
A23 ENTATION PAGE Form Approved
OPM No. 0704-0188

Public reportrng burden fora this collection of information is estimated to average 1 hou per ree0one, including the time for rIvieig Intructions, eearchtng esting data eource gathering and manunmg t

needed, and reviewing the oictIoin of information. Send comments regarding this burden estimate or any other aspect 0(this colleclion of informatio including SuggestIons for reducing this burden, to Washinglon
Headluarters Service. Directorate for Information Op:erations and Rlepong, 1215 Jefferson Davis Highway, Suite 1204. A,inglon. VA 22202-4302. and to the Office of Information and Regulail0/fY aini. Office of
Management and Budget Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATFS COVERED

Final: Feb 21 1991 to Mar 01, 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Ada Compiler Validation Summary Report: DDC International A/S, DACS VAX/VMS
Native Ada Compiler System, Version 4.6, VAX 8530 (Host & Target),
901129S 1. 11050

6. AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

National Institute of Standards and Technology REPORT NUMBER

National Computer Systems Laboratory NIST90DDC500_1 1.11

Bldg. 255, Rm A266
Gaithersburg, MD 20899 USA

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, RM 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT (Maximum 200 words)

DDC International A/S, DACS VAX/VMS Native Ada Compiler System, Version 4.6, Gaithersburg, MD, VAX 8530 running
VMS Version 5.3 (Host & Target), ACVC 1.11.

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-128

i~flj / f6 f~ 4

AVF Control Number: NIST90DDC500_11.11
DATE COMPLETED

BEFORE ON-SITE: February 21, 1991
AFTER ON-SITE: November 30, 1990
REVISIONS:

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901129S1.11050
DDC International A/S

DACS VAX/VMS Native Ada Compiler System, Version 4.6
VAX 8530 => VAX 8530

Prepared By:
Software Standards Validation Group

National Computer Systems Laboratory

National Institute of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

I/

AVF Control Number: NIST90DDC500 1 1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on November 29, 1990.

Compiler Name and Version: DACS VAX/VMS Native Ada Compiler
System, Version 4.6

Host Computer System: VAX 8530 running VMS Version 5.3

Target Computer System: VAX 8530 running VMS Version 5.3

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
901129S1.11050 is awarded to DDC International A/S. This
certificate expires on March 01, 1993.

This report has been reviewed and is approved.

Ada Validati n ci i y Ada Validation Fcility
Dr. David K. Jetler o Mr. L. Arnold nson
Chief, Information Systems Manager, Software Standards
Engineering Division (ISED) Validation Group

National Computer Systems National Computer Systems
Laboratory (NCSL) Laboratory (NCSL)

National Institute of National Institute of
Standards and Technology Standards and Technology

Building 225, Room A266 Building 225, Room A266
Gaithersburg, MD/ 20899 Gaithersburg, MD 20899

/ Ada Validation Organization Ada Joint Program Office
i . Director, Computer & Software Dr. John Solomond

Engineering Division Director
Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer and Certificate Awardee: DDC International A/S

Ada Validation Facility: National Institute of Standards and
Technology

National Computer Systems Laboratory
(NCSL)

Software Validation Group
Building 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: DACS VAX/VMS Native Ada Compiler
System, Version 4.6

Host Computer System: VAX 8530 running VMS Version 5.3

Target Computer System: VAX 8530 running VMS Version 5.3

Declaration:

[I/we] the undersigned, declare that [I/we] have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815A ISO 8652-1987 in the implementation listed
above.,

stomer~ignature .Date
ompany ODC

Title

TABLE OF CONTENTS

CHAPTER1..1-1
INTRODUCTION. .. 1- 1

1.1 USE OF THIS VALIDATION SUMMAY REPORT 1-1
1.2 REFERENCES....................................1-1
1.3 ACVC TEST CLASSES...............1-2
1.4 DEFINITION OF TERMS..............1-3

CHAPTER 2...2-i
IMPLEMENTATION DEPENDENCIES...............2-1

2.1 WITHDRAWN TESTS..................2-i
2.2 INAPPLICABLE TESTS...........................2-1
2.3 TEST MODIFICATIONS...........................2-4

CHAPTER 3.....................................3-1
PROCESSING INFORMATION........................3-1

3.1 TESTING ENVIRONMENT..................3-1
3.2 SUMMARY OF TEST RESULTS............3-2
3.3 TEST EXECUTION.........................3-2

APPENDIXA..............................A-i
MACRO PARAMETERS.......................................A-i

APPENDIXB..........................B-i
COMPILATION SYSTEM OPTIONS................B-i
LINKER OPTIONS......................B-2

APPENDIX C..............................C-i
APPENDIX FOF THEAda STANDARD..............C-i

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures (Pro90] against the Ada Standard [Ada83]
using the current Ada Compiler Validation Capability (ACVC). This
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
of the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.2 REFERENCES

[Ada83] Reference Manual for the Ada ProgramminQ Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

1-1

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, C, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of
identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CIECK FILE is used to check the contents
of ttext files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests ara not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations of the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal
by the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution
is attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
rodifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.
For each Ada inplementation, a customized test suite is produced
by the AVF. This customization consists of making the
modifications described in the preceding paragraph, removing

1-2

withdrawn tests (see section 2.1) and, possibly some inapplicable
tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada
Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVC) Capability user's guide and the template for

the valiaation summary (ACVC) report.

Ada An Ada compiler with its host computer system and
Implementation its target computer system.

Ada The part of the certification body which carries
Validation out the procedures required to establish the
Facility (AVF) compliance of an Ada implementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.
(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.
Implementation

Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

Conformity Fulfillment by a product, process or service of
all requirements specified.

1-3

Customer An individual or corporate entity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

Declaration of A formal statement from a customer assuring that
Conformance conformity is realized or attainable on the Ada

implementation for which validation status is
realized.

Host Computer A computer system where Ada source programs are
System transformed into executable form.

Inapplicable A test that contains one or more test objectives
test found to be irrelevant for the given Ada

implementation.

Operating Software that controls the execution of programs
System and that provides services such as resource

allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada
Computer programs are executed.
System

Validatea Aaa The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated
Implementation successfully either by AVF testing or by

registration [Pro90].

Validation The process of checking the conformity of an Ada
compiler to the Ada programming language and of
issuing a certificate for this implementation.

Withdrawn A test found to be incorrect and not used in
test conformity testing. A test may be incorrect

because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 81 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 90-10-12.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026A
B83026B C83041A B85001L C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BDIB06A AD1B08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD9005B CDA201E CE2107I
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. F ,r this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L.-Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)

2-1

C45641L..Y (14 tests) C46012L..Z (15 tests)

C24113I..K (3 TESTS) USE A LINE LENGTH IN THE INPUT FILE WHICH
EXCEEDS 126 CHARACTERS.

C35404D, C45231D, B86001X, C86006E, AND CD7101G CHECK FOR A
PREDEFINED INTEGER TYPE WITH A NAME OTHER THAN INTEGER,
LONGINTEGER, OR SHORT-INTEGER.

C35702A, C35713B, C45423B, B86001T, AND C86006H CHECK FOR THE
PREDEFINED TYPE SHORTFLOAT.

C35713D AND B86001Z CHECK FOR A PREDEFINED FLOATING-POINT TYPE
WITH A NAME OTHER THAN FLOAT, LONGFLOAT, OR SHORTFLOAT.

C45531M, C45531N, C455310, C45531P, C45532M, C45532N, C455320,
AND C45532P CHECK FIXED-POINT OPERATIONS FOR TYPES THAT REQUIRE
A SYSTEM.MAXMANTISSA OF 47 OR GREATER.

C45624A CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINEOVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
5. FOR THIS IMPLEMENTATION, MACHINEOVERFLOWS IS TRUE.

C45624B CHECKS THAT THE PROPER EXCEPTION IS RAISED IF
MACHINEOVERFLOWS IS FALSE FOR FLOATING POINT TYPES WITH DIGITS
6. FOR THTS IMPLEMENTATION, MACHINEOVERFLOWS IS TRUE.

C4AO13B CONTAINS THE EVALUATION OF AN EXPRESSION INVOLVING
'MACHINE RADIX APPLIED TO THE MOST PRECISE FLOATING-POINT TYPE.
THIS EXPRESSION WOULD RAISE AN EXCEPTION. SINCE THE EXPRESSION
MUST BE STATIC, IT IS REJECTED AT COMPILE TIME.

C86001F RECOMPILES PACKAGE SYSTEM, MAKING PACKAGE TEXTIO, AND
HENCE PACKAGE REPORT, OBSOLETE. FOR THIS IMPLEMENTATION, THE
PACKAGE TEXTIO IS DEPENDENT UPON PACKAGE SYSTEM.

B86001Y CHECKS FOR A PREDEFINED FIXED-POINT TYPE OTHER THAN
DURATION.

C96005B CHECKS FOR VALUES OF TYPE DURATION'BASE THAT ARE OUTSIDE
THE RANGE OF DURATION. THERE ARE NO SUCH VALUES FOR THIS
IMPLEMENTATION.

CD1009C USES A REPRESENTATION CLAUSE SPECIFYING A NON-DEFAULT
SIZE FOR A FLOATING-POINT TYPE.

CA2009C, CA2009F, BC3204C, AND BC3205D THESE TESTS INSTANTIATE
GENERIC UNITS BEFORE THEIR BODIES ARE COMPILED. THIS
IMPLEMENTATION CREATES A DEPENDENCE ON GENERIC UNIT AS ALLOWED
BY AI-00408 & AI-00530 SUCH THAT A THE COMPILATION OF THE GENERIC
UNIT BODIES MAKES THE INSTANTIATING UNITS OBSOLETE.

2-2

CD2A84A, CD2A84E, CD2A84I..J (2 TESTS), AND CD2A840 USE
REPRESENTATION CLAUSES SPECIFYING NON-DEFAULT SIZES FOR ACCESS
TYPES.

THE TESTS LISTED IN THE FOLLOWING TABLE ARE NOT APPLICABLE
BECAUSE THE GIVEN FILE OPERATIONS ARE SUPPORTED FOR THE GIVEN
COMBINATION OF MODE AND FILE ACCESS METHOD.

Test File Operation Mode File Access Method
CE2102E CREATE OUT FILE SFQUENTIAL_10
CE2102F CREA'E INOUT FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN IN_FILE SEQUENTIAL 10
CE21020 RESET INFILE SEQUENTIALIO
CE2102P OPEN OUTFILE SEQUENTIALIO
CE2102Q RESET OUT FILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT 10
CE2102U RESET IN FILE DIRECT 10
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TEXTIO
CE3102G DELETE TEXTIO
CE3102I CREATE OUT FILE TEXT 10
CE3102J OPEN INFILE TEXTIO
CE3102K OPEN OUT FILE TEXT IO

THE TESTS LISTED IN THE FOLLOWING TABLE ARE NOT APPLICABLE
BECAUSE THE GIVE> FILE OPERATIONS ARE NOT SUPPORTED FOR THE GIVEN
COMBINATION OF MODE AND FILE ACCESS METHOD.

Test File Operation Mode File Access Method

CE2105A CREATE INFILE SEQUENTIAL_10
CE2105B CREATE INFILE DIRECTIO

CE2107B..E (4 TESTS), CE2107L, CE2110B AND CE2111D ATTEMPT TO

ASSOCIATE MULTIPLE INTERNAL FILES WITH THE SAME EXTERNAL FILE
WHEN ONE OR MORE FILES IS WRITING FOR SEQUENTIAL FILES. THE
PROPER EXCEPTION IS RAISED WHEN MULTIPLE ACCESS IS ATTEMPTED.

CE2107G..H (2 TESTS), CE2110D, AND CE2111H ATTEMPT TO ASSOCIATE
MULTIPLE INTERNAL FILES WITH THE SAME EXTERNAL FILE WHEN ONE OR
MORE FILES IS WRITING FOR DIRECT FILES. THE PROPER EXCEPTION IS
RAISED WHEN MULTIPLE ACCESS IS ATTEMPTED.

CE2108B, CE2108D, and CE3112B USE THE NAME FUNCTION TO CHECK THAT

2-3

TEMPORARY SEQUENTIAL DIRECT, AND TEXT FILES ARE NOT ACCESSIBLE
AFTER COMPLETION OF THE PROGRAM THAT CREATES THEM; FOR THIS
IMPLEMENTATION TEMPORARY FILES ARE UNNAMED.

CE2203A CHECKS FOR SEQUENTIAL 10 THAT WRITE RAISES USE ERROR IF
THE CAPACITY OF THE EXTERNAL FILE IS EXCEEDED. THIS
IMPLEMENTATION CANNOT RESTRICT FILE CAPACITY.

EE2401D CHECKS WHETHER READ, WRITE, SET INDEX, INDEX, SIZE, AND
END OF FILE ARE SUPPORTED FOR DIRECT FILES FOR AN UNCONSTRAINED
ARRAY TYPE. USE ERROR WAS RAISED FOR DIRECT CREATE. THE MAXIMUM
ELEMENT SIZE SUPPORTED FOR DIRECTIO IS 32K BYTES.

CE2403A CHECKS FOR DIRECTIO THAT WRITE RAISES USE ERROR IF THE
CAPACITY OF THE EXTERNAL FILE IS EXCEEDED. THIS IMPLEMENTATION
CANNOT RESTRICT FILE CAPACITY.

CE3111B, CE3111D..E (2 TESTS), CE3114B, AND CE3115A ATTEMPT TO
ASSOCIATE MULTIPLE INTERNAL FILES WITH THE SAME EXTERNAL FILE
WHEN ONE OR MORE FILES IS WRITING FOR TEXT FILES. THE PROPER
EXCEPTION IS RAISED WHEN MULTIPLE ACCESS IS ATTEMPTED.

CE3413B CHECKS THAT PAGE RAISES LAYOUT ERROR WHEN THE VALUE OF
THE PAGE NUMBER E -'EDS COUNT'LAST. THE VALUE OF COUNT'LAST IS
GREATER THAN 15000 AND THE CHECKING OF THIS OBJECTIVE IS
IMPRACTICAL.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 65 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard
in the way expected by the original tests.

B22003A B26001A B26002A B26005A B28003A B29001A B33301B
B35101A B37106A B37301B B37302A B38003A B38003B B38009A
B38009B B55AOlA B61001C B61001F B61001H B61001I B61001M
B61001R B61001W B67001H B83A07A B83A07B B83A07C B83EOC
B83EO1D B83EOlE B85001D B85008D B91001A B91002A B91002B
B91002C B91002D B91002E B91002F B91002G B91002H B910021
B91002J B91002K B91002L B95030A B95061A B95061F B95061G
B95077A B97103E B97104G BA1001A BA1101B BC1109A BC1109C
BC1109D BC1202A BC1202F BC1202G BE2210A BE2413A

"PRAGMA ELABORATE (REPORT)" has been added at appropriate points
in order to solve the elaboration problems for:

C83030C C86007A

2-4

The value used to specify the collection size has been increased
from 256 to 324 take alignment into account for:

CD2A83A

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Mr. Jorgen Bundgaard
DDC International A/S
Gl. Lundtoftevej lB

DK-2800 Lyngby
DENMARK

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

For a point of contact for sales information about this Ada

implementation system, see:

In the U.S.A.:

Mr. Mike Turner
DDC-I, Inc.

9630 North 25th Avenue
Suite #118

Phoenix, Arizona 85021
Telephone: 602-944-1883
Telefax: 602-944-3253

Mailing address:
P.O. Box 37767

Phoenix, Arizona 85069-7767

In the rest of the world:

Mr. Palle Andersson
DDC International A/S
Gl. Lundtoftevej 1B

DK-2800 LYNGBY
Denmark

3-1

Telephone: + 45 42 87 11 44
Telefax: + 45 42 87 22 17

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Pro90].

For all processed tests (inapplicable and applicable), a result
was obtained that conforms to the Ada Programming Language
Standard.

a) Total Number of Applicable Tests 3805

b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 284
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

f) Total Number of Inapplicable Tests 284 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVF determined that 284
tests were inapplicable to this implementation. All inapplicable
tests were processed during validation testing. In addition, the
modified tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing.
The contents of the magnetic tape were loaded directly onto the
host computer.

After the test files were loaded onto the host computer, the full
set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host/target computer

system, as appropriate. The results were captured on the

3-2

host/target computer system.

Testing was performed using command scripts provided by the
cuslomer and reviewed by the validation team. See Appendix B for
a jomplete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

/LIST /OPTIMIZE /LIBRARY

The options invoked by default for validation testing during chis
test were:

/CHECK /CONFIGURATIONFILE = <default file>
/NOPROGRESS /NOSAVE_SOURCE /NOXREF /NOTRACEBACK

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected
listings examined on-site by the validation team were also
archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing
the ACVC. The meaning and purpose of these parameters are
explained in [UG89]. The parameter values are presented in two
tables. The first table lists the values that are defined in
terms of the maximum input-line length, which is 126 the value
for $MAX IN LEN--also listed here. These values are expressed
here as Ada-string aggregates, where "V" represents the maximum
input-line length.

Macro Parameter Macro Value

$MAXINLEN 126

$BIGIDl (l..V-l => 'A', V => '1')

$BIGID2 (l..V-1 => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' & (l..V-1-V/2 => 'A')

$BIGID4 (l..V/2 => 'A') & '4' & (1..V-1-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0"

$BIGSTRINGI '"' & (l..V/2 => 'A') & 'll

SBIGSTRING2 '"' & (1..V-l-V/2 => 'A') & '' & '"'

SBLANKS (1..V-20 => '

$MAXLENINT BASED LITERAL
"2:" & (l..V-5 => '0') & "11:"

$MAXLENREAL BASED LITERAL
"16:" & (1..V-7 => '0') & "F.E:"

SMAXSTRINGLITERAL '"' & (1..V-2 => 'A') & '"'

A-1

The following table contains the values for the remaining macro
parameters.

Macro Parameter Macro Value

ACC SIZE : 32
ALIGNMENT : 4
COUNT LAST : 2 147 483 647
DEFAULT MEM SIZE : 2 097152
DEFAULT STOR UNIT : 8-
DEFAULTSYS NAME : VAXl
DELTA DOC - : 2#1.0#E-31
ENTRY ADDRESS : FCNDECL.ENTRY ADDRESS
ENTRY ADDRESS1 : FCNDECL.ENTRY ADDRESS1
ENTRY ADDRESS2 : FCNDECL.ENTRYADDRESS2
FIELD LAST : 67
FILE TERMINATOR :
FIXED NAME : NO SUCH TYPE
FLOAT NAME : NOSUCH-TYPE
FORM STRING fill-
FORM-STRING2

"CANNOT RESTRICT FILE CAPACITY"
GREATERTHAN DURATION : 100 000.0
GREATERTHAN DURATION BASE LAST : 200_000.0
GREATER-THAN-FLOAT BASE LAST : 1.80141E+38
GREATERTHAN FLOAT SAFE LARGE : 1.0E308
GREATER-THAN-SHORT-FLOATSAFELARGE: 1.0E308
HIGH PRIORITY : 15
ILLEGALEXTERNAL FILE NAME1 : #1\NODIRECTORY\FILENAME
ILLEGALEXTERNAL FILE NAME2

THIS-FILE NAME FAR-IS TOO LONGFORTHISIMPLEMENTATION
INAPPROPRIATE LINE LENGTH - : 049
INAPPROPRIATE PAGELENGTH : -1
INCLUDEPRAGMA1

PRAGMA INCLUDE ("A28006D1.TST")
INCLUDE PRAGMA2

PRAGMA INCLUDE ("B28006E1.TST")
INTEGERFIRST : -32768
INTEGERLAST : 32767
INTEGER LAST PLUS 1 : 32_768
INTERFACELANGUAGE : VMS
LESS THAN DURATION : -100 000.0
LESS THAN DURATION BASEFIRST : -200 000.0
LINE TERMINATOR : I I
LOW PRIORITY : 0
MACHINE CODE STATEMENT

AA INSTR'(AA EXIT SUBPRGRM,0,0,0,0,0);
MACHINECODETYPE : AAINSTR
MANTISSADOC : 31-

A-2

MAX DIGITS : 15
MAX INT : 2147483647
MAX INT PLUS_1 : 2_147 483 648
MIN-INT- : -2 147483648
NAM: NOSUCHTYPEAVAILABLE
NAME LIST : VA-Ril
NAME SPECIFICATIONi

AZCVC_-VAX$DEVICE: ECHECK.CTESTS]X2120A.DAT;1
NAME SPECIFICATION2

ACVC -VAX$DEVICE: [CHECK.CTESTS]X2120B.DAT;1
NAME SPECIFICATION3

ACVC VAX$DEVICE: [CHECK.CTESTS)X3119A.DAT;1
NEG BASEDINT :160000000OE#
NEWMEMSIZE :2_097_152
NEW STOR UNIT : 8
NEW SYS NAME : VAX11
PAGE TERMINATOR
RECORD DEFINITION

RECORD TNSTRNO: INTEGER;ARGO: INTEGER;ARG1: INTE'7-R;
ARG2 :INTEGER;,-ARG3 :INTEGER;ARG4 :INTEGER;END RECORD;

RECORD-NAME : AA_-INSTR
TASK SIZE : 32
TASKSTORAGESIZE : 1024
TICK- : 0.000_001
VARIABLEADDRESS : FCNDECL.VARIABLE -ADDRESS
VARIABLEADDRESS1 : FCNDECL.VARIABLE -ADDRESS1
VARIABLEADDRESS2 : FCNDECL.VARIABLE ADDRESS2
YOURPR.AGMA : INTERFACESPELLING

A-3

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to compiler
documentation and not to this report.

QUALIFIER DESCRIPTION

/[NO]CHECK Generates run-time constraint checks.
/CONFIGURATIONFILE Specifies the file used by the compiler.
/LIBRARY Specifies program library used.
/[NO]LIST Writes a source listing on the list file.
/rNO]OPTIMIZE Specifies compiler optimization.
/[NO]PROGRESS Displays compiler progress.
/[NO]SAVESOURCE Inserts source text in program library.
/[NO]XREF Creates a cross reference listing.
/UNIT Assigns a specific unit number to the

compilation (must be free and in a
sublibrary).

/[NO]TRACEBACK Generate table to print trace of calls.
<source-file-spec> The name of the source file to be

compiled.

B-1

LINKER OPTIONS

The linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references in this appendix are to linker
documentation and not to this report.

QUALIFIER DESCRIPTION

/LIBRARY The library used in the link.
/[NO]LOG Produce a log file.
/OBJECT= Additional object files or object

libraries.
/OPTIONS= Options to be passed on to the native

linker.
<unit-name> The name of the main unit.

B-2

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and
to certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of this Ada
implementation, as described in this Appendix, are provided by
the customer. Unless specifically noted otherwise, references
in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -128 .. 127;

type INTEGER is range -32_768 .. 32_767;

type LONGINTEGER is range -2 147_483_648 .. 2_147_483_647;

type FLOAT is digits 6
range -16#7.FFFFC#E31 .. 16#7.FFFFC#E31;

type LONG FLOAT is digits 15
range-16#7.FFFFFFFFFFFF#E255.. 16#7.FFFFFFFFFFFF#E255;

type DURATION is delta 2#1.0#E-14 range -131_072.0 .. 131_071.0;

end STANDARD;

C-I

Appendix

User's Guide

F Appendix F of the Ada Reference Manual

F.1 Introduction

This appendix describes the implementation-dependent charac-
teristics of the DDC-I VAX/VMS Ada Compiler, as required in the
Appendix F frame of the Ada Reference Manual (ANSI/MIL-STD-
1815A).

F.2 Implementation-Dependent Pragmas

There is one implementation defined pragma: pragma inter-
face-spelling. See the description in Section 4.6.2.2.

F.3 Implementation-Dependent Attributes

No implementation-dependent attributes are defined for the
VAX/VMS version.

F.4 Package SYSTEM

The specification of the package SYSTEM:

package SYSTEM is

type ADDRESS is access INTEGER;
subtype PRIORITY is INTEGER range 0..15;
type NAME is (VAXI1);
SYSTEM-NAME: constant NAME := VAXII;
STORAGE-UNIT: constant 8;
MEMORY-SIZE: constant := 2048 * 1024;
MININT: constant := -2147-483-647-1;
MAXINT: constant := 2147483647;
MAXDIGITS: constant := 15;
MAX-MANTISSA: constant := 31;

FINE-DELTA: constant := 2#1.0#E-31;
TICK: constant := 0.000_001;

type interface-language is (VMS);

end SYSTEM;

F-I

Appendix

User's Guide

F.5 Representation Clauses

The representation clauses that are accepted are described
below. Note that representation specifications can be given on
derived types too.

F.5.1 Length Clauses

Four kinds of length clauses are accepted.

Size specifications:

The size attribute for a type T is accepted in the following
cases :

- If T is a discrete type then the specified size must be
greater than or equal to the numoer of bits needed to rep-
resent a value of the type, and less than or equal to 32.
Note that when the number of bits needed to hold any value
of the type is calculated, the range is extended to include
0 if necessary, i.e. the range 3..4 cannot be represented
in 1 bit, but needs 3 bits.

- If T is a fixed point type then the specified size must be
greater than or equal to the smallest number of bits needed
to hold any value of the fixed point type, and less than 32
bits. Note that the Reference Manual permits a repre-
sentation, where the lower bound and the upper bound is not
representable in the type. Thus the type

type fix is delta 1.0 range -1.0 .. 7.0;

is representable in 3 bits. As for discrete types the num-
ber of bits needed for a fixed point type is calculated
using the range of the fixed point type possibly extended
to include 0.0.

- If T is a floating point type, an access type or a task
type, the specified size must be equal to the number of
bits used to represent values of the type (floating points:
32 or 64, access types : 32 bits and task type : 32 bits).

- If T is a record type the specified size must be greater
than or equal to the minimal number of bits used to repre-
sent values of the type per default.

- If T is an array type the size of the array must be static,
i.e. known at compile time and the specified size must be
equal to the minimal number of bits used to represent
values of the type per default.

F-2

Appendix

User's Guide

Collection size specifications:

Using the STORAGE SIZE attribute on an access type will set an
upper limit on the total size of objects allocated in the col-
lection allocated for the access type. If further allocation is
attempted, the exception STORAGE ERROR is raised. The specified
storage size must be less than or equal to INTEGER'LAST.

Task storage size :

When the STORAGE SIZE attribute is given on a task type, the
task stack area will be of the specified size. There is no up-
per limit on the given size.

Small specifications :

Any value of the SMALL attribute less than the specified delta
for the fixed point type can be given.

F.5.2 Enumeration Representation Clauses

Enumeration representation clauses may specify representation
in the range of INTEGER'FIRST+l .. INTEGER'LAST-l. An enumera-
tion representation clause may be combined with a length
clause. If an enumeration representation clause has been given
for a type the representational values are considered when the
number of bits needed to hold any value of the type is
evaluated. Thus the type

type enum is (a,b,c);
for enum use (1,3,5);

needs 3 bits not 2 bits to represent any value of the type.

F.5.3 Record Representation Clauses

When component clauses are applied to a record type the follow-
ing restrictions are imposed :

- All values of the component type must be representable
within the specified number of bits in the component
clause.

F-3

Appendix

User's Guide

If the component type is either a discrete type other than
LONG INTEGER, a fixed point type, or an array type with a
discrete type other than LONGINTEGER, or a fixed point
type as element type, then the component is packed into the
specified number of bits (see however the restriction in
the paragraph above), and the component may start at any
bitboundary.

If the component type is not one of the types specified in
the paragraph above, it must start at a storage unit bound-
ary, a storage unit being 8 bits, and the default size
calculated by the compiler must be given as the bit width,
i.e. the component must be specified as

component at N range 0 .. 8 * M-1

where N specifies the relative storage unit number
(0,1 ...) from the beginning of the Aecord, and M the re-
quired number of storage units (1,2,...).

- The maximum bit width for components of scalar types is 32.

If the record type contains components which are not covered by
a component clause, they are allocated consecutively after the
component with the value. Allocation of a record component
without a component clause is always aligned on a storage unit
boundary. Holes created because of component clauses are not
otherwise utilized by the compiler.

F.5.3.1 Alignment Clauses

Alignment clauses for records are implemented with the follow-
ing characteristics :

- If the declaration of the record type is done at the outer-
most level in a library package, any alignment is accepted.

- If the record declaration is done at a given static level
(higher than the outermost library level, i.e. the per-
manent area), only long word alignments are accepted.

- Any record object declared at the outermost level in a
library package will be aligned according to the alignment
clause specified for the type. Record objects declared
elsewhere can only be aligned on a long word boundary. If
the record type has been associated a different alignment,
an error message will be issued.

F-4

Appendix

User's Guide

- If a record type with an associated alignment clause is
used in a composite type, the alignment is required to be
one long word: an error mesage is issued if this is not the
case.

F.5.3.2 Implementation-Dependent Names for Implementation-
Dependent Components

None defined by the compiler.

F.6 Address Clauses

Address clauses for objects are accepted. Note that the defini-
tion of the type SYSTEM.ADDRESS (see F.4) does not allow
"address literals" to be specified. Address clauses will there-
fore look like

for X use at Y' ADDRESS;

or

for VAR use at FUNCTIONRETURNINGANADDRESS;

Address clause on subprogram, tasks, package or entries are not
supported.

F.7 Machine Code Insertion

Machine code insertion is allowed using the instruction defined
in package MACHINE CODE. All arguments given in the code state-
ment aggregate must be stat4 c.

The machine language defined in package MACHINE CODE is not VAX
assembler, but rather Abstract A-code which is an intermediate
language used be the compiler.

F.8 Interface to Other Languages

See chapter 14.

F-5

Appendix

User's Guide

F.9 Unchecked Conversion

Unchecked conversion is only allowed between objects of the
same " size". In this context the "size" of an array is equal
to that of two access values and the "size" of a packed array
is equal to two access values and an integer. This is the only
restriction imposed on unchecked conversion.

F.10 Input-Output Packages

The implementation supports all requirements of the Ada lan-
guage. It is an effective interface to the VAX/VMS file
system, and in case of text input-output also an effective in-
terface to the VAX/VMS terminal driver.

This section describes the functional aspects of the interface
to the VAX/VMS file system and terminal driver. Certain por-
tions of this section is of special interest to the system
programmer who needs to control VAX/VMS specific Input-Output
characteristics via Ada programs.

The section is organised as follows.

Subsection numbers refer to the equivalent subsections in
Chapter 14 of the [DoD 83]. Only subsections of interest to
this section are included.

The Ada Input-Output concept as defined in Chapter 14 of the
[DoD 83] does not constitute a complete functional specifica-
tions of the Input-Output packages. Some aspects are not
discussed at all, while others are deliberately left open to an
implementa- tion.

These gaps are filled in the appropriate subsections and sum-
marized in subsection F.8.a.

The reader should be familiar with

[DoD 83] - The Ada language definition

and certain sections require that the reader is familiar with

[DEC 84a] - Guide to VAX/VMS File Applications

[DEC 84b] - Record Management Services

[DEC 85] - VAX/VMS I/O Users Reference Manual

F-6

Appendix

User's Guide

F.10.1 External Files and File Objects

An external file is either any VAX/VMS file residing on a file-
structured device (disk, tape), a record structured device
(terminal, lineprinter), or a virtual .3ftware device
(mailbox). [DoD 83] 14.1(1).

Identification of an external file by a string (the NAME
parameter) is described in subsection F.8.2.1.

System-dependent characteristics (the FORM parameter) is
described in subsection F.8.2.1

An external file created on a file-structured device will exist
after program termination, and may be accessed later from an
Ada program, except if the file is a temporary file created by
using an empty name parameter. If files corresponding to the
external file have not been closed, the external file will also
exist upon program completion, and the contents will be the
same as if the files had been closed prior to program comple-
tion. See further F.8.3. [DoD 83] 14.1(7).

Input-Output of access types will cause input-output of the ac-
cess value [Dod 83] 14.1(7).

Sharing of an external file is, when using the default system-
dependent characteristics, handled as described in the follow-
ing.

When a file is associated with an external file using the
Record Management Services (RMS), and the file is opened with
mode INFILE, the implementation will allow the current process
and other processes to open files associated with the same ex-
ternal file (e.g. as IN-FILE in an Ada program).

When a file is opened with mode INOUTFILE or OUT-FILE no file
sharing is allowed when using RMS. In particular, trying to
gain write access to an external file shared by other files, by
OPEN or RESET to mode INOUTFILE or OUT-FILE will raise
USE-ERROR.

When a text file is associated with a terminal device, using
the Queue I/O System Services (QIO), there are no restrictions
on file sharing.

F-7

Appendix

User's Guide

F.10.2 Sequential and Direct Files

When dealing with sequential and direct input-output only RMS
files are used.

In this section, a description of the basic file-mapping is
given.

Basic file-mapping concerns the relation between Ada files and
(formats of) external RMS files, and the strategy for accessing
the external files. When creating new files (with the CREATE
procedure), there is a unique mapping onto a RMS file format,
the preferred file format. When opening an existing external
file (with the OPEN procedure), the mapping is not unique; i.e.
several external file formats other than preferred for CREATE
may be acceptable. In subsection F.8.2.1 the preferred and ac-
ceptable formats are described for sequential and direct input-
output. In subsection F.8.3.1 the preferred and acceptable
formats are described for text input-output.

F.1O.2.1 File Management

This subsection contains information regarding file management

- Description of preferred and acceptable formats for sequen-
tial and direct input-output.

- The NAME parameter.

- The FORM parameter.

- File access.

Preferred and Acceptable Formats

The preferred and acceptable formats for sequential and direct
input-output, are described using RMS notation and abbreviations
[DEC 84b]. ES is used to denote the element size, i.e. the num-
ber of bytes occupied by the element type, or, in case of a
varying size type, the maximum size (which must be determinable
at the point of instantiation from the value of the SIZE at-
tribute for the element type).

It should be noted that the latter means a type definition like:

type large-type is array(integer <>) of integer;

would be mapped onto an element size greater than the maximum
allowed size (32 k byte).

F-8

Appendix

User's Guide

SEQUENTIALIO:

An element is mapped into a single record of the external file,
or if block-io is used, a number of consecutive virtual blocks
of 512 bytes. ES must not be greater than 32767, otherwise
USE-ERROR is raised.

CREATE - preferred file format

- ORG=SEQ, RFM=FIX, MRS=ES
(note: read and write operations will be done by BLOCK 10
if element size is a multiple of 512 bytes)

OPEN - acceptable formats

- ORG=REL, RFM=FIX, MRS=ES

- ORG=SEQ, RFM=FIX, MRS=ES

- ORG=SEQ, RFM=VAR

- ORG=SEQ, RFM=UDF

(note: BLOCK 10 will be used)

(note: a RESET operation to OUT-FILE mode will give a
USE-ERROR exception, as it is not possible to empty a file
of this format).

The detailed setting of the control blocks for sequentialIO is
given below. Note that the user-provided form parameter will
override the default specified settings, when used with OPEN or
CREATE.

Also note that, when an Ada program contains tasks, asynchronous
I/O will be used (ROP = <ASY>).

The following shows the initial setting for OPEN and CREATE
(unspecified fields in the control blocks will be cleared to
zero).

FAB:
ALQ = 12
DEQ = 6
DNM = <.DAT>
FAC = for block-io, IN-FILE: <BRO,GET>

for block-io, OUT-FILE: <BRO, PUT,UPD,DEL,-TRN>
otherwise, IN-FILE: <GET>
otherwise, OUT-FILE: <PUT,UPD,DEL,TRN>

FNM = name parameter
FOP = non-empty name parameter: <MXV,SQO>

empty name parameter to CREATE: <MXV,SQO,TMP>

F-9

Appendix

User's Guide

MRS = element size (in bytes)
NAM = address of name-block
ORG = SEQ
RAT = <CR>
RFM = FIX
SHR = for IN-FILE: <GET>

for OUT-FILE: <NIL>
XAB = address of XABFHC block

RAB:
FAB = address of FAB block
KBF = address of internal longword
KSZ = 4
RAC = SEQ
ROP = for block-io: <BIO>

otherwise: <UIF>
NAM:

RSA = address of internal 255 byte buffer
RSS = 255

XABFHC:
NXT = 0

DIRECTIO:

An element is mapped into a single record of the external file,
or if block io is used, the smallest possible number of consecu-
tive virtual blocks of 512 bytes. ES must not be greater than
32767, otherwise USE-ERROR will be raised.

CREATE - preferred file format

- if element size is not a multiple of 512: ORG=REL,
RFM=FIX, MRS=ES

- if element size is a multiple of 512: ORG=SEQ, RFM=FIX,
MRS=ES
(note: read and write operations will be done by BLOCK
10)

OPEN - acceptable formats

- ORG=REL, RFM=FIX, MRS=ES

- ORG=SEQ, RFM=FIX, MRS=ES
(note: if element size is a multiple of 512, BLOCK 10
will be used)

- ORG=SEQ, RFM=UDF
(note: BLOCK 10 will be used)

F-10

Appendix

User's Guide

The detailed setting of the control blocks for directIO is
given below. Note that the user-provided form parameter will
override the default specified settings, when used with OPEN or
CREATE.

Alzo note that, when an Ada program contains tasks, asynchronous
I/O will be used (ROP = <ASY>).

The initial setting for OPEN and CREATE (unspecified fields in
the control blocks will be cleared to zero) follows:

FAB:
ALQ = 12
DEQ = 6
DNM = <.DAT>
FAC = for IN-FILE: <GET>

for OUT-FILE: <GET,PUT,UPD,DEL,TRN>
FNM = name parameter

FOP = non-empty name parameter: <MXV, SQO>
empty name parametc. to CREATE: <MXV,SQO,TMP>

MRS = 512
NAM = address of name-block
ORG = SEQ
RAT = <CR>
RFM = VAR
SHR = for IN-FILE: <GET>

for OUT-FILE: <NIL>
XAB = address of XABFHC block

RAB:
FAB = address of FAB block
KBF = address of internal icngword
KSZ = 4
RAC = SEQ
ROP = <>
UBF = address of internal 512 byte buffer
USZ = 512

NAM:
RSA = address of internal 255 byte buffer
RSS = 255

XABFHC:
NXT = 0

F-l1

Appendix

User's Guide

Name Parameter

The name parameter, when non null, must be a valid VAX/VMS file
specification referring to a file-structured device; a file with
that name will then be created.

For a null name parameter, the process' current directory and
device must designate a directory on a disk device; a temporary,
unnamed file marked for deletion will then be created in that
directory. The file will be deleted after closing it, or, if
not closed when the program terminates.* [DoD 83] 14.2.1(3).

Form Parameter

The FORM string parameter that can be supplied to any OPEN or
CREATE procedure is for controlling the external file
properties, such as physical organization, allocation etc. In
the present implementation this has been achieved by accepting
form parameters that specify setting of fields in the RMS con-
trol blocks FAB and RAB, used for all open files. This scheme
is rather general in that it accepts all settings of the FAB and
RAB fields. It opens for modifications of the behaviour required
by the Arm, such as being able to open a file for appending data
to it. Furthermore, a form parameter for accessing mailboxes is
provided.

The following fields can currently not be set explicitly:

FAB:
FNA, FNS (are set by the NAME parameter of OPEN or

CREATE)
DNA, DNS (can be set by DNM=/.../)

The syntax of the form parameter is as follows:

form-parameter ::= [param (, param]

param ::= number-param
string-param
quotation-param
mask-param

number-param ::= keyword = number
number ::= digit [digit)
digit ::=0 1 ... 1 9
string-param ::= keyword = string
string ::= / (any character other than slash) /

F-12

Apperiix

User's Guide

quotation-param::= keyword = specifier

mask-param clear-bits
set-bits
define-whole-field

clear-bits keyword - mask
set-bits ::= keyword + mask
define-whole-field

= keyword = mask
mask := < [specifier (,specifier 1]>

keyword ::= letter letter letter
specifier ::= letter letter letter [letter letter]

letter ::=A I B I IZ I a Ib I Iz

Notes:

" all space characters are ignored.

. string parameters are converted to uppercase.

• all keywords and specifiers are 3- or 5-letter words, like
the RMS assembly level interface symbolic names. The only
exceptions are the RAT=<CR> specifier, which in this im-
plementation must be specified as CAR rather than CR, and
the RAB CTX field keyword, which must be specified as CON.
There are only 2 5-letter words: the specifiers STMCR and
STMLF.

The semantics of the form parameter is (except for the mailbox
parameter) to modify the specified FAB and RAB fields just prior
to actually calling RMS to open or create a file, i.e. the form
parameter overrides the default conventions provided by this im-
plementation ([DoD 83], Section F.5.4). The form parameter is
interpreted left to right, and it is legal to respecify fields;
in particular a mask field may be manipulated in several turns.

Note that there is no way of modifying fields after an RMS open
or create service, in particular it is not possible to set RAB
fields on a per record operation basis.

The modifications made are those to be expected from the tex-
tually corresponding RMS macro specifications. However, the
clear-bits and set-bits are particular to this implementation:
They serve to either clear individual mask specifiers set by
the implementation default, or to set mask specifiers in addi-
tion to those specified by the implementation default,
respectively.

F-13

Appendix

User's Guide

The mailbox parameter can be either

MBX=TMP
or

MBX=PRM

It applies to CREATE only, and causes either a temporary or a
permanent mailbox to be created. The NAME parameter will be
used to establish a logical name for the mailbox, unless an
empty string is specified (in this case, no logical name will be
established).

Note that the implementation does in no way check that the form
parameter supplied is at all reasonable. The attitude is "you
asked for it, you got it". It is discouraged, if other proce-
dures than OPEN, CREATE, and CLOSE will be called, to set ORG,
RAC, MRS, NAM, FOP=<NAM>. It is generally discouraged to set
XAB.

Examples:

-- create a text file
create(file, out-file, "DATA.TXT");

-- create a temporary text file which will be deleted
after completion of the main program

create(file, out-file);

-- create an empty stream format text file
create(file,outfile,"DATA.DAT","ORG=SEQ,RFM=STMLF");

-- create a very big file:
create(file,out-file,"DATA.DAT","ALQ=2048,DEQ=256");

-- create a temporary mailbox:
create(fileout-file,"HELLO","MBX=TMP");

-- open a mailbox; at reading, do not wait for
messages:

open(file,in-file,"HELLO","ROP+<TMO>,TMO=O");

File Access

The OPEN and CREATE procedures utilize the normal RMS defaulting
mechanism to determine the exact file to open or create.

Device and directory (when not specified) defaults to the
process' current device (SYS$DISK) and directory.

F-14

Appendix

User's Guide

The version number (when not specified), defaults for OPEN to
highest existing, or for CREATE, one higher than the highest ex-
isting, or 1 when no version exists.

The implementation provides .DAT as the default file type.

External files, which are not to be accessed via block-io (as
described in formats), will be accessed via standard RMS access
methods. For SEQUENTIALIO, sequential record access mode will
be used. For DIRECT.IO, random access by record number will be
used.

Creation of a file with mode IN-FILE will raise USE-ERROR, when
referring to an RMS file.

For sequential and direct io, files created by SEQUENTIALIO for
a given type T, may be opened (and processed) by DIRECTIO for
the same type and vice-versa. In the latter case, however, the
function ENDOFFILE (14.2.2(8)) may fail to produce TRUE in
cases where the file has been written at random, leaving "holes"
in the file. See [DoD 83] 14.2.1(7).

For a sequential or text file associated with an RMS file, a
RESET operation to OUT-FILE mode will cause deletion of any ele-
ments in the file, i.e. the file is emptied. Likewise, a
sequential file or text file opened (by OPEN) with mode
OUT-FILE, will be emptied. For any other RESET operation, the
contents of the file is not affected.

For a text file, any RESET operation will cause USE-ERROR to be
raised, when QIO services are used.

F-15

Appendix

User's Guide

F.10.2.2 Sequential Input-Output

The implementation omits type checking for DATA-ERROR, in case
the element type is of an unconstrained type, [DoD 83]
14.2.2(4), i.e.:

... f : FILE-TYPE
type et is 1..100;
type eat is array(et range <>) of integer;

X : eat(1..2);
Y : eat(1..4);

-- write X, Y:

write(f, X); write(f, Y); reset(f, INFILE);

-- read X into Y and Y into X:

read(f, Y); read(f, X);

This should have given DATA-ERROR, but will instead give un-
defined values in the last 2 elements of Y.

F.10.2.3 Specification of the Package SequentialIO

with BASICIOTYPES;

with IOEXCEPTIONS;

generic

type ELEMENT-TYPE is private;

package SEQUENTIALIO is

type FILE-TYPE is limited private;

type FILE-MODE is (IN-FILE, OUTFILE);

-- File management

procedure CREATE(FILE : in out FILE-TYPE;
MODE : in FILE-MODE := OUT-FILE;
NAME : in STRING =of

FORM : in STRING :=

procedure OPEN (FILE : in out FILE-TYPE;
MODE : in FILE-MODE;
NAME : in STRING;

F-16

Appendix

User's Guide

FORM : in STRING

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE-TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;

function NAME (FILE : in FILE-TYPE) return STRING;

function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

-- input and output operations

procedure READ (FILE : in FILE-TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENTTYPE);

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

-- exceptions

STATUS-ERROR : exception renames IOEXCEPTIONS.STATUSERROR;
MODE-ERROR : exception renames IOEXCEPTIONS.MODEERROR;
NAME-ERROR : exception renames IOEXCEPTIONS.NAMEERROR;
USE-ERROR : exception renames IOEXCEPTIONS.USEERROR;
DEVICE-ERROR : exception renames IOEXCEPTIONS.DEVICE-ERROR;
END-ERROR : exception renames IOEXCEPTIONS.ENDERROR;
DATA-ERROR : exception renames IOEXCEPTIONS.DATAERROR;

private

type FILE-TYPE is new BASICIOTYPES.FILETYPE;

end SEQUENTIALIO;

F.10.2.4 Direct Input-Output

The implementation omits type checking for DATA-ERROR, in case
the element type is of an unconstrained type, [Dod 83]
14.2.4(4), see F.8.2.2.

F-17

Appendix

User's Guide

F.10.2.5 Specification of the Package DirectIO

with BASICIOTYPES;

with IOEXCEPTIONS;

generic

type ELEMENT-TYPE is private;

package DIRECTIO is

type FILE-TYPE is limited private;

type FILE-MODE is (IN-FILE, INOUTFILE, OUTFILE);

type COUNT is range O..LONGINTEGER'LAST;
subtype POSITIVE-COUNT is COUNT range 1..COUNT'LAST;

-- File management

procedure CREATE(FILE : in out FILE-TYPE;
MODE : in FILE-MODE := INOUTFILE;
NAME : in STRING := ";

FORM : in STRING fell

procedure OPEN (FILE : in out FILE-TYPE;
MODE : in FILE-MODE;
NAME : in STRING;
FORM : in STRING := fell

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILE-TYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;

function NAME (FILE : in FILE-TYPE) return STRING;

function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

-- input and output operations

F-18

Appendix

User's Guide

procedure READ (FILE : in FILE-TYPE;
ITEM : out ELEMENT-TYPE;
FROM : in POSITIVECOUNT);

procedure READ (FILE : in FILE-TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENT-TYPE;
TO : in POSITIVECOUNT);

procedure WRITE (FILE : in FILE-TYPE;
ITEM : in ELEMENTTYPE);

procedure SETINDEX(FILE : in FILE-TYPE;
TO : in POSITIVECOUNT);

function INDEX(FILE : in FILE-TYPE) return POSITIVE-COUNT;

function SIZE (FILE : in FILE-TYPE) return COUNT;

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

-- exceptions

STATUS-ERROR : exception renames IOEXCEPTIONS.STATUSERROR;
MODE-ERROR : exception renames IOEXCEPTIONS.MODEERROR;
NAME-ERROR : exception renames IOEXCEPTIONS.NAMEERROR;
USE-ERROR : exception renames IOEXCEPTIONS.USEERROR;
DEVICE-ERROR : exception renames IOEXCEPTIONS.DEVICEERROR;
END-ERROR : exception renames IOEXCEPTIONS.ENDERROR;
DATA-ERROR : exception renames IOEXCEPTIONS.DATAERROR;

private

type FILE-TYPE is new BASICIOTYPES.FILE-TYPE;

end DIRECTIO;

F.10.3 Text Input-Output

When utilizing text input-output, RMS is used when an external
file is residing on a file-structured device, or is a virtual
software device. When an external file that is a terminal
device is opened or created, the queue I/O services (QIO) are
used by default.

If a text file of mode OUT-FILE corresponds to an external RMS
file, the external file will also exist upon program completion,
and a pending linebuffer will be flushed before the text file is
closed.

F-19

Appendix

User's Guide

F.10.3.1 File Management

This subsection contains information regarding file management,
where it differs from the file management described in F.8.2.1.

- Description of preferred and acceptable formats for text

input-output.

- The FORM parameter.

- File access.

Preferred and Acceptable Formats

Lines of text are mapped into records of external files.

For output, the following rules apply.

The Ada line terminators and file terminators are never ex-
plicitly stored (however, for stream format files, RMS forces
line terminators to trail each record). Page terminators, ex-
cept the last, are mapped into a form feed character trailing
the last line of the page. (In particular, an empty page
(except the last) is mapped into a single record containing only
a form feed character). The last page terminator in a file is
never represented in the external file. It is not possible to
write records containing more than 512 characters. That is, the
maximum line length is 511 or 512, depending on whether a page
terminator (form feed character) must be written or not. If
output is more than 512 characters, USE-ERROR will be raised.

On input, a FF trailing a record indicates that the record con-
tains the last line of a page and that at least one more page
exists. The physical end of file indicates the end of the last
page.

CREATE - preferred file format

- ORG=SEQ, RFM=VAR, MRS=512

OPEN - acceptable file formats

F-20

Appendix

User's Guide

- all formats except
- ORG=IDX
- RFM=UDF

(Note: for stream files (RFM=STM...) any sequence of
the LF, CR, and VT control characters at the end of a
line will be stripped off at input. At output, line
terminators will be provided by RMS defaults). (Note:
input of any record containing more than 512 characters
will raise a USE-ERROR exception).

The detailed setting of the control blocks for TEXTIO is given
below. Note that the user-provided form parameter will override
the default specified settings, when used with OPEN or CREATE.

Also note that, when an Ada program contains tasks, asynchronous
I/O will be used. When RMS files ROP = <ASY>, or asynchronous
QIO when terminal devices.

The following shows the initial setting for OPEN and CREATE
(unspecified fields in the control blocks will be cleared to
zero):

FAB:
ALQ = 12
DEQ = 6
DNM = <.DAT>
FAC = for IN-FILE: <GET>

for OUT-FILE: <GET,PUT,UPD,DEL,TRN>
FNM = name parameter
FOP = non-empty name parameter <MXV,SQO>

empty name parameter to CREATE: <MXV,SQO,TMP>
MRS = 512
NAM = address of name-block
ORG = SEQ
RAT = <CR>
RFM = VAR
SHR = for IN-FILE: <GET>

for OUT-FILE: <NIL>
XAB = address of XABFHC block

RAB:
FAB = address of FAB block
KBF = address of internal longword
KSZ = 4
RAC = SEQ
ROP= <>
UBF = address of internal 512 byte buffer
USZ = 512

F-21

Appendix

User's Guide

NAM:
RSA = address of internal 255 byte buffer
USZ = 255

XABFHC:
NXT = 0

Form parameter

If any form parameter, except for the empty string or a string
containing only blanks, is supplied to OPEN or CREATE, RMS serv-
ices will always be used. In this case, the file operations on
external files as terminal-devices will use buffered input- out-
put.

File-access

External RMS files are accessed via sequential record access
methods.

Files associated with terminal devices, using QIO services, do
not contain page terminators. This means that calling SKIP-PAGE
will raise USE-ERROR. Furthermore, trying to RESET a file in
this category will cause USE-ERROR.

Files associated with the same external file, using QIO service-
s, share the standard values (page-, line, and column-
number), e.g. standard values for STANDARD-OUTPUT are implicitly
updated after reading from STANDARD-INPUT.

F.10.3.2 Specification of the Package TextIO

with BASICIOTYPES;
with IOEXCEPTIONS;
package TEXTIO is

type FILE-TYPE is limited private;

type FILE-MODE is (IN-FILE, OUTFILE);

type COUNT is range 0 .. LONGINTEGER'LAST;
subtype POSITIVE-COUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length

subtype FIELD is INTEGER range 0 .. 67;

subtype NUMBER-BASE is INTEGER range 2 .. 16;

F-22

Appendix

User's Guide

type TYPE-SET is (LOWER-CASE, UPPER-CASE);

-- File Management

procedure CREATE (FILE : in out FILE-TYPE;
MODE : in FILE-MODE OUT-FILE;
NAME : in STRING tiff
FORM : in STRING till

procedure OPEN (FILE : in out FILE-TYPE;
MODE : in FILE-MODE;
NAME : in STRING;
FORM : in STRING lift

procedure CLOSE (FILE : in out FILE.TYPE);
procedure DELETE (FILE : in out FILETYPE);
procedure RESET (FILE : in out FILE-TYPE;

MODE : in FILEMODE);
procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE-TYPE) return FILE-MODE;
function NAME (FILE : in FILE-TYPE) return STRING;
function FORM (FILE : in FILE-TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

-- Control of default input and output files

procedure SET-INPUT (FILE : in FILETYPE);
procedure SET-OUTPUT (FILE : in FILETYPE);

function STANDARD-INPUT return FILE-TYPE;
function STANDARD-OUTPUT return FILE-TYPE;

function CURRENT-INPUT return FILE-TYPE;
function CURRENT-OUTPUT return FILE-TYPE;

-- specification of line and page lengths

procedure SETLINELENGTH (FILE : in FILE-TYPE;
TO : in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILE-TYPE;
TO : in COUNT);

procedure SETPAGELENGTH (TO : in COUNT);

F-23

Appendix

User's Guide

function LINE-LENGTH (FILE : in FILE-TYPE) return
COUNT;

function LINE-LENGTH return
COUNT;

function PAGE-LENGTH (FILE : in FILE-TYPE) return
COUNT;

function PAGE-LENGTH return
COUNT;

-- Column, Line, and Page Control

procedure NEW-LINE (FILE : in FILE-TYPE;
SPACING : in POSITIVE-COUNT 1);

procedure NEW-LINE (SPACING : in POSITIVE-COUNT 1);

procedure SKIP-LINE (FILE : in FILE-TYPE;
SPACING : in POSITIVE-COUNT 1);

procedure SKIP-LINE (SPACING : in POSITIVE-COUNT := 1);

function ENDOFLINE (FILE : in FILE-TYPE) return
BOOLEAN;

function ENDOFLINE return
BOOLEAN;

procedure NEW-PAGE (FILE : in FILETYPE);
procedure NEW-PAGE

procedure SKIP-PAGE (FILE : in FILETYPE);
procedure SKIP-PAGE

function ENDOFPAGE (FILE : in FILE-TYPE) return
BOOLEAN;

function ENDOFPAGE return
BOOLEAN;

function ENDOFFILE (FILE : in FILE-TYPE) return
BOOLEAN;

function ENDOFFILE return
BOOLEAN;

procedure SETCOL (FILE : in FILE-TYPE;
TO : in POSITIVECOUNT);

procedure SETCOL (TO : in POSITIVECOUNT);

procedure SET-LINE (FILE : in FILE-TYPE;
TO : in POSITIVECOUNT);

procedure SET-LINE (TO : in POSITIVECOUNT);

F-24

Appendix

User's Guide

function COL (FILE : in FILE-TYPE) return
POSITIVE-COUNT;

function COL return
POSITIVE-COUNT;

function LINE (FILE : in FILE-TYPE) return
POSITIVE-COUNT;

function LINE return
POSITIVE-COUNT;

function PAGE (FILE : in FILE-TYPE) return
POSITIVE-COUNT;

function PAGE return
POSITIVE-COUNT;

-- Character Input-Output

procedure GET (FILE : in FILE-TYPE;
ITEM : out CHARACTER);

procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE-TYPE;

ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILE-TYPE;
ITEM : out STRING);

procedure GET (ITEM : out STRING);
procedure PUT (FILE : in FILE-TYPE;

ITEM : in STRING);
procedure PUT (ITEM : in STRING);

procedure GET-LINE (FILE : in FILE-TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GET-LINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUT-LINE (FILE : in FILE-TYPE;
ITEM : in STRING);

procedure PUT-LINE (ITEM : in STRING);

-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGERIO is

DEFAULT-WIDTH : FIELD := NUM'WIDTH;
DEFAULT-BASE : NUMBER-BASE := 10;

F-25

Appendix

User's Guide

procedure GET (FILE : in FILE-TYPE;
ITEM out NUM;
WIDTH in FIELD 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure PUT (FILE : in FILE-TYPE;
ITEM in NUM;
WIDTH : in FIELD := DEFAULT-WIDTH;
BASE : in NUMBER-BASE := DEFAULTBASE);

procedure PUT (ITEM : in NUM;
WIDTH : in FIELD := DEFAULT-WIDTH;
BASE : in NUMBER-BASE := DEFAULTBASE);

procedure GET (FROM : in STRING;
ITEM out NUM;
LAST out POSITIVE);

procedure PUT (TO out STRING;
ITEM : in NUM;
BASE : in NUMBER-BASE :=

DEFAULTBASE);

end INTEGERIO;

-- Generic Packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOATIO is

DEFAULT-FORE : FIELD := 2;
DEFAULT-AFT : FIELD := NUM'digits - 1;
DEFAULTEXP : FIELD := 3;

procedure GET (FILE in FILE-TYPE;
ITEM : out NUM;
WIDTH in FIELD 0);

procedure GET (ITEM out NUM;
WIDTH : in FIELD 0);

procedure PUT (FILE : in FILE-TYPE;
ITEM : in NUM;
FORE : in FIELD := DEFAULT-FORE;
AFT : in FIELD := DEFAULT-AFT;
EXP : in FIELD := DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULT-FORE;
AFT : in FIELD DEFAULT-AFT;
EXP : in FIELD := DEFAULTEXP);

F-26

Appendix

User's Guide

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT ! in FIELD := DEFAULT-AFT;
EXP : in FIELD DEFAULTEXP);

end FLOATIO;

generic
type NUM is delta <>;

package FIXEDIO is

DEFAULT-FORE : FIELD NUM'FORE;
DEFAULT-AFT : FIELD NUM'AFT;
DEFAULTEXP FIELD := 0;

procedure GET (FILE : in FILE-TYPE;
ITEM : out NUM;
WIDTH in FIELD 0);

procedure GET (ITEM out NUM;
WIDTH : in FIELD := 0);

procedure PUT (FILE in FILE-TYPE;
ITEM in NUM;
FORE : in FIELD DEFAULT-FORE;
AFT in FIELD := DEFAULT-AFT;
EXP in FIELD := DEFAULTEXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULT-FORE;
AFT : in FIELD DEFAULT-AFT;
EXP : in FIELD := DEFAULTEXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT-AFT;
EXP : in FIELD DEFAULTEXP);

end FIXEDIO;

F-27

Appendix

User's Guide

-- Generic Package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATIONIO is

DEFAULT-WIDTH : FIELD := 0;
DEFAULT-SETTING : TYPE-SET := UPPER-CASE;

procedure GET (FILE : in FILE-TYPE;
ITEM : out ENUM);

procedure GET (ITEM : out ENUM);

procedure PUT (FILE : in FILE-TYPE;
ITEM : in ENUM;
WIDTH : in FIELD DEFAULT-WIDTH;
SET : in TYPE-SET DEFAULTSETTING);

procedure PUT (ITEM : in ENUM;
WIDTH : in FIELD DEFAULT-WIDTH;
SET : in TYPE-SET DEFAULTSETTING);

procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO out STRING;
ITEM : in ENUM;
SET : in TYPE-SET := DEFAULTSETTING);

end ENUMERATIONIO;

-- Exceptions

STATUS-ERROR : exception renames IOEXCEPTIONS.STATUSERROR;
MODE-ERROR : exception renames IOEXCEPTIONS.MODEERROR;
NAME-ERROR : exception renames IOEXCEPTIONS.NAMEERROR;
USE-ERROR : exception renames IOEXCEPTIONS.USEERROR;
DEVICE-ERROR : exception renames IOEXCEPTIONS.DEVICEERROR;
END-ERROR : exception renames IOEXCEPTIONS.ENDERROR;
DATA-ERROR : exception renames IOEXCEPTIONS.DATAERROR;
LAYOUT-ERROR : exception renames IOEXCEPTIONS.LAYOUTERROR;

private

type FILE-TYPE is new BASICIOTYPES.FILETYPE;

end TEXTIO;

F-28

Appendix

User's Guide

F.1O.4 Low Level Input-Output

The package LOWLEVELIO is empty.

F.10.4.1 Clarifications of Ada Input-Output Requirements
Summary

The Ada Input-Output concepts as presented in Chapter 14 of [DoD
83] do not constitute a complete functional specification of the
Input-Output packages. Some aspects are not discussed at all,
while others aze deliberately left open to an implementation.
These gaps are filled in below, with reference to sections of
the [DoD 83].

F.10.4.2 Assumptions

14.2.1(15): For a sequential or text file, a RESET operation to
OUT-FILE mode deletes any elements in the file, i.e.
the file is emptied. Likewise, a sequential or text
file opened (by OPEN) as an OUT-FILE, will be
emptied. For any other RESET operation, the con-
tents of the file is not affected.

14.2.1(7) : For sequential and direct io, files created by
SEQUENTIALIO for a given type T, may be opened (and
processed) by DIRECTIO for the same type and vice-
versa. In the latter case, however, the function
ENDOFFILE (14.2.2(8)) may fail to produce TRUE in
the case where the file has been written at random,
leaving "holes" in the file.

F.10.4.3 Implementation Choices

14.1(1) : An external file is either any VAX/VMS file residing
on a file-structured device (disk,tape), a record
structured device (terminal, lineprinter), or a vir-
tual software device (mailbox).

14.1(7) : An external file created on a file-structured device
will exist after program termination, and may later
be accessed from an Ada program.

14.1(13) : See Section F.8.2.1 File Management.

F-29

Appendix

User's Guide

14.2.1(3) The name parameter, when non-null, must be a valid
VAX/VMS file specification referring to a file-
structured device; a file with that name will then
be created. For a null name parameter, the process'
current directory and device must designate a direc-
tory on a disk device; a temporary, unnamed file
marked for deletion will then be created in that
directory.

The form and effect of the form parameter is dis-
cussed in Sections F.8.2.1 and F.8.3.1.

Creation of a file with mode IN-FILE will raise
USE-ERROR.

14.2.1(13): Deletion of a file is only supported for files on a
disk device, and requires deletion access right to
the file.

14.2.2(4): No check for DATA-ERROR is performed in case the
element type is of an unconstrained type.

F-30

