2,y2,planeno), where <x1,y1> and <x2,y2> are two input points and
plane_no indicates the plane on which the line will be drawn. The function does not generate
any error message.

6.2 Drawing Bezier Curves on the DAP

The Draw-curve function draws a cubic bezier curve based on four control points. The
control points can be the pixels selected by the mouse or data loaded from file.

Drawing 2 curve consists of two steps. In the first step, the function performs repeated
linear interpolation until the control polygon approximates the Bezier curve. This results
in the generation of 97 control points for each curve. The algorithm for this step is a
parallel/serial hybrid that is very efficient on grid based SIMD processors.

In step two, Draw-line is called to draw the 96 line segments which approximate Bezier
curve.

The access to Draw-curve is obtained through function call Drawcurve.d. Drawcurve.d
has eight arguments (x1,y1,x2,y2,x3,y3,x4,y4), where <x1,y1>, <x2,y2>, <x3,y3> and
<x4,y4> are four control points. The function does not generate any error message.

7 Graphics Subsystem

The graphics subsystem runs on the DAP and provides a mouse driven interface that allows
users to construct line drawings composed of straight or curved lines, fill (or unfill) the
regions defined by these lines, and to place text on the screen.

7.1 Initializing the graphics subsystem

Before using the graphics system the screen must be initialized, fonts must be loaded, and
the real {ime mouse interface started. The following routines are used to accomplish this
initial setup.

Main

This function is the main entry when running the graphics system. It is writtenin DAP C.
The function calls Dap.nit, InitFill, Send_chartab_to.dap, and several Fortran subroutines
to initialize the system. It sets the color table for the screen and transfers the necessary

78

character fonts. It calls Set_cursor to initialize the cursor (at the center of screen) and then
calls OpenMouse and Mouse.ctrl to initialize the mouse interface.

Dapnit

This function is called by Main to initialize the screen memory. It returns the address of
the screen memory.

Mouse_Ctrl

This function is the core of control of the graphics system. It is written in DAP C. The
function controls the mouse and provides the interface to the menu allowing selection and
execution operation.

7.2 Menu

The menu interface is controlled by seven functions. These functions work together with
the real time mouse interface to bring a menu to the screen, move about on the menu, and
select un action from the menu. All actions required of the menu interface are controlled
from these functions. The font used for the menu is Roman.

Display.menu

This fur. stion is called by Mouse_ctrl to display the menu on screen at the position given
by arguments. It displays the menu frame, menu contents, and cursor. The function returns
the address of the current cursor position; It calls Set_cursor, Display_string, and Fill_menu.

Erase_menu

This function erases the menu or warning displayed on screen and recovers the users region
that had been overwritten by the menu. The length and width of the menu or warning are
passed by argumenta. The function is called by function Sel_Funcs and function Mouse_ctrl.

Update_menu

This function is called by function Mouse_ctrl to update the menu when the mouse is
move to a aew selection. It calls Unfill.menu to unfiil the region in the menu corresponding
to the previous operation and Fill_menu to fill the region corresponding to the new operation.
It also changes the function flag.

Fill_menu

79

This function is called by Display_menu and Update.menu to fill the region in menu
corresponding to the selected operation.

Unfill_.menu

This function is called by Update_menu to unfill the region in menu corresponding to the
previous selected operation.

Sel_Funcs

This function is called by Mouse.ctrl and determines the desired operation based on
the current cursor position. It returns the value of function flag. The function will call
Erase_menu.

Rel_Funcs

This function is called by Mouse.ctzl to release the current operation and return to idle
state.

7.3 Cursor Control

The mouse interface displays the cuszent cursor position on the screen in real time. The
following set of routines are responsible for maintaining the cursors screen position in con-
junction with data received from the mouse.’

Set_cursor

This function is called to set the cursor at a particular position of screen. The initial
coordinate of the cursor is 0,0. To move the cursor, the distance between the new cursor
position and the current cursor position, i.e., delta x and delta y, should be given using
arguments. Usually, the delta x and delta y are obtained from the mouse. The function
returns the address of the current cursor position.

Erase_cursor

This function is called to erase the cursor from the screen.

7.4 Text and Fonts

Send_chartab_to_dap

This function is called by Main to send the characters fonts to the character table.

&0

There are seven different fonts that may be used to display characters in the system. They
are Default (12*9 pixels), Roman (18*11), Roman bold (19*11), Gallant (15*12), Courier
(24*13), Courier bold (24*14), and Roman32 (32*30). Each font is stored in an individual
file in which each character consists of 32 32-bit hexadecimal numbers. Fonts are read from
these files and then sent to character tables. Although each character is stored in a 32*32
dapel, most characters occupy only a small portion (i.e. about 1/4) of the upper left corner of
the dapel. The size of each font is hard coded in the function Text_Ctrl. Based on the value
of the argument (i.e. font_no) the system can determine the horizontal distance between two
characters. The vertical distance between two rows of characters is determined by the user
usually through the mouse interface.

Display_string

This function displays a character string on the screen, starting at the current cursor
position. The length, address and font of the string are given as arguments. The function
returns the address of the current cursor position. This function calls Text_Ctrl.

Text_Ctrl

This function is called by Display_string to display characters one by one. The ASCII
code and font of the character to be displayed are passed as arguments. The function returns
the address of the current cursor position, The function calls Display._char and Set.cursor.

Display_Char

This function is called to display a character or cursor on the specified screen plane. Using
masks, the function can display the pixels of the cursor or character in parallel. Among the
five arguments, the first one is shared by cursor and characters operations. The second and
third are used only for displaying the cursor and the fourth and fifth are used only for for
displaying characters.

Load

This function is written in DAP C and called by Mouse.ctrl. This function provides
a means for a user to construct a control file that can be executed within the graphics
interface. The interface reads and executes the commands until a ’q’ is encountered or the
file ends. Each operation occupies a line: the first character identifies the graphic function
to be executed (i.e. l-line, c-curve, f-fill, u-unfill, and s-string) and the remainder of the
line contains the necessary arguments. For example, the four numbers following an 'I' would
be the two points of a line.

Access to Load is obtained through the function call load-in. The user will be asked to
input the name of the command file and an error message will be returned if the file cannot
be found or an invalid operation is found in the file.

81

7.5 Low level graphics support

The following three functions are low level support services provided to all components of
the graphics subsystem.

Display_warning

This function is called by Mouse_ctrl to display a warning on screen when a Clear-screen
or Exit operation is selected. The function returns the address of the current cursor position.
The function will call other functions, Set_cursor and Display_string.

Clear.screen

This function is called by Mouse.ctrl to clear planes 0-2 of screen memory. This results
in a display containing only the cursor.

Clear_planes

This function is called by Mouse.ctrl to clear a plane of screen memory. The plane
number is passed as the argument.

8 The GDD C compiler

8.1 Introduction

GDDis a C compiler for the AMT DAPS510 massively parallel mesh-connected computer. It
is a derivative of the GNU C (gcc) compiler from the Free Software Foundation, and thus
public domain .

The motivation for the compiler was the lack of a good systems programming language
for the DAP. The only languages available have been Fortran, which has never been used as
a systems programming language, and an assembly language, which has been found to be
unusually restrictive and time consuming. A parallel extension of a language like C would
be the most important tool that a group like ours could get for developing software for the
machine. This compiler is meant to be a step in that direction.

The version of GDD described here is a port of a serial C compiler to the scalar processor
of the DAP. While using a serial language on a parallel machine does not appear to make
much sense, experience shows that large portions of code that take much effort to write in
assembly are control-oriented and sequential in nature. Since we have gone to great pains to
allow for relatively simple mixing of C and APAL code, the combination can be as efficient
as the user desires.

1The legal term here is *copylefted’

82

8.2 Using GDD

The structure of the compiler

Like gce, GDD is a multi-pass compiler system that consists of several programs, of which
the actual compiler is only one. Here is a list of the programs in the sequence they are run:

Control program DAPBIN/gdd A program whose sole purpose is to run the appropriate
following programs, and manage the temporary files created. Only slightly changed to
account for new filename suffixes, and hardcoded paths.

Preprocessor — gdd/1ib/cpp Completely unchanged. Produces a .h file.

Compiler ~ gdd/1ib/ccl Multi-pass compiler that produces assembly code, with the .da
extension, and separate file with data declaration (because of the single pass assembler).

Assembler prepass — gdd/1ib/fixdatafile An Awk script that reorganizes the data
declarations into appropriate sections.

Assembler — DAPBIN/dapa The DAP APAL assembler.
Linker — DAPBIN/dapa Same programs doubles up as a linker.

Executable switch setter — DAPBIN/dapopt Sets various switches, of which the control
program only sets whether the program is to be run on the hardware or simulated by
a simulator program.

Running the compiler

The GDD compiler operates in general identical to the GNU C compiler. The following
machine dependent options for ccl have been implemented:
-mstrict-tests Perform tests for overflow after subtraction needed for the comparison

statement. Default setting.

-mlazy-test Do not generate those overflow tests.
-mdap510 Generate code for DAP510. Default setting.

-mdap610 Generate code for DAP610. Currently does nothing.

Switches forwarded to assembler and linker

The gcec compiler system forwards several switches on to the Unix assembler as, and the
Unix linker 1d, which clearly are of no use with the DAP system software.

Instead, the following switches are passed to the assembler:

83

~e Generate external references and section listing in a .1st file.
Generate external references and attribute listing.
-Ln Generate source listing of the given level .

-tn Generate assembler source trace statements of level n.
The following switches are passed to the linker:

-mn (specified as -Xn) Generate consolidator map.
-sn, -s+n Set/increase the DOF stack record.

-A Set simulator flag.

File system

The filesystem for the GDD project all resides in the subtree /u7/planchet/halldors/gdd/,
which we refer to here as simply gdd/. Following is a description of the main directories.
gdd/src Source files .¢, and the md machine description file.
gdd/include Include files.
gdd/bin Executables - gdd
gdd/1id The subprogram executables (ccl, cpp, scripts)
gdd/testbin Development executables
gdd/doc Documentation
gdd/test Test harnesses, results, and testing programs.
gdd/test/files Test files.
gdd/othermach Descriptions of other machines.
gdd/sys Glue files for connecting with DAP.

gdd/gnubin Executables used in the generation and compilation of the compiler.

84

Source changes

The files src/md and include/tm.h contain almost all the description of the machine
and machine dependent macros that are used to generate a correct code generator. Their
configuration is described in the next section. Unfortunately, due to the unusual architecture,
instruction set, and restrictive system software, some changes to the “meant-to-be-machine-
independent” source had to be performed. We did the utmost to keep those patches as limited
and localized as possible; see the file gdd/doc/source.diff for the textual differences.

The following is a complete list of those alterations.

expr.c, stmt.c The macro GET_MODE_STORAGE_SIZE(Mode) was defined to translate from
bytes to storage units, and used everywhere in the file in place of GET_MODE_SIZE.

expr.c A function call to setup_nev_frame(bytes pushed) (see the new file dap-extra.c)
added before a new activation record is written to. Necessary because of the unusual
activation record structure of the DAP.

stor-layout.c All references to BITS_PER_UNIT replaced by BITS_PER_BYTE (found in
tm.h).

stor-layout.c The definition of the macro GET_MODE_ALIGNMENT(Mode) changed, due to
the different alignment requirements of the DAP.

toplev.c, varasm.c All data declaration written to a separate file, with the extension
.data.

toplev.c To compute the stack size properly, a global counter total_locals_in_planes
is defined, and referenced in tm.h.

toplev.c Instead of the “.s” extension, assembly file have the extension “.da”.

8.3 Work done on GDD

Changes to GNU CC in porting to the AMT DAP 510

- . - - o . = D P W = = A D G B G A D D o S W S v . W S W Gy G G ey

--- Factors that made the porting job hard ---

I. --- DAP Architecture ---
* Unusually limited addressing modes available.

II. --- DAP system software ---
* Unorthodox, non-standard, e.g. assembler single pass.

II. --~ Problems with GCC compiler ---
* Lack of ’lint’-ability

85

*x Its treatment of nested activation records

* Variables had to be declared before use
: Use separate file for data declarations

* Unorthodox scoping rules for variables, making sharing globals
variables difficult
: Postpass to place each global variable in a separate section

* Assumption of compiler that the size of a type is the same as the
size of the storage it uses

: Change definitions to reflect that ’char’,’short’,and ’'long all
use 32 bits of storage, while their computational size remains 8,16
and 32 bits.

(Still not completely fixed, e.g. short)

* Addressing globals

* Register usage, way different from compiler’s assumptions

: Stack thought of very differently; usually, most things can be
referred to using the stack point, but on the DAP, no negative
addressing can be made.

: Wound up having to tie up three register:
m6 : Activation record and function argument address pointer
m7 : 'Frame pointer’ = Pointer to local variables
m13 : stack pointer

plus m§ vas used on function calls, and mi2 when referring to globals.

* Function calls require highly unusual setup

: Special treatment for nested function calls

: New routine: call to setup-nevw_frame added in expr.c

: Difficulty remaining compatible with several different function
call formats. E.g. both AMT formats did not allow for the possibility
of variable number of arguments.

--- Fairly minor changes to source ---
* Qutput of string constants
: Special routine, string_constant_output() added.
: Special care needed to be taken care of since an assembler source

line may not, under any circumstances, contain more than 79 characters.

* Sectional system incompatible with compiler’s assumptions of

86

assemblers

: Some taken care of in supplied macros
: Certain ’end’s added to source

* DAP specific filenames, and non-standard locations of executables

--- Problems fixed in mach.description file ---

* Switch statement -> Changing from address table to jump table

8.4 Current status of compiler

Original restrictions

Floating point operations were intentionally left out. Given that the processor has no
floating point instructions, we hold the belief that most users are better off with a fixed-
precision library. Floating or fixed-point was considered a future extension.

Current bugs

Short integers Any use of shorts causes the compiler to crash. This is caused by the
expectation that storage unit size is equivalent to data type unit size. Requires changes
in some source files to fix, but since the datatype is really not of much use it has not
been a high priority item.

Bitfields Bitfield extraction produces an incorrect code.

Optimization Some non-redundant statements are optimized away in code with switch

statements. Also when making comparisons, a register sometimes gets clobbered when
optimized.

Features to be tested or known to be missing

Function pointers Not likely to work without some ingenuity.

Unions Not fully checked.

Recursive functions While recursive calls works per se, since the APAL compiler requires
a fixed stack size declared, the level of recursion must be anticipated.

87

| .

Wish list

o More automated testing system.

e More complete test harnesses.

o String library. ‘

¢ Fixed-point or floating-point library, possibly in-lined.
o Interface with profiler.

¢ Debugger possibilities.

¢ Increased use of parallel operations

e New assembler

¢ Easier ways of interacting to and from host.

A Project log

A.1 'Work Finished

Worklist for gdd compiler

- T D - D = - . A Y = - g - - - -

e e L T Ry

1. Check if function calls work. (-> YF) Aug 10
[Aug 14] Faving tried the following successfully:
1) function "test" calls "sub";

2) "test" calls "subl" which in turns calls 'sub2"

But failad the following:

1) when there are more than 4 arguments, since
negative offset is generated for any argument
after the 4th one.

[See #10]

2. Check if calling & linking library routines work. (-> YF) Aug 10
[Aug 14] Having passed a test with "libcalll.c" program which
issues a call to "Get_PlaneCnt" which is an éntry

point defined in "~dap/local/lib/DAP.d1".

88

Other routines defined in DAP.dl need to be tested
later on. (as described in number 4 below)

3. See if using asm() works, esp. for pause and trace. (-> MMH) Aug 10
(Aug 17] Works fine. See tsti8.c

13. Set up gdd fully : connect with Sun4’s dapa. (~> MMH)
[Aug 11] dapa now run on planchet. Library directory not connected.
[Aug 12] Symbolic link from /usr/lib/dap to current Sun4 directory.
[Aug 13-17] dapa called from gdd, both as an assembler and as a linker.
All useful options passed through to it. (Need to document)
dapopt called when option -A is given
[Aug 17] Quite compilation flag now also sent to dapa

14. Check structs, unions, constant strings (-> YF)

[Aug 14] Having passed test for "structl.c"; "struct2.c"
uses pointers, so needs to wait for the fix-up

of compiler’s handling pointers.

[Aug 16] Passed "struct2.c".

Passed "unionl.c" and "union2.c".

[const. strings do have problems. More on that later]

27. String constants in Apal code (MMH)
[Aug 23] Fixed. Code in varasm.c altered. (MMH)
(Aug 24] ’7%’ in comments is now escaped (MMH)

12. Have the compiler use other calling conventions
Fortran, Rutgers DAP conventions - Add keywords to the C.
(Cancelled. The Calling Macros have been made intelligent instead]

8. How to interface Sun & Dap strings
[Not our business - Handled by Don & Sizheng]

16. Behavior of automatic variables, including scalars and arrays. (YF)
[Aug 21] passed "autovarl.c" which tests the allocation of
space for the variables defined in blocks. Either

having "“auto" specified or not does generate the same
code. (having "auto" or not does not matter when vars
declared in blocks.))
"autovar2.c" tries to use a variable in a block while
that var is defined in another block; error message
issued by the compiler.

passed "autovar3d.c" which allocates acrays in blocks.

(Aug 31] Handling of automatic variables changed radically.

89

17. Check the allocation of space when scalars and arrays are mixed
in the declaration. (YF)

[Aug 21] 5 files, "declarex.c", are used to observe how the
(locally) declared variables are assigned space.

It is surprising to find that scalars are always

aligned w.r.t planes, while arrays are allocated

4 vords beyond its previous variable (scalar or

array) .

In addition, there is still a bug in the allocation of
space if the first declared variable is an array. See
"declare4.da". Combining with our previous problem with
the initialization for arrays, the real problem is that
space assigned to arrays is not aligned correctly.

[Aug 31] Handling of automatic variables changed radically.

- Stack alignment alwvays by words now

- Space for arrays allocated correctly (should check further)

29. Add the STACK command to Apal output (MMH)
(Sep 23: Done =--> See 35]

31. Change CT : CT [dof-file] < testfile
[Sep 23 : Done]

34. Make sure commented data string doesn’t make line too long
(Sep 23: Done]

30. Version control, update notes etc. (MMH)
(Sep 24: Set up file ~dap/local/doc/gdd-rel-notes]

* 26. Write a _main() routine (that calls Init&Terminate allocate) (MMH)
[Sep 27: Done]

24. Code generation for mod or remainder (J) operation. (MMH)

Alvays call " _divsi3" or "_udivsi3" to implement the division

and % operations. Quotient returmed in ml, while remainder or
mod returned in m2.

[Sep 27: Mod&div handled specially in produce_function_call()]

19. Bitfield. (feature test) .
[Aug 22] I'm pretty sure that the code generated for "bitfieldx.c"

is not correct. See bugs.log. (YF)
(A current bug (Nov 17)]

21. Switch statement. (feature test)

90

[Aug 22] The code generated for switch has two bugs, see bugs.log.
[0ct 3] These two bugs fixed (see bug #14). Test remains insufficient.

25. Split data section into: globals, statics & constants (MMH)
-> Also: Place each global into a separate data sectlon,
(with elements of each constructor together)
- Means writing awk programs
- Then try sharing, e.g. the screen, as an extern structure
[(Nov 18,19: Done. Each global variable in a separate section.
Remaining variables in a single ’statics’ section.
- gdd altered to automatically do the conversion.
- Currently awk script + shell script driver
- Could extend so as to merge data decl. file with .da file.]

22. Break and continue statements. (feature test)

[Aug 23] passed test for "continue*.c", which have continue
statements in for/while loops.

[Dec 5] break used heavily in graphics code and work flne

35. Make MODULE_STACK_SIZE depend on the number of functions in module
[Nov ~30] Done.

Opt iii) Redundant statement when producing a table jump
[Dec 5] Done. See bug#29.

\newpage

IT. Work Log : a) Everything about function calls

7. Work on calling with more than 4 arguments. Use ’type=C4’ w/ Calling.

Aug 29: Work on function calls.
tm.h:

- Macro STACK_BOUNDARY changed from 1024 (32 words) to 32 (1 word)
That probably causes the 32 in "add m5, 32"
and the 32 words diff. between local variables

- Changed STACK_POINTER_REGNUM from 5 to 7

- FIRST_PARM_CALLER_OFFSET commented out

- Add update stack ptr statement to fn.prologue, for local vars
Aug 30:

~ STACK_POINTER_OFFSET commented out (for efficiency)

~ STARTING_FRAME_OFFSET commented out : since we set up SP in Entering

Aug 10

- Define PUSH_ROUNDING to convert from bytes to storage-units (i.e.words)

This does not handle the block mode - See about that later
[Converted back: PUSH_ROUNDING only good for machines with push

91

instruction]
-~ Check what happens if RETURN_POPS_ARGS is set to nil.
[It works: SP gets decremented same amt as it was incremented]
- expr.c changed: All refs to GET_MODE_SIZE get an added byte->storage
unit conversion
Aug 31:
- int_size_in_bytes, and size_in_bytes already produce storage units
-~ the macro SETUP_NEW_FRAME written, compiled, and tested
- stmt.c: GET_MODE_SIZE altered to GET_MODE_STORAGE_SIZE
Sep 1:
- STARTING_FRAME_OFFSET set to 8 + {some constant, preferably #args}
- SP incremented by SIZE - STARTING_FRAME_OFFSET in FUNCTION_PROLOGUE

What is correct now:

All setup a function call dona by the compiler, correctly.

Stack pointer updated to account for locals, at the beg. of the function.
Correct stack pointer used (not m5 - was never really tested).

A1l alignment, of arguments on stack and of locals, now correct.

Locals now at (almost) correct place, right after arguments.

What needs work:

- Call SETUP_NEW_FRAME for div,mod and related builtin library functions.

- Adding #args to STARTING_FRAME_OFFSET.

- General problem of handling variable # of arguments.

(- integrate.c may need ‘to be altered in the same way (e.g. GET_MODE_SIZE))

**%« Naew version: »%x
Sep 1:
(tm.h)
- m13 made to be the stack pointer (STACK_POINTER_REGNUM, FIXED_REGISTERS)
- m7 made to be base for locals (ARG_POINTER_REGNUM)
- FUNCTION_PROLOGUE: Copy m7 into m13, and subtract #locals fron: m7
(expr.c)
- Save Arg-pointer into 0..6 (m6)
(aux-output.c)
- Rename the registers used in the calling prologue
~ Add a "rr m7, mi3" '
Changed again:
- m7 is the *frame pointer* = base for referencing locals
mé is the argument pointer
expr.c and aux-output.c are now just about independent of that.
FIXED_REGS = m6,m13 - frame pointer need not be
STARTING_FRAME -OFFSET = 0

92

Corrected:

- Variable number of args now handled.
Problems:

- fn3.c crashes when trying to optimize (signal 6)
- tst9.c crashes in compilation (not fnl.c, tst4.c) (signal 6)

m7 is not being used: locals accessed by horrendous complications
- Arrays handled strangely

- Need to pinpoint the actual bugs
- Think more about where to store m7

Sep 11:
- Optimized function calls miraculously working...

Sep 20,21:
- bug?2,bug3,bugéd now all working
- see explanation in bugs.log
the offset of args to arg ptr, increased to 9 (leaving the 8th for ret val)

[More info here needed about fixes dealing with nested function calls.]

-

4. Link vith malloc routine. (-> YF)
[Aug 16] passed test using malloc and free,
and test using malloc, realloc and free.

Sizheng’s C program for testing allocation library

needs to use printf, so it will be on hold until

printf is available. We tried to think of an alternative
to do the testing, but it is too complicated.

28. Test Sizheng’s malloc test routine ~“wei/dap/allocatetest.c (MMH)
[Aug 24] Compiles correctly.

[Sep 22] Optimizing crashes ---> see bug6.c

(Oct??] Malloc tested and running.
(Nov17] Optimizing no longer crashes

11. I/0 routines - Interfacing w/ printf, scant
[0ct??] printf,scanf connected

93

A.2 Bugs Fixed

Fixed bugs

6. Wrong memory addresses: plane offset [Memory offset] Aug 10
Use full spec. of offset in address:
i.e. <plane>..<word>
Only problem for certain opcodes. Rethink when doing for proc.array
- Fixed Aug 14: Changed the PRINT_OPERAND_ADDRESS macro in tm.h (MMH)
- Another fix Aug 17: Symbols should not be preceded with a plane (MMH)

9,11. Array initialization error [Any arrays,const] Aug 17
tsti.c (Hello,vorld) does not assemble.
Attempts to get its address by rasc-ing a label:
- label goes to the source file not data file as it should
- dapa appears recognize the string in the data section, not certain
[Fixed Aug 22 : Sent to datafile now. varasm.c changed MMH]

10. Passing character strings from Sun C to DAP C [strings,interface]
[Irrelevant here] Aug 17

3,12. Allocation of automatic arrays [Arrays,auto] Aug 10,21
whenever an

array is declared (locally) as the first variable, we ara in
trouble, for it will overlap the formals.

7. Arguments on stack not done correctly [Fn.arguments] Aug 10
Need to set up new activation record

Negative offset generated. (Aug 14, YF)

[Sep 1 : Function call and stack handling completely overhauled]

17. Constant shifts expand to variable shift [shift, constant] Sep 1
- Occurs also for div by const and mult by const

- See bug5.c (also tst9.c)

[Sep 3: Changed order of alternative constraints for shifts in md]

"The Crashes"

8. Increment operator on a global variable [globals] Aug 17,24
Has to be preceded by an assignment to the variable

- Can be avoided by using +=

Occurs vhen not-optimizing: doing stupid reg-allocation

9

- See bug2.c

20. Function calls crash Sep 1

- Any call crashes. Happened after overhaul
- see bug3.c

19. Division crashes [Division] Sep 1

- see bugé.c

[Sep 21:

Apparently all these bugs were caused because of the incorrect
recognition of the operands of an addition statement (one that was
generated internally, by the compiler, for these various reasons).
Because the description of ’'movsi’ preceded that of ’addsi’ in the
machine description file (md), the operands were recognized
incorrectly as a reg and a sum. This caused an error in the final
output phase, where the constraints on the operands get tested.

For some strange reason, an addition stmt continues to produce the
same error in bug4.c, while the operands are correct now, but the
first and the second are not the identical register they should be. We
can sidestep this problem by allowing them to be different, and simply
producing an extra move instruction in those cases.]

5. Array declaration incorrect [Arrays, global] Aug 10
- Not correct count when declared as global: always 1.
- Zero count in bugl.c (see 16)

[Sep 23: ASM_OUTPUT_{COMMON,LOCAL} changed back. Rounded is not in bits]

22. Division not set up like other function calls “Sep 1
[Sep 27 : Div&mod functions get a special treatment (aux-output)]

\begin{SWITCH bugs}

14. switch statement. [switch] Aug 22
a) There are two bugs: (1) in general, the switch does not jump
to the right case;
[0Oct 3: Fixed. The branch for non-inverted lt<u was inverted]
b)

(2) vhen there are six or more cases
(including the default one), error message "gdd: Program ccl
got fatal signal 11" generated by the compiler. (YF)
(Oct 3: Fixed. The macro ASM_ADDR_VEC expected rtx but got int]
- Still problems. See bug#25.

25. Actual addresses expected in address vectors Oct 3
- Try to do define_expand that eliminates the access.

95

[Oct %: Prev insn searched for register used as address.
Not the ultimate in safety.]
[See bug #29. Eliminating the access is essential]

26. Test before switch insufficient Oct 3

- Tests only upper bound, not if negative.

[See bug#16,25 (switch), #4 (unsigned)]

[Dec 4: Directly linked with unsigned comparison]

29. Redundant load of address into jump table causes segm fault Dec 4
- (I.e. switch stmt). Try removing using def_peephole

~ See bug #25

[Dec 5: ’casesi’ pattern rewritten from 68000 specs. Now all correct]

\end{SWITCH bugs}

24. [gdd] When only the linker is run, basename disappears Oct 3
- e.g. gdd d.dc -> dapa -o .dof d.dc <+otherfiles>

[Oct 4: Conventicn changed: d.out produced if no -o switch.

-A svitch works only so-and-so. Impossible to fix.]

28. Nested function calls mess up registers Oct 10

[0ct 24: Setup & function-~call epilogue, altered significantly.
Nested activation records maintained as a linked list.]

- see bug8.c

27. Spurious errors when using globals in a long file Oct (7)
- See bug7.c '

[Nov 17: Switched from rtl-expansion, to using extra registers
and doing a reference of globals in the asm output generation.
- Cause not uncovered.]

16. Referring to elements of global arrays Aug 24
- ccl attempts to load a literal plus the constant in same stmt
- See bugl.c
[Sep ix: Globals worked out: Pointer loaded and then referanced]
[Sep 25: Problem: plane offset used, plus negative offsets filter in]
- I.e. status: Offsets are vrong (plane offset), & neg offsets fail
- Using "a" in operand constraints seemed to give some hope
[Nov 17: Fixed. The svitch to no expansion allowed moving the
offsat from the "rar" command, to the "rw" command.]
-See also bug9.c

4. Unsigned: comparisons & aritiluetic [Unsigned,comp,arith] Aug 10
- Was: the code generated is the same.

96

- Negative values for switch stmt will loop forever because of this
[Dec 4: Entries in md for unsigned comparison done using Carry flag]
[Dec 5: No overflow checks needed.]

[NOTE: Note thoroughly tested yet]

[Unsigned + and - work same as signed. Unsigned * and / are there.]

Appear fixed
23. Using function’s return value, messes up stack Sep 27
- m6 and m7 get stored into. (see cO.c,cl.c,c2.c)
[Sep 28: m7 now set to be fixed, and not stored into, but m6 still]
[Sep 28: Usage of mod regs should now be better]
- Happens only when other modregs are needed, eg fn call w/ 5 args
- Very likely to be related to 21) above.
[0ct 1: Reduced #parms in regs to 2 (from 4). Might alleviate the
problem for good]
- The argument base reg appears to be the first candidate for using.
- Fixed regs apparently aren’t completely fixed, but used only
vhen nothing else is available. Unfortunately, the compiler doesn’t
know about our other usages of m6, and thus thinks it need not
be spilled.’

21. Optimizing allocatetest.c blows up (Segmentation fault) Sep 21
- Strange combination of pointers, function calls and liveness
- See bugb.c

- The reduction of parms in regs did not help.
[Nov 17: The changed handling of globals appears to have helped]

A.3 Release Notes

GDD Release Notes

- n 0 o o n - v S - - -

/* This file is to provide an up-to-date reviev of the state of the
gdd compiler: known bugs and limitations, and recent improvements.
In this file, or associated log file, each mini-version will be
described in terms of changes, and bugs fixed/discovered.

*/

Sep 22: Update # 001

97

- STACK statement added at the end of each module.
Currently it is given a constant azrgument (i.e. 20), but ultimately
it should depend on the number of functions in the module.
- Comments following a string decl. no longer cause a too long source line.
- Global variables now declared correctly.
- Global arrays should be fully functional now.

Known bugs and limitations:
- The ’short’ datatype causes the compiler to crash
The ’unsigned’ datatype is not computed/tested correctly
The bitfield datatype seems to be handled incorrectly
The switch statement does not jump to the right case.
A register can get clobbered when performing a test
(Happens almost exclusively when optimizing)
~ Division is not expected to function correctly (nor mod)
- Optimization can crash the compiler
- Hardly anything has been tested fully for a long time.

]

[}

Sep 25: Update # 002
- Switched to using the EnteringC and ExitingC macros

New bugs:
--Reference to global arrays done incorrectly: plane offsets & neg offsets

Sep 27: Update # 033
-~ The calling sequence updated X tested to be working.
~ The startfile “dap/local/lib4/DAPmain.dc written and included automatically
- The standard library, DAP.dl also searched automatically.

Sep 27: Update # 004
Fixed bugs:
- Division and modulus operations working
- (Minor ones:) Comments longer than 80 chars
New bugs:
- When a function return value is used, it can mess up m7&m6é and thus crash.

Sep: Update # 005
- #parms changed to 2 (from 4), to try to avoid the above bug.

Oct 24: Update #006
- Calling mechanism altered: Setup & function-call epilog. AR stack kept.
- Fully correct by Oct 27.

Oct 31: Update #007
- Handling of global variables changed radically:

98

~ Move-expansion thrown out.
- References to global symbols are treated directly in the output.
- The output makes use of register 12.

Nov 17:
Fixed: 1) Nested function calls. A linked list of activation records is
kept, separate from gdd’s pointers.
2) Globals work correctly (while not optimal efficiency).
Move-expansion was thrown out once again. m5 and mi2 used (m5 saved).
3) References to elements of global arrays now use word offset.
4) Optimizing (see bugf.c) does not cause the same crashes as before.

Nov 18,19:

Fixed: Sharing globals between several source files.
- Each global placed in a section of its own. Statics and constants
put in a single non-shared section.

A.4 Bug Log

Current Bugs in gdd

- —— - —— ——— o~ — - ——

1. Short crashes [Short int] Aug 10

- Cémpiler makes it BLKmode internmally => Problems w/ GET_MODE_SIZE -etc
(Nov 28)

- One way is to throw out all ’short’ refs in preprocessor

13. bitfield extraction. [bitfield,structure] Aug 22

the code generated for "bitfield*.c" is not correct.
there are two clues (I did not run any test but observed
the apal code): (1) wrong bit fields are extracted, e.g.
"bitfieldl.c"; (2) reg m4 is used before defined, e.g.
"bitfield2.c". (YF)

Optimization problems

. - o - . o . - ——

30. Optimizing svitch code wipes out addres loading, regs, labels
- See switch2.c (-0). See also bug# 29

2. Comparison register clobbered and not saved Aug 10
[Adding a (clobber) in the md pattern did not help (Sep 23)]

99

[Nor did doing an expand to an explicit subtraction]
- Probably appears only when trying to optimize
- See tstll.da when optimized

In salt

- - - —

Likely bugs:
- Function pointers
- Unions?

A.5 Work List

Worklist for gdd compiler

- - o T - T —— —— - — " -

I. »=*x Jobs in the queue **=x

a) ===== System level stuff =====
6. Set up test data for all the current testfiles.

15. Integrate all test files into a single suite.
- Including Yong-Fong’s

100. Document compiler: DAP changes; operation, functionality, bugs;
files, tools, scripts.

101. Wrap up the files, and the project
b) ==== Bug fixing

(See bugs.log for current bugs)

c) ==== Feature testing affirmation =====

18. Recursive calls; try factorials. (feature test)
(Aug 22] passed “"factorial.c" which contains a recursive function.(YF)

100

20. Enumeration. (feature test)
[Aug 22] Without really running the code, I observed that
" enumeration is 0K by inspecting the generated apal code. (YF)

36. Union constructs.

\newpage
II. =** Cancelled jobs **=*

5. Finish version 3 of CT (pass block of tuples to dap) (-> MMH)
[Merely for speed. Not too important at the moment.]

9. Document compiler options, idiosyncrasies, tools & scripts.

10. Think about profiling
- The macro FUNCTION_PROFILER could do the job

23. Implement library routines for string operations. (YF)
33. Clean the output when the -g switch is given

d) ==x==x Optimization/Efficiency Jobs ====za==

i) Div & mod should not be treated as full function calls.

ii) Accessing locals is too expensive:
make rr mi, m7; addh m1, 11; rv m3, 0..0(m7) into rw m3, 0..11(m7)

101

Scan on DAP is o(vF)

J. Storrs Hall and Magnis Halldérsson
Laboratory for Computer Science Research?
Rutgers University

Abstract

Scan, also called parallel prefiz, is a vector operator taking a scalar function and
applying it to successive initial substrings of the vector. Scan can be implemented
in O(log n) on a parallel processor with a tree connectivity. We show that scan can
be implemented on a DAP architecture, which has 2-dimensional mesh connectivity
with row and column busses, in O(vV/N) time.

1 Supported by Air Force Office of Scientific Research under AFOSR-86-0294
and DARPA under RADC t.n. B-8-3615 and B-8-3616.

102

Introduction

The @-scan of a vector 4 = a;,4a2,...a, i3 a vector S where s; = a¢; ® a; @
... ® a;. For example, +-scan of 4,1,5,2,6,3 is 4,5,10,12,18,21. The maz-scan is
4,4,5,5,6,6.

Scan is a very useful parallel processing primitive, and indeed has been used
as the basis of a model of parallel computation (Blelloch 87). This reference ex-
plains how scan can be implemented in logarithmic time on a tree-connected parallel
processor. Algorithms for a mesh-connected computer® are given in (Fiduccia 88)
which are Q(v/N). This is unsurprising since the diameter of a mesh is 2v/N.

The DAP (Godfrey 86) is a mesh-connected processor augmented by row and
column busses, so that its diameter is 2. However, the bandwidth of the busses is
vN (since only one set may be used at a time), presenting an interesting dual to
the basic mesh connections.

In the following section, we examine scan algorithms for a single row of the
DAP, considering only left and right neighbor connections and the row bus. We are
also ignoring the fact that the DAP is a bit-serial machine. Thus, as an independent
parameter, the timings for the bit serial implementation of the scalar function (“@®")
must be multiplied by the number of times it is done in the scan algorithm. In all
the algorithms below, however, this is logarithmic, which is optimal for scan.

A remark: O(YN) algorithms are not often seen, and as a result, it may not be
realized what an efficient timing this is. O(v/N) is less than log; » for n < 65536.
(Since log operations is optimal for scan, though, we would expect to, and do, see
a constant factor which defeats the (admittedly small) difference between the two
functions in this case.)

Algorithms

Our algorithm is based on two basic algorithms for scan, based on shifting
and broadcast, respectively. These algorithm statements assume a vector 4 =
aj,az,...,an, where n is a power of 2.

Algorithm A: Shifting Scan

[1] Repeat step 2 with k =27, for j « 0,1, ...,log n — 1:
(2] a; «— a; ® ai—p forall ¢ > k.

The problem with this algorithm is that the 'shifting operation is linear in the
distance shifted, so that the total time taken is E:;go "7 2' = n — 1, the sequential
time!

! In describing a square mesh processor array, we follow the usual convention
that NV is the total number of processors, n is the length of a side, where n = v/N.

103

Algorithm B: Broadcasting Scan

{1} Recursively (in parallel) apply (any) scan algorithm to the vectors ay,...,a,/2
and Qnf2+41) -2+ qn-
(2] a; «— @nj2 @ a; forall i > n/2.

Similarly, the problem here is that the broadcasts in the recursive steps can-
not be done in parallel since they must use the same bus. The total number of
broadcasts is again Y19 " 2 = n — 1.

The timings for the steps of algorithm A are 1,2,4,8,..., %, and those for al-
gorithm B are 7,...,8,4,2,1. This suggests a combination where we do the first
2rl_°%‘2]) steps in algorithm A and the final 2152} steps in algorithm B.!

Then the time for the total algorithm becomes

log n/2~1

2 S =202 -1 =2/r-2
=0

if log n is even, and

flog n/2]1-1 . llog n/2]-1
(Y D+ Y H=(E-+(fF-n=2vi-a

if log n is odd. In both cases this is O(y/n).

The problem, of course, is that the intermediate values of a; are not the same

for the two algorithms. To account for this, it is necessary to partition the list into
ogn log =

2*52] sublists (each of size 2[~51). Executing Algorithm A in parallel over all

the sublists is identical to executing it over the whole list, except that shifted data
do not cross the sublist boundaries.

To implement a scan on all processors using row scan as a primitive, first do
a row scan of all rows (simultaneously). Then perform a scan of the final column.
Shift this result down one row, broadcast across .very row but the first, and @ the
broadcast value to the result of the original row scan in each processor.

This takes two row-scan times and a few constant-time operations, so it is the
same order of complexity as the row-scan, i.e. \/n, which is of course v/N.

Implementation

We display the algorithms here in a c-like pseudocode. Arrays are expected to
be the size of the mesh; arr alb;n;n] means that a is an array of b bit numbers
and the mesh is n by n.

! Assuming, if log n is odd, that a shift step is faster than a broadcast step—there
are the same number of steps in the “contested” iteration.

104

Algorithm A:
arr a[b;n;n]
for i=0:(log n)-1
al;;J>27i] += 2"i'rsh a

(Note that n rsh a means shift a to the right n places, taking time n (times
the length to the words to be moved).)
Algorithm B:
arr a[b;n;n]
for i=0:(log n)-1
for j=2"i:n-1:2"(i+1)
al;;j<I<j+27i] += al;;jl

Both of these algorithms, of course, only scan along the rows; the full scan
would be accomplished by a double application like:
<scan algorithm as above>
<scan a[;n-1;...]>
al;I>0;] += 1 dsh a[;;n-1]

Conclusions

It may seem odd to talk about the asymptotic complexity of an algorithm
in terms of the number of processors of a machine which has a fixed number of
processors. This analysis, of course, is intended to apply to any machine with this
architecture, namely a square mesh with next neighbor connections and horizontal
and vertical busses, whose edge length is a power of two. O(¥/N) is the equal of
O(log n) for machines of up to 64k processors, which is the size of a full fledged
Connection Machine. That the time for scan on a bussed mesh of that size is no
more than the CM with all its communications hardware is, we think, significant.

We are forced to conclude, however, by noting that by the time the bit serial
nature of the DAP is taken into account, and the fact that our DAP only has 1k
processors, that it can do a scan no faster than its host Sun 4.

105

References

Blelloch, Guy: Scans as Primitive Parallel Operations, pp 355-362, Proceedings
of the 15th International Conference on Parallel Processing, Pennsylvania State
University Press, University Park, 1987

Fiduccia, C.M., R.M. Mattheyses, and R.E. Sterns: Efficient Scan Operators
for Bit Serial Processor Arrays, Frontiers of Massively Parallel Computing, George
Mason University, 1988

Foster, Caxton C.: Content Addressable Parallel Processors, Van Nos-
trand Reinhold, New York, 1976

Fountain, Terry: Precessor Arrays: Architecture and Applications,
Academic Press, London, 1987

Godfrey, M.D: Innovation in Computational Architecture and Design, ICL
Technical Journal, May 1986, pp 18-31.

Ladner, R.E. and M.J. Fisher: Parallel Prefiz Computation, JACM 27(4), 1980,
pp. 831-838.

106

Algorithm A
Shifting

step
time

Algorithm B
Broadcasting

step
time

AEdEEYYY T gBdadadn ¢
6@8@83@52 oOaoodan 2
SGhLebnn ¢ ooodEaan !

New algorithm: partitioned shift and broadcast

S
St

S
i

SusH
S

step
time

Sy
46ub 2

ngdhﬁ@bamméﬁéméz
Oooooooooooooono !

107

