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1.0 INTRODUCTION

Composite model formalism has recently been used for HH polarization studies of clutter in
evaporation ducts via waveguide and ray methods!: 2¢*. Surface normal tilting in the plane of inci-
dence, defined by the incident wave and the unperturbed surface normal, was allowed for in those
studies. In this study, both HH and VV polarization is considered with allowance for surface normal
tilting both in the plane of incidence and normal to the plane of incidence. Effects associated with
surface normal tilting perpendicular to the plane of incidence have been discussed by Valenzuela34&4
and his formulas, with minor modifications, are used in this study. Though the theory is more gener-
ally applicable, the numerical results presented like those of the earlier studies, are restricted to
x band.

The significance of surface normal tilting normal to the plane of incidence is that an incident
horizontally or vertically polarized wave will, relative to the tilted surface, exhibit both horizontal and
vertical components. First order Bragg backscatter theory shows, for complex permittivities typical of
the ocean and for grazing incidence angles, that the normalized cross section for vertical polarization
significantly exceeds that for horizontal polarization. Thus, polarization mixing due to surface normal
tilting normal to the unperturbed plane of incidence can be of significance in determining the HH and
VYV normalized cross sections.

Allowance for surface tilting normal to the plane of incidence requires averaging over the angles
of tilt. Two models are considered in this study. The first model assumes a Gaussian distribution with
root mean square (rms) slopes determined from the Pierson spectrum 5. The second model assumes
tilt angles of 30° associated with wedges formed as the waves begin to break. The latter model, as a
contributor to the clutter, has been suggested by Kalmykov and Pustovoytenko 6 and by Wetzel 7. Not
surprisingly, in view of previous estimates made by Wetzel”7, even in the most favorable circumstance
it is found that at x band the normalized cross section for vertical polarization is about 10 dB higher
than the normalized cross section for HH polarization. This is contrary to experiment and suggests
that other scattering mechanisms, such as scattering by water spray and droplets, may be playing an
active role at x band. Even though other scattering mechanisms may be important it should be possi-
ble to couple scattering associated with such mechanisms and the propagators developed in the earlier
studies to estimate the backscatter. Even though the normalized cross sections for the cross polarized
components HV (VH) could be obtained using this present formalism, no effort has been made to do
that in this study.

Model and mathematical preliminaries are given in section 2.0. Discussed in some detail are the
quantities to be averaged and how they fit into the path loss formulas previously derived. Section 3.0
contains results for the standard atmosphere and for evaporation ducts 8 with duct heights of 14 and
28 m. The results are for 9.6 GHz and apply to wind speeds of 10, 20, 30, and 40 knots. A general
discussion concludes the paper in section 4.0. ton For
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2.0 PRELIMINARIES

Ulaby et al.9 have treated in detail the problem of first order Bragg backscatter from the sea for
horizontal transmit, horizontal receive, HH, and polarizatior.. Their mcthod can be repeated for
vertical transmit, vertical receive, VV, and backscatter. This method leads to the conclusion, as
asserted by Ulaby et al.9, that the results for HH polarization can be taken over for VV polarization
by simply replacing the sea water permeability, pu (taken to be one), by the sea water permittivity, e,
and vice versa. To accommodate this result within the earlier development ! using waveguide formal-
ism, the path loss formula for both polarizations will be approximated as

PL(dB) = —20L08]0[1.607 X 103 gh(¢0
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rf wave number (m=~1),

Pierson sea spectrum (m 3),

frequency in gigahertz,

one half 3-dB beam width (rad.),

c1/2 = spatial pulse length (m)

vacuum speed of light (m/s)

pulse length (s),

range (m),

shadow function,

real part of grazing eigenangle for least attenuated mode (rad.)
polarization index (horizontal polarization, i = h, vertical polarization, i = v)
mode indices

grazing eigenangle (rad.)

excitation factor,

(- 1)% )

height gain,

transmitter and receiver altitude for backscatter configuration (m).

In terms of the angles shown in figure 1 and following the development given on page 970 of
Ulaby et al. 7, the quantities, K;;, may be expressed as follows:




I cos? (6{)' - a)lpp + sin? ﬁr\’h |2 (2)

== in4
Khn st whlcoszw,ﬁ + cos’atan?pf) cos?yp(l + coszﬂtanza)zl
or
P— | (cos®? + sin@itanycos@)Thn 3
hh wh'zan 2ysin®p + (cosOF + sin6ftanycosg)?
. tan® vsin® ¢*Tvn 2
tan?ysin¢ + (cos6! + sin@tanycosg)?
270V in2 T 2
= cind I cos*(6y - a)l'wy N sin® BTp, I 4
Ko sin wvlcosztpv(l + cos’atan®p) cos?yy(1 + coszﬁtanza)l )
K,y = sin‘y | (cos6% + sin6tanycos@)Tyy )
o n Itan ysin?¢ + (cosby + singytanycosp)?
tan?ysin® ¢*Thy 2
tan’ysin®¢ + (cos@) + sinf)tanycosg)?
where
2 2 200 .
cos‘atan*f + cos*(6y'" - a))?
Yy = cos"[( s p © T ))] , (6)
(1 + cos’atan?B)?
or
h v, A 1
Wy n = cos”| cosy(tan?ysin?g + (cos6y” + sin6y " tanycos))7 |, (7
_ (e - 1)
T . ®)
sinyy + (€ - cos*yp)?




(e - 1) [e(1 + cos?yy) —cos?yy]

1)2 '
(esintpv + (€ - coszwv)f) (9)
r (e - 1) [e(1 + cos®yn) - cos?yn)

vh l 2 ’ (10)

esinyn + (e - cos?yy)?

-1

Thn = (€ ) ~;

(Sinlpv + (€ - cosztp‘,)?) (11

The brackets, < >, in equation 1 signify averages, subsequently defined to be taken over either
pair (o, B) or pair (y, ¢). Each pair defines the orientation of the local perturbed surface normal.
From figure 1, o will be seen to be the tilt angle in the unperturbed plane of incidence and g the tilt
angle in the plane perpendicular to the unperturbed plane of incidence. Similarly, vy is the angle
between the local perturbed surface normal, the z axis, and ¢ its azimuth. The quantity 6}',"', which
appears in the above equations, is the eigenangle for the least attenuated mode. This form of the
equations presumes that the rms slope of the perturbed surface is large compared with the magnitudes
of the modal eigenangles which contribute significantly to the mode sums. This is justified for the
cases reported in this study. In fact with little error (probably on the order of 1 dB) 03"' can be set to
zero, as has been done in generating the results in the following section. The quantities ¥, » defined
by equations (6) and (7) are the local angle of incidence. This is particularly simple to see when § =
0. Then from equation (6), Yy,p = O(v,'h - a (a is negative for illuminated facets when the incident
wave propagates in the positive x and negative z direction). Also from equation (7) with ¢ = 7 it
follows that ¥, » = og"' + . Valenzuela? has given results similar to equations (2) and (4). The
current formulas differ from his in terms of 0(a® % a?8?). It is believed that the coefficients given
above are in fact correct to all orders. There is, of course, the significant point that higher order
corrections to the coefficients are questionable since the first order Bragg scatter theory upon which
equation (1) is founded requires small slopes. Nevertheless, license has been taken and the results in
the following section are predicated upon the above equations.

The ray analogue of equation (1) is 2
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where the new quantities appearing in equation (12) are,




'O = 1 d—z xcosf +
g T sin® d&?

0
I (»*@ —00520)% dz
Zr

] . (13)

where
$a = stationary phase grazing angle,
niz) = refractive index at height z with n(o) = 1,
Co = cos(6p).

The K;; are given by equations (2) through (5) and the I'’s by equations (8) through (11) with the
understanding that

08 = 65 = 6, ¥y = Yn Thn = Thy Ty = Top - (14)

In section 3.0, results associated with two types of averaging will be presented. In the first model
(called the “Gaussian model”) the slope distribution is taken to be

- (tan’a + tanzﬁ)) , (15)

1
fla.p) = 27152 exp( (25%)

where

02 = mean square slope (assumed the same in both the unperturbed incident plane and in the
plane normal to it).

Values for the mean square slope as a function of wind speed have been calculated using the Pierson
spectrum and have been listed in an earlier work!. The averaging symbolized by the brackets, < >, in
equations (1) and (12) is to be taken over the illuminated portion of the surface. For simplicity in all
calculations it has been assumed that

6 =6 =6, =0. (16)

This should be an adequate approximation for the very grazing angles involved .02 rad. The averag-
ing brackets in this case are

0 n/2
<Ki> =2 daj ! ap Kii(a, p)f(a,B)sec’asec*f : an
-n/2 -n/2

Gaussian model.

The second model considered will be referred to as the “wedge model.” The general ideas have been
motivated by the observation of Kalmykov and Pustovoytenko® that wedge shape formations appear to




have significant impact on HH ciutter return. The notion has been further discussed by Wetzel 7. This
notion is based on the fact that the crest angle of the Stokes' wave as the wave begins to break is'0
120°. This corresponds to a wave slope of 30°. Thus, it will be generously assumed that the (y, ¢)
coefficients of the I' terms in equations (3) and (5) are meaningful for y = 30°. As Wetze.” points
out, the distribution of wave orientation, ¢, could also be a delta function, as when the crests line up
in a breaking zone, or could be uniformly distributed as in a well mixed sea. Results given in section
3.0 assume the latter and the brackets in this case become (recall that the averaging is over the illu-
minated wave surface)

1 3x/2 E y-x 1 IJ:/Z L2
i> = — Y2 lkitn¢) = —|  deki|l =] :
<K;i> ) I d¢L d'J’d( 3 )Ku()’ ?) g oK 6,0 (18)

wedge model.

In section 3.0 some results will be given in terms of system clutter power (in dBm) versus range and
some will be given in terms of the normalized radar cross section, 0°, as a function of range. In terms
of path loss the normalized radar cross section is

4 3.4
0°(dB) = -PL(dB) + 10Loglo(£—;%x—) . (19)
where
A = xAx 7::—2% A = rf wavelength , (20)

and the only requirement is that a consistent set of units be used for 1, x, and A. It should further
be pointed out that the vertical beam pattern has been omitted from equations (1) and (12). This
impacts only the system clutter power returns given in section 3.0 at ranges <2 km.




3.0 RESULTS

Figures 2 through 12 show comparisons between the empirically founded GIT' model (and its
extension as implemented in EREPS'2) and the ray clutter calculations for the system parameters
considered in earlier studies.' ™’ Specifically, the results are for a frequency of 9.6 GHz, a transmitter
height of 25 m, a pulse width of 1.0 ps, and a 3 dB beam width of 1.2°. As in the earlier studies,
environments considered are the standard atmosphere, 14- and 28-meter evaporation ducts at
windspeeds of 10, 20, 30, and 40 knots. The solid curve is the GIT/EREPS result for horizontal
polarization. Depending upon windspeed and grazing angle, GIT/EREPS resulis for vertical polariza-
tion can differ by several dB from those for horizontal polarization at x band. However, those differ-
ences are not considered significant for the present comparisons and the HH results are used as the
empirical prototype in this study. The dash-double dot curves are the wedge model results for VV
polarization, the dash-dot curves are the Guussian model results for VV polarization, the dashed
curves are the wedge model results for HH polarization, and the dotted curves are the Gaussian
model results for HH polarization. As e 'pected, the impact of wedge scatter on HH polarization is
quite significant for all environments and wind speeds. For example, at 10 knots wedge scatter re-
duces the difference between vertical and horizontal clutter from about 25 dBm to about 12 dBm and
at 40 knots it reduces the difference from about 17 dBm to about 12 dBm. However, in all instances
the calculated horizontal returns are noticeably less than the vertical returns in contradiction with
x-band measurements. Thus, although scattering from wedges may play a role, it does appear that
some other scattering mechanism(s) such as foam, water spray, or droplets is also playing a role at x
band. Comparisons with the GIT/EREPS curves show that in the range from about 2 to 10 km the
empirical results generally agree best with the Gaussian HH polarization model at 10 knots and with
the VV polarized results at the higher wind speeds. This would suggest that wedge scattering does not
play a role at 10 knots but does become activated at the higher wind speeds. In the ducting cases
beyond about 10 km out to 40 km, the calculations indicate a x5 fall off wirh range rather than a x-3
fall off indicated by the GIT/EREPS results. The origin of this difference should be tracked down.

In the case of the standard atmosphere, the fall off with range at ranges >10 km calculated via
waveguide methods (figures 14 through 17) indicate a somewhat slower fall off than the GIT/EREPS
results. This is presumably because the GIT/EREPS curves assume a fall off of x~* exp(-ax) with a
being the attenuation rate of the least attenuated mode. However, the waveguide result in this case
indicates a fall off of x~!exp(-ax).

A complete set of waveguide results for the ducting cases are not given because in their region of
validity they agree with the ray results. However, representative comparisons for the normalized radar
cross section versus range are shown in figures 18 and 19. The resuits apply to the 14- and 28-m
ducts with a wind speed of 20 knots. The solid curves are the waveguide results for VV polarization,
the dash-dot curves are the ray results for VV polarization, the dotted curves are the waveguide
results for HH polarization, and the dashed curves are the ray results for HH polarization. The
waveguide results break down at about 5 km. However, as mentioned above, the agreement with ray
calculations out to 40 km is quite good.

Figures 20 through 22 represent an alternative display of the previous results. In particular they
show the normalized radar cross section for the Gaussian model as a function of range with windspeed
as a parameter. The solid curves are for VV polarization and the dashed curves are for ilH




polarization. Figu-e 20 is for the standard atmosphere and shows ray results at ranges less than about
10 km and waveguide results beyond there. Figure 21 applies to the 14-m duct and figure 22 to the
28-m duct, and in both cases only the ray results are shown. Wetzel 7 has quoted ~40 dB as a con-
sensus measure of the normalized cross section corresponding to a one degree grazing angle (i.e., at a
range of =1.4 km). Generally, the HH results are below this figure and the VV results above it. The
figures clearly illustrate a much stronger wind dependence for HH polarization than for VV polariza-
tion. As expected, it will also be seen that the normalized cross section fall off with range beyond
about 20 km is larger for the 14-m duct than for the 28-m duct.

Figures 23 through 25 show the normalized cross section for the wedge model as a function of
range with wind speed as a parameter. The legend for the curves is the same as for figures 20 through
22. Figure 23 is for the standard atmosphere and shows ray results at ranges less than about 10 km
and waveguide results beyond there. Not surprisingly, the results correspcnding to one degree grazing
angle (i.e., a range of =1.4 km) are high compared with the consensus measurement of -40 dB
quoted by Wetzel?. In this instance the wind speed dependence is the same for both the HH and VV
polarizations and comes entirely from the wind speed dependence of the sea spectrum. As before, the
fall off of the normalized cross section with range beyond about 20 km is greater for the 14-m duct
than for the 28-m duct.




4.0 DISCUSSION

Surface normal tilting perpendicular to the unperturbed plane of incidence has the effect that an
incident horizontally {vertically) polarized wave presents both polarization types to the scattering facet.
Thus, for such a surface, backscatter, even for a horizontally or vertically polarized incident wave,
results from incidence of both polarizations on the locally perturbed surface. The effect was first
treated by Valenzuela 3. In this study, methods described by Ulaby et al. 9 have been used for the
analysis. This led to minor modifications of Valenzuela’s formulas. It is believed that the coefficients,
K;;, used in this study are, unlike Valenzuela’s coefficients, correct to all orders in the tilt angles. As
pointed out in section 2.0, there is an inconsistency in coupling these higher order effects with first
order Bragg scattering theory. License to do so has been taken and the wedge model results do
invoke that license. Results based on the Gaussian model, however, should be totally valid within the
spirit of the composite model, since the rms tilt angles are < 0.2 rad.

Both the wedge and Gaussian models assume well mixed seas. In the Gaussian model, the tilt
angle distribution in and perpendicular to the unperturbed plane of incidence has been assumed to be
Gaussian distributed with equal variance in all directions. In the wedge model, the angle between the
local surface normal and the unperturbed surface normal has been taken to be 30° which is appropri-
ate for a Stokes’ wave just before breaking. In the wedge model, the azimuthal distribution has been
taken to be symmetric.

Clutter power returns as a function of range stown in figures 2 through 12 point out that the
impact of wedge scatter is much more significant for HH scatter than for VV scatter. For example, at
10 knots wedge scatter reduces the difference between the HH and VV returns from about 25 dBm
to about 12 dBm and at 40 knots reduces the difference from about 17 dBm to about 12 dBm.
However, in all instances the horizontal returns are noticeably less than the vertical returns. This is
contrary to measurement. For example, figure 26 taken from the recent work of Chan!3 shows the
normalized cross section, ¢°, in dB as a function of grazing angle at x band for sea state 2. For
grazing angles =1°, the magnitude of o ° is similar for both polarizations. For reference, the 120°
{30°) azimuths were identified as the upswell (cross-swell) directions. The situation at s band is quite
different as figure 27 shows (Chanl3). For example, for an azimuth of 30° the differences between
vertical and horizontal polarization exceed 15 dB. Results, not given in this paper, for an s band
frequency indicate that the theoretical differences between HH and VV return are comparable to the
calculated x-band differences. Thus, one of many challenges is to account for these s- and x-band
differences. It certainly does seem that the scattering mechanisms are quite different in the two re-
gimes. In particular, Chan!3 has suggested that the x-band results are strongly influenced by water
spray and droplets. Wetzel 7 and Long!4 have suggested still other mechanisms. Whatever the truth
may be, it is likely that these other mechanisms could be incorporated into the propagators developed
in the earlier studies. Another obvious point of interest which follows from Chan’s!3 results is the
azimuthal look direction-dependence. As pointed out by Wetzel?, clutter return associated with lining
up of wedge crests (as in a breaking zone) could also be calculated following the present methods, but
that has not been done in this study. Wetzel's7 estimates of the effect would indicate no major
dependence until the look angle approaches the cross-swell direction.

Returning to the x-band results given in figures 2 through 12, it will be seen that comparisons with
the GIT/EREPS curves show that in the range from about 2 to 10 km the empirical results generally




agree best with the Gaussian HH polarization model at 10 knots and with the VV results at the higher
wind speeds. In the ducting cases beyond about 10 km, the calculations indicate over the 40-km
range a x~? fall off with range rather than a x-3 fall off indicated by the GIT/EREPS results. The
origin of this difference should be tracked down.

Figures 2G through 25 represent an alternative display of results presented earlier in the study. In
particular, they show the normalized cross section as a function of range with wind speed as a pa-
rameter. Wetzel 7 has quoted -40 dB as a consensus measure of the normalized cross section corre-
sponding to a one degree grazing angle (i.e., at a range of =1.4 km). In the case of the Gaussian
model, the HH results are below this figure and the VV results above it. In the case of the wedge
model the results are high compared with the —-40 dB consensus value.

Suggested work for the future would include

a. An understanding of the physical origin of the difference between HH and VV polarization
returns predicted by first order Bragg scatter.

b. Effect of the line up of wedge crests as contrasted with the azimuthal symmetry assumption
used in the present wedge model.

c. Influence of additional scattering mechanisms such as foam, water spray, and droplets as a
function of frequency and wind speed.

d. Calculation of depolarization (i.e., HV and VH) cross sections. This can be done using the
present methods.

e. Additional frequency and range calculations and comparisons with pe results. Resolution, for
example, of the differences between s- and x-band backscatter.

f. Origin of the discrepancy between the range dependence calculated from the models and the
GIT/EREPS predictions.

g. Additional backscatter measurements at low grazing angles <1° as a function of frequency,
windspeed, and refractivity environment.

h. General computer program which integrates the component parts of the path loss formulas.
For example, in this study the <K;;> were determined by separate averaging algorithms. Those could
be integrated into existing codes®.

* The following unpublished internal NOSC documents were used as references. For further information, please contact
author.
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Figure 24. Normalized radar cross section versus range. Ray-wedge model results with wind

speed as a parameter. Fourteen-meter duct.
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