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1 Introduction

In previous papers (Poggio and Girosi, 1989, 1990) we have shown the equiv-
alence between regularization and a class of three-layer networks that we
called regularization networks and that are related to the classical interpola-
tion technique of Radial Basis Functions.

Let g = {(x1 ,y,) E R'n x R}$ 1 be a set of data that we want to approx-
imate by means of a function f. The regularization approach (Tikhonov,
1963; Tikhonov and Arsenin, 1977; Morozov, 1984; Bertero, 1986) selects
the function f that solves the variational problem of minimizing the func-
tional

N

H[f] = -(y - f(xj))2 + AIPf 12 (1)

where P is a constraint operator (usually a differential operator), Ii ii is
a norm on the function space to which Pf belongs (usually the L2 norm)
and A is a positive real number, the so called regularization parameter. The
structure of the operator P, that is called "stabilizer", embodies the a priori
knowledge about the solution, and therefore depends on the nature of the
particular problem that has to be solved. We have shown (Poggio and Girosi,
1989) that the solution of the variational problem (1) has the following simple
form:

N

f(x) = F cG(x; xj) + p(x)
i=1

where G(x) is the Green's function (Stakgold, 1979) of the self-adjoint dif-
ferential operator PP, P being the adjoint operator of P, p(x) is a linear
combination of functions that span the null space of P, and the coefficients
c4 satisfy a linear system of equations that depend on the N "examples", i.e.
the data to be approximated. The form of the term p(x) depends on the
stabilizer that has been chosen and on the boundary conditions, and there-
fore on the particular problem that has to be solved (for instance, it is not
needed in the case of P corresponding to a Gaussian or bell-shaped Green's
function). For this reason, and since its inclusion does not modify the main
conclusions, we will disregard it in the following. In the special case in which



P is an operator with radial symmetry, the Green's function G is radial and
therefore the approximating function becomes:

N

f(x) = G(l x - xjJ2), (2)

which is a sum of radial functions, each with its center x, on a distinct data
point. Thus the number of radial functions, and corresponding centers, is
the same as the number of examples.

In this note we indicate how to extend our theory of learning from exam-
pies in order to deal with 1) occurence of unreliable examples, 2) negative
examples. Both problems are also interesting from the point of view of clas-
sical approximation theory:

1. discounting "bad" examples corresponds to discarding, in the approxi-
mation of a function, data points that are outliers.

2. learning by using negative examples - in addition to positive ones -
corresponds to approximating a function based not only on points to
which the function must be close but also on points - or regions - that
the curve associated with the function must avoid.

2 Unreliable data

Suppose that the set g = {(xi,yi) E R'n x R} _ of data has been obtained
by random sampling a function f, defined on R'h, in presence of noise. We
are interested in recovering the function f, or an estimate of it, from the
set of data g. We take a probabilistic approach, and regard the function
f and the data g as random, dependent, variables. Using Bayes theorem,
it is possible to express the conditional probability P[flg] of the function f
given the examples g in terms of the a priori probability of f, P[f], and the
conditional probability of g given f, P[g.f], that is equivalent to a model of
the noise:

P[flg] C [gfI PP[f]. (3)

If the noise is Gaussian the probabilitv Pgffj can be w-itten as-
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q C~ i - n (' 1('  (4)

where 3i = and ao is the variance of the noise related to the i-th data
point. Under some assumption on the stochastic process f (Marroquin et al.,
1987; Geman and Geman, 1984) it is possible to write the a priori probability
P[f] in the following way:

"PIf] c eI
llpf 112

where P is a constraint operator (usually a differential operator), II II is a
norm on the function space to which Pf belongs (usually the L 2 norm) and
A a positive real number. This form of probability distribution gives high
probability only to those functions for which the term IIpf 112 is small, and
embodies the a priori knowledge that one has about the system. For example
if one knows that the function f that has been sampled is very smooth, in
the sense that it does not vary too "quickly" in its domain, the operator P
will be a differential operator of high degree.

Using Bayes theorem (3) the a posteriori probability of f can be written
as

PV[ 1g] 0C e- €[,. 'in -sx,) alfl (5)

A simple way to obtain an estimate of the function f from the probability
distribution (5) consists in taking the so called MAP (Maximum A Posteriori)
estimate, that is the function that maximizes the a posteriori probability
"P[ffg], or minimizes the exponent in equation (5). Setting for simplicity all
the variances ai equal to one fixed variance a, and defining from here on

Ai = Yi - f(),

the MAP estimate of f is then the minimum of the following functional:

H0[f]= 1 N- V(A,) + AlPf 112 (6)

where we have defined the quadratic function

V(X) = X2

5 3



This is equivalent to the so called "regularization technique" (Tikhonov,
1963; Tikhonov and Arsenin, 1977; Morozov, 1984; Bertero, 1986) that has
been extensively used in order to solve ill-posed problems, of which this is a
particular example. The parameter A, that is usuaiiy called "regularization
parameter", determines the trade-off between the level of the noise and the
strength of the assumptions about the solution, therefore controlling the com-
promise between the degree of smoothness of the solution and its closeness
to the data.

In the approach outlined here we have assumed to know the variance of
the noise associated with each data point, but this assumption is not always
realistic. Sometimes we know that some of the data can be affected by a
high amount of noise, or can be completely wrong. In order to deal with this
situation, we regard the variances of the noise, as well as the unknown func-
tion, as random variables. Of course, some a priori knowledge about these
variables, represented by an appropriate a priori probability distribution, is
needed. Let us denote by /3 the set of random variables {/3} . By means
of Bayes theorem we can compute the joint probability of the function f and
of the set 3:

Pff, 01g] c 'P[glf, ] P[f] P[] (7)
where Pfgif, /1 is the same as in equation (4) and P[O] is the a priori prob-
ability of the set of variances 8. The model above, that leads to standard
regularization, is recovered by setting

N
,L]= fl S(, -/3

iral

where 8/' are some fixed values. Depending on the a priori knowledge on 3
different models may arise, corresponding to different choices of P['31. Here
we consider the following situation: we have knowledge that a certain per-
centage, e, of data is spurious (we will call them "outliers") whereas a per-
centage (1 - c) is characterized by a Gaussian noise distribution of variance
8M. Therefore there are only two possibilities: 8i = 83, for the "true" data
points, and O3 = 0, for the outliers. This situation leads to choosing the
following probability distribution:
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N

PI] = 1"[(1 - c)S(#, - j') + .()] (8)
i=1

Given the a posteriori probability (7) we are mainly interested in comput-
ing an estimate of f. Thus what we really need to compute is the marginal
posterior probability of f, P.[f I, that is obtained integrating equation (7)
over the variables &3 :

0N

Pm[f] =/o j1" d, 'P[f, #lg]P-IA= JOi=1

Using the model for 2'[#] described by equation (8) we obtain:

Pm,[f] C e_,NIPfI 2 fI dze - 'a, [(1 - C)6(x - #*) + f 6(z)].
i--1

The integral yields

pM[f] C e-_lP'fj2  I [ 004? +

In order to make clear the meaning of such a marginal probability distri-
bution we rewrite as:

PM [f] 0C e (# E .,(A)+A1lPf11 2)

where we have defined the effective potential

Veii(x) = x- 2_ ln(1 + e(#X2

and we have set -Y = In ... The MAP estimate for f given by this probability
distribution is obtained by minimizing the functional

N

H,.[f] = 1F _ Vffi(Ai) + AllPf 112) (9)

The introduction the random variables 3i leads, therefore, to a new mini-
mization problem. Let us compare the functionals (9) and (6). The functional
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(9) is similar to the standard regularization functional (6), the only difference
being in the data term. In the standard regularization functional the data
term consists of the sum over all the data of a quadratic function V of the
interpolation error Aj, and its role is to enforce closeness of the solution to
the data. In the last case the quadratic function V has been substituted by
the function Vff, depicted in figures (1) and (2), whose shape depends on
the parameters 0" and e.

Figure (1) shows the effective potential for different values of e, and for
= 1.0. In the case of e = 0 we obviosly recover the regularization model,

since

lim Vq f(x) = V(x) = x2 .

When e is different from zero V (x) has two different behaviours: quadratic
in a neighborhood of the origin, and constant far away from it. The effect
of this behavior is clear: closeness to the data is enforced only when the
interpolation error is small. In particular we notice that:

lim Vff (x) = 2(1 -
z-O

When e increases and approaches 1 the effective potential becomes flatter
and flatter, which is equivalent to the effective variance of the noise becoming
larger and larger.

Let us consider the case of positive values of -y, that corresponds to values
of e smaller than 0.5. This is the usual case, since f represents the percentage
of "true" data points. (2) In the limit of 0 -- oo the effective potential Veff
is quadratic if the absolute value of its argument is smaller than vF and
constant otherwise (fig. 2). This corresponds to the situation in which we
have "true" data points without noise: therefore data points are considered
reliable if the interpolation error is smaller than a threshold (,/'y) and their
contribution neglected otherwise. In the case of negative values of Y, which is
the case of a percentage of outliers greater than 50%, the effective potential,
that is already flat, becomes even flatter when 3* increases. This case is not
very interesting and in the following we will always make the assumption
that 7 > 0, that is f < 0.5.

The standard regularization functional and the functional (9) admit a
simple physical interpretation. Let us consider for simplicity a function de-
fined on a one-dimensional lattice. The value of the function f(xi) at site Z

6
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is regarded as the position of a particle that can move only in the vertical
direction. The particle is connected by a spring to a point that corresponds
to the data value yi, and is also connected by springs to some neighboring
particles. The size of the neighborhood can vary, but the overall effect is such
that the values of the function at neighboring sites tend to be the same. The
particle is attracted, with a quadratic potential, by the data point, but it is
also attracted by the neighboring particles: the configuration of the system
will be the one that minimizes the total energy, depending on the trade off
between these two different effects. The energy of the system corresponds
in this scheme to the standard regularization functional: the first term is
associated to the springs connecting the particle to the data point, and the
second term is associated to the the springs connecting neighboring particles,
whose role is to enforce smoothness of the final configuration. The stabilizer
is represented by the relative strength and the extension of the connections
of the particles at neighboring sites: a stabilizer of high degree corresponds
to a system in which a particle at a site is connected to particles at sites very
far away.

The functional (9) admits a similar interpretation, the cnly difference
being the kind of springs that connect the function value to the data point:
in this case the potential energy of these springs is not quadratic anymore,
that is the force associated to each spring does not grow linearly with its
elongation. The potential energy becomes constant when the elongation is
larger than the threshold f, and the force (that is proportional to the first
derivative of the potential energy) goes to zero. In a sense these springs break
if we try to stretch them too much.

3 Negative examples
As we have seen in the previous section, standard regularization admits an
interpretation in term of linear springs, whereas regularization in presence
of unreliable data needs an interpretation in term of nonlinear springs, that
break when the elongation is too large. Nonlinear springs have also been
used to deal with discontinuities (Geiger and Girosi, 1989, 1990; Blake and
Zisserman, 1987), and we show now another case in which they are very
useful.

In many situations, fi:rther source of information about the function may

9
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the regularizing functional can be written as

N K
H[f] = VA) - E Vei(A.) + AIPfII1.

i=I ---

4 Solution of the variational problem

In this section we discuss the solution of the variational problem associated
with the regularizing functionals of the previous sections. Since the cases
of unreliable data and of negative examples are formally similar we will de-
rive the equations only in the case of unreliable data. The functional to be
minimized is

N

Hm[f] = ,8* Veij(Ai) + A lIPfIll) (10)
i=1

and the Euler-Lagrange equations for this functional have the form:

0 P Pf (x)= TA _=1 Vf f (' )6(x - x') (1

where Vlf f(x) is the first derivative of Veif(Z), that is

2xV.() = + e'y

We notice that the in the limit of e - 0, that is in the case of springs that
never break, -y goes to infinity and V'(z) -+ 2x. In this case the standard
regularization equations

P Pf(x) = (12)
j=1A'( '

are recovered. Equation (11) shows the same structure of that associ-
ated with the standard regularization case, and the solution can be derived
using the Green function technique (Stakgold, 1979). As in the standard
regularization case, (Poggio and Girosi, 1989) the solution will be a linear
superposition of Green functions, one for each data point:

11



N
f(x)=4 cG(x; x) (13)

jil

where, in the general case,

2A
We notice however that expression (13) is not the complete solution of

the minimization problem. In fact all the functions that lie in the null space
of the operator P are "invisible" to the smoothing term in the functional
(10), so that the previous expansion is the solution modulo a term that lies
in the null space of P. According to the considerations contained in section
1, in the following we will drop it from equations.

In order to find the vector c of coefficients c4 we substitute the expansion
of equation (13) in the functional H[f] defined in equation (10), that becomes
a function H*(c) of the coefficients. Thus the vector c minimizes the function
H*(c), which leads to the following set of equations:

a= k ,N (14)

Gradient descent is probably the simplest approach for attempting to
find the solution to this minimization problem, though, of course, it is not
guaranteed to converge. Several other iterative methods, such as versions of
conjugate gradient and simulated annealing may be more appropriate than
gradient descent, and their use is reccomended. In the gradient descent
method the vector c that minimizes H*(c) is regarded as the stable fixed
point of the following dynamical system:

alH(c)
(c(15)

where w is a parameter determining the microscopic timescale of the problem
and is related to the rate of convergence to the fixed point.

We consider for simplicity the case of positive definite Green's functions,
that do not require any additional term in eq. (13). In this case it has been
shown (Poggio and Girosi, 1989) that, with natural boundary conditions, we
can write

12



IlIPf 112 = c. GC.
where G is the symmetric matrix (G)ij - G(xi; xj) - its symmetry coming
from the fact that the operator PP is self-adjoint.

Equations (15) have then the following form:

ac
that, defining

1
0"i --. (-) 31 + e-B('-A?)' Ei -"Oii

can be written as

c = -2wG[(#*EG + AI)c - rEy] (16)
wher I is the identity matrix. The vector c that minizes H*(c) has then to
satisfy the following set of non linear equations:

( *EG + AI)c = O*Ey, (17)

the non linearity being contained in the matrix E, that is a nonlinear function
of the unknowns. Notice that

limE = I

and in this case the linear standard equations are recovered (Poggio and
Girosi, 1989). The main implication of the nonlinearity is that the solution of
these equations is not unique anymore, the different solutions corresponding
to the local minima of the functional (10). Notice that it is straightforward to
modify the previous gradient descent equations in order to take into account
negative examples.

5 Experimental Results
In this section we describe some results that we obtained applying these
techniques to very simple one-dimensional problems. We first discuss an

13



example unreliable data, and then a problem with negative examples. We
used a gradient descent algorithm with adaptive step, running on a SUN 4
workstation. The code for these simulations has been written in Common
Lisp, and in all the examples that we will describe in the next section, the
time required for 100 iterations of the gradient descent algorithm was about
30 seconds. In the following figures data points are represented by large dots.

5.1 Unreliable data

We approximate the function f(z) = cos(x) in the interval [-1, 1]. The
data set consisted of seven examples, randomly chosen from the graph of f.
In order to create an outlier in the data set, we substituted the value of the
fourth point with the value 1.5, that is 50% larger of the largest value of the
other data points. The Green's function of the problem was a Gaussian of
variance a = 0.3, the parameter e was set to 0.1, and the parameter / was
set to 6. With this values of E and 3 the effective potential was approximately
constant for values of its argument larger than 1. In figure (4a) we show the
result that is obtained applying standard regularization theory to approxi-
mate the data set. The value of the regularization parameter A is 10-2, and
the result obtained after 200 iterations of the gradient descent algorithm is
shown. The solution, that almost interpolates the data set, hardly resembles
a cosine function, due to the outlier. If the springs are allowed to break, we
obtain the result shown in figure (4b), after only 10 iterations of gradient
descent: the spring of the outlier breaks, and the solution is not influenced
by the outlier. Since the variance of the Gaussian Green's function is small
(a- = 0.3) the solution has a "hole" in correspondence of the outlier, because
there are no data there. A similar situation is shown in figures (4c) and (4d),
the only difference being the value of the regularization parameter, that is ten
times larger, that is A = 10-1. We notice that, since the Green's function is
bounded, increasing the regularization parameter has the effect of decreasing
the norm of the solution (see Poggio and Girosi, 1989). This effect is evident
when comparing figures (4a) and (4b) with figures (4c) and (4d).

5.2 Negative examples

In order to test the negative example technique we choose again, as a
function to be approximated, the cosine function f( x ) = cos(x), randomly

14
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sampled at seven points in the interval 1-1,1]. In all the experiments the
regularization parameter was set to zero, its role not being crucial in this
case. The Green's functions we used were always Gaussians, with variance
different from case to case. The fourth data point, whose coordinates were
(x,y) = (-0.15,0.99), was selected as the negative example, and the pa-
rameters 0* and f was the same as in the previous case, so that the springs
could break if the elongation were larger than 1. This meant that the result
had to be a function f*(x) that approximates the six "positive" examples,
but such that If*(-0.15) - 0.991 ' 1. There are clearly two possibilities:
(f-(-0.15) - 0.99) > 1 and (0.99 - f*(-0.15)) > 1, corresponding to func-
tions "passing above and below the negative example". These configurations
corresponds to two different minima of the functional, and we expect to ob-
tain one of these two configurations depending on the initial conditions of
the gradient descent algorithm.

In figure (5a) and (5b) we show two results corresponding to two different
local minima. Convergence was reached in 50 iterations, and in both cases
the variance of the Gaussian is or = 0.2. In figure (5a) we set as initial
condition ci = yi, and in figure (5b) we set cj = 0.0. In the first case the
initial condition corresponds to a function that is "above" the data, while
in the second case the initial function is zero everywhere, and then "below"
the data. In the first case the final value of the "energy" of the system was
H = -0.996, that is very close to the global minimum energy H = -1.0,
while in the second case the energy was H = -0.931. Interpreting these
results in terms of springs, it is evident, in figure (5b), that the spring on the
left of the negative example is not sufficiently strong to pull up the solution
to the datum. We then changed the elastic constant of this spring and of the
corresponding one on the right of the negative example, setting their values to
10, that is ten times larger than the other ones. The result is shown in figure
(5c), and it is clearly better than the one shown in figure (5b), its associated
energy being H = -0.995, that is comparable with the value H = -0.996 of
figure (5a).

From the previous result and many other experiments it is apparent that
the energy landscape associated with this minimization problem could be
very complicated, with many local minima corresponding to the two types
of configurations ("above" and "below"). It is natural to ask whether during
the gradient descent iterations the system naturally "jumps" from one of
these configurations to the other one. The answer is given in figures (6a) and
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(6b). In figure (6a) we show the configuration of the system corresponding
to the iterations 1, 30, 31 and 40 of the gradient descent algorithm. The
variance of the Gaussian Green's function is a = 0.8, and the starting point
of the descent procedure is c = 0.0. At the beginning the configuration is of
type "below", because it is identically zero, and then it stabilizes around an
interpolating function until iteration 30. At iteration 30 the system jumps
in a configuration of type "above", whose energy is much lower, and then
converges rapidly to a local mimimum. In figure (6b) the energy of the
system is shown as function of the number of iterations: notice the jump at
iteration 30, that probably corresponds to a discontinuity of the gradient of
the energy surface.

In order to escape local minima we used a simple form of stochastic
gradient descent, adding a white noise term to eq. (15). The noise term
was used only to get out of local minima, that is it was switched on only
when the energy decreased, from one iteration to the next one, of an amount
lower than a small threshold (usually 10-'). The usefulness of the noise is
shown in figures (7a) and (6b). The data are the same of figures (6) and (5),
but the break point of the spring of the negative example has value 1, the
variance of the Gaussian Green's function is a = 0.4 and the amplitude of
the noise is 102. In figure (7a) we show the result of the gradient descent
algorithm without noise. Convergence was obtained after 25 iterations, and
the result is not very good, corresponding to some local minimum. In figure
(7b) we show the result of the stochastic gradient descent algorithm after 1000
iterations: the local minima have been escaped, and the result is almost a
perfect interpolant on the "positive" examples.

Interesting effects take place if we raise the amplitude of the noise. In
figure (8a), (8b) and (8c) we show what happens if, in the previous example,
we set the amplitude of the noise to 10', instead of 102. The results of
the stochastic descent procedure are shown at iterations 200, 500 and 2000.
We notice that the system jumps from a configuration of type "below" to a
configuration of type "above" and then to a configuration of type "below"
again. This suggests that there are several local minima, and the noise makes
the system jumping from one to another. In figure (8d) the energy of the
system as function of the number of iterations is shown: notice that the
algorithm does not inject the noise continuosly, but only when the energy
stops decreasing.
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I

6 Remarks

1. The first extension we have introduced here - to deal with unreliable
data - may be important in problem of the type of surface reconstruc-
tion, as one encounters in computer vision. It may or may not be useful
in problems of learning from examples.

2. The second extension - to exploit negative examples - is especially
interesting for the problem of learning, where often negative examples
are present (though they usually are less important than the positive
ones). In some cases it may be useful also in problems of approximation
of functions. There are situations in which one knows that certain
regions of the range of the function are forbidden. Tnterestingly, this
type of problems seems to have been ignored in the classical approach to
function approximation (see Verri and Poggio, 1988 for related, simpler
and more classical cases). The functional we considered, and then the
type of spring we used, is feasible of further modifications, according to
the a priori knowledge about the system. For example, the constraint
that the values of a one dimensional function are bounded from above
(and/or below) can be included using springs that are negative from
one side and positive from the other side.

3. In both the extensions that we have presented the solution has the
form (13), which has a simple interpretation in terms of feedforward
networks with one layer of hidden units, of the same class uf the regu-
larization networks introduced in previous papers (Poggio and Girosi,
1989; 1990).
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