
IENTATION PAGE orm App0o4e8ADA23N.4 004-133 5 0 ge 1 hotr per rerporm , mkj Wg Vie tini for re ,mg WitrucloML G inh exisin da sorf 95her maftO ft dA~ l r* his P-.. Ion stkale or arry otfhw upwd of thisl ,v-illoin of idor'malo ickx*nO isuggotioml for .0doc ix I t Wlnglon
..... .,=~am.1215 Jehoison Dave Highway. Suite 1204, Arkonon. VA 220-4302. and to Mhe Office of Information and Plgu x Atlaint. Off'ice of

-. .b,,mu W uugO WaShigoin. DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Final: Dec 12,1990 to Mar 1, 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: Digital Equipment Corporation, VAX Ada
Version 2.2, BAX 8800 (Host) t VAX MicroVAX II running VAXELN Version 4.1
(Target), 901109S1.11054

6. AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD
USA
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST9ODEC505_2_1.11
Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Digital Equipment Corporation, VAX Ada, Version 2.2, Gaithersburg, MD, VAX 8800 (Host) to VAX MicroVAX II running
VAXELN Version 4.1 (Target), ACVC 1.11.

14, SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev 2-89)
Prescrited by ANSI Std. 239-128

91 4 01 070

AVF Control Number: NIST90DEC505_21.11
DATE COMPLETED

BEFORE ON-SITE: October 30, 1990
AFTER ON-SITE: November 9, 1990
REVISIONS: December 12, 1990

Ada COMPILER
VALIDATION.SUMMARY REPORT:

Certificate Number: 901109S1.11054
Digital Equipment Corporation

VAX Ada, Version 2.2
VAX 8800 => VAX MicroVAX II running VAXELN Version 4.1

Prepared By:
Software Standards Validation Group
National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

AVF Control Number: NIST90DEC505_2_1.11

Certificate Information

The following Ada implementation was tested and determined to pass

ACVC 1.11. Testing was completed on Novermber 09, 1990.

Compiler Name and Version: VAX Ada, Version 2.2

Host Computer System: VAX 8800

Target Computer System; VAX MicroVAX II running VAXELN
Version 4.1

Target Runtime System: VAXELN Ada Verson 2.2

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
901109S1.11054 is awarded to Digital Equipment Corporation. This
certificate expires on March 01, 1993.

This report has been reviewed and is approved,

Ada lidationjac y Ada Validati Facility
Dr. David K. Ja fe s n Mr. L. Arnold Johnson
Chief, Information Systems Manager, Software
StandardsEngineering Division (ISED) Validation Group

National Computer Systems National Computer Systems
Laboratory (NCSL) Laboratory (NCSL)

National Institute of National Institute of
Standards and Technology Standards and Technology
Building 225, Room A266 Building 225, Room A266
Gaithersburg, D 20899 Gaithersburg, MD 20899

Ada hl-dli n -Organization Ada Joint Program Office
Dire to. , puter & Software Dr. John Solomond
Engieering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION Or CONFORMANCE

Customer: Digital Equipment Corporation

Certificate Awardee:

Ada Validation Facility: National Institute of Standards and
Technology

National Computer Systems Laboratory
(NCSL)

Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: VAX Ada Version 2.2

Host Computer System: VAX 8800 running VMS Version 5.4

Target Computer System: MioroVAX 11 running VAXELN Version 4.1

Target Runtime System: VAXKLN Ada Version 2.2

Declaration:

[I/we] the undersigned, declare that [I/we] have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.

homer Signature Date
Company

Certificate Awardee Signature Date
Company

0la 0un nunnCm1 1 0

TABLE OF CONTENTS

CHAPTER1..1-1
INTRODUCTION ... 1-1

1.1. USE OF THIS VALIDATION SUMMARY REPORT .i -1
1.2 REFERENCES....................................-1
1.3 ACVC TEST CLASSES.................1-2
1.4 DEFINITION OF TERMS................1-3

CHAPTER 2..2-1
IMPLEMENTATION DEPENDENCIES.......................2-i

2.1 WITHDRAWN TESTS....................2-1
2.2 INAPPLICABLE T7-STS...........................2-1.
2.3 TEST MODIFICATIONS .. *. 2-4

CHAPTER 3..3-1
PROCESSING INFORMATION..................3-1

3.1 TESTING ENVIRONMENT........................3-1
3.2 SUMMARY OF TEST RESULTS............3-i
3.3 TEST EXECUTION.................3-2

APPENDIXA..A-1
MACRO PARAMETERS.....................A-i

APPENDIX B..B-1
COMPILATION SYSTEM OPTIONS............................B-i
LINKER OPTIONS......................................B-4

APPENDIX C..C-i1
APPENDIX F OF THE Ada STANDARD..............C-1

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro9O] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide rUG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint

1-1

Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRTI3, and the procedure CHECKFILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal
by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution
is attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced
by the AVF. This customization consists of making the

1-2

modifications described in the preceding paragraph, removing
withdrawn tests (see section 2.1) and, possibly some inapplicable
tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implenentations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the validation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

1-3

Conformity Fulfillment by a product, process or service of
all requirements specified.

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms

and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer progrars are cxecuted.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 81 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. !he publication date for
this list of withdrawn tests is 90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026A
B83026B C83041A B85001L C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B06A ADIBO8A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE21171 CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectivec which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

C24113W..Y (3 TESTS) USE A LINE LENGTH IN THE INPUT FILE WHICH
EXCEEDS 255 CHARACTERS.

THE FOLLOWING 21 TESTS CHECK FOR THE PREDEFINED TYPE
LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C456IlC

2-1

C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD7101F

C35702A, C35713B, C45423B, B86001T, AND C86006H CHECK FOR THE
PREDEFINED TYPE SHORTFLOAT.

C45531M, C45531N, C455310, C45531P, C45532M, C45532N, C455320,
AND C45532P CHECK FIXED-POINT OPERATIONS FOR TYPES THAT REQUIRE
A SYSTEM.MAXMANTISSA OF 47 OR GREATER.

C45624A and C45624B check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating-point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

C86001F RECOMPILES PACKAGE SYSTEM, MAKING PACKAGE TEXT 10, AND
HENCE PACKAGE REPORT, OBSOLETE. FOR THIS IMPLEMENTATION, THE
PACKAGE TEXTI0 IS DEPENDENT UPON PACKAGE SYSTEM.

B86001Y CHECKS FOR A PREDEFINED FIXED-POINT TYPE OTHER THAN
DURATION.

B91001H CHECKS FOR SUPPORT OF ADDRESS CLAUSES FOR TASK ENTRIES
(SEE 2.3).

C96005B CHECKS FOR VALUES OF TYPE DURATION'BASE THAT ARE OUTSIDE
THE RANGE OF DURATION. THERE ARE NO SUCH VALUES FOR THIS
IMPLEMENTATION.

CD1009C USES A REPRESENTATION CLAUSE SPECIFYING A NON-DEFAULT
SIZE FOR A FLOATING-POINT TYPE.

CD2A84A, CD2A84E, CD2A84I..J (2 TESTS), AND CD2A840 USE
REPRESENTATION CLAUSES SPECIFYING NON-DEFAULT SIZES FOR ACCESS
TYPES.

CD2BI5B CHECKS THAT STORAGE ERROR IS RAISED APPROPRIATELY WHEN
A SPECIFIED COLLECTION SIZE IS TOO SMALL TO HOLD A VALUE OF THE
DESIGNATED TYPE; THIS IMPLEMENTATION ALLOCATES MORE SPACE THAN
WHAT IS SPECIFIED, AS ALLOWED BY AI-00558/04.

BD8001A, BD8003A, BD8004A..B (2 TESTS), AND ADS011A USE MACHINE
CODE INSERTIONS.

THE TESTS LISTED IN THE FOLLOWING TABLE ARE NOT APPLICABLE
BECAUSE THE GIVEN FILE OPERATIONS ARE SUPPORTED FOR THE GIVEN
COMBINATION OF MODE AND FILE ACCESS METHOD.

TEST FILE OPERATION MODE FILE ACCESS METHOD
CE2102E CREATE OUTFILE SEQUENTIALIO

2-2

CE2102F CREATE INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN INFILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIALIO
CE2102P OPEN OUT FILE SEQUENTIALIO
CE2102Q RESET OUT FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECTIO
CE2102W RESET OUT FILE DIRECT IO
CE3102F RESET ANY MODE TEXT IO
CE3102G DELETE TEXTIO
CE3102I CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXT IO
CE3102K OPEN OUTFILE TEXTIO

THE TESTS LISTED IN THE FOLLOWING TABLE ARE NOT APPLICABLE
BECAUSE THE GIVEN FILE OPERATIONS ARE NOT SUPPORTED FOR THE GIVEN
COMBINATION OF MODE AND FILE ACCESS METHOD.

TEST FILE OPERATION MODE FILE ACCESS METHOD

CE2105A CREATE IN FILE SEQUENTIAL_10
CE2105B CREATE IN FILE DIRECT 10
CE3109A CREATE IN-FILE TEXTIO

CE2203A CHECKS THAT WRITE RAISES USE ERROR IF THE CAPACITY OF THE
EXTERNAL FILE IS EXCEEDED FOR SEQUENTIALIO. THIS IMPLEMENTATION
DOES NOT RESTRICT FILE CAPACITY.

CE2403A CHECKS THAT WRITE RAISES USEERROR IF THE CAPACITY OF THE
EXTERNAL FILE IS EXCEEDED FOR DIRECTIO. THIS IMPLEMENTATION
DOES NOT RESTRICT FILE CAPACITY.

CE2107B & E (2 TESTS), CE2110B, AND CE2111D ATTEMPT TO ASSOCIATE
MULTIPLE INTERNAL SEQUENTIAL FILES WITH THE SAME EXTERNAL FILE
WHEN ONE OR MORE FILES IS OPEN FOR WRITING. THE PROPER EXCEPTION
IS RAISED WHEN THIS ASSOCIATION IS ATTEMPTED.

CE2107F & G (2 TESTS), CE2110D, AND CE2111H ATTEMPT TO ASSOCIATE
MULTIPLE INTERNAL DIRECT FILES WITH THE SAME EXTERNAL FILE WHEN
ONE OR MORE FILES IS OPEN FOR WRITING. THE PROPER EXCEPTION IS
RAISED WHEN THIS ASSOCIATION IS ATTEMPTED.

CE3111B, CE3111D, CE3114B, AND CE3115A ATTEMPT TO ASSOCIA'7
MULTIPLE INTERNAL TEXT FILES WITH THE SAME EXTERNAL FILE WHEN ONE
OR MORE FILES IS OPEN FOR WRITING. THE PROPER EXCEPTION IS
RAISED WHEN THIS ASSOCIATION IS ATTEMPTED.

2-3

CE2107C..D (2 TESTS), CE2107H, CE2107L, AND CE3111E APPLY
FUNCTION NAME TO TEMPORARY SEQUENTIAL, DIRECT, AND TEXT FILES IN
AN ATTEMPT TO ASSOCIATE MULTIPLE INTERNAL FILES WITH THE SAME
EXTERNAL FILE; USEERROR IS RAISED BECAUSE TEMPORARY FILES HAVE
NO NAME.

CE2108B & D (2 TESTS) AND CE3112B USE THE NAMES OF TEMPORARY
SEQUENTIAL, DIRECT, AND TEXT FILES THAT WERE CREATED IN OTHER
TESTS IN ORDER TO CHECK THAT THE TEMPORARY FILES ARE NOT
ACCESSIBLE AFTER THE COMPLETION OF THOSE TESTS; FOR THIS
IMPLEMENTATION, TEMPORARY FILES HAVE NO NAME.

CE2111C TEST RESET THE MODE FROM IN FILE TO INOUT FILE OR
OUT FILE (AN AMPLIFICATION IN ACCESSING PRIVILEGES WHILE THE
XTERNAL FILE IS BEING ACCESSED). THE PROPER EXCEPTION IS RAISED.

EE2401D CHECKS WHETHER READ, WRITE, SETINDEX, INDEX, SIZE, AND
END OF FILE ARE SUPPORTED FOR DIRECT FILES FOR AN UNCONSTRAINED
ARRAY TYPE. USE ERROR WAS RAISED FOR DIRECT CREATE. THIS
IMPLEMENTATION DOES NOT ALLOW THE INSTANTIATION OF DIRECT IO WITH
UNCONSTRAINED ARRAY TYPES UNLESS A MAXIMUM ELEMENT SIZE IS
SPECIFIED IN THE FORM PARAMETER OF THE CREATE PROCEDURE.

EE2A'G AND CE2401H TEST FOR INSTANTIATION OF DIRECT IO WITH
UNCQ.&.TRAINED RECORC TYPES. THIS IMPLEMENTATION NOT ALLOW
INSTANTIATION OF DIRECT IO WITH UNCONSTRAINED RECORD TYPES UNLESS
A MAXIMUM ELEMENT SIZE IS SPECIFIED IN THE FORM PARAMETER OF THE
CREATE PROCEDURE.

CE3304A CHECKS THAT USEERROR IS RAISED IF A CALL TO
SET LINE LENGTH OR SET PAGE LENGTH SPECIFIES A VALUE THAT IS
INAPPROPRIATE FOR THE EXTERNAL FILE. THIS IMPLEMENTATION DOES
NOT HA,1E INAPPROPRIATE VALUES FOR EITHER LINE LENGTH OR PAGE
LENGTH.

CE3413B CHECKS THAT PAGE RAISES LAYOUTERROR WHEN THE VALUE OF
THE PAGE NUMBER EXCEEDS COUNT'LAST. FOR THIS IMPLEMENTATION, THE
VALUE OF COUNT'LAST IS GREATER THAN 150000 MAKING THE CHECKING
OF THIS OBJECTIVE IMPRACTICAL.

2.3 TEST MODIFICATIONS

MODIFICATIONS (SEE SECTION 1.3) WERE REQUIRED FOR NO TESTS.

B91001H was graded inapplicable by Evaluation Mod."fication as
directed by the AVO. This implementation does not support
address clauses for entries.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Attn: Pat Bernard
Ada Product Manager

Digital Equipment Corporation
110 Spit Brook Road (ZKO2-1/MIl)

Nashua, NH 03062
(603) 881-0247

For a point of contact for sales information about this Ada
implementation system, see:

Attn: Pat Bernard
Ada Product Manager

Digital Equipment Corporation
110 Spit Brook Road (ZKO2-1/Mll)

Nashua, NH 03062
(603) 881-0247

Testing of this Ada implementation was conducted at the

customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result
was obtained that conforms to the Ada Programming Language
Standard.

a) Total Number of Applicable Tests 3986

3-1

b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 103
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 103 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this
implementation supports a file system. All floating-point
precision tests were processed because this implementation supports
floating-point precision to the extent that was tested. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 103
tests were inapplicable to this implementation. All inapplicable
tests were processed during validation testing.

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing.
The contents of the magnetic tape were loaded directly onto the
host computer.

The communication process between the VAX 8800 and the MicroVAX
was as follows:

1. VMS is brought up on the MicroVAX II.

2. The executable files are copied from the VAX 8800 to the
MicroVAX II using the network.

3. A VAXELN system is then built on the VAX 8800 and copied
to a TK50 tape. This tape is then used to boot VAXELN
on the MicroVAX II.

4. The tests are executed under VAXELN and the results
captured on a disk attached to the MicroVAX II.

5. VMS is again brought up on the MicroVAX II so the result
files can be copied back to the VAX 8800 using the
network.

After the test files were loaded onto the host computer, the full

3-2

set of tests was processed by the Ada implementation.

The tests were compiled anI linked on the host computer system,
as appropriate. The executable images were transferred to the
target computer system cy the communications link described
above, and run. The resu ts were captured on the host computer
system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B for
a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

/NOANALYSISDATA
/CHECK
/COPYSOURCE
/NODEBUG
/NODESIGN
/NODIAGNOSTICS
/ERROR LIMIT=I000
/LIBRARY=ADA$LIB
/LIST
/LOAD
/NOMACHINECODE
/NOTESOURCE
/OPTIMIZE
/NOSHOW
/NOSYNTAXONLY
/WARNINGS=default

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the
ACVC. The meaning and purpose of these parameters are explained in
(UG89]. The parameter values are presented in two tables. The first
table lists the values that are defined in terms of the maximum input-
line length, which is 255 the value for $MAXIN LEN--also listed here.
These values are expressed here as Ada string aggregates, where "V1'
represents the maximum input-line length.

Macro Parameter Macro Value

$MAXINLEN 255

$BIGIDI (I..V-l => 'A', V => '1')

$BIGID2 (I..V-l => 'A', V => '2')

$BIGID3 (1..V/2 => 'A') & '3' & (l..V-l-V/2 => 'A')

$BIGID4 (I..V/2 => 'A') & '4' & (1..V-l-V/2 => 'A')

$BIGINTLIT (I..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (l..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (l..V-l-V/2 => 'A') & 'I' & '"'

$BLANKS (l..V-20 => '

$MAXLENINTBASEDLITERAL
"2:" & (1..V-5 => '0') & "11:"

$MAXLENREALBASEDLITERAL
"16:" & (1..V-7 => '0') & "F.E:"

$MAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-i

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

ACC SIZE : 32
ALIGNMENT : 4
COUNT LAST : 2 147 483 647
DEFAULT MEM SIZE : 2*.31-1
DEFAULT STOR UNIT : 8
DEFAULT SYS NAME : VAX VMS
DELTA DOC. : 2.0**(-31)
ENTRY ADDRESS : 16#40#
ENTRY ADDRESS1 : 16#80#
ENTRY ADDRESS2 : 16#100#
FIELD LAST : 2 147483_647
FILE TERMINATOR
FIXED NAME : NO SUCH FIXEDTYPE
FLOAT NAME : LONGLONGFLOAT
FORM STRING fill

FORM-STRING2
"CANNOT RESTRICT FILE CAPACITY"

GREATER THAN DURATION : 75 000.0
GREATER-THAN-DURATION BASE LAST : 131 073.0
GREATER THAN FLOAT BASE LAST : 1.80141E+38
GREATER THAN FLOAT SAFE LARGE : 1.7014117E+38
GREATER THAN SHORTFLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 15
ILLEGAL EXTERNAL FILE NAME1 : BADCHARA@._!
ILLEGALEXTERNALFILENAME2
THIS-FILE-NAME-WOULD--BE-PERFECTLY-LEGAL-IF-IT-WERE-NOT-SO-LONG. SOTHERE
INAPPROPRIATE LINE LENGTH : 65 536
INAPPROPRIATE PAGELENGTH : -1
INCLUDE PRAGMAl

PRAGMA INCLUDE ("A28006D1.TST")
INCLUDE PRAGMA2

PRAGMA INCLUDE ("B28006E1.TST")
INTEGER FIRST : -2147483648
INTEGER LAST : 2147483647
INTEGER LAST PLUS 1 : 2 147_483_648
INTERFACE LANGUAGE FORTRAN
LESS THAN DURATION : -75 000.0
LESS THAN DURATIONBASEFIRST : -131_073.0
LINE TERMINATOR : ASCII.LF
LOW PRIORITY : 0
MACHINE CODE STATEMENT : NULL;
MACHINE CODETYPE : NO SUCHTYPE
MANTISSA DOC- ' : 31
MAXDIGITS : 33

A-2

MAXINT : 2147483647
MAXINT_-PLUS_1 : 2 147 483_648
MIN INT : 2147483648

NAME : SHORT_-SHORTINTEGER
NAMELIST :VAXVMS, VAXELN
NAME SPECIFICATION1

ACVC LFN DEVICE: [ACVCLFNAREA]X2120A.DAT;1
NAME SPECIFICATION2

AC VC -LFN_-DEVICE: [ACVCLFNAREA]X2120B.DAT;1
NAME SPECIFICATION3

ACVC -LFNDEVICE: [ACVCLFNAREA]X3119A.DAT;1
NEGBASED INT : 16#FFFFFFFE#
NEW_-MEMSIZE : 1_048_576
NEWSTORZ UNIT : 8
NEW_-SYS NAME : VAXELN
PAGE TERMINATOR : ASCII.LF & ASCII.FF
RECORD DEFINITION : NULL; END RECORD;
RE CORD NAME : NOSUCHMACHINECODETYPE
TASKSIZE : 32-
TASKSTORAGESIZE : 0
TICK : 10.O**(-2)
VARIABLE ADDRESS : 16#1000#
VARIABLE ADDRESS1 : 16#1004#
VARIABLEADDRESS2 : 16#1008#
YOURPRAGMA : EXPORTOBJECT

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation
and not to this report.

/ANALYSISDATA or /NOANALYSISDATA

Controls whether a data analysis file containing source code cross-
referencing and static analysis information is created. The default
is /NOANALYSISDATA.

/CHECK or /NOCHECK

Controls whether run-time error checking is suppressed. (Use of
/NOCHECK is equivalent to giving all possible suppress pragmas in the
source program.) The default is /CHECK (error checking is not
suppressed except by pragma).

/COPYSOURCE or /NOCOPYSOURCE

Controls whether the source being compiled is copied into the
compilation library for a successful compilation. The default is
/COPYSOURCE.

/DEBUG or /NODEBUG or /DEBUG=option

where option is one of

ALL, SYMBOLS or NOSYMBOLS, TRACEBACK or NOTRACEBACK, or NONE

Controls the inclusion of debugging symbol table information in the
compiled object module. The default is /DEBUG or, equivalently,
/DEBUG=ALL.

/DESIGN or /NODESIGN

Controls whether the input file is processed as a design or compiled
as an Ada source. The default is /NODESIGN, in which case the file
is compiled.

/DIAGNOSTICS, /DIAGNOSTICS=filename, or /NODIAGNOSTICS

Controls whether a special diagnostics file is produced for use with
the VAX Language-Sensitive Editor (a separate DIGITAL product). The

B-1

default is /NODIAGNOSTICS.

. /ERRORLIMIT=n

Controls the number of error level diagnostics that are allowed within
a single compilation unit before the compilation is aborted. The
default is /ERRORLIMIT=30.

/LIBRARY=directory-name

Specifies the name of the Ada compilation library to be used as the
context for the compilation. The default is the library last
established by the ACS SET LIBRARY command.

/LIST, /LIST=filename, or /NOLIST

Controls whether a listing file is produced. /LIST without a filename
uses a default filename of the form sourcename.LIS, where sourcename
is the name of the source file being compiled. The default is /NOLIST
'for both interactive and batch mode).

./LOAD or /NOLOAD

Controls whether the current program library is updated with
succesfully processed units contained in the source file. The default
is /LOAD.

/MACHINECODE or /NOMACHINECODE

Controls whether generated machine code (approximating assembler
notation) is included in the listing file, if produced. The default
is /NOMACHINECODE.

• /NOTESOURCE or /NONOTESOURCE

Controls whither the file specification of the current source file is
noted in the compilation library. (This copy is used for certain
automated (re)compilation features.) The default is /NOTESOURCE.

• /OPTIMIZE or /NOOPTIMIZE

Controls whether full or minimal optimization is applied in producing
the compiled code. The default is /OPTIMIZE. (/NOOPTIMIZE is
primarily of use in combination with /DEBUG.)

B-2

• /SYNTAX or /NOSYNTAXONLY

Controls whether a syntax check only is performed. The default is
/NOSYNTAXONLY, which indicates that full processing is done.

• /SHOW=PORTABILITY or /NOSHOW

Controls whether a portability summary is included in the listing.
The default is /SHOW=PORTABILITY.

* /WARNINGS=(category:destination,...)

Specifies which categories of informational and warning level messages
are displayed for which destinations. The categories can be WARNINGS,
WEAKWARNINGS, SUPPLEMENTAL, COMPILATION NOTES AND STATUS. The
destinations can be ALL, NONE or combinations of TERMINAL, LISTING or
DIAGNOSTICS. The default is

/WARNINGS=(WARN:ALL,WEAK:ALL,SUPP:ALL,COMP:NONE,STAT: LIST)

B-3

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and
not to this report.

ACS

LINK

CommandQualifiers

/AFTER=time

Requests that the batch job be held until after a specific time,
when the ACS LINK command is executed in batch mode
(LINK/SUBMIT).

/BATCHLOG=file-spec

Provides a file specification for the batch log file when the
LINK command is executed in batch mode (LINK/SUBMIT).

/BRIEF

Directs the linker to produce a brief image map file.

/COMMAND[=file-spec]

If you specify the /COMMAND qualifier, the program library
manager does not invoke the linker, and the generated command
file is saved for you to invoke or submit as a batch job.

/CROSSREFERENCE
/NOCROSSREFERENCE (D)

Controls whether the image map file contains a symbol cross-
reference.

/DEBUG[=file-spec]
/NODEBUG (D)

Controls whether a debugger symbol table is included in the
executable image file.

/EXECUTABLE[=file-spec] (D)
/NOEXECUTABLE

Controls whether the linker creates an executable image file and

B-4

optionally provides a file specification for the file.

/FULL

Directs the linker to produce a full image map file, which is
the most complete image map.

/KEEP (D)
/NOKEEP

This is a command qualifier.

Controls whether the batch log file generated is deleted after
it is printed when the ACS LINK command is executed in batch

mode (LINK/SUBMIT).

/LOG
/NOLOG (D)

Controls whether a list of all the units included in the
executable image is displayed.

/MAIN (D)
/NOMAIN

Controls where the image transfer address is to be found.

/MAP[=file-spec]
/NOMAP (D)

Controls whether the linker creates an image map file and
optionally provides a file specification for the file.

/NAME=job-name

Specifies a string to be used as the job name and as the file
name for the batch log file when the ACS LINK command is
executed in batch mode (LINK/SUBMIT).

/NOTIFY (D)
/NONOTIFY

Controls whether a message is broadcast when the ACS LINK
command is executed in batch mode (LINK/SUBMIT). The message is
broadcast to any terminal at which you are logged in, notifying
you that your job has been completed or terminated.

/OBJECT=file-spec

Provides a file specification for the object file generated by
the ACS LINK command.

B-5

/OUTPUT=file-spec

Requests that any ACS output generated before the linker
is invoked be written to the file specified rather than to
SYS$OUTPUT.

/PRINTER[=queue-name]
/NOPRINTER (D)

Controls whether the log file is queued for printing when the
LINK command is executed in batch mode (LINK/SUBMIT) and the
batch job is completed.

/QUEUE=queue-name

Specifies the batch job queue in which the job is entered when
the ACS LINK command is executed in batch mode (LINK/SUBMIT).

/SUBMIT

Directs the program library manager to submit the command file
generated for the linker to a batch queue.

/SYSLIB (D)
/NOSYSLIB

Controls whether the linker automatically searches the
default system library for unresolved references.

/SYSSHR (D)
/NOSYSSHR

Controls whether the linker automatically searches the default
system shareable image library SYS$LIBRARY:IMAGELIB.OLB for
unresolved references.

/SYSTEM_NAME=system

Directs the program library manager to produce an image for
execution on a particular operating system.

The possible system values are VAXVMS and VAXELN.

/TRACEBACK (D)
/NOTRACEBACK

Controls whether the linker includes traceback information in
the executable image file for run-time error reporting.

/USERLIBRARY[=(table, ...])]

B-6

/NOUSERLIBRARY

Controls whether the linker searches any user-defined default
libraries after it has searched any specified user libraries.

/WAIT

Directs the program library manager to execute the command file
generated for the linker in a subprocess.

ParameterQualifiers

/INCLUDE=(object-file,...)

Indicates that the associated input file is a VMS object module
library or shareable image library with a default file type of
.OLB, and that the named elements from that library should be
linked with the main program named in the ACS LINK command.

/LIBRARY

Indicates that the associated input file is a VMS object module
library or shareable image library to be searched for modules
to resolve any undefined symbols in the input files.

/OPTIONS

Indicates that the associated input file is a VMS linker options
file.

/SHAREABLE

Indicates that the associated input file is a VMS shareable
image. The default file type is .EXE.

B-7

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machire-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the -',kage STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648..2147483647;
type SHORT INTEGER is range -32768..32768;
type SHORTSHORTINTEGER is range -128..127;

type FLOAT is digits 6 range -I.70141E+38..I.70141E+38;
type LONGFLOAT is digits 15 range

-8.988465674312E+307. .8.988465674312E+307;
type LONGLONGFLOAT is digits 33 range

-5.9486574767861588254287966331400E+4931..
5.9486574767861588254287966331400E+4931;

type DURATION is delta 1.OE-4 range -131072.0..131071.9999;

end STANDARD;

C-1

1
Predefined Language Pragmas

This annex defines the pragmas LIST, PAGE, and OPTIMIZE, and summarizes
the definitions given elsewhere of the remaining language-defined pragmas.

The VAX Ada pragmas IDENT and TITLE are also defined in this annex.

Pragma Meaning

AST-ENTRY Takes the simple name of a single
entry as the single argument; at most
one ASTENTRY pragma is allowed
for any given entry. This pragma
must be used in combination with the
AST-ENTRY attribute, and is only
allowed after the entry declaration and
in the same task type specification or
single task as the entry to which it
applies. This pragma specifies that the
given entry may be used to handle a
VMS asynchronous system trap (AST)
resulting from a VMS system service
call. The pragma does not affect
normal use of the entry (see 9.12a).

2 CONTROLLED Takes the simple name of an access
type as the single argument. This
pragma is only allowed immediately
within the declarative part or package
specification that contains the
declaration of the access type; the
declaration must occur before the
pragma. This pragma is not allowed for

Predeflned Language Pragmas 1-1

a derived type. This pragma specifies
that automatic storage reclamation
must not be performed for objects
designated by values of the access type,
except upon leaving the innermost
block statement, subprogram body, or
task body that encloses the access type
declaration, or after leaving the main
program (see 4.8).

3 ELABORATE Takes one or more simple names
denoting library units as arguments.
This pragma is only allowed
immediately after the context clause
of a compilation unit (before the
subsequent library unit or secondary
unit). Each argument must be
the simple name of a library unit
mentioned by the context clause.
This pragma specifies that the
corresponding library unit body
must be elaborated before the

given compilation unit. If the given
compilation unit is a subunit, the
library unit body must be elaborated
before the body of the ancestor library
unit of the subunit (see 10.5).

EXPORT-EXCEPTION Takes an internal name denoting
an exception, and optionally takes
an external designator (the name
of a VMS Linker global symbol),
a form (ADA or VMS), and a code
(a static integer expression that is
interpreted as a VAX condition code)
as arguments. A code value must be
specified when the form is VMS (the
default if the form is not specified).
This pragma is only allowed at the
place of a declarative item, and must
apply to an exception declared by
an earlier declarative item of the
same declarative part or package
specification; it is not allowed for an
exception declared with a renaming
declaration or for an exception declared

1-2 Predeflned Language Pragmas

in a generic unit. This pragma permits
an Ada exception to be handled
by programs written in other VAX
languages (see 13.9a.3.2).

EXPORTFUNCT1ON Takes an internal name denoting
a function, and opti nally takes an
external designator (the name of a
VMS Linker global symbol), parameter
types, and result type as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a function declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before any
subsequent compilation unit. This
pragma is not allowed for a function
declared with a renaming declaration,
and it is not allowed for a generic
function (it may be given for a generic
instantiation). This pragma permits
an Ada function to be called from
a program written in another VAX
language (see 13.9a.1.4).

EXPORT_-OBJECT Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a VMS Linker
global symbol) and size designator
(a VMS Linker global symbol whose
value is the size, in bytes, of the
exported object) as arguments. This
pragma is only allowed at the place of
a declarative item at the outermost
level of a library package specification
or body, and must apply to a variable
declared by an earlier declarative
item of the same package specification
or body, the variable must be of a
type or subtype that has a constant
size at compile time. This pragma is
not allowed for objects declared with

Predeflned Language Pragmas 1-3

a renaming declaration, and is not
allowed in a generic unit. This pragma
permits an Ada object to be referred to
by a routine written in another VAX
language (see 13.9a.2.2).

EXPORT-PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name
of a VMS Linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and must
apply to a procedure declared by
an earlier declarative item of the
same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before
any subsequent compilation unit.
This pragma is not allowed for a
procedure declared with a renaming
declaration, and is not allowed for a
generic procedure (it may be given for
a generic instantiation). This pragma
permits an Ada routine to be called
from a program written in another VAX
language (see 13.9a.1.4).

EXPORTVALUEDPROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name
of a VMS linker global symbol)
and parameter types as arguments.
This pragma is only allowed at the
place of a declarative item, and must
apply to a procedure declared by
an earlier declarative item of the
same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. The first
(or only) parameter of the procedure

1-4 Predeflned Language Pragmas

must be of mode out. This pragma is
not allowed for a procedure declared
with a renaming declaration and is not
allowed for a generic procedure (it may
be given for a generic instantiation).
This pragma permits an Ada procedure
to behave as a function that both
returns a value and causes side effects
on its parameters when it is called
from a routine written in another VAX
language (see 13.9a.1.4).

IDENT Takes a string literal of 31 or fewer
characters as the single argument. The
pragma IDENT has the following form:

pzagm IDENT (stringliteral);

This pragma is allowed only in
the outermost declarative part or
declarative items of a compilation unit.
The given string is used to identify
the object module associated with the
compilation unit in which the pragma
IDENT occurs.

IMPORTEXCEPTION Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
VMS Linker global symbol), a form
(ADA or VMS), and a code (a static
integer expression that is interpreted
as a VAX condition code) as arguments.
A code value is allowed only when 'the
form is VMS (the default if the form
is not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or package
specification; it is not allowed for an
exception declared with a renaming
declaration. This pragma permits a
non-Ada exception (most notably, a
VAX condition) to be handled by an
Ada program (see 13.9a.3.1).

Predefined Language Prc,.Onas 1-5

IMPORT-FUNCTION Takes an internal name denoting
a function, and optionally takes an
external designator (the name of a
VMS Linker global symbol), parameter
types, parameter mechanisms, result
mechanism, and a first optional
parameter as arguments. The pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma is only
allowed at the place of a declarative
item, and must apply to a function
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of
a function declared as a compilation
unit, the pragma is only allowed after
the function declaration and before
any subsequent compilation unit.
This pragma is allowed for a function
declared with a renaming declaration;
it is not allowed for a generic function
or a generic function instantiation.
This pragma permits a non-Ada
routine to be used as an Ada function
(see 13.9a.1.1).

IMPORTOBJECT Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a VMS Linker
global symbol) and size (a VMS Linker
global symbol whose value is the
size in bytes of the imported object)
as arguments. This pragma is only
allowed at the place of a declarative
item at the outermost level of a library
package specification or body, and must
apply to a variable declared by an
earlier declarative item of the same
package specification or body;, the
variable must be of a type or subtype
that has a constant size at compile
time. This pragma is not allowed
for objects declared with a renaming
declaration, and is not allowed in a
generic unit. This pragma permits
storage declared in a non-Ada routine

1-6 Predefined Language Pragnas

to be referred to by an Ada program
(see 13.9a.2.1).

IMPORTPROCEDURE Takes an internal name denoting a
procedure, and optionally takes an
external designator (the name of a
VMS Linker global symbol), parameter
types, parameter mechanisms, and a
first optional parameter as arguments.
The pragma INTERFACE must be
used with this pragma (see 13.9).
This pragma is only allowed at the
place of a declarative item, and must
apply to a procedure declared by
an earlier declarative item of the
same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declaration;
it is not allowed for a generic procedure
or a generic procedure instantiation.
This pragma permits a non-Ada routine
to be used as an Ada procedure (see
13.9a.1.1).

IMPORT._VALUED_PROCEDURE Takes an internal name denoting a
procedure, and optionally takes an
external designator (the name of a
VMS Linker global symbol), parameter
types, parameter mechanisms, and a
first optional parameter as arguments.
The pragma INTERFACE must be
used with this pragma (see 13.9).
This pragma is only allowed at the
place of a declarative item, and must
apply to a procedure declared by
an earlier declarative item of the
same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any

Predeflned Language Pragmas 1-7

subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma
is allowed for a procedure declared
with a renaming declaration; it is not
allowed for a generic procedure. This
pragma permits a non-Ada routine that
returns a value and causes side effects
on its parameters to be used as an Ada
procedure (see 13.9a.1.1).

INLINE Takes one or more names as
arguments; each name is either the
name of a subprogram or the name of
a generic subprogram. This pragma
is only allowed at the place of a
declarative item in a declarative part
or package specification, or after a
library unit in a compilation, but before
any subsequent compilation unit. This
pragma specifies that the subprogram
bodies should be expanded inline at
each call whenever possible; in the case
of a generic subprogram, the pragma
applies to calls of its instantiations (see
6.3.2).

INLINEGENERIC Takes one or more names as
arguments; each name is either the
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit
in a compilation, but before any
subsequent compilation unit. Each
argument must be the simple name
of a generic subprogram or package,
or a (nongeneric) subprogram or
package that is an instance of a generic
subprogram or package declared by
an earlier declarative item of the
same declarative part or package
specification. This pragma specifies
that inline expansion of the generic

1-8 Predeflned Language Pragmas

body is desired for each instantiation
of the named generic declarations or
of the particular named instances;
the pragma does not apply to calls of
instances of generic subprograms (see
12.1a).

INTERFACE Takes a language name and a
subprogram name as arguments. This
pragma is allowed at the place of a
declarative item, and must apply in
this case to a subprogram declared
by an earlier declarative item of the
same declarative part or package
specification. This pragma is also
allowed for a library unit; in thib cab
the pragma must appear after the
subprogram declaration, and before
any subsequent compilation unit. This
pragma specifies the other language
(and thereby the calling conventions)
and informs the compiler that an
object module will be supplied for the
corresponding subprogram (see 13.9).

In VAX Ada, the pragma INTERFACE
is required in combination with the
pragmas IMPORTFUNCTION,
IMPORT_PROCEDURE, and
IMPORTVALUEDPROCEDURE
when any of those pragmas are used
(see 13.9a.1).

LIST Takes one of the identifiers ON or
OFF as the single argument. This
pragma is allowed anywhere a pragma
is allowed. It specifies that listing of
the compilation is to be continued or
suspended until a LIST pragma with
the opposite argument is given within
the same compilation. The pragma
itself is always listed if the compiler is
producing a listing.

LONG-FLOAT Takes either DLOAT or GFLOAT
as the single argument. The default
is GFLOAT. This pragma is only

Prede , d Language Pragmas 1-9

allowed at the start of a compilation,
before the first compilation unit (if
any) of the compilation. It specifies
the choice of representation to be used
for the predefined type LONGFLOAT
in the package STANDARD, and for
floating point type declarations with
digits specified in the range 7..15 (see
3.5.7a).

MAIN_STORAGE Takes one or two nonnegative static
simple expressions of some integer type
as arguments. This pragma is only
allowed in the outermost declarative
part of a library subprogram; at most
one such pragma is allowed in a library
subprogram. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
causes a fixed-size stack to be created
for a main task (the task associated
with a main program), and determines
the number of storage units (bytes)
to be allocated for the stack working
storage area or guard pages or both.
The value specified for either or both
the working storage area and guard
pages is rounded up to an integral
number of pages. A value of zero for
the working storage area results in the
use of a default size; a value of zero for
the guard pages results in no guard
storage. A negative value for either
working storage or guard pages causes
the pragma to be ignored (see 13.2b).

7 MEMORYSIZE Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the
first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number MEMORYSIZE (see
13.7).

1-10 Predeffned Language Pragmas

OPTIMIZE Takes one of the identifiers TIME
or SPACE as the single argument.
This pragma is only allowed within a
declarative part and it applies to the
block or body enclosing the declarative
part. It specifies whether time or space
is the primary optimization criterion.

In VAX Ada, this pragma is only
allowed immediately within a
declarative part of a body declaration.

9 PACK Takes the simple name of a record or
array type as the single argument. The
allowed positions for this pragma, and
the restrictions on the named type,
are governed by the same rules as for
a representation clause. The pragma
specifies that storage minimization
should be the main criterion when
selecting the representation of the
given type (see 13.1).

10 PAGE This pragma has no argument, and is
allowed anywhere a pragma is allowed.
It specifies that the program text which
follows the pragma should start on a
new page (if the compiler is currently
producing a listing).

1 PRIORITY Takes a static expression of the
predefined integer subtype PRIORITY
as the single argument. This pragma is
only allowed within the specification of
a task unit or immediately within the
outermost declarative part of a main
program. It specifies the priority of the
task (or tasks of the task type) or the
priority of the main program (see 9.8).

PSECT.OBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
program section) and a size (a VMS
Linker global symbol whose value
is interpreted as the size, in bytes,
of the exported/imported object) as
arguments. This pragma is only

Predeflned Language Pragmas 1-11

allowed at the place of a declarative
item at the outermost level of a library
package specification or body, and must
apply to a variable declared by an
earlier declarative item of the same
package specification or body-, the
variable must be of a type or subtype
that has a constant size at compile
time. This pragma is not allowed for
an object declared with a renaming
declaration, and is not allowed in a
generic unit. This pragma enables the
shared use of objects that are stored
in overlaid program sections (see
13.9a.2.3).

12 SHARED Takes the simple name of a variable as
the single argument. This pragma is
allowed only for a variable declared by
an object declaration and whose type
is a scalar or access type; the variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. This pragma
specifies that every read or update of
the variable is a synchronization point
for that variable. An implementation
must restrict the objects for which
this pragma is allowed to objects
for which each of direct reading and
direct updating is implemented as an
indivisible operation (see 9.11).

SHAREGENERIC Takes one or more names as
arguments; each name is either thf
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit
in a compilation, but before any
subsequent compilation unit. Each
argument must be the simple name
of a generic subprogram or package,

1-12 Predeflned Language Pragmas

or a (nongeneric) subprogram or
package that is an instance of a generic
subprogram or package declared by
an earlier declarative item of the
same declarative part or package
specification. This pragma specifies
that generic code sharing is desired for
each instantiation of the named generic
declarations or of the particular named
instances (see 12.1b).

I STORAGEJYNIT Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the
first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number STORAGE-UNIT (see
13.7).

In VAX Ada, the only argument
allowed for this pragma is 8 (bits).

14 SUPPRESS Takes as arguments the identifier
of a check and optionally also the
name of either an object, a type or
subtype, a subprogram, a task unit, or
a generic unit. This pragma is only
allowed either immediately within a
declarative part or immediately within
a package specification. In the latter
case, the only allowed form is with a
name that denotes an entity (or several
overloaded subprograms) declared

immediately within the package
specification. The permission to omit
the given check extends from the
place of the pragma to the end of the
declarative region associated with the
innermost enclosing block statement or
program unit. For a pragma given in a
package specification, the permission
extends to the end of the scope of the
named entity.

Precdeflned Language Pragmas 1-13

If the pragma includes a name, the
permission to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type of a
named type or subtype; for calls of a
named subprogram; for activations of
tasks of the named task type; or for
instantiations of the given generic unit
(see 11.7).

SUPPRESSALL This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that
all run-time checks in the unit are
suppressed (see 11.7).

SYSTEM-NAME Takes an enumeration literal as the
single argument. This pragma is only
allowed at the start of a compilation,
before the first compilation unit (if
any) of the compilation. The effect of
this pragma is to use the enumeration
literal with the specified identifier
for the definition of the constant
SYSTEMNAME. This pragma is
only allowed if the specified identifier
corresponds to one of the literals of the
type NAME declared in the package
SYSTEM
(see 13.7).

TASK-STORAGE Takes the simple name of a task
type and a static expression of some
integer type as arguments. This
pragma is allowed anywhere that a
task storage specification is allowed;
that is, the declaration of the task
type to which the pragma applies and
the pragma must both occur (in this
order) immediately within the same
declarative part, package specification,
or task specification. The effect of
this pragma is to use the value of the
expression as the number of storage
units (bytes) to be allocated as guard
storage. The value is rounded up to

1-14 Predefined Language Pragmas

an integral number of pages: a value
of zero results in no guard storage; a
negative value causes the pragma, to be
ignored (see 13.2a).

Predeflned Language Pragmas 1-15

TIME-SLICE Takes a static expression of the
predefined fixed point type DURATION
(in the package STANDARD) as the
single argument. This pragma is only
allowed in the outermost declarative
part of a library subprogram, and at
most one such pragma is allowed in a
library subprogram. It has an effect
only when the subprogram to which
it applies is used as a main program.
This pragma specifies the nominal
amount of elapsed time permitted for
the execution of a task when other
tasks of the same priority are also
eligible for execution. A positive,
nonzero value of the static expression
enables round-robin scheduling for all
tasks in the subprogram; a negative or
zero value disables it (see 9.8a).

TITLE Takes a title or a subtitle string, or
both, as arguments. The pragma
TITLE has the following form:

pargm TITLE (titling-option
[,titling-option]);

titling-option :-
(TITLE ->] string literal

I [SUBTITLE ->] string_literal

This pragma is allowed anywhere a
pragma is allowed; the given strings
supersede the default title and/or
subtitle portions of a compilation
listing.

VOLATILE Takes the simple name of a variable
as the single argument. This pragma
is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. The pragma
must appear before any occurrence
of the name of the variable other
than in an address clause or in one
of the VAX Ada pragmas IMPORT.

1-16 Predefined Language Pragmas

OBJECT, EXPORTOBJECT, or
PSECTOBJECT. The variable cannot
be declared by a renaming declaration.
The pragma VOLATILE specifies
that the variable may be modified
asynchronously. This pragma instructs
the compiler to obtain the value of a
variable from memory each time it is
used (see 9.11).

Predefined Language Pragmas 1-17

2
Implementation -Dependent

Characteristics

Note This appendix is not part of the standard definition of the Ada programming
language.

This appendix summarizes the implementation-dependent characteristics of
VAX Ada by presenting the following:

@ Lists of the VAX Ada pragmas and attributes.

m The specification of the package SYSTEM.

* The restrictions on representation clauses and unchecked type conversions.

m The conventions for names denoting implementation-dependent
components in record representation clauses.

* The interpretation of expressions in address clauses.

n The implementation-dependent characteristics of the input-output
packages.

s Other implementation-dependent characteristics.

F.1 Implementation-Dependent Pragmas
VAX Ada provides the following pragmas, which are defined elsewhere in the
text. In addition, VAX Ada restricts the predefined language pragmas INLINE
and INTERFACE. See Annex B for a descriptive pragma summary.

a ASTENTRY (see 9.12a).

v EXPORT-EXCEPTION (see 13.9a.32).

e EXPORT_FTNCTION (see 13.9a.1.4).

Implementation-Dependent Characteristics 2-1

a EXPORT-OBJECT (see 13.9a.2.2).

a EXPORTPROCEDURE (see 13.9a.1.4).

a EXPORTVALUED_PROCEDURE (see 13.9a.1.4).

a IDENT (see Annex B).

w IMPORTEXCEPTION (see 13.9a.3.1).

a IMPORTFUNCTION (see 13.9a.1.1).

* IMPORTOBJECT (see 13.9a.2.1).

a IMPORTPROCEDURE (see 13.9a.1.1).

m IMPORTVALUEDPROCEDURE (see 13.9a.1.1).

a INLINE_GENERIC (see 12.1a).

n LONG-FLOAT (see 3.5.7a).

a MAIN-STORAGE (see 13.2b).
a PSECT~OBJECT (see 13.9a.2.3).

a SHARE-GENERIC (see 12.1b).

a SUPPRESSALL (see 11.7).

a TASK-STORAGE (see 13.2a).

x TIME-SLICE (see 9.8a).

a TITLE (see Annex B).

@ VOLATILE (see 9.11).

F.2 Implementation-Dependent Attributes
VAX Ada provides the following attributes, which are defined elsewhere in the
text. See Annex A for a descriptive attribute summary.

a AST-ENTRY (see 9.12a).

v BIT (see 13.7.2).

v MACHINESIZE (see 13.7.2).

a NULLPARAMETER (see 13.9a.1.3).

• TYPE-CLASS (see 13.7a.2).

2-2 Implementatlon-Dependent Charactersics

F.3 Specification of the Package System
package SYSTEM is

type NAME is (VAXVMS, VAXELN);
for NAME use (1, 2);

SYSTEM NAME : constant NAME :- VAX-VMS;
STORAGE UNIT : consint : 8;
MEMORYSIZE : constant 2**31-1;
MAX INT : constant := 2**31-1;
MIN INT : constant :=-(231);
MAXDIGITS : constant := 33;
MAXMANTISSA : constant := 31;
FINE DELTA : constant :- 2.0**(-31);
TICK : constant : 10.0**(-2);

subtype PRIORITY is INTEGER range 0 .. 15;

-- Address type

type ADDRESS is private;

ADDRESSZERO : constant ADDRESS;

function "+" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function "I" (LEFT : INTEGER; RIGHT : ADDRESS) return ADDRESS;
function "-" (LEFT : ADDRESS; RIGHT : ADDRESS) return INTEGER;
function "-" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;

-- function ,- (LEFT, RIGHT : ADDRESS) return BOOLEAN;
-- function "I-" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

function "<" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function-<- (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : ADDRESS? return BOOLEAN;
function - (LEFT, RIGHT : ADDRESS) return BOOLEAN;

-- Note that because ADDRESS is a private type
-- the functions "-" and "/-" are already available and
-- do not have to be explicitly defined

generic
type TARGET is private;

function FETCHFROMADDRESS (A : ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGNTOADDRESS (A : ADDRESS; T TARGET);

-- VAX Ada floating point type declarations for the VAX
-- hardware floating point data types

type FFLOAT is implementationdefined;
type DFLOAT is implementationdefined;
type GFLOAT is implementation defined;
type HFLOAT is implementation defined;

Implem ntallon-Dependent Charactedstlcs 2-3

type TYPE-CLASS is (TYPE CLASSENUMERATION,
TYPECLASSINTEGER,
TYPE CLASS_FIXED POINT,
TYPE CLASSFLOATINGPOINT,
TYPE CLASSARRAY,
TYPECLASS_RECORD,
TYPE_CLASSACCESS,
TYPE CLASS TASK,
TYPE CLASSADDRESS);

AST handler type

type ASTHANDLER is limited private;

NOAST_HANDLER : constant ASTHANDLER;

Non-Ada exception

NONADAERROR : exception;

VAX hardware-oriented types and functions

typo BIT ARRAY is array (INTEGER range <>) of BOOLEAN;
pragna PACK(BITARRAY);

subtype BIT ARRAY 8 is BIT ARRAY (0 7);
subtype BIT- ARRAY-16 is BITARRAY (0 15);
subtype BIT-ARRAY_32 is BITARRY (0 31);
subtype BIT-ARRAY_64 is BITARRAY (0 63);

type UNSIGNEDBYTE is range 0 .. 255;
for UNSIGNEDBYTE'SIZE use 8;

function "not" (LEFT : UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "and" (LEFT, RIGHT : UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "or" (LEFT, RIGHT : UNSIGNEDBYTE) return UNSIGNEDBYTE;
function "xor" (LEFT, RIGHT : UNSIGNEDBYTE) return UNSIGNEDBYTE;

function TO UNSIGNED BYTE (X : BIT ARRAY 8) return UNSIGNEDBYTE;
function TO-_BITARRAY_8 (X : UNSIGNEDBYTE) return BITARRAY_8;

type UNSTGNEDBYTEARRAY is array (INTEGER range <>) of UNSIGNEDBYTE;

type UNSIGNEDWORD is range 0 .. 65535;
fo UNSIGNEDWORD'SIZE use 16;

function "not" (LEFT : UNSIGNEDWORD) return UNSIGNEDWORD;
function "and" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "or" (LEFT, RIGHT : UNSIGNEDWORD) return UNSIGNEDWORD;
function "xor" (LEFT, RIGHT : UNSIGNEDWORD) return UNSIGNEDWORD;

function TO UNSIGNED WORD (X : BIT ARRAY 16) return UNSIGNED WORD;
function TO_BIT_ARRAY_16 (X : UNSIGNEDWORD) returv BIT_ARRAY_.16;

type UNSIGNEDWORDARRAY is array (INTEGER range <>) of UNSIGNEDWORD;

type UNSIGNED LONGWORD is range MININT .. MAX INT;
for UNSIGNED LONGWORD' SIZE use 32;

2-4 Implementolon-Dependent Characteristics

function "not" (LEFT :UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD;
function "and" (LEFT, RIGHT :UNSIGNED LONGWORD) return UNSIGNEDLONGWORD;
function "or" (LEFT, RIGHT :UNSIGNEDLONGWORD) return.UNSIGNEDLONGWORD;
function "zor" (LEFT, RIGHT :UNSIGNEDLONGWORD) return UNSIGNEDLONGWORD;

function TOUNSIGNEDLONGWORD (X :BITARRAY_32)
return UNSIGNEDLONGWORD;

function TO BIT ARRAY 32 (X :UNSIGNEDLONGWORD) return BITARRAY_32;

type UNSIGNEDLONGWORDARRAY is
array (INTEGER range <>) of UNSIGNEDLONGWORD;

type UNSIGNEDQOADWORD is record
LO :UNSIGNEDLONGWORD;
Li UNSIGNEDLONGWORD;
end record;

for UNSIGNED QUADWORD' SIZE use 64;

function "not" (LEFT :UNSIGNEDQUADWORD) return UNSIGNEDQUADWORD;
function "and" (LEFT, RIGHT :UNSIGNEDQUADWORD) return UNSIGNEDQUADWORD;
function "or" (LEFT, RIGHT :UNSIGNEDQOADWORD) return UNSIGNEDQUADWORD;
function "xor" (LEFT, RIGHT :UNSIGNEDQUADWORD) return UNSIGNEDQUADWORD;

function TOUNSIGNEDQUADWORD (X :BIT-ARP.AY 64)
return UNSIGNEDQUADWORD;

function TOBITARRAY 64 (X :UNSIGNEDQUADWORD) return BITARRAY 64;

type UNSIGNEDQOADWORDARRAY is
array (INTiGER range <>) of UNSIGNEDQUADWORD;

function TO ADDRESS (X :INTEGER) return ADDRESS;
function TOADDRESS (X :UNSIGNEDLONGWORD) return ADDRESS;
function TOADDRESS (X :universal in teger) return ADDRESS;

function TOINTEGER (X :ADDRESS) return INTEGER;
function TOUNSIGNEDLONGWORD (X :ADDRESS) return UNSIGNEDLONGWORD;

function TOUNSIGNEDLONGWORD (X :AST-HANDLER) return UNSIGNEDLONGWORD;

-- Conventional names for static subtypes of type UNSIGNED_-LONGWORD

subtype UNSIGNED_-1 is UNSIGNED LONGWORD range 0 2** 1-1;
subtype UNSIGNED -2 is UNSIGNED LONGWORD range 0 2** 2-1;
subtype UNSIGNED_-3 is UNSIGNED LONGWORD range 0 2** 3-1;
subtype UNSIGNED 4 is UNSIGNED LONGWORD range 0 2** 4-1;
subtype UNSIGNED_5 is UNSIGNED LONGWORD range 0 2** 5-1;
subtype UNSIGNED_6 is UNSIGNED LONGWORD range 0 2** 6-1;
subtype UNSIGNED 7 is UNSIGNED LONGWORD range 0 2** 7-1;
subtype UNSIGNED 8 is UNSIGNED_-LONGWORD range 0 2** 8-1;
subtype UNSIGNED_9 is UNSIGNED-LONGWORD range 0 2** 9-1;
subtype UNSIGNED_-10 is UNSIGNED LONWOR range 0 2**10-1;
subtype UNSIGNED_-11 is UNSIGNEDLONGWORD range 0 2**11-1;
subtype UNSIGNED 12 is UNSIGNED -LONGWORD range 0 2**12-1;
subtype UNSIGNED_-13 is UNS IGNED LONGWORD range 0 2**13-1;
subtype UNSIGNED 14 is UNSIGNED LONGWORD range 0 2**14-1;
subtype UNSIGNED-15 is UNSIGNED LONGWORD range 0 2**15-1;

Implementatlon-Dependent Characedistics 2-6

subtype UNSIGNED 16 is UNSIGNEDLONGWORD range 0 2**16-1;
subtype UNSIGNED 17 is UNSIGNEDLONGWORD range 0 2**17-1;
subtype UNSIGNED_18 is UNSIGNED LONGWORD rang. 0 2**18-1;
subtype UNSIGNED_19 is UNSIGNED LONGWORD rang. 0 2--19-1;
subtype UNSIGNED_20 is UNSIGNEDLONGWORD range 0 2**20-1;
subtype UNSIGNED 21 is UNSIGNED LONGWORD range 0 2**21-1;
subtype UNSIGNED-22 is UNSIGNED LONGWORD rang 0 2**22-1;
subtype UNSIGNED 23 is UNSIGNED_LONGWORD rang. 0 2**23-1,
subtype UNSIGNED_24 is UNSIGNED_LONGWORD range 0 .. 2**24-1;
subtype UNSIGNED_25 is UNSIGNED LONGWORD rang. 0 -25-1;
subtype UNSIGNED_26 is UNSIGNEDLONGWORD range 0 2**26-1;
subtype UNSIGNED 27 is UNSIGNED LONGWORD range 0 2**27-1;
subtype UNSIGNED_-28 is UNSIGNEDLONGWORD range 0 2**28-1;
subtype UNSIGNED 29 is UNSIGNEDLONGWORD range 0 2**29-1;
subtype UNSIGNED-_30 is UNSIGNEDLONGWORD rang. 0 2*30-1;
subtype UNSIGNED_31 is UNSIGNEDLONGWORD range 0 2-*31-1;

Function for obtaining global symbol values

function IMPORTVALUE (SYMBOL : STRING) return UNSIGNEDLCNGWORD;

VAX device and process register operations

function READ REGISTER (SOURCE : UNSIGNEDBYTE)
return UNSIGNED BYTE;

function READREGISTER (SOURCE : UNSIGNEDWORD)
return UNSIGNEDWORD;

function READ REGISTER (SOURCE : UNSIGNEDLONGWORD)
return UNSIGNEDLONGWORD;

procedure WRITEREGISTER(SOURCE : UNSIGNEDBYTE;
TARGET : out UNSIGNEDBYTE);

procedure WRITEREGISTER (SOURCE : UNSIGNEDWORD;
TARGET : out UNSIGNEDWORD);

procedure WRITEREGISTER (SOURCE : UNSIGNEDLONGWORD;
TARGET : out UNSIGNEDLONGWORD);

function MFPR (REGNUMBER : INTEGER) return UNSIGNEDLONGWORD;
procedure MTPR (REG NUMBER : INTEGER;

SOURCE : UNSIGNEDLONGWORD);

VAX interlocked-instruction procedures

procedure CLEARINTERLOCKED (BIT : in out BOOLEAN;
OLD VALUE : out BOOLEAN);

procedure SETINTERLOCKED (BIT- : in out BOOLEAN;
OLDVALUE : out BOOLEAN);

type ALIGNEDWORD is
record

VALUE : SHORTINTEGER;
end record;

for ALIGNED WORD use
record

at mod 2;
end record;

2-6 Implementation-Dependent Charactersflcs

pzoceduze ADDINTERLOCKED (ADDEND : in SHORTINTEGER;
AUGEND : in out ALIGNEDWORD;
SIGN : out INTEGER);

type INSQSTATUS is (OK_NOTFIRST, FAILNOLOCK, OKFIRST);
type REMQSTATUS is (OK_NOTEMPTY, FAILNOLOCK,

OKEMPTY, FAILWASEMPTY);

prooedu.e INSQHI (ITEM : in ADDRESS;
HEADER : in ADDRESS;
STATUS : out INSQ.STATUS);

proceduze REMQHI (HEADER : in ADDRESS;

ITEM : out ADDRESS;
STATUS : out REMQ STATUS);

pocedure INSQTI (ITEM : in ADDRESS;
HEADER : n ADDRESS;
STATUS : out INSQSTATUS);

pzooeduze REMQTI (HEADER : in ADDRESS;
ITEM : out ADDRESS;
STATUS : out REMQ.STATUS);

pZvate

-- Not shown

nd SYSTEM;

FA Restrictions on Representation Clauses
The representation clauses allowed in VAX Ada are length, enumeration,
record representation, and address clauses.

In VAX Ada, a representation clause for a generic formal type or a type that
depends on a generic formal type is not allowed. In addition, a representation
clause for a composite type that has a component or subcomponent of a generic
formal type or a type derived from a generic formal type is not allowed.

F.5 Restrictions on Unchecked Type Conversions
VAX Ada supports the generic function UNCHECKEDCONVERSION with
the following restrictions on the class of types involved:

m The actual subtype corresponding to the formal type TARGET must not be
an unconstrained array type.

n The actual subtype corresponding to the formal type TARGET must not be
an unconstrained type with discriminants.

Implementation-Dependent Characteristics 2-7

Further, when the target type is a type with discriminants, the value resulting
from a call of the conversion function resulting from an instantiation of
UNCHECKEDCONVERSION is checked to ensure that the discriminants
satisfy the constraints of the actual subtype.

If the size of the source value is greater than the size of the target subtype,
then the high order bits of the value are ignored (truncated); if the size of
the source value is less than the size of the target subtype, then the value is
extended with zero bits to form the result value.

F.6 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

VAX Ada does not allocate implementation-dependent components in records.

F.7 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in the package SYSTEM (see 13.7a.1 and F.3). In VAX Ada, values
of type SYSTEMADDRESS are interpreted as virtual addresses in the VAX
address space.

VAX Ada allows address clauses for objects (see 13.5).

VAX Ada does not support interrupts as defined in section 13.5.1. VAX Ada
does provide the pragma ASTENTRY and the ASTENTRY attribute as
alternative mechanisms for handling asynchronous interrupts from the VMS
operating system (see 9.12a).

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

The VAX Ada predefined packages and their operations are implemented
using VMS Record Management Services (RMS) file organizations and
facilities. To give users the maximum benefit of the underlying VMS RMS
input-output facilities, VAX Ada provides packages in addition to the packages
SEQUENTIAL_1O, DIRECTJO, TEXTIO, and IO_EXCEPTIONS, and VAX
Ada accepts VMS RMS File Definition Language (FDL) statements in form
strings. The following sections summarize the implementation-dependent
characteristics of the VAX Ada input-output packages. The VAXAda Run-Time
Reference Manual discusses these characteristics in more detail.

2-8 Implementatlon-Dependent Charactedstics

F.8.1 Additional VAX Ada Input-Output Packages
In addition to the language-defined input-output packages (SEQUENTIALIO,
DIRECTJO, and TEXT_1O), VAX Ada provides the following input-output
packages:

n RELATIVE_1O (see 14.2a.3).

n INDEXEDIO (see 14.2a.5).

n SEQUENTAL_MIXEDIJO (see 14.2b.4).

w DIRECTMIXED_IO (see 14-2b.6).

m RELATIVEMIXED_IO (see 14.2b.8).

a INDEXED_M1XEDJO (see 14.2b.10).

VAX Ada does not provide the package LOW LEVELIJO.

F.8.2 Auxiliary Input-Output Exceptions
VAX Ada defines the exceptions needed by the packages RELATIVE_10,

MNDEXED_1O, RELATIVEMIXEDO, and INDEXED_MIXED_IO in the
package AUXJOEXCEPTIONS (see 14.5a).

F.8.3 Interpretation of the FORM Parameter
The value of the FORM parameter for the OPEN and CREATE procedures of
each input-output package may be a string whose value is interpreted as a
sequence of statements of the VAX Record Management Services (RMS) File
Definition Language (FDL), or it may be a string whose value is interpreted as
the name of an external file containing FDL statements.

The use of the FORM parameter is described for each input-output package in
chapter 14. For information on the default FORM parameters for each VAX
Ada input-output package and for information on using the FORM parameter
to specify external file attributes, see the VAXAda Run-77me Reference
Manual. For information on FDL, see the Guide to VMS File Applications and
the VMS File Definition Language Facility Manual.

F.84 Implementation-Dependent Input-Output Error
Conditions

9 specified in section 14.4, VAX Ada raises the following language-defined
-ceptions for error conditions that occur during input-output operations:

STATUSERROR, MODEERROR, NAMEERROR, USEERROR, END _
ERROR, DATAERROR, and LAYOUTERROR. In addition, VAX Ada raises
the following exceptions for relative and indexed input-output operations:
LOCK-ERROR, EXISTENCEERROR, and KEYERROR. VAX Ada does not
raise the language-defined exception DEVICE_ERROR; device-related error
conditions cause the exception USEERROR to be raised.

Implementatlon-Depondent Characteristcs 2-9

The exception USE-ERROR is raised under the following conditions:

a If the capacity of the external file has been exceeded.

a In all CREATE operations if the mode specified is INFILE.

a In all CREATE operations if the file attributes specified by the FORM
parameter are not supported by the package.

v In all CREATE, OPEN, DELETE, and RESET operations if, for the
specified mode, the environment does not support the operation for an
external file.

@ In all NAME operations if the file has no name.

a In the WRITE operations on relative or indexed files if the element in the
positicn indicated has already been written.

m In the DELETE-ELEMENT operations on relative and indexed files if the
current element is undefined at the start of the operation.

m In the UPDATE operations on indexed files if the current element is
undefined or if the specified key violates the external file attributes.

s In the SET_LINE_LENGTH and SETPAGE_LENGTH operations on text
files if the lengths specified are inappropriate for the external file.

n In text files if an operation is attempted that is not possible for reasons
that depend on characteristics of the external file.

The exception NAME.ERROR is raised as specified in section 14.4: by a call
of a CREATE or OPEN procedure if the string given for the NAME parameter
does not allow the identification of an external file. In VAX Ada, the value of
a NAME parameter can be a string that denotes a VMS file specification or
a VMS logical name (in either case, the string names an external file). For a
CREATE procedure, the value of a NAME parameter can also be a null string,
in which case it names a temporary external file that is deleted when the main
program exits. The VAX Ada Run-7me Reference Manual explains the naming
of external files in more detail.

F.9 Other Implementation Characteristics
Implementation characteristics relating to the definition of a main program,
various numeric ranges, and implementation limits are summarized in the
following sections.

2-10 Implementatlon-Dependent Characterlstics

F.9.1 Definition of a Main Program
A main program can be a library unit subprogram under the following
conditions:

@ If it is a procedure with no formal parameters. In ui's case, the status
returned to the VMS environment upon normal completion of the procedure
is the value 1.

m If it is a function with no formal parameters whose returned value is of a
discrete type. In this case, the status returned to the VMS environment
upon normal completion of the function is the function value.

a If it is a procedure declared with the pragma EXPORTYALUED_
PROCEDURE, and it has one formal out parameter that is of a discrete
type. In this case, the status returned to the VMS environment upon
normal completion of the procedure is the value of the first (and only)
parameter.

Note that when a main function or a main procedure declared with the pragma
KEPORTVALUEDPROCEDURE returns a discrete value whose size is less
than 32 bits, the value is zero- or sign-extended as appropriate.

F.9.2 Values of Integer Attributes
The ranges of values for integer types declared in the package STANDARD are
as follows:

SHORTSHORTINTEGER -128.. 127
SHORTINTEGER -32768 .. 32767
INTEGER -2147483648 .. 2147483647

For the packages DIRECTIO, RELATIVEIO, SEQUENTIALMIXED_IO,
DIRECTMIXEDIO, RELAIVEMIXEDIO, INDEXED-MIXEDIO, and
TEXT_1O, the ranges of values for the types COUNT and POSITIVECOUNT
are as follows:

COUNT 0 .. 2147483647

POSITIVE-COUNT 1.. 2147483647

For the package TEXT IO, the range of values for the type FIELD is as follows:

FIELD 0 .. 2147483647

Implementatlon-Dependent Characteistics 2-11

F.9.3 Values of Floating Point Attributes
Ffloattng value and approximate decimal equivalent

Attribute (where applicable)

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 16#0.1000 .O00#e-4
approximately 9.53674E-07

SMALL 16#0.8000..00#e-21
approximately 2.58494E-26

LARGE 16N.FFFFF80#e+21
approximately 1.93428E+25

SAFEEMAX 127

SAFESMALL 16#0.10000j)#e-31
approximately 2.93874E-39

SAFE-LARGE 160.7FFF FCO#9+32
approximately 1.70141E+38

FIRST -16#.7FFFFFS#e+32
approximately -1.70141E+38

LAST 16#.7FFFFF8#e+32
approximately 1.70141E+38

MACHINERADIX 2

MACHINEMANTISSA 24

ACHIME.EMAX 127

MACRINEEMIN -127

MACHINEROUNDS True

MACHINEOVERFLOWS True

D_flootlng value and approximate decimal equivalent

Altribute (where applicable)

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON 16#0.400000000000000#e-7
approximately 9.3132257461548E-10

SMALL 16#0.8000_0000_0000_000#e-31
approximately 2.3509887016446E-38

2-12 Implementation-Dependent Characteristics

Djloatng value and approximate decimal equivalent
AltrIbute (where applicable)

LARGE 16#0.FFFFFFFE_0000 000#e+31
approximately 2.1267647922655E+37

SAFEEMAX 127

SAFE-SMALL 16#0.1000_0000_0000_000#e-31
approximately 2.9387358770557E.39

SAFELARGE 16#0.7FFFFF_O000000#e+32
approximately 1.7014118338124E+38

.FIRST -16#0.7FFFFFFFFFFF_FF8#e+32
approximately -1.7014118346047E+38

LAST 16#0.7FFF_FFFFFFFF8#e+32
approximately 1.7014118346047E+38

MACHINE_ RADIX 2

MACHINEXANTISSA 56

MACHINEEMAX 127

MACHINEEMIN -127

MACHINE-ROUNDS True

MACHINEOVERFLOWS True

G_floatng value and approximate decimal equivalent

Altribute (where applicable)

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON 16#.4000_0000000_00#e-12
approximately 8.881784197001E-16

SMALL 16#0.8000_0000-0000-00#e-51
approximately 1.944692274332E-62

LARGE 16#0.FFFFFFFFFFFF_E0#e+51
approximately 2.571100870814E+61

SAFE_EMAX 1023

SAFE-SMALL 16#0.10000000 0000_00#e-255
approximately 5.562684046268E-309

SAFE-LARGE 16#0.7FFFFFFF_FFFFF0#e+256
approximately 8.988465674312E+307

Implementation-Dependent Characteristics 2-13

G_floatlng value and approximate decimal equivalent
Attribute (where applicable)

FIRST -16#0.7FFFFFFFFFFF_FC#e+256
approximately -8.988465674312E+307

LAST 16#0.7FFFFFFF_FFFF_FCe+256
approximately 8.988465674312E+307

MACHINERADIX 2

MACHINEMANTISSA 53

MACHINEEMAX 1023

MACHINEEMIN -1023

MACHINEUROUNDS True

MACHINE..OVERFLOWS True

H.floating value and approximate decimal equivalent

Attribute (where applicable)

DIGITS 33

MANTISSA ill

EMAX 444

EPSILON 16#0.4000_0000_0000 0000000_0000_0000_0#e-27
approximately 7.703719777548943412223911770339 7E-34

SMALL 16#0.8000_0000_..0000_OO 0_O..0000000_0000 0#e-Il
approximately 1.1006568214637918210934318020936E-134

LARGE 16#.F7FFFFFFFmFFFFFFFFFFFFFFFFEO#e+ i1
approximately 4.5427420268475430659332737993000E+133

SAFEEMAX 16383

SAFE-SMALL 16 0.1000._0000_.00-0_000_0000_0000_0000_o#e-4095
approximately 8.4052578577802337656566945433044E-4933

SAFE-LARGE 16#0.7FFFFFFFF FFF FFFFFFFFFFFFO#e+4096
approximately 5.9486574767861588254287966331400E+4931

FIRST -16#0.7FFFFFFFFFFFFFFFFFFFFFFFFFFFC#e+4096
approximately -5.9486574767861588254287966331400E+4931

LAST 16#0.7FFFFFFFFFFFFF FFFFFFFFFFFFFFC#e+4096
approximately 5.9486574767861588254287966331400E+4931

MACHINERADIX 2

MACHINEMANTISSA 113

MACHINEEMAX 16383

2-14 Implementation-Dependent Characteristics

H_floating value and approximate docmal equivalont
Attributo (whom applicable)

MACHINEEMIN -16383

MACHINEROUNDS True

MACHINEOVERFLOWS True

F.94 Attributes of Type DURATION
The values of the significant attributes of the type DURATION are as follows:

DURATION' DELTA 1.00000E-04
DURATION' SMALL 2

- 4

DURATION' FIRST -131072.0000

DURATION' LAST 131071.9999

DURATION, LARGE 1.3107199993896484375E+05

F.9.5 Implementation Umits

Umnt Descrptlon
32 Maximum number of formal parameters in a subprogram or entry

declaration that are of an unconstrained record type

255 Maximum identifier length (number of characters)

255 Maximum number of characters in a source line

245 iaximum number of discriminants for a record type

246 Maximum number of formal parameters in an entry or subprogram
declaration

255 Maximum number of dimensions in an array type

4095 Maximum number of library units and subunits in a compilation closure'

16383 Maximum number of library units and subunits in an execution closure2

32757 Maximum number of objects declared with the pragma PSECT._OBJECT

65535 Maximum number of enumeration literals in an enumeration type
definition

65534 Maximum number of lines in a source file

2s' - 1 Maximum number of bits in any object

'The compilation closure of a givn unit is the total set of units that the given unit depends on,

directly and indirecty.
2 "The execution closure of a gven unit is the compilation closure plus all associated secondary units

(library bodies and subunits).

Implementatlon-Dependent Charactedstlcs 2-15

