
AD-A234 43 ENTATION PAGE Form Approved

Pbk~ reportng burdenfr thiffs collection of inormabof a estimated to average I hor per response. including" te, f or reilauvg mnxtIMO t earching eXIedng data Sources gathering and manaiirrg Vie data
needed and re ewn Me collection ofi Vnfora~rn Send comntsw regard is bur' estimate or arty other aspect of this crleiun of Inration, including sujggestionstofor eduikrig this burden, to WashWinn

Headuanfera Serice. Directorate tor Information Oprerations arnd Report. 1215 Jefferson Lavis Higlway. Suite 1204. Ailington. VA 22M024302, anid to the O(Mice of Information and Regulas"r Affirs. Office of
Management and Budget Washington. DC 20603.

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 3.RPORT TYP~E AND DATES COVERED

I I Final: Nov 30, 1990 to Marl1, 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: DOC International A/S, DACS 80386
UNIX V Ada Compiler System, Version 4.6, lOL DRS300 (Host & Target),
901129S1.1 1075

6. AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD
USA
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST900DC500_4_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING AGENCY

Ada Joint Program Off ice REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E1 14
Washington, D.C. 20301 -3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/A VAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

DDC International A/S. DACS 80386 UNIX V Ada Compiler System, Version 4.6, Gaithersburg, MD, lCL DRS300 running
DRS/NX, Version 3.2 (UNIX System V/386 release 3.2)(Host & Target), ACVC 1. 11.

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.___PRICE__CODE_
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1 815A, AJPO. 6 RIECD

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT IOF ABSTRACT

UNCLASSIFIED UNCLASSIFED 6NCLASSIFIED__________

NSN 7540-Ot-280-550 Standard Form 298, (Rev 2-89)

91 4 1 067Prescribed by ANSI Std 239-128

AVF Control Number: NIST90DDC500_41.11
DATE COMPLETED

BEFORE ON-SITE: October 30, 1990
AFTER ON-SITE: November 30, 1990
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901129S1.11075
DDC International A/S

DACS 80386 UNIX V Ada Compiler System, Version 4.6
ICL DRS300 => ICL DRS300

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

A ~ I

01

AVF Control Number: NIST90DDC500_41.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on November 29,1990.

Compiler Name and Version: DACS 80386 UNIX V Ada Compiler
System, Version 4.6

Host Computer System: ICL DRS300 running DRS/NX, Version
3.2 (UNIX System V/386 release 3.2)

Target Computer System: ICL DRS300 running DRS/NX, Version
3.2 (UNIX System V/386 release 3.2)

A more detailed description cf this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
901129S1.11075 is awarded to DDC International A/S. This
certificate expires on March 01, 1993.

This report has been reviewed and is approved.

Ada Validation aci iy Ada alidat acility
Dr. David K. Jeferot Mr. L. Arnol Johnson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group
National Computer Systems National Computer Systems
Laboratory (NCSL) Laboratory (NCSL)

National Institute of National Institute of
Standards and Technology Standards and Technology
Building 225, Room A266 Building 225, Room A266
Gaithersburg, MD 20899 Gaithersburg, MD 20899

Ada Va davi anization Ada Joint Program Office
Direct , om]Ver & Software Dr. John Solomond
Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer and Certificate Awardee: DDC International A/S

Ada Validation Facility: National Institute of Standards and
Technology

National Computer Systems Laboratory
(NCSL)

Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS 80386 UNIX V Ada Compiler
System, Version 4.6

Host Computer System: ICL DRS300 running DRS/NX, Version
3.2 (UNIX System V/386 release 3.2)

Target Computer System: ICL DRS300 running DRS/NX, Version
3.2 (UNIX System V/386 release 3.2)

Declaration:

[I/we] the undersigned, declare that [I/we] have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

Customer Signature Date
Company - -

Title - -

TABLE OF CONTENTS

CHAPTER 1 1-1
INTRODUCTION 1-1

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-i
1.2 REFERENCES i-i
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 2-1
IMPLEMENTATION DEPENDENCIES 2-1

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFTCATIONS 2-4

CHAPTER 3 3-1
PROCESSING INFORMATION *.3-1

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION 3-2

APPENDIX A A-i
MACRO PARAMETERS A-i

APPENDIX B B-i
COMPILATION SYSTEM OPTIONS B-I
LINKER OPTIONS B-2

APPENDIX C C-i
APPENDIX F OF THE Ada STANDARD C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUILMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programminq LanQuage,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

1-1

(UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRTl3, and the procedure CHECKFILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listng is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal
by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution
is attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced
by the AVF. This customization consists of making the
modifications described in the preceding paragraph, removing

1-2

withdrawn tests (see section 2.1) and, possibly some inapplicable
tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process or service of
all requirements specified.

1-3

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 81 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026A
B83026B C83041A B85001L C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1BO2B BDlB06A ADlB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A4lE CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C25707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)

2-1

C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 TESTS) USE A LINE LENGTH IN THE INPUT FILE WHICH
EXCEEDS 126 CHARACTERS.

C35702A, C35713B, C45423B, B86001T, AND C86006H CHECK FOR THE
PREDEFINED TYPE SHORTFLOAT.

C35713D AND B86001Z CHECK FOR A PREDEFINED FLOATING-POINT TYPE
WITH A NAME CTHER THAN FLOAT, LONGFLOAT, OR SHORTFLOAT.

C35404D, C45231D, B86001X, C86006E, AND CD7101G CHECK FOR A
PREDEFINED INTEGER TYPE WITH A NAME OTHER THAN INTEGER,
LONGINTEGER, OR SHORTINTEGER.

C45531M, C45531N, C455310, C45531P, C45532M, C45532N, C455320,
AND C45532P CHECK FIXED-POINT OPERATIONS FOR TYPES THAT REQUIRE
A SYSTEM.MAXMANTISSA OF 47 OR GREATER.

C45624A CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINEOVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
5. FOR THIS IMPLEMENTATION, MACHINEOVERFLOWS IS TRUE.

C45624B CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINEOVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
6. FOR THIS IMPLEMENTATION, MACHINEOVERFLOWS IS TRUE.

C4AO13B CONTAINS THE EVALUATION OF AN EXPRESSION INVOLVING
'MACHINE RADIX APPLIED TO THE MOST PRECISE FLOATING-POINT TYPE.
THIS EXPRESSION WOULD RAISE AN EXCEPTION. SINCE THE EXPRESSION
MUST BE STATIC, IT IS REJECTED AT COMPILE TIME.

D56001B USES 65 LEVELS OF BLOCK NESTING WHICH EXCEEDS THE
CAPACITY OF THE COMPILER.

C86001F RECOMPILES PACKAGE SYSTEM, MAKING PACKAGE TEXT_IO, AND
HENCE PACKAGE REPORT, OBSOLETE. FOR THIS IMPLEMENTATION, THE
PACKAGE TEXTIO IS DEPENDENT UPON PACKAGE SYSTEM.

B86001Y CHECKS FOR A PREDEFINED FIXED-POINT TYPE OTHER THAN
DURATION.

C96005B CHECKS FOR VALUES OF TYPE DURATION'BASE THAT ARE OUTSIDE
THE RANGE OF DURATION. THERE ARE NO SUCH VALUES FOR THIS
IMPLEMENTATION.

CA2009C, CA2009F, BC3204C, AND BC3205D THESE TESTS INSTANTIATE
GENERIC UNITS BEFORE THEIR BODIES ARE COMPILED. THIS
IMPLEMENTATION CREATES A DEPENDENCE ON GENERIC UNIT AS ALLOWED
BY AI-00408 & AI-00530 SUCH THAT A THE COMPILATION OF THE GENERIC
UNIT BODIES MAKES THE INSTANTIATING UNITS OBSOLETE.

2-2

CD1009C USES A REPRESENTATION CLAUSE SPECIFYING A NON-DEFAULT
SIZE FOR A FLOATING-POINT TYPE.

CD2A84A, CD2A84E, CD2A84I..J (2 TESTS), AND CD2A840 USE
REPRESENTATION CLAUSES SPECIFYING NON-DEFAULT SIZES FOR ACCESS
TYPES.

THE TESTS LISTED IN THE FOLLOWING TABLE ARE NOT APPLICABLE
BECAUSE THE GIVEN FILE OPERATIONS ARE SUPPORTED FOR THE GIVEN
COMBINATION OF MODE AND FILE ACCESS METHOD.

Test File Operation Mode File Access Method
CE2102E CREATE OUTFILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT_ FILE SEQUENTIALIO
CE2102Q RESET OUT FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECTIO
CE3102F RESET Any Mode TEXTIO
CE3102G DELETE TEXT IO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXTIO
CE3102K OPEN OUT FILE TEXT-IO
CE3109A CREATE INFILE TEXTIO

THE TESTS LISTED IN THE FOLLOWING TABLE ARE NOT APPLICABLE
BECAUSE THE GIVEN FILE OPERATIONS ARE NOT SUPPORTED FOR THE GIVEN
COMBINATION OF MODE AND FILE ACCESS METHOD.

Test File Operation Mode File Access Method

CE2105A CREATE INFILE SEQUENTIAL_10
CE2105B CREATE INFILE DIRECTIO

CE2203A CHECKS FOR SEQUENTIALIO THAT WRITE RAISES USEERROR IF
THE CAPACITY OF THE EXTERNAL FILE IS EXCEEDED. THIS
IMPLEMENTATION CANNOT RESTRICT WILE CAPACITY.

EE2401D CHECKS WHETHER READ, WRITE, SET INDEX, INDEX, SIZE, AI-D
END OF FILE ARE SUPPORTED FOR DIRECT FILES FOR AN UNCONSTRAINED
ARRAY TYPE. USE ERROR WAS RAISED FOR DIRECT CREATE. THE MAXIMUM
ELEMENT SIZE SUPPORTED FOR DIRECTIO IS 32K BITS.

2-3

CE2403A CHECKS FOR DIRECT IO THAT WRITE RAISES USE ERROR IF THE
CAPACITY OF THE EXTERNAL FILE IS EXCEEDED. THIS IMPLEMENTATION
CANNOT RESTRICT FILE CAPACITY.

CE3111B AND CE3115A SIMULTANEOUSLY ASSOCIATE INPUT AND OUTPUT
FILES WITH THE SAVE EXTERNAL FILE, AND EXPECT THAT OUTPUT IS
IMMEDIATELY WRITTEN TO THE EXTERNAL FILE AND AVAILABLE FOR
READING; THIS IMPLEMENTATION BUFFERS FILES, AND EACH TEST'S
ATTEMPT TO READ SUCH OUTPUT (AT LINES 87 & 101, RESPECTIVELY)
RAISES ENDERROR.

CE3304A CHECKS THAT USE ERROR IS RAISED IF A CALL TO
SET LINE LENGTH OR SET PAGE LENGTH SPECIFIES A VALUE THAT IS
INAPPROPRIATE FOR THE EXTERNAL FILE. THIS IMPLEMENTATION DOES
NOT HAVE INAPPROPRIATE VALUES FOR EITHER LINE LENGTH OR PAGE
LENGTH.

CE3413B CHECKS THAT PAGE RAISES LAYOUT ERROR WHEN THE VALUE OF
THE PAGE NUMBER EXCEEDS COUNT'LAST. THE VALUE OF COUNT'LAST IS
GREATER THAN 150000 AND THE CHECKING OF THIS OBJECTIVE IS
IMPRACTICAL.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 64 tests.

The following tests were split into two or more tests because this
implemc, ation did not report the violations of the Ada Standard
in the way expected by the original tests.

B22001A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83AO7A B83A07B B83A07C B83EOlC
B83EO1D B83E01E B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B910021
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1101B BC1109A BC1109C
BC109D BC1202A BC1202F BC1202G BE2210A BE2413A

"PRAGMA ELABORATE (REPORT)" has been added at appropriate points
in order to solve the elaboration problems for:

C83030C C86007A

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For each chapter, a command file was generated that loaded and
executed every program.

For a point of contact for technical information about this Ada
implementation system, see:

Mr. Knud Joergen Kirkegaard
DDC International A/S
Gl. Lundtoftevej lB

DK-2800 Lyngby
DENMARK

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

For a point of contact for sales information about this Ada
implementation system, see:

In the U.S.A.:

Mr. Mike Turner
DDC-I, Inc.

9630 North 25th Avenue
Suite #118

Phoenix, Arizona 85021

Mailing address:
P.O. Box 37767

Phoenix, Arizona 85069-7767
Telephone: 602-944-1883
Telefax: 602-944-3253

In the rest of the world:

Mr. Palle Andersson
DDC International A/S
GI. Lundtoftevej lB

DK-2800 LYNGBY

3-1

Denmark

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result
was obtained that conforms to the Ada Programming Language
Standard.

a) Total Number of Applicable Tests 3820

b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 269
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 269 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 269
tests were inapplicable to this implementation. All inapplicable
tests were processed during validation testing. In addition, the
modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing.
The test suite was loaded onto a VAX-8530 from the magnetic tape.
The test suite was then downloaded onto a Sun3/60 from the VAX-
8530 via Ethernet (using DNICP net software utility); the test
suite was then loaded via streamer tape to the ICL DRS300.

The tests were compiled, linked and executed on the host/target

3-2

computer system, as appropriate. The results were captured on
the VAX-8530 computer system using the FTP utility of the TCP/IP
data Transfer Services.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

-1 -L -E -s

The options invoked by default for validation testing during this
test were:

-c

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in
terms of the maximum input-line length, which is 126 the value
for SMAXINLEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum
input-line length.

Macro Parameter Macro Value

$MAXINLEN 126

$BIGIDI (1..V-1 => 'A', V => '1')

$BIGID2 (1..V-1 => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' & (1..V-1-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' & (l..V-I-V/2 => 'A')

$BIG INTLIT (I..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (i..V/2 => 'A') & '"'

SBIGSTRING2 '"' & (1..V-1-V/2 => 'A') & 'I' & '"'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (I..V-5 => '0') & "11:"

SMAXLENREALBASED LITERAL
"16:" & (l..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL '"' & (I..V-2 => 'A') & '"'

A-i

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

ACC SIZE : 32
ALIGNMENT : 2
COUNT LAST : 2 147 483 647
DEFAULTMEMSIZE : 16#l_000-0000#
DEFAULT-STORUNIT : 16
DEFAULT SYS NAME : UNIX V 386
DELTA DOC - : 2#1.O#E-31
ENTRY ADDRESS : FCNDECL.ENTRY ADDRESS
ENTRY ADDRESS1 : FCNDECL.ENTRY ADDRESS1
ENTRY ADDRESS2 : FCNDECL.ENTRYADDRESS2
FIELD LAST : 65
FILE TERMINATOR : ' I

FIXED NAME : NO SUCH FIXED TYPE
FLOAT NAME : NO SUCHFLOATTYPE
FORM STRING :i""

FORMSTRING2
"CANNOT RESTRICT FILE CAPACITY"

GREATERTHANDURATION : 100000.0
GREATERTHANDURATIONBASELAST : 200000.0
GREATER THAN FLOAT BASE LAST : 16#1.0#E+32
GREATERTHANFLOATSAFELARGE : 16#5.FFFF_FO#E+31
GREATERTHANSHORTFLOATSAFELARGE: 16#5.FFFF_FO#E+31
HIGH PRIORITY : 31
ILLEGALEXTERNALFILENAME1
/usr6/acvclll/list/ctests/ce/name_exceeding_14

ILLEGAL EXTERNAL FILENAME2 : /../../illegal/nonexistent
INAPPROPRIATELINE_LENGTH : -1
INAPPROPRIATEPAGELENGTH : -1
INCLUDE PRAGMAl

PRAGMA INCLUDE ("A28006D1.TST")
INCLUDEPRAGMA2

PRAGMA INCLUDE ("B28006DI.TST")
INTEGERFIRST : -2147483648
INTEGERLAST : 2147483647
INTEGERLASTPLUS_1 : 2147483648
INTERFACELANGUAGE : C86
LESS THAN DURATION : -100000.0
LESS THAN DURATION BASEFIRST : -200000.0
LINE TERMINATOR : I I

LOW PRIORITY : 0
MACHINE CODE STATEMENT

MACHINE INSTRUCTION'(none,mRETN);
MACHINE CODE TYPE : MACHINESTRING
MANTISSADOC : 31

A-2

MAX DIGITS : 15
MAXINT 9223372036854775807
MAX INT PLUS_1 : 9223372036854775808
MIN-INT - -9223372036854775808
NAME : NO SUCH TYPE AVAILABLE
NAME LIST :UNIX V586 -
NAME SPECIFICATION1
/usr6/acvclll/list/ctests/ce/X2120A
NAME SPECIFICATION2
/usr6/acvclll/list/ctests/ce/X2120B
NAME SPECIFICATION3
/usr6/acvclll/list/ctests/ce/X3119A
NEG BASED INT : 16#FOOOOOOOOOOOOOOE#
NEW --MEM SIZE : 16#100000000#
NEW STOR UNIT : 16
NEW-SYS _AME : UNIX V 386
PAGE TERMINATOR : ASCII.FF
RECORD DEFINITION : RECORD OPERANDKIND
OPERAND TYPE; OPCODE : OPCODETYPE; END RECORD;
RECORD NAME : MACHINEINSTRUCTION
TASK SIZE : 32
TASK--STORAGESIZE : 1024
TICK- : 0.000 000_062 5
VARIABLEADDRESS : FCNDECL.VARIABLE ADDRESS
VARIABLEADDRESS1 : FCNDECL.VARIABLEADDRESS 1
VARIABLE ADDRESS2 : FCNDECL.VARIABLE ADDRESS2
YOURPRAGMA : EXTERNALNAME

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

QUALIFIER DESCRIPTION

-a Auto inline of small local subprograms.
-c <file> Specifies the configuration file.
-d Generates debug information.
-E Generates expanded error messages in the

list file.
-1 <library> Specifies program library used.
-L Generates list file.
-n <checks> Suppresses the specified run-time checks.
-o <kind> Performs the specified optimizations.
-s Inhibits copying Ada source text into the

program library.
-x Creates a cross reference listing.

B-l

LINKER OPTIONS

The linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to linker
documentation and not to this report.

QUALIFIER DESCRIPTION

-a <intecer> Main program stack size.
-A <integer> Library task stack size.
-d Generates debug information for the DACS

80386 UNIX V Ada debugger.
-e <integer> Main program segment size
-E <integer> Library task segment size.
-g <integer> Tasks default storage size.
-h <integer> Initial heap size.
-j <file(s)> Include library archives or object modules

in the ld link.
-1 <library> Specifies program sublibrary.
-L Specifies creation of a log file.
-m <string> Sign on/off message.
-n Specifies Ada link only.
-o <file> Specifies the name of the executable

program.
-O <string> Specifies the id link options.
-p <integer> Default task priority.
-P <file> Specifies template file.
-q Removes unused code.
-r <recompilationspec> Hypothetical recompilation units.
-s Specifies shared run-time system code

should be used.
-T <integer> Maximum number of tasks.
-v <integer> Size of reserve stack.
-x Extracts Ada object modules.
-Z Use objects in root sublibrary instead of

root library archive.
<unit-name> Specifies the name of the main program to

be linked.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada
implementation, as described in this Appendix, are provided by
the customer. Unless specifically noted otherwise, references
in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32_767;

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type LONG INTEGER is range
-16#8000_0000_0000_0000# .. 16#7FFFFFFFFFFFFFFF#;

type FLOAT is digits 6
range -16#0.FFFFFF#E32 .. 16#0.FFFFFF#E32;

type LONGFLOAT is digits 15
range -16#0.FFFF FFFF FFFF_F8#E256

16#0.FFFF FFFF FFFF F8#E256;
type DURATION is delta 2#l.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-1

APPENDIX F
IMPLEMENTATION-DEPENDENT CHARACTERISTICS

This appendix describes the implemcntation-dependent characteristics of DACS 80386 UNIX V as
required in Appendix F of the Ada Reference Manual (ANSI/MIL-STD-1815A).

F.1 Implementation-Defined Pragnas

This section describes all implementation-defined pragmas.

F.1.1 Pragma INTERFACE-SPELLING

This pragma allows an Ada program to call a non-Ada program whose name contains characters
that would be an invalid Ada subprogram identifier. It can also be used when subprogram names
are case sensitive, e.g. C routines. This pragma must be used in conjunction with pragma
INTERFACE, i.e. pragma INTERFACE must be specified for the non-Ada subprogram name prior
to using pragma INTERFACESPELLING.

The pragma has the format:

pragma INTERFACESPELLING (subprogram name, string literal);

where the subprogram name is that of one previously given in pragma INTERFACE and the string
literal is the exact spelling of the interfaced subprogram in its native language.

F.1.2 Pragma EXTERNAL-NAME

F.I.2.1 Function

The pragma EXTERNALNAME is designed to make permanent Ada objects and subprograms
externally available using names supplied by the user.

F.1.2.2 Format

The format of the pragma is:

pragma EXTERNALNAME(<ada_entity>,<external name>)

where <ada-entity> should be the name of :

- a permanent object, i.e. an object placed in the permanent pool of the compilation unit
- such objects originate in package specifications and bodies only.

177

DACS 80386 UNIX V User's Guide
Appendix F

a constant object, i.e. an object placed in the constant pool of the compilation unit
- please note that scalar constants are embedded in the code, and composite constants
are not always placed in the constant pool, because the constant is not considered
constant by the compiler.

a subprogram name, i.e. a name of a subprogram defined in this compilation unit -
please notice that separate subprogram specifications cannot be used, the code for the
subprogram MUST be present in the compilation unit code,

and where the <external name> is a string specifying the external name associated the
<adaentity>. The <external names> should be unique. Specifying identical spellings for different
<adaentities> will generate errors at compile and/or link time and the responsibility for this is
left to the user. Also the user should avoid spellings similar to the spellings generated by the
compiler, e.g. E-xxxxxyyyyy, P-xxxxx, Cxxxxx and other internal identifications.

F.12.3 Restrictions

Objects that are local variables to subprograms or blocks cannot have external names associated.
The entity being made external ("public") MUST be defined in the compilation unit itself.
Attempts to name entities from other compilation units will be rejected with a warning.

When an entity is an object the value associated with the symbol will be the relocatable address
of the first byte assigned to the object.

F.1.2.4 Example

Consider the following package body fragment:

package body example is

subtype stringlO is string(l..10);

type s is
record

len : integer;
val : stringlO;

end record;

globals s;
const s constant stringlO := "1234567890";

pragma EXTERNALNAME(globals, "GLOBAL_S_OBJECT");
pragma EXTERNALNAME(const_s, "CONSTS");

procedure handle(...) is

end handle;

178

DACS 80386 UNIX V User's Guide

Appendix F

pragma EXTERNALNAME(handle, "HANDLE PROC");

end example;

The objects GLOBALS and CONSTS will have associated the names "GLOBALSOBJECT"
and "CONSTS". The procedure HANDLE is now also known as "HANDLEPROC". It is
allowable to assign more than one external name to an Ada entity.

F.I1.5 Object Layouts

Scalar objects are laid out as described in Chapter 10. For arrays the object is described by the
address of the first element; the array constraints cannot be found using the pragma and therefore
it is recommended only to use arrays with known constraints. Nondiscriminated records take a
consecutive number of bytes, whereas discriminated records may contain pointers to the heap. Such
complex objects should be made externally visible, only if the user has thorough knowledge about
the layout.

F.1.2.6 Calling Ada Subprograms from C

Using Ada entities from the programming language 'C' can be achieved by using the
EXTERNALNAME pragma. Special care should be taken in a number of cases. First, Ada
subprograms can be called from 'C' only if an Ada main program was used to start the
application. This is necessary due to Ada's elaboration requirements

It should also be noted that the 'C' programming language and Ada have opposite parameter stack
order, that is, the parameters for a function call in the 'C' programming language are pushed on
the stack in the opposite order in which Ada expects to retrieve them off of the stack.
Consequently, the order of arguments within the 'C' programming language routine must be
opposite the order of the formal parameters in the Ada subprogram.

All parameters in a function call in the 'C' programming language should be considered to be
'OUT' parameters, that is, if the parameters are changed by the called routine written in Ada, the
calling routine, written in 'C', will ignore the changes and discard the information. However, due
to differences in accessing the parameters, the corresponding formal parameters in Ada must be
declared as 'IN OUT' or just 'OUT'.

There are two methods that an Ada subprogram can return intormation back to a calling 'C'
programming language routine. The first method is by using one of the parameters as a pointer
(or access type) to the object to be modified. When the calling routine passes a pointer to the
object, the called Ada subprogram will have this declared as an access type to the appropriate
object and can use this handle to modify the contents of the object.

The second method is by using an Ada function to return the information to the 'C' programming
language routine, as all called routines in 'C' are expected to be functions. When returning a
function value, the 'C' programming language as implemented b the UNIX C compiler always

1 7€

DACS 80386 UNIX V User's Guide
Appendix F

expects the return value to be placed in a specific register, namely %eax. An Ada function, on
the other hand, when returning objects other than scalars will return the object by reference and
use a more appropriate index register for the address of the object. Consequently, to return
information from an Ada function to a 'C' routine, it is necessary for Ada functions to always
either return a scalar type, or an access type that is converted using
UNCHECKEDCONVERSION to a scalar type before returning to the 'C' programming language
routine.

F.1.2.7 Parameter Passing in Calling Ada Subprograms

The following section describes briefly the fundamentals regarding parameter passing in connection
with Ada subprograms. For more detail, refer to Chapter 10.

Scalar objects are always passed by value. For OUT or IN OUT scalars, code is generated to
move the modified scalar to its destination. In this case the stack space for parameters is not
removed by the procedure itself, but by the caller. Composite objects are passed by reference.
Records are passed via the address of the first byte of the record. Constrained arrays are passed
via the address of the first byte (plus a bit offset when a packed array). Unconstrained arrays are

passed as constrained arrays plus a pointer to the constraints for each index in the array. These
constraints consist of lower and upper bounds, plus the size in words or bits of each element
depending if the value is positive or negative respectively. The user should study an appropriate
disassembler listing to thoroughly understand the compiler calling conventions.

A function (which can only have IN parameters) returns its result in register(s). Scalar results are
registers/float registers only; composite results leave an address in some registers and the rest, if
any, are placed on the stack top. The stack still contains the parameters in this case (since the
function result is likely to be on the stack), so the caller must restore the stack pointer to a
suitable value, when the function call is dealt with. Again, disassemblies may guide the user to
see how a particular function call is to be handled.

Thus it is recommended to use the external name pragma for subprograms only if the user has a
thorough understanding of the calling conventions.

F.1.3 Examples

This example illustrates how to write routines in C that can call Ada subprograms. It
demonstrates the passing several different types of objects from C routines to a Ada routines.

First the Ada program. Notice that it must contain an Ada main program.

with text io; use text io;

procedure Croutine interface is

package int_io is new text io.integerio(integer);
use int io;

ISO

DACS 80386 UNIX V User's Guide
Appendix F

type recordtype is
record

day : integer range 1..31;
month : integer range 1..12;
year : integer range 1900..2030;

end record;

type arraytype is array (1..10) of recordtype;

type testaccess is access recordtype;

procedure adaprocedurescalar (i : in out integer;
: in out integer) is

begin
putline("Ada procedure with scalar parameters");
put("Value from Ada of i is :");
put(integer'image(i));
new-line;
put(I"Value from Ada of j is :");
put(integer'image(j));
new-line;

end ada-procedurescalar;

pragma externalname(ada-procedurescalar,
"ada-procscalar");

procedure adaprocedure string (s : in out string) is

begin
putline('Ada procedure with a string parameter");
put("Value from Ada of s is :"); new line; put(s);
new line;

end ada_procedure_string;

pragma externalname(adayprocedurestring,
"adaproc_string");

procedure adaprocedure_composite
(arr : in out array_type) is

begin
putline("Ada procedure with a composite parameter");
put("Value from Ada of arr(4).day is :");
put(integer' image (arr(4) .day));
new-line;

end adaprocedurecomposite;

181

DACS 80386 UNIX V User's Guide
Appendix F

pragma externalname(ada procedure_composite,
"ada_proc_composite");

procedure ada_procedure access
(acc : in out test-access) is

begin
putline("Ada procedure with a access parameter");
put("Value from Ada of dereferenced " &

"day field is :");
put(integer' image (acc.day));
new line;
put(I"Value from Ada of dereferenced " &

"month field is :");
put (integer' image (acc.month));
new line;
put("Value from Ada of dereferenced " &

"year field is :");
put (integer' image (acc.year));
new-line;
acc.month := 6;
put ("Value from Ada of modified dereferenced " &

"day field is :");
put (integer' image (acc.day));
new line;
put("Valve from Ada of modified dereferenced " &

"month field is :");
put (integer' image (acc.month));
new line;
put("Value from Ada of modified dereferenced " &

"year field is :");
put(integer' image (acc.year));
new line;

end adaprocedureaccess;

pragma externalname(ada-procedureaccess,
"adaprocaccess");

function ada function scalar return integer is

i : integer :- 7;

1 82

DACS 80386 UNIX V Uscr's Guide
Appendix F

begin
put line("Ada function returning a scalar value");
put("Value from Ada of i is :");
put (integer' image (i));
new line;
return (i);

end ada function scalar;

pragma externalname(adafunctionscalar,
"ada func scalar");

procedure cinterface;
pragma interface(C86, cinterface);

begin
c interface;

end C routine interface;

The Ada compilation unit can be compiled as normal, no special options are necessary as shown
below:

$ ada c routine.ada

The listing of the corresponding C routines:

void c interface()

/* Calling an Ada procedure with scalar type */
{

/* The simplest of parameters, the passing method is */
/* straight forward except that parameters are
/* evaluated in reverse order */
/* The two scalar parameters to be used for passing */
int i = 10;
int j = 20;

printf("\n\nDemonstration of ada_procscalar\n\n");

printf("Value from C of i is %d, and j is %d\n", i,

adajproc-scalar(j, i);

183

DACS 80386 UNIX V Uscr's Guide
Appendix F

/* Calling an Ada procedure with a string type */
{
/* It should be noted that strings as defined from */
/* Ada are considered to be constrained arrays. */
/* Consequently, an index descriptor needs to the
/* built and passed as well. The parameters are:
/* 1) the offset in bits from the start of the */
/* 'array' to the first element (in this case 0), */
/* 2) a starting address for the array, */
/* 3) the address of the index constraint */
/* descriptor.
/* however, the parameters as pushed on the stack by */
/* C are in reverse order.

struct indexdescriptor
{

int lower bound;
int upperbound;
int elementsize;

} index;

char *s=
"Now is the time for all good persons (non-sexist) to aid

their parties";

printf("\n\nDemonstration of adaproc-string\n\n");

/* First,build the index descriptor */
index.lower bound = 1;
index.upper-bound = strlen(s);

index.element size = -8; /* size in bits, */
/* negative because
/* array is packed

printf("Value from C of string s is\n%s\n", s);

ada-procstring(&index, s, 0);

/* Calling an Ada procedure with composite types */
/* (records and arrays)
{
/* Ada declaration of a record type used for
/* demonstration
/* */
/* type recordtype is */

record

184

DACS 80386 UNIX V Uscr's Guide
Appendix F

day integer range 1..31; */
month integer range 1..12; */
year integer range 1970..2030;

/* end record; */
/,1

/* The corresponding C declaration of the same */
/* record */
struct recordtype
{

int day;
int month;
int year;

1;

/* */

/* Ada declaration of a array type used for */
/* demonstration */1* *

1* type array_type is */
/* array (1..10) of record-type *//* */
/* */

/* The corresponding C declaration of the same */
/* record */

struct recordtype day_date[0l;

/* initialization of daydate */
day_date[O.day = 1; daydate[0] .month = 11;

day date(0].year = 1954;
day_date[l].day = 2; daydate[l] .month = 12;

daydatel].year = 1955;
day_date[2].day = 3; daydate[2] .month = 13;

daydate[2].year = 1956;
day_date[3].day = 4; daydate[3] .month = 14;

daydate[3].year = 1957;
day_date[4].day = 5; daydate[4] .month = 15;

day date(4] .year = 1958;
day_date[5].day 6; daydate(5] month = 16;

day date [5] .year = 1959;
day_date[6].day 7; daydate[6] .month = 17;

day dateI[6l.year = 1960;
day_date[7].day = 8; daydate[7] .month = 18;

day date[7].year = 1961;
daydate[8] .day = 9; daydate[8] .month = 19;

daydate(81.year = 1962;
day_date(9].day = 10; daydate[9] .month = 20;

day date[9].year = 1963;

185

DACS 80386 UNIX V User's Guide
Appendix F

/* All records are passed by reference, since C also */
/* passes arrays by reference, all that is needed is */
/* to pass the array. If this had been a record,
/* then it would be necessary to pass the address of */
/* the record to Ada

printf("\n\nDemonstration of ");
printf("ada-proc-composite\nn '');

printf("Value from C of day date[3] .day is %d\n",
daydate[3] .day);

adayproccomposite(day_date);

/* Calling an Ada procedure with access types */
{
struct recordtype
{

int day;
int month;
int year;

} access-test;

accesstest.day = 25; access test.month = 12;
accesstest.year = 2001;

printf("\n\nDemonstration of adaprocaccess\n\n");

printf("Value from C of accesstest.day is %d\n",
access test.day);

printf("Value from C of access test.month is %d\n",
access test.month);

printf("Value from C of access test.year is %d\n",
accesstest.year);

ada-procaccess(&access-test);

printf("Value from C of modified "
printf("accesstest.day is %d\n", accesstest.day);
printf("Value from C of modified ");
printf ("access test.month is %d\n", access test.month);
printf("Value from C of modified ");
printf("accesstest.year is %d\n", access-test.year);

186

DACS 80386 UNIX V User's Guide
Appendix F

/* Calling an Ada function returning scalars */
{
int j;

printf("\n\nDemonstration of ada funcscalar\n");

j = ada func scalaro;

printf("Value from C of returned scalar is %d\n",j);

For this example, consider the C routine to be a file name scalar.c, and compiled with the
command line

$ cc -c scalar.c

To link the resulting application, the following command line should be used:

$ al -j scalar.o croutine interface

When executed, this program will produce the following output:

Ada procedure with scalar parameters
Value from Ada of i is : 10
Value from Ada of j is : 20
Ada procedure with a string parameter
Value from Ada of s is :
Now is the time for all good persons (non-sexist) to aid their
parties
Ada procedure with a composite parameter
Value from Ada of arr(4).day is : 4
Ada procedure with a access parameter
Value from Ada of dereferenced day field is : 25
Value from Ada of dereferenced month field is : 12
Value from Ada of dereferenced year field is : 2001
Value from Ada of modified dereferenced day field is : 25
Value from Ada of modified dereferenced month field is 6
Value from Ada of modified dereferenced year field is : 2001
Ada function returning a scalar value
Value from Ada of i is : 7

Demonstration of ada_proc_scalar

Value from C of i is 10, and j is 20

187

DACS 80386 UNIX V User's Guide
Appendix F

Demonstration of ada_proc_string

Value from C of string s is
Now is the time for all good persons (non-sexist) to aid their
parties

Demonstration of ada_proc_composite

Value from C of daydate[3].day is 4

Demonstration of adaproc_access

Value from C of accesstest.day is 25
Value from C of access test.month is 12
Value from C of access test.year is 2001
Value from C of modified access test.day is 25
Value from C of modified access test.month is 6
Value from C of modified access test.year is 2001

Demonstration of ada func scalar
Value from C of returned scalar is 7

F.1.4 Pragma SHARED-DATA

This pragma is used to specify that the static data declared in the specification of the package will
be located in a shared data segment. This segment will be attached to a specific virtual address
in programs that has a dependency to the package which allows multiple programs to share the
data in the package specification.

The first Ada program using the shared data will create the shared data segment and give it a
unique internal shared memory identification. Upon attaching the data at the given virtual address
the first Ada program will then perform the elaboration of the shared data.

Subsequent Ada programs using the shared data segment will attach the segment at the given
virtual address and detect that it has already been elaborated and avoid re-elaborating the package.

When an Ada program terminates, the shared data segment is detached and the last Ada program
to have the shared data segment attached will remove the shared segment when terminating.

When the package specification containing the pragma SHAREDDATA is recompiled, it is
assigned a new shared memory identification. Thus, any programs linked with the new version of
the package will not share data with programs linked with the previous version of the package.
Programs linked with the new version will use another shared data segment.

If any errors occur when creating or attaching a shared segment, PROGRAMERROR will be
raised (as it occurs during elaboration) and the exit status is set to the error number returned by

188

DACS 80386 UNIX V User's Guide
Appendix F

the system call that fails. The exit status may be inspected by issuing the shell command 'echo
$?' when the program is terminated.

F.I.4.1 Format

The format of the pragma is

pragma SHAREDDATA(VIRTUALPAGE => <virtual page literal>,
PROTECTION => <protection mask>);

where the <virtual page literal> gives the virtual page at which the shared data segment is

attached.

Example: VIRTUALPAGE => 16#80C0_O#

The shared data segment is attached at the virtual address 16#80C0_0000#

<protection mask> indicates the protection with which the shared data segment is created. The
protection may be given for the owner, the group, and others.

Example: PROTECTION => 8#666#

Owner, group and others have read and write privileges.

F.1.4.2 Restrictions

The following restrictions apply to packages containing a pragma SHAREDDATA.

- The virtual address at which the shared segment is attached must be aligned on a 4K byte
boundary, therefore the virtual page given in the pragma must also be aligned on a 4K byte
boundary.

- Only addresses in the following range may be used:

16#8000_0000# .. 16#8FFF_0000#

corresponding to virtual page

16#8000_0# .. 16#8FFF_0#

- Package specifications containing pragma SHAREDDATA should, for clarity, contain
nothing except type declarations and object declarations. Subprograms may be declared,
however, the code for the subprograms will not be shared.

- No access types or unconstrained types should be used in the package specification.
Allocated objects will be placed in the heap of the Ada program allocating the object and
will not be accessible from any other Ada programs.

189

DACS 80386 UNIX V User's Guide
Appendix F

No constructs requiring run-time system calls are allowed

a. task types
b. discriminant records
c. allocators

Regardless of the total size of the objects contained in the specification, the size allocated
to a shared data package will be a minimum of 4 Kbytes, and will be increased in 4 Kbyte
increments.

The maximum number of package specifications containing pragma SHAREDDATA allowed
to be with'ed by one program is limited to 10.

F.1.4.3 Example

This example illustrates two programs that are sharing a record in the system that contains
common information.

with System;
with Semaphore;

package sharedrecord is

-- pragma SHAREDDATA(VIRTUALPAGE => 16#80CO_0#,
PROTECTION => 8#666#)

dataaccess : semaphore.semaphore_value ;

datablocktype is record
countl : integer ;
count2 : integer ;

end ;

data : datablock_type ;
j : integer = 1;

end shared-record ;

with shared record ;

procedure program 1 is

begin

-- < application specific code >

wait (data access) ;
data.countl := data.countl + 1
post (data-access)

190

DACS 80386 UNIX V User's Guide
Appendix F

-- < application specific code >

end ;

with shared record ;

procedure program_2 is

begin

-- < application specific code >

wait (data access) ;
data.countl := data.countl + 1
post (data-access) ;

-- < application specific code >

end ;

The commands to link these programs would be

$ al program-l
$ al program_2

When executing, both of these programs would access the same data object that is declared in
package shared_record. Furthermore, since the semaphore protecting the data item is in the
SHAREDDATA segment, it also becomes a shared object, allowing the two separate programs
to maintain controlled access to the data object. If the semaphore was not located in a
SHAREDDATA segment, each of the programs would have a local semaphore and there would
be no controlled access to the object unless other considerations were made.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F.3 Package System

The package System for DACS 80386 UNIX V is:

PACKAGE system IS

TYPE word IS NEW short_integer;
TYPE dword IS NEW integer;
TYPE Qword IS NEW long_integer;

TYPE unsignedword IS RANGE 0..65535;

191

DACS 80386 UNIX V User's Guide
Appendix F

FOR unsignedword'SIZE use 16;

TYPE unsigneddword IS RANGE 0..16#FFFF FFFF#;
FOR unsigneddword'SIZE use 32;

TYPE byte IS RANGE 0..255;

FOR byte'SIZE use 8;

TYPE address IS NEW integer;

SUBTYPE priority IS integer RANGE 0..31;

TYPE name IS (UNIXV_386);

systemname CONSTANT name UNIXV_386;
storageunit CONSTANT 16;
memory_size CONSTANT 16#1 0000_0000#;
min int CONSTANT -16#8000 0000 0000 0000#;
max int CONSTANT 16#7FFFFFFFFFFFFFFF#;
max-digits CONSTANT 15;
max-mantissa : CONSTANT 31;

fine delta : CONSTANT 2#1.0#E-31;
tick : CONSTANT 0.000_000_062 5;

TYPE interface-language IS
(ASM86, C86, C86 REVERSE,
ASMACF, C ACF, C REVERSEACF,
ASM-NOACF, C-NOACF, C-REVERSE-NOACF);

TYPE exceptionid IS record
unit number : unsigneddword;
unique_number : unsigneddword;

end record;

TYPE taskvalue IS NEW integer;
TYPE acctaskvalue IS ACCESS TaskValue;
TYPE semaphorevalue IS NEW integer;

TYPE semaphore IS record
counter : integer;
first, last : taskvalue;
SQNext : semaphorevalue; -- Only used

in HDS
end record;

initsemaphore : CONSTANT semaphore := semaphore' (1, 0, 0, 0);

end SYSTEM;

192

DACS 80386 UNIX V User's Guide
Appendix F

F.4 Representation Clauses

The representation clauses that are accepted are described below. Note that representation specifications
can be given on derived types too.

F.4.1 Pragma PACK

Pragma PACK applied on an array type will pack each array element into the smallest number' of bits
possible, assuming that the component type is a discrete type other than LONGINTEGER or a fixed point
type. Packing of arrays having other kinds of component types have no effect.

When the smallest number of bits needed to hold any value of a type is calculated, the range of the types
is extended to include zero.

Pragma PACK applied on a record type will attempt to pack the components not already covered by a
representation clause (perhaps none). This packing will begin with the small scalar components and larger
components will follow in the order specified in the record. The packing begins at the first storage unit
after the components with representation clauses.

The component types in question are the ones defined above for array types.

F.4.2 Length Clauses

Four kinds of length clauses are accepted.

Size specifications:

The size attribute for a type T is accepted in the following cases:

- If T is a discrete type then the specified size must be greater than or equal to the number of bits
needed to represent a value of the type, and less than or equal to 32. Note that when the number of
bits needed to hold any value of the type is calculated, the range is extended to include 0 if
necessary, i.e. the range 3..4 cannot be represented in I bit, but needs 3 bits.

- If T is a fixed point type, then the specified size must be greater than or equal to the smallest
number of bits needed to hold any value of the fixed point type, and less than 32 bits. Note that
the Reference Manual permits a representation, where the lower bound and the upper bound is not
representable in the type. Thus the type

type FIX is delta 1.0 range -1.0 .. 7.0;

is representable in 3 bits. As for discrete types, the number of bits needed for a fixed point type is
calculated using the range of the fixed point type possibly extended to include 0.0.

- If T is a floating point type, an access type or a task type the specified size must be equal to the
number of bits used to represent values of the type (floating points: 32 or 64, access types : 32 bits
and task types : 32 bits).

193

DACS 80386 UNIX V User's Guide
Appendix F

If T is a record type the specified size must be greater than or equal to the minimal number of bits
used to represent values of the type per default.

If T is an array type the size of the array must be static, i.e. known at compile time and the specified

size must be equal to the minimal number of bits used to represent values of the type per default.

Furthermore, the size attribute has only effect if the type is part of a composite type.

type BYTE is range 0.255;
for BYTE'size use 8;
SIXTEEN : BYTE -- one word allocated
EIGHT : array(l.4) of BYTE -- one byte per element

Collection size specifications:

Using the STORAGESIZE attribute on an access type will set an upper limit on the total size of objects
allocated in the collection allocated for the access type. If further allocation is attempted, the exception
STORAGEERROR is raised. The specified storage size must be less than or equal to INTEGER'LAST.

Task storage size:

When the STORAGESIZE attribute i' given on a task type, the task stack area will be of the specified
size. There is no upper limit on the given size.

Small specifications:

Any value of the SMALL attribute less than the specified delta for the fixed point type can be given.

F.4.3 Enumeration Representation Clauses

Enumeration representation clauses may specify representations in the range of INTEGER'FIRST+I
INTEGER'LAST-I. An enumeration representation clause may be combined with a length clause. If an
enumeration representation clause has been given for a type the representational values are considered
when the number of bits needed to hold any value of the type is evaluated. Thus the type

type ENUM is (A,B,C);
for ENUM use (1,3,5);

needs 3 bits not 2 bits to represent any value of the type.

F.4.4 Record Representation Clauses

When component clauses are applied to a record type the following restrictions and interpretations are
imposed

19.4

DACS 80386 UNIX V User's Guide
Appendix F

- All values of the component type must be representable within the specified number of bits in the
component clause.

- If L.he component type is either a discrete type, a fixed point type, an array type with a discrete type
other than LONGINTEGER, or a fixed point type as element type, then the component is packed
into the specified number of bits (see however the restriction in the paragraph above), and the
component may start at any bit boundary.

- If the component type is not one of the types specified in the paragraph above, it must start at a
storage unit boundary, a storage unit being 16 bits, and the default size calculated by the compiler
must be given as the bit width, i.e. the component must be specified as

component at N range 0 .. 16 * M-1

where N specifies the relative storage unit number (0,1) from the beginning of the record, and M
the required number of storage units (1,2,...).

- The maximum bit width for components of scalar types is 32.

- A record occupies an integral number of storage units (even though a record may have fields that
only define an odd number of bytes)

- A record may take up a maximum of 32 Kbits

- If the component type is an array type with a discrete type other than LONGINTEGER or a fixed
point type as element type, the given bit width must be divisible by the length of the array, i.e. each
array element will occupy the same number of bits.

If the record type contains components which are not covered by a component clause, they are allocated
consecutively after the component with the value. Allocation of a record component without a component
clause is always aligned on a storage unit bounday. Holes created because of component clauses are not
otherwise utilized by the compiler.

F.4.4.1 Alignment Clauses

Alignment clauses for records are implemented with the following characteristics

- If the declaration of the record type is done at the outermost level in a library package, any alignment
is accepted.

- If the record declaration is done at a given static level (higher than the outermost library level, i.e.
the permanent area), only long word alignments are accepted.

F.5 Implementation-Dependent Names for Implementation-Dependent Components

None defined by the compiler.

195

DACS 80386 UNIX V User's Guide
Appendix F

F.6 Address Clauses

This section describes the implementation of address clauses and what types of entities may have their
address specified by the user.

F.6.1 Objects

Address clauses are supported for scalar and composite objects whose size can be determined at compile
time. The address value must be static. The given address is the virtual address.

F.7 Unchecked Conversions

Unchecked conversion is only allowed for types where objects have the same "size". The size of an object
is interpreted as follows

- for arrays it is the number of storage units occupied by the array elements

- for records it is the size of the fixed part of the record, i.e. excluding any dynamic storage
allocated outside the record

- for the other non-structured type, the object size is as described in Chapter 9

For scalar types having a size specification special rules apply. Conversion involving such a type is
allowed if the given size matched either the specified size or the object size.

Example

type ACC is access INTEGER;
function TO INT is new UNCHECKED CONVERSION(ACC, INTEGER);

-- OK

function TOACC is new UNCHECKEDCONVERSION(ShORTINTEGER,ACC, I);
-- NOT OK

type UNSIGNED is range 0..65535;
for UNSIGNED'SIZE use 16;

function TOINT is new UNCHECKEDCONVERSION(UNSIGNED,INTEGER);
-- OK

function TO SHORT is new
UNCHECKEDCONVERSION (UNSIGNED, SHORTINTEGER);

-- OK

End example

19t

DACS 80386 UNIX V User's Guide
Appendix F

F.8 Input/Output Packages

The implementation supports all requirements of the Ad~i language and the POSIX standard described in
the document P1003.5 Draft 4.0/WG15-N45. It is an effective interface to the UNIX file system. and in
the case of text I/O, it is also an effective interface to the UNIX standard input, standard output, and
standard error streams.

This section describes the functional aspects of the interface to the UNIX file system, including the
methods of using the interface to take advantage of the file control facilities provided.

The Ada input-output concept as defined in Chapter 14 of the ARM does not constitute a complete
functional specification of the input-output packages. Some aspects of the 1/0 system are not described
at all, with others intentionally left open for implementation. This section describes those sections not
covered in the ARM. Please notice that the POSIX standard puts restrictions on some of the aspects not
described in Chapter 14 of the ARM.

The UNIX operating system considers all files to be sequences of characters. Files can either be accessed
sequentially or randomly. Files are not structured into records, but an access routine can treat a file as a
sequence of records if it arranges the record level input-output.

Note that for sequential or text files (Ada files not UNIX external files) RESET to mode OUTFILE will
empty the file. Also, a sequential or text file opened as an OUTFILE will be emptied.

F.8.1 External Files

An external file is either a UNIX disk file, a UNIX FIFO (named pipe), a UNIX pipe, or any device
defined in the UNIX directory. The use of devices such as a tape drive or communication line may require
special access permissions or have restrictions. If an inappropriate operation is attempted on a device, the
USEERROR exception is raised.

External files created within the UNIX file system shall exist after the termination of the program that
created it, and will be accessible from other Ada programs. However, pipes and temporary files will not
exist after program termination.

Creation of a file with the same name as an existing external file will cause the existing file to be

overwritten.

Creation of files with mode INFILE will cause USEERROR to be raised.

The name parameter to the input-output routines must be a valid UNIX file name. If the name parameter
is empty, then a temporary file is created in the /usr/tmp directory. Temporary files are automatically
deleted when they are closed

F.8.2 File Management

This section provides useful information for performing file management functions within an Ada program.

The only restrictions in performing Sequential and Direct I/O are:

197

DACS 80386 UNIX V User's Guide
Appendix F

The maximum size of an object of ELEMENTTYPE is 2_147_483_647 bits.

If the size of an object of ELEMENTTYPE is variable, the maximum size must be determinable at
the point of instantiation from the value of the SIZE attribute.

The NAME parameter

The NAME parameter must be a valid UNIX pathname (unless it is the empty string). If any directory
in the pathname is inaccessible, a USE-ERROR or a NAMEERROR is raised.

The UNIX names "stdin", "stdout", and "stderr" can be used with TEXT_IO.OPEN. No physical opening
of the external file is performed and the internal Ada file will be associated with the already open external
file. These names have no significance for other I/O packages.

Temporary files (NAME = null string) are created using tmpname(3) and are deleted when CLOSED.
Abnormal program termination may leave temporary files in existence. The name function will return the
full name of a temporary file when it exists.

The FORM parameter

The Form parameter, as described below, is applicable to DIRECTIO, SEQUENTIAL_10 and TEXT_10
operations. The value of the Form parameter for Ada I/O shall be a character string. The value of the
character string shall be a series of fields separated by commas. Each field shall consist of optional
separators, followed by a field name identifier, followed by optional separators, followed by "=>".
followed by optional separators, followed by a field value, followed by optional separators. The allowed
values for the field names and the corresponding field values are described below. All field names and
field values are case-insensitive.

The following BNF describes the syntax of the FORM parameter:

form ::= [field (, field)*]

fields ::= rights I append I blocking I
terminal-input I fifo I
posixjfiledescriptor

rights ::= OWNER I GROUP I WORLD =>

access {,access-underscor}

access ::= READ I WRITE I EXECUTE I NONE

accessunderscor ::= _READ I _WRITE I -EXECUTE I _NONE

append ::= APPEND => YES I NO

blocking ::= BLOCKING => TASKS I PROGRAM

terminal-input ::= TERMINALINPUT => LINES I CHARACTERS

198

DACS 80386 UNIX V User's Guide
Appendix F

fi fo FIFO => YES I NO

posix-filedescriptor ::= POSIXFILEDESCRIPTOR => 2

The FORM parameter is used to control the following

- File ownership:

Access rights to a file is controlled by the following field names "OWNER". "GROUP" and
"WORLD". The field values are "READ", "WRITE", "EXECUTE" and "NONE" or any
combination of the previously listed values separated by underscores. The access rights field
names are applicable to TEXT_10, DIRECT_1O and SEQUENTIAL_10. The default value is
OWNER => READWRITE, GROUP => READWRITE and WORLD => READWRITE. The
actual access rights on a created file will be the default value subtracted the value of the
environment variable umask.

Example

To make a file readable and writable by the owner only, the Form parameter should look
something like this:

"Owner ->readwrite, World=> none, Groupf>none"

If one or more of the field names are missing the default value is used (Owner=->readwrite,
Group=>read_write, World=>read-write). The permission field is evaluated in left-to-right order.
An ambiguity may arise with a Form parameter of the following:

"Owner=>ReadExecuteNoneWriteRead"

In this instance, using the left-to-right evaluation order, the "None" field will essentially reset the
permissions to none and this example would have the access rights WRITE and READ.

- Appending to a file:

Appending to a file is achieved by using the field name "APPEND" and one of the two field
values "YES" or "NO". The default value is "NO". "Append" is allowed with both TEXT_10
and SEQUENTIAL_10. The effect of appending to a file is that all output to that file is written
to the end of the named external file. This field may only be used with the "OPEN" operation,
using the field name "APPEND" in connection with a "CREATE" operation shall raise
USEERROR. Furthermore, a USEERROR is raised if the specified file is a terminal device or
another device.

Example

To append to a file, one would write:

199

DACS 80386 UNIX V User's Guide
Appendix F

"Append => Yes"

- Blocking vs. non-blocking /O:

The blocking field name is "Blocking" and the field values are "TASKS" and "PROGRAM". The
default value is "PROGRAM". "Blocking=>Tasks" causes the calling task, but no others, to wait
for the completion of an I/O operation. "Blocking=>program" causes the all tasks within the
program to wait for the completion of the 1/0 operation. The blocking mechanism is applicable
to TEXT_10, DIRECTO and SEQUENTIAL_10. UNIX does not allow the support of
"BLOCKING=>TASKS" currently.

- How characters are read from the keyboard:

The field name is "TERMINALINPUT" and the field value is either "LINES" or
"CHARACTERS". The effect of the field value "Terminal-input => Characters" is that characters
are read in a noncanonical fashion with Minimum_count--I, meaning one character at a time and
Time=0.0 corresponding to that the read operation is not satisfied until MinimumCount characters
are received. If the field value "LINES" is used the characters are read one line at a time in
canonical mode. The default value is Lines. "TERMINAL-INPUT" has no effect if the specified
file is not already open or if the file is not open on a terminal. It is permitted for the same
terminal device to be opened for input in both modes as separate Ada file objects. In this case,
no user input characters shall be read from the input device without an explicit input operation
on one of the file objects. The "TERMINALINPUT" mechanism is only applicable to TEXT_10.

- Creation of FIFO files:

The field name is "Fifo" and the field value is either "YES" or "NO". "FIFO => YES" means
that the file shall be a named FIFO file. The default value is "No".

For use with TEXTI/O, the "Fifo" field is only allowed with the Create operation. If used in

connection with an open operation an USEERROR is raised.

For SEQUENTIALJO, the FIFO mechanism is applicable for both the Create and Open operation.

In connection with SEQUENTIAL_1O, an additional field name "ONDELAY" is used. The field
values allowed for "ONDELAY" are "YES" and "NO". Default is "NO". The "ONDELAY"
field name is provided to allow waiting or immediate return. If, for example, the following form
parameter is given:

"Fifo=>Yes, ONdelay=>Yes"

then waiting is performed until completion of the operation. The "ONdelay" field name only has
meaning in connection with the FIFO facility and is otherwise ignored.

Access to Open POSIX files:

The field name is "POSIXFileDescriptor". The field value is the character string "2" which
denotes the stderr file. Any other field value will result in USEERROR being raised. The Name
parameter provides the value which will be returned by subsequent usage of the Name function.
The operation does not change the state of the file. During the period that the Ada file is open,

200

DACS 80386 UNIX V User's Guide
Appendix F

the result of any file operations on the file descriptor are undefined. Note that this is a method
to make stderr accessible from an Ada program.

File Access

The following guidelines should be observed when performing file I/0 operations:

- At a given instant, any number of files in an Ada program can be associated with corresponding
external files.

- When sharing files between programs, it is the responsibility of the programmer to determine the
effects of sharing files. .1

The RESET and OPEN operations to files with mode OUTFILE will empty the contents of the file
in SEQUENTIAL_10 and TEXTIO.

Files can be interchanged between SEQUENTIAL_1O and DIRECTIO without any special operations
if the files are of the same object type.

F.8.3 Buffering

The Ada I/O system provides buffering in addition to the buffering provided by UNIX. The Ada
TEXT_[0 packages will flush all output to the operating system under the following circumstances:

1. The device is a terminal device and an end of line, end of page, or end of file has occurred.

2. The device is a terminal device and the same Ada program makes an Ada TEXT-10 input
request or another file object representing the same device.

F.8.4 Package IOEXCEPTIONS

The specification of package 10_EXCEPTIONS:

package IOEXCEPTIONS is

-- The order of the following declarations must NOT be
changed:

STATUSERROR : exception;
MODE ERROR : exception;
NAME ERROR : exception;
USE ERROR : exception;
DEVICE ERROR : exception;
END ERROR : exception;
DATA ERROR : exception;
LAYOUTERROR : exception;

201

DACS 80386 UNIX V User's Guide
Appendix F

end IOEXCEPTIONS;

F.8.5 Package TEXTIO

The specification of package TEXT_10:

with BASIC IO TYPES;

with 10 EXCEPTIONS;
package TEXTIO is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

type COUNT is range 0 .. INTEGER'LAST;

subtype POSITIVECOUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length

-- max. size of an integer output field 2# #
subtype FIELD is INTEGER range 0 .. 65;

subtype NUMBERBASE is INTEGER range 2 .. 16;

type TYPESET is (LOWERCASE, UPPER-CASE);

-- File Management

procedure CREATE (FILE : in out FILETYPE;
MODE : in FILE MODE :=OUTFILE;
NAME : in STRING :="";
FORM : in STRING :=""

procedure OPEN (FILE . in out FILE-TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING :=""

procedure CLOSE (FILE :in out FILETYPE)
procedure DELETE (FILE : in out FILETYPE);
procedure RESET (FILE : in out FILE TYPE; MODE: in FILEMODE);
procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILETYPE) return FILEMODE;
function NAME (FILE : in FILE TYPE) return STRING;
function FORM (FILE : in FILETYPE) return STRING;

202

DACS 80386 UNIX V User's Guide
Appendix F

function IS OPEN (FILE : in FILE TYPE return BOOLEAN;

-- control of default input and output files

procedure SETINPUT (FILE : in FILETYPE);
procedure SET-OUTPUT (FILE : in FILETYPE);

function STANDARDINPUT return FILETYPE;
function STANDARDOUTPUT return FILETYPE;

function CURRENT INPUT return FILE TYPE;
function CURRENTOUTPUT return FILETYPE;

-- specification of line and page lengths

procedure SET LINE LENGTH (FILE : in FILE TYPE; TO : in COUNT);
procedure SETLINE LENGTH (TO : in COUNT);

procedure SET PAGELENGTH (FILE : in FILE TYPE; TO : in COUNT);
procedure SETPAGELENGTH (TO : in COUNT);

function LINELENGTH (FILE : in FILETYPE) return COUNT;
function LINELENGTH return COUNT;

function PAGELENGTH (FILE : in FILETYPE) return COUNT;

function PAGELENGTH return COUNT;

-- Column, Line, and Page Control

procedure NEW LINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT := 1);

procedure NEWLINE (SPACING : in POSITIVECOUNT 1);

procedure SKIPLINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT := 1);

procedure SKIPLINE (SPACING : in POSITIVE COUNT := 1);

function END OF LINE (FILE : in FILE TYPE) return BOOLEAN;
function ENDOFLINE return BOOLEAN;

procedure NEW PAGE (FILE : in FILE TYPE);
procedure NEW-PAGE;

procedure SKIPPAGE (FILE : in FILETYPE);
procedure SKIPPAGE;

function END OF PAGE (FILE : in FILETYPE)return BOOLEAN;
function ENDOF PAGE return BOOLEAN;

203

DACS 80386 UNIX V User's Guide
Appendix F

function END OF FILE (FILE : in FILETYPE)return BOOLEAN;
function END OF FILE return BOOLEAN;

procedure SETCOL (FILE in FILETYPE;TO :in
POSITIVECOUNT);

procedure SETCOL (TO : in POSITIVECOUNT);

procedure SETLINE (FILE in FILE TYPE;TO :in
POSITIVECOUNT);

procedure SETLINE (TO : in POSITIVECOUNT);

function COL (FILE : in FILETYPE) return POSITIVECOUNT;
function COL return POSITIVECOUNT;

function LINE (FILE : in FILETYPE) return POSITIVE COUNT;
function LINE return POSITIVECOUNT;

function PAGE (FILE : in FILETYPE) return POSITIVECOUNT;
function PAGE return POSITIVECOUNT;

-- Character Input-Output

procedure GET (FILE : in FILE TYPE; ITEM : out CHARACTER);
procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE TYPE; ITEM : in LHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILE TYPE; ITEM : out STRING);
procedure GET (ITEM : out STRING);
procedure PUT (FILE : in FILE TYPE; ITEM : in STRING);
procedure PUT (ITEM : in STRING);

procedure GETLINE (FILE : in FILETYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GETLINE (ITEM out STRING; LAST out
NATURAL);

procedure PUT LINE (FILE in FILE TYPE; ITEM : in STRING);
procedure PUTLIVE (ITEM in STRING);
-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGERIO is

DEFAULT WIDTH : FIELD NUM'WIDTH;

204

DACS 80386 UNIX V User's Guide
Appendix F

DEFAULTBASE NUMBERBASE := 10;

procedure GET (FILE : in FILETYPE;
ITEM : out NUM;
WIDTH : in FIELD 0);

procedure GET (ITEM : out NUM;
WIDTH in FIELD := 0);

procedure PUT (FILE : in FILETYPE;
ITEM in NUM;

WIDTH in FIELD DEFAULT WIDTH;
BASE : in NUMBERBASE:= DEFAULTBASE);

procedure PUT (ITEM : in NUM;
WIDTH in FIELD DEFAULT WIDTH;
BASE in NUMBER BASE:= DEFAULTBASE);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
BASE : in NUMBERBASE:= DEFAULTBASE);

end INTEGER IO;

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOATIO; is

DEFAULT FORE : FIELD := 2;
DEFAULT AFT : FIELD := NUM'DIGITS - 1;
DEFAULTEXP : FIELD := 3;

procedure GET (FILE in FILETYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD : 0);

procedure PUT (FILE : in FILETYPE;
ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;
AFT : in FIELD DEFAULT AFT;
EXP : in FIELD DEFAULT EXP);

205

DACS 80386 UNIX V User's Guide
Appcndix F

procedure PUT (ITEM : in NUM;
FORE : in FIELD DEFAULT FORE;

AFT : in FIELD DEFAULTAFT;
EXP : in FIELD DEFAULT EXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD DEFAULT AFT;

EXP : in FIELD DEFAULTEXP);

end FLOATIO;
generic

type NUM is delta <>;

package FIXEDIO is

DEFAULT FORE : FIELD NUM'FORE;
DEFAULTAFT : FIELD NUM'AFT;

DEFAULTEXP : FIELD 0;

procedure GET (FILE in FILETYPE;
ITEM out NUM;

WIDTH in FIELD 0);

procedure GET (ITEM out NUM;
WIDTH in FIELD 0);

procedure PUT (FILE in FILETYPE;
ITEM in NUM;
FORE in FIELD DEFAULT FORE;

AFT in FIELD DEFAULT AFT;

EXP in FIELD DEFAULTEXP);

procedure PUT (ITEM in NUM;
FORE in FIELD DEFAULT FORE;
AFT in FIELD DEFAULT AFT;

EXP in FIELD DEFAULT EXP);

procedure GET (FROM in STRING;
ITEM out NUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM in NUM;
AFT in FIELD DEFAULT AFT;

EXP in FIELD DEFAULT EXP);

end FIXED IO;

206

DACS 80386 UNIX V User's Guidc
Appendix F

-- Generic Package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATIONIO is

DEFAULT WIDTH FIELD 0;
DEFAULTSETTING : TYPESET UPPERCASE;

procedure GET (FILE : in FILETYPE; ITEM : out ENUM);

procedure GET (ITEM : out ENUM);

procedure PUT (FILE : FILETYPE;
ITEM : in ENUM;

WIDTH : in FIELD DEFAULT WIDTH;
SET : in TYPESET DEFAULTSETTING);

procedure PUT (ITEM : in ENUM;
WIDTH : in FIELD DEFAULT WIDTH;

SET : in TYPESET DEFAULTSETTING);

procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPESET := DEFAULTSETTING);

end ENUMERATIONIO;

-- Exceptions

STATUS ERROR exception renames IO EXCEPTIONS.STATUSERROR;

1' DE ERROR exception renames IOEXCEPTIONS.MODE ERROR;

ME-ERROR exception renames IOEXCEPTIONS.NAMEERROR;

ISE ERROR exception renames 10 EXCEPTIONS.USEERROR;

DEVICE ERROR : exception renames IOEXCEPTIONS.DEVICEERROR;

END ERROR : exception renames IOEXCEPTIONS.ENDERROR;

DATA ERROR : exception renames IOEXCEPTIONS.DATA ERROR;

LAYOUTERROR : exception renames IOEXCEPTIONS.LAYOUTERROR;

private

type FILEBLOCKTYPE is new BASICIOTYPES.FILETYPE;

type FILEOBJECTTYPE is
record

207

DACS 80386 UNIX V User's Guide
Appendix F

IS OPEN BOOLEAN FALSE;
FILE BLOCK FILE BLOCK TYPE;

end record;

type FILETYPE is access FILEOBJECTTYPE;
end TEXTIO;

F.8.6 Package LOW-LEVELJO

package LOW_LEVELIO is

-- The DACS 80386 UNIX V Ada Compiler System does not

-- provide for any low level 10.

end LOWLEVELIO;

F.8.7 Package SEQUENTIAL-1O

-- Source code for SEQUENTIAL_10
with BASIC 10 TYPES;
with IO EXCEPTIONS;

generic

type ELEMENTTYPE is private;

package SEQUENTIALIO is

type FILE_TYPE is limited private;

type FILEMODE is (INFILE, OUTFILE);

-- File management

procedure CREATE(FILE : in out FILETYPE;
MODE in FILE MODE OUT FILE;

NAME in STRING "

FORM in STRING lift)

procedure OPEN (FILE in out FILETYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE in out FILETYPE);

208

DACS 80386 UNIX V User's Guide
Appendix F

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE in out FILETYPE; MODE in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE;
ITEM in ELEMENTTYPE);

function ENDOFFILE
(FILE : in FILETYPE) return BOOLEAN;

-- exceptions

STATUSERROR : exception renames IOEXCEPTIONS.STATUS__ERROR;
MODE ERROR : exception renames 10 EXCEPTIONS.MODE ERROR;
NAMEERROR : exception renames 10_EXCEPTIONS.NAME ERROR;
USEERROR : exception renames IOEXCEPTIONS.USEERROR;
DEVTCE ERROR : exception renames 10_EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IOEXCEPTIONS.ENDERROR;
DATAERROR : exception renames IOEXCEPTIONS.DATAERROR;

private

type FILE-TYPE is new BASIC_10 TYPES.FILE TYPE;

end SEQUENTIALIO;

F.8.8 Package DIRECT-1O

with BASIC 10 TYPES;
with IGEXCEPTIONS;

generic

210

DACS 80386 UNIX V User's Guide
Appendix F

type ELEMENT-TYPE is private;

package DIRECTIO is

type FILETYPE is limited private;

type FILEMODE is (IN-FILE, INOUTFILE, OUTFILE);

type COUNT is range 0..INTEGER'LAST;

subtype POSITIVECOUNT is COUNT range 1..COUNT'LAST;

-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE:= INOUT FILE;
NAME : in STRING will;
FORM : in STRING will);

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILETYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILETYPE) return FILEMODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILETYPE) return BOOLEAN;

-- input and output operations

procedure READ (FILE in FILE TYPE;
ITEM out ELEMENT TYPE;
FROM in POSITIVE COUNT);

procedure READ (FILE in FILETYPE;
ITEM out ELEMENT TYPE);

210

DACS 80386 UNIX V User's Guide
Appendix F

procedure WRITE (FILE in FILE TYPE;
ITEM in ELEMENTTYPE;
TO in POSITIVECOUNT);

procedure WRITE (FILE in FILE TYPE;
ITEM in ELEMENTTYPE);

procedure SETINDEX
(FILE in FILE TYPE;
TO in POSITIVECOUNT);

function INDEX (FILE in FILETYPE)- return POSITIVECOUNT;

function SIZE (FILE in FILETYPE) return COUNT;

function ENDOFFILE
(FILE in FILETYPE) return BOOLEAN;

-- exceptions

STATUSERROR : exception renames 10_EXCEPTIONS.STATUSERROR;
MODE_ERROR : exception renames I0_EXCEPTIONS.MODE_ERROR;
NAME ERROR : exception renames IO EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames 10 EXCEPTIONS.USEERROR;
DEVICEERROR : exception renames 10_EXCEPTIONS.DEVICEERROR;
ENDERROR : exception renames IOEXCEPTIONS.ENDERROR;
DATAERROR : exception renames IOEXCEPTIONS.DATAERROR;

private
type FILETYPE is new BASICIO TYPES.FILE TYPE;

end DIRECTIO;

F.8.9 Package TERMINAL

The specification of package TERMINAL:

with COMMON DEFS;
use COMMON DEFS;

package TERMINAL is

procedure SETCURSOR(ROW, COL in INTEGER);

procedure INCHARACTER(CH out CHARACTER);

procedure IN-INTEGER (I out INTEGER);

211

DACS 80386 UNIX V User's Guide
Appendix F

procedure INLINE (T out TERMINALLINE);

procedure OUT CHARACTER(CH : in CHARACTER);

procedure OUTINTEGER (I : in INTEGER);

procedure OUTINTEGERF(I, W : in INTEGER);

procedure OUTLINE (L : in STRING);

procedure OUTSTRING (S : in STRING);

procedure OUTNL;

procedure OUTFF;

procedure FLUSH;

procedure OPENLOGFILE(FILENAME in STRING);

procedure CLOSELOGFILE;

end TERMINAL;

F.9 Machine Code Insertions

The reader should be familiar with the code generation strategy and the 80386 instruction set to fully
benefit from this section.

As described in chapter 13.8 of the ARM it is possible to write procedures containing only code
statements using the predefined package MACHINECODE. The package MACHINECODE defines the
type MACHINEINSTRUCTION which, used as a record aggregate, defines a machine code insertion.
The following sections list the type MACHINEINSTRUCTION and types on which it depends, give the
restrictions, and show an example of how to use the package MACHINECODE.

F.9.1 Predefined Types for Machine Code Insertions

The following types are defined for use when making machine code insertions (their type declarations are
given in the following pages):

type opcode type
type operand-type
type registerjtype
type segment-register
type machineinstruction

212

DACS 80386 UNIX V User's Guide
Appendix F

The type REGISTERTYPE defines registers and register combinations. The double register combinations
(e.g. BX_SI) can be used only as address operands (BXSI describing JBX+SIj). The registers STi
describe registers on the floating stack. (ST is the top of the floating stack).

The type SEGMENTREGISTER defines the four segment registers that can be used to overwrite default
segments in an address operand.

The type MACHINE INSTRUCTION is a discriminant record type with which every kind of instruction
can be described. Symbolic names may be used in the form name'ADDRESS

type opcodetype is (
-- 8086 instructions:

mAAA, mAAD, m AAM, mAAS,
mADC, mADD, mAND,
mCALL, mCALLN,
mCBW, mCLC, mCLD, mCLI,
in_CMC, mCMP, mCMPS, m-_CWD,
mDAA, mDAS,
m_DEC, m_DIV, mHLT,
mIDIV, mIMUL, mIN,m_INC,
mINT, mINTO, mIRET,
m-JA, mJAE, m JB, mJBE,
mi_JC, mi_JCXZ, mJE, mJG,
mJGE, mJL, mJLE, mJNA,
miJNAE, mJNB, mJNBE,mJNC,
m TNE, m _JNG, mJNGE, mJNL,
rr NLE, mJNO, m JNP, _ JNS,
mJNZ, mJO, MJP, mJPE,
mJPO, mi_JS, mJZ, mJMP,
miLAHF, mLDS, mLE S, m_LEA,
miLOCK, mLODS,
m_-LOOP, mLOOPE, mLOOPNE, m_LOOPNZ,
mLOOPZ, m_MOV, mMOVS,m_MUL,
miNEG, m_NOP, mNOT, m OR,
m-OUT, mPOP, m POPF, mPUSH,
mPUSHF,
mRCL, mRCR, mROL, mROR,
miREP, mREPE, mREPNE,
m-RET, m RETP, mRETN, mRETNP,
miSAHF,
mSAL, mSAR, mSHL, mSHR,
mSBB, mSCAS,
mSTC, mSTD, mSTI, mSTOS,
mSUB, mTEST, m WAIT, mXCHG,
mXLAT, m-XOR,

-- 8087/80187/80287 Floating Point Processor instructions:
mFABS, mFADD, mFADDD,imFADDP,

213

DACS 80386 UNIX V User's Guidc
Appendix F

mFBLD, mFBSTP, mFCES,mFNCLEX,
mnFCOM, mFCOMD, m_-FCOMP,m_-FCOMPD,
inFCOMPP, mFDECSTP, mFDIV,m_-FDIVD,
m FDIVP, in FDIVR, m FDIVRD,m FDIVRP,
inFFREE, minFIADD, mnFIADDD,in_ FICOM,
inFICOMD, inFICOMP, inFICOMRPD,in_ FID IV,
m_-FIDIVD, inFIDIVR, minFIDIVRD,
inFILD, inFILDD, in_ FILDL,inFIMJL,
mFIMULD, inFINCSTP, mFNINIT,in_ FIS9T,
in FISTD, in FISTP, in FISTPD,in FISTPL,
m-FISUB,
mFISJBD, mnFISUBR, in FISUBRD,in_ FLD,
mnFLDD, inFLDCW, inFLDENV,mFLDLG2,
mFLDLN2, inFLDL2E, mFLDL2T,m_-FLDPI,
inFLDZ, inFLD1, inFMUL,inFMULD,
m FMULP, in FNOP, in FPATAN,m -FPREM,
m FPTAN, m FRNDINT,mi FRSTOR,in FSAVE,
m-FSCALE, mUFSETPM, mFsQRT,
inFST, in_-FSTD, inFSTCW,
inFSTENV', inFSTP, inFSTPD,inFSTSW,
inFSTSWAX, in_-FSUB, inFSUBD,inFSUBP,
inFSUBR, inFSUBRD, inFSUBRP,mFTST,
inFwAIT, inFXAMv, inFXCH,inFXTRACT,
inFYL2X, inFYL2XP1, inF2XMl,

-80186/80286/80386 instructions:
Notice that some immediate versions of the 8086 instructions

-- only exist on these targets (shifts,rotates,push,inul,...)

in_ BOUND, minCLTS, inENTER,inINS,
inLA, inLEAVE, inLGDT, inLIDT,
inLSL, m -_OUTS, inPOPA, in PUSHA,
inSGDT, in SIDT,

inARPL, m nLLDT, inLMSW,mLTR,
inSLDT, inSMSW, inSTR,mJERR,
inVERW,

-the 80386 specific instructions:
minSETA, inSETAE, m -_SETB,m_-SETBE,
inSETC, inSETE, inSETG,in_ SETGE,
inSETL, inSETLE, mnSETNA,mSETNAE,
mnSETNB, inSETNBE, inSETNC,m_-SETNE,
inSETNG, minSETNGE, minSETNL,m_-SETNLE,
inSETNO, inSETNP, inSETNS,m_-SETNZ,
inSETO, min SET?, inSETPE,mSETPO,
inSETS, m-SETZ,

inBSF, inBSR,

214

DACS 80386 UNIX V User's Guidc
Appoidix F

mBT, mBTC, inBTR, mBTS,
inLFS, inLGS, inLSS,
inMOVZX, inMOVSX,
in MOVCR, in MOVDB, in MOVTR,
inSHLD, inSHRD,

-the 80387 specific instructions:
mFUCOM, inFUCOMP, inFUCOMPP,
inFPREM1, inESIN, inFCOS,inFSINCOS,

-byte/word/dword variants (to be used, when not deductible from
-- context):

inADCB, mADCW, inADCD,
inADDB, mADDW, inADDD,
inANDB, inANDW, inANOD,
in_BTW, in_ BTD,
in BTCW, in BTCD,
inBTRW, inBTRD,
inBTSW, inBTSD,
inCBWW, inCWDE,
inCWDW, inCDQ,
inCMPB, inCMPW, inCMPD,
in CMPSB, in CMPSW, in CMPSD,
inDECB, inDECW, inDECD,
inDIVB, inDIVW, inDIVD,

inIDIVB, inIDIVW, inIDIVD,
inIMULB, inIMULW, inIMULD,
in INCB, in INCW, in INCD,
in INSB, in INSW, in INSD,
inLODSB, inLODSW, inLODSD,
inMOVB, mnMOVW, inMOVD,
mMOVSB, inMOVSW, inMOVSD,
inMOVSXB, inMOVSXW,
inMOVZXB, inMOVZXW,
inMULB, inMULW, inMULD,
inNEGB, inNEGW, inNEGD,
inNOTB, inNOTW, inNOTD,
inORB, inORW, inORD,
inOUTSB, inOUTSW, inOUTSD,
inPOPW, inPOPD,
inPUSHW, inPUSED,
inRCLB, inRCLW, mnRCLD,
inRCRB, mnRCRW, inRCRD,
inROLB, mnROLW, inROLD,
inRORB, inRORW, inRORD,
in SALB, in SALW, in SALD,
inSARB, inSARW, minSARD,

inSHLB, inSHLW, inSHLDW,

215

DACS 80386 UNIX V User's Guide
Appendix F

m.SHRB, mSHRW, mSHRDW,
m_SBBB, m SBBW, m SBBD,
m_SCASB, mSCASW, m-SCASD,
m_STOSB, mSTOSW, mSTOSD,
m_SUBB, mSUBW, mSUBD,
m_TESTB, m_-TESTW, mTESTD,
mXORB, mXORW, mXORD,
m_DATAB, mDATAW, mDATAD,

-- Special 'instructions':
m_label, mreset,

-- 8087 temp real load/store and-pop:
m_FLDT, mFSTPT);

type operandtype is
none, -- no operands
immediate, -- one immediate operand
register, -- one register operand
address, -- one address operand
systemaddress, -- one 'address operand
name, -- CALL name
register-immediate, -- two operands

-- destination is register
-- source is immediate

registerregister, -- two register operands
registeraddress, -- two operands :

-- destination is register
-- source is address

addressregister, -- two operands
-- destination is address
-- source is register

register_systemaddress, -- two operands :
-- destination is register
-- source is 'address

systemaddressregister, -- two operands :
-- destination is 'address
-- source is register

addressimmediate, -- two operands :
-- destination is address
-- source is immediate

systemaddress immediate, -- two operands :
-- destination is 'address
-- source is immediate

immediate_register, -- only allowed for OUT
-- port is immediate
-- source is register

immediateimmediate, -- only allowed for ENTER
register register immediate, -- allowed for IMULimm,

216

DACS 80386 UNIX V User's Guide
Appendix F

SHRDimm,
-- SHLDimm

registeraddressimmediate, -- allowed for IMULimm
registersystemaddress immediate, -- allowed for IMULimm
addressregisterimmediate, -- allowed for SHRDimm,

-- SHLDimm
systemaddressregisterimmediate -- allowed for SHRDimm,

-- SHLDimm

type register-type is (AX, CX, DX, BX,-- word registers
SP, BP, SI, DI,-- word registers
AL, CL, DL, BL,-- byte registers
AH, CH, DH, BH,-- byte registers
EAX,ECX,EDX,EBX,-- dword registers
ESP,EBP,ESI,EDI,-- dword registers

ES, CS, SS, DS,-- selector registers
FS, GS, -- selector registers

BX SI, BXDI, -- 8086/80186/80286
BPSI, BPDI, -- combinations
ST, ST1, ST2, ST3,-- floating registers

ST4,ST5, ST6, ST7,-
(stack)

nil);

-- the extended registers (EAX .. EDI) plus FS and GS are only

-- allowed in 80386 targets

type scaletype is (scale_1, scale_2, scale_4, scale_8);

subtype machinestring is string(l..100);

type machine-instruction (operand-kind : operand_type) is
record

opcode opcode type;

case operandkind is
when immediate =>

immediatel integer; -- immediate

when register =>
r_register register_type;-- source and/or

-- des:ination

when address =>
a_segment registertype;-- source and/or

217

DACS 80386 UNIX V User's Guide
Appendix F

-- destination

a_addressbase register_type;
a address index : register_type;
a-address scale : scaletype;
a_address offset : integer;

when systemaddress =>
sa address system.address;-- destination

when name =>

n_string machinestring;-- CALL
-- destination

when register immediate =>
r_i_registerto registertype;-

destination
r i immediate integer; -- source

when registerregister =>
r_r_registerto register-type;-

destination
r_r_registerfrom registertype;-- source

when registeraddress =>
r_a_registerto register type;-

destination
r_a_segment : registertype;-- source
r a address-base : registertype;
r_a_addressindex : registertype;
r a address scale scaletype;
r a address offset : integer;

when address_register =>
a_rsegment registertype;-- destination
a r address base : registertype;
a r address-index registertype;
a r address scale : scale_type;
a r address offset integer;
a_r_registerfrom : registertype;-- source

when registersystemaddress =>
r_saregister to : register_type;-

destination
r sa address system.address;-- source

when systemaddress_register =>
sa r address : system.address;-- destination
sa_r_regfrom : register_type;-- source

when address immediate =>

218

DACS 80386 UNIX V User's Guide
Appendix F

a_i_segment register_type;-- destination
a i addressbase : register_type;
a i address index : registertype;
a i address scale : scaletype;
a i addressoffset integer;
a i immediate integer; -- source

when systemaddressimmediate =>
sa i address : system.address;-- destination
sa i immediate : integer; -- source

when immediateregister =>
i r immediate : integer; -- destination
i_rregister : registertype;-- source

when immediate immediate =>
i i immediatel : integer; -- immediatel
i-i-immediate2 : integer; -- immediate2

when registerregister immediate =>
r r i registerl : registertype;-

destination
r r i register2 : register type;-- sourcel
r r i immediate : integer;-- source2

when registeraddressimmediate =>
r a i register : registertype;-- destination
r a i segment : registertype;-- sourcel
r a i addressbase : registertype;
r a i addressindex registertype;
r a i address scale scaletype;
r a i address offset integer;
r a i immediate integer;-- source2

when registersystem_address immediate =>
r sa i register register type;-

destination
addrl0 system.address;-- sourcel
r sa i immediate : integer;-- source2

when address_registerimmediate =>
a r i segment register_type;-- destination
a r i address base registertype;
a r i address index register_type;
a r i addressscale scaletype;
a r i address offset inteaer;
a r i register register_type;-- sourcel
a r i immediate integer;-- source2

219

DACS 80386 UNIX V User's Guide
AppendiA F

when systemaddressregisterimmediate =>
sa-r i address system.address;-- destination
sa-r i register register_type;-- sourcel
sa r i immediate integer;-- source2

when others =>
null;

end case;
end record;

F.9.2 Restrictions

Only procedures, and not functions, may contain machine code insertions. Also procedures that use
machine code insertions must be specified with PRAGMA inline.

Symbolic names in the form x'ADDRESS can only be used in the following cases:

1) x is an object of scalar type or access type declared as an object, a formal parameter, or by static
renaming.

2) x is an array with static constraints declared as an object (not as a formal parameter or by renaming).

3) x is a record declared as an object (not a formal parameter or by renaming).

All opcodes defined by the type OPCODE-type except the mCALL can be used.

Two opcodes to handle labels have been defined:

m label: defines a label. The label number must be in the range I <= x <= 25 and is put in the
offset field in the first operand of the MACHINE_INSTRUCTION.

mreset: used to enable use of more than 25 labels. The label number after a mRESET must be
in the range 1 <= x <=25. To avoid errors you must make sure that all used labels have
been defined before a reset, since the reset operation clears all used labels.

All floating instructions have at most one operand which can be any of the following:

- a memory address
- a register or an immediate value
- an entry in the floating stack

F.9.3 Examples

The following section contains examples of how to use the machine code insertions and lists the generated
code.

220

DACS 80386 UNIX V User's Guide
Appendix F

F.9.3.1 Example Using Labels

The following assembler code can be described by machine code insertions as shown

mov $7,$cax
mov $4,$eax
cmp $ccx,$cax
jg 1:
je 2:
mov $eax,$ecx

1: add $eax,$ecx
2:

with MACHINECODE; use MACHINECODE;
package exampleMC is

procedure testlabels;
pragma inline (test-labels);

end exampleMC;

package body exampleMC is

procedure testjabels is

begin

MACHINE_INSTRUCrION'(register-imme!iate, mMOV, EAX, 7);
MACHINEINSTRUCTION'(registerjimmediate, mMOV, ECX. 4);
MACHINEINSTRUCTION'(registerjregister, mCMP, EAX, ECX);
MACHINEINSTRUCTION'(immediate, mJG, 1);
MACHINEINSTRUCTION'(immediate, m JE, 2);
MACHINEINSTRUCION'(register-register, mMOV, ECX, EAX);
MACHINE_INSTRUCTION'(immediate. m label, 1);
MACHINEINSTRUCTION'(registerregister, mADD, EAX, ECX);
MACHINEINSTRUCTION'(immediate, m label, 2);

end test_labels;

end exampleMC;

F.9.4 Advanced Topics

This section describes some of the more intricate details of the workings of the machine code
insertion facility. Special attention is paid to the way the Ada objects are referenced in the machine code
body, and various alternatives are shown.

F.9.4.1 Address Specifications

Package MACHINECODE provides two alternative ways of specif.'ing an address for an instruction.

221

DACS 80386 UNIX V User's Guide
Appendix F

The first way is referred to as SYSTEMADDRESS and the parameter associated this one must be
specified via OBJECT'ADDRESS in the actual MACHINECODE insertion. The second way closely
relates to the addressing which the 80386 UNIX machine employs: an address has the general form

[base+index*scale+offsetl

The ADDRESS type expects the machine insertion to contain values for ALL these fields. The default
value NIL for segment, base, and index may be selected (however, if base is NIL, index should be also).
Scale MUST always be specified as scale_1, scale_2, scale_4, or scale_8. The offset value must be in
the range -2"'..211-1.

F.9.4.2 Referencing Procedure Parameters

The parameters of the procedure that consists of machine code insertions may be referenced by
the machine insertions using the SYSTEMADDRESS or ADDRESS formats explained above.
However, there is a great difference in the way in which they may be specified; wheher the procedure
is specified as INLINE or not.

INLINE machine insertions can deal with the parameters (and other visible variables) using the
SYSTEMADDRESS form. This will be dealt with correctly even if the actual values are constants.
Using the ADDRESS form in this context will be the user's responsibility since the user obviously
attempts to address using register values obtained via other machine insertions. It is in general not
possible to load the address of a parameter because an 'address' is a two component structure (selector
and offset), and the only instruction to load an immediate address is the LEA, which will only give the
offset. If coding requires access to addresses like this, one cannot INLINE expand the machine
insertions. Care should be taken with references to objects outside the current block since the code
generator in order to calculate the proper frame value (using the display in each frame) will apply extra
registers. The parameter addresses will, however, be calculated at the entry to the INLINE expanded
routine to minimize this problem. INLINE expanded routines should NOT employ any RET instructions.
Pure procedure machine insertions need to know the layout of the parameters presented to, in this case.
the called procedure. In particular, careful knowledge about the way parameters are passed is required
to achieve a successful machine procedure. Again there are two alternatives:

The first assumes that the user takes over the responsibility for parameter addressing. With this method,
the SYSTEMADDRESS format does not make sense (since it expects a procedural setup that is not set
up in a machine procedure). The user must code the exit from the procedure and is also responsible for
taking off parameters if so is required. The rules of Ada procedure calls must be followed. The calling
conventions are summarized below.

The second alternative assumes that a specific abstract A-code insertion is present in the beginning and
end of the machine procedure. Abstract A-code insertions are not generally available to an Ada user since
they require extensive knowledge about the compiler intermediate text called abstract A-code. Thus, they
will not be explained further here except for the use below.

These insertions enable the user to setup the procedural frame as expected by Ada and then allow the form
SYSTEMADDRESS into accesses to parameters and variables. Again it is required to know the calling
conventions to some extent' mainly to the extent that the access method for variables is clear. A record
is, for example, transferred via its address, so access to record fields must first employ an LES-instruction
and then use ADDRESS form using the read registers.

The insertions to apply in the beginning are:

2221

DACS 80386 UNIX V User's Guide
Appendix F

pragma abstract acode insertions(true);
aainstr' (aaCreateBlock,x,y,O,0, 0);
aa instr"(aaEnd ofdeclpart,0,0,0,0,0);

pragma abstract acode insertions(false);

and at the end:

pragma abstract acode insertions (true);
aainstr' (aaExitsubprgrm,x,O,x,nil_arg,nilarg); -- (1)
aainstr' (aaSetblocklevel,y-l,0,0,0,0);

pragma abstractacodeinsertions (false);

where the x value represents the number of words taken by the parameters, and y is the lexical block level
of the machine procedure. However, if the procedure should leave the parameters on the stack (scalar IN
OUT or OUT parameters), then the Exit subprgrn insertion should read:

aajinstr'(aaExitsubprgrm,0,0,0,nil-arg,nil_arg); -- (2)

In this case, the caller moves the updated scalar values from the stack to their destinations after the call.

The NILARG should be defined as

nil-arg : constant := -32768;

WARNING: When using the AAINSTR insertions, great care must be taken to assure that the x and
y values are specified correctly. Failure to do this may lead to unpredictable crashes in compiler pass8.

F.9.4.3 Parameter Transfer

It may be a problem to figure out the correct number of words which the parameters take up on the stack
(the x value). The following is a short description of the transfer method:

INTEGER types take up at least 1 storage unit. 32 bit integer types take up 2 words, and 64 bit
integer types take up 4 words. 16 bit integer types take up 2 words; the low word being the value, and
the high word being an alignment word. TASKs are transferred as INTEGER.

ENUMERATION types take up as 16 bit INTEGER types (see above).

FLOAT types take up 2 words for 32 bit floats and 4 words for 64 bit floats.

ACCESS types are considered an unsigned INTEGER type (32 bit). When 32 bit offset value, the
segment value takes up 2 words the, high word being the alignment word. The offset word(s) are the
lowest, and the segment word(s) are the highest.

RECORD types are always transferred b 'dress. A record is never a scalar value (so no post-procedure
action is carried out when the record pa. ,neter is OUT or IN OUT). The representation is as for
ACCESS types.

ARRAY values are transferred as one or two ACCESS values. If the array is constrained, only the

223

DACS 80386 UNIX V User's Guide
Appendix F

array data address is transferred in the same manner as an ACCESS value. If the array is
unconstrained below, the data address will be pushed by the address of the constraint. In this case, the
two ACCESS
values will NOT have any alignment words.

Packed ARRAY values (e.g. STRING types) are transferred as ARRAY values with the addition
of an INTEGER bit offset as the highest word(s):

+H: BITOFFSET
+L: DATAADDRESS
+0: CONSTRAINTADDRESS -- may be missing

The values L and Hi depend on the presence/absence of the constraint address and the sizes of constraint
and data addresses.

In the two latter cases, the form parameter'address will always yield the address of the data. If access is
required to constraint or bit offset, the instructions must use the ADDRESS form.

F.9.4.4 Example

A small example is shown below:

procedure unsigned add
(opl : in integer;
op2 : in integer;
res out integer);

Notice that machine subprograms cannot be functions.

The parameters take up:
opl • integer • 2 words
op2 • integer " 2 words
res • integer • 2 words
Total • 6 words

The body of the procedure might then be the following, assuming that the procedure is defined at
outermost package level:

procedure unsignedadd
(opl : in integer;
op2 : in integer;
res : out integer) is

begin
pragma abstractacodeinsertions(true);

aa instr'(aaCreate Block,3,1,0,0,0); -- x = 3, y = .
aa instr'(aa End of declpart,0,0,0,0,0);

pragma abstractacodeinsertions(false);

machine instruction' (register_system address, mMOV,

224

DACS 80386 UNIX V User's Guide
Appendix F

SAX, opl'address);
machineinstruction' (registersystemaddress, mADD,

EAX, op2'address);
machineinstruction' (immediate, mJNC, 1);
machine instruction' (immediate, m_INT, 5);
machine instruction' (immediate, m_label,1);
machineinstruction' (systemaddressregister, m_MOV,

res'address, AX);

pragma abstract acode insertions(true);
aainstr' (aaExitsubprgrm,0,0,0,nilarg,nil_arg);-- (2)
aainstr'(aaSetblocklevel,0,0,0,0,0); -- y-l = 0

pragma abstract acode insertions(false);
end unsignedadd;

A routine of this complexity is a candidate for INLINE expansion. In this case, no changes to the above
'machineinstruction' statements are required. Please notice that there is a difference between addressing
record fields when the routine is INLINE and when it is not:

type rec is
record

low : integer;
high : integer;

end record;

procedure add_32 is
(opl : in integer;
op2 : in integer;
res : out rec);

The parameters take up 2 + 2 + 2 words = 6 words. The RES parameter will be addressed
directly when INLINE expanded, i.e. it is possible to write:

machineinstruction'(system.addressegister, mMOV,
res'address, EAX);

This would, in the not INLINED version, be the same as updating that place on the stack where the
address of RES is placed. In this case, the insertion must read:

machineinstruction'(register-systemaddress, mLES,
ESI, res'address);

-- LES ESI,[BP+...]
machineinstruction'(address-register, mMOV,

ESI, nil, scale l, 0, EAX);
-- MOV [SI+0],EAX

As may be seen, great care must be taken to ensure correct machine code insertions. A help could be
to first write the routine in Ada, then disassemble to see the involved addressings, and finally write the
machine procedure using the collected knowledge.

Please notice that INLINED machine insertions also generate code tor the procedure itself. This code

225

DACS 80386 UNIX V User's Guide
Appendix F

will be removed when the /NOCHECK qualifier is applied to the compilation. Also not INLINED
procedures using the AA_INSTR insertion, which is explained above, will automatically get a
storage-check call (as do all Ada subprograms). On top of that, 8 bytes are set aside in the created frame,
which may freely be used by the routine as temporary space. The 8 bytes are located just below the
display vector of the frame (from SP and up). The storagecheck call will not be generated when the
compiler is invoked with /NOCHECK.

The user also has the option NOT to create any blocks at all, but then he should be certain that the
return from the routine is made in the proper way (use the RETP instruction (return and pop) or the
RET). Again it will help first to do an Ada version and see what the compiler expects to be done.

F.10 Main Program

A valid main program must be either

1. A library procedure without parameters

2. A library function without parameters returning an integer. The integer will be returned to UNIX
as the exit status code of the process. There is no checking on the type of the object returned by
the main program.

In neither case is the main program checked for the absence of parameters and the execution of a main
program with parameters is undefined.

226

