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1. Introduction
In response to recent progress in Strategic Defense Initiative (SDI) and
Defense Nuclear Agency (DNA) hardened integrated-circuit (IC)
technology programs, Harry Diamond Laboratories (HDL) has devel-
oped a high-intensity (-1 x 1011 to 1 x 1013 rads(Si)/s), narrow-pulse
(-20 ns) dose-rate upset/survivability test facility.' The facility uses an
Ion Physics FX-45 flash x-ray machine operated in the electron-beam
(e-beam) mode and produces electrons with a mean energy of -2 MeV.
In this and other relatively low-energy e-beam environments, the
prompt dose absorbed by an IC die can be significantly decreased or
increased by packaging materials (see fig. 1). Since it is not always
possible to remove the lid or other intervening package material(s),
and bccausc IC packages can vary widely in construction, one must
generally obtain a dose correction factor for each device under test

Figure 1. Effect of Dose correction factor
packaging materials on 2.
dose deposited into 15 - ;~2MeVFX-45
mils of Si (from TIGER 1.8-
1-D simulations). KOVAR; -2 MeV FX-45

1.6' -: - AL,-26 3;30MeVLINAC
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S. Murrill, H. Eistn, and J. Azarewicz, A High Intensity Electron-Beam Facility for Dose-Rate Upset and Survivability
Testing, presented at th" 1989 Simulation Fidelity Workshop and to be published in the Journal of Radiation Effects.
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(DUT) packaging configuration. Correction factors allow the experi-
rnenir to use external dosimetry to accurately determine the dose
delivered to the die. One widely used tool for calculating such correc-
tion factors is the TIGER one-dimensional (1-D) coupled electron/
photon Monte-Carlo transport simulation code.* The Integrated TI-
GER Series (ITS) is an integrated collection of eight transport codes,
some of which are 1-D, some 2 h-D, some 3-D. The 1 -D member of the
ITS 13 the code "IIGER.

The purpose of this experiment was to verify that the TIGER 1-D code
(version 2.1) could accurately predict dose correction factors for both
a moderately complex, multilayer IC package and an IC packa;e"/
printed circuit board (PCB) combination, relative to data obtained
experimentally using thermoluminescent dosimeters (TLD's).

The results of this experiment show that the TIGER 1-D simulation
code can be used to accurately predict FX-45 e-beam dose deposition
correction fa ctors for reasonably complex IC packaging configurations.

2. Methodology

2.1 Materials

The materials and tools used to perform this experiment were as
follows:

" a Honeywell (HWL) radiation-hardened (rad-hard) 36-pin surface-
mount IC package,

* the HWL IC package mounted on a 62-mil-thick epoxy-glass PCB,

* version 2.1 of the TIGER 1-D simulation code,

* Teledyne Isotopes Mn-doped calcium fluoride (CaF2:Mn) TLD's (P/N
SD-CaF2:Mn-0.4),

" a Harshaw/Filtrol TLD reader (model No. 2000D), and

* the RDL High Intensity Flash X-Ray (HIFX) test facility (e-beam
mode).

*Distributed by Oak Ridge National Laboratory.
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2.2 Procedures

This experiment consisted of two, essentially independent, procedures:

* determination of dose correction factors through simulations (correc-
tion factor simulations) and

* determination of dose correction factors from measurements (correc-
tion factor measurements).

DEFINMON: In this experiment, a dose correction factor is defined as
the ratio of the average dose absorbed in some thickness of material
when it is shielded from a pulse of incident electrons by some other
object or objects, to the average dose absorbed in that same thickness
of material when it is exposed directly to an identical pulse of electrons.

2.2.1 Correction Factor Simulations

All simulated correction factors were determined through the use of
the TIGER 1-D electron transport code. TIGER is a powerful and user-
friendly software package that permits state-of-the-art Monte Carlo
solution of linear time-integrated coupled electron/photon radiation
transport problems. The code is based primarily on the ETRAN
model, which combines microscopic photon transport with a macro-
scopic random walk for electron transport.2 The two basic steps
required for solving radiation transport problems using TIGER are to
(1) generate cross sections by running the cross-section code and
(2) run the Monte Carlo code. To generate the cross sections, the user
must provide a list of the materials involved along with their compo-
sitions and densities. Running the Monte Carlo code requires both an
ordered list of the materials and their thicknesses along with a spectral
description of the incident radiation. In this procedure, we combined
these two steps through the use of batch processing files.

In order to properly match the simulation conditions to the experi-
mental measurement conditions, particular attention had to be given
to experimental dosimetry. The Harshaw TLD reader that was used in
this experiment measures the dose absorbed in the thermolumines-
cent component (Mn-doped CaF2) of TLD's. For this reason, all correc-
tion factors that were derived from TIGER 1-D simulations are based
on the absorbed dose in the CaF2 component of the TLD's. 1he
Teledyne TLD's consist of 5 percent (by weight) CaF 2:Mn and 95

2 J. A. ltalbleib and T. A. t4ehlhorn, ITS: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo

Transport Codes-Report No. SAND84-0573, Sandia National Laboratories, Albuquerque, New Mexico (1984).
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percent Teflon (C2F4).- The CaF2 is homogeneously distributed within
the Teflon base. Because the TIGER 1-D code is designed to work with
well-defined layers of materials,2 simulated TLD's were modeled as a
layer of pure CaF2 sandwiched between two equal thicknesses of C2F4.
(This is a reasonable approximation from the standpoint of symme-
try.) The thicknesses for the three layers of the TLD model were
calculated from the measured thickness of an actual TLD and the
relative mass/densities of the TLD components. These calculations
are detailed in appendix A. Figure 2 shows the three material sets that
were used in the TIGER simulations to calculate dose correction
factors for the IIWL IC package and IC package/PCB combination.
Note that all thicknesses given for the HWL IC package materials rep-
resent nominal manufacturing values.* Figure 3 gives the "binned"
spectral diti ibution of the FX-45 e-beam (charging voltage of -4.1
MV) that was used in all TIGER 1-D simulation runs.

A listing of all pertinent TIGER 1-D code input parameters used in
each simulation run is given in appendix B.

_ C 2F4 CaF2 C2F Set #1

7.24 0.52 7.24I (TLD)
mils mils mils

A10 W A10 W Ni Au C2F4 CaQ C2 Set #2
FX-45 ' 0.08 0.08e m - - (HWLe-beam 50 1 20 1 0.35 0.23 7.24 0.52 7.24 package

mils mils mils mils mils mils mils mils mils + TLD)

PCB AI203 W A:',0 3 W Ni Au C2F4 CaF2 C2F Set#3

0.08 0.08 (PCB +
62 50 1 20 1 0.35 0.23 7.24 0.52 7.24 package
mils mils mils mils mils mils mils mils mils mils + TLD)

Figure 2. TIGER code simulation materials.

2 .A. Ilalbleib and T. A. Mehlhorn, ITS: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo
Transrrt Codes--Rqxort No. SAND84-0573, Sandia National Laboratories, Albuquerque, New Mexico (1984).
'Teledyne Isotopes, Brochure, Teledyne Isotopes (New Jersey).
*P)vat, conmunicaiion with Mike Heinks, Honeywell Solid State Electronics Division (SSED).
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Figure 3. "Binned" FX-45 Number/energy (normalized)
e-beam spectrum 20
(charging voltage
-4.1 MV).
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Dose c'rrection factors for the HWL IC package alone were calculated
by dividing the TIGER-code-generated dose/incident iuene i ill e
CaF 2 layer of the second material set (fig. 2) by the dose/incident
fluence of the CaF2 layer of the first mater.,ial set, for each of two
conditions: the Ni and Au layers at minimum thicknesses, and the Ni
and Au layers at maximum thicknesses. These two conditions were
selected in order to determine the worst-case simulated dose correc-
tion factor range. Dose correction factors for the IC package/PCB
combination were similarly calculated, using the third and first mate-
rial sets (fig. 2).

2.2.2 Correction Factor Measurements
All experimentally determined dose correction factors were obtained
by irradiating TLD's at the HDL HIFX test facility.
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To experimentally determine dose correction factor(s) in a manner
consistent with both thedefinition atid the simulation procedure(s), the
following conditions needed to be met:

(1) TLD's must be irradiated in pairs so that

" one TLD is shielded from the e-beam hy the HiWL IC package or IC
package/PCB combination, and

" one TLD is not shielded, and

(2) TID's should be irradiated in a manner that allows for the
measurement of absorbed dose (CaF2 )/incident fluence for each TLD
in a pair.

The testing facility has several pertinent limitations:

* the e-beam fluence varies from shot to shot,

* the e-beam fluence cannot be directly measured, and

" the test chamber has an -600-mil-diameter exposure aperture.

Figures 4 and 5 illustrate the procedure used for this experiment,
which accommodates the above needs and limitations. Note that, in
this setup (fig. 5), each TLD pair is "effectively" irradiated using a
single pulse of electrons. This is accomplished by replacing one TLD
(of each pair) with two subminiature type-E (Chromel-Constantan)
thermocouples which have been calibrated to dose (CaF 2) using
Teledyne Isotopes Sd-CaF2:Mn-0.4 TLD's and the Harshaw TLD
reader (see fig. 5 and 6). Figure 7 shows both the measured and
calculated thermocouple response/dose (Ca F2) relationships.

All experimentally determined dose correction factors were calcu-
lated by dividing the absorbed dcose (CaP2) from P.,ch TIP (fig r by
the average of the associated dose (CaF2) thermocouple readings.

Although the physical presence of ihe two thermocouples represents
a slight deviation from the simulation conditions (review fig. 2), two
factors combine to significantly reduce any associated error:

* the cross-sectional area of the two thermocouples is small (-9 percent
of the cross-sectional area of a TLD), and

* because the thermocouples were also necessarily present during the
thermocouple/dose (CaF2 ) calibration, the shielding effects tend to
cancel in the calculation of dose correction factors.

10



Figure 4. HF! c-beam
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Figure 7. Hl)L FX-45 TL.D dose (krad[CaF,])
thermo-:uuple 10000 .- ~-.-~.--.~~v- ..

dlosimetry
cali bration. 10 -- __

1000

01
1 10 100 1000 10000

Thetrmocouple voltage (jiV)

TCl data TC2 data -TC1 tit

TC2 fit TO response (calc)

Dose (krad[OaFJj = 0.359 - A .iV (101) Dose (krad[CaF,]) =0.387 -A liV (102)
Dose (krad[CaFj) = 0.396 - A 4iV (caic: TIGER 1-D sim)

Note that the 1-larshaw TLD reader is calibrated to provide measure-
iflents of equilibrium dose in silicon (Si) from the absorbed dose in the
Cal 2 component of a TLD.' The absorbed TLD dose (CaF2) is related to
the f larshaw dose (Si) reading by the following equations:,

Dose (Al)= (Pen/P)Al_ x dose (Si) = 0.967 dose (Si) (1)
( ienIP)'Co

Dose (Ca F2) =- S,.F, xdose (Al) = 1.013 dose (Al) , (2)
kc30

SK 0 A e

where t ,,Ip is the mass energy absorption coefficient of the material
of interest, and S is the electron mass stopping power (S =(dE/dx)/p).

Substituting equation (1) into equation (2) yields

Dose (Ca 2 ) =1.013 x 0.967 dose (Si)= 0.979 dose (Si) . (3)

'Klaus Kerris, T'hr AURORA Dosimetry System, Harry Diamond Laboratories, HDL TR-1754 (7976), pp36--39.
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3. Results
Table I shows th calculated dose correction factors for the HWL rad-
hard 36-pin surface-mount IC package and IC package/PCB combi-
nation. Note that these correction factors are based on the average
absorbed dose in the CaF2 component of the TLD model (see fig. 2).

Table 2 shows the experimentally determined dose correction factors
for the HWL IC package and IC package/PCB combination. These
correction factors are based on the average absorbed dose in the CaF2
component of actual TLD's.

Figure 8 shows the correlation between the dose correction factors that
were derived from the TIGER 1-D simulations and those that were
determined experimentally. Note that the two simulation ranges
given for each of the two material arrangements reflect the minimum
and maximum thicknesses of the Ni and Au layers in the HWL IC
package (see fig. 2).

Table 1. TIGER 1-D Simulation conditions
simulation results

Ni, Au layer Dose

Shielding thicknesses correction factor Errorb

None 1 -
IC package Min 0.501 2
IC package Max 0.432 3
IC package/PCB combination Min 0.0728 4
IC package/PCB combination Max 0.0623 5

:See figure 2.
bPercentage estimate of lastatistical uncertainty.

Note: IC packages are manufactured by Honeywell.

Table 2. TIGER 1-D
experimental results Expenmental arrangement' Dose correction factor' Error,

No IC package or PCB 1 -
IC package 0.52 0.067
IC package/PCB combination 0.065 0.013

"See figure 5.
'Represents the mean of 10 irradiationsfarrangement.
cRepresents one standard deviation of uncertainty.

Note: IC packages are man!'factured by Honeywell.
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Figure 8. One-sigma Dose correction factor
dose correction factors:
T IG E R l-D s im u la tio n s ------------------------- rI --------------------------------------------------------------------------------------
versus experimental ...................................... . . . .-- From measurements
measurements. .............. ----------------------------- 3 From simulations using

............................................................................................ m in N i, A u th ic k n e s s e s
......................---------................... ...I............. ................. M F ro m sim u la tio n s u sing

max Ni, Au thicknesses

............................................. ........ .............................................................. ........ ...................... ...............

0 . ---------- ----................................... ........... ............. ........ ............ ............ .....................................................

0.01

HWL package HWL package +

62 mil PCB

4. Discussion and Conclusion
The dose correction factors obtained from the TIGER 1-D simulations
agree, within one standard deviation, with those obtained experimen-
tally for each of the two packaging configurations used in this experi-
ment. Given that the simulations were done using the minimum and
maximum thicknesses for the Ni and Au material layers of the HWL
IC package, and that there may have been some differences in thick-
ness between other layers of the simulation model and the actual HWL
IC package, the agreement is quite good.

The packaging configurations chosen for this experiment were se-
lected for two reasons: (1) they represented realistic test configura-
tions, both in materials and exposure orientation, and (2) they ap-
proximated worst-case situations from the standpoint of the number,
type, and thicknesses of intervening materials that would be expected
in typical HDL FX-45 e-beam test setups. The underlying assumption
was, and is, that the greater the number of materials (layers), and/or
the greater their thicknesses, the more difficult it would be to accu-
rately determine dose correction factors using the TIGER simulation
code.

14



It should be noted that, in this experiment, dose correction factors are
based on the absorbed dose in the CaF2 component of TLYs. In order
to determine (simulate) dose correction factors which are based on,
and can be used to determine, the dose deposited into some region
(thickness) of a packaged IC die (usually Si) relative to external do-
simetry, the terminal TLD (model) materials (see fig. 2) would have to
be replaced by a representative thickness of the material of interest.
Such a change in material arrangement is not expected to alter the
accuracy of the associated TIGER 1-D simulation.

Thecomplexityof the test configuration used in thisexperiment, taken
along with the closeness of the experimental conditions to typical test
configurations and the excellent results of this experiment, leads us to
conclude that the TIGER 1 -D simulation code can be used to accurately
predict FX-45 e-beam dose deposition correction factors for reasona-
bly complex IC packaging configurations.
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Appendix A.-Three-Layer TLD Model
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Appendix A

The Teledyne Isotopes thermoluminescent dosimeters (TLD's) used
in this experiment are essentially composed of 5 percent CaF2 and 95
percent Teflon (C2F4)' (by weight). The TLD's are shaped as slightly
concave discs with the following dimensions:

* diameter = -236 mils,

* thickness = -15 mils.

The CaF2 is homogeneously distributed within the Teflon base.

A simple, symmetric, three-layer model of the Teledyne Isotopes TLD
can be derived as follows:

0 assume that the TLD is shaped as a perfect disc (cylinder),

* let the center layer of the model be composed of pure CaF2,

* let the two outer layers be composed of equal thicknesses of C2F4, and

* calculate the thicknesses of the three layers from the relative mass/
densities of the two components.

To calculate the layer thicknesses, assume the following:

Density (P) of CaF2 = 3.18 g/cm3 (Weast 2) , (A-I)

Density (P) of C2F4 = 2.20 g/cm3 (Weast), and (A-2)

Thickness (T) of the TLD = 15 mils (measured) . (A-3)

The ratio of the masses of the two TLD components is

massCaF2 - 5% - 0.0526 . (A-4)
massc 2F4 95%

Given that

mass (W) = density (p) x volume (M), (A-5)

and

volume (V) of a cylinder = thickness (7) x cross-sectional area (A), (A-6)

'Teledyne Isotopes, Brochure, Teledyne Isotopes (New Jersey).
2R. Weast, CRC Handbook of Chemistry and Physics, CRC Press, FL (1989), p B-80.
3R. Weast, CRC Handbook of Chemistry and Physics, The Chemical Rubber Co., Ohio (1971), p C-769.
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Appendix A

substituting equations (5) and (6) into equation (4) yields

PaF2xTCaF2 XA4CaF2 = 0.0526 .(A-7)

R12F4 XTC2F4 XAC2F4

Rearranging terms and noting that Acai, = AC2F4 yields

TCaFZ=-C9F4x 0.0526 .(A-8)

TC2p4 PCaF2

Substituting equations (1) and (2) into equation (8) yields

TCaF2 = 2.20 xO0.0526 = 0.0364 (A-9)
TC2F4 3.18

Since there are only two component thicknesses in this model,

Tcar,2+ Tc2 F4 must equal the total thickness of the TLD = 15 mils. (A-10)

Substituting equation (9) into equation (10) yields

=CF 15 mils, .14.473 mils. (A-1I1)
1CF~+ 0.0364

From equation (10),

TCaF2 = 15 - TC2F4 = 0.527 mils . (A-12)

Because the model calls for two equal layers of CAF,

each CAF layer = 14.473 mils = 7.237 mils . (A-13)
2

Figure A-1 shows the complete ThD model.

Figure A-I. TIGER 1-DI
TLD model. C2 F Ca2CF

7.24 0.52 7.24
Mils Mils I Mils
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Appendix B

The following listing shows all the pertinent TIGER 1 -D simulation cede input parameters
used to calculate FX-45 a-beam dose correction factors for the Honeywell radiation-
hardened 36-pin surface mount integrated-circuit (IC) package and printed circuit board/
IC package combination.

********* SOURCE

ELECTRONS

SPECTRUM 11

1.0 0.98968 0.96906 0.91752 0.54639
0.29897 0.15464 0.07217 0.03093 0.01031
0.0
3.0 2.8 2.6 2.4 2.2 2.0
1.8 1.6 1.4 1.2 1.0

CUTOFFS 0.05 0.01

CROSS-SECTIONS

ENERGY 3.0
MATERIAL C 0.382 H 0.039 0 0.346 SI 0.233 DENSITY 1.8
MATERIAL AL 0.529 0 0.471 DENSITY 3.69
MATERIAL AL

MATERIAL SI

MATERIAL NI

MATERIAL W

MATERIAL AU
MATERIAL SI 0.467 0 0.533 DENSITY 2.32

MATERIAL C 0.24 F 0.76 DENSITY 2.20
MATERIAL CA 0.51 F 0.49 DENSITY 3.18

* * * OTHER OPTIONS *

HISTORIES 100000

- TRANSPORT, SPECTRUM NO. 1 (ELECTRONS) NEW TLD -
********* GEOMETRY *********

GEOMETRY 3
* MAT NZONE THIK ECUT PTCZ

9 1 0.0184

10 1 0.00134

9 1 0.0184
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Appendix B

- TRANSPORT, SPEC(TRUM NO. 1 (ELEC- - TRANSPORT, SPECTRUM NO. 1 (ELECTRON6)
TRONS) THIN AU/NI AND NO PCB - THIN AU/NI AND PCB -
********* GEOMETRY ********* ********* GEOMETRY *********
GEOMETRY 9 GEOMETRY 10
* MAT NZONE THIK ECUT PTCZ * MAT NZONE THIK ECUT PTCZ

2 1 0 .127 1 1 0.15748
6 1 0.00254 2 1 0.127
2 1 0.0508 6 1 0.00254

i 0 .00254 2 1 0.0508
5 1 0.0002032 6 1 0.00254
7 1 0.0002032 5 1 0.0002032
9 1 0.0184 7 1 0.0002032
10 1 0.00134 9 1 0.0184
9 1 0.0184 10 1 0.00134

9 1 0.0184

- TRANSPORT, SPECTRUM NO. 1 (ELEC-9

TRONS) THICK AU/NI AND NO PCB - - TRANSPORT, SPECTRUM NO. 1 (ELECTRONS)
********* GEOMETRY * THICK AU/NI AND PCB -

.EnMwPv q ********* GEOMETRY ********
* MAT NZONE THIK ECUT PTCZ GEOMETRY 10

2 1 0.127 * MAT NZONE THIK ECUT PTCZ
6 ! 0.00254 1 1 0.15748
2 1 0 .0508 2 1 0.127
6 1 0.00254 6 1 0.00254
5 1 0.000889 2 1 0.0508
7 1 0.000584 6 1 0.00254
9 1 0.0184 5 1 0.000889
10 1 0 .00134 7 1 0.000584
9 1 0.0184 9 1 0.0184

10 1 0.00134
9 1 0.0184
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