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Abstract

A new technique for proving timing properties for timing-based algorithms is described; it
is an extension of the mapping techniques previously used in proofs of safety properties for
asynchronous concurrent systems. The key to the method is a way of representing a system
with timing constraints as an automaton whose state includes predictive timing information.
Timing assumptions and timing requirements for the system are both represented in this way.
A multi-valued mapping from the "assumptions automaton" to the "requirements automaton"
is then used to show that the given sybtem satisfies the requirements. One type of mapping is
based on a collection of "variant functions" providing measures of progress toward timing goals.
The technique is illustrated with two examples, a simple resource manager and a two-process
race system.

Keywords: Timing properties, timing-based algorithms, formal specification, formal verifi-
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1 Introduction

Assertional reasoning is a very useful technique for proving safety properties of sequential ,m,,d
concurrent algorithms. This proof method involves describing the algorithm of interest as a
state machine, and defining a predicate known as an assertion on the states of the machine.
One proves inductively that the assertion is true of all the states that are reachable in a
computation of the machine, i.e., that it is an invariant of the machine. The assertion is
defined so that it implies the safety property to be proved. Assertional reasoning is a rigorous,
simple and general proof technique. Furthermore, the assw :ons usually provide an iuntuitively
appealing explanation of why the algorithm satisfies the property.

One kind of assertional reasoning uses a mapping to describe a correspondence between
the given algorithm and a higher-level algorithm used as a specification of correctness. (See,
for example, [La83, Ly86, LT87].) Such mappings may be single-valued or multi-valued.

So far, assertional reasoning has been used primarily to prove properties of sequential
algorithms and synchronous and asynchronous concurrent algorithms. We would also like
to use this technique to prove properties of concurrent algorithms whose operation depends
on time, e.g., ones that arise in real-time systems or ones that rely on clocks that tick at
approximately known rates. Also, the kinds of properties generally proved using assertional
reasoning have been "ordinary" safety properties; we would like to use similar methods to
prove timing properties (upper and lower bounds on time) for algorithms that have timing
assumptions. Predictable performance is often a desirable characteristic of real-time systems
[SR89]; assertional techniques could be very helpful in proving such performance properties.

In this paper, we describe one way in which assertional reasoning can be used to prove tim-
ing properties for algorithms that have timing assumptions. Our method involves constructing
a multi-valued mapping from tin automaton representing the given algorithm to another au-
tomaton representing the timing requirements. The key to our method is a way of representing
a system with timing constraints as an automaton whose state includes predictive timing in-
formation. Timing assumptions and timing requirements for the system are both represented
in this way, and the mappings we construct map from the "assumptions automaton" to the
"requirements automaton". One type of mapping is based on a collection of "variant functions"
providing meastres of progress toward timing goals.

We describe our method in terms of the timed automaton model, a slight variant of the time
constrain(d automaton model of [MMT88]. We use this model to state the requirements to be
satisfied, to define the basic architectural and timing assumptions, to describe the algorithms,
and to prove their correctness and timing properties. A timed automaton is a pair (A,b),
consisting of an I/0 automaton [LT87, LT89], together with a boundmap, which is a formal
description of the timing assumptions for the components of the system. A timed automaton
generates a set of timed erecutions which describe the operation of the algorithm, and a cor-
responding s-t of timed behaviors which describe the algorithm's externally-visible activity. In
this paper, a tin ,,,! -, m -,:!ic" to tbo giver F'k .... ., umcldi j i
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assumptions), and another timed automaton (A',b') is used to describe the correctness and
timing requirements.

While convenient for specifying timing assumptions and requirements, timed automata are
not directly suited for carrying out assertional proofs about timing properties, because timing
properties are described externally (by boundmaps) rather than being built into the automaton
itself. We therefore introduce a way of incorporating timing conditions into an automaton
definition. For a given timed automaton (A,b). we define the automaton time(A,b) to be an
ordinary I/O automaton (not a timed automaton) whose state includes predictive information
describing the first and last times at which various events can next occur; this information is
designed to enforce the timing conditions expressed by the boundmap b. The I/O automaton
time(A,b) is related to the timed automaton (A, b) in that a certain subset of the behaviors
of time(A,b), which we call the "admissible" behaviors, is exactly equal to the set of timed
behaviors of (A, b).

We apply this construction to both the system description (A,b) and the requirements
description (A', b'); our "assumptions automaton" is defined to be time(A, b) and our "require-
ments automaton" is time(A', b'). Then the problem of showing that a given algorithm (A, b)
satisfies the timing requirements amounts to that of showing that any admissible behavior of
the automaton time(A, b) is also an admissible behavior of time(A', b'). We do this by using
invariant assertion techniques; in particular, we demonstrate a multi-valued mapping from
states of time(A,b) to states of time(A', b').

We define a special class of multi-valued mappings that appears to be especially useful.
Each such mapping is defined by a collection of inequalities relating the time bounds to be
proved (those expressed by b) to the values of a collection of "variant functions" defined on
the states of time(A,b). These variant functions provide upper and lower bound measures
of progress toward the timing goals expressed by b'. These functions generalize the notion of
variant function commonly used to prove termination of sequential programs and asynchronous
concurrent programs (see, e.g., the description of the method of well-founded sets in [M74]),
to allow real-valued rather than just discrete measures, and to allow proofs of lower bounds as
well as upper bounds.

In order to demonstrate the use of our technique, we apply it to two examples. The first
example is a simple timing-dependent resource granting system, consisting of two concurrently-
operating components, a clock and a manager. The manager monitors the clock ticks, which
occur at an approximately known rate, and whenever a certain number have occurred, it granits
the resource. We prove tipper and lower bounds on the amount of time prior to the first grant
and between each successive pair of grants.

The second example involves one process incrementing a counter until another process
modifies a, flag. and then decrernenting the counter. When the counter reaches 0, the first
process announces that it is don,. We show upper and lower bounds on the time until the
"(lone" announcemien. occurs.

Technically. mapping techniqiues of the sort use(l in this paper are only capable of proving
safety properties, noi ,t. liveness pro)erties. Timing properties have aspects of both safety
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and liveness. A timing lower bound asserts that an event cannot occur before a certain aitiouit
of time has elapsed; a violation of this property is detectable after a finite prefix of a timed
execution, and so a timing lower bound can be regarded as a safety property. A timing upper
bound asserts that an event must occur before a certain amount of time has elapsed. This
can be regarded as making two separate claims: that the designated amount of time (foes ill
fact elapse (a livei,oss property), and that this amount of time cannot elapse without the event
having occurred (a safety property). In this paper, we assume ti liveness property that time
increases without bound, so that all the remaining properties that need to be proved ini order
to prove either upper or lower time bounds are safety properties. Thus, our mapping technique
provides complete proofs for timing properties without requiring any additional techniques for
arguing liveness.

There has been some prior work on using assertional reasoning to prove timing properties.
In particular, llaase [1181], Shankar and Lam [SL87], Tel [T88], Schneider (S88], Lewis [Le89]
and Shaw [S89] have all developed models for timing-based systems that incorporate time
information into the state, and have used invariant assertions to prove timing properties. In
[T88] and [Le89]. in fact, the information that is included is similar to ours in that it is also
predictive timing information (but not exactly the same information as ours). None of this
work has been based on mappings, however.

Several other, quite different formal approaches to proving timing properties have also been
developed, based on finite state machines, weakes' preconditions, first-order logic, tormporal
logic, Petri nets, and process algebras. Some representative papers describing these other
methods are [B1s8], [KVR831, [JM87], [11o871, [Zw88], [JS88], and [GF88].

The rest of the paper is organized as follows. Section 2 contains a description of the
underlying formal models: -VO automata and timed automata. Section 3 contains tile con-
struction used to incorporate timing conditions into I/O automata, and some basic properties

of these automata. Section 4 contains our definitions for mappings and for collections of variant
functions, and shows that the existence of such mappings and collections imply that a given

algorithm satisfies a given set of timing requirements. Section 5 contains our examples. the
simple resource-granting system and the two-process race system. For each of these examples,
this section contains a description of the system, a description of the corresponding require-

ments automaton, and a correctness proof using mappings. We conclude with a discussion in

Section 6.

2 Formal Model

In this section, we present the definitions for the underlying formal model. In particular, we
define I/O automata, timed automata and timing conditions. We also present some of their
relevant properties.
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2.1 I/O Automata

We begin by summarizing some of the key definitions for the I/O automaton model. We refer
the reader to [LT87, LT89] for a complete presentation of the model and its properties.

An I/O automaton, A. consists of the following pieces: acts(A), a set of actions, classified
as output, input and internal (input and output actions are called external); states(A), a set of
states, including a distinguished subset, start(A), of start states; steps(A), a set of steps, where
a step is defined to be a (state, action, state) triple; and part(A), a partition of the locally
controlled (output and internal) actions into equivalence classes; the partition groups together
actions that are to be thought of as under the control of the same underlying process.

An action 7r is said to be enabled in a state s' provided that there is a step of the form
(s', 7r,s). An automaton is required to be input enabled, which means that every input action
must be enabled in every state. For any set I C acts(A), we denote by enabled(A, II) the set
of states of A in which some action in II is enabled, and by disabled(A,IT) be the set of all
states of A not in enabled(A, H), that is, disabled(A, 11) = states(A) \ enabled(A, 1).

An execution fragment of an I/O automaton A is a sequence (finite or infinite) of alternating
states and actions

.So, 7I, S1, .. . ,Si+ , 7ri, Si, ..

where for every i, (si,1,ri,si) E steps(A). (If the sequence is finite, then it is required to
end with a state.) An execution is an execution fragment with so E start(A). The schedule
of an execution a is the subsequence consisting of the actions appearing in a and is denoted
sched(a). The behavior of an execution a of A is the subsequence of a consisting of external
actions appearing in a and is denoted beh(a). The schedules and behaviors of A are just those
of the executions of A. An extended step is a triple (s',,3, s) for which there exists an execution
fragment that starts and ends with s' and s, respectively, and whose schedule is 0.

Concurrent systems are modeled by compositions of I/O automata, as defined in [LT87,
LT891. In order to be composed, automata must be strongly compatible; this means that no
action can be an output of more than one component, that internal actions of one component
are not shared by any other component, and that no action is shared by infinitely many
components. The result of such a composition is another I/O automaton. The hiding operator
can be applied to reclassify output actions as internal actions.

2.2 Timed Automata

In this subsection, we augment the I/O automaton model to allow discussion of timing prop-
erties. The treatment here is similar to the one described in [AtL89] and is a special case of
the definitions proposed earlier in [MNIT88].

A boundmap for an I/O automaton A is a a mapping that associates a closed subinterval
of [0, x.] with each class in part(A). where the lower bound of each interval is not 0o and the
upper 1ou1nd is nonzero. hituitively, the interval associated with a class C by the boundmap

4



represents the range of possible lengths of time between .,cccssive times when (' "gets a
chance" to perform an action. We sometimes use the notation be(C) to denote tile lower
bound assigned by boundmap b to class C, and bu(C) for the corresponding upper bound. A
timed automaton is a pair (A,b), where A is an I/O automaton and b is a boundinap for .1.

We require notions of "timed execution", "timed schedule" and "timed behavior" for timed
automata, corresponding to executions, schedules and behaviors for ordinary I/O automata.
These will all include time information. We begin by defining the basic type of sequence that
underlies the definition of a timed execution.

Definition 2.1 A timed sequence (for an I/0 automaton A) is a (finite or infinite) sequence
of alternating states and (action,time) pairs,

so, (rl, tl ), s1 , (7 2 , t 2 ), ...

satisfying the following conditions.

1. The states so, sj, ... are in states(A).

2. The actions irl, r2,... are in acts(A).

3. The times ti, t2 .... are successively nondecreasing nonnegative real numbers.

4. If the sequence is finite, then it ends in a state si.

5. If the sequence is infinite then the times are unbounded.

For a given timed sequence, we use the convention that t o = 0. For any finite timed sequence
a, we define tnd(fl) to be the time of the last event in a, if a contains any (action,time) pairs,
or 0, if a contains no such pairs; also, we define send(a) to be the last state in a. We denote
by ord(a) (the "ordinary" part of a) the sequence

Sol Ttl l 8t1, 72, ... ,

i.e., a with time information removed.

If i is a nonnegative integer and C E part(A), we say that i is an initial index for C in a if
s E enablcd(A.C) and either i = 0 or si-1 E disabled(A, C) or 7ri E C. Thus, an initial index
for class C is the index of a step at which C becomes enabled; it indicates a point in a from
which we will begin measuring upper and lower time bounds.

Definition 2.2 Squppose (A,b) is a timed automaton. Then a timed sequence o is a timed
execution of (A, b) provided that ord(a) is an execution of A anid a satisfies the following
conditions, for each class C E part(A) and every initial index i for C in a.

5



1. If b,,(( ') < o( then th( ( ( i sts j > i with I, < 1, + b,(C) .such tiot either r E (, or
sj E disablcd(A.C C).

2. There does not exist j > i with tj < ti + bp(C) and 7rj in C.

The first condition says that, starting from an initial index for (, within time b,,((') either
some action in C occurs or there is a point at which no such action is enabled. Note that if
b,,(C) = o, no upper bound requirement is imposed. The second condition says that, again
starting from an initial index for C. no action in C can occur before time b((C) has elapsed.
Note in particular that if a class C becomes disabled and then enabled once again, the lower
bound calculation gets "restarted" at the point where the class becomes re-enabled.

The timed schedul of a timed execution of a timed automaton (A, b) is the subsequence
consisting of the (action,titne) pairs, and the timed behavior is the subsequence consisting of the
(action,time) pairs for which the action is external. The timed schedules and timed bfhaviors
of (Ab) are just those of the timed executions of (A, b).

The definition of a timed execution contains aspects of both safety and liveness. Occasion-

ally, it is useful to focus on the safety aspects alone. We thus define the notion of a "timed
semi-execution" to capture the safety part of the definition of a timed execution.

Definition 2.3 Suppose (A,b) is a timed automaton. Then a finite timed sequence a is a
timed semi-execution of (A,b) provided that ord(o) is an execution of A and a satisfies the
following conditions, for each class C of part(A) and every initial index i for C in a.

1. If b,(C) < oc. then either t,,.d((_) <_ ti + b,(C) or there exists j > i with tj < ti + b,,(C)
such that either 7r, E C or s3 E disablcd(A,C).

2. There does not exist j > i with t: < ti + be(C) and 7r in C.

This definition is identical to that of a finite timed e"ecution, except for the "either" clause
in the first item. This clause allows an action to fail to occur if insufficient time has passed.

The following result gives a condition on a timed semi-execution that ensures that it is a

timed execution.

Lemma 2.1 Suppose that a i., a timcd semi-execution of a timed automaton (A,b). Then o
is a timed erecution if and only if each locally controlled action of A that is enabled in state

• nd(a) is in a partition class ( in part(A) such that b,,(C) = o0.

Proof: Straightforward. m

The following leimnia says that the limit of a sequence of timed semi-execu tions in which
the times arc iinbounded inust be a, tied execution.
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Lemma 2.2 I,t { o,},= t b a scqu(c ( of timed semi-ext.,'tu ions of (.. b) suci tlit I/, folioi-
ifng codilions hold.

I. 1 ny (1i > 1, o, is a prqJix off ,+,.

2.liti ___ I .,( i) =

Then the limit of th( a, undcr thc extension ordering is a timed cxccution -)f (A..,b)

Proof: Straightforward. M

We mode' each timing-dependent concurrent system as a single timed automaton (A, ,).
where A is a composition of ordinary I/O automata (possibly with some output actions
hidden).' We also model problem specifl ations, including timing properties, in terms of timed
autonat a.

We note that the definition we use for timed automata may not be the sufficiently general
to capture all interesting systems and tining requirements. It does capture many, howvver; we
will have more t) say about this matter in Section 6.

3 Incorporating Timing Conditions into I/O Automata

In order to use invariant assertion techniques to reason about timed automata, we define an
oidinary I/O automaton time(A,b) corresponding to a given timed automaton (A,b). This
new automaton has the timing restrictions imposed by b on A built into its transition rules,
based on predictions about when the next event from each set of actions will occur. In this
section, we give the construction of tinic(A, b) and also give results that relate the executions
and behaviors of 117m( (.., b) to the timed executions and timed behaviors of (.4,b).

The close rlationslips between (A1.,b) and time(A,b) suggest the possibility of avoiding
the timned autonaton definition entirely, instead using the time(A,b) notion as tlie starting
point for our work. We prefer to begin with the timed automaton definition because we
regard that definition as the more fundamental of the two, expressed as it is in terms of a
traditional asynchronous system with some additional timing restrictions. As will be seen
below, the limn(.4, b) definition introduces special constructs (e.g., special NULL actions and
special variables such as tim ), w!,ich are quite useful in proofs, but which do not sveem to be
fundamental parts of system descriptions. Another reason we prefer to begin with the timed
automaton definition is that it has already been used elsewhere. Moreover, we believe tliat, the
elegant relationship between the two expressed by Theorem 3.3 is interesting in its own right.

'An equivalent way of rooking at each system is as a composition of timed automata. An appropriate
definition for a composition of tinted automata is developed in [M MT8], together with theorms showing the
equivalence of the two viewpoints.



3.1 Definition of timc(A,,)

Given any timed automaton (A,b). we define the ordinary I/O automaton time(A,b). The
automaton tirne(Ab) has as its actions, all pairs of the form (ir,t), where 7r is an element of

acts(A) U {NULL} and t is a nonnegative real number; here NULL is a "dunmy action" that

represents the passage of time. The classification of actions into input, output and internal

actions is derived from that for .4, with the additional stipulation that each (NULL,t) is an

internal action. Each of the states of timc(A,b) consists of a state, basic, of A, augmented

with a variable time, and, for each class C of the partition of A, two variables first(C) and

last(c). The value of the time variable represents the time of the last preceding event. The

values of the first(C) and last((') variables represent, respectively, the first and last times at

which an event in class C is permitted to occur.

We use record notation to denote the various components of the state of time(A,b): for
instance, s.basic denotes the state of A included in state s of time(A,b). Each start state of

time(A, b) consists of a start state s of A, plus time = 0, plus values of first(C) and last(C)

with the following property: if there is an action in C enabled in s, then s.first(C) = bt(C) and
s.last(C) = b,,(C); otherwise. s.first(C) = 0 and s.ast(C) = oo. That is, if the start state of

A has an action in C enabled, then the predicted times are the ones specified in the boundmap

for C; otherwise, they are set to default values.

If (r,t) is an action of time(A,b), then (s',(ir,t),s) is defined to be a step of time(A.b)

exactly if all of the following conditions hold.

1. If 7, E arts(A) then:

(a) s'.tinc = t = .6.ti1e.
(b) (.,4'. 6a.qicrr ,,s.basie ) E steP1;(A).

(c) For each C E part(A):

i. If 7- E C then s'.first(C) < t.

ii. If s.basic E enabled(A,C) and ir C and s'.basic E cnabled(A,C) then
s.first(C) = s'.first(C) and s.last(C) = s'.last(C).

iii. If s.basic E enaled(A,C) and either 7r E C or s'.basic E disablcd(A,C) thwn
S.fir'st((') t + bj(C) and and s.last(C) = t + b,,(C).

iv. If s.ba.ir E disabled(A,C), then s.first(C) = 0 and s.last(C) = oo

2. If r = NFLL then

(a) . '.tir t K_ / - .. time,

( ) .. ba.sr = .'. i.

(c) f < .s'.1astt(C). for each C' E part(A).

(d) s.firt(C) = s'.first(C) and q.1ast(C) = s'.Iast(C), for each C E part(A).



The meaning of these conditions is as follows. Condition I describes restrictions for the case
where 7r is an action of A. Condition 1(a) says that time (foes not pass during the performance
of non-null actions and Condition 1(b) says that the steps associated with non-will actions

correctly simulate steps of A. Condition 1(c) describes the use and manipulation of th" first
and last variables during non-null steps. Condition l(c)i says that a locally controlled stelp is
only permitted to occur at a time that is at least as great as the first time specified for that
action's partition class. Condition 1(c)ii says that an action not in a particular class that keeps
the class enabled does not alter the timing predictions for that class. Condition 1(c)iii says
that an action that enables a particular class sets the timing predictions for that class to the
values specified 1y the boundmap. Finally, Condition 1(c)iv says that an action that leaves a
particular class disabled sets the timing predictions to the default values.

Similarly, Condition 2 describes restrictions for the case where r is the special null action.
Condition 2(a) says that time cannot move backwards when a null action is performed, and

Condition 2(b) says that the steps associated with null actions do not cause any changes to
the underlying state of A. Condition 2(c) says that time cannot pass beyond the latest time
specified for any class, and Condition 2(d) says that timing predictions are unaltered by the
passage of time.

It is easy to check that for any reachable state of time(A, b) and any class C of the partition,
the following facts are true. First, it must be tL'e case that s.last(C) > s.time (although it
is possible to have s.first(C) < s.time). Second, if s.basic E enabled(A,C) then s.last <
s.time + b0(C) and s.first < s.time + bl(C). Third, if s.basic E disabled(A,C) then both the
last(C) and first(C) variables have their default values (oc and 0, respectively).

The partition classes for time(A,b) are derived one-for-one from those of A, with the
addition of a single new class for all the (NULL,t) actions.? Note that a similar automaton
was defined in [At L89, LyA90]; it differs in not containing special "null" actions.

We will be particularly interested in a subset of the executions of time(A,b), that we call
the "admissible executions". Informally, the admissible executions are those in which time
continues to pass without bound.

Definition 3.1 An czu'ution of time(.A,b) is said to be admissible providcd it contains in-
finitely many NULL actions and the times of these actions are unbounded. The admissible
schedules and admissible behaviors of time(A,b) are defined to be the schudules and bchaviors,
rcspxctit1(ly, of admissibIc executions of time(A, b).

In each of our examples in this paper, we will apply the time(A,b) construction to a timed
automaton A modeling the entire system under consideration.

2We will not need these classes in this paper, however, since the purpose of I/O autonaton partition classes
is to enforce fairne.ss to the components of the system, and we will not require such fairness conditions.



3.2 Basic Properties

We now relate the timed executions of (A,b) to the executions of the corresponding 1/O

automaton time(A, b).

if a is an execution of time(A,b), we define project(a) to be the timed sequence obtained

from a by mapping each occurrence of a state s in a to s.basic while keeping the (action,time)

pairs intact, and then removing any NULL events, together with their immediately following

states. We first show the following simple correspondence between timed semi-executions of

(A, b) and finite executions of time(A, b).

Lemma 3.1 Let (A,b) be a timed automaton.

1. If a' is a timed semi-execution of(A, b), then there exists a finite execution a of time(A, b)

such that a' = project(a).

2. If a is a finite execution of time(A, b), then project(a) is a timed semi-execution of(A, b).

Proof: 1. Suppose that a' is a timed semi-execution of (A, b). First we construct a", an

alternating sequence of states of A and actions of time(A,b), by inserting exactly one

NULL event before the first event in a' and between every pair of events in a'; more

precisely, if s and (7r, t) occur consecutively in a', then a" replaces this pair with the

sequence s, (NULL, t), s, (7r, t).

Now we modify a" to obtain a, a finite sequence of alternating states and actions of

time(A,b), by adding time, last and first variables to all the states in a'. We do this in

the unique way that guarantees that the first state is a start state of time(A, b) and that

Conditions 1(a), 1(c)ii-iv, 2(a) and 2(d) of the definition of time(A, b) are satisfied. Then

a' = project(a). We show that a is an execution of time(A, b) by showing that each step

of a satisfies the remaining conditions of the definition of time(A,b).

The fact that a' is a timed semi-execution of (A, b) implies Condition 1(b), and Condition

2(b) holds by construction. Condition 1 of Definition 2.3 ensures Condition 2(c) of the

definition of time(A,b), while Condition 2 of Definition 2.3 ensures Condition 1(c)i of

the definition of time(A,b).

2. Let a' = project(a). By Conditions 1(b) and 2(b) of the definition of time(A,b), ord(a')

is an execution of the ordinary I/O automaton A. It remains to show that for every class

C, a' satisfies Conditions 1 and 2 of Definition 2.3 for C (and every i > 0).

The initialization and Condition l(c)iii of the definition of time(A,b) imply that the

correct upper bounds are assigned to the last(C) variable whenever C becomes enabled,

and Conditions l(c)ii and 2(d) imply that those bounds do not change until an action in

C occurs or C becomes disabled. Condition 2(c) then implies that the upper bounds are

respected, which implies Condition 1 of Definition 2.3 for C. Similarly, the initialization

10



and Condition 1(c)iii imply that the correct lower bounds are assigned to the first(C)
variable whenever C becomes enabled, and Conditions l(c)ii and 2(d) imply that those
bounds do not change until an action in C occurs or C becomes disabled. Condition l(c)i
then implies that the lower bound is respected, which implies Condition 2 of Definition

2.3 for C.

We can also relate the timed executions of a timed automaton (A,b) to the admissible
executions of the corresponding I/0 automaton time(A,b).

Lemma 3.2 1. If a' is a timed execution of(A, b), then there exists an admissible execution
a of time(A,b) such that a' = project(a).

2. If a is an admissible execution of time(A,b), then project(a) is a timed execution of

(Ab).

Proof: 1. Suppose a' is a timed execution of (A, b). We carry out a similar construction to
that in Part 1 of Lemma 3.1, except that if a' is finite, we augment a with an infinite suffix
of NULL actions, associated with times that increase without bound. The argument is

similar to before.

2. Suppose that a = so,(7ri,ti),si,... is an admissible execution of time(A,b), and let
a' = project(a). Let ai be the prefix of a ending with si, and let a i = project(a2 ), for
each i > 0. Then each a' is a prefix of ail , and a' is the limit of the a under the
extension ordering. Since ai is a finite execution of time(A,b), Part 2 of Lemma 3.1
implies that a' is a timed semi-executio of (A, b), for each i > 0. We consider two cases.

First, suppose a' is infinite. Then a does not have a suffix consisting entirely of NULL
events. Since the times of the actions in a are unbounded, and a does not have a
suffix consisting entirely of NULL events, it follows that limi- tend(a:) = 00. Then
Lemma 2.2 implies that a' is a timed execution of (A,b).

Second, suppose that a' is finite. Then a has a suffix consisting entirely of NULL events,
say starting after sj, for some fixed j, and a'= a. As argued above, a' is a timed
semi-execution of (A,b). Condition 2(c) of the time(A,b) definition and the fact that
times increase without bound in a imply that each locally controlled action of A that is
enabled in state sj.basic is in a partition class C in part(A) such that b,,(C) = o. Since

s, d(c') = sj.basic, Lemma 2.1 implies that a' is a timed execution of (A,b).

Now we obtain the main theorem relating the timed behaviors of (A, b) and the admissible
behaviors of timr(A1,b).

11



Theorem 3.3 The set of timed behaviors of(A, b) is the same as the set of admissible behaviors
of time (A, b).

Proof: Immediate by Lemma 3.2. U

This theorem implies that properties of timed behaviors of a timed automaton (A, b) can
be proved by proving them about the set of admissible behaviors of the corresponding I/0
automaton time(A,b). The latter task is more amenable to treatment using assertional tech-
niques.

4 Sufficient Conditions for Inclusion of Timed Behavior Sets

In this section, we describe a method for showing that the timed behaviors of one timed
automaton, (A, b), are also timed behaviors of another timed automaton, (A', b). This method
uses the construction in Section 3; i.e., it involves showing that the admissible behaviors of
time(A, b) are also admissible behaviors of time(A' , b'). As we describe in Subsection 4.1, our
basic method involves mapping states of time(A,b) to sets of states of time(A',b) and is a
special case of the possibilities mapping method described in [LT87, LT89].

In the examples later in this paper (as well as others to which we have applied this mapping
method), the mappings that are constructed are expressible in a particular form: in terms
of inequalities involving the values of the state variables of the time(A,b) and time(A',b')
automata. In particular, these inequalities assert that the value of each last(C) variable of
time(A', b') is at least as great as a certain real-valued "variant function" of the values of the
state variables of time(A,b), and also that the value of each first(C) variable of time(A',b)
is no greater than another such function. These functions can be thought of as measures
of progress of the system time(A,b) toward the goals of producing events from the various
partition classes C of time(A' , b). In Subsection 4.2, we define our notion of variant function
and show how they can be used to generate correct mappings.

Our notion of variant function is quite similar to the notion of variant function commonly
used to prove liveness properties of sequential and asynchronous concurrent programs (e.g., in
[M74]); however, our notion generalizes the usual notion in that ours allows real-valued rather
than just discrete measures, and that ours applies to lower bounds as well as upper bounds.

4.1 Strong Possibilities Mappings

In this subsection, we define the notion of a strong possibilities mapping from an automaton
of the form time(A,b) to another automaton time(A',b'). 3 We then prove our basic theorem

3This is a strengthened version of the definition of "possibilities mapping" in [LT89], where the strengthening
involves the addition of the third condition. The term "possibilities" is used to suggest the different possible
states in an image set.
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about strong possibilities mappings, namely, that the existence of such a mapping implies that
the timed behaviors of (A,b) are all timed behaviors of (A', b').

Definition 4.1 Let (A,b) and (A',b) be timed automata with the same external action sig-
nature, and let II be the common set of external actions. Let f be a mapping from states of
time(A,b) to sets of states of time(A',b'). The mapping f is a strong possibilities mapping
from time(A, b) to time(A', b') provided that the following conditions hold:

1. For every start state s of time(A,b), there is a start state u of time(A',b') such that
uEf(s).

2. If s' is a reachable state of time(A,b), u' E f(s') is a reachable state of time(A',b') and
(s', (7r, t), s) is a step of time(A, b), then there is an extended step (u',/3, u) of timc(A', b'),
such that u E f(s) and,31(1I x R) = (r, t)(II x R). 4

3. If s and u are reachable states of time(A,b) and time(A',b'), respectively, and u E f(s),
then u.time = s.time.

The first condition in the mapping definition establishes a correspondence between start
states of the two automata, while the second condition establishes a correspondence between
steps of time(A,b) and extended steps (as defined in Section 2.1) of time(A',b'); this corre-
spondence must preserve the sequences of timed external events. Finally, the third condition
simply asserts that the current times of corresponding states must be identical.

The following key lemma says that the existence of a strong possibilities mapping is a
sufficient condition for the inclusion of admissible behaviors.

Lemma 4.1 Suppose that there is a strong possibilities mapping from time(A, b) to time(A', b').
Then any admissible behavior of time(A, b) is an admissible behavior of time(A', b').

Proof: Let /3 be an admissible behavior of time(A,b), and let a be an admissible execution
of time(A,b) such that 3 = beh(a).

For each finite prefix ai of a that ends with a state, it is possible to construct a finite
execution, a , of timc(A',b') such that beh(a ) = beh(ai) and the values of the time variables
of the final states of both executions are identical. Moreover, it is possible to do this in such a
way that each a' is a prefix of a+," (The construction is by induction on i, using Conditions
I and 2 of Definition 1.1.) Let a' be the limit of the a ; then a' is an execution of time(A',b'),
and beh(a') = bch(a) = 1t.

Since a is admissible, the values of the time variables of the final states of the a; increase
without bound as i approaches infinity. Since the values of the time variables are the same in
the final states of ai and a', the values of the time variables of the final states of the a also
increase without bound as i approaches infinity. It follows that a' is an admissible execution
of time(A',b') with beh(a') = /3. Thus, /3 is an admissible behavior of timc(A', b'). U

4 We use the notation R in this paper to represent the nonnegative real numbers.
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Now we give the main theorem of this subsection, which expresses the basic mapping

technique for timed automata.

Theorem 4.2 Suppose that there is a strong possibilities mapping from time(A, b) to time(A', b').
Then any timed behavior of (A, b) is a timed behavior of (A', b').

Proof: Immediate from Lemma 4.1 and Theorem 3.3.

This theorem says that the existence of a strong possibilities mapping is sufficient by itself
to yield the desired inclusion result for timed behaviors. Since the timed behaviors of a timed
automaton embody both safety and liveness restrictions, it follows that this mapping technique
suffices to show both types of properties. This is in contrast to the situation for non-timed
systems, where analogous mapping techniques only yield safety properties. (In [AbL88], for
example, extra machinery in the form of a "supplementary property" is added to the mapping
machinery in order to allow proofs of liveness properties.)

4.2 Variant Function Collections

In this subsection, we define our notion of variant functions and show how they can be used
to generate strong possibilities mappings.

The variant function definition is presented in terms of a pair of timed automata, (A, b) and
(A', b'), where (A, b) describes the system under study and (A', b) describes the requirements
to be satisfied. The underlying automaton, A', of (A', b') is used to describe correctness
requirements that do not involve time, whereas the boundmap b is used to describe timing
requirements; more specifically, b' specifies upper and lower bounds for various kinds of events
to occur, where each "kind of event" corresponds to a partition class C of A'. Thus, for
each class C, the definition mentions one variant function gC to describe progress toward
guaranteeing the upper bound requirement given by b(C), and another variant function hc
to describe progress toward guaranteeing the lower bound requirement given by b'(C). Each of
these variant functions is a function from the state of automaton time(A,b) to R U 00. Along
with the functions gc and hC, the definition also uses another function f that describes a
correspondence between states of the underlying automata A and A'. The various conditions
in the definition assert that the function f is a correct correspondence between states of A
and A', and that the functions gC and hc provide correct measures of progress toward their
respective goals.

We caution the reader that this definition is somewhat technical. One aspect that may seem
especially troubling is that it is based on a mixture of the two styles of definition, time(A, b) vs
(A',b). However, note that the mixture is completely consistent, always using the time(A, b)
definition at the lower level and the (A,b') at the higher level. The timr(A,b) definition is
used at the lower level because the progress measures are naturally defined in terms of states
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of time(A,b) (in particular, in terms of the values of the first and last variables). On the
other hand, the (A', b') definition is used at the higher level because it permits decomposition
of the properties that need to be shown to demonstrate the existence of a strong possibilities
mapping into very small pieces. We hope that the reader will be convinced by our examples

in Section 5 that the given properties provide a very direct route to showing the existence of
such a mapping.

Definition 4.2 Let (A,b) and (A',b') be timed automata with the same external action signa-
ture, and let II be the common set of external actions. Let f be a mapping from states of A to
states of A'. For each C E part(A'), let gc and hc be mappings from states of time(A,b) to
R U oo. Then the collection of mappings (f, (gc, hc)CEpart(AI)) is a variant function collection
from (A, b) to (A',bY) provided that the following conditions hold:

1. If s is a start state of time(A,b) and v = f(s.basic), then v is a start state of A'.
Moreover, for each C E part(A') such that v E enabled(A',C), we have gc(s) < bu(C)
and hc(s) > bj(C).

2. Suppose s' is a reachable state of time(A,b), (s',(ir,t),s) is a step of time(A,b), where
7r NULL, v' = f(s'.basic) and v = f(s.basic). Then there is an execution fragment a
of A' beginning and ending with v' and v respectively, such that:

(a) al11 = irl1l.

(b) For each C E part(A'):

i. If b'(C) > 0 and a C step occurs in a, then there is only one C step in a, all

states occurring in a prior to the C step are in enabled(A',C) and t > hc(s').
ii. If all states in a are in enabled(A', C) and if no C events occur in a then

gc(s) _ gc(s') and he(s) _ hc(s').

iii. If v E enabled(A',C), and if either there is a state in a in disabled(A',C) or if
a C event occurs in a, then gc(s) <_ t + b(C) and hc(s) > t + bt(C).

3. If s' is a reachable state of time(A,b) and (s',(NULL,t),s) is a step of time(A,b), then
for each C E part(A'):

(a) t < g'(s').

(b) gc(s) < gc(s') and hc(s) > hc(s').

The meaning of these conditions is as follows. Condition 1 asserts that any start state s
of time(A,b) corresponds to a start state of A'; moreover, the value for each variant function
in state s is defined in an appropriate way to enable proof of the desired bound. F'or example,
consider the upper bound requirement for class C, as specified by the boundmap value b'(C).

If class C is enabled in state v and remains enabled, then we will wish to prove that some
actioi in ( will occur by time at most b1(C). In order to use the variant function gc, as a
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progress measure to prove this upper bound, we require that the initial value of gC should be
no greater than the bound Y(C') to be proved.

Condition 2 asserts that each non-null step of time(A,b) has a corresponding execution
fragment of A' satisfying certain properties. Condition 2(a) says that the execution fragment
exhibits the same external behavior as the given step, while Condition 2(b) says that the
values of the variant function are handled appropriately to enable proof of the desired bounds.
Condition 2(b)i says that each variant function hc does in fact describe a lower bound on the
time by which an action in C may occur. If the lower bound specified by the boundmap b' for
C is 0, then there is nothing to show for this condition; if it is nonzero, then a C step should
only occur if the time at which it occurs is at least as great as the time hc(s'). However, there
is a technicality that arises in this condition: recall that the lower bound requirement for C is
restarted whenever C becomes enabled or a C step occurs. This means that a violation of the
lower bound requirement given by b(C) could occur in the given execution fragment if class C
becomes enabled in the fragment or a C step occurs, and then a subsequent step of C occurs;
even though the time for this C step is at least hc(s'), that time might not be sufficiently
great to satisfy the restarted lower bound requirement. In order to cope with this troublesome
situation, we simply rule out this pattern from the execution fragments we consider.

Condition 2(b)ii simply says that the variant functions are maintained properly when no
relevant steps occur; for example, consider the upper bound requirement for class C. If no
actions in C occur and C remains enabled, then the variant function used as a progress measure
for C's upper bound may decrease, but it should not be allowed to increase. Finally, Condition
2(b)iii says that the variant functions are restarted properly when a class C becomes enabled or
when an action in C occurs. The considerations are analogous to those for proper initialization.

Condition 3 describes what must happen whan a null step of time(A, b) occurs. Condition
3(a) says that each variant function gc does in fact describe an upper bound on the time by
which an action in C must occur. That is, if the system time(A, b) is in state s', then it is not
permissible for time to pass beyond time gc(s') without some action in C occurring. Condition
3(b) is similar to Condition 2(b)ii, in that it says that the variant functions are maintained
properly when nothing of interest occurs.

We now show how variant function collections can be used to generate strong possibilities
mappings. Let (f,(gc, hc)cEpart.A,)) be a variant function collection from (A,b) to (A',b').

Then we define a mapping J from states of time(A,b) to sets of states of time(A',b') by:
u E 1(s) iff

1. u.basic = f(s.basic),

2. u.time = s.time.

3. u.last(C) > ge(s) for each C E part(A'), and

4. u.firsl(C) < hc'( s) for each C E part(.-1').
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The next lemma shows that f is a strong possibilities mapping.

Lemma 4.3 Suppose that (A, b) and (A', b') are timed automata with the same external action
signature, and suppose that (f, (gc, hc)cEpart(A,)) is a variant function collection from (A. b) to
(A'. b'). Let f be the corresponding mapping defined just above. Then f is a strong possibilitics
mapping from time(A, b) to time(A', b').

Proof: We show the three conditions of Definition 4.1. Condition 3 is immediate by defini-
tion.

For Condition 1, let s be a start state of time(A,b). Then the first condition of Definition
4.2 yields a start state v of A' such that v = f(s.basic) and, for all C E part(A'), if v E
enabled(A',C) then gc(s) < b'(C) and hc(s) _ b'(C). Define u to be the (ut;que) start
state of time(A',b') having u.basic = v. By definition of the start states of timC(A',b'), it
follows that u.time = 0 = s.time, u.last(C) = b(C) if v E enabled(A',C) and u.last(C) = 00
otherwise, and u.first(C) = b'(C) if v E enabled(A',C) and u.first(C) = 0 otherwise. Then we
have u.basic = v = f(s.basic), u.time = s.time, and u.last(C) >_ gc(s) and u.first(C) < hc(s)
for all C, which implies that u E f(s), as needed.

Now we show Condition 2 of Definition 4.1. Let II be the common set of external actions for
(A, b) and (A', b'). Suppose that s' is a reachable state of time(A, b), u' E f(s') is a reachable
state of time(A', b'), and (s', (7r, t), s) is a step of time(A, b). Since u' E f(s'), it follows that
u'.basic = f(s'.basic), u'.time = s'.time, and u'.last(C) > gc(s') and u'.first(C) <_ hc(s') for
all C E part(A').

We consider two cases:

1. r 0 NULL.

Then Condition 2 of Definition 4.2 yields an execution fragment a of A' with the prop-
erties detailed in that definition. We modify a to obtain an execution fragment a' of
time(A', b'), by using the same sequence of events as in a, associating time t with each
event, and filling in the values of the time, last and first variables as determined by the
definition of time(A',b').

In order to show that the resulting a' is an execution fragment of time(A', b'), we must
argue that the designated times of events are within the bounds allowed by the definition
of time(A', b'). The only interesting condition to show is Condition l(c)i of the definition
of time(A', b'), for a class C that has b,(C) > 0: we must show that if any action in such
a class C occurs in a', then u".first(C) _< t, where u" is the state of time(A', b') just prior
to that C event. By Condition 2(b)i of Definition 4.2, there is only one C event in a,
and all states in a prior to the given C event are in enabled(A', C); by the definition of
time(A',b'), this implies that u".first(C) = u'.first(C). Condition 2(b)i of Definition 4.2
also implies that t > hc(s'); since u'.first(C) hc(s'), this implies that u'.first(C) <_ t'
so that u".first(C) < t, as needed.
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Now w' d(elinle Ithe extei( (d sltel (it', /, u) f imof ( ', b/) that arises from it'; Ilat, is, it

is the last state in a' and 0 = schcd(a'). We show that this extended step satisfies th,

conditions required in Definition 4.1. First, we must show that u E f(s), that is, that

u.basic = f(s.basic), u.time = s.time, and that u.last(C) gc(s) and u.first(C) _ hc(s)

for all C. But u.basic = f(s.basic) by the definition of a, and u.time = t = s.time,

showing the first two of these conditions. To see that u.last(C) > gc(s), note that

u'.Iast(C) gc(s') since u' E f(s'); Conditions 2(b)ii and 2(b)iii of Definition 4.2 and

the definition of time(A, b) then imply the needed inequality. A similar argument holds
for the lower bound condition.

Also, since ajlI = 7rIrI, it follows that /Il x R = (r,t)IH x R. Thus, Condition 2 of

Definition 4.1 is satisfied.

2. 7r = NULL.

Define state u of time(A',b') to be the same as state u', except that u.time = t. We

claim that (u', (NULL, t), u) is the required extended step of time(A', b').

First, we argue that (u', (NULL, t), u) is a step of time(A', b'). By definition of time(A', b'),

the only interesting condition to check is that t < u'.last(C) for all C E part(A').

So fix C E part(A'). Condition 3(a) of Definition 4.2 implies that t < gc(s'); since

u'.last(C) _ gc(s'), we have t < u'.last(C), as needed.

Now we check the remaining requirements for Condition 2 of Definition 4.1. The cor-
respondence between external action sequences is easy to see. We argue that u E f(s).

Since u.basic = u'.basic, s.basic = s'.basic and u'.basic = f(s'.basic), it follows that
u.basic = f(s.basic). Also, u.time = t = s.time. Let C E part(A'). Then u.last(C) =

u'.last(C) :> gc(s'), and gc(s') 2 gc(s) by Condition 3(b) of Definition 4.2. There-

fore, u.last(C) >_ gc(s). A similar argument shows that u.first(C) S hc(s). Therefore,

Condition 2 of Definition 4.1 holds, as needed.

Now we give the main theorem about variant function collections, saying that their existence

implies timed behavior inclusion.

Theorem 4.4 Suppose that (A, b) and (A', b') are timed automata with the same external

action signature. If there exists a variant function collection from (.A, b) to (A', b'), then etery

timed behavior of (A, b) is a timed behavior of (A', b').

Proof: By Lemma 4.3 and Theorem 4.2.

5 Examples

In this section. we present two examples for which we prove time upper and lower bounds

using our mapping techniques, (in particular, using variant function collections).
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5.1 Resource Manager

Our first example is a simple resource-granting system adapted from an algorithm in [AtL89].

The system consists of two components, a clock and a manager. The clock ticks at an

approximately-predictable rate, and the manager counts ticks in order to decide when to grant

a resource. We wish to analyze the time until the first grant, and the time between each

successive pair of grants.

We describe the algorithm and its timing assumptions as a timed automaton (A, b). The

required timing behavior is presented as a timed automaton (A', b); we prove that the algorithm

satisfies the requirements by exhibiting a variant function collection from (A, b) to (A', Y).

5.1.1 The Algorithm

The algorithm consists of two components, a clock and a manager. The clock has only one

action, the output TICK, which is always enabled, and has no effect on the clock's state. It

can be described as the particular one-state I/O automaton with the following steps. 5

TICK
Precondition:

true
Effect:

none

The partition contains a single class, which contains the single output event TICK. For

convenience, we overload the notation and designate this singleton class as TICK also.

The manager can be described as another I/O automaton, this one having one input action,

TICK and one output action, GRANT. The manager waits a particular number k > 0 of clock

ticks before issuing each GRANT, counting from the beginning or from the last preceding

GRANT. The manager's state has one variable: TIMER, holding an integer, initially k.

The manager's algorithm is as follows:

TICK
Effect:

TIMER := TIMER -1

51n the notation we use for automata, a separate description is given for the steps involving each action.

Instead of listing the steps, we provide a "precondition" which describes the set of states in which the action

is enabled, and an "effect" which describes the changes caused by the action. Input actions do not have a

precondition, because they are always enabled.
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GRANT
Precondition:

TIMER < 0
Effect:

TIMER := k

Thus, in the situation we are modeling, when the GRANT action's precondition becomes
satisfied, the action does not occur instantly - the action waits until the automaton's next local
step occurs. The partition has a single class, containing the single output action GRANT; we
call this class GRANT as well. Fix A to be the I/O automaton which is the composition of the
clock and manager automata, with the TICK output action hidden (using the I/O automaton
hiding operator to convert it to an internal action); thus, the only external action of A is tile
output action GRANT.

The boundmap b associates the lower bound ci and upper bound c2 with the class TICK,
where 0 < c, g c2 < oo; this means that the times between successive TICK events, and the
time of the first TICK event, are in the interval [cl,C2]. The boundmap b also associates the
lower bound 0 and upper bound 1 with the class GRANT, where 0 < 1 < 0o; which means that
the times between successive chances for the manager to take a step, and the time of the first
such chance, are in the interval [0, 1]. We assume that cl > 1.6 We wish to show that all the
timed behaviors of (A,b) satisfy certain upper and lower bounds on the time up to the first
GRANT and the time between consecutive pairs of GRANT events.

We begin our analysis by stating some useful invariant properties of the algorithm. In order
to do this, we need timing information to be included in the state, so we consider the automaton
time(A,b), constructed as described in Section 3. Note that in this case, the automaton
time(A, b) has the following variables: basic, time, first(TICK), last(TICK), first(GRANT),
and last(GRANT). The next lemma states invariant properties of the automaton timc(A,b).
Notice that the second property involves the time prediction variables.

We again use record notation to designate state components, e.g., we use s.TIMER to
denote the value of the TIMER component of s.basic.

Lemma 5.1 The following are true about any reachable state s of time(A,b).

1. s.TIMER > 0.

2. If s.TIM ER = 0 then s.first(TfCK) > 9.last(GRANT) + cl - I.

Proof: By induction on the length of an execution leading to s. If the length is 0, then
s.TIMER = k > 0, so the conditions are easily seen to be true. So suppose that (s,(r,1).s)
is a step of time(A.b), where s' is reachable in n steps and the conditions are true for s'. We
consider cases.

6This assumption is needed, for example, for Lemma 5.1. Other assumptions could be used, but they would
lead to slightly different bounds.
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1. r = GRANT.

Then the effect of the GRANT action implies that s.TIMER = k > 0, which implies
both conditions.

2. 7r = TICK.

Suppose that s.TIMER < 0. Then W.TIMER = 0, by the effect of the step and
the inductive hypothesis. The inductive hypothesis also implies that s'.first(TICK) >
S'.last(GRANT)+ci -1. Since cl > I (by assumption), this implies that S'.first(TICK) >
s'.Iast(GRANT). Since s'.last(GRANT) >_ s'.time = t, it follows that 5'.first(TICK) >
1. But then the definition of tiine(A,b) implies that TICK is not enabled in s', a contra-
diction. Thus, s.TIMER > 0, showing the first condition.

Now, s.first( TICK) = t+cl and s.last(GRANT) < t+1. This implies that s.first(TICK) >
s.ast(GRANT) + c, - 1, showing the second condition.

3. 7r = NULL.

Then all of the terms involved in the two conditions are the same in s' and s, so the
conditions are preserved.

5.1.2 The Requirements Automaton

We show the following, for any timed behavior fl of (A, b):

i. There are infinitely many GRANT events in /t.

2. If t is the time of the first GRANT event in /3, then k • c, - 1 < t < k • c2 + I.

3. If tj and t2 are the times of any two consecutive GRAX" events in f/, then

k . cl - I 12 - <l k C2 + I.

We let P denote the set of sequences of (action, time) pairs, where the only action is GRANT,
satisfying the above three conditions.

We specify P in terms of another timed automaton, (A',b). Define A' to have a single
state and a single GRANT output action enabled in that stat , and define the boundmap V to
assign to the unique class of A' the lower and upper bounds k .cl - I and k. c2 + 1, respectively.

Note that the timed behaviois of (A',b') are exactly the sequences in P.
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5.1.3 'he Proof

In this subsection, we give a variant function collection from (A,b) to (A',b'), thereby show-
ing that all timed behaviors of (A,b) are also timed behaviors of (A',b'). This fact yields
Theorem 5.2 vhich says that all timed behaviors of (A,b) are in P.

The mapping is defined by means of a variant function collection. (f,*gG11ANThGRANT),

where f(s.basic) is the unique state of 21', for all s, and

f s.last(TICK) + (s.TIMER - 1)c2 + ifs.TIMER >0,
gGVNT( S = s.last( GRANT) otherwise,

and

hGR.4NT(S) { s.first(TICK) + (s.TIMER - 1)ce if s.TIMER > 0,
s.time otherwise.

The variant functions give explicit upper and lower bounds for the time of the next
GRANT event, in terms of the values of the variables in the state of time(A,b). For in-
stance, if s.TIMER > 0, a TICK event must happen within time s.last(TICK), and then
after s.TIMER - I additional ticks, each happening after at most c2 time, TIMER will
become 0, thus enabling the GRANT, which will happen within time at most 1.

Since there is only one class in the partition of A', we drop the subscript GRANT on the
variant functions for the rest of this example, writing simply g and h in place of gGRANT and
hGRANT.

Lemma 5.2 The triple (f,g, h) is a variant function collection from (A,b) to (A',b').

Proof: Let s be the unique start state of time(A, b). Then s.TIMER =k > 0, s.last(TICK)
c 2 and s.first(TICK) = Cl, so that

g(;) = s.last(TICK) + (s.TIMER - 1)c2 + I = k • c2 + l

and

h(s) = s.first(TICK) + (s.TIM! ER - 1)c1 = k c1 > k . cl 1.

Let v = f(s.basic). 'Tlen t, is lhe unique start state of A'. Also,

b',, (6 RANT) k .c 2 + I = g(s)

an d
bf(GJAINT) k c| - I < h(s).

This shows Condition 1 of Definition .1.2.

Now we show Condition 2. Suppose that s' is a reachable state of timc(A, b) and (s', (r, t), s)
is a step of tine(A.b), where 7r is nonnull. Let v denote the unique state of A'. We consider
cases.
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1. ir = GRANT.

Then s'.TIMER < 0 and s.TIMER = k > 0, by the precondition and effect of GRANT
in A; thus. s'.TIMER = 0 by Lemma 5.1. Lemma 5.1 also implies that s'.first(TICK) >
s'.last(GRANT) + cl - 1.

Let a be the execution fragment (v, GRANT, v) of A'. Then Condition 2(a) of Defini-
tion 4.2 is immediate. For Condition 2(b)i, the enabling and uniqueness conditions are
immediate; moreover,

t = s'.tirne by definition of time(A,b),

= h(s') since s'.TIMER = 0,

as needed.

Condition 2(b)ii is vacuously true, since a GRANT event occurs in a. For Condition
2(b)iii, we must show that g(s) <_ t + b(GRANT) and h(s) >_ t + b'(GRANT). For the
upper bound, we have that s.last(TICK) <_ t + c2, by definition of time(A, b). Therefore,

g(s) = s.last(TICK) + (k - 1)c2 + I since s.TIMER = k > 0,
< t+k.c2 +1,

= t + b A(GRANT),

as needed.

For the lower bound, we have that s.first(TICK) = s'.first(TICK) and s'.Iast(GRANT) _
t, by definition of time(A, b). Therefore,

h(s) = s.first(TICK) + (k - 1)ci, since s.TIMER > 0,
= s'.first(TICK) + (k- 1)cl,

> s'.last(GRANT) + k . c, - I by Lemma 5.1,

> t + k . cl - 1,

= t + b'(GRANT),

as needed.

2. 7r = TICK.

Then s.TIMER = s'.TIMER- 1. Let a be the trivial execution fragment v of A'. Once
again, Conditions 2(a) of Definition 4.2 is immediate. Conditions 2(b)i and 2(b)iii are
vacuously true. For Condition 2(b)ii, we must show that g(s) _< g(s') and h(s) > h(s').
There are two cases.

(a) s.TIMER > 0.
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For the upper bound, we have that s.last(TICK) = t + c2 and t < s'.last(TICK),
by definition of time(A,b); therefore, s.Iast(TICK) :5 s'.Iast(TICK) + c2. Thus,

g(s) = s.last(TICK) + (s.TIMER - 1)c2 + 1,

= s.last(TICK) + (s'.TIMER - 2)c 2 + 1 since s.TIMER = s'.TIMER - 1,
< s'.last(TICK) + (s'.TIMER - 1)c2 + 1,
= g(s'),

as needed.
For the lower bound, we have that s.first(TICK) = t + cl and s'.first(TICK) < t by
the definition of time(A,b); therefore, s.first(TICK) > s'.first(TICK) + cl. Thus,

h(s) = s.first(TICK) + (s.TIMER - 1)cl,

> s'.first(TICK) + ca + (s.TIMER - 1)cl,
= s'.first(TICK) + (s'.TIMER - 1)cl since s.TIMER = s'.TIMER - 1.

= h(s'),

as needed.

(b) s.TIMER = 0.
Then s'.TIM ER = 1. For the upper bound, we have that s.last(GRANT) < t + I
and t < s'.last(TICK), so that s.last(GRANT) -_ s'.last(TICK) + 1, by definition
of time(A,b). Therefore,

g(s) = s.last(GRANT),
< s'.Iast(TICK) + 1,

as needed.
For the lower bound, we have that s.lime = t and s'.first(TICK) < t, so that
s.time > .s'.first(TICK). Therefore,

h(s) = s.time,
> s'.first(TICK),

= h(s'),

as needed.

Now consider a step (s', (NULL, t), s) of time( A, b), where s' is a reachable state of timc(A. b).
Then

Os') S'.Iast(TICK) + (s'.TI.IER - 1)c2 + 1 ifs'.TIMER > O,

s'.last( GRA NT) otherwise.
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Therefore, g(s') > min(s'.last(TICK),s'.last(GRANT)). By the definition of time(A,b), it
must be that t < min(s'.last(TICK), s'.last(GRANT)); thus, t < g(s'), which shows Condition
3(a) of Definition 4.2. For Condition 3(b), we must show that g(s) < g(s') and h(s) > h(s').
But since only the value of time is different in s and s', and s.time > s'.time, these inequalities
follow immediately from the definitions of the variant functions g and h. U

Now we can put the pieces together.

Theorem 5.3 All timed behaviors of (A,b) are in P.

Proof: Lemma 5.2 yields a variant function collection from (A,b) to (A', b). Thus, by The-
orem 4.4, any timed behavior of (A, b) is a timed behavior of (A', b'). This implies that/3 E P.
0

5.1.4 Discussion

The bounds that we have proved above are nearly tight, Specifically, it is possible to produce
four timed executions of (A. b) that exhibit the following types of behavior:

1. The time until the first GRANT is exactly k . cl.

2. The time until the first GRANT is exactly k . c2 + 1.

3. The time between the first and second GRANT events is exactly k -cl - 1.

4. The time between the first and second GRANT events is exactly k . c2 + I.

The only discrepancy between these bounds and those proved above is a difference of I in the
lower bound for the first GRANT.

For example, the first bound is realized by the timed execution of (A, b) that has the
following timed schedule:

(TICK, cl), (TICK,2 .e),...,(TICK, k . cl),(GRANT, k . cl).

The second bound is realized by the timed execution that has the following timed schedule:

(TICK, c 2),(TICK,2 . c2),... ,(TICK, k . c2 ),(GRANT, k. c2 + 1).
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The third bound is realized by:

(TICK,cl),(TICK,2. cl),... ,(TICK, k. cl),(GRANT,k, cl + 1)

(TICK, (k + 1). cl), (TICK, (k + 2). cj),..., (TICK, 2k. cl),(GRANT, 2k. cl).

Finally, the fourth bound is realized by:

(TICK, c2 ), (TICK, 2. c2),..., (TICK, k. c 2 ), (GRANT, k. c 2 )

(TICK,(k + 1). c 2),(TICK, (k + 2).c2 ),...,(TICK,2k. c2),(GRANT,2k, c 2 + l).

Note that it is possible to modify our proof to give the tight lower bound of k • cl for the
first GRANT; the idea is to split the requirements to be proved so they are expressed by two
separate partition classes in (A',b'), one for the first GRANT and one for the time between
pairs of GRANT events. The two classes will have different lower bounds. There is a slight
technical difficulty in that the algorithm (A, b) would have to be modified slightly in order to
distinguish the first GRANT event from successive GRANT events, but there is no problem
in principle.

Note that our resource manager is much simpler than the usual examples of resource-
granting systems; in particular, there is no request input that triggers the GRANT output.
We do not think that adding such structure would increase the conceptual difficulty of the
example or expose any interesting property of the methodology we suggest here; however, it
would make the analysis somewhat longer.

5.2 Two-Process Race System

We consider a system composed of two processes, X and Y. Process X increments a counter
until process Y modifies a flag, and then decrements the counter. When the counter reaches
0, process X announces that it ;s done. We are interested in upper and lower bounds on the
time until a "done" announcement occurs.

Again, we describe the algorithm and its timing assumptions as a timed automaton (A,b),
and the required timing behavior as another timed automaton (A', b), and produce a variant
function collection from (A,b) to (A',b).

5.2.1 The Algorithm

The system is described as a single timed automaton (A, b) containing two classes representing
the two processes X and Y. Automaton A has state variables x, y and done, where x and y are
integers, initially 0, and done is a Boolean, initially false. There are one output action, DONE,
three internal actions, SET, INC and DEC, and no input actions. The partition classes are
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X = {INC, DEC, DONE} and Y = {SET). Intuitively, there are two sequential processes
(using shared memory), one of which performs the SET action and one of which performs the
other three. The transitions are as follows.

s il
Precondition:

y=O
Effect:

y:=1

INC
Precondition:

y=O
Effect:

x :=x +

DEC
Precondition:

y1=l
x>O

Effect:
x := X - 1

DONE
Precondition:

Y/= 1y=O

done - false
Effect:

done :- true

The boundmap b for A assigns the lower bound 11 and the upper bound 12, where 0 < 11 :S
12 < oo, with each of the two partition classes, indicating that the time between successive
steps of each of the two processes is in the interval [l, 12]. We are interested in determining
the maximum and minimum times taken by the timed automaton (A,b) from the beginning
until the DONE action occurs.

5.2.2 The Requirements Automaton

We wish to show that any timed behavior 8 of (A, b) contains exactly one DONE event,
occurring at a time in the interval [11,(2 + LJ)12]. Let P denote the set of sequences of
(action,time) pairs, where the only action is DONE, satisfying this condition.
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We specify P in terms of a timed automaton (A', b'), defined as follows. A' has two
states, active and inactive, with start state inactive, and a single action, DONE, which is an
output action enabled in state active and whose effect is to change the state to inactive. The
boundmap b' assigns to the single class DONE the lower and upper bounds 11 and (2 + [IJ )12,

reipectiv!y. Note that the timed behaviors of (A',b) are exactly the sequences in P.

5.2.3 The Proof

In this subsection, we define a variant function collection from (A, b) to (A', b'), which implies
that every timed behavior of (A, b) satisfies P. The variant function collection, (f, 9DONE, hDONE),

has f(s.basic) = active if done = false and inactive if done = true, and

-'s.last(Y) + (s.x + 2 + if s.y = 0 and s.first(X) < s.last(Y){DONE( s.last(X) + s.x . 12 otherwise,

and
h f s.first(X) + (s.x + 2)l if s.y = 0 and s.first(Y) > s.last(X)

hDONE(S) = s.first(X) + s.x .11 otherwise.

We give some intuition for the first, more complicated case of each inequality. For the upper
bound, this is the case where another step of X can occur before the next (and only) step of
Y occurs. In this case, [! fit(Y)8 ~~1 XJ measures how many additional steps of X (after the

indicated step of X) can fit before V must take a step, and (s.x + 2 + [.t(Y)-s.rt(X)j)12
is the longest time it can take from the time SET occurs (which is at most s.last(Y)) until
DONE occurs. In more detail, at the time the SET occurs, the value of x is at most s.x + 1 +
L,.t 1Y1.i, 1Xj so it takes this number of DEC events (each consuming at most 12 time)

until x gets set to 0), and at most another 12 until DONE occurs.

For the lower bound, the first case is the case where another step of X must occur before
the next (and first) step of Y occurs. In this case, x will be increased at time at least s.first(X)
and it will take at least x + 1 DEC operations (each consuming at least 11 time) until x gets
set to 0 and another 11 time until DONE occurs. The second cases of both inequalities are
similar, but simpler.

Again, since there is only one class in the partition of A', we will drop the subscript DONE
on the variant functions for the rest of this example, writing simply g and h in place of 9DONE

and hDONE.

Lemma 5.4 The triple (f,g,h) is a variant function collection from (A,b) to (A',b').

Proof: Let s be the unique start state of timc(A,b). Then s.first(X) = s.first(Y) = 11.
s.last(X) = s.last(Y) = 12, s.x = s.y = 0, and s.done = false. Then

g(s) = s.last(Y) + (s.x + 2 + L s.last(Y)- (x) 1l2
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=12±(2+HJ)12

11

and
h(s) = s.first(X) + s.x -l 11.

Let v = f(s.basic). Then v = active, by definition of f, which is the start state of A'.
Also, b'.(DONE) = (2 + L' J)12 = g(s) and b,(DONE) = 11 = h(s). This shows Condition 1 of
Definition 4.2.

Now we show Condition 2. Suppose that s'is a reachable state of tirne(A, b) and (s', (r, t), S)
is a step of time(A,b), where ir is nonnull. Also suppose that v' = f(s'.basic) and v
f (s. basic). We consider cases.

1. 7r = DONE.

Then s'.y = 1, 8'.x = 0, s'.done = false, and s.done ==true, by the precondition
and effect of DONE in A, and s'.first(X) :5 t, by the definition of time(A, b). Also,
v/ = f (s'. basic) =active and v = f (s. basic) = inactive.

Let a be the execution fragment (v', DONE, v) of A'. Condition 2(a) is immediate. For
Condition 2(b)i, the uniqueness and enabling conditions are immediate; moreover,

t > s'.first(X),

h (s') since s'.y = 1 and s'.x = 0,

as needed.

Condition 2(b)ii is vacuously true, since a DONE event occurs in a. Condition 2(b)iii is
also vacuously true, since v enabled(A', DONE).

2. 7r =SET.

Then s'.y = 0, s.y =1, s'.x =s.x, by the precondition and effect of SET in A. Moreover,
S'.done = s.done =false, which implies that V' = v = active. Also, s.Iast(X) =

3'.last(X), s.first(X) = s'.first(X), s-last(X) t + 12 , t < 8'.ast(Y), t <- s'.last(X) and
S'.first(Y) ! t, by definition of time(A, b).

Let a be the trivial execution fragment v' of A'. Condition 2(a) is immediate, and 2(b)i
and 2(b)iii are vacuously true. For Condition 2(b)ii, we must show that g(,;) :5 g(s') and
h(s) ! h(s'). For the upper bound, we consider two cases.

(a) s'.first(X) > s'.last(Y).
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Then

g(s) = s.last(X) + (s.x)12 since s.y = 1,

= s'.last(X) + (s'.x)12,
= g ('),

which suffices.

(b) s'.first(X) < s'.Iast(Y).

Then

g(s) = s.last(X) + (s.x)2,

< t +1 + (s.x) 2 ,

< t + (s.x + 2)12,

< s'.last(Y) + (s'.x + 2)12,

< s'.last(Y) + (s'.x + 2 + L 8'. st(Y) s.first(X) J) 12

=g(s'),

as needed.

For the lower bound, we see that s'.first(Y) <_ s'.last(X), since t < s'.Iast(X) and

s'.first(Y) < t. Therefore,

h(s) = s.first(X) + (s.x)li,

= s'.first(X) + (s'.x)1i,

= h(s'),

which suffices.

3. 7r =INC.

Then s'.y = s.y = 0 and s.x = s'.x + 1, by the definition of INC. Also, s'.first(X) <

t < s'Jast(Y), s.last(Y) = s'.Iast(Y), s.last(X) = t + 12, s.first(X) = t + 11, and

s.first(Y) <_ t + 11, by definition of time(A,b). Thus, g(s') = s'.Iast(Y) + (s'.x + 2 +

L 11 t, Bra , 2

Let a be the trivial execution fragment v' of A'. As before, the only nontrivial condition

to show is Condition 2(b)ii, that g(s) <_ g(s') and h(s) > h(s'). For the upper bound, we

consider two cases.
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(a) s.first(X) s.Iast(Y).

Then g(s) =sdlast(Y) + (s.z + 2 + 1 L~!~~ia~~ 2  Now

s Iast(Y) - s.first(X) j 1 s.Iast(Y) - (t + 11) j +

since s.first(X) = t + 1.
s.last(Y) -t

ts'.Iast(Y) - s'.frst(X) j
11

since t > s'.first(X) and .s.last(Y) =s'.Iast(Y).

So

g(s) = s.Iast(Y) + (s.x + 2 + L ~atY ~frtX )2

=_ 'atY s. Ls'last(Y) - s.first(X) j) 12 ,

8'.las () +(s'x 2 LS'.ast(Y) - s'.frst(X)),

< s's) +('x

as needed.

(b) s.flrst(X) > s.last(Y).
Then g(S) =S.IaSt(X) + (8-4)2. Then

g(s) = s.last(X) + (S.z)1 2,

= .IaSt(X) + (S'.X + 1)12,

=t +1 2 + (S'X+1 2 ,

<S'.IaSt(y) + 12 + (8'-X + 1)12
S'.Iast(Y) + (s'.x + 2)12

_ 'Is()+ s. L'.'last(Y) - s'.first(X)1)12

since s'.first(X) s'.last(Y),

g= ')

as needed.

For the lower bound, notice that

8-first(Y)<t + 11 St+ 12 = sdast(X).

Thus, we hiave h(s) = s.first(X) + (s.x)II. There are two cases.
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(a) s'.first(Y) < s'.ast(X).
Then

h(s) = s.first(X) + (s.x)II,

> s.first(X) + (s'.)/ 1,
> t + (s'.x)11 ,
> s'.first(X) + (s'.x)li,

=h(s'),

as needed.

(b) s'.first(Y) > s'.last(X).
Then

h(s) = s.first(X) + (s.x)11,
= s.first(X) + (s'.x + 1)Il,

= s.first(X) - 11 + (s'.x + 2)11,

= t + (s'.x + 2)11,
> s'.first(X) + (s'.x + 2)11,

= h(s'),

as needed.

4. 2! = DEC.

Once again, let a be the trivial execution fragment v' of A'. As before, the only nontrivial
condition to show is Condition 2(b)ii, that g(s) < g(s') and h(s) > h(s'). By the
definition of DEC, s'.j = s.y = 1 and s.z = s'.x-1. Also, s.last(X) = t+1 2, s.first(X) =

t + 11, t < s'.last(X), and t > s.first(X), by definition of time(A,b).

For the upper bound, we have that

g(s) = s.Iast(X) + (s.x)1 2 ,
= t + 12 + (s-X)12,

< ,'.last(X) + 12 + (s.x)12 ,

= s'.Iast(X) + (s'.X)1 2,

as needed.

For the lower bound, we have that

h(s) = s.first(X) + (s.x)lj,

= t +1 + (s.X)II,
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> s'.first(X) + 11 + (s.x)l1,
= s'.first(X) + (s'.x)Iz,
= h(s'),

as needed.

Now consider a step (s', (NULL, t), s) of time(A, b), where s' is a reachable state of time(A, b).
Then

gts')°' s(Y) +(s + 2+1(Y)-1 i 2 1X)l1 2 if s'.y = 0 and s'.first(X) < s'.last(Y).
g8' '.last(Y) + (s'.x + 2 + talat21afx-

'.last(X) + s'.x • 12 otherwise.

Thus, g(s') > min(s'.last(Y),s'.last(X)). By the definition of time(A,b), it must be that
t < min(s'.last(Y), s'.last(X)); thus, t < g(s'), which shows Condition 3(a) of Definition 4.2.
For Condition 3(b), note that there are no changes in any of the terms involved in the definitions
of g and h, so g(s) = g(s') and h(s) = h(s'). U

Theorem 5.5 All timed behaviors of (A,b) are in P.

Proof: As for Theorem 5.3, using Lemma 5.4. U

5.2.4 Discussion

For this example, the bounds we have proved are attainable. That is, there is a timed execution
of (A,b) for which the time until a DONE event occurs is exactly 11, and another timed
execution for which the time until a DONE event occurs is exactly (2 + L i)12.

For example, the bound 11 is realized by the timed execution that has the timed schedule
(SET, 11), (DONE, 11 ). The bound (2 + [i.J)12 is realized by the timed execution having the
timed schedule

(INC, a12), (INC, 2at2),... (INC, LL2 at2), (SET, 12),

(DEC, 212), (DEC, 32),..., (DEC, (1 + [.J)12), (DONE, (2 + 12

where a = l/[jl. This timed execution involves the SET happening at the latest possible
time, 12. The maximum possible number of INC events occur prior to the SET, and the last
of these occurs at the same time as the SET. The DEC events occur as late as possible.
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6 Conclusions and Further Work

In this paper, we have described a way to carry out assertional proofs for timing properties of
algorithms that have timing assumptions. The method involves expressing an algorithm and
its timing assumptions as a timed automaton (A, b), and expressing the timing requirements
in terms of a second timed automaton (A', b'). Then we convert the timed automata (A, b) and
(A',b') into ordinary (not timed) I/O automata, time(A, b) and time(A', b') respectively, using
a general construction that builds predictive timing information into the automaton state.
Then the goal of proving timing requirements can be met by demonstrating the existence
of a certain type of mapping called a "strong possibilities mapping" from the "assumptions
automaton" time(A, b) to the "requirements automaton" time(A', b').

One way of demonstrating the existence of such a mapping is based on a collection of
variant functions, each designed to measure progress toward the fulfillment of one of the upper
or lower bound requirements expressed by (A', b'). These variant functions generalize those
used elsewhere for program verification in that they are real-valued rather than discrete, and
that they are used for lower as well as upper bounds.

We have applied this method in this paper to analyze the timing properties of two systems
- a simple resource-granting system and a race system involving two processes. The analyses
of these two examples are very simple. They consist of case analyses based directly on the
conditions specified in the definition of a variant function collection. The style and level of
difficulty of these proofs is exactly the same as that of typical inductive proofs of invariant as-
sertions. Like other proofs of that type, these remove the need for complex dynamic arguments
about the behavior of the algorithm, replacing them with simple checks involving individual
algorithm steps. Because of the need to check many cases, the proofs are not extremely short
(the proof for each of our simple examples is about three pages long); however, this style
should scale very well because of the local nature of the checks performed. Also, as for other
assertional proofs, it seems likely that proofs using this method can someday be checked using
machine-verification technology.

The two examples in this paper are not the only examples to which this method has been
applied. In a project being carried out for Digital Equipment Corporation, several timing
properties (including self-stabilization properties) have been proved for a new link state packet
distribution protocol (LHPV91. Some of the timing properties proved were unexpected, and
were discovered in the course of applying the methods of this paper. Although it is possible to
provide some informal intuitions for these properties using ad hoc arguments, we cannot think
of a better way than the method of this paper to provide complete and convincing proofs that
these properties hold. We have found that variant function collections provides a natural and
intuitive way of thinking about the reasons the timing properties hold, as well as a basis for
formal correctness arguments. Based on the examples that have been tried so far, we believe
that the method is quite practical for use in verifying timing properties for real timing-based
algorithms.

In some of the proofs we give for the DEC protocol, we do not give bounds that are as tight

34



as those we have given for tile simple examples in this paper. This is .,oL surprisilig: in gneral.
for complex algorithms, it is often much easier to prove bounds thal are soniewliat rough thail
to prove bounds that are actually attainable by a particular execution. The method of this
paper supports the proof of non-tight bounds just as easily as the proof of tight bounds.

A good technique for proving timing properties of systems with timing assumption, should
be rigorous, simple and general. Our technique is certainly rigorous, and we think 't i; also
quite simple. It remains to consider its generality.

Although it seems to us that timed automata are probably sufficiently general to describe
typical implementations, they may not be sufficiently general to describe all interesting re-
quirements specifications. For example, as currently defined, they cannot specify bounds for
reaching certain states, but only for the occurrence of certain actions. In [MMT88], the authors
express a similar doubt, and address it by generalizing the notion of a boundmap to include
certain more general timing conditions. While we could make a similar ex ensic, lere (indeed,
we do make such an extension in an earlier version of this paper [LyA90]), 'je extra notation
required for doing so seems .o obscure the essentially simple ideas of our method. Moreover.
there is no guarantee that the resulting extension will yet be sufficiently expressive. (Although
we state a completeness result in [LyA90] for the generalized specifications, this completeness
result is relative to the restriction, not used in this paper, that the underlying automata A and
A' are identical.) We have chosen to present our method here using a model that is possibly
somewhat too restrictive, and to leave the appropriate generalization for future work.

It remains to relate our method to other methods for proving timing properties. One
method we have considered is the one used for several algorithms in [LG89], based on bounding
the time for the occurrence of intermediate milestones. Such a proof can be expressed by a
series of nroofs in our method, one for each ;ntermediate milestone. A good example to
consider is the tournament algorithm for mutual exclusion in [PF77]. The proof sketched in
[LG89] for this algorithm uses recurrencc inequalities to bound the time until a given process
wins at various levels of the tournament tree. It should be possible to recast this proof as a
sequence of proofs, one for each level of the tree, where the proof for each level of the tree is a
generic argument based on a single use of the main recurrence inequality. Although we have
not worked out this example in detail, we have done a complete proof [LyA90] of a simpler
example motivated by this one (based on a line rather than a tree). In principle, it seems that
the ideas should extend to the more complex example, but this remains to be done.

Some other techniques to relate to this one include those based on bounded-time temporal
logic (e.g., [B1181]). Also, it remains to see how proofs using our techniques can be applied
in a modular way for the verification of timing properties of large and complex timing-based
systems.

Of course, it remains to apply this technique to the analysis of many other timing-dependent
algorithms. Good sources for algor;tlIms to analyze are the areas of real-time computing and
communication.
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