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COMPLEX ENVELOPE PROPERTIES, INTERPRETATION,

FILTERING, AND EVALUATION

INTRODUCTION

When a narrowband input excites a passband filter, the output

time waveform y(t) is a narrowband process with low-frequency

amplitude- and/or phase-modulations. The evaluation of this

output process y(t) can entail an extreme amount of calculations

if the detailed behavior of the higher-frequency carrier is

tracked. A much better procedure in this case is to concentrate

instead on determination of the low-frequency complex envelope of

the narrowband output process y(t) and to state the carrier

frequency associated with it. Then, the detailed nature of the

output can be found at any time points of interest if desired,

although, often, the complex envelope itself is the quantity of

interest.

The complex envelope of output y(t) is determined from its

spectrum (Fourier transform) Y(f) by suppressing the negative

frequencies, down-shifting by the carrier frequency, and Fourier

transforming back into the time domain. For a complicated input

spectrum and/or filter transfer function with slowly decaying

spectral skirts, these calculations can encounter a large number

of data points and require large-size fast Fourier transforms

(FFTs) for their direct realization. In this case, the use of

collapsing or pre-aliasing [1; pages 4 - 5] can be fruitfully

employed, thereby keeping storage and FFT sizes small, without

any loss of accuracy. This procedure will be employed here.
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As will be seen, when the complex envelope is re-applied to

i<he one-sided carrier term and the real part taken, the exact

narrowband waveform y(t) is recovered. However, if the complex

envelope itself is the quantity of interest, it has some

undesirable features. The first problem is related to the fact

that if waveform y(t) has any discontinuities i', time, its

Hilbert transform contains logarithmic infinities, which show up

in the complex envelope. The second problem is generated by the

operation of truncating the negative frequencies in spectrum

Y(f); this creates a discontinuous spectrum which leads to a very

slow decay in time of the magnitude of the complex envelope.

Since numerical calculation of the complex envelope is

necessarily accomplished by sampling spectrum Y(f) in frequency f

and performing FFTs, this slow time decay leads to significant

aliasing and distortion in the time domain of the computed

quantities.

Because these features in the mathematically defined complex

envelope are very undesirable, there is a need to define and

investigate a modified complex envelope which more nearly

corresponds to physical interpretation and utility. The time

discontinuities in y(t) show up in Y(f) as a 1/f decay for large

frequencies, whereas the truncation of the negative frequencies

of Y(f) shows up aE a discontinuity directly in f. Both of these

spectral prop(rties can be controlled by filtering the truncated

spectral quantity, prior to transforming back to the time domain.

' will address this filtered complex envelope and its efficient

(,valuation in this report.

2
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When the waveform y(t) is real and/or causal, its spectrum

Y(f) possesses special properties which enable alternative

methods of calculation. Thus, it sometimes suffices to have only

the real (or imaginary) part of Y(f) and to employ a cosine (or

sine) transform, rather than a complex exponential transform.

The aliasing properties of these special transforms, when

implemented by means of FFTs, will also be addressed here.

3/4
Reverse Blank
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ANALYTIC WAVEFORM AND COMPLEX ENVELOPE

Waveform y(t) is real with amplitude modulation a(t) and

phase modulation p(t) applied on given carrier frequency fo;

however, y(t) need not be narrowband. That is,

y(t) = a(t) cos[2nf ot + p(t)] = Retz(t) exp(i2nf ot) , (1)

where complex lowpass waveform

z(t) = a(t) exp[ip(t)] (2)

will be called the imposed modulation. The corresponding

spectrum of imposed modulation z(t) is

Z(f) = I dt exp(-i2nft) z(t) . (3)

(Integrals without limits are from -- to +-.) The magnitude

of spectrum Z(f) is depicted in figure 1; it is generally concen-

trated near frequency f = 0. The graininess of the curves here

is due to plotter quantization, not function discontinuities.

From (1), since waveform

11 *
y(t) = - z(t) exp(i2nfot) + 1 z*(t) exp(-i2nf t) , (4)

its spectrum can be expressed as (see figure 1)

_1 * *
Y(f) 1 Z(f-f ) + I Z (-f-fo) ; Y(-f) = Y (f) . (5)2 o 2 o

It will be assumed here that y(t) has no dc component; that is,

Y(f) contains no impulse at f = 0.

5
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I2' f

NI f

ff
C, 0

Figure 1. Spectral Quantities
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ANALYTIC WAVEFORM

The single-sided (positive) frequency spectrum is defined as

Y+(f) = 2 U(f) Y(f) = U(f) Z(f-f ) + U(f) Z*(-f-f ) = (6)

= Z(f-f ) - U(-f) Z(f-f ) + U(f) Z*(-f-f ) for all f (7

Here, U(x) is the unit step function; that is, U(x) is 1 for

x > 0 and U(x) is 0 for x < 0. The analytic waveform

corresponding to y(t) is then given by Fourier transform

y+(t) = f df exp(i2rft) Y+(f) . (8)

In order to further develop (8), we define a single-sided

(negative) frequency function

0 for f > 0

N(f) = U(-f) Z(f-f 0) Z(f-f) for f < 0 (9)

which can be determined directly from the spectrum Z(f) of the

imposed modulation z(t) in (2) if f is known. The magnitude of

N(f), scaled to peak value 1, is sketched in figure 1; it is

small if f0 is large, and is peaked near f = 0. The complex time

function corresponding to (negative frequency) function N(f) is

0

n(t) = f df exp(i2nft) N(f) = I df exp(i2nft) Z(f-f0 ) . (10)

With the help of (9) and (10), the single-sided spectrum

Y+(f) in (7) can now be Pxpressed as

7
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Y+(f) = Z(f-f 0 ) - N(f) + N (-f) , (Ii

with corresponding analytic waveform (8)

y+(t) = exp(i2af ot) z(t) - n(t) + n*(t) (12)

= exp(i2nf t) z(t) - i 2 Imin(t)l . (13)

That is, the analytic waveform is composed of two parts, the

first of which is what we would typically desire, namely the

imposed modulation (2) shifted up in frequency by f . The second

term in (13), which is totally imaginary, is usually undesired;

it can be seen from (10) and IN(f)l in figure 1 to be generally

rather small. There also follows immediately, from (13) and (2),

the expected result

Rely+(t)j = a(t) cos[2nf ot + p(t)) = y(t) . (14)

Since analytic waveform y+(t) can also be expressed as

y+ Y)ED1 = f)+id y(u)
y+(t) = y(t) + i YH(t) = y(t) + i y(t) y(t) + idu (t--u)'

(15)

where YH(t) is the Hilbert transform of y(t) and 0 denotes

convolution, (13) and (2) yield

YH(t) = a(t) sin(21f ot + p(t)] - 2 Im[n(t)j . (16)

If we define (real) error waveform e(t) as the difference between

the Hilbert transform of (1) and the quadrature version of

original waveform (1), we have

8
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e(t) YH(t) - a(t) sin[2nf ot + p(t)] = (17)

- 2 Imjn(t)1 = i [n(t) - n*(t)] = (18)

0

= - 2 Im J df exp(i2nft) Z(f-f 0 ) = (19)

= -2 Im Iexp(i2nf0 t) j' df exp(i2nft) Z(f) (20)

where we used (16) and (10). The error spectrum is, from (18)

and (9),

E(f) = i [N(f) - N*(-f)] = (21)

1-i Z*(-f-fo) for f >0

= Z(f-f0 ) for f (

Then, E(-f) = E*(f). The magnitude of E(f) is displayed in

figure 2; it is generally small and centered about f = 0.

The total energy in real error waveform e(t) is

dt [e(t)] 2  = f df iE(f)i2 =

= f df IN(f) - N*(f)J [N*(f) - N(-f)]

f df [IN(f)12 + IN(-f)1 21 = 2 f df IN(f)I 2

0 -f

= 2 - df IZ(f-f 0 )12  = 2  Odf IZ(f)l 2  (23)

9



TR 8827

Et fl ft-

ff f
I-, 0

100



TR 8827

where we used (21), the single-sided behavior of N(f), and (9).

This is just twice the energy in the spectrum Z(f) of imposed

modulation z(t) below frequency -f0 ; inspection of figure 1

reveals that this quantity will usually be small.

COMPLEX ENVELOPE

The complex envelope X(t) of waveform y(t) is the frequency

down-shifted version of analytic waveform y+(t):

y(t) = y+(t) exp(-i2nfot) = (24)

= z(t) + i e(t) exp(-i2f ot) , (25)

where we used (13) and (18) and chose to downshift by f0 Hertz,

the known carrier frequency in (1). Waveforms z(t) and e(t) are

lowpass, as may be verified from their spectra in figures 1 and

2. The spectrum of the complex envelope is, from (25),

Y(f) = Z(f) + i E(f+f ) . (26)

Equations (25) and (26) show that the complex envelope and its

spectrum are each composed of a desired component and an error

term.

The magnitudes of the complex envelope spectrum Y(f) and its

error component are displayed in figure 2; Y(f) is discontinuous

at f = -f0 but has zero slope as f 4 -f0 , whether from above or

below. The left tail of Z(f) and shifted error spectrum,

i E(f+f ), interact so as to yield Y(f) = 0 for f < -f0 ; this is

most easily seen from a combination of (24) and (6), namely

11
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Y(f) = Y+(f+fo) = 2 U(f+f ) Y(f+f ) = (27)

= U(f+f ) [Z(f) + Z*(-f-2f )] . (28)

The results for the error spectrum and energy in (22) and

(23), respectively, were originally derived by Nuttall (2];

however, we have augmented those results here, to give detailed

expressions for the error and complex envelope waveforms and

spectra. There are no approximations in any of the above

relations; they apply to waveforms with arbitrary spectra,

whether carrier frequency f0 is large or small.

EXTRACTED AMPLITUDE AND PHASE MODULATIONS

It is important and useful to also make the following

observations relative to the amplitude and phase modulations that

can be extracted from the complex envelope X(t). Define

A(t) = Iy(t)l , P(t) = argjy(t)] . (29)

Then, from (14) and (24), the original waveform can be expressed

in terms of these extracted amplitude and phase modulations as

y(t) = Rely(t) exp(i2nf t)l = A(t) cos[2nf t + P(t)] . (30)

However, complex-envelope modulations A(t) and P(t) in (29) and

(30) are not generally equal to imposed modulations a(t) and p(t)

in (1), as may be seen by reference to (25). Namely, complex

envelope y(t) is equal to complex lowpass waveform z(t) in (2)

only if error e(t) is zero. But the energy in waveform e(t), as

12
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given by (23), is zero only if imposed spectrum Z(f) in (3) is

zero for f < -f0. When Z(f) is not zero for f < -f0 , complex-

envelope modulations A(t) and P(t) do not agree with imposed

modulations a(t) and p(t), despite the ability to write y(t) in

the two similar real forms (1) and (30) involving an amplitude-

and phase-modulated cosine with the same f0.

Another interesting property of form (30) is that its

quadrature version is identically the Hilbert transform of y(t).

This is in contrast with the quadrature version of (1) involving

imposed modulations a(t) and p(t); see (17) - (20). To prove

this claim, observe that the quadrature version of the last term

of (30) is, using (29),

q(t) = A(t) sin[2f ot + P(t)] = (31)

1- [A(t) exp(iP(t) + i2nf t) - A(t) exp(-iP(t) - i2nf t)]
720 0

1*

T- [y(t) exp(i2nfot) - y*(t) exp(-i2nfot)] . (32)

The spectrum of this waveform is

Q(f) = -2[Y(f-fo) - Y(-f-fo) = -i[U(f) Y(f) - u(-f) Y*(-f)] =

i Y(f) for f >

i Y(f) for f < 0 -i sgn(f) Y(f) = Y ~)(33)

where we used (27), the conjugate symmetry of Y(f), sgn(x) = +1

for x > 0 and -1 for x < 0, and (6) in the form

Y+(f) = 2 U(f) Y(f) = [1 + sgn(f)] Y(f) = Y(f) + i YH(f) (34)

13
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the latter result following from (15). Thus, (33) and (31) yield

the desired result

1
yH(t) - t y(t) = q(t) = A(t) sin[2f t + P(t)] (35)

This simple connection between (35) and (30) holds in general

when modulations A(t) and P(t) are extracted from the complex

envelope according to (29); there are no narrowband assumptions

required. The more complicated connection between (16) and (1),

which is applicable for the imposed modulations, involves an

error term; this error is zero if and only if spectrum Z(f) in

(3) is zero for f < -f

SPECTRUM Y(f) GIVEN

All of the above results have presumed that waveform y(t) in

the form (1) was available as the starting point. But there are

many problems of interest where spectrum Y(f) is the initial

available quantity, rather than y(t). For example, the output

spectrum Y(f) of a linear filter L(f) subject to input spectrum

X(f) is given by Y(f) = L(f) X(f) and can often be easily and

directly computed. In this case, there are no given amplitude

and phase modulations a(t) and p(t) as in (1); in fact, there is

not even an obvious or unique center frequency for a given

spectrum Y(f). Nevertheless, many, but not all, of the relations

above hold true under appropriate definitions of the various

terms.

14
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Given spectrum Y(f) with conjugate symmetry, Y(-f) = Y*(f),

we begin with its corresponding real waveform

y(t) = J df exp(i2nft) Y(f) (36)

The Hilbert transform of y(t) and its spectrum are given by

YH(t) = -- y(t) , H(f) = -i sgn(f) Y(f) . (37)

The single-sided spectrum and analytic waveform are, respectively

Y +(f) = 2 U(f) Y(f) = [1 + sgn(f)] Y(f) = Y(f) + i YH(f) , (38)

y+(t) = 2 f df exp(i2nft) Y(f) = y(t) + i YH(t) . (39)

0

Up to this point, all the functions are unique and nothing

has changed. However, we now have to choose a "center frequency"

fc of Y+(f), since none has been specified; this (somewhat

arbitrary) selection process of fc is addressed in appendix A, to

which the reader is referred at this point. Hence, we take f c as

given and define lowpass spectrum

Y(f) = Y+(f+f c) = 2 U(f+f c) Y(f+f C) . (40)

The corresponding complex envelope is

y(t) = y+(t) exp(-i2nf ct) (41)

We define the complex-envelope amplitude and phase

modulations as in (29):

A(t) = Iy(t)I , P(t) = arg{y(t)} = argly+(t)} - 2f ct . (42)

15



TR 8827

Then, from (39), (41), and (42), we have

y(t) = Rejy+(t)I = Rely(t) exp(i2nf ct) = A(t) cos[2nf ct + P(t)].

(43)

Now when we define the quadrature version of the right-hand side

of (43) in a manner similar to (31), but now employing fc instead

of (unspecified) f0, the same type of manipulations as in

(31) - (35) yield relations identical to those given above:

Q(f) = YH(f) YH(t) = q(t) = A(t) sin[2fct + P(t)] . (44)

Because the choice of center frequency fc of single-sided

spectrum Y+(f) is somewhat arbitrary (see appendix A), this makes

complex envelope X(t) and its extracted phase P(t) somewhat

arbitrary. However, the argument, 2nfct + P(t) = argiy+(t)], of

(43) and (44) is not arbitrary, as seen directly from (41) and

the uniqueness of y+(t) in (39). Furthermore, extracted

amplitude modulation A(t) in (42) has no arbitrariness since it

is given alternatively by ly+(t)l, according to (41).

Since A(t) and P(t) are lowpass functions, we can compute

them at relatively coarse increments in time t. Then, if we want

to observe the fine detail of y(t), as given by (43), we can

interpolate between these values of A(t) and P(t) and then

compute the cosine in (43) at whatever t values are of interest.

This practical numerical approach will reduce the number of

computations of A(t) and P(t) required; in fact, in many

applications, A(t) and P(t) will themselves be the desired output

quantities of interest, rather than narrowband waveform y(t) with

all its unimportant high-frequency detail.
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EXAMPLE

Consider the fundamental building block of systems with

rational transfer functions, namely

y(t) = U(t) exp(-at) cos(2f ot + *) , a > 0 , f > 0 , (45)

where U1t) is the unit step in time t. Let

= 2nf , w = 2nf , c = a - iW 0 (46)

Then, from (1) and (2), the imposed modulations are

a(t) = U(t) exp(-t), p(t) = *, z(t) = U(t) exp(i -at) , (47)

yielding, upon use of (3) and (46), spectrum

Z(f) exp(i exp(i) (48)a + i2nf a + iW

From (5) and (48), the spectrum of y(t) is

1 exp(iC) + exp(-io (49)Y(f) = 2f a + i(W - o) a + i(w + w 0)'

and (6) yields single-sided spectrum

exp(fl + aexp(-i)e)I + (50)Y +(f) =UMf [a + i(W - 0o a + i(w + w o)

Now we use (9), (48), and (4o) to obtain (negative) spectrum

0 for f > 0)

N(f) = U(-f) exp()= (51)N~) (-)c + iW exp(i+) for f <0

Ic + iWI

17
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Then, from (10, the corresponding complex time waveform is

0 c

n(t) = df exp(it) exp(i+) = exp(i+-ct) f duf c + 1W i2n - exp(tu) (52)
-0 c-i-

For t < 0, let x = Itlu = -tu, to get

-Iti

n(t) exp(i+-ct) Ix exp(-x) e(i+-ct) El(CtI), (53)= i2a - xp(x 2n-

c It I-

where Ej(z) is the exponential integral [3; 5.1.1]. It is

important to observe and use the fact that the path of

integration in the complex x-plane in (53) remains in the fourth

quadrant and never crosses the negative real x-axis

[3; under 5.1.6].

Also, for t > 0, let x = -tu in (52), to get

-ct

n(t) = exp(i-ct) dx exp(-x) = i exp(i+-ct) El(-ct) . (54)

-ct+ia

Here, the contour of integration remains in the second quadrant

of the complex x-plane and again does not cross the negative real

x-axis f3; under 5.1.6]. The combination of (53) and (54) now

yields complex time waveform

1
n(t) = - exp(i-ct) E1 (-ct) for all t * 0 . (55)

18
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Now, we use (18) to obtain real error waveform

e(t) = jRelexp(i4+-ct) El(-ct)1 for all t * 0 . (56)

(Or we could directly use (20) with (48).) The corresponding

error spectrum follows from (22), (48), and (46) asI-i exp(-i*) for f > 0'

E~~f) = exp(i ) for f < 0}(7

From (16), (17), (47), and (56), the Hilbert transform of

y(t) is

YH(t) = U(t) exp(-ctt) sin(2nrfot++) -

_1Rejexp(i+-ct) E,(-ct)j for all t * 0. (58)
UE

In addition, using (15) and (45), the analytic waveform is

y+(t) = U(t) exp(i+-ct) - i~ Rejexp(i+-ct) El(-ct)1

for all t ;d 0. (59)

The complex envelope follows from (25), (47), and (56) as

y(t) = U(t) exp(i+-ctt) - exp(-iw t) Relexp(i+-ct) E1 (-ct)j

for all t * 0 .(60)

The corresponding spectrum is, from (27) and (50),

Y(f) = U(f+f (-if)la + 1- + + w + 2w0)I (61)
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The extracted amplitude and phase modulations A(t) and P(t) of

complex envelope X(t) are now available by applying (42) to

(60). Since the first term, by itself, in (60) has the imposed

amplitude and phase modulations a(t) and p(t) as specified in

(47), A(t) cannot possibly equal a(t), nor can P(t) equal p(t).

This example is an illustration of the general property stated in

the sequel to (30). The reason is that spectrum Z(f) in (48) is

obviously nonzero for f < -f0

From (23) and (48), the energy in error waveform e(t) is

-f

2 2 = 1 1 - Z arctan . (62)

For comparison, the energy in desired component z(t) in complex

envelope X(t) of (25) is, from (47),

021
dt Iz(t)l 2  1 (63)
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SINGULAR BEHAVIOR

Since [3; 5.1.11 and footnote on page 228]

El (z) = - ln(z) - y + Ein(z) , (64)

where Ein(z) is entire, the error waveform in (56) has a

component

_ - Rej-exp(i -ct) ln(-ct)) =

= - Rejexp(i -ct) [ln(-c sgn(t)) + Initi) for t 0 (65)

of which the most singular component is

injti exp(-at) cos(w t + *) ~ - cos(+) initi as t 4 0 . (66)

The only situation for which this logarithmic singularity does

not contribute an infinity as t 4 0 is when + = - n/2 (or n/2).

That corresponds to the special case in (45) of

y(t) = U(t) exp(-at) sin(w t) for + = - n/2 , (67)

which is zero at t = 0; that is, y(t) is continuous for all t.

However, even for * = - n/2 in the first term of (66), the

product lnjtI sin(w t) has an infinite slope at its zero at

t = 0, leading possibly to numerical difficulties.

The spectrum Y(f) follows from (49) as

Y(f) = 0 fo, (68)
a+ W + i2aw -
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which decays as -2 as w ±-; this spectral decay is the key

issue for avoiding a logarithmic singularity in e(t), YH(t),

y+(t), and y(t). All values of + other than ±n/2 lead to

asymptotic decay of Y(f) in (49) according to -i cos(+) w-

which leads to a logarithmic singularity in the variou: time

functions considered here, including the complex envelope.

Continuing this special case of + = - n/2 in (67) and (68),

we find, from (48),

Z(f) = - +i z(t) = U(t) (-i) exp(-at) for + = - . (69)

Also, there follows from (56), (58), and (60), respectively, the

error, the Hilbert transform, and the complex envelope, as

1
e(t) - - Imfexp(-ct) El(-ct)l , (70)

YH(t) = -U(t) exp(-at) cos(w t) + e(t) , (71)

y(t) = U(t) k-i) exp(-at) + i exp(-iw t) e(t) , (72)

all for 4 = - n/2.

The asymptotic behavior of error e(t) at infinity is

available from [3; 5.1.51] as

0 1 I
e(t) 2 2 -t as t -* ±0 for * = - (73)

0

The origin behavior is available from [3; 5.1.11]:
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e-) arctan(wo/a) as t 4 -(

e(t) ~for (74=

1 arctan(w /a) as t 4 0+k 1 

Observe that these limits in (74) at t = ±0 are both finite.

Also, note the very slow decay in (73), namely i/t, of error e(t)

at infinity.

When n ±/2, the generalizations to (73) and (74) are

[3; 5.1.51 and 5.1.11]

ax cost - o sin# 1

e(t) - a2 0+ - w- as t ±c , (75)2+2 iEt

and

e(t) Cos+ lnjtI as t - 0 . (76)

Now, error e(t) becomes infinite at the origin and decays only as

i/t for large t. (If tan4 = a/wo, then e(t) = O(t - 2 ) as t ±

this corresponds to Y(0) = 0 in (49).)
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GENERAL HILBERT TRANSFORM BEHAVIOR

The example of y(t) in (45) (when n# ±n/2) illustrates the

general rule that if a time function has a discontinuity of value

D at time to, then its Hilbert transform behaves as D/n inlt-t0 1

as t 4 to. To derive this result, observe that

1y(t) - V + .D sgn(t-t ) as t 4 t , (77)

when y(t) is discontinuous at to. Then, for t near to, the

Hilbert transform of y(t) is dominated by the components

-E

YH(t) [ f - V + ID sgn(t-to-u)] +

-b

b
+ -f duIV + !D sgn(t-to-u) (78)

E

where E is a small positive quantity and the principal value

nature of the Hilbert transform integral has been utilized. The

integrals involving constant V cancel; also, by breaking the

integrals in (78) down into regions where sgn is positive versus

negative, and watching whether t-t0 is positive or negative, the

terms involving ln(E) cancel, leaving the dominant behavior

y¥ (t) - D lnlt-toI as t 4 to " (79)

(The example in (66) corresponds to a discontinuity D = cos() at

to = 0, as may be seen by referring to (45).) When Hilbert
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transform YH(t) has this logarithmic singularity (79), then so

also do y+(t), y(t), and e(t) at the same time location. Thus,

the complex envelope corresponding to a discontinuous y(t) has a

logarithmic singularity.

An alternative representation for Hilbert transform YH(t) in

(15) is given by

YH(t) = { df exp(i2nft) (-i) sgn(f) Y(f) (80)

If Y(f) decays to zero at f = ±- and if Y(f) is continuous for

all real f, then an integration by parts on (80) yields (due to

the discontinuity of sgn(f)) the asymptotic decay

YH(t) - Y(0) as t - ± (81)

(Results (73) and (75) are special cases of (81), when applied to

example (49).) The only saving feature of this very slow decay

for large t in (81) is that Y(0) may be small relative to its

maximum for f - 0. For example (49), IY(f0 ) a (2a) - for

a << wo' which is then much larger than Y(0) - sin /wo. In

this narrowband case, the slow decay of (81) will not be overly

significant in analytic waveform y+(t) until t gets rather large.

If Y(0) is zero, the dominant behavior is not given by (81), but

instead is replaced by a 1/t2 dependence, with a magnitude

proportional to Y'(0).
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GRAPHICAL RESULTS

We now take the example in (45) with parameter values

a = 1 sec 1 and fo = 100 Hz. The error e(t) in (56) is plotted

versus time t in figure 3 for three different values of phase *.

A time sampling increment 8t of .02 msec was used to compute

(56), since these error functionis are very sharp in t, being

concentrated around t = 0 where the waveform y(t) has its

discontinuity. The period of the carrier frequency is 1/f. = 10

msec; however, the error functions vary significantly in time

intervals less than 1 msec. These functions approach -- at

t = 0, according to (66), except for * = -n/2.

The corresponding complex envelope is given by (72); its

magnitude is plotted in figure 4 over a much wider time interval.

The straight line just to the right of the origin is the desired

exponential decay a(t) = exp(-at), which dominates the error e(t)

in this region of time. Eventually, however, for larger t or

negative t, the error e(t) dominates, with its much slower decay

rate. It is readily verified that the asymptotic behavior

predicted by (75) is in control and very accurate near both edges

of figure 4.

At the transition between the two components, the random

vector addition in (72) leads to large oscillations; the period

of the carrier is 1/f. = 10 msec, meaning that the transition

oscillations in figure 4 have been grossly undersampled with the

time increment At approximately 40 msec that was used. The error

curve for * = 0 is much smaller than the other two examples over
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most of its range; however, the magnitude error goes sharply to

at t = 0.

From (72) and figure 4, it is seen that for * = -n/2, the

phase P(t) of complex envelope X(t) is essentially -n/2 for

t > 0, until we reach the transition. To the right of the

transition, the phase of X(t) exp(iw 0t) is essentially n/2

because e(t) > 0 for t > 0, for this example. For t < 0, the

phase of X(t) exp(i 0 t) is -n/2 because e(t) < 0 for t < 0. We

will numerically confirm these claims later when we compute the

analytic waveform and complex envelope by means of FFTs.
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FILTERED COMPLEX ENVELOPE

It was shown in (26) that the spectrum Y(f) of the complex

envelope y(t) of a given waveform y(t) with complex imposed

modulation z(t) is given by a desired term Z(f) plus an undesired

error term, namely,

Y(f) = Z(f) + i E(f+f ) . (82)

According to figures 1 and 2, the major contribution of the first

term, Z(f), is centered around f = 0, while the undesired second

term in (82) is centered about f = -f This suggests the

possibility of lowpass filtering complex envelope spectrum Y(f)

in order to suppress the undesired frequency components. Also,

this will eliminate or suppress the undesired logarithmic

singularities present in the complex envelope y(t).

LOWPASS FILTER

To this aim, let H(f) denote a lowpass filter with H(0) = 1

and cutoff frequency, fl' smaller than f For example, the Hann

filter is characterized by

Cos 2  f for Ifi < f,

H(f) = { s. (83)

0 otherwise

The filtered complex envelope spectrum is, in general,

G(f) = Y(f) H(f) (84)
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The importance of having f1 < f is that filter H(f) will then

smoothly cut off its response before reaching the discontinuity

at f = -f0 of the spectrum Y(f) of the complex envelope X(t); see

(27). In this way, we can avoid the slowly decaying behavior of

the complex envelope y(t) for large t, namely i/t, which

inherently accompanies its discontinuous frequency spectrum.

This will prove important when we numerically evaluate the

filtered complex envelope, by sampling (84) at equispaced

frequencies and performing a Fourier transform into the t domain,

necessarily encountering the unavoidable aliasing in time

associated with such a technique.

Since the complex envelope X(t) is given by (25) as the sum

of desired component z(t) and an error term, the filtered

waveform corresponding to spectrum G(f) in (84) is given by

g(t) = y(t) ( h(t) =

- z(t) ( h(t) + [i e(t) exp(-i2nf t)] E h(t) = (85)

= gd(t) + gu(t) , (86)

where E denotes convolution, h(t) is the impulse response of

the general filter H(f) in (84), and gd(t) and gu(t) are,

respectively, the desired and undesired components of the

filtered complex envelope g(t). We should choose filter H(f) to

be real and even; then impulse response h(t) is also real and

even.

The Hann filter example in (83) could be replaced by a filter

with a flatter response about f = 0 and a sharper cutoff
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behavior. The major features that filter H(f) shuuld have are a

fairly flat response in the Z(f) frequency range near f = 0, but

cut off significantly before getting into the major frequency

content of error term E(f+f ), which is centered about f = -fo"

If the given waveform y(t) in (1) is not really narrow-,nd, there

may not be any good choice of cutoff frequency fl; that is, it

may be necessary to sacrifice some of the higher frequency

content of z(t) or to allow some of the error e(t) to pass.

EXAMPLE

We again consider the example given in (47) and (48), along

with the Hann filter- in (83). In order to evaluate the filtered

complex envelope g(t) in (86), we define an auxiliary functicn

E(z) = exp(z) El(Z) , (87)

where El(z) is the exponential integral [3; 5.1.1]. Then, when

we use the fact that (83) can be expressed as

1 1 1

H(f) = - + - exp(inf/fl) + - exo(-inf/fl) for Ifi < fl , (88)

we encounter the following two integrals. First, we need the

result

fdf exp(i~t+iw 2 1/f1) =(-l) n ep-wtEu)epi )~

[{ a + i20 + i i2-exp(-i EUexp t(n '

(89)
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where w = 2nf, n is an integer, f < fof and we defined

u =-(a + i2w - iw (t + n/f
n 01 t n/f1 )

-(a + i2w+0 + iw)(t + 1 (90)

To derive this result, we let x -(ax + i2w + iw)(t + n/f1 ) in

(89) and used [3; 5.1.1], along with the important fact that

f1 < fo, which guarantees no crossing of the negative real a-is

of the resulting contour of integration in the complex x-plane.

Also, when we define

u u (f =0) = -(a - iW)(t + 1n/fl)Un n o n/ 1

v v (f =0) = -(a + i~l)(t + 1n/fl) (91)Vn n 0

then for fo = 0, we find the second 'ntegral result required,

namely,

f exp(iwt+iw. n/f _ )
idf + i exp(-ii2 t)E(un)-exp(iwit)E(Yn)] +

-f1
11

+ U(t + n/f 1 ) exp(-at - an/f 1 ) . (92)

The extra term in the second line of (92) is due to a crossing of

the negative real axis in the complex x-plane by the contour of

integration when we make the substitution

x = - (a + iw)(t + n/f,) in the integral of (92).

The desired component of the filtered comple, envelope is

given by the first term of (85) and (86), in the alternative form
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gd(t) f df exp(i2nft) Z(f) H(f) =

f1

= df exp(i2tft) x + i cos 1( ri= (93)
f

I e-iat .U(t) + -U!t + -) exp (-a + _IU (t - exp 2 ] +

i ( 1

- exp(iwit) E(V0) - E(v 1 ) - 1 E(y_ (94)1 epi 1  2~0  - 2

Here, we also used (48), (88), and (92). Since the factor

multiplying exp(i+) in (93) has conjugate symmetry in frequency

f, the time function multiplying exp(i+) in (94) is purely real

for all time t.

The undesired spectral component in (82) is given by

i E(f+f ) = Z*(-f-2f ) for f > -f ' (95)

where we used (22). Therefore, using restriction f1 < fo' the

undesired time component in the filtered complex envelope in

(86) is given, upon use of (89), by

f1

-a + i2w +i cos2 i(t) = {df exp(i2nft) 2 i i =
f 0o

exp(-i)[ exp(iwit)[E(u0) -1 1 E(u
An E(v) - 2T(l

exp(iwit)[E(v0 ) - 1 - . (96
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In contrast with (94), the time function multiplying phase factor

exp(-i ) in (96) is complex. The total time waveform at the

filter output, g(t), namely the filtered complex envelope, is

given by (94) plus (96), and depends on +. In fact, since the

magnitude of total output g(t) depends on +, we will look at

plots of the magnitudes of components Igd(t)l and Igu(t),

neither of which depend on *.

For comparison, the complex envelope itself is given by (25)

in the form X(t) = z(t) + i e(t) exp(-i2nf ot). Since these two

(unfiltered) components depend differently on phase +, we shall

also consider only their magnitudes Iz(t)l and le(t)l and compare

them with filtered components Igd(t)I and Igu(t)j, respectively.

In particular, from (48), the desired component of the complex

envelope X(t) for the example at hand is

z(t) = exp(i+ - at) U(t) for all t , (97)

while the undesired portion is given by (56) and (87) as

e(t) - -!Rejexp(i# - ct) El(-ct)l - !Relexp(i#) E(-ct)j (98)

for t 0, where c = a - i The magnitude of complex waveform

z(t) is independent of *, but the magnitude of real error

waveform e(t) still depends on +; see figure 3.

The magnitudes of z(t) and gd(t) for a = 1 sec - 1 and

f = 40 Hz are displayed in figure 5 on a logarithmic ordinate.

The filtered complex envelope component, gd(t), drops very

quickly to the left of t = 0 and is indistinguishable from z(t)

for t > 0; compare with figure 4. Thus, the passband of the Hann
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filter H(f) in (83) has been taken wide enough to pass the

majority of the frequency components of desired function Z(f) in

this example. The darkened portion of the plot just to the left

of t = 0 corresponds to a weak amplitude-modulated 40 Hz

component, which is the cutoff frequency f1 of filter H(f).

The magnitudes of gu (t) and error e(t) are displayed in

figure 6 for the additional choice of parameters fo = 100 Hz and

* = -n/2 rad. The peak values of these undesired components at

t = 0 differ by over a factor of 10, through this process of

filtering the complex envelope. At the same time, the skirts of

filtered version g u(t) are down by several orders of magnitude

relative to e(t). The thick plot of Igu(t)l is again a 40 Hz

component, which has been sampled at a time increment At = .002

sec.

For phase * = 0 instead, original waveform y(t) in (45) is

discontinuous at t = 0, giving rise to a Hilbert transform which

has a logarithmic infinity there; see (77), (78), and (79).

Therefore, the magnitude of error e(t) in figure 7 has an

infinity at t = 0, whereas the filtered quantity gu (t) is finite

there; in fact, Igu(t)l is independent of +. Although e(t) is

significantly reduced in value, away from the origin, relative to

figure 6, it is still larger than the filtered quantity gu (t).

Since the energy in error waveform e(t) is independent of + (see

(62)), smaller skirts in e(t) can only be accompanied by a larger

peak; in fact, this latter case for e(t) in figure 7 has an

infinite (integrable) peak at t = 0. By contrast, the energy in

the filtered undesired component gu (t) is, from (82) and (84),
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f df IE(f+f 0 )12 JH(f)12 (99)

which can be considerably less than the error energy, when filter

H(f) significantly rejects the displaced error spectrum E(f+fo).

This example points out that considerable reduction of the

undesired error term in the complex envelope can be achieved

through the use of lowpass filtering with an appropriate cutoff

frequency, and that the undesired singularities can be signif-

icantly suppressed. Furthermore, the desired component of the

complex envelope can be essentially retained. These conclusions

follow if the bandwidth of the imposed modulation, z(t) in (1)

and (2), is small relative to the carrier frequency f

.... . ......... .... . ... ....... . . . . . . .......... ..............

S~I ec~6'

........... ........ .... . . i . .... . ... .... . ........ .

IC~~ 0 I (5e')

Figure 5. Filtered Complex Envelope; Desired Terms
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TRAPEZOIDAL APPROXIMATIONS TO ANALYTIC WAVEFORM,

COMPLEX ENVELOPE, AND FILTERED COMPLEX ENVELOPE

In this section, we address methods of evaluating the

analytic waveform and the complex envelope by means of FFTs.

We start by repeating the results in (6) and (8) for the

analytic waveform, that is,

Y+(f) = 2 U(f) Y(f) , (100)

y+(t) = { df exp(i2nft) Y+(f) = df exp(i2nft) 2 Y(f) (101)

0

The trapezoidal approximation to (101) is obtained by sampling

with frequency increment A to get

y+(t) A 4 - En exp(i2un~t) 2 Y(nA) = (102)

= J df exp(i2uft) 2 Y(f) A 64f =

0

= y+(t) . 61/A(t) = y+(t - , (103)

n

where sequence E0 = and En = 1 for n k 1, and summations

without limits are from -- to +-.

Notice that approximation y+(t) is a continuous function of

time t and has period 1/A in t. The desired term in (103) is

that for n = 0, namely analytic waveform y+(t). Because y+(t)

can contain a slowly decaying Hilbert transform component, the

aliasing at separation 1/A in (103) can lead to severe distortion
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in approximation y+(t) defined in (102).

Since y+(t) has period 1/A in t, we can confine its

computation to any interval of length I/A. In particular, if we

divide this interval into N equally-spaced points (where integer

N is arbitrary), we can compute, from (102),

Y( = A n exp(i2nnk/N) 2 Y(nA) (104)
n=0

for any N contiguous values of k. If we choose the range

0 k N-i, and if we collapse the infinite sequence in the

summand of (104) according to

= 2A n+jN Y(nA + jNA) for 0 n N-I , (105)
j=0

then (104) can be written precisely as

N-i
Y+[NA = = exp(i2nnk/N) z n (106)

n=0 n

This last result can be accomplished by means of an N-point FFT

if N is highly composite. This is a very efficient method of

computing the aliased version of the analytic waveform as defined

by (102).
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COMPLEX ENVELOPE

The center frequency fc of single-sided spectrum Y+(f) in

(100) can be found by the method described in appendix A. Then

the complex envelope spectrum and waveform are, respectively,

Y(f) = Y+(f+fC) , (107)

y(t) - { df exp(i2nft) Y(f)

f { df exp(i2ft) Y+(f+fc) = exp(-i2nfct) y+(t) . (108)

The approximation to complex envelope X(t) is achieved by

relating it to that for analytic waveform y+(t) according to

y(t) a exp(-i 2nfct) y+(t) = (109)

exp(-i2nf ct) A = En exp(i2nnt) 2 Y(nA) , (110)
n=0

where we used (108) and (102). The continuous function

exp(i2nfct) y(t), which is just y+(t), has period 1/A in t, which

simplifies its calculation. Using (109), (103), and (108), there

follows, for the approximation to the complex envelope,

y(t) = exp(-i 2tfct) = y+(t- A) = y~t - 1) exp(-i2fn/A)
n n

(111)

The desired term in (111), for n = 0, is complex envelope y(t).

The n-th term has a time delay (aliasing) of n/A and a phase

shift of n2nf c/A radians, which is arbitrary because frequency
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sampling increment A in (102) is unrelated to center frequency

fc of Y+(f) in (100).

Sample values of complex envelope approximation i(t) can be

obtained from (110) as

= exp -i2af c  - A -= E exp(i2nnk/N) 2 Y(nA) . (112)NAc A n=0 n

Again, the infinite sum in (112) can be collapsed and realized

as an N-point FFT; see (104) - (106). The phase factor

Pk = exp(-i2af ck/(NA)) can be computed via recurrence

Pk = Pk-1 exp(-i2nfc/(NA)).

FILTERED COMPLEX ENVELOPE

The spectrum of the filtered complex envelope is given by

(84) as G(f) = Y(f) H(f). The filtered complex envelope waveform

is

g(t) = df exp(i2nft) G(f) = y(t) $ h(t) (113)

and has low sidelobes and rapid decay in t, when filter H(f) is

chosen appropriately.

The approximation to g(t) adopted here will be generalized

slightly in order to allow for frequency-shifted sampling.

Specifically, we define

42



TR 8827

ga(t) a I df exp(i2nft) G(f) A 66(f - a) = (114)

= A = exp(i2n[nA + a]t) G(nA + a) . (115)
n

The function exp(-i2nat) g (t) has period 1/6 in t, which allows

us to confine its calculation to any convenient period.

The behavior of approximation ga(t) in (114) follows as

g (t) = g(t) @ [exp(i2nat) 6 1/,(t)] =

= g(t) 0 = exp(i2nan/A) 6(t- =

n

= Iexp(i2nan/A) g t - . (116)
n

This is the aliased version of the filtered complex envelope.

The desired term, for n = 0, is the filtered complex envelope

g(t), independent of the choice of frequency shift a. Shift a

is arbitrary and could be taken as -fc if desired.

Samples of g (t) are available from (115) according to

= A exp i2na -N = exp(i2nnk/N) G(nA + a) , (117)
n

which we can limit to 0 k N-i due to the periodicity of

ga(t). Again, the infinite sum on n can be converted to an

N-point FFT without error, by collapsing into the finite sequence

zn = A . G(nA + a + jN6) for 0 n N-i . (118)
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The remaining phasor exp(i2nck/(NA)) in (117) can be quickly

obtained via recursion on k.

GRAPHICAL RESULTS

The same fundamental example introduced in (45) will be

used here, again with a = 1 sec 1 and fo = 100 Hz. For phase

* = -n/2, FFT size N = 1024, and a frequency increment of

A = 1/80 Hz, the magnitude of i(t), namely A(t), is displayed in

figure 8 over the I/A = 80 sec period centered at t = 0. This

selection of the time period has been purposely made the same as

that used in figure 4, for easy comparison of results. The major

difference between the * = -n/2 result in figure 4 and figure 8
is that the aliasing in the latter case causes the curve to have

a jagged behavior and to droop in the neighborhood of t = ±40

sec. However, other examples could well have the aliasing

increase near the edges of the period. A total of 88,000 samples

of Y(f) at frequency increment A were taken in computation of

(104); the collapsing in (106) resulted in storage of only

N = 1024 complex numbers and the ability to use a single

relatively small N-point FFT. A program for the evaluation of

the complex envelope by means of an FFT with collapsing is

furnished in appendix B; the FFT uses a zero-subscripted array in

direct agreement with the mathematical definition of the FFT.

The corresponding phase, P(t) = arg(j(t)J, of the aliased

complex envelope is given in figure 9. The phase is

approximately -n/2 for 0 S t 5 10 sec, as expected, since in

44



TR 8827

this limited time interval, the error is not the dominant term.

However, over the rest of the period, the error term does

dominate and it has an exp(-i 0t) behavior, where fo = 100;

see (25) and figure 3. Thus, the time sampling increment

At = 1/(NA) = .078 sec is grossly inadequate to track this

high-frequency term, and we get virtually random samples of the

phase of the complex exponential exp(-i 0ot).

To confirm the phase behavior outside the (0,10) sec

interval, we have plotted the phas'p-Of X(t) exp(iw0 t) = y+(t) in

figure 10 as found by the FFT procedure above. To the right of

t = 10, the phase is approximately n/2, in agreement with the

fact that e(t) is real and positive for t > 0; see figure 3 and

(25). For time t < 0, the phase is -n/2 because e(t) < 0 for

t < 0. The oscillatory behavior at both edges of the period,

namely, for 30 < Itl < 40, is due to aliasing from adjacent lobes

indicated by (103) and (111).

When + is changed to 0 and everything else is kept unchanged,

the result for the magnitude of complex envelope aliased version

y(t) is plotted in figure 11. Comparison with the exact results

in figure 4 reveals a very dramatic increase in aliasing, in

fact, by two orders of magnitude. The reason for this

considerable increase can be seen from figure 3 and (75); namely,

the error e(t) is unipolar for f = 0 and it decays very slowly.

Whereas for figure 8, the alternating character of the over-

lapping aliased error lobes led to a cancellation near t = ±40

sec, the opposite situation occurred in figure 11, leading to a
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considerable build-up of the aliasing effect.

The corresponding phase of X(t), P(t), is _,otted in figure

12. Its value is zero in the region 0 t 10, as expected,

since the desired term, exp(-at), dominates here. Outside this

region, the situation is the same as explaine, above with respect

to figure 9. We have not plotted the counterpart to figure 10

because no one error lobe dominates anywhere on the time scale;

the result is a phase plot that looks random over the entire

period of (-40,40) sec.

When the complex envelope spectrum is filtered according to

the Hann filter in (83) - (86), the results for the sampled

filtered complex envelope waveform, obtained by means of the

collapsed FFT in (117) and (118) with a = 0, are given in figures

13 and 14. There were 6400 frequency samples taken uf G(f) with

increment A = 1/80 Hz and an FFT size of N = 1024 was utilized;

see appeindix B. A comparison of the magnitudes in figures 13 and

5 reveals virtually identical results; namely, the error and its

inherent accompanying aliasing, that was present in figure 8, is

absent from figure 13.

The corresponding phase plot of the FFT output is displayed

in figure 14. T1 tile region 0 S t 5 24 sec, where the desired

exp(-at) term d( inates, the FFT output phase is equal to the

value of * = -n/2 for this example. When this example was rerun

for * = 0, similar high quality results were obtained, except

that the FFT output phase was zero. The benefits of filtering

the complex envelope spectrum are well illustrated by the results

of figures 13 and 14.
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ALIASING PROPERTIES OF COSINE AND SINE TRANSFORMS

If a time function is causal, it can be obtained from its

Fourier transform either by a cosine or a sine transform.

However, when these integral transforms are approximated, by

means of sampling the frequency function and using some

integration rule like trapezoidal, the "alias-free" interval in

the time domain is approximately halved, as shown below. This

does not necessarily mean that these transform alternatives

should be discarded, because a more rapidly decaying integrand

can be useful, but it does point out a cautionary feature in

their use and the need to consider the tradeoff between aliasing

and truncation error.

GENERAL TIME FUNCTION

In general, complex time function y(t) is obtained from its

Fourier transform Y(f) according to

y(t) = f df exp(i2nft) Y(f) = (119)

f df cos(2nft) Y(f) + i f df sin(2nft) Y(f) = (120)

= Ye(t) + YO(t) for all t , (121)

where complex functions ye (t) and y0 (t) are the even and odd

parts of function y(t), respectively.
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CAUSAL COMPLEX TIME FUNCTION

Now suppose that y(t) is causal, but possibly complex; then

y(t) = 0 for t < 0 (122)

Then, letting t = -a, a > 0, we have, from (122) and (121),

0 = y(-a) = ye (-a) + yo(-a) = y e(a) - y0 (a) for a > 0 . (123)

That is,

Yo(a) = ye(a) for a > 0 . (124)

Therefore, from (121) and (120), we have two alternatives for a

causal complex time function y(t):

y(t) = 2 f df cos(2nft) Y(f) for t > 0 , (125)

and

y(t) = i2 { df sin(2nft) Y(f) for t > 0 • (126)

We need complex function Y(f) for negative as well as positive

frequency arguments f, in order to determine causal complex

function y(t), but we can utilize either a cosine or a sine

transform.
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NONCAUSAL REAL TIME FUNCTION

Now suppose instead that y(t) is real, but noncausal. Then,

since spectrum Y(-f) = Y*(f), we can express (119) as

y(t) = 2 Re f df exp(i2nft) Y(f) = (127)

0

- 2f df cos(2nft) Yr(f) - 2f df sin(2nft) Yi(f) for all t. (128)

0 0

The first term in (128) is even part ye(t), while the second term

in (128) is odd part y0 (t); see (121). In this case of a real

time function y(t), we need complex function Y(f) only for f > 0.

CAUSAL REAL TIME FUNCTION

Now let y(t) be both causal and real. Then using property

Y(-f) = Y *(f) in (125) and (126), we obtain

y(t) 4 f df cos(2nft) Yr (f) for t > 0 (129)

0

and

y(t) = -4 f df sin(2ft) Yi(f) for t > 0 . (130)

0

Here, we need either Yr(f) or Yi(f), and then only for positive

frequency arguments f. Also, a cosine or a sine transform will

suffice for determination of y(t).
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ALIASING PROPERTIES

The above relations have all assumed that spectrum Y(f) is

available for all continuous f. Now we will address the effects

of only having samples of Y(f) available at frequency increment

A. We begin with the trapezoidal approximation to (119):

yl(t) = A 1 exp(i2nnAt) Y(nA) for all t . (131)
n

The approximation yl(t) is periodic in t with period 1/A. It

can be expressed exactly as

Yl(t) = df exp(i2nft) Y(f) A 8A(f) = (132)

- y(t) t 6 1/A(t) = y~t- E for all t .(133)

n

That is, approximation yl(t) is an aliased version of desired

waveform y(t), with displacements 1/A in time. This result holds

for any complex waveform y(t) and has been used repeatedly in the

analyses above.

The second approximation of interest is obtained from the

cosine transform in (125), which applies for causal complex y(t)

in the form

Y2c(t) = 2A Z cos(2anAt) Y(nA) for all t . (134)
n

Y2c(t) also has period 1/A in t and can be developed as follows:
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Y2c(t) = A T [exp(i2nnAt) + exp(-i2nnAt)] Y(nA) =
n

- { df [exp(i2nft) + exp(-i2nft)] Y(f) A SA(f) =

- [y(t) + y(-t)] E 61/A(t) = 2 Ye(t) $ 61/A(t) =

= ty t- ) + y( (- t) for allt. (135)
n

That is, sampling of the cosine transform in (125) results in

aliasing of y(t) plus its mirror image y(-t), even when y(t) is

causal. This will restrict useful results in Y2c(t) to a region

approximately half as large as that given by (131) and (133),

where the sampled exponential transform was used. Even when we

restrict calculation of approximation Y2c(t) to the region

(0,1/A), we are contaminated by the mirror image lobe y(1/A - t)

and by the usual lobe y(t + 1/A) extending from t = -1/A into the

desired region.

A similar situation exists for using a sampled version of the

sine transform for causal complex y(t) in (126); namely, consider

the approximation

Y2s(t) = i2A 1 sin(2nnAtl Y(nA) for all t . (136)
n

Then
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Y2s(t) = A _ [exp(i2nnAt) - exp(-i2nnAt)] Y(nA) =
n

= f df [expli2nft) - exp(-i2nft)] Y(f) a SA(f) =

= [y(t) - y(-t)] E 61/(t) = 2 yo(t) E 61A/(t) =

= A[Y~t- ) -y( -t)] for all t. (137)

Here, for the approximate sine transform, twice the odd part of

causal complex y(t) is aliased with separations 1/8 in time,

thereby again leading to a clear region only about half that

attainable from (131) and (133). We will return to these

apparently undesirable transform properties below and find them

useful when we consider a causal real time function.

The next approximation is for the noncausal real waveform

result in (127); namely, letting 0 = and En = 1 for n Z 1, we

have trapezoidal approximation

y3 (t) = 2 Re A = En exp(i2nnAt) Y(nb) for all t . (138)
n=O

Then

= 2 Re df exp(i2nft) Y(f) A ( =Y3 ( t )  fAf

0

f f df exp(i2nft) Y(f) A A(f) = y t- for all t, (139)
n
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just as in (133). Thus, the combination of the cosine and sine

transforms in (128) does not additionally damage the aliasing

behavior associated with sampling. In practice, we would use the

real part of the exponential transform as given by (127). The

same result, (139), follows when the cosine and sine transforms

in (128) are individually directly approximated by the

trapezoidal rule and the results added together.

The two final approximations of interest come from sampling

the results for causal real y(t) in (129) and (130); from (129),

define approximation

Y4c(t) = 4A = En cos(2nnAt) Y (nA) for all t (140)
n=O n

which has period 1/A in t. Now we develop (140) as

Y4c(t) = 2A 1: cos(2nnAt) Yr (nA) =
n

= 2 f df cos(2nft) Yr (f) A 6A(f ) =

= 2 f df exp(i2nft) Yr (f) ' A(f) =

= df exp(i2nft) [Y(f) + Y*(f)] A A(f =

= y(t) E 61/a(t) + y (-t) E 61/6(t) =

- E y(tZ- + y (E - t) = 2 Ye(t) 6 1/A(t) for all t, (141)

n n
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where we used the real character of y(t).

This end result is identical to (135); however, approximation

Y4c(t) in (140) uses only the real part Y r(f) of the complex

function Y(f), whereas Y2c(t) in (134) requires the complete

complex function Y(f) for a causal complex y(t). Since it is

possible to have complex functions Y(f) which have rapidly

decaying real parts and slower decaying imaginary parts, (140)

affords the possibility of getting a smaller truncation error

than (134), when y(t) is causal real and when both sums are

carried out to the same frequency limit, because both sums must

be terminated in practice. Whether the reduction in the usable

"alias-free" region, dictated by (141), can be traded off against

a smaller truncation error associated with use of only the real

part Yr(f) in (140), depends on the particular example under

investigation. In any event, (140) affords an alternative to

consider for causal real y(t).

The final approximation comes about by sampling (130):

Y4s(t) = -4A = sin(2nnAt) Yi(nA) for all t , (142)
n=l

which has period 1/A in t. In the usual fashion, we find
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Y4s(t) = -2A T sin(2unAt) Yi(nA) =
n

= -2 f df sin(2aft) Yi(f) L 6A(f ) =

= i2 J df exp(i2nft) Yi(f) A A(f) =

= f df exp(i2nft) [Y(f) - Y*(f)] A 6(f =

y(t) E 61/A(t) - y*(-t) ) 61/A(t) = 2 yo(t) E 61/A(t) =

= y(t E) - T y( - t) for all t (143)
n n

Here, we used the real character of y(t).

The end result in (143) is identical to (137); however,

Y4s(t) in (142) only requires knowledge of the imaginary part

Yi(f) of complex function Y(f), whereas Y2s(t) in (136) requires

the complete complex function Y(f) for a causal complex y(t).

This is due to the fact that (129) and (130) apply only to causal

real y(t), whereas (125) and (126) apply to causal complex y(t).

Since there exist complex functions Y(f) which have more rapidly

decaying imaginary parts than real parts, the opportunity arises

to reduce the truncation error by employing (142) instead of

(136), when y(t) is causal and real. The comments in the sequel

to (141), regarding the trade-off between truncation error and a

reduced alias-free region, are again applicable.
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This procedure, of using only the imaginary part of a Fourier

transform because it decays faster than the real part, was

utilized to advantage in [4; pages 4 - 6] and was based upon an

earlier result in [5; (15)]. The very rapid decay of the

imaginary part far outweighed the aliasing; see [4; page 6].

EVALUATION BY MEANS OF FFTs

If periodic function y1 (t) in (131) is evaluated at the

equally -paced time points k/(NA) for k=O to N-i, which suffice

to cover one period, we obtain

YI NA = A T exp(i2nnk/N) Y(nA) = (144)
n

N-i
= A = exp(i2nnk/N) z , (145)

n=O

where {z n, 0 : n N-i, is the collapsed version of sequence

IY(nA)], -< < n < . No approximations are involved in this

collapsing procedure from (144) to (145). Relation (145) can be

accomplished by means of an N-point FFT if N is highly compusite.

In a similar fashion, (140) yields samples of the cosine

transform as
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NA 46 = En cos(2nnk/N) Yr (nA)-

=4A Re = exp(i2nnk/N) E n Yr (nA) =(146)

n N-i

-4A Re =jj exp(i2rrnk/N) z~ n (147)
n=o

where 1z~ n , 0 Sn -- N-i, is the collapsed version of sequence

IC n Y r(nAfl, 0 S n < -.

Since (147) will likely be realized as the real part of an

FFT output, the question arises as to the interpretation and

utility of the total complex FFT output in (147). To this aim,

we rewrite Y4c(t) in (146) (in its continuous time version) as

Y4c (t) = Re 4 fdf exp(i2nft) Y r (f) a A
0

=Retzl(t) ED 61/A(t)) (148)

where we define, for all t, Fourier transform

00

=1t ={ df exp(i2nft) Yf Y (f)]

00

- y+(t) + y+(-t) = [X(t) + y(-t)] exp(i21Tf ct) -

=y(t) + y(-t) + 'iYH(t) - YH(-t)] .(149)
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That is, Y4c(t) is the real part of the aliased version of zl(t),

which itself is composed of the analytic waveform y+(t) and its

mirror image. Thus, not only is zl(t) aliased according to

(148), but in addition, zl(t) contains terms which will further

overlap and thereby confuse the values of Y4c(t) in the

fundamental range (0,1/A). (Of course, the real part of zl(t) in

(149) for t > 0 is, as expected, just y(t) for this causal real

case.)

Finally, sampling the sine transform of Yi(f) in (142) yields

A - 4A = sin(2nnk/N) Yi(nA) =n=l

4A Im = exp(i2nnk/N) Yi(nA) = (150)
n=l

N-I
= - 4A Im = exp(i2nnk/N) z n (151)

n=0

where 1z n 1, 0 n N-i, is the collapsed version of sequence

[Yi(nAl, 1 n < . Relation (151) can be realized as an N-point

FFT of which only the imaginary part is kept for 0 k N-i.

As above, the interpretation of the complete complex output

of the FFT in (151) is furnished by returning to the continuous

version of the sampled Y4s(t) in (150). We express it as

C,

Y4 (t) - Im 4 f df exp(i2nft) Yi(f) A 6 =

0

= ImIz 2 (t) E 
6
1/A(t) , (152)
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where we define, for all t, Fourier transform

z2 (t) = - 4 { df exp(i2nft) Yi(f) =

0

= 1 df exp(i2nft) [2Y(f) - 2Y*(f)] =

0

= i[y+(t) - y(-t)] = i[y(t) - y*(-t)J exp(i2nfct) = (153)

= i[y(t) - y(-t)] - YH(t) - YH(-t) . (154)

Again, the aliasing of z2 (t) in (152) and the mirror image of the

analytic waveform and complex envelope in (153) will serve to

confuse the usefulness of z2 (t). The imaginary part of z2 (t) in

(154) for t > 0 is just y(t), as expected, for this causal real

waveform.
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DISPLACED SAMPLING

If displaced samples of a waveform are desired, such as at

time locations (k+o)/(NA) in (145), where 0 < A < 1, we can

obtain them via an N-point FFT as follows: from (131),

kNA) AT exp(i2nk/N) exp(i2un/N) Y(nA) = (155)

n

N-i
= A exp(i2nnk/N) z for 0 S k S N-I (156)

n=0

where Z n], 0 5 n - N-i, is the collapsed version of sequence

lexp(i2n/N) Y(nA)], -- < n < -. That is, we have to load up

the arrays containing 1 Zn I with phase-shifted versions of the

original sequence [Y(nA)] and then perform the N-point FFT.

Calculation of phasor pn = exp(i2un/N) in (155) can take

advantage of recursion pn = Pn-i exp(i2np/N).
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SUMMARY

The advantages of filtering the complex envelope spectrum by

means of a suitable lowpass filter are significant in some

instances. The singular behavior of the complex envelope

waveform is eliminated by utilizing a filter which cuts off at

finite frequencies, while the slow decay in the time domain of

the complex envelope is circumvented by using a filter with a

smoothly tapered cutoff that prevents any discontinuities in the

complex envelope spectrum from contributing.

The use of an FFT to evaluate the filtered complex envelope

is then an attractive efficient approach because the inherent

time aliasing associated with frequency sampling has been greatly

suppressed. Also, the very rapidly varying singular components

of the complex envelope have been eliminated, allowing for a

lower time-sampling rate, that is, smaller FFT sizes.

When two waveforms, each with its own imposed amplitude- and

phase-modulations, are convolved, such as encountered in the

narrowband excitation of a passband filter, the output complex

envelope is given exactly by the convolution of the individual

complex envelopes. Although the convolution of the two (complex)

imposed modulations is often a good approximation to the output

complex envelope, it has an error term. This analysis is

presented in appendix C.
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APPENDIX A. DETERMINATION OF CENTER FREQUENCY

Suppose we are given spectrum Y(f) of (narrowband) real

waveform y(t), but the center frequency of Y(f) is not obvious or

is unknown. The analytic waveform is still uniquely given by

y+(t) = { df exp(i2nft) Y+(f) = 2 { df exp(i2nft) Y(f) . (A-i)

0

Make a guess at initial frequency fi near the center of Y+(f).

Then compute the initial down-shifted waveform

yi(t) = exp(-i2nfit) y+(t) = 2 f df exp(i2nft) Y(f+fi) . (A-2)

-f.
1

Compute initial phase Pi(t) = arglyi(t)l and then unwrap Pi(t).

Select time t in the interval T of interest and fit a straight

line a + Pt to the unwrapped phase Pi(t) over T. Compute

frequency

f f. + - ;(A-3)fc f1 2n

this is the center frequency of y+(t) for t E T. Another

selection of a different time interval could lead to a somewhat

different center frequency; there is no unique center frequency

of an arbitrarily given spectrum Y(f).

The complex envelope is then

y(t) = exp(-i 2 nfct) y+(t) . (A-4)

The "physical" envelope or extracted amplitude modulation is
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A(t) = ly(t)l = lY+(t)! = Iyi(t)I , (A-5)

which is independent of the choice of fi or fc" The extracted

phase of complex envelope X(t) is

P(t) = argly(t)) = argjy+(t) exp(-i2nf ct)j = Pi(t) - Pt , (A-6)

where we used (A-4) and (A-2). Functions yi(t) and Pi(t) have

already been computed and can be used to evaluate the envelope

A(t) and phase P(t). The real waveform is

y(t) = Rely+(t)} = Rely(t) exp(i2nf ct) = A(t) cos[2nf ct + P(t)],

(A-7)

in terms of chosen center frequency fc and amplitude and phase

modulations A(t) and P(t), respectively. Although fc and P(t)

are not unique, the argument of the cosine and the waveform y(t)

in (A-7) are unique, as may be seen by the first equality in

(A-7). All of these relations hold for time t c T.

If the fit of the straight line a + pt to initial unwrapped

phase Pi(t) over interval T is via minimum error energy, then we

find

W°l- P1V° rn= 2 ' n = dtt n ' n = dt tn Pi(t) . (A-8)

PoP2 P1 T T

There is no need to explicitly compute a, although it should be

included in the error energy minimization in order to afford a

better fit.
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APPENDIX B. PROGRAM FOR FILTERED COMPLEX ENVELOPE VIA FFT

The program listed below actually computes the unfiltered

complex envelope by means of an FFT. In order to convert it to

one which will compute the filtered complex envelope, remove

lines 220 - 320 and replace them by the following lines:

220 F1=40. !CUTOFF FREQUENCY < Fo
230 H1=.5*PI/F1
240 Ml=M*F1/Fo
250 FOR Ms=-M1 TO Ml ! -Fl < F < Fl
260 J=Ms MODULO N !COLLAPSING
270 F=Df*Ms !FREQUENCY f
280 CALL Y(F+Fo,Al,Wo,Cp,Sp,Yr,Yi) !SHIFTED FREQUENCY FUNCTION
290 Cos=COS(Hl*F)
300 H=Cos*Cos !REAL LOWPASS HAi4N FILTFR
310 X(J)=X(J)+Yr*H
320 Y(J)=Y(J)-Yi*H ! CONJUGATE INPUT INTO FFT

10 11 0 M PL E::: EN11..E L 0PE V IA SHIFTED FREQUENCY FUNCT ION
20 A1=1 DAMPING ALPHA
.:1 F= 100 CARRIER FREQUENCY
40 Phi=-PIi2-: PHASE

50 iM=8 0 00 NUMBER OF '-:AMPLE, FOR F 0;, LINE .270
60 N = I02 4 SIZE OF FFT; ZERO SUJES CRI P T

:3 0 DIMl~12) ::(0 :,(06
9 0 D I[U B LE M, N., t-4 J, r1 s INTEGERS, NOT DO:UBLE PF:EC I 1OH

100 N2=N,12
110 A =2. * P 1..N
120 FOR -J=0 TI] N/4
1:30 C 0 (J 1) C OSA j) QIARTER-COS INE TABLE I N ci
140 NlE:" .:T J
15~0 1:PCOS( P h i
16. 0 P SSI N (Ph i
170 W=:2*PI*Fo
1:3 0 D f-F,:,., FREQUJENCY I NCREMENT
10 D C1 D 1I N* rif TI ME I NCREME NT ON O-1-MF'L E::*: E[1N/-EL1 FIE
20 0 MiAT '2-0. .

210 MiAT Y=-03

3 3=ri-=. MODULO N1
240 CALL Y'.,l I, 0 ' p r i y(0)

,~ '(3=-) 5 * Y CONJUGATE I NPUT TI] FFT
2 70 FOR Ms=-rl+ 1 TO i* 10 1I NOT ICE IJPPEF LIMriIT ON FREI)?UEHFC
2:30 J=Ms MODIJLO N COLLAPSING
290 F=Df*Ms FREQUENCY f

30 iALL Y, F+F c ,,Al Wo N Cp ,SYr. , Y i ) SHIFTED FREOUENC-Y FUNCWT ION-
310 X.:j)= ,+
32,4 7 3~i CON JUGATE I NPUT TI] FFT

33 HE:::T Ms
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340 MAT X=X*(2.*Df)

R

350 MAT Y=Y* 2.*Dlf) * CONJUGATE
360 CALL Fft14(N,Cos(*),X,(*),Y(*) I vt) OF COMPLE.
370 GINIT - ENVELOPE

380 PLOTTER IS "GRAPHICS "

390 GRAPHICS ON
400 WINDOW -N2,N2,-8,0 CENTER PLOT AT TIME t = 0
410 LINE TYPE 3
420 GRID Ni8,1
430 LINE TYPE 4
440 MOVE 0,0
450 Ts=Dt*N'4
460 DRAW N/4,LGT(E>lP'--A1*Ts))
470 PENUP
430 LINE TYPE 1
430 FOR M s=-N12 T1 H2
500 J=M=. MODULO .4
510 X=XJ)
520 "=Y(J
5 '30 T=>, (;-Y / MAGH I TUDE S-U ARED C:M PLE:::: EN0vELOPE
540 IF T O. THEN 570
550 PENUP
560 GOTO 560
570 PLOT M-.,LGT' T.,-.5 MAGNITUDE OF COMPLE>: ENVELOPE
5:30 NEXT Ms
590 PENUP
600 PAUSE
610 GCLEAR
620 GRAPHICS ON
6.30 WINDOW -N2.N2-P1,PI
640 LINE TYPE 3
650 GRID N.=,PI .'
660 LINE TYPE 1
670 FOR rMs=-N12 TO HJ2 PLOT COMPLE:::: ENV.'ELOPE PHA.:E
630 J=Ms MODULO N
6 30 P L O T r,1 s, F H A, g J: , - ' . CONJUGATE THE FFT 0ITPUT
700 NE::: T M'ls
710 PENUP

P2 PAUS E
730 GCLERP
-40 GRAPHICS ON
750 LINE TYPE 3
760 GRID N. :S3,PI.2
770 LINE TYPE 1

:-'0 FOP rM -N" T, H2
7':0 .T=M-- .MODULlO N

_00 T s - D t TIME t.
.1 :,-,- OS , Wz,-T , 'SHIFT PHASE THE

2-0 S ,= I N' N,-T -: OMFLE::: El.EL OF E ", Ti

.40 '=- , COHJUGATE THE FFT OUTPUT
-50 PLT M=, FHFIr,' 7Co- -743 : r '*S i r+Y CD:.

360 H E:: T rl
370 PENUP

:,.:'¢_ P R IJ '- E

3.'0 END
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910 DEF FNArgKX,Y) PRINCIPAL ARG(Z)
920 IF X=0. THEN RETURN .5*PI*SGN(Y)
930 A=ATN'(Y'X)
940 IF ('i0. THEN RETURN A
950 IF YKG. THEN RETURN A-PI
960 RETURN A+PI
970 FNEN4D
980
990 SUB Y(F,A1,Wo,Cp,Sp,Yr,Yi) SPECTRAL FUNCTION

1000 W=2.*PI*F
1010 T=W-Wo
1020 D=AI*AI+T*T
1030 R1l='Cp*A1+Sp*T)/D
1040 11t=( p*A 1 -Ip*T)xD
1050 T=W+Wo
1060 f=A1*RJ+T*T
1070 R2='C p* A1I- Sp* T) /D
10 80 12' -Sp *A1I - Cp *1TD
10 9 0 7r.= 5* '.R 1 + R2)
1100 Yi=.5*'Al+12)
1110 SUBEND
1120
11370 SUB Fft 14f.DOUJBLE N, REAL Co£(*),x*,y*: H 4134: 0 S
1140 DOUBLE Lo g rn.N1, N2"'. N 3,N 4, J ,K IINTEGERS 3 2'1 =-2147,43,4

1 150 DOUBLE I11,12I13,14, 15, 16, 17,1:3,1?, 110,111, 112, 13 1 14, L'iO: 1:3.
1160 IF [H=1 THEN SUBEXIT
1170 IF N>2 THEN 1250
1180 A=Xll(0. I(1

1200 '? .
1210 A=Y( 0) + 1)
12 2 0 .. = '(o0 -Y' 1)

12310 Y (0), =A
1240 S UBE:-!.IT
1250 A=LOG(NN)/LOGSk2.)
1260 Log2nAR
1 27 0 IF ABS(A-Log2n)< I.E-S THEN 1300
1280 PR I NT "N H N; " IS NOT A POWER O F 2:; DI SA L LOW ED.
1290 PAUSE
1:300 NI =N .'4
1310 N 2=N 1 +1
1:320 N3=N2+ 1
1330 N4=N.3+N I
1:34 0 FO3R Il1=lI TO Loqnn
135 0 I2 22' L o g 2n- I 1)
136 1s=2*1I
1:7 0 14=H. I13;

1,38 0 FOR 15=1 TO 12
1:390 It6=; 15-i)*I4+1
1400 IF IE=2THEN 1440
1411) 1-C;N-1-
14 2 0 A=-o(1N11
1430 GOTO 1460
1440 A~s1-
1450 A2=-cos(N3-I6-1)
146p-0 FOR 17=0 Ti)NI STEP I3S
1470 13=17+15-1
14380 19=1:3+1.2
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1490 T1=N(18)
1500 r2=sL119)
1510 T3=Y'113)
15 20 T4Y-( 19)
1530 A3=T1-T2
1540 A4=T3-T4
1550 X(I3)=T1+T2
15 60 Y'318)=T3+T4
1570 X(19.)=A1*A:3-A2tA4
1580 Y(19,)=Al*A4+A2*83
1590 NEXT I7
1600 N EX4T 15
1610 NEXT Ii
162Q,0 Il=Log2n+1
16310 FOR 12=1 Ti) 14
16t40 L ( 2- 1 )=1I
1650 IF 12:-Lo'l2n, THEN 167-0
1660
16710 NEX:T 12
1680 K(=V

1690 FOR Il=l TI: L(133
I1700 FOR I2=11 Ti 0 ikA2 STEP L' 13)
1710 FOR 13=I2 TO Liil" STEPL1)
1720 FOR 14=I:3: Ti) L(10) STEP WIl)
1730 FOR 15=14 TO L-1-') TEP L(10)
1740 FOR I6=15 TO LV.3) STEP L(9),
1750 FOR 17f=16 Ti) Lf') STEP L(8)
1760 FOR I8=17 TO L' 6) STEP L(7)
1770 FOR 19=-.3 TO L'51' STEP L(6)
:30 FOPR101 TO L(4) STEP L-'S),

1730 FOR 111=110 TO L'.3 STEP L' 4)
100c FO0R 112-:=I11 TO L,.2) STEP L(3)

13 10 FOR 113=11 2 TO0 Li' : S T EP L("'2)
1820 FOR I14=113 TO L(0) STEP L' 1)
1830 J=114-1
1:3 40 IF i.-' , I- THEN 1910
1:350C A- K)

1.370 'A =) A

130 NE<.:T 114
1330 EX:T 1 1

NlE: IT 11 1

INE:: T 110 C
970 NIEXT 1'?

::3 N IEX:T IS7-
Z,3 N7 tIE::T 17

200 N E: T 16
0 10 NE: T 15

00 N E: T 14
200 N E? T 13
040 N E! T 12

'01' NE T I1I
0 4IJ-i SBEIJD
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APPENDIX C. CONVOLUTION OF TWO WAVEFORMS

Suppose real waveform x(t) excites passband filter H(f) with

real impulse response h(t). Then, the output is

Y(f) = H(f) X(f) , y(t) = h(t) 9 x(t) (C-I)

The single-sided output spectrum is

1
Y+(f) = 2 U(f) Y(f) = 2 U(f) H(f) X(f) = H+(f) X+(f) (C-2)

The corresponding output analytic waveform is exactly

1
y+(t) = . h+(t) s x+(t) , (C-3)

which is just (one-half of) the convolution of the individual

analytic waveforms.

If the center frequency of Y+(f) is fc (see appendix A), then

the spectrum of the output complex envelope is, using (C-2),

1 1H~)Xf C4
Y(f) = Y+(f+fc) = . H+(f+fc) X+(f+f c ) = 1 H(f) X(f) (C-4)

where we have taken the same center frequency, fc' for H+(f) as

well as X+(f). This relation in (C-4) is exact; it involves no

narrowband approximations. The output complex envelope

corresponding to (C-4) is then exactly

i = h(t) 0 x(t) (C-5)

That is, the complex envelope of the convolution of any two

waveforms is equal to (one-half of) the convolution of the two

individual complex envelopes, irrespective of their frequency
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contents.

Now suppose that x(t) is given in terms of some complex

imposed modulation xi(t) according to

x(t) = Re{xi(t) exp(i2nfct)j , (C-6)

which allows for amplitude-modulation as well as phase-

modulation. The spectrum of x(t) can then be expressed as

1 *
X(f) = f [Xi(f-fc) + Xci(-f-fc . (C-7)

Also, suppose that filter impulse response h(t) is expressible in

a similar form according to

h(t) = Relhi(t) exp(i2nfct)1 , (C-8)

with corresponding transfer function

1 H* (f-f) C9
H(f) = I [Hi(f-fc) + H c(-f-f H (C-9

The filter output spectrum then follows from (C-i), (C-7),

and (C-9) as

1Y(f) = - [Hi(f-f c ) Xi(f-f c ) + Hi(-f-fc) Xi(-f-f c ) +

+ H(-f-fc Xi(f-f ) + Hi(f-fc) Xi(-f-fc) ) (C-10)

By inverse Fourier transforming the individual terms, the

corresponding waveform to (C-10) is found to be exactly

y(t) = Relexp(i2fct) [ya(t) + Yb(t)]I , (C-Il)

where
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1
Ya(t) = hi(t) S xi(t) , (C-Il,

and

1 *

Yb(t) = 2 [hi(t) exp(-i4nfct)] 0 xi(t) . (C-13)

Relation (C-12) states that component ya(t) of outp"t y(t)

in (C-i1) is just the convolution of the two complex imposed

modulations hi(t) and xi(t). However, (C-II) and (C-13) reveal

that there is an additional term in y(t), which requires cthe

convolution of a relatively high-frequency component, namely

exp(-i4f ct). Since this latter term, Yb(t)I will often be

s.aall due to this oscillatory integrand, we may neglect it in

many circumstances.

A good way of assessing the importance of the Yb(t) term in

(C-i) is to observe that it is due to the second line of the

spectrum in (C-10); the first line in (C-10) corresponds to

Ya (t). Since Hi(f) and Xi(f) are generally lowpass functions of

frequency, the function Hi(-f-fc) in (C-10) is centered around

f = -fc' while the Xi(f-fc) term peaks near f = fc" The

separation of these two functions is approximately 2f c on the f

axis; if this separation is somewhat greater than the bandwidths

of Hi and Xi, then there is inconsequential overlap of any of the

frequency components in the second line of (C-10). This leads to

a small value for Yb(t) for all t and we can neglect its effect

relative to ya(t) in (C-i).
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