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On the Sensitivity of Solutions

of Parametrized Equations *

Werner C. Rheinboldt
Dept. of Mathematics and Statistics

University of Pit tsburgh,Pittsburgh, PA 15260

Abstract: The sensitivity of a solution of a parametrized equation
F(z,. ) = 0 with respect to the parameter vector A is usually defined;,.
as the change of the state z in dependence of A. In other words, for
any solution expressible in the form ( A(A). A) with som smooih func-
ton z = (z(A) the sensitivity is the derivative Dz(A). Typically the
solutions form a manifold Al in the product of the state-space and the
parameter space and this sensitivity is available only at those points of '
A where the parameters can be used to define a local coordinate svs-
tern. This paper introduces a general sensitivity concept which applies / .......
at all solutions on Al and which includes the earlier definition. Some -
general geometric interpretations of the new measure are presented and , . ..
it is shown that the sensitivity analysis can be easily integrated into the
solution process. The theory also suggests the introduction of a readily
computable second-order sensitivity measure reflecting the curvature- L";t
behavior of .Al. Two numerical examples illustrate the discussion.

1. Introduction

Mathematical models for many scientific and engineering problems have the form of a

nonlinear equation

(1.1) F(zA) = 0,

involving some (often infinite-dimensional) state variable z and a finite-dimensional vector

,\ of parameters. The computational tasks then include not only the calculation of suitable

solutions but also the determination of their sensitivity under variations of the parameters.

In recent years the literature on methods for a sensitivity analysis of specific problems

has )een growing rapidly (see, e.g., [7], [111 and the references given there). Most of this

• The work was partly supported by ONR-grant N-00014-90-J-1025 and NSF-grant
CCR-8907654. The paper was befrnin duri- a sty at tli. Ccii ac fi Mathexnatical Analysis
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work is based on the assumption that near a given solution (o, A0 ) of (1.1) the state Z

depends smoothly on the parameter vector A; that is. the solutions of (1.1) can be witten

in the form (:( A). A) with some smooth function z = z( A). Then the derivative Dz(A\)

of z at A0 is a natural measure of the sensitivity of the solution (z( A0 ). A0 ). For suff-ientlr

smooth F this sensitivity measure has to satisfy the linearized equation

(1.2) DzF(zo. AO)Dz(Ao) + DAF(ZO.AO) = O.

If this equation) is explcit!.- zx-ilable and D:F(zo,A0 ) is invertible then Dz( A0 ) can be

computed from (1.2). Codes for solving (1.2) for various applications in nolecular dynamics

are cited in [7]. When tha partial derivatives DF and DAF are not explicitly known we

may consider the use of some difference approximations for them in which case there is also

a need for studying the influence of these approximations upon the desired solution of (1.2 ).

Alternately, if the sensitivity Dz(A0 )/i in the direction of a parameter vector p is required

then one may compute approximations of z(,A0 + rp) for several values of the scalar 7 near

7 = 0 and then apply some numerical differentiation formula for approximating Dz(Ao )h.

Generally. this definition of sensitivity does not reflect any of the underlying geometric

aspects: moreover, the indicated methods do not take much account of information that

may be available during the computation of the original solution (zo.O 0 ) itself. In fact.

se'nsitivitv analysis is usually considered to be a "post-processing" technique which is

applied only after a suitable solution has already been found. The purpose of this paper is

to give some general geometric interpretations of the sensitivity ,oncept anod to shDw that

the se:nsitivity analysis can be easily integrated into) the primary solution process without

aohliii iuxdulv to the computational cost. The approach is based on the application of some

I ien 'rnt ial-geoxnetric considerations which have been shown earlier to be very natural in

C~, , !,Ct ion with iarani t(rize ( eqoiations (1.1). (see e.g. [3], [S]. [91
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2. Background

The operator F in (1.1) may represent a system of nonlinear equations in several real

variables or some boundary value problem in the state variable z. In the latter case, a

discretization has to be introduced for the computational solution of the problem, and thus

in either case we arrive at a finite-dimensional equation.

It is useful to combine the state variable z and parameter variable A of (1.1) into a

single vector .r and hence to write the equation in the form

(2.1) F(x) = 0.

Here we assume that F E C R' - Rn . d = n -  > 1, is of class Cr , r > 1 on an open

subset E C R'" and 0 C R' is a regular value of F; that is, rank DF(x) = rm fei all x in

the iUvcrse image F -1)(0).

Under these conditions it is well-known that the set of all regular solutions,

(2.2) AI={ x E; F(x)=0}

is either empty or a (1-dimensional Cr-manifold in R" without boundary. We assume

always that AI € 0. For simplicity the tangent space Tx1 M at any point x of Al will be

identified here with the d-dimensional affine space

(2.3) T, 1 1 = {(x,p) E {x} x R"; DF(x)p = 0}.

For numerical purposes a computationally feasible scheme is required for fixing local

coor(ilil, .,, ,,is at a given point xo C Al. We consider only orthogonal coordinate

-tclins aild call a linear map

(2.4) = (V '. I') c L(R m x Rd, fn); 1-TI I ,1+d, T I' j

;t 1,,, 11 nasis at r0  C Al if

2.5-) T' r ker DF(x0 ) {0}, T = rge Vd, T' = rge 1rn.
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I In terms of (2.4)1, the condition (2.5) is equivalent with

1(2.6) DF(xo)V'm E Isom (Rm ),

or, alternately, with

(2.7) (D x) E Isom (R').

We introduce the function

I(2.S) G : 1,,T(E - xO) C R' x R d '-+ R', G(y,,r) = F(xo + Vd7- +±/Tn

Then, by the implicit function theorem applied to the equation

(2.9) G(y, 7-) =0,

there are open neighborhoods Sd C Rd of 0 C- Rd and Sn C R' of x'o, respectively, such

Ithat for any r E Sd there exists exactly one solution y of (2.9) with xO ± Vdr + Vin £ S

and that the mapping 0 Sd -+ R', ~()=y is of class C' on Sd. Evidently, we have

I b(0) =0 and

(2.10) 4bD: Sd C Rd +R', (D(r) =xo±+V-r +Vm(-r), V7 CSd,

j is a Cr-diffeonorphism from Sd onto Al S,. In other words, D is a chart of .11 at .TO

and we call (D the local coordinate map at xo induced by the local basis V" and refer to o

as the corresponding corrector function.

For any d-dimensional subspace T C R' we can choose an orthonormal basis 711. . . . . )

of 1R" suchi that T = span 171, .,, v, I and then set V =(' . . . . ) Since the

(oI1(litioti (2.5) depenids only on T, it makes sense to speak of a local coor -;natc'sv- cr

indiced by the subspace T. A point xO E J1l is called a foldpoint withI respect to the

I 511l)SpaC(' T if the condition (2.5) is violated: that is, if T does not indutce a local coordinate
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1 Obviously (2.5) always holds for the d-dimensional subspace T = ker DF(xo). In view

of our definition (2.3) of the tangent spaces, a local coordinate map induced by ker DF(xo)

shall be called a tangent-coordinate map and the corresponding local basis a tangential

local basis. We shall always denote tangential bases by U = (Urn, Ud) and their induced

local coordinate map by

(2.11) J "Sd C Rd -4 R n , P(w) xo + Udw -+ (w), VW E Sd,

-Note that any tangential local basis U is characterized by (2.4) together with the condition

I DF(xo )Ud = 0 which automatically implies (2.5).

As suggested by (1.1), in many applications the equation (2.1) typically represents

I some multi-parameter problem which means that some natural d-dimensional parameter

subspace A C R' has been identified. Then A defines a natural local coordinate system at

all those points x E Ml where A' n ker DF(x) = {0}.

3. First Order Sensitivity

Suppose that a local basis map (2.4/5) has been chosen at the point xo E M and that

(2.10) denotes the induced local coordinate mapping. Then the derivative

(3.1) D4)(O)y = Vdp + VrD¢(O)p, u1 E Rd,

represents the "change" of the solution x 0 in the local coordinate direction p E Rd Ac-

cordiugly, it is natural to define the derivative of the corrector function i : Sd -4 f"; that

is. the linear 1,iap

(3.2) Z L(Rd,Rm), E = D6(0),

as the sensitivity map at .- tx with respect to the local basis V and to call the image vector

1 Zp C R" the sensitivity of the solution xe E M in the direction p. It is essential to observe

that this definition of sensitivity depends intrinsically on the choice of the local basis V.
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the In applications where a natural, d-dimensional parameter subspace A C R" is given.

Ithe sensitivity map can be defined at all those points of M'I where A induces a local

coordinate system. In that case we speak of the sensitivity mapping at these points with

respect to natural parameter changes.

In order to relate our sensitivity definition to that indicated in the Introduction, let

I V = (V,) be a local basis at xo with corresponding local coordinate map (2.10).

Recall, that y = 6(() is fol aniy r E Sd the unique solution y of the equation (2.9) such

that xe + dT + i",y C S,. Evidently, we have

(3.3) DG(0,0) = DF(xo)Vd, DIVG(0,0) = DF(xo)V,,,

and by differentiation of G(4)(r), r) = 0 't follows that

(3.4) DYG(O,O)D 4D(0) + DG(O,0) = 0.

This agrees exactly with the definition (1.2) when applied to the mapping G at a point

where the natural parameter space A may be used to induce the local coordinate map.

From (3.3).(3.4). and (2.6) we obtain the explicit representation

(3.5) Z= -(DF(xo)Vn)- 1 DF(xo)Vd,

which plays a central role in many sensitivity studies.

As a typical simple example consider the cubic

I
F :R -+R 1 ; F(x) =x3- Ix2 - X 3 , ViE]C3R

Since DF(.r0 ) = (3rf 2  -x.r -1) we see that V = 3 defines a local coordinate mapping

0 on .l for all x C 1l with 3x - X2 $ 0 and (3.5) provides that

1

(3 1 - X2 -) .

-Note that .r = 0 is a foldpoint with respect to V where E indeed is not defined.

6
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Suppose that U = (Urn, Ud) defines a tangential local basis at x0 with corresponding

local coordinate map (2.11). Then by (3.5) and the tangency property DF(xo)Ud = 0 we

obtain E 0. In other words, with respect to any tangential local basis the sensitivity

mapping always has the value zero.

Let V (1", Vd) again be any local basis at x 0 with corresponding local coordinate

map (2.10). Then the relation

(3.6) X = X0 + V ' + V0(7) x0 + Ud' + (),

has to hold for all x in some neighborhood of x 0 on M. From (3.6) it follows that tie

coordinate transformation relating ,' and 7 is given by

(3.77 d -6():= 1 u + vru",,(W).

Hence, from D,(0) 0 it follows that D1(0) = VdTUd. Note that by (2.7)

DF(xo) DF(xo) (DF(xo)DF(xo)T vdUd) G Isom ()

and hence, because of DF(,O)DF(x0 ))T  Isom (R"), that D,(0) VTud E Isom (Rd),

as expected.

From (3.6) we see that

0(r) - Vr,'icW + UmZJ'(,)

which together with Du'(0) = 0 provides the new representation

(3.8) -= ITU1(.d'd)

for the se lsisitivity mapping with respect to V. The equivalence of (3.5) and (3.8) can

also 1w. cst al)lishvde directly. In fact, from the relation

(3.9) - d + ;
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it follow-, 0bat

DF(xo )(Vd ' + 1 1 ,T )Ud -DF(xu,)[Ui 0,

and therefore that

-(DF(xu)I"7 )1 'DF(xo)Vd 1,d(d T)

as cliZmed.

For the comp111utation of the sensitivity map E by means of the representations (3.3) Or

(3.8) we have to solve an mn x 77 system or a d x d system of linear equations. respectively.

In practice, n is large while d i, relatively small. Thus the computatioiial cost for (3.3)

en erally e-xc(-eds that of (3.8). In this connection, it is important to observe qlso that

3.8) does not depend on the orthogonaliy property b'fd d 'd b)ut only on the fact that

Ithe( ColumnIIs of I'd span the null-space her DF(xo ). Indeed, for any) Ud C L(Rd. B" ) withI

IDF(xuj )d , and ran~k td d there exists some A C Isomn Rd Such that, I I d LA

whence

3n VLd(VdT L'd)' V~dAA1 d Ud) d(rndd d)

4. Some Geometrical Aspects

As, lbefore. at the niveil point r(, E Al leIt V - (V,, Vjj) be any local basis andl U I d)E,

I a t aiigeniial local bai.TlIeii by (3.S ) the senlsitivity at xO in the direction p G fIwt

3 reS1J)e-t to( V is gveil by thle vector

3 '7 Vd~d 1';d) ji E R.

Let v' ((I; 'n i dht rodiice thle ii-dimenisional vectors

(4.1 1^ = Uw ( ker DFOx~J). b1 Vdjp CT =rge V~. & V;,, cT-
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1 for which evidently

I (4.2) V,,2 ="K , L 1,2

I Then we have

(4.3) d, -rT, 'dI= T n mZ

anc

(4.4)p +a-- dd + d' d7 Tl

i Inl other words. 2' is he uniqe vector in ker DF( 0 ) for which the orthogeonal )ro(ject ion

onto T eqials /I. and a is the orthogonal projection of / onto T' = rge I,

3 As a simple scalar measure of the directional sensitivity a it is natural to comlpute the

norm 11al[.7 For this note t,'at by (4.3)

(4.5) -T = i T tT , = Tt tTt,.-TI = 1/i1112

and thereforeI cos e 11_11

where 0 < < /2 represents the angle between I and f/. Moreover, from (4.4) it follows

that

IT,' = I17112" &T
-/I = 0,

whence in view of (4.2)

(4 .6 ) 11, /112 = I (Y12 + 11l112 ,

ani thus

(4.7) 1]osI 20n-1/111 hio
II/YI12 = /1 11 II1 .• [1 - sin 2 ]



Eva leii ly, for 0 /2 tlit coiii in (2.3 ) is violated mid o)bviously this o)ccurs exactly

when x.1-nis a f 11(1)01nt withI re'spect to T. Thus thle seiisit ivxitv provides a measure of tli.

'-'hit alilitv (It tilt l((Il t'(I)r(inlat( sYstem in diiced by T for represent ing -1 locally necar thei

Iii t he spec'(ial cas(' (1. 1 of one-dimlensional mnanifolds the angle' 0 is explio-it] kn( wn.

InI faCt, for d = I SUi)IMt15 thiat DF(io)ti= 0, HuH9 - 1 mid1 that V =( V,,. i'), it, G V,"';.

Ic' , 1. i> a h()cvl 1 asis at 2(1. Tlxemin i' (E R' and fl anid p are i?-vectors iii the direct inn

)f 11and 1. respt ''tively: that is. wve have

1 0 em 1811 '. the (hst ance I tt\'(enl anly two). equi-(Iill(icisiouafl liuear suhbspwes .S, auIi~ S,

I ~ R i dtti'dLv(list ( S1.S2) = l P1 - ' H2I

\Vhi''e P, i-' thi' prh(rollJrojection i oto S,. i 1.2. Ini the case (If omit'-(imcne lioil

I ;JI('(' it 15 easily sttli (set' e.g. [4] ) t hat

(list )S 1 S1)) =Sinl 0

wht re 0) is th li81igh'c I Itee (t'Ith two PlIlmpac('. Thus foir (I =1 alti with i) = ker D F(,

F ~ W Mt iay write (4.7) as

(list ( T. To )

1I''2 F - ( is t ( T .T o )2  / 2 In .

M(trtove-.r sno iici thiis (cj('' C L) I?l R"VI ) ,u - it 1. ail( It C Rt1 . (4.8) imiijlies that

E1H9 (list (T TO ) /(l[ -ist (T. To)-]/

It t iirnis (mit thI it (4.9 ) holds geni(rally fori' mnifoldIs of ;1:1y (ilin('isioi d!. III order('i to(

I ~ -'t hi- 1t

(4 1 It .4 '( 1 U,11  iB d (ia- ((coS 0 1 ..... o C (-" 0d) 0 5 0~ 1 . ... &Xj <

I1



I be the singular value" decomposition cf I J'IT and set again To ker DF(.zo). Then it is

I weil known that

(4.1 1) clist (T, T0 ) = sin Od,

I 's ' ,.g.,. [GVL]. p 2 4 ). By (4.6) we have

2 1102 2,iI II L \1v:: ,- I12  - liiII 2

d)(1 l1 1('d)

I. :,xihlX ,i,= II ( 1JU,) 112 d fl(y 1 Ur - '2 - 1.

I v 4. 1() we sc e that

d 1-O2 COS O

1 = sin 2 0

cos I - sin O2

wt~ilil to2'thler withi (4.11) gives (4.9). a-: claimed.

5. Second Order SensitivityI
L,t U U,,. (Lj) be. a tangential local basis at X() E A and i;' the correspon(ling corrector

ifrmictimii. Then we sma that the sensitivity map E = D,,j(0) is zero. ald hieice it is of'

iut t I, ;('01 i(ilr ;1w s(econd ,derivative D2 ,"(O). For this we ass ime fro-ii now onl thaitI
i ir xinipping F is at last of class C' with r > 2.

Tlie natural inner product of R" induces a R ienannian strumcture onl the manifold

.W. In [6] an algorithm was developed for computing the secol( fundamental tensor on

1!. Moreover. it was shown that for suitable bases of the t angext and normal space.s

tis tensor equals the (lcsir'(l second derivative of the corrector function for tangential

11
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local coordinate systems. We shall not detail this approach here but sketch only the basic

numerical method of [6] as it applies to the computation of the corrector function.

Let U = (U,,Ud) be any tangential local basis at xo E M with (2.11) as the induced

local coordinate map. For any given p E R d with 11i'1 2  1 we have 'I(tp) E Sd for all real

t in some interval J - (-c. e). Then

(5.1) J A, (t) =xo + tUdl + b /,(t/), t E J,I
defines a path on .l through x0 which has at x0 the tangent vector {IO} X '(0) =

I {.0) } x Ldp. Moreover, we have c"(t) = UmDU,(tp)(P, p) and thus It( 0 )T 1(0 ) = 0.

3 Let r/ : JO J be the transformation of the arclength , of the path to the parameter

t. and define o ,J l b ((s) = -(b(s)), s E Jo. Then IO'(0) 2  1 ensures that

3 7i'(0) = 1 and from

3 0 = 2 "( T ) . 271"( .s) ,/(s)'(V(s)) 2
2 + 2r'(s)2  Tj (S))T& 77 (S))

3 it follows th,-t r/"(O) = 0. Therefore we have ("(0) = "(O) and hence

3 0  11V'(0)112 = JIUnID 2 ,'(O)(y, P) 112

Si's the curvature of the path at x0 and the direction of "(0) equals that of the principal

inornral of L.

I With soie sufficiently small to E J set .l = toP, W2 = -top and

3 (5=2) 10 + + Ud + Umt'(wi), i = 1,2,

3 If the triangle defined by the points X0,X1,X2 is non-degenerate then the curvature of the

circimsicrihing circle is given by Heron's formula

4
Ak = -[(, - a)(s - b)(s - C)]11 2

12I



where s = (a+b+c)/2, a = 11xI - X0112, b = IJX2 - 10112, With the normalization a, = a/c,

bc = b/c this can be re-written as

(5.3a) = 1 + 1](1 6 )12sin a,
c a, ac

where

1
(5.3b) 6=ac-bc, a=arcos, -

ac + b,

When 1 - falls below the machine precision then, in floating point arithmetic, a will be

zero and we set k = 0. Clearly, if to tends to zero then the circle through xo, XI, X2 tends

to the osculating circle of the path at xo and hence i- becomes the curvature ko. Thus our

algorithm produces an approximation k of ko .

If i" is not zero then an approximation fi of the principal normal of the path at xo can

be generated by orthogonalizing the sum-vector (XI -Oo) + (X2 - XO) with respect to UdtL

and then normalizing the result. In other words, we apply the algorithm

(5.4) i, := (Xi - Xo) + (X2 - xo); il := i- [(Udi)Th]uLd; '1 := /llh112.

Thus altogether

(,) UmD2(2, 0)(I, P) -- kii.

The bilinearitv and symmetry of U,, 2D2 )(0)(/p, p) implies that for any vectors P 12 112

Rd and with I" = II + /12 we have

1

U, D2% 1.(0)(p 1. 12) =[U,D 2V(0)(V, V) - Um D2 t'(O)( ,I- P)- U,, D '( 0)(112 , P 2 )]

Hence by applying the above algorithm three times we can compute also U,,D2 ,(0)(/pI, '2).

Generally, for the evaluation of this derivative for arbitrary pairs of vectors 1tt I.2 E Rd

we need to compute only the d(d + 1)/2 terms UmD 2  <()(Ili, ti), 1 j < d for some

basis /I, l.,11d of Rd, (see [6J).

13



NOW let V =(Vm, Vd) be any other local basis at xo E Al with corresponding corrector

function o. Then it follows from (3.7) and D-y(O) = 1VTLd that for any 111 , 1 2 E R d

,~fD 6(0)("'Jd d 1, Vd UdP2) + [VI + VmE1Dy()p ,12) = UmLr, 0),i,/')

Hence with

and (3.9) it follows readily that

(3.6 -,, ;lD ~o(dUdP I V 7 'U2) = [VVT - VmSVdT]UmD~()ii1)

Now, note that by (3.8)

(I,- 1 yT 1  N-IT= 1 , 1Tp 1j T(T& I1T

5.)771 "1 Tfl d m f m' P = 1, U-dkldd)-d

Sill(-( PVm = Im~ and P~d = 0, we see that P E L(R ), R') is the projection onto rge VM

p~arallel to rge Ud. 'Moreover, it follows that dm~' = I -V ,)p = P whence by

(5.6)

(5.S) VMD )1rTd-1 /2 = PUmD2 ( A(1i2 ), Ili c R, 1 ,2,

where the right hand side can be calculated by applying the above algorithm.

6. Some Example Problems

A simple 0-dimiensional model of the global energy balance of the earth's climate has been

dliscussed1 in (21 and 151 (see also [101). In dimensionless form it can be written as

dt

Here the state variable 7r is a dimensionless temperature defined as the quotient TITO of

an average surface temperature T of a spherical planet and a reference temperature To.

14



The function a is a model of the planetary albedo assumed to depend principally on the

extent of the surface snow cover. All constants are dimensionless and, in particular. c

characterizes the global heat capacity. The parameter e defines the effective emissivitv

which incorporates the effect of water vapor, carbon dioxide, dust, etc., upon terrestrial

radiation while p characterizes the variation of the solar radiation from the reference value

I 1. The model assumes that all quantities are annually averaged to remove the seasonal

cycle.

We use the reference temperature To = 288.6°K of [3] and the constants a = 1.14.

1) = 2.8. a ,.,, = 0.2. ama = 0.8. As in [5], for the computation the albedo-definition is

replaced by a( r) 3(b - pr) where

0.2 if s < 0.2 - 6,0.2 + (s - 0.2 + 6)2146 if Is - 0. 21 < 6,
,3(s) = s if 0.2 + 6 < s < 0.8 - 6,

0.+s0. + 6) 2 /4 fl-0.1 6
s - (s - 0.8±+ 1)2 /4 6  if Is-0.8l <
0.8 if s > 0.8 + 6.

with = 10. Then the equilibrium configurations of the model (6.1) are the solutions

of the equation

(6.2) f(x) H -aTr 4 + /1 - / 3(b - pr)] = 0, Vx = (7, 6, 1 1,)T E R4 .

an( these form a three-dimensional manifold Al in R'.

The equilibrium configuration x E Al is (asymptotically) stable if rl(,) < 0 where

I3 r7(jr) = pL- p - 4ae-r ,

I
is the derivative of f with respect to r. Moreover,the foldpoints on M with respect to the

space of the three parameters, are the points where 77(x) vanishes. These foldpoints form

the two-dimensional sub-manifold

Io x C R 4; X 4(b-1) 27tp 4

3p' 256a(b - 1)3 , I  )T

15



of -l. Observe that on AM0 the albedo has the constant value 0.4. Table 6.1 lists some

points of / 0 .

1.4 1.714 0.1370p1
1.3 1.846 0.1843/1
1.2 2.000 0.2538p
1.1 2.182 0.3595p
1.0 2.400 0.5263p

0.98 2.449 0.5706p
0.96 2.500 0.619711
0.94 2,553 0.6741p
0.92 2.609 0.7347p
0.90 2.666 0.8022p
0.88 2.727 0.8776/p
0.86 2.791 0.9622p

Table 6.1 Foldpoint Submanifold

j The current climate x0 C Al is assumed to have the components 70 0.9893, 4 =

1. 0 = 0.7071, Po = 2.6 where 7"0 corresponds to an absolute temperature of 285.5'K and Po

to the dimensioned slope 0.009 for the albedo decrease used in [10]. Since 77(x 0 ) = -0.5220

this current point is stable.

In the cited articles interest has focussed on the path on M through x0 toward M0

j when p is allowed to decrease while E = e0 and p = Po are held constant. Some points on

this path and the corresponding values of the first-order sensitivity ( = (O 1 , 7 2 , 013) are

(given in Table 6.2.

/7-17 01 02  r3 110'112~
1.0 0.9894 -0.5226 -2.090 1.478 -1.893 3.184

0.995 0.9816 -0.4500 -2.352 1.672 -2.182 3.618
0.99 0.9730 -0.3703 -2.760 1.971 -2.628 4.290

0.985 0.9623 -0.2733 -3.578 2.569 -3.522 5.639
0.98 0.9501 -0.1658 -5.605 4.044 -5.732 8.979

0.9775 0.9411 -0.8738(-1) -10.23 7.402 -10.770 16.60
0.9758 0.9307 0.2462(-3) 3474. -2518. 3780. 5718.

Table 6.2 Decreasing Solar Radiation
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These data show clearly how the sensitivity increases as the points approach the foldset

M0. Since 6 incorporates the so-called greenhouse effect it is also interesting to see the

effect of decreasing E. Table 6.3 lists some points on the path on M through x0 when E is

allowed to decrease while y jo and p = Po are held constant.

ET 77 t01 0__2_ 0'3 1012

0.7 1.003 -0.6236 -1.852 1.297 -1.609 2.775
0.68 1.037 -0.8549 -1.540 1.047 -1.213 2.223
0.66 1.066 -1.046 -1.408 0.9290 -1.019 1.971
0.64 1.093 -1.215 -1.341 0.8582 -0.8998 1.829
0.62 1.120 -1.371 -1.308 0.8110 -0.8170 1.743
0.60 1.146 -1.517 -1.296 0.7776 -0.7555 1.690
0.58 1.172 -1.656 -1.298 0.7530 -0.7078 1.659

Table 6.3 Decreasing Emissivity

As a second example we consider the following model of an exothermic chemical

reaction with convective transport

-u"+vu' =(1-u)exp(a - ), 0<t<1, u(0) =u(1) =0, a= 121n 10,(1+u)

discussed in [1]. We use the upwind discretization

-(1 + 'h)zi-1 + (2 + vh)zi -zi+l = h2 (1 - zi) exp(a ) (6.3)
(1+ zi)

i =,...,n, zo = zk+ =0.

on a uniform mesh with step-size h = 1/(k + 1). For k = 9 the 2-dimensional solution

manifold of (6.3) was triangulated by the algorithm of [9] in a neighborhood of the point

• to = (zu,\.V) G RI for which A = 23.907, v = 999.978 and the state vector z =

Z ..... 9) 7' has the components

-1 = 4.6067(-3), z2 = 9.7851(-3), z3 = 1.5694(-2),

Z4 = 2.2570(-2), Z5 = 3.0790(-2), z6 = 4.1012(-2),

z7 = 5.4582(-2), zS = 7.5449(-2), z9 = 1.3374(-1),
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For the first 23 computed nodal points of the triangulation Table 6.4 lists the values

of the last (and largest) component z9 of the state vector and the two (natural) parameters

v and A together witb the Euclidean norm of the sensitivity . at each point with respect

to the parameters.

node 3 9  V A 1112
(1,7) 1.70238(-l) 23.9573 999.957 0.398724
(2,7) 1.70246(-1) 23.9573 1000.00 0.398640
(1,6) 1.67282(-1) 23.9494 999.935 0.435477
(2,6) 1.55214(-1) 23.9248 999.978 0.680829
(3,6) 1.67276(-1) 23.9493 1000.02 0.435561
(1,5) 1.50738(-1) 23.9187 999.913 0.851227
(2,5) 1.50739(-1) 23.9187 999.957 0.851212
(3,5) 1.50739(-1) 23.9186 1000.00 0.851198
(4,5) 1.50740(-1) 23.9186 1000.04 0.851183
(1,4) 1.30793(-1) 23.9070 999.892 16.1791
(2,4) 1.33738(-1) 23.9072 999.935 8.80483
(3,4) 1.33741(-1) 23.9072 999.978 8.79455
(4,4) 1.33743(-1) 23.9072 1000.02 8.78402
(5,4) 1.30793(-1) 23.9069 1000.07 16.1566
(2.3) 1.15878(-l) 23.9132 999.913 1.07936
(3,3) 1.15878(-1) 23.9131 999.957 1.07939
(4,3) 1.15879(-1) 23.9131 1000.00 1.07942
(5,3) 1.15880(-1) 23.9130 1000.04 1.07945

(3,2) 1.13146(-1) 23.9157 999.935 0.922609
(4,2) 1.13132(-1) 23.9156 999.978 0.921912
(5,2) 1.13119(-1) 23.9156 1000.02 0.921225
(6,1) 9.43086(-2) 23.9451 999.957 0.448821
(7,1) 9.43010(-2) 23.9451 1000.00 0.448722

Table 6.4 Sensitivities at Triangulation Nodes

The nodes are indexed by a pair of integers (i,j) where (3,4) is the above given point

.r. They form 30 triangles specified by the following node-triples

(i1),( + 1),(0i + 1 M)} (0" J), (I + 1, 3 - 1), (7 + 1l J)),

1< i,i+1<4, 1<j,j+I <7, 5<i+j<8.

I In Table 6.4 the nodes (i,4), i 1,... ,5 carry a significantly larger value of IIEII2.

This indicates that this line of nodes should be near a foldline with respect to the natural
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parameter space. This is indeed the case. A foldpoint computation with a standard

augmentation of the mapping (6.3) started from x0 converged very quickly and from the

resulting point a continuation process readily produced the expected foldline. Table 6.5

gives the values of z9 , A, and v of some of the computed points on that foldline.

X9  v A
1.30771(-1) 23.9074 999.578
1.30773(-l) 23.9071 999.848
1.30773(-1) 23.9070 999.938
1.30774(-1) 23.9070 999.978
1.30774(-1) 23.9069 999.988
1.30774(-1) 23.9069 1000.02
1.30775(-l) 23.9068 1000.11
1.30777(-1) 23.9065 1000.38

1.30780(-1) 23.9061 1000.76

Table 6.5 Foldline

These results certainly show that the sensitivity norms represent an excellent indicator

for the existence of nearby foldpoints which could be used effectively in any computational

study of the characteristic properties of the solution manifold.
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