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It is well known (see Stratonovitch, 1963, for instance) that one can as-
sociate, under some conditions, to a stochastic continuous automata (i.e.. a
stochastic differential equation) a so-called Fokker-Planck (F-P) equation in
the probability distribution of the state variables. In this note, we wish to
characterize conditions under which the F-P equation admits a stationary
solution of the Gibbs type.

Let x a n-dimensional vector of state variables, and W(x,t) the proba-
bility distribution of the state variables described by x at time t. The F.P
equation is:
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where da(x) is the drift vectorand K,s(x) is the diffusion matriz (see Stratonovitch,
1963, p. 76).
The stationary solution w(x) of the F-P satisfies the equation:
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where we have defined the probability current G,(x):
Galx) = da(x)u(x) — 7 7= Kog(x)0(x) @)
a = lq 2 0:,3 af w . o

In order to find the stationary solution, we do not assume, as Stratonovitch
and everybody else does, that G4(x) = 0 and set w(x) = e"Y(*) in equation
(1), obtaining:
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Assuming that the diffusion matrix is constant, that is K,5(x) = K,3, we
obtain:
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Provided that the diffusion matrix K is invertible we can effectuate the co-
ordinate transformation
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and defining the vector (d), = d,(x) we rewrite the previous equation as

~VU - d-VU-VU+V.-d+V0 =

=-VUd+VU)+V(d+VU)=0.
We finally obtain

(V-VU) (VU +d) =0, (3)
which is the condition for stationary distribution.

Thus, one solution is:

VU+d=0«d=-VU, (4)

which is equivalent to the so called potential conditions, that amount to say
that d is the gradient of a potential. If the potential conditions are satisfied
the probability current G,(x) is identically zero, and thus detailed balance
holds. Therefore we recover the well known result that detailed balance im-
plies the existence of a stationary Gibbs distribution w(x) = e~Y(X), However
condition (3) shows that the converse is not true. In fact equation (3) has
also the solution

(V- VU).f =0, (5)

with f = VU + d and this solution is not trivial only if f #0, thatisifd is
not the gradient of a function. Equation (3) has therefore a “larger” space of
solutions than the one represented by the potential conditions. Of course in

L'(x)} =0




both cases the solution U must be such that w(x) = e"Y(®) is a probability
distribution, and therefore the following additional condition must hold:

/dx e V™ «

A simple and interesting example that proves the existence of non-trivial
solutions U such that w(x) = e~U(®) is the following.

Ezample of existence
Consider the stochastic differential equation in R?

{i=—2$+y+fz(t)
1./= —z*2y+€y(t)

where £.(t) and £,(¢) are Gaussian noise terms, that is

< E(t)a(t) > = < &(2)6,(¢) > = 28(t - ¢t') .
The F-P equation associated to (6) is

ZW(x,t) = =V - (W(x,0)d(x)) +29°W (x,1)

where the drift vector is d(x) = (-2z + y,—z — 2y). It is easy to verify
that d(x) is not a conservative field, so that detailed balance does not hold.
However a stationary solution of the F-P exists, with w(x) = e~Y(*} and

Ux)==z+y*.
In fact, defining f = VU 4+ d we have

f=(2z-(2z-9),2y - (z +2y)) = (y, -2)
and therefore equation (5) is satisfied, since

(V=-VU) £ =V . £ -VU.f =2(z,y)-(y,-z)=0.

Notice that in absence of noise the differential equation (6) is linear, with
characteristic eigenvalues A = —2 i, and the associated trajectories are
inward spirals. This makes perfectly plausible the fact that, in presence of
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noise, the probability distribution of the variables is a Gaussian centered in

the origin.
Remarks:

o In thelinear case, that is when d(x) = Ax and 4 is a symmetric matrix,
detailed balance always holds, because d = ~VU with U(x) = —3x4x.
However the stationary solution w(x) = e~U(*) exists only if the matrix
A is negative definite, that is if w(x) is integrable.

¢ Stratonovitch (1963, p. 79) says that even when potential conditions
are not met but d is a linear function of z and K,5(z) are independent
of z, the F-P equations can be solved. In fact it is easy to see that
if d(x) = Ax and A i3 not symmetric the potential conditions do not
hold but the function U(x) = —}xAx is a solution of equation (5).

o [f the forces d, in the Langevin equation are conservative, i.e., d =
—VU, then, if the fluctuations are thermic-like, detailed balance is sat-
isfied and a Gibbs stationary distribution exists (Equation 4 is satis-
fied).

o It appears that our results may be derivable from the formulation of
Graham (1980) and the more general case considered by Jauslin (1984)
and Zeeman (1988). An in-depth analysis of many properties of the
Fokker-Planck equation relevant for this note can be found in Tan and
Wyatt (1985).

Acknowledgements We are grateful to J. Wyatt who read this note
and provided several remarks that go well beyond the scope of it.
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