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1 Introduction

Whole-arm Manipulation is the description and control of every active surface of
a robot [1, 2, 3]. In the real, unstructured environment contacts at locations other
than the end-effector are both inevitable and useful. Pushing and shoving [41 as well
as striking, cradling and inter-link grasping are examples of such operations. People
frequently use their arms to hold a bundle of logs, grasp a barrel, snag a loop, cushion
a blow or push off from a constraint. To get the maximum utility from expensive
manipulators in critical and unstructured situations, we should not preclude such
operations from the arm's repertoire. With this perspective, the distinction between
fingers, arms and multiple cooperating robots begins to blur.

The description and control of these types of motions and effectors provides an
opportunity to reexamine traditional manipulator motion control. The choice of a
kinematic system should be guided by the utility of the system for describing the
tasks of interest. For end-point manipulation where the concern is the orienting and
positioning of an object that is affixed to the robot at a given point a Cartesian frame
of reference is clearly of high utility. However, consider a manipulation problem where
the point of interaction is not specifically described, and where a range of possible
interaction locations is allowed. In this case, specifying a motion for a fixed point
on the manipulator may be overly constraining and may not fit the kinematics and
motion constraints of the task. In particular, for pushing objects with the links of
a manipulator, or for examining the workspace of a robot (searching) a different
kinematic approach called line kinematics has proven useful. In this approach, one
or more links of the manipulator are controlled to lie along a desired line.

In this paper we will describe line kinematics and its application to robotic ma-
nipulation. We introduce the idea of controlling the trajectory of a line that passes
through the link of a manipulator. We will review the basic concepts of line theory
and present the line Jacobian, line-workspace, and stiffness of a line. We will also
apply these concepts to the WAM-1 including the calculation of both forward and
inverse line kinematics and generation of bounded deviation line trajectories.

It should be noted that the line segment formed by a manipulator's link will have
some friction along its length. This implies that this "line" can exert five forcesf
and not the usual four associated with a frictionless line. However, in all cases the
four forces associated with a line will be the most reliable. Additionally, we will be
focusing on kinematics, or positioning, for which a line description is sufficient.

This work was demonstrated on a 4-degree-of-freedom manipulator that has been
designed and built at the Massachusetts Institute of Technology's Artificial Intelli- .1
gence Lab (the WAM-1) as shown in figure 1. A description of this demonstration is
provided.
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Figure 1: MIT Whole-Arm Manipulator.

2 Line Geometry

2.1 Line Representation

The representation of lines as fundamental spatial elements was originally con-
ceived by Plicker in 1846; however the following notation is due to Grassmann in
1844 and the quadratic relation to Cayley in 1859, [5] and [6]. The result is what
has become known as the Plficker coordinates for a line in space. Let Xl,..., X4 and
yl, ... y4 be the homogeneous coordinates of two points on a line. Then the sextuple
C -- (C 4 1 , C4 2 , C4 3 , C23, C31, C1 2 ) where

cij = Xiyj - Xjyi

defines the six homogeneous Plicker coordinates of a line in space. Lines in space
are in one-to-one correspondence with the equivalence classes of Plicker coordinates
under the relation c - c' if c = Ac' for some A E R. In our analysis we will use a
normalization of the Plicker coordinates, to a constant p, to represent tines. Let Ld

denote the space of directed lines,

Ld ={1l=(, )liLE R 3 ,II=p and l.i=0,

where p is some constant. and has units of length. Note the first three elements
correspond to the direction of the line, scaled by p and the last three i to the moment



S 3

of the line. Often in the literature, p is chosen to have unit length, here we have
chosen to show the effect of scaling throughout this discussion by not making this
choice.

2.2 Operations on Lines

Formulas for the angle, minimum distance and moment between two lines are
given in [7]. Let x,y E L be two lines. The angle a between the lines is

a = sin - , a E [rp2 a [0, w/2]

and the minimum distance is

d.. = pl(x 0 y)I/Ic x I d_ > 0,
where x ® y denotes the moment between two lines defined by

z ® y = . + Z..

Note that parallel lines have a moment of zero so that the d.. is also zero for parallel
lines.

Let il be a line represented in coordinate frame Aj. Its representation in coordi-
nate frame Ai is given by

--. 1= ix,= i R
i i . i

where 'R is the 3 x 3 rotation matrix from Ai to Ai and 'X is the 3 x 3 antisymmetric
matrix which yields the cross product of the origin of the Ai with respect to Aj with
'R. The inverse of P is denoted jP and is equal to the matrix formed by transposing
each of the component matrices.

In the application of line geometry to trajectory generation for mechanisms, it is
necessary to determine a unique measure of the error in alignment between to lines.
This measure must weight both the error in the alignment of the directions and the
moments. One that has proven useful in our work is:

d4x,y) = V5I - P, + Z - 91()

Note, since p is used in the scaling of the directions of the lines, this distance will
reflect that scaling. The advantage of this distance over a weighted sum of the angle
between and the distance between two lines, such as:

drn+ ~ 2  (2)
is that measure( 2) is zero for two lines that are parallel but not necessarily collinear.
We will use the measure of equation( 1) to generate line trajectories for WAM-1 with
p equal to the length of the third link which provides a balance between errors in
angle and errors in distance.
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3 Line Kinematics

In order to generate motions for a manipulator in line space, we must determine
the forward kinematic relationship. This function will determine the line (or assem-
blage of lines) determined by a set of joint angles. The derivative of this function,
with respect to the joint angles, relates velocities in joint space to line velocities. This
same Jacobian can be used, via virtual work, to determine the relationship between
joint torques and line forces. This will permit us to define and control line stiffness.
Lastly, for a manipulator with four or fewer freedoms we can use the Jacobian to
determine by integration the volume of lines reachable by the manipulator.

3.1 Kinematic Transformations

Suppose a mechanism is defined as a serial assemblage of lines connected with
joints. The transformation matrices jP will be a function of the intervening joint
positions 0 = (01,... 0,,). Therefore we can define a function from joint space, 0 the
set of all possible joint angles, to the line space L defined by the last line,

f:o-,L, (3)

where
f(#) =P(O) 1', (4)

where ' is the line coordinates of a line in its own frame or ( 0 0 p 0 0 0). In
general the function f is not invertible, since that would require the function to be
one-to-one. However if the dimension of 0 is less than or equal to four, f can be
finite-to-one, as in the case of the WAM-1. This function can be applied repeatedly
to generate trajectories.

3.2 Line Trajectories

A line trajectory is a continuous function from an closed interval to line space.
If the image of the interval is in the workspace and the function from joint space to
line space is invertible, a trajectory in line space can be mapped into joint space.

A convenient line trajectory, between an initial and final line, is a linear interpo-
lation of distance and angle along the common normal between two lines. Given a
length of time t, a recursive bounded deviation joint path can be generated from 11
to 12 by using the distance measure of equation( 1), [8]. This is an extension of the
recursive bounded deviation method for Cartesian interpolation described in (9]. The
trajectory is generated by recursively refining a set of intermediate lines lying along
the path between 11 and 12.

First, the inverse kinematics is solved to compute the joint parameters that will
place the link line on 11 and on 12. Then, the distance between the desired line at
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t/2 and the line produced by straight Line joint interpolation at t/2 is computed.
If this distance is less than the maximum deviation the computation is complete.
Otherwise, we redefine 12 to be the desired line at t/2 and try the procedure again
with t = t/2. Tests for singularities and limits on the maximum joint velocities are
also necessary.

Using this procedure and the operations on lines so far defined, the motion of a
manipulator can be controlled with lines. For some tasks, (eg. pushing and search-
ing) this is more powerful way to think about accomplishing a task than endpoint
motions. For example, since stable pushing is most easily accomplished with a two
point contact, which can be generated by contact with a line segment, the motion of
the segment can be controlled by specifying the motion of the whole line. Of course,
in planning the motion the constraint of the limited length of the robot link must
also be introduced. This leads to a procedure where first all possible line locations
that lead to stable pushing are generated. Then this set is pruned with the constraint
of reachability of the line by the manipulator, and then finally the resulting set is
pruned with the limited length of the link constraint. Other procedures which exploit
the ability to specify the motion of the manipulator with lines can be used to search
the reachable space. An example of this is described in section 5.

3.3 Differential Transformation

For differential motions and compliant tasJ:s the concept of a line Jacobian and
line stiffness must be introduced. The derivative of f is the line Jacobian J, which
is simply the 6 x n matrix of partial derivatives of f with respect to 0:

4 9fi

In general, J will have rank r < min(4, n).
In the line frame, the first three rows of the Jacobian relate joint velocities to the

velocity (in [length]/[time]) of the tip of the vector pi. Since motions in the direction
of the line, (the third coordinate in this definition) are undefined, the third row of
the Jacobian is identically zero. The last three rows of the Jacobian relate joint
velocities to the velocity of the tip of the vector 1. Because of the constraint i . I = 0,
we muse have the differential relationship dl 1 + i . di = 0. Referring to figure 2, a
line in its own frame, we see that this relationship yields [d!] 3 = R[di]2 /p, where the
subscripts denote subcomponents of the vectors. This relationship is enforced by the
linear dependence of the last row of the Jacobian with the second row.

3.4 Line Stiffness

Complementary to line velocities, we define line force to be a set of generalized
forces that tend to displace the line along its generalized coordinates; that is, a line

Sa.
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force p on a line I is a sextuple p = (pi,.. ,P6) in the tangent space P1 = TL of the
line space L evaluated at 1. Hence line stiffness is the 6 x 6 matrix K that relates
line position to line force,

p=K1.

This is a 6 x 6 rigid body stiffness defined in the usual sense. The projection of the
this stiffness from the line space into joint space via

r = jTp.

reduces the rank of the stiffness to four. Therefore, the resulting joint stiffness Ka,
as related to line stiffness K, is given by

KO = JTKj.

This stiffness matrix will result in a zero stiffness along the direction of the line and
for twists about the line. The other stiffness will generate torques to correct errors
in the direction of the line and in the moment of the line.

3.5 Line-Workspace

The Jacobian can also be used to find the "volume" of lines that can be reached
by a particular manipulator with four or fewer degree-of-freedom. This provides a
measure of the line-workspace for a particular manipulator.

Let W = f(0) be the subset of line space defined by the image of 9 under f
in equation 3, which we will call the line workspace. The boundaries of W in L
correspond to singularities of the workspace and are found by examining the rank
of J. Singularities occur where the rank of J is less than r. The volume of the
workspace, for n < 4, is

V(W)JdWJ~ ~~~ O 5

Since J is homogeneous, the volume will have units of [length]4 . However, homogene-
ity was produced by the introduction of the scaling factor p, and consequently the
measure will depend on this value. In comparing different manipulators a uniform
choice of p must be used. An example of this workspace is given in section 4.3.

4 Whole-Arm Manipulator Line Kinematics

We have applied these ideas to the WAM-I constructed at the Massachusetts Insti-
tute of Technology's Artificial Intelligence Lab. This manipulator has four freedoms
with the Denavit-Hartenberg parameters given by the following table.



coordinate link
frame twist link link joint

number (radians) length offset angle
Z a. 1  a_1. di 0

1 0 0 0 61
2 7r/2 0 0 02

3 -r/2 0 L 3  93

4 7r/2 A 3  0 04

5 -7r/2 -A 4  L4  0

Denavit-Hartenberg parameters of the MIT Whole-Arm Manipulator.

The values L3 and L4 are the inner and outer link lengths, 22 inches and 17.5 inches
and A 3 and A 4 are the offsets in the manipulator, 1.6 inches and 1.1 inches. See
figure 1 for a sketch of the kinematics.

In this paper, we will consider an idealized version of the WAM-1 with kinematics
offsets A 3 and A 4 set to 0. For the detailed forward and inverse line kinematics of
the true manipulator see f81.

4.1 Forward Kinematics

The forward kinematics of a line is a transformation of coordinates from a local to
a global reference frame where the transformations depend on the joint angles. The
coordinates of the line through the last link of WAM-1, defined with respect the last
frame, is

1 [0 0 P 0 0 0 ]T

and, defined with respect to the base frame, is
f(0) = 8 1. (6)

1P(O)2P(O2)3P(O3)4P(O4)P .(6

Each 'P(9O) in equation 6 is a function of the Denavit-Hartenberg parameters for a
single joint. Applying these parameters to each 'P(Oi) and multiplying yields the
forward kinematic relation

p ((S1 S 3 - C1 C2 C 3) S4 - C1 C4 S2)
P((-Ci S3 - C2 C3 S) 4 - C4 S1 S2)

f(o) p(-C 3 S 2 S 4 + C 2 C4 )
(Cl C2 L3 S3 + C3 L3 SI) S4
(C2 L 3 S1 S3 - C1 C3 L 3) S4

L3 S2 S3 S4

The set of lines that can be reached by the manipulator is defined as the line
workspace W. Ignoring joint limitations, W consists of all lines through all points

-p mmm mmm m w mmm m
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Figure 2: Definition of Line Direction in Line Frame

on a sphere S of radius L3 traced by the end of the third link. The first two joints
position the last joint anywhere on S, while third and fourth joints act as a spherical
joint to locate the direction of the line.

The forward line kinematics has two kinds of singularities: the boundaries of IV/
and locations where the axes of the manipulator align with each other or with the
line axis decreasing the freedoms available to the robot. The boundary of W consists
of all lines that are tangent to S. A manipulator in a configuration that produces
one of these lines cannot translate the line further away from the origin. This is the
equivalent of the maximum Cartesian reach of a robot. For the WAM-1, this consists
of all 0 for which 04 = ±7r/2. The second type of singularity occurs when 02 = 0
which aligns the first and third joint axes, and 04 = 0, which aligns the third joint
axis with the line axis.

These singularities can be found by determining the conditions under which the
Jacobian given by equation 7 has rank less than four. The Jacobian J defined with
respect to the line frame, see figure 2, is given by

-pS 2 S3  -PC 3  0 -p
-p (C2S4 + C3 C4S2 ) pC4S3  -pS4 0

0 0 0 0
C2C4L3S4 - C3S4L3S2  S2L 3S3  C4L3S4  0

0 0 0 -C4L3
-C 2S L3 - C3C4L3S2S4  C4L3S3S4  -S 2 L3  0

The first three rows of J give the change in the direction of the line as a function
of the joint velocities and the last three give the change in the moment of the line.
The independent motions for I in the line frame, are in the ; and direction. Motions
in the direction i are not possible as indicated by the zero row of J. The moment
of the line may change in length which is equivalent to translating the line in the
direction of i. The moment may also rotate about the direction of the line which
is given by the fourth row of J. The last row of J is equal to the second row times
SL 3/p and ensures that I and 1 remain perpendicular when the direction of the line
is changed in the direction.
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4.2 Inverse Kinematics

The inverse kinematics for a line is solved by a series of geometric transformations.
A line that does not pass through the origin of the global coordinate system which
is located at the intersection of the first three axes of the robot) defines a plane with
the origin in which the inverse kinematics can be solved. Lines that pass through the

origin can be specified with only three parameters, so a constraint on the solution is
lost and a single infinity of solutions is generated for our four degree-of-freedom arm.
We first examine the general case and then show how the procedure can be applied
to the degenerate case.

Y

Figure 3: Kinematics in the Plane Defined by the Line and The Origin.

Figure 3 shows a plane defined by a line and the origin 0. Points in this frame are
related to points in the base frame by a rotation matrix PR formed from the direction
and moment of the line. The rotation matrix is chosen such that i is in the direction
of the line and -i is perpendicular to the plane P. Then the equation of the line in
P, as a locus of points, is simply y = 111.

The intersection of the line and the circle of possible locations for joint 4 gives the
two possible locations for joint 4 in P. At each of these intersection points, the last
link of the robot may be aligned in two directions along the line. In addition, at each
location the fourth joint axis can be aligned with either ±i yielding another factor
of two. Lastly for each location and each orientation the combination of the first and
second joints can be chosen in two different ways. Thus, there are in general sixteen
solutions to the inverse kinematics of the simplified WAM-1. (The addition of the
offsets increases the number of possible locations of joint 4 to four, however at each
location there is only one choice of i thus the number of solutions is still sixteen.)

From figure 3, the four possible values 04 are 94 = =sin-'(ij/'L3) and 94 =

-(ir - sin-'(Jl/(L3 ))). The values 01 and 92 place the fourth joint axis at one of the
four possible intersection points

L3 C4
OR L 3 S4 =PP 0 n
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We have defined I m n I for convenience. This constraint becomes

-C 1 S 2 L 3

SiS2 L3
C2L 3

This is solved for 0, and 02,

02 = + cos-1(n/L 3) 01 = tan-'(m/i),

producing two solutions for each 94.

Lastly to solve for 93 we require that the fourth joint axis be aligned with either
of ± ,

=OROR

where (a 3 are defined for convenience.
This constraint specifies the tangent of 93 by:

C 3 = C13-S 1a

S3 = -C1Ct- S3 =I /S 2

93 = tan-'(S3 /C 3 ).

The resulting procedure produces sixteen unique solutions for the case of a line that
does not pass through the origin.

For the degenerate case, the plane P is not defined and we must introduce an
additional constraint. It becomes possible to place the last link along the line with
any value of 93. A convenient method is to use the current value of 93 and thus

define i by the direction of the fourth joint axis. Once the plane is defined the
non-degenerate procedure can be applied to solve for the joint angles.

4.3 Workspace

The volume of the workspace W is given in equation 5. Its value will scale with
the length of the links, the range of angles that the manipulator may reach, and the
scaling parameter p. The calculation of this parameter is complicated by multiple
configurations that reach a single line. If we consider the WAM-1 without joint
limits there are, in geneial, sixteen ways to reach any given line. The volume of the
workspace therefore equals

,[0, 27r) 4 .., etJT~dE) 16
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Figure 4: WAM-1 searching over a set of objects.

•Now
Figure 5: WAM-1 pushing a box.

In the line frame, the function in this integral is independent of both 01 and 03.
Therefore the integral can be evaluated with respect to 94 and 92 from 0 to r/2 and
then multiplied by 4w 2 . Evaluation in this way eliminates the possibility of multiple
covers and the division by sixteen in not necessary. The result is

47r 2 JP •
-5Ip  ( + L' p) p L

Thus, the line workspace has units of the fourth power of length and is dependent
on the scaling parameter and the length of the third link. By setting the scaling
parameter equal to the length of the second link L4, the measure :an 1'e made to
reflect the limited length of the link which is forming the line.

0
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5 Whole-Arm Manipulator Implementations

Simple demonstrations of pushing and searching were performed to examine the
usefulness of line trajectories for accomplishing and thinking about tasks. In both
tasks, the ability of the WAM-1 to sense contact forces under joint stiffness control
from errors in joint positioning was used to determine the onset of contact with
the environment and the direction and location of the contact. A discussion of this
approach to force sensing can be found in [8] and [10].

In the pushing task, an object is moved along a table by a line. For a line, the lo-
cation of contact is unimportant, however for a manipulator the object is constrained
to lie along the segment doing the pushing. In this demonstration, we placed a box
on the table to guarantee that two contacts would occur with the last link. This still
left significant latitude in the location and orientation of the box. The manipulator
was commanded to follow a line trajectory along a plane so that contact with the
box was occurred somewhere along the trajectory. The operation then aligns the box
by pushing and deposits it at a final location (see figure 5).

In the searching task, a number of object were placed on a table and the goal was
to follow the edges of the objects with the last link of the manipulator (see figure 4).
The search procedure was specified by a line congruence, that is a oo2 set of desired
lines, and a bottom plane in which to begin the search. All lines perpendicular to
the vertical line at the origin form the congruence. Then for any point in space,
except for points along the vertical line, there is a unique line associated with that
point. Given the plane and the congruence, the link moves along the plane until a
contact occurs, then the manipulator stops and the contact location and forces are
determined. A new line is generated from the congruence that intersects a point a
small distance from the contact location, in a direction perpendicular to both the
original line and the contact force. The resulting procedure was able to move over
a set of three blocks using the sensed forces to generate the motions and identify
contacts. Reliability of this procedure suffered from the difficulty of inferring contact
locations and forces from joint torques, for the MIT-WAM, as discussed in [8].

6 Conclusion

Line motion is a natural outgrowth of whole-arm manipulation. For the pushing
and searching tasks described above, the exact point of contact between the object
and the manipulator can vary along the link. Thus for the a links of the WAM, the
motion of the links can be controlled with lines.

In this paper, we reviewed basic line geometry and introduced the line Jacobian,
workspace and stiffness of a line. We then applied line kinematics to a serial mecha-

nism in which the links were replaced by lines. Finally we demonstrated two tasks,
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searching and pushing, which are both analyzed and implemented through the control
of line trajectories.

It should be noted that for the WAM, contacts are not frictionless. Thus forces
can be exerted along the length of the line. Thus a "line" can really exert five forces,
and in order to model the contact we must talk about "lines" with direction and
motions along their length. However, the motion of the manipulator can still be
controlled with a pure line.
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