
AD- A23 4 416

IJ

Technical Report ICMA-91-157 March 1991

NFEARS
A Nonlinear Adaptive Finite Element Solver

" ,"Part II: User's Manual

I -(Version 6)

I ~ by

2 3
. ;Charles K. Mesztenyi and Werner C. Rheinboldt

1. This work was in part supporte by the Office of Naval Research

under contracts N-00014-80-C-9455"and N-00014-85-K-0169 and by the

National Science Foundation under grant DCR-8309926. Acknowledge-

ment is also made for the partial support of the Co puter Science

Center of the University of Maryland

2. Computer Science Center, University of Maryland, College Park,

MD 20742
3. Department of Mathematics and Statistics, University of Pitts-

burgh, Pittsburgh, Pittsburgh, PA 15260

qI 4' 9 L/ /at

NFEARS
A Nonlinear Adaptive Finite Element Solver 1

Part I1: User's Manual
(Version 6)

by

Charles K. Mesztenyi 2 and Werner C. Rheinboldt 3

1 This work was in part supported by the Office of Naval Research under contracts N-00014-80-C-
9455 and N-00014-85-K-0169 and by the National Science Foundation under grant DCR-
8309926. Acknowledgment is also made for the partial support of the Computer Science Center
of the University of Maryland
2 Computer Science Center, University of Maryland, College Park, MD 20742
3 Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, PA 15260

Preface to the User's Manual v. 6

This represents the second Part of the report on NFEARS, the "Nonlinear Finite

Element Adaptive Research Solver" developed jointly by the Universities of

Maryland and Pittsburgh. This part constitutes the User's Manual for the system

version 6. It was intended to describe all necessary aspects for running

NFEARS successfully without requiring a detailed knowledge of the

mathematical background given in Part I. However, the reader should be

generally familiar with the aims and tasks of the program.

Acc 'c-,, F 1

D T!C

LJ i

A IIA41"

Major changes from previous versions are as follows:

1. Optional creation of "Moving Output Files".
The program allows the user to create binary or ASCII output files
consisting of user defined data at each solution point during the single
parameter continuation or two parameter region calculation. In case of the
region calculation, it is implemented in the REGION subcommand mode,

and the output file is called as "Moving Frame Output File". For single

parameter continuation calculation, the "POLYG"-on command has been
implemented placing the program in polygon mode. The available

subcommands in the polygon mode are a subset of the main commands.
The output file created during the polygon mode is called "Moving Polygon

Output File".

2. Error Calculation.

One of the main purpose of NFEARS is to investigate the
reliability/efficiency of various error calculations. For this, the new version
allows more than one error calculations (presently two) but only one of them
is used when a new solution point is obtained. With the CONST command,

the user can decide which is to be used. Errors are always calculated for
newly obtained solution points for the purpose of recording it in the moving

output files, thus the new version does not have separate ERROR

command. Reference to the type 2 error calculation:
W.C.Rheinboldt and J. Liu:
A Posteriori Error Estimates for Parametrized Nonlinear Equations

Dept. of Mathematics and Statistics

University of Pittsburgh

March 16, 1990

Reliability/efficiency of the finite element error calculation can be measured
when the analytic solution of the problem is known. Version 6 of NFEARS
requires a user supplied routine to calculate the analytic solution and its

derivatives whenever it is known (otherwise a dummy subroutine). The sign
of the problem number (IDPR) indicates whether analytic solution is known
(negative) or not (positive).

CONTENTS

Chapter 1. NFEARS Program 1

Chapter 2. Geometry Input Preparation 4

Chapter 3. User Supplied Subroutines 11

Chapter 4. Running NFEARS 21

Chapter 5. NFEARS Commands 25

Chapter 6. REGION Subcommands. 35

Appendix A. GETxxx Subroutine. 41

Appendix B. Example for USRPYx subroutine$ 46

Appendix C. Formats of Moving Data Files 49

1. NFEARS Program

1.a Platforms
NFEARS version 6. is available for VAX (VMS) and Unisys Computers.In order,

to use the program the user is required to write subroutines in Fortran 77 (i)
describing the problem to be solved (see Sections 1.1 and 11.3), (ii) specifying
necessary outputs and to combine them with the NFEARS program. Although,

for the most part, NFEARS is written in standard Fortran 77, some special
features are assumed to be available in the compiler. The principal non-
standard feature is the use of the INCLUDE statement which allows for tne
inclusion of program-segment-files.

1.b Interactive/Batch mode of operation
NFEARS has been designed for interactive use such that the user is prompted
to give commands for the types of operation to be performed. For a given

command, the program also prompts the user for additional input if necessary.
To accomodate batch processing, the program provides an option such that the

user may collect all interactive inputs (together with the prompts) in an ASCII file
which can be edited for a future batch processing. For example, the user may

run NFEARS on a VAX performing a few iteration steps with less stringent

accuracy requirement; then the optionally generated input file can be edited
where the accuracy requirement is specified, the number of iterations steps can

be increased, and finally the edited input file can be submitted for a Cray

version of NFEARS as a batch input file.

1.c Size of problems to be solved
NFEARS uses labeled common-storage areas extensively for its internal data

structure. All of these labeled common-storage areas are defined by
declarations in individual files which are then inserted into the program files by
means of INCLUDE statements. One of these individual files, MAXDIM, declares

parameter values which in turn are used for dimensioning various arrays. These
parameter values limit the current size of the problem. If a given problem
exceeds these limitations, MAXDIM should be edited for larger values, and
NFEARS should be recompiled. The following limitations are presently set up in

MAXDIM:

1

MOMAX = 16 Maximum number of 0-D domains

M1 MAX = 12 Maximum number of 1-D domains

M2MAX = 5 Maximum number of 2-D domains

M1 TMAX = 200 Maximum number of free 1 -D nodes
M2TMAX = 225 Maximum number of free nodes in one 2-D

domain

M21 MAX = 300 Maximum number of free nodes in one 2-D

domain and its boundary

M01DFX = 8000 Maximum size of the Jacobian corresponding

to the free nodes in the 0/1-D domains

M2DFMX = 44000 Maximum size of the Jacobian corresponding

to the free nodes in one 2-D domain and its

boundary

Other possible machine or installation dependent parts of the NFEARS program

occur in the program segment file IOPROG in connection with the handling of

disk files. When NFEARS is run the following disk files are used by unit

numbers :

5 fs System input file

6 fs System output file
9 us Used to equate user's named files

1 0 fs Log-file for interactive runs

11 fs File to copy user's inputs during interactive run which

can be used for input file in batch run
1 2 ud 2-D tree file

1 3 ud 2-D vector file

14 us Neumann condition assembly file

1 5 us Element assembly file
16 ud 2-D Jacobian file
1 9 s Moving data output file ("u" or "f" by user's choice)

20 us Temporary node data file

21-29 us Region center-point save files

(u=unformatted, f=formatted, s=sequential, d=direct access)

24

Units 9, 10, 11 and 19 are associated with user supplied file names. All other

units (except 5 and 6) are temporary files. Unit 9 is used to save internal data
(see SAVE command) which can be used to restart NFEARS (see RESET

command). It is also used to equate geometry input data file. Unit 10 is used for
recording a session with NFEARS in interactive processing mode. This allows

to print large amount of data without placing them on the terminal screen. It is

left to the user to print this file out after the session. Unit 11 is used either to

echo user's input in an interactive processing mode, or as an input data file in

batch processing mode. Beside actual data, this file can also contain comment
lines (asterisk in column 1). In fact, all prompts for user input are recorded when

this file is generated in an interactive processing mode. Unit 19 is used to

record consecutive iteration steps suitable for postprocessing.

Before any use of NFEARS the user is required to perform the following two

steps:

(a) To prepare the geometry input describing the domain Q, and

(b) to write the user supplied subroutines describing the mathematical
problem, specifying the data to be written on moving output files,
routine to calculate analytic solution, and to combine them with

NFEARS in the form of an executable module.

These steps are described in detail in Sections 11.2and 11.3

3

2. Geometry Input Preparation

The preparation of the geometry input consists of the following six steps:

(a) Subdivision of the domain 0.

(b) Assignment of directions for the 1-D domains.

(c) Numbering of all subdomains.
(d) Definition of an initial mesh.

(e) Specification of an initial solution.

(f) Construction of the geometry input file.

These steps are illustrated with a simple example in Figures 3.1 -3.3.

(a) Subdivision of the domain Q:

As discussed in Section 1.2, the domain Q must be subdivided into generalized

quadrilaterals each with four corner points and four sides. As before, we call the

open quadrilaterals 2-D domains (Q2 , k=l,...,N2, the open sides 1-D domains

(A2., k=1..N,), and the corner points 0-D domains (A, k=.....No). Any 1-0 do-

main is either a side of exactly one 2-D domain in which case it is part of the ex-
ternal boundary of 92, or it is a side of two 2-D domain in which case it is con-
tained in the interior of Q. As shown in Figure 1.2.1, angles formed at the corner

points of the 2-D domains should be between ax and 1 80-a degrees with a suit-

able tolerance (x to avoid numerical instabilities; a value of a= 150 has been
found adequate.

Figure 3.1 shows an example where the domain is a quarter disk with Dirichlet

boundary conditions on the horizontal line (fixed boundary) and Neumann con-

ditions on the rest of the boundary. The right side of the figure shows a possible
subdivision into three 2-D domains, nine 1-D domains and seven 0-D domains.
Thus, in this case, we have N2=3, N,=9 and No=7. It should be noted that, in line

with our definition of the admissible meshes in Section 1.3, a basic mesh A is

automatically introduced on once the initial subdivision is given; namely, the
mesh consisting exactly of 4 supere!emets on each 2-D domaii,.

4

I..
Y 'y-1 / Neumann

I condition

I -- 1

Fixed boundaryI Figure 3.1I

(b) Assignment of directions for the 1-D domains.

As detailed in Section 1.2, directions have to be assigned to all 1-D domains in
order to define their tangent and normal vectors and also their curvature C. On
1-D domains which carry Neumann conditions this assignment must be uniform
in the sense that all normals point either outward or inward to the domain Q

and, hence, are not mixed. As discussed in Section 1.2, the normal vector is ob-I tained from the tangent vector by rotating the latter counter-clockwise through
900. Figure 11.3.2 shows a possible assignmement of directions for our example.

I~ --+1 /radius,> 0f

I
C - -1/radius -e 0

Figure 11.3.2

15

(c) Numbering of all subdomains.

The next step is to number all 0-D, 1-D and 2-D domains. Within each group the
numbers should start with 1, and end with No , N1 and N2 , respectively. The

order of the O-D and 2-D domains is irrevelant. However, some savings in

speed and memory space can be achieved if the 1-D domains are numbered

as follows: Begin by numbering the 1-D domains which carry Dirichlet

conditions, then continue with the others by using a "wavefront" to move over

the subdivision. Figure 11.3.3 shows such a numbering for our example.

(d) Definition of an initial mesh:

In NFEARS meshes are specified in terms of density functions and intensity
values. Section 1.4 presents the definition of the density function D. on the

domain Q and gives an algorithm for the construction of the mesh from D. and

the given intensity 3. The un-normalized density d. is specified in terms of 29

coefficients Po,....P9 for each closed 2-D domain. In order to simplify the 9
definition of the starting mesh, NFEARS reduces this input requirement by

asking only for a few of these coefficients and by performing linear interpolation

to get all others. More specifically, NFEARS requires one coefficient value for

each 2-D domain, one for each 1-D domain, and two for each 0-D domain. The
single coefficient values for the 2-D and 1-D domains are assigned to the mid- I
points of these sub-domains as their appropriate pi-value, 1<_i<9. The first of the

two coefficient values for a 0-D domain is again used as their pi-value, 1_<i<9, !

while the second coefficient is the po value which describes the singularity. Note

that the po values must be either zero or negative. Figure 1.3.4 shows the mesh I
generated from the indicated initial density values for a closed 2-D domain.

More specifically, the initial coefficients are shown adjacent to the corners for

the 0-D domains (where the second line is po), along the sides for the 1-D

domains, and near the mid-point of the 2-D domain. With each picture, the

intensity is listed. It is advisable to start with uniform coefficient values, and then

to increase the pl,....P9 values in areas where a singularity is expected. 6

61

6) 9

7 2i8i
6

4 5

3jj
5

1 2 2 3

Figure 3.3

Intensity: 0.05 No. of elements: 49 Intensity: 0.05 No. of elements: 52

0.0 -01.0 1.0 0 0.0 0
0.0 1.0 0.0 0.00.0 0.0 0.0 0.0

0.0 1 01
001.0 0.0 CO0

0.0 .- 0.0 0.0 0.0
-.5 0.0 0.0 0.0 0.0 0.0

Intensity: 0.05 No. of elements: 43

0.0
0.0 0.0
0.0 0.0

0.0 --- 0.0

0.0 I ii 0.0
-.25 0.0 -.5

Figure 3.4

7

(e) Specifica ion of an initial solution.

For all calculations NFEARS requires ar starting solution on the nodes of the
initial mesh (see Section 1.6). Once again, in order to simplify the input,
NFEARS asks only for a reduced number of solution values and uses
biquadratic interpolation to determine the other ones. More specifically, one
value is required for each O-D domain, one each at the mid-points of the 1-D
domains, and one each at the mid-points of the 2-D domains. The biquadratic
interpolation is based on the local coordinate system as defined in Section 1.2.
It should be noted that the initial solution values also specify the Dirichlet
boundary conditions on the relevant 1-D domains; in other words, they define
the corresponding boundary functions b as quadratic functions in the local
coordinates (see Section 1.2). In our example, we assumed a zero initial
solution and zero Dirichlet conditions.

(f) Construction of the geometry input file.

NFEAR.. permits either an interactive input of the geometry or a read-in of a
prepared geometry input file. In order to avoid typing errors it is generally
advisable to set up a geometry input file. This input file has to consist of
No+N 1+N2+3 data lines in free format where, again, NO, N1 and N2 denote the

number of 0-D, 1-D and 2-D domains, respectively. The general format is as
follows:

8

No No = Number of O-D domains;

1,x1,y1,b,u 1,p1 p°0 index i of the i-th O-D domain;

2,x 2,y2,b2,u2 ,P2 ,p° xi,y i = global coordinates of the O-D domain;

......... bi = 0 if this O-D domain is free,

......... =1 if it carries a a4-dependent Dirichlet

......... condition,

......... =2 if it carries a fixed Dirichlet condition

......... ui = initial solution value;

......... pi = density coefficient;
0.......... pi singularity coefficient

N0,X~oYN 0,bNOUN0,PN0,PN0

N1 N1 Number of 1-D domains;
1 ,J1,K,bl,C1 ,u,,p 1 index i of the i-th 1-D domain;
2,J 2 ,K2,b 2,C2 ,u2,P2 Ji, Ki = indices of the adjacent O-D domains

........... (from - to),

........... bi = 0 this 1-D domain is free,

........... -- 1 if it carries a a4-dependent Dirichlet

........... condition,

........... = 2 if it carries a fixed Dirichlet condition,

........... = -1 if it carries a Neumann condition;

........... Ci = signed curvature of the 1-D domain;

........... ui =solution value at its mid-point

........... pi- coefficient of the density function at the

mid-point;

N1,JNl ,KN1,bN1 ,CNI UN1,PN1

N2 N2= Number of 2-D domains;
1,l1,J 1,K1,L1,u1,p1 index i of the i-th 2-D domain;

2,12 ,J2,K2,L2 ,u2,P2 lI,Ji, Ki, Li = indices of the adjacent 1-D

domains

.ordered counter clockwwise;

........... ui = initial solution at the mid-point

........... pi = coefficient of the density function at the

mid-point
NN2 ,lN2,JN2,KN 2,LN2,UN2 ,PN2

9

Notes:
1. When a 1-D domain carries a Dirichlet boundary condition (bi= 1 or 2), then

the two bounding 0-D domains should have the same type of boundary

condition.
2. The definition of the sign of the curvature for a 1-D domain is indicated in

Figure 11.3.2; that is, if we look from the starting 0-D domain , Ji, toward the

terminating 0-D domain, Ki, then the positive (+) sign or negative (-) sign is to

be used when the center of the circle is on the right or the left side, re-

spectively. For straight lines, the value of the curvature is zero.
3. The indices of the four 1-D domains that bound a 2-D domain have to be

listed in counter-clockwise order. When the 2-D domain is mapped into the

units-quare, the first 1-D domain is mapped into the rj axis and the second
one onto the 4 axis (see Section 1.2).

For our example, the input file has the following form:

7 Number of 0-D domains
1,0.,0.,2,0.,0.,-.5 Data for the seven 0-D domain

2,.5,0.,2,0.,0.,0.
3,1 .,0.,2,0.,0.,0.

4,0.,.5,0,0.,0.,0.

5,.5,.5,0,0.,0.,0.

6,0.,1 .,0,0.,0.,0.
7,.70710678,.70710678,0,0. ,0.,0.

9 Number of 1-D domains
1,1,2,2,0.,0.,0. Data for the nine 1-D domains

2,2,3,2,0.,0.,0.
3,1,4,-1,0.,0.,0.

4,2,5,0,0.,0.,0.

5,7,3,-1,1 .,0.,0.

6,4,5,0,0.,0.,0.

7,4,6,-1,0.,0.,0.

8,5,7,0,0.,0.,0.

9,6,7,-i,1 .,0.,0.

3 Number of 2-D domains
1,3,1,4,6,0.,0. Data for the three 2-D domains

2,7,6,8,9,0.,0.

3,4,2,5,8,0.,0.

10

3. User Suplied Subroutines

Before running NFEARS, the user must write subroutines which
a. calculate the values and derivatives of the functions (D, G2, G1 in the

problem-definition of Section 1.1, and which set up or modify certain

parameters and print out appropriate headings.

b. supply those values which to be placed into the Moving Data Output

files.

c. calculate the analytic solution/derivatives when it is known, otherwise

a dummy subroutine.
All these subroutines carry entry names beginning with USR... Note also that

all of them must be provided even if some are not in use, since the some

operating systems do not handle missing subroutines. Once these routines

have been written and compiled, they have to be combined with NFEARS to
produce an executable module.

NFEARS provides a common block

/USRPAR/ FUSER(10,2), IUSER(10)

for up to 20 real and 10 integer valued parameters for use in the supplied

subroutines. The subroutine USRFCT allows for storing of data in these two

arrays during the initial call while USRMOD permits their later modification.

These data are retained and may be used in all other user subroutines. They

are also saved by a SAVE command , and read back by a RESET command.

Other internally used common blocks may be used by these routines but the

contents of those are not saved. In this case, it is recommended labels USRn
with numeric digits "n" to avoid naming conflict with other common blocks

internal with NFEARS.

The following subroutines must be provided:

Problem definition routines

USRFCT This routine is called at initialization time. It may also be used to

print out some captions.

USRINV Routine to provide an initial solution for the problem. It is called by

the "INVAL" command.

11

USRMOD Routine to provide, change, or print user parameter in USRPAR

during the process.
USRPH1 Routine to provide the first derivatives of the function (at specified

points.
USRPH2 Routine to provide the second derivatives, including the

derivatives by a1 , of the function (D at specified points.

USRG1 Routine to provide the values and derivatives by 03 of the function

G1 at specified points.

USRG2 Routine to provide the values and derivatives by 02 of the function

G2 at specified points.

Moving Data File routines:

USRPYO Routine to provide the number of data to be written out for each

iteration step during single parameter continuation (POLYG

mode). It is called when the file is to be established.

USRPYS Routine to perform any initialization needed before one iteration

step, e.g. clearing summation fields.

USRPYE Routine to perform any calculation needed when an element with

its nine point solution values are provided.

USRPYF Routine to perform any calculation needed when all elements

have been processed for this iteration step.

USRFRO Same as USRPYO, but used for two-parameter interations
(REGION mode).

USRFRS Same as USRPYS but in REGION mode.

USRFRE Same as USRPYE but in REGION mode.

USRFRF Same as USRPYF but in REGION mode.

Analytic solution routine:

USTRUX Routine to provide analytic solution if known, otherwise a dummy

routine.

When NFEARS is used in interactive mode such that it generates an input file to

be edited for future batch processing, it is unable to copy user's input initiated

12

from these user supplied subroutines. In this case, it outputs a "comment"
warning line on the generated file indicating that possible input line should be

inserted during the editing session. This is before the following subroutines are
called from NFEARS:

USRFCT when it is called frim INIT the first time
USRINV, USRMOD, USRPYO, USRFR0 whenever they are called

3.a Problem defining routines

The calling sequences are as follows:

SUBROUTINE USRFCT (I, NU, IDPR, IDUF, IDUFP, IDUG2, IDUG1)

This subroutine is called at the initialization of a problem either by an INIT

command or a RESET command. It is expected to print out a caption for the run.

Input arguments:
I = 0 for initial start with INIT,

= 1 for recall of saved data with RESET
NU = Fortran unit number (6 or 10) where echo print should be

directed

Output arguments (if 1=0):

IDPR = Problem number, should be an integer: negative if analytic

solution is known, positive if it is not known
IDUF = ID number of the (D function
IDUFP = 0 if D does not depend on a,, non-zero otherwise
IDUG2 = signed identification number of G2 as follows:

= 0 if zero; that is, if the G2 term does not exist

S< 0 if G2 is independent Of 02
> 0 if G2 depends on G2

I IDUG = signed identification number of G1 as follows:
= 0 if zero; that is, if the G1 term does not exist

I < 0 if G1 is independent of 03

> 0 if Gi depends on G3

1
1|1

As noted before, in all cases, the program should print a title for the run. The
other arguments should be set by the user if 1=0. They will have been set before
when =1, but may be reset by the routine. NFEARS merely checks whether they

are zero, positive or negative integers.

SUBROUTINE USRINV (N, XG, U)
DIMENSION XG(2,N), U(N)

This subroutine provides initial solution values U at N points in one 2-D domain
with the coordinates x,y specified in the array XG. This routine is called by the
INVAL command. The routine is called first with N=0 to allow for any
initialization, such as the input of a file of data. Thereafter it is called for all
regular free nodes of the problem. Note that an initial solution can be specified
by the geometry input in which case USRINV may be a dummy subroutine. But
then the INVAL command should never be used.

SUBROUTINE USRMOD (NU)

This subroutine allows for the modification and print-out of the parameter values
in the common block /USRPAR/. It is called by the command UMOD. The input
integer NU is the Fortran unit number (6 or 10) where the printed output should

be directed.

SUBROUTINE USRPH1 (N, IX2, S1, XG, U, P)

DIMENSION S1(2), XG(2,N), U(0:2,N), P(0:2,N)

This subroutine evaluates the first derivatives of D at N points in one 2-D

domain, and returns the results in the array P.

14

I.

Input arguments:
N = number of points where the first derivatives of '1 are to be

I evaluated

IX2 = index value of the 2-D domain containing the points
I S1 = the components of the parameter a1

XG(1,K), XG(2,K)

= global coordinates x,y of the point K (K = 1,...,N)

U(0,K) = the solution value u at the point K
U(1 ,K) = the value of the derivative Ux = au/ax at the point K

U(2,K) = the value of the derivative uy= au/ay at the point K

I Output arguments:
P(O,K) = ca'/au at the point K (K= ,...,N)

P(1,K) = aot/a(ux) at the point K (K=1,...,N)

P(2,K) = ao)/a(uy) at the point K (K=1 ,...,N)

SUBROUTINE USRPH2 (N, IX2, S1, XG, U, PU, PL)
DIMENSION S1(2), XG(2,N), U(0:2,N), PU(0:2,0:2,N), PL(2,0:2,N)

This subroutine evaluates the second derivatives of (D at N points in one 2-D

domain, and returns the results in the arrays PU and PL.

Input arguments:
N = number of points where the second derivatives of (D are to be

evaluated
IX2 = index value of the 2-D domain containing the points
S1 = the components of the parameter al
XG(1,K), XG(2,K)

I global coordinates xy of the point K (K =1 ,...,N)

U(0,K) = the solution value u at the point K
U(1 ,K) = the value of the derivative ux = au/ax at the point K

U(2,K) = the value of the derivative uy= au/ay at the point K

I
11

Output arguments:
PU(I,J,K) = - D/ DaU(I,K) DU(J,K), (1,J=0,1,2; K=1 ,...N)
PL(I,J,K) =Da2/aS1(i) aU(J,K), (1=1,2; J=0,1,2; K=1,...,N)

SUBROUTINE USRG1 (N, IX1, S3, XG, CN, G, GL)
DIMENSION S3(2), XG(2,N), CN(2,N), G(N), GL(2,N)

This subroutine calculates the function G1 defining the Neumann boundary
conditions, and its derivatives by 03, at N points in one 1-D domain, and returns

the results in the arrays G and GL.

Input arguments:
N = number of points where the evaluation is to take place
IX1 = index value of the 1 -D domain containing the points
S3 = the components of the parameter 03

XG(1 ,K),XG(2,K)

= global coordinates x,y of the point K (K = 1 ,...,N)

CN(1,K),CN(2,K)

- components of the normal unit vector at K in the global

coordinate system.

Output arguments:
G(K) = the value of G1 at the point K
GL(J,K) = the derivatives aG(K)/aS3(J), J=1,2 of G1 by 03 at the point K.

SUBROUTINE USRG2 (N, IX2, S2, XG, G, GL)
DIMENSION S2(2), XG(2,N), G(N), GL(2,N)

This subroutine evaluates the value of the function G2 and its derivatives by 02

at N points in one 2-D domain, and returns the results in the arrays G and GL.

16

Input arguments:
N = number of points where the evaluation is to take place

IX2 = index value of the 2-D domain containing the points
S2 = the components of the parameter a2

XG(1 ,K),XG(2,K)
= global coordinates x,y of the point K (K = 1 ,...,N)

Output arguments:
G(K) = the value of G2 at the point K
GL(J,K) = the derivatives 3G(K)/aS2(J), J=1,2 of G2 by 02 at the point K.

3.b Moving Data File routines

NFEARS provides the generation of sequential files (formatted or unformatted)
to record data associated with solutions obtained during single parameter

continuation (POLYG mode) and two parameter frame calculation (REGION
mode). The following user supplied subroutines should supply the actual data

to be recorded. Up to 50 real valued data are allowed for which NFEARS
provides a single array DATNOD for the user's subroutines. While the calling
sequences of the two types of (POLYG and REGION) are similar, the format of
the generated files are different which are described in Appendix C. It is
assumed that these files serve for inputs of various postprocessors. There are
no separate user supplied subroutines subroutines for closing these files.
NFEARS automatically close these when the user exits from the POLYG and/or

REGION subcommand mode.

The number of arguments in the calling sequences of the following routines are

kept to a minimum. Since the variety of data values to be recorded can be quite
extensive, Appendix A lists the available subroutines (GET...) which can be

called from these subroutines to obtain various data otherwise internal to
NFEARS. Appendix B provides some examples for construction of these
routines.

17

SUBROUTINE USRPYO(NDLNGT)

This routine is called initially when the user request a polygonal data output file

to be generated.

Output argument:
NDLNGT = Number of real valued data to be recorded

SUBROUTINE USRPYS(NDLNGT,DATNOD)
DIMENSION DATNOD(50)

This routine is called after a solution data has been obtained but no data to be
recorded is processed. It serves as an initialization process for the next two
routines. The most common use is to initialize some entries in DATNOD which
are to be used summation and/or minimum/maximum calculationby the next

routine.

Input argument:

NDLNGT = Number of real valued data to be recorded (received from USRPYO)

Output argument:
DATNOD = array provided to record data values

SUBROUTINE USRPYE(NDLNGT,DATNOD,ID2,IDE,H,XL,U)

DIMENSION DATNOD(50), XL(2), U(3,3)

This routine is called for each finite element at the obtained solution node.

Input argument:

NDLNGT = Number of real valued data to be recorded (received from

USRPYO)
ID2 = Index of the 2-D subdomain where the element is
IDE = Index value of the element (unique in the ID2 subdomain)
H = Side-length of the element (in the mapped unitsquare)

XL = Local coordinates (in the unitsquare) of the middle point of the

element

18

U =solution values at the nine points of the element

Output argument:
DATNOD = array provided to record data valuesI
SUBROUTINE USRPYF(NDLNGT,DATNOD)

IDIMENSION DATNOD(50)

This routine is called after USRPYE is called for each element at the obtained

solution point. It is intended to be used to finalize data collected with USRPYE,
also to store data values in DATNOD which are globally available for this

solution point, e.g. error estiimates for the full domain at this solution.

Input argument:
NDLNGT = Number of real valued data to be recorded (received from USRPYO)

Output argument:

DATNOD = array provided to record data values

SUBROUTINE USRFRO(NDLNGT)

Same as USRPYO

SUBROUTINE USRFRS(NDLNGT,DATNOD)
DIMENSION DATNOD(50)

Same as USRPYO

SUBROUTINE USRFRE(NDLNGT,DATNOD,U,K)

DIMENSION DATNOD(50), U(3,3)
Same as USRPYO

I
SUBROUTINE USRFRF(NDLNGT,DATNOD)

IDIMENSION DATNOD(50)

Same as USRPYO

19

3.c Analytic solution routine

SUBROUTINE USTRUX(X,SPAR,CPARM,U,DX)

DIMENSION X(2),CPARM(2,4),DU(2)

This routine should supply the analytic solution and its derivatives at the point

specified by the X argument when it is known, otherwise it can be a dummy

subroutine.

Input arguments:

X(1),X(2) = x,y coordinates where the solution, derivatives are needed

SPAR = value of the single X parameter

CPARM = values of the a parameters

Output argument:

U = solution value

DU(1) = DU/ax

DU(2) = alU/ay

I

I
I
I
I

20 I

4. Running NFEARS

NFEARS can be used either interactively or in batch mode. The first integer
valued input from system input file 5 defines the mode of operation as follows:

-1 The program is to run in batch mode, the next input from unit 5
must be the name of the filefrom which subsequent are to be

taken. This file will be equated to unit 11.
0 The program is to run in interactive mode, the next input must be a

file-name to be used as Log-file where detailed output can be
written. This file will be equated to unit 10, and it is left to the user
to print it out after the session with NFEARS. Unit 11 is not used.

+1 The program is to run in interactive mode as above, but in addition

all inputs with their prompts will be written out on unit 11. This
mode requires requires the user to give two file names, first for the

Log-file (unit 10), second for the Input-echo file (unit 11).

Once the mode of operation is established, the program enters into a main

command mode as illustrated in Figure 4.1. The command names can be typed
in lower or upper case. Once a command is given, the program may prompt for

further input, specific to that command. After a command has been successfully

executed, NFEARS prints out the execution-time and then prompts for a new

command input. These prompts also indicate whether the program is in main,

polygon or region command mode. The user may insert comment lines after an
input prompt before giving the actual data by having an asterisk (*) in column 1

followed by the comment string. NFEARS writes out these comment lines on the

appropriate output files: unit 6 for batch mode, unit 10 for interactive mode, unit
11 if Input -echo file is to be generated.

In interactive mode, the Log-file provides a record of the NFEARS session and

may contain a large amount of data which could not be handled conveniently

on the terminal's screen. This file will be created by NFEARS as a new,

I sequential, formatted file. Thereafter, output strings are written onto it, and an
end-of-file termination occurs when the QUIT command is given. It is the user's
responsibility to print or discard this file after termination of the NFEARS run.

The prompt for a command-input, the time spent for the execution of a

i command, and any potential error messages will always show up at the

I 21

terminal. The amount of output can be set and modified by the "TRACE"
command.

Two of the available commands, POLYG and REGION, places NFEARS into a
subcommand mode which are described separately. In this Section we
summarize briefly the essential aspects of these commands and refer to Section
5 and 6 for more detailed descriptions of each of them.

CONST to set certain constants for the continuation algorithm and for the
mesh modifications, and to re-define the mesh intensity 3,

INIT to initialize a problem,
INVAL to change existing values of the initial solution,
HELP to print out all command names as welt . the last command,

TRACE to specify the amount of output,
RESET to reset NFEARS from a previously saved file,
STEP to step along the solution path with the continuation algorithm,
MESH to modify the mesh,
TARG to request a target and/or limit point calculation,

UMOD to call the user supplied subroutine USRMOD,
PARAM to modify certain parameters,
PRINT to print out solutions, errors, meshes, etc,

SAVE to save present data on a file,
POLYG to record individual steps in the use of continuation algorithm,
REGION to calculate an approximation of some region of the solution

manifold,

QUIT to terminate the current run with the program.

22

IUser input:Op rto

I-1. 0 or +1 e

* comment
or blcomment line -

command nameL

Il
REE
STE

IAR
IARA

I-o
IMO

Imd FigreIT4.

23

Order of Commands:

Although NFEARS will, in general, execute commands as they are given, there

are certain logical order which should be observed in the sequence of the

commands. First of all, one has to establish the problem data either by the INIT

or RESET commands. When the problem data (Geometry, etc.) is to be

established by the INIT command, it should be preceded by CONST command

and followed by a STEP command specifying zero as number of steps, i.e.

CONST ---- > INIT ---- > (INVAL) ---- >STEP ---- > ...

CONST assures that necessary constants for correcting the initial values are

correctly set, and the STEP command with zero number of steps performs the

correction. The INVAL command may be inserted if initial values are supplied

by user supplied subroutine.

In case of starting with the RESET command, i.e. getting the problem data from

a previously saved file, the CONST command should be given after the RESET

command,
RESET ---- > CONST ---- > ...

since the saved file contains these data values, but it is always advisable to

include this command since it prints out the values of these constants before

asking for any changes and hence provides a printed record of them in the log-

file.

The second observation to be followed is that the REGION command should be

preceded an followed by the PARAM command:

--- --.-.> PARAM ---- > REGION ---- > PARAM ---- >

This order assures that the effective parameters, X1 and X2, are reset to zero.

24

1 5. NFEARS Commands

I In this section we discuss the individual NFEARS commands in detail.

5.1 The CONST Command:

I The CONST command permits a change of certain control parameters for the

continuation algorithm (STEP commands), the region calculation (REGION

command), the mesh modification (MESH command) and error calculation.

When this command is invoked, the user is asked to opt either for the constants

of group 1 used in STEP, REGION, or for those of group 2 needed in MESH and

error calculation., and allowed to change their values. Initially NFEARS sets

these to some default values. The various constants, and, in parentheses, their

default values are as follows:

(a) Gr.-g2j.: Constants for the CORR, STEP and REGION commands:
Maximum number of steps allowed per STEP call (5)

Starting step size (0.01)

Maximum step size (1.0)
Minimum step size (0.0001)

I Maximum number of steps in the corrector iteration (10)
Frequency of Jacobian evaluation (3)

Absolute error tolerance for the corrector iteration (10*C)
Relative error tolerance for corrector iteration (10*C)
Minimum pivot value allowed in matrix decomposition (C)

where C is the smallest number on the computer such that 1.0+C is different

from 1.0.

(b) .u: Constants for the MESH command:
Choice of error calculation mode*

Mesh-modification mode: "manual" or "automatic" (automatic)

I Control of the "automatic" mesh-modification: "by error size" or "by

density" (by density)

Tolerances for automatic mesh-modification by "error size":

Refinement tolerance: If the error indicator of an element exceeds

this tolerance then the element is subdivided. De-refinement
tolerance: If w is an element of a previous mesh for which all four

25

sons are elements of the current mesh and their combined error
indicators fall below this tolerances, then w is de-refined.

Intensity, initially set by user's input.

For both groups of constants, the program prints out the presently set values,

and then asks if any of them should be changed.

* Presently, there are two modes of error calculation. The first (default) mode is

the one used in the previous versions of NFEARS and described, the second
mode is based on calculating the error indicators of elements by subdividing
them and solving the linearized system over the element with zero boundary
condition such that the solution is ortogonal to the tangent(s). This mode also
gives error term(s) for the parameter value(s). Mathematical reference is given

in...

5.2 The TRACE Command:

This command sets the Indicator for the amount of output from NFEARS and
may be invoked at any time. It prompts for two, free-formatted input lines:

(i) The first line consists of one integer valued data:
ISTCOM

where

ISTCOM > 0 indicator in interactive mode for the amount of print-out to be

directed to the terminal (system output file 6). A zero value keeps
it to a minimum, and for increasing positive values the amount of
output is increased. In batch mode, this has no effect since all

output is directed to unit 6.

(ii) The second line consists of six non-negative integers corresponding to 6

specific parts of NFEARS:
11,12 ,13,14,15,16

26

1 These 6 parts are identified as follows:
I1: Execution of the INIT and RESET commands

12: Corrector iteration
13: Execution of the MESH command

14: Execution of the CORR and STEP commands

15: Execution of the FERR command
16: Execution of the REGION Command

The integer value Ik (1:5k<6) specifies the amount of output from Part k that is to

be generated in the log-file on unit 10, and, when ISTCOM _> Ik, also on the

system output file 6, whenever NFEARS is running in interactive mode. In batch

mode, all specified output is directed to the system output file 6.

5.3 The INIT Command:i
This command initializes a new problem. NFEARS first calls the user-subroutine

I USRFCT with the first argument set to zero. This call allows for any set-up of pa-
rameter values that may needed in other user-subroutine and also for the print-

out of a problem title.

Upon return from USRFCT, the program asks for the name of the file containing

the geometry data. If the answer is "5", then these geometry data are to be given
interactively. Otherwise, the answer is assumed to be the file-name where the
geometry data reside with the format descibed in Section 11.2.

After the geometry input, the program asks for the intensity 3 of the initial mesh.

This value can be changed again by the CONST command.

Thereafter, the program asks for the coefficients of the effective parameters.
First, the coefficients 81 and 82 with 51+52 = 1.0 of the linear functions X1 = 51x,

X2 = 82k are requested which specify the continuation-path (see Section 1.5).
Then the eight coefficients a and 3 are expected that define X1 and X2 in terms

of the problem parameters (see Section 1.1).

27

In summary, the input for the INIT command is as follows:

1. Input from USRFCT;
2. name of the geometry file or "5" for interactive input;

3. geometry data if the input is to be interactive;
4. intensity 3
5. 8 1 ' 82

1 16. k,(z k=1.2.3.4

2 2
k, ak , N , k=1,2,3

After the INIT command, the user should apply either a STEP or an INVAL---

STEP sequence of commands to correct the initial values. For the STEP
command, the user should specify zero as number of steps. (The STEP

command with zero steps replaces the CORR command used in previous

versions of NFEARS)

5.4 The INVAL Command:

This command is used to supply an initial solution through the USRINV
subroutine. When this command is invoked, USRINV is called first with the input
variable N set to zero to allow for any initialization that may be needed in this
subroutine. Thereafter, USRINV is called repeatedly with N>O to obtain initial
values U at N nodes with global coordinates (x,y). Note that this command
cannot be used before the geometry is established by the INIT or RESET
commands. Moreover, the INVAL command should always be followed by the
STEP command with zero number of steps to correct the supplied solution and
to establish it and its related data in the temporary storage area.

5.5 The RESET Command:

The RESET command causes the data structure from a previously saved disk-
file, generated by a SAVE command, to be read back into the program. The
user must supply the name of the file. After the file is read, NFEARS calls
USRFCT with the first argument set to one to allow for a print-out of a problem
title and, if desired, of any saved parameters in the common block /USRPAR/.

28

This command should be followed by a CORR command to establish the
solution and its related data in the temporary data structure and to ensure its

correctness. Once again, the INVAL command may be applied prior to CORR.

I
5.6 The STEP Command:I
Tne STEP command invokes the continuation algorithm and prompts the user
for the number of steps that cre to be taken. If zero number of steps is specified,
then NFEARS attempts to correct the solution values given either at the initial
data input during INIT command or received by the INVAL command.

Otherwise, this number can be given as a positive or negative integer. If given
as a positive integer then an error calculation is performed after each step

Iautomatically; if given as a negative integer then error calculation is performed
only after the last step. It terminates in either one of the following three modes:
(a) The specified number of steps have been taken. The "current" location

contains the "point" on the path reached at the last step.

(b) During the step-calculation, a previously called-for target or limit point is

detected between two successively computed points on the path. The so-
lution corresponding to this target or limit point is returned in the "predictor"
location of the temporary data structure while the computed point oil the
path just beyond it is in the "current" location.

I (c) The corrector iteration failed to converge.
A print-out informs the user which of these modes applies, and, in particular,
whether a target or limit point has been found. It is advisable not to take too
many steps with one STEP command, since it may happen that the

discretization errors become undesirably large. When the corrector iteration

fails, the user may try to decrease the minimum step size of the continuation
algorithm by means of the CONST command. Another remedy might be to
establish a more suitable scaling of all variables and, especially, of the
parameters X1 and X2 ; but, of course, this requires some modifications in the

user--subroutines.

29

5.9 The MESH Command:

This command checks the present meshes on the 2-D domains and modifies
them in accordance with the mesh-modification-mode set by the CONST

command. The program tests first if any de-refinement is needed; that is,
whether any four elements obtained by a prior refinement of an element are to

be contracted again into one element. Once all de-refinements, if any, are
completed, the program checks if any refinement is to be performed; that is,

whether any element is to be subdivided into four elements.

Modification is performed in accordance with the mode set by the CONST
command. "Automatic" refinement decision can be made on the basis of the

error-sizes or of the density and intensity. The refinement by error-size uses two

error tolerances supplied by the CONST command and for details of the
refinement by density/intensity we refer to Section 1.8. "Manual" modification is

performed interactively. The user is asked for each element, which is a candi-
date for de-refinement or refinement, whether the particular operation should be
performed or not. In all cases, the total number of de-refinements and

refinements is provided as output.

Interpolation is used to obtain the solution values for any nodes that may have
been newly established by any refinement. The resulting approximate solution
should always be corrected by a CORR or STEP command.

5.8 The TARG Command:

This command prints out any presently set target and/or limit point indicators, if

there are any, and then asks for new indicators if these are to be established. A

target or limit point indicator always consists of the index value of the variable or

parameter variable, and, in addition -- for a target point -- of the desired target
value. The following variable indices are allowed:

A 0-D domain not carrying a Dirichlet boundary condition,
the mid-point of a 1-D domain not carrying a Dirichlet boundary condition,

the mid-point of a 2-D -domain,

any one of the active X or a parameter variables.

30

5.9 The PARAM Command:

This command prints out the present values of the effective parameter values

X1, X2 and of the coefficients 81, 82, a and 13. It then asks if the 8 and 13 values
are to be changed. The following answers are allowed:

0,0 (two zeros) no change,
81 ,82 (81+82 = 1.0) change the previous 81 and 82 values,

I k1, [3 reset the value of Pi for the printed i,k indices.

kIn either case, new values of the ao are determined which ensure that the

kcurrent values of the program parameters a i are not changed, and then the

values of the effective parameters %1, X2 are set to zero. More specifically -- after

all changes are provided -- the parameter values will be as follows

k k kI i (new) = a (old) + 13 (old) Xk (old) , i=1,...,4; k=1,2

kX (new) = .k(new) = 0, Pi (new) = input provided by the user.

In addition, any previously set target or limit point indicators are erased. Thus
if desired, such target and limit point indicators have to be reset in terms of the
new X-values initialized to 0.

5.10 The UMOD Command:

This command invokes a call to the user-subroutine USRMOD. Accordingly,

any action taken depends on this routine.

5.11 The PRINT Command:

This command prints out the current solution in the tree-storage area and its
associated error and density values. It should be used after a FERR command,
otherwise the program may print a previous result. When this command is

given, the program asks whether output should be on-line (system output 6). If

I 31

the answer is "No", then the full solution, error and density values will be printed
in the log-file (unit 10). If the answer is "Yes" (on-line), then the program will
prompt further for a specification of the desired segments of the solution, error
and density data which are to be printed out for each subdomain.

5.12 The SAVE Command:

This command saves the present data on a disk-file which can be used later to
resume the computation by means of a RESET command. The program asks for

the name of the file (which should not exist) to which the output is to be directed.
The program saves all problem data including the parameter values in the user-

subroutines. The data in the temporary storage area; that is, in particular, the
Jacobian and the path-tangents, are not saved. Accordingly, this command
should be given after a FERR or MESH command. It is the user's responsibility

to save this disk file permanently after the termination of an NFEARS session.

5.13 The HELP Command:

This command prints out the names of the commands and the name of the last

executed command.

5.14 The POLYG Command:

This command places NFEARS into a sub-command (polygon) mode. These

sub-commands are a subset of the main commands as illustrated in Figure 5.1
The only differences are that the "STEP" as subcommand performs only one
step (thus no further input is asked for the number of steps to be performed), the
"HELP" command lists only the available subset of commands, and the "QUIT"

sub-command returns NFEARS to the main command flow. When NFEARS
prompts for input of a command, it distinguishes between the main command
mode and polygon subcommand mode by printing "MAIN COMMAND" or
"POLY COMMAND". The main purpose of this mode is to record results of of

each step in a moving data output file. When this command is invoked, NFEARS
asks if moving polygon data file is to be generated which requires input
character "Y" or "N" (yes or no), and if it is yes, then specifying a file name for the

moving data file.

32

oupu

QUIT~~o ataflg h Tre

command GeeaeHaigRcr

inputFiur 5.1TCllCOS

TRAE *[Cal33AC

5.17 The REGION Command:

This command invokes the algorithm for the calculation of a simplicial ap-
proximation of an open region of the manifold, and enters into a sub-command

mode which is described in the next section. Before invoking this command, the
user should ensure that both effective parameter variables, X.1 and X2 are active.

This can be guaranteed with the PARAM command by providing that at least
1 2

one Pi and at least one Pi are non-zero. Accordingly, upon exit from the

REGION sub-command mode, the user may wish to invoke the PARAM
command to choose a new relation between the two parameter variables.
When this command is invoked, the user is asked whether a moving frame data
file should be generated requiring users input "Y" or "N". If user's input is Y then

the program also asks for a name of the file.

5.18 The QUIT Command:

This command terminates the NFEARS session and prints out the number of
region-output files (see Section 11.6) that have been generated. These files and

any files generated by a SAVE command should be saved by the user, and , in

addition, the log-file (unit 10) should be printed out.

3I

34I

I

6. REGION Subcommands

I The REGION command calculates a simplicial approximation on the manifold M
in an neighborhood of the "current solution" called, in this context, the reference

point. If a presently available target point is to be used as the reference point,

then it has to be placed into the "current" location by issuing a FERR and CORR
I command prior to the REGION command. The Region sub-program is

implemented as a routine which is controlled by user supplied sub-commands

each of which consists of a single character. When the REGION command is

invoked, (i) the program asks the user whether a moving frame data file should

be generated. If the answer is "Y" (yes) then it also asks for a name of this file-
(ii) the program checks whether both effective parameters are active, if not then
a request for a change of the parameter dependence is issued. When this
condition is satisfied, the program resets the values of the two effective
parameters X1 and X2 to zero.

The basic principle of the regior ;alculation is discussed in Section 1.7. As

I noted there a Kuhn triangulation in R2 is used as the reference triangulation and
we work with rectangular patches of eight triangles each containing one center
node and eight boundary nodes. As outlined in Section 1.7, the algorithm begins

by mapping a first patch onto the tangent plane of the reference point and by

projecting the nodes from there onto the manifold. Then, under user control, the

I program proceeds to transfer an adjacent patch, next to the first one, onto the

manifold, etc. In other words, the REGION command maps a sequence of

"patches" onto the manifold, and their connectivity pattern defines the desired

simplicial approximation of the particular region.

The moving frame data file from the REGION command consists of two heading
files followed by a sequence of records containing the attributes of the

calculated nodal points as calculated by the user supplied subroutines,

USRFRx, as described in Section 3.c. The second heading file contains the

connectivity matrix NODE(i,j), i,j=l,...,MAXNOD (=21), The entries of the

connectivity matrix correspond to the nodes of a 20 by 20 subset of triangles of

the reference triangulation (see Figure 1.7.1); the triangular connections are not

stored explicitly. Originally, this matrix is set to zero, except for the entry

NODE(10,10) which corresponds to the node that is mapped into the reference

35

point and is set to 1 which serves also as its index number. When a node of any
patch has been mapped successfully onto M and its attributes have been

calculated, then the node receives a positive index which is recorded in the
matrix. At the same time, the attribute record of that point is saved. A negative

index is used in the connectivity matrix when an attempt has been made to

transfer the point to M but the corrector iteration has failed. In the matrix, the

center-points of the patches correspond to the "even" entries, NODE(2i,2j)
(1_i,j_<10), and the boundary points of the patch are the eight adjacent matrix

entries. Thus a patch is identified by nine entries NODE(2i+m,2j+n), m,n=-

1,0,+1. The adjacent patches, of course, share the boundary nodes.

Indices of a patch in the NODE matrix

Center point in NODE(2i,2j)

(2i-1,2j-1 (2i,2j-1) 24+1,2j-1)

(2i- 1 ,2j) R24,j

(2i-1 ,2j+1) (2i,2j+l) (2i+1,2j+1)

After the initialization, the program enters into the sub-command
mode. The order in which patches are to be transfered onto M is controlled by

the sub-commands L(eft), R(ight),D(own) and U(p), i.e. the patch to be used next
is the one adjacent to the "current" patch in the specified direction. Figure 11.6.2

shows the sequence of patches corresponding to the commands L,D,R,R,R. The
"current" patch is usually the last calculated one. But, the program also provides

nine temporary locations, indexed 1 to 9, where the center points on M of a suc-

cessfully mapped patch can be saved by means of the sub-command S(ave).
The reference point is initially saved in location 1. During the calculation an-

other sub-command allows for a previously "saved patch" to replace the
"current" one. When the region computation terminates, control is returned to

the main program with a "current" solution. At that time, the user also has the

choice which of these saved center points should become the "current"

solution.

36

Generation of patches:

O Center point of patches

L
" Boundary point of patches

0 0
D Ref. pt.

R R R

Figure 11.6.2

The computation of the center-point needed for mapping a new patch onto M

and the process of transfering a node from R2 onto the tangent plane and of
projecting it from there onto M was discussed in Section 1.7. Default step sizes

are based on the last stepsize of the continuation algorithm and can be

changed by the user. For the center- point calculation the modified Newton
process is the same as in the continuation algorithm, but the program always

re-evaluates the Jacobian after the solution has been obtained. The calculation

of the boundary points of the new patch uses a chord Newton method based on

the Jacobian at the center point of the patch. A flow chart of the region-

subprogram is given in Figure 11.6.3.

A character matrix picture of the calculated patches is printed at the terminal.

The entries in this matrix correspond to the center points of the patches. and

consist of a character followed either by a blank or a single digit between 1

and 9. Patches which were not yet mapped onto M are represented by a period

followed by blank. Instead of the full 10 by 10 array of patches, only the used

patches are shown with one row and/or column of periods on the four sides

where applicable. The characters representing these patches are as follows:

or "R" = Initial reference patch
or "A" = Successfully transfered patch for which all 9 nodes have

been mapped onto M.

37

or "B" - Unsuccessfully used patch for which the corrector diverged
at one or more nodes

The "current" patch is indicated by a capital letter and all others by small letters.
A digit between 1 and 9 following the patch character indicates that the center-
point for that patch has been saved in the temporary location with the same
index.

Initial ouput picture:

R1

The current patch is the reference patch; its center point is the reference point
which is always saved in location 1. The next patch may be chosen in any one
of the four directions (Left, Right, Up, Down). Suppose that at a later time the
picture looks as follows:

b a a A
a a a
a a a
a2 a a

a rl a

Only two movements are possible from the current patch "A", namely -- as
indicated by the missing period in the top line -- the R(ight) and the D(own)
movement . The center points of two patches were saved in locations 1 and 2.
All patches were mapped successfully onto M, except the one in the upper left
corner.
Below the picture, the program prints out a line of summary data, including the

number of patches used so far, number of nodes transfered onto M, etc, and,
optionally, three 3 by 3 matrices which give some information about the current

38

patch calculation. For details we refer to the P(rint) sub-command below. These

matrices can also be printed automatically with a proper setting of the T(race)

sub-command.

Commnand:
REGION 0- Initialize Stepsize

New Patch Center pt.
=> Reference point

points of patch Od

INPUT Subcommand:
S, .. TQ Subcommand Branch
1 2 ... 9
R,L.U.D

Cso Save Center pt

Ft
k=l 9

(rl,2.....9-' Retrieve Center 1

,retrieve pt. at k=! 9

PPrint point =

p i tindices I

move new Patch

Close Regin !'Il RETLUN

Select current point

Figure 11.6.3

39

After printing the picture the program expects another one-character

(sub)command from the user. Following is a list of all these subcommands:

= Save the current patch: The center-point of the current patch is saved in the

temporary location with the next available index. If all 9 locations have

been used then the user will be asked which one of them is to be
replaced. The index of all patches for which the center points have been

saved can be seen in the next picture.

,"2", "9 "

= Use the "saved patch" in this location as the "current patch"; an error
message results if the indicated location is empty.

= Prints three 3 by 3 matrices are printed side by side which give information

about the last patch calculation. The first matrix contains the indices of

the nodes that were mapped onto M, the second one shows the number
of corrector steps for their calculation , and the third matrix contains the

distance, in the maximum norm, from the predicted point on the tangent

space to the computed node on M.
When the Print command is given, the program asks whether the above

output should be directed to the terminal or to file 10. It may be noted that
the T(race) command also allows for the automatic generation of the

same output, except that then it will always be directed to the terminal.

, ""U" or "D"

= Calculates a new patch adjacent to the current patch by moving in the
indicated direction L(eft), R(ight), U(p) or D(own). If the patch in that

position has already been mapped onto M, or if it is outside of the 10 by

10 patch region, an error message is issued. Once the new patch has

been transfered onto M, it will become the new current patch.

- Trace command provides for certain optional outputs. It requires two

integers as inputs, which are the same as the trace switches of the main

program for the amount of terminal output. A 1,1 input produces an auto-

matic output of the same three matrices on the terminal as the P(rint)

command, while 0,0 suppresses this print-out.
- Quit command: It establishes a region-file before returning control to the

main program. The user has a choice which of the saved center-points of

the patches is to become the "current" solution. This solution should be
"corrected" by a CORR command.

40

Apendix A

GETxxx Subroutines

A set of subroutines to obtain various data internal to NFEARS is provided by

the "moving data file" routines, USRPYx and USRFRx. These routines are

grouped into two parts: (1) Routines callable from USRxxS or USRxxF, (2)

Routines callable from USRxxE. Actually, the first set of routines could also be

called from the USRxxE routines but that usage would be very inefficient. When

any of those data are needed for the USRxxE routine, one should call that

routine from USRxxS and save the needed data in a locally defined common

storage. The names of all subroutines start with GET... , and the data provided

by them correspond to the "current" (last obtained) solution.

A.1 Subroutines for USRxxS/USRxxF

These routines can be called when a solution has been obtained before the

elements being processed (from USRxxS) or after all elements has been

processed (from USRxxF). The USRxxS and USRxxF routines are called with

the argument list:
(ND,D)

DIMENSION D(ND)

where D is the array for storing data to be recorded.

DIMENSION SIGMA(2,4)

CALL GETSST(NP,NE,SIGMA)

GETSST returns the following data:

NP = Number of free variables (nodes) in Q

NE = Number of elements in Q

SIGMA = a parameter values

41

DIMENSION XSP(2),PR(2),AP(2,4),BP(2,4)

CALL GETSLB(ISP,SP,XSP,PR,AP,BP)

GETSLB returns the following data:

ISP = 1 in polygon mode, 2 in region mode
SP = value of the single parameter X when combined
XSP = coefficients for combining X1 and X2:

X = XSP(1) *X1 + XSP(2) * A2
PR = values of k. and X2
AP, BP = coefficients defining a values:

SIGMA(I,J) = AP(l,J) + BP(l,J) * PR(l)

CALL GETSER(IET,ER,ERTR)

GETSER returns global error data:

lET = error calculation type (1 or 2)
ER = total error for 2
ERTRU = true error for Q when analytic solution is known

CALL GETSMX(EMAX,EMIN,DMAX,DMIN)

GETSMX returns maximum and minimum error informations. The max.
indicators show whether element subdivision is needed, the min. indicators
show whether element contaction is needed:

EMAX = max. elemental error indicator (squared)
EMIN = min. sum of four elements' squared error indicators
DMAX = intensity for the element with EMAX
DMIN = intensity for the 4 elements with EMIN

42

DIMENSION SD(0:2,2)

CALL GETSSD(SD)

GETSSD return min/max values of the solution and its derivatives:

SD(0,1) = min U

SD(0,2) = miax U

SD(1,1) = min au/ax

SD(1,2) = max aU/ax

SD(2,1) = min au/ay

SD(2,2) = max au/ay

A.2 Subroutines for USRxxE

USRxxE routines are called with the argument list:
(ND,D,ID2,IDE,H,XL,U)

DIMENSION D(ND),XL(2),U(3,3)

giving the following informations about the element

D = array for storing data to be recorded

ID2 = index of the 2-D subdomain where the element is
IDE = index of the element (unique in the 2-D subdomain)

H = side-length of the element in the unit-square

XL = coordinates of the middle point of the element in the unitsquare

U = solution values at the middle-, side- and corner-points of the element

Some of these values are needed in the following GET... subroutines as input

arguments,

DIMENSION XG(2),XI(2)

CALL GETELC(XG,XI)

Given the global coordinates of a point in XG which must be in the same 2-D

subdomain as the one specified by ID2, GETELC returns the corresponding
local coordinates of the point in XI when the 2-D is mapped into the unit-square.

43

CALL GETEER(E12,EP1,EP2,ETR)

GETEER routine gives the following error informations about the element:

E12 = error indicator squared (without parameter component)
EP1 = parameter 1 component of the elemental error
EP2 = parameter 2 component of the elemental error
ETR = true elem. error indicator squared if analytic solution is

known

EP1 and EP2 is applicable when errors are calculated by type 2.

DIMENSION U(3,3),XG(2,3,3),VN(0:2,3,3), DWH(3,3)

CALL GETEQD(U,XG,VN,DWH)

GETEQD requires input argument U, solution values at the middle-, side- and

corner-points of the element, which is given in the argument list of USRxxE. The
routine then gives the following 9-point Gaussian quadrature data where I,J
indices correspond to the Gaussian points in the element (1,J=1,2,2)

XG(1 ,l,J),XG(2,l,J) = global x,y coordinates

VN(O,I,J) = solution values at (1,J)
VN(1 ,I,J) = aU/ax (x=global coord.) at (1,J)

VN(2,I,J) = aU/oy (y=global coord.) at (1,J)

DWH(I,J) = absolute value of the Jacobian determinant of the 2-D
mapping multiplied by the appropriate weight and by

the square of the side length of the element

This routine can be used when the user needs to integrate a functional f(x,u,u')
over the element.

44

DIMENSION XE(2),U(3,3),XG(2),SD(0:2)

CALL GETESD(XE,U,XG,SD)

GETESD routine returns point-wise information about the finite element

solution. It requires input data XE and U where XE contains the coordinates of
the point when the element is mapped into unitsquare, and U contains the

solution values at the middle-, side- and middle-points of the element. GETESD
gives the following data:

XG = global x,y coordinates of the point

SD(O) = finite element solution u(x,y) at the point
SD(1) = au/ax at the point

SD(2) = au/Dy at the point
This routine can be used for checking the accuracy of the finite element solution

at selected points, possibly close to singularity. Note that XE is different from the
2-D local coordinate, but can be derived from it:

Let XI(1),XI(2) be the local coordinates of a point in a 2-D domain when it is
mapped into the unitsquare. Then

XE(1) = 0.5 + (XI(1)-XL(1))/H

XE(2) = 0.5 + (XI(2)-XL(2))/H
where XL, H are the middle point coordinates in 2-D, and side length of the

element given in the argument list for USRxxE. The point is inside of the

element if

0 < XE(i) < 1, i=1,2

45

Appendix B

Example for USRPYx subroutines

The following example is for the user supplied subroutines, USRPYx,
illustrating the data collection/calculations for the moving
polygonal data file. The same programs can be used for the USRFRx
routines by replacing the entry names.

C ---
C DATA RECORDED IN MOVING FILES:
C 1. EFFICIENCY INDEX FOR THE FULL DOMAIN = (FE ERROR)/(TRUE ERROR)
C 2. MIN. ELEMNTAL EFFICIENCY INDEX
C 3. MAX. ELEMENTAL EFFICIENCY INDEX
C OPTIONAL OUTPUTS IN GROUPS OF SIX DATA (MAX. 5 GROUPS)
C 4,5,6 = FE SOLUTION U, dU/dx, dU/dy AT POINT 1.
C 7,8,9 = TRUE SOLUTION T, dT/dx, dT/dy AT POINT 1.
C MAXIMUM 5 POINTS ALLOWED
C
C STORAGE NEEDED IN COMMON AREA /USRDAT/:
C DIGMA(2,4) = PRESERVING SIGMA VALUES
C EFMNX(2) = RETAINING MIN/MAX ELEMNTAL EFFICIENCY
C MPRT = NUMBER OF POINTS WHERE SOLUTIONS AND DERIVATIVES
C CALCULATED (MAX. 5)
C 12P(2,5) = 2-D INDICES AND ELEMENT INDICES OF THE ABOVE POINT
C XGI(2, 5) = GLOBAL COORDINATES OF THE ABOVE POINTS
C XLI (2, 5) = 2-D LOCAL COORDINATES OF THE ABOVE POINTS
C

*** ** ******* *** ********* **** ******

C S.8 LENGTH OF POLYGONAL NODE RECORD *

SUBROUTINE USRPYO (LENGTH)
COM ON/USRDAT/MPRT,I2P(2,5),DIGMA(2,4),EFMNX(2),XGI(2,5),XLI(2,5)

C INPUT FOR POINTS WHERE SOLUTION/DERIVATIVES NEEDED
10 WRITE (6,20)
20 FORMAT (' INPUT number of points where sol/der. to be recorded',

I (max. 5) =>')
READ (5,*,ERR=l0) MPRT
IF ((MPRT.LT.0).OR.(MPRT.GT.5)) GO TO 10
IF (MPRT.NE.0) THEN

30 WRITE (6,40) MPRT
40 FORMAT (I INPUT points line-by line: 2-D index, X,Y coord. ==>')

DO 50 I=,MPRT
READ (5,*,ERR=30) 12P(l,I),XGI(l,I),XGI(2,I)

50 CONTINUE
WRITE (10,60) MRT,(I2P(1,I),XGI(1,I),XGI(2,I),I=l,MPRT)

60 FORMAT(lX,I2,' points where sol/der. are recorded:'/(I5,2G14.6))
END IF

C RETURN LENGTH OF NODE RECORD
LENGTH = 3 + 6*MPRT
RETURN
END

C

46

C

C S. 9 INITIALIZE FOR ONE POLYGONAL NODE RECORD *

C
SUBROUTINE USRPYS (LENGTH, DAT)
DIMENSION DAT (LENGTH)
COMMON/USRDAT/MPRT,I2P(2,5),DIGMA(2,4),EFMNX(2),XGI(2,5),XLI(2,5)

C GET SIGMA VALUES AND SAVE THEM IN DIGMA
CALL GETSST (NP, NE, DIGMA)

C CLEAR ELE1ENT INDICES IN 12P(2,
IF (MPRT.EQ.0) THEN
DO 10 I=I,MPRT

10 12P(2,I) = 0
END IF

C INITIALIZE MIN/MAX ELEMENTAL EFFICIENCY IN EFMNX
EFMNX(1) = 1.E10
EFMNX(2) = -1.E10

C RECORD DOMAIN EFFICIENCY INDEX
CALL GETSER(IET, ER, ERTRU)
DAT(1) = ER/ERTRU
RETURN
END

C-
C

C S.10 UPDATE POLYGONAL DATA BY ELEMENT *C***
C

SUBROUTINE TJSRPYE (LENGTH, DAT, ID2, IDE, H, XL, U)
DIMENSION DAT (LENGTH) ,XL(2) ,U(3, 3)
COMMON/USRDAT/MPRT,I2P(2,5),DIGMA(2,4),EFMNX(2),XGI(2,5),XLI(2,5)

C INFORMATION AVAILABLE:
C ID2 = INDEX OF THE 2-D SUBDOMAIN
C IDE = INDEX OF THE ELEMENT IN THE 2-D
C H = SIDELENGTH OF THE ELEMENT
C XL = LOCAL COORDINATES OF THE MIDDLE POINT OF ELEMENT
C U = SOLUTION VALUES AT THE CORNER, SIDE AND MIDDLE POINTS

DIMENSION Z (2), ZG (2)
C
C CALCULATE AND UPDATE ELEMENTAL EFFICIENCY IN EFMNX

CALL GETEER (ER, ERI, ER2, ERTRU)
ER = SQRT(ABS(ER/ERTRU))
EFMNX(1) = AMIN1(EFMNX(1),ER)
EFMNX(2) = AMAX1(EFMNX(2),ER)

C LOOP ON MPRT POINTS
IF (MPRT.EQ.0) RETURN
DO 100 I=1,MPRT

C SKIP IF DIFFERENT 2-D OR ELEMENT INDEX IS NOT ZERO
C (IF ELEMENT INDEX WAS SET, THEN WE ALREADY HAVE IT)

IF ((IABS(I2P(1,I)).NE.ID2).OR.(I2P(2,I).NE.0)) GO TO 100
C IF 2-D INDEX IS POSITIVE THEN
C CALCULATE LOCAL COORDINATES AND SET 2-D INDEX TO NEGATIVE

IF (12P(1,I).GT.0) THEN
CALL GETELC(XGI(i,I),XLI(1,I))12P(1,I1) 1 2P (1,1)

END IF
C IS POINT IN THIS ELEMENT?

47

H2 = H/2.
IF ((XLI(1,I).GT.(XL(l)-H2)).AND).(XLI(1,I).LE.(XL(Jj+H2))

.AND.(XLI(1,2).GT.(XL(2)-H2)).AND.(XLI(1,2).LE.(XL(2)+H2)))
THEN

C CALCULATE DATA NEEDED TO BE RECORDED AND SET THE ELEME~NT INDEX
Z(l) =.5 + (XLI(1,I)-XL(l))/H
Z(2) = .5 + (XLI(2,I)-XL(2))/H
CALL GETESD(Z,U,ZG,DAT(6*I-2))
CALL USTRUX(XaLI(1,I),Z,DIGMA,DAT(6*I,1),DAT(6*I+2))
12P(2,I) = IDE
END IF

C END OF LOOP
100 CONTINUE

RETURN
END

C
C

C S.11J FINALIZE NODE DATA

C

SUBROUTINE USRPYF (LENGTH, DAT)
DIMENSION DAT (LENGTH)
COMMON/USRDAT/rPRT,I2P(2,5) ,DIGMA(2,4) ,EFMNhX(2) ,XGI (2, 5) ,XLI (2,5)

C RECORD MIN/MAX ELEt-INTAL EFFICIENCY
DAT(2) = EFMNX(l)
DAT(3) = EFMNX(2)
RETURN
END

C

48

Appendix C

Formats of Moving Data Files

The final Moving Data Output file is generated on the user's specified file when

the polygon or region subcommand mode is terminated by the by the QUIT or 0

command, respectively. The sequential output file is either formatted or

unformatted, as the user specified. Formatted file is prefered whenever the file is

to be transfered to other platform for postprocessing.

Both types (polygon and frame) files contain two heading (logical) records

followed by the node data records. While the formats of the first heading record

and the node records are the same for both polygon and frame files, the second
heading record differ. The node data records contain the actual data supplied

by the user supplied subroutines.

Header 1.
The record consisting the following 9 data:

NFEARS= (integer) version number of NFEARS
IDPR = (integer) problem number, if negative then analytic

solution is available
IDUF = (integer) id. number of 4
IDUG2 = (integer) id. number of G2
IDUG1 = (integer) id. number of G1
NDTOT = (integer) number of node records
NDLNGT= (integer) length of node records
MAXNOD= (integer) for length used in Header 2.
NDTYPE= (integer) code for types of node records:

= 1 for moving polygon node data record,
= 2 for moving frame node data record,

Formatted record is written out with FORMAT (918).

49

for polygon data file:
The record containing

RNGBUF(i,j), i=1,2 and j=I,NDLNGT
where

RNGBUF(1 ,j) = min DATNOD(j)

RNGBUF(2,j) = max DATNODQ)
with min and max is taken over all node data (solution points).

Formatted record is written out with FORMAT (5G14.6)

for frame data file:
Three physical records containing

RNGBUF(i,j), i=1,2 and j=l ,NDLNGT
NPTOT,(NDFRST(i),i=1,2),(NDLAST(i),i=1,2)

((NODE(i,j),i=1,MAXNOD),j=1,MAXNOD)
These data are written out as one logical record for unformatted file, and as

three logical records for formatted file using the FORMATs

(5G14.6) for RNGBUF
(918) for NPTOT,NDFRST and

(918) for NODE
RNGBUF contains the same data as for polygon data file. NPTOT is the number

of patches visited, the matrix NODE is a connectivity matrix, NDFRST(1) and
NDLAST(1) are the first and last non-zero rows in the matrix NODE, NDFRST(2)

and NDLAST(2) are the first non-zero columns in the matrix NODE. See further

details regarding patches and connectivity in section 6.

Node data records
Node data records contain the data which were generated by the user supplied

subroutines

DATNOD(i), i=1 ,NDLNGT
Formatted records are written with FORMAT (5G14.6). One record for

each solution node. The logical index numbers of the solution nodes
correspond to the order of the records on the file, starting with 1

and ending with NDTOT.

50

S II Form ApprovedREPORT DOCUMENTATION PAGE 0MB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per resonse, including the time for reviewing instructions. searchng exsting data sources.
gathering and maintaining the data needed. and completing and fevletnig trhe collection of information Senad comments regarding this burden estimate or an, nher aspect of this
collection of informlation. including suggestions for reducing this burden Ic *aShington Headdouariers Ser.ices, Diretorate for intomatio Operationrs ano Reorts, 1215 Jefferson
Davis Highrway. Suite 12104, Arlington. VA 22202-4302, and to the fCe Of Management and Budget. Paoer.OrK Redlucin Project (0704-0188) Washington, :-C 20503

1. AGENCY USE ONLY (Leave blank) J2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I 70 March 18. 1991 I Technical RePnrt
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

NFEARS
A Nonlinear Adaptive Finite Element Solver QNR-N-00014-90-J-1025
Part II: User's Manual (Version 6)

6. AUTHOR(S)

Werner C. Rheinboldt
Charles K. Mesztenyi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

Dept. of Mathematics & Statistics, Univ. of Pittsburgh
Computer Science Center Univ. of Maryland

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING. MONITORING
AGENCY REPORT NUMBER

ONR

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release: distribution unlimited

13. AeSTRACT (Maximum 200 words)
This represents the second Part of the report on NFEARS, Version 6. the "Nonlinear
Finite Element Adaptive Research Solver" defveloped jointly by the Universities of
Maryland and Pittsburgh. This part constitutes the User's Manual for the system
version 6. It was intended to describe all necessary aspects for running NFEARS
successfully without requiring a detailed knowledge of the mathematical background
given in Part I. However, the reader should be generally famili3r with the aims
and tasks of the program.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Finite Element Computations 16. PRICE CODE
Adaptive Mesh Refinement
17 ECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 1.SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

7.OF REPORT I OF THIS PAGE I OF ABSTRACT

unlssfe unclassified unclassified
.%SN 7540-0'-280-5500 Sra-a- rorn 298 1:ev 2-89)

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Aqency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If S e e o n Technical
applicable, enter inclusive report dates (e.g. 10 Statements on TechnicalJun8- 30Jun 8).Documents."'
Jun 87- 30 Jun 88). DOE - See authorities.
Block 4. Title and Subtitle. A title is taken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOE - Eae blank.in parentheses. DOE -Enter DOE distribution categories

from the Standard Distribution for

Block 5. Funding Numbers. To include contract Unclassified Scientific and Technical
and grant numbers; may include program Reports.
element number(s), project number(s), task NASA - Leave blank.
number(s), and work unit number(s). Use the NTIS - Leave blank.
following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s) Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited wth the content of the
reoort. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages Enter the total

number of pages.
Block 7. Performing Orcanization Name(s) and
A-dd ress(es). Se'.f-explanatory Block 16. Price Code. Enter appropriate price

Block 8. Perforrmno Oraan.za:on Report code (NTIS only)
Number Enter trie unique aipnanumeric report

.- %,mber(s) assigned by the orgar;zatiorrmefomrsing the report. Blocks 17.- 19. Security Classifications Self-

rexplanatory. Enter U.S Security Classification in
Block . Soorso-trc'Mor':o7'-c 4aecv Name(s) accordance with U.S. Security Regulations (i e
andt 4.cd-ess(es) Seli-ex)iana~or, UNCLASSIFIED). if form contains classifieoi

information, stamp classification on the too and

Block 10. Spo0rornq/M'onm*cnq Agency bottom of the page.
Repo.T Numoer (If known)

Block 11. Supplementary Notes Enter Block 20. Limitation of Abstract This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with.. ;Trans. of . ; To be abstract. Enter either UL (unlimited) or SAR (same
published in... When a report is revised, include as report). An entry in this biock is necessary if
a statement whether the new report supersedes the abstract is to be im,ted. If blank, the abstract
or supplements the older reoort is assumed to be unlimited

Sarca'c "orr- 298 Back (Rev 2-89,

