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Abstract: The sensitivity of a solution of a parametrized equation

F(z,\) = 0 with respect to the parameter vector A is usually defined | Acconr:.
as the change of the state = in dependence of \. In other words, for |==="=="
any solution expressible in the form (z()).X) with sonic smooih func- |
tion = = (z\A) the sensitivity is the derivative Dz(\). Tvpically the
solutions form a manifold M in the product of the state-space and the ; ‘"""~
parameter space and this sensitivity is available only at those points of | ¥ ' ¥
M where the parameters can be used to define a local coordinate sys-
tem. This paper introduces a general sensitivity concept which applies | Gy

at all solutions on M and which includes the earlier definition. Some | L.:% 5. -
general geometric interpretations of the new measure are presented and ===~~~
it 1s shown that the sensitivity analysis can be easily integrated into the !

solution process. The theory also suggests the introduction of a readily | i7"

computable second-order sensitivity measure reflecting the curvature- | Uit

behavior of M. Two numerical examples illustrate the “discussion. g

p|

1. Introduction

Mathematical models for many scientific and engineering problems have the form of a

nonlinear equation

(1.1) F(z,\) =0,

i
O
’Na,.;
a

involving some (often infinite-dimensional) state variable z and a finite-dimensional vector
A of parameters. The computational tasks then include not only the calculation of suitable

solutions but also the determination of their sensitivity under variations of the parameters.

In recent years the literature on methods for a sensitivity analysis of specific problems

has been growing rapidly (see, e.g., [7], [11] and the references given there). Most of this
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work 1s based on the assumption that near a given solution (2, Ag) of (1.1) the state =
depends smoothly on the parameter vector A: that is. the solutions of (1.1) can be witten
in the form (z(A).A) with some smooth function z = z(A). Then the derivative Dz(\;)
of z at Ay is a natural measure of the sensitivity of the solution (z(Ag). Ag). For suffiently

smooth F this sensitivity measure has to satisfy the linearized equation
(12) D:F(Z()./\())DZ(/\(J)+D,\F(30./\0):0.

If this equation is explicitly avnilable and D.F(zg, Ag) is invertible then Dz(Ay) can be
computed from (1.2). Codes for solving (1.2) for various applications in molecuvlar dynamics
are cited in [7]. When the partial derivatives D.F and Dy F are not explicitly known we
may consider the use of some difference approximations for them in which case there is also
a need for studying the influence of these approximations upon the desired solution of (1.2).
Alternately, if the <ensitivity Dz(Ag)u in the direction of a parameter vector y is required
then one may compute approximations of z(Ag + 7u) for several values of the scalar 7 near

7 = 0 and then apply some numerical differentiation formula for approximating Dz(\g )p.

Generally. this definition of sensitivity does not reflect any of the underlying geometric
aspects: moreover, the indicated methods do not take much account of information that
may be available during the computation of the original solution (zg, Ag) itself. In fact.
sensitivity analysis is usually considered to be a "post-processing” technique which it
applied only after a suitable solution has already been found. The purpose of this paper is
to give some general geometric interpretations of the sensitivity concept and to show that
the sensitivity analysis can be casily integrated into the primary solution process without
adding unduly to the computational cost. The approach is based on the application of some
differential-geometric considerations which have been shown earlier to be very natural

connection with parameterized eqnuations (1.1). (see e.g. [3], [8]. [N
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2. Background

The operator F in (1.1) may represent a system of noniinear equations in several real
variables or some boundary value problem in the state variable . In the latter case. a
discretization has to be introduced for the computational solution of the problem, and thus

n either case we arrive at a finite-dimensional equation.
It i1s useful to combine the state variable = and parameter variable A of (1.1) into a
single vector r and hence to write the equation in the form

(2.1) F(z)=0.

Here we assume that F: EC R"— R™.d=n--m > l.isof class C", r > 1 on an open
subset £ C R™ and 0 € R™ is a regular value of F'; that is, rank DF(x) = m for all « in

the inverse image F{71(0).
Under these conditions it is well-known that the set of all regular solutions,
(2.2) M={r€eE, F(z)=0}

is either empty or a d-dimensional C"-manifold in R™ without boundary. We assume
always that A # 0. For simplicity the tangent space T, Al at any point = of M will be

identified here with the d-dimensional affine space
(2.3) T, M = {(z,p) € {z} x R": DF(z)p =0}.

For numerical purposes a computationally feasible scheme 1s required for fixing local

coorditiace wyoiems at a given point rg € M. We consider only orthogonal coordinate

svstems and call a hinear map

(2.4) |

il

(Vi Vi) e LIR™ x RER™Y, VIV =1 VVT =1,
a local basis at g € M if
{2.5) T+ nker DF(xg) = {0}, T = rge Vy, T+ = rge 1,.
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In terms of (2.4), the condition (2.5) is equivalent with
(2.6) DF(x¢)Vy, € Isom (R™),

or, alternately, with

(2.7) (Di,(ﬁ")) € Isom (R™).
d

We introduce the function
(2.8) G:VI(E—29) CR™" x R*— R™, G(y,7)= F(zo+ Vym + Viuy).
Then. by the implicit function theorem applied te the equation
(2.9) G(y,7) =0,

there are open neighborhoods Sy C R¢ of 0 € R? and S, C R" of z, respectively, such
that for any r € S; there exists exactly one solution y of (2.9) with zo + V47 + V¥ € S,
and that the mapping ¢ : Sq — R™, ¢(7) = y is of class C” on S4. Evidently, we have
6(0) = 0 and

(2.10) ®:5;C R R™ &(7)=1a0+ Vyr + Vind(7). Vre Sy,

is a CT-diffeomorphism from Sq onto M N S,,. In other words, ®~! is a chart of M at
and we call ® the local coordinate map at rg induced by the local basis V' and refer to ¢

as the corresponding corrector function.

For any d-dimensional subspace T C R™ we can choose an orthonormal basis v,
of R" such that T = span {v;41,....vn} and then set V = (171,..;.1‘,,). Since the
condition (2.5) depeunds only on T, it makes sense to speak of a local coorinate system
induced by the subspace T. A point xg € M is called a foldpoint with respect to the
subspace T if the condition (2.5) is violated; that is, if T does not induce a local coordinate

svstenn.,




Obviously (2.5) always holds for the d-dimensional subspace T = ker DF(z¢). In view
of our definition (2.3) of the tangent spaces, a local coordinate map induced by ker DF(xg)
shall be called a tangent-coordinate map and the corresponding local basis a tangential
local basis. We shall always denote tangential bases by U = (U,,,Uq) and their induced

local coordinate map by

(2.11) ¥:5,CRE— R, U(w) =19 + Uyw + Vipr(w), Vw € Sy,

Note that any tangential local basis U is characterized by (2.4) together with the condition
DF(z¢)"y = 0 which automatically implies (2.5).

As suggested by (1.1), in many applications the equation (2.1) typically represents
some multi-parameter problem which means that some natural d-dimensional parameter
subspace .\ C R™ has been identified. Then A defines a natural local coordinate system at

all those points r € M where A+ Nker DF(z) = {0}.

3. First Order Sensitivity

Suppose that a local basis map (2.4/5) has been chosen at the point o € AM and that

(2.10) denotes the induced local coordinate mapping. Then the denivative
(3.1) D3(0)u = Vau + Vi D0, pr € RY,

represents the “change” of the solution zo in the local coordinate direction y € RY. Ac-
cordingly. it is natural to define the derivative of the corrector function ¢ : Sy — R™: that

is. the linear map
(3.2) e L(RY,R™), T = Da0).

as the sensitivity map at oy with respect to the local basis V and to call the image vector
Sy € R™ the sensitivity of the solution ro € M in the direction p. It is essential to observe

that this definition of sensitivity depends intrinsically on the choice of the local basis 1.

)




In applications where a natural, d-dimensional parameter subspace A C R" is given.
the sensitivity map can be defined at all those points of M where A induces a local
coordinate system. In that case we speak of the sensitivity mapping at these points with

respect to natural parameter changes.

In order to relate our sensitivity definition to that indicated in the Introduction, let
V= (V. Vy) be a local basis at ro with corresponding local coordinate map (2.10).
Recall, that y = &(7) is for any 7 € S4 the unique solution y of the equation (2.9) such

that rq + Vy7 + Viy € S,,. Evidently, we have

(3.3) D.G(0,0) = DF(z9)Vy4, DyG(0,0) = DF(x¢)Vm,
and by differentiation of G(®(7),7) = 0 :t follows that

(3.4) D,G(0,0)D (0) + D,G(0,0) = 0.

This agrees exactly with the definition (1.2) when applied to the mapping G at a point
where the natural parameter space A may be used to induce the local coordinate map.

From (3.3).(3.4). and (2.6) we obtain the explicit representation
(3.3) S = —(DF(x0)Vin) ™' DF(20)Vy,

which plays a central role in many sensitivity studies.

As a typical simple example consider the cubic
F:R*— R, F(r)= 1;’ — 1172 — 3, V2 € R

Since DF(r) = (373 —x1,.—1,,—1) we see that V = I3 defines a local coordinate mapping

on M for all r € M with 372 — 75 # 0 and (3.5) provides that

v
>

1
(3r% — 2‘25(]‘1’ -1

Note that rq = 0 is a foldpoint with respect to V' where T indeed is not defined.
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Suppose that U = (Uy,, Uyg) defines a tangential local basis at z¢ with corresponding
local coordinate map (2.11). Then by (3.5) and the tangency property DF(z¢)U; = 0 we
obtain ¥ = 0. In other words, with respect to any tangential local basis the sensitivity

mapping always has the value zero.
g )

Let V' = (V, V) again be any local basis at x4 with corresponding local coordinate

map (2.10). Then the relation
(3.6) T =10+ Vam + Vi ¢(7) = 29 + Ugw + Un¢(w),

has to hold for all r in some neighborhood of ¢y on M. From (3.6) it follows that the

coordinate transformation relating w and 7 is given by
(3.7) T =~v(w) = VdTwa + 1"dTUmd’(w).

Hence, from Di>(0) = 0 it follows that Dv(0) = VI U,. Note that by (2.7)

(DF(10)> <DF(1‘0)>T _ <DF(;r,O)DF(:cO)T 0

4 s (DF(20)Va)” vdTUd) € lsom (A7)

and hence. because of DF(2)DF(2¢)7 € Isom (R™), that D~(0) = VdTUd € Isom (RY).

as expected.

From (3.6) we see that
o(r) = Vya Ugw + Ut (w)
which together with D (0) = 0 provides the new representation

(3.8) S =VIv vIugyt.

m

for the sensisitivity mapping with respect to V. The equivalence of (3.5) and (3.8) can

also be established directly. In fact, from the relation

(3.9) vyt = vl v vl =0,

T




it follows that

DF(xo)(VaV{ + ViuVIUy = DF(24)Uq = 0,

and therefore that
—(DF(2¢)Vm) ' DF(20)Vq = VIULV] U4,

as claimed.

For the computation of the sensitivity map ¥ by means of the representations (3.5) or
(3.8) we have to solve an m X m system or a d X d system of linear equations. respectively.
In practice, n is large while d is relatively small. Thus the computational cost for (3.5)
generally exceeds that of (3.8). In this connection, it 1s important to observe also that
(3.8) does not depend on the orthogonality property (/7 Uy = I but only on the fact that
the columns of Uy span the null-space ker DF(xy). Indeed, for any Lq€ L(R?, R") with
DF(.’I'U)[:({ = () and rark l?d = d there exists some 4 € Isom R? such that Ccd = 44
whence

VIUVIT)™ = VIUAAT (VIU)™ = VIUVIU) ™.

4. Some Geometrical Aspects

As before. at the given point g € M let V= (V). Vy) be any local basis and U = (U,,,. Uy)
a tangential local basis. Then by (3.8) the sensitivity at xo in the direction y € R with

respert to 1715 given ])}' the vector
Ty~ Trr \—1 n
ﬂ:S/l:‘m‘d(Ld Ld) /’ER .
Let 10 = (Y:v,'['(_',/ )~y and introduce the n-dimensional vectors

(4.1) =Ug€ker DF(ro). i=Vyp €T =1ge Vy. 6 =V,,me T,
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for which evidently

(4.2) ity = fivlas iy = Hallys W6ty = floll,.

Then we have

(4.3) VoVl o =ju VaVai=4
and
(4.4) p+ 6 =UU7 o+ vy lo =0,

In other words. & is the unique vector in ker DF{xg) for which the orthogonal projection

onto T"equals f1. and ¢ is the orthogonal projection of # onto T+ = rge 1

LI

As a stmple scalar measure of the directional sensitivity ¢ it 1s natural to compute the

norm lla|l,. For this note that by (4.3)
(4.5) To=0TUUTh = dTUUTrU Ty = ||,

and therefore

oS @ 1[1‘7 I> _— ”/1”2

T LA T e,

where 0 < © < 7/2 represents the angle between fi and 7. Moreover. from (4.4) 1t follows

that
o =|o|,% 6Th =0,
whenee in view of (4.2)
2 2 2
(4.0) Illy™ = llelly” + lull,"

and thus

: _ sin ©
— 1] /2”,“”2 = i - 29]]/2“/’”2'

,\
L
~1

_

lorfl, = [00512@

— Sin




Evidently, for © = = /2 the condition (2.5) is violated and obviously this occurs exactly
when ry s a foldpomt with respeet to T. Thus the sensitivity provides a measure of ti,.
suitability of the local coordinate system induced by T for representing M locally near the
current point .

Lii the special case d = 1 of one-dimensional manifolds the angle O is explicitly known.
[n fact. for d = 1 suppose that DF(ro)u = 0, {lull, =1 and that V= (15, w), w € V3
', = 1ois alocal basiz at #g. Then 1. € R and © and fi are n-vectors iu the direction

of u and w. respectively: that s, we have

cos J = w?! u.

Generally, the distance between any two. equi-dimensional linear subspaces Sy and §.

of R s detined by

dist (51.8y) =IP, = D],

where 7 is the orthogonal projection onto §;. 7 = 1.2, In the case of one-dimensional

spaces 1t s casily seen (see ce.g. {-}]) that
dist (5,.55) =sin O

where O 1s the angle between the two subspaces. Thus for d = 1 and with Ty = ker DF(ry)

we may write (4.7) as

ist (7.
(1.3) o, = — (LT )

‘ [1 — dist (T, T“)z}l/z

Morcover, sinee i this case T € LRV R™). m=n — 1, and g € R'. (4.8) implies that

(“Sf (T. :Tu)
(1= dist (T. Ty )"/

19, <), =

It turns ont that 14.9) holds generally for manifolds of any dimension d. In order to

NS Yhi\ l“f

(410 AT vIrnB = diag (cos O, cos Og), 00O, <...0, < /2.
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be the singular value decomposition cf le U4 and set again Ty = ker DF(xy). Then it 1

well known that
(4.11) dist (T.T,) = sin Oy,
(=ee .o [GVL] p24). By (4.6) we have

! 2 cTrr - 2 2
1Sl = 1OV T Tl = llall,
and hencee

)

v T ll,” = 1= v T, -

LT = max il =1
By i4.101 we see that
1

| "Tl' -1 =

T ”2 cos Oy

and thins

HV‘H 2 1 1 SIn 29(1
cos 20y 1 —sin 20,

[ 3

which together with (4.11) gives (4.9), a= claimed.

5. Second Order Sensitivity

Let U =, . Uy) be a tangential local basis at ¢ € M and ¢ the corresponding corrector
function. Then we saw that the sensitivity map ¥ = D (0) is zero. and hence it 1s of
interest to consider the second derivative D?2(0). For this we assume fro'n now on that
onr mapping F is at least of class C7 with » > 2.

The natural inner product of R™ induces a Riemannian structure on the manifold
M. In [6] an algorithm was developed for computing the second fundamental tensor on
M. Moreover, it was shown that for suitable bases of the tangent and normal spaces

this tensor equals the desired second derivative of the corrector function for tangential
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local coordinate systems. We shall not detail this approach here but sketch only the basic

numerical method of [6] as it applies to the computation of the corrector function.

Let U" = (U',,.Uy4) be any tangential local basis at o € M with (2.11) as the induced

local coordinate map. For any given u € R? with ||u||, = 1 we have ¥(tu) € Sy for all real

t in some interval J = {—e¢.¢). Then

(5.1) E:Jm— M, £t)=x9+tUgu+ Untp(tu), t€J,

defines a path on M through o which has at z the tangent vector {zy} x £'(0) =
{ro} x Uqp. Noreover, we have £"(t) = Up D%0{tp) (g, 1) and thus £"(0)7€'(0) = 0.
Let o Jy — J be the transformation of the arclength s of the path to the parameter

t. and define ¢ @ Jy — M by ((s) = &(n(s)), s € Jo. Then ||¢'(0)||, = 1 ensures that

7'(0) = 1 and from

0= 2¢"()T¢ () = 29" (M (SHIE MM, + 20 () € (sNTE (n(s))

it follows that 1"(0) = 0. Therefore we have ("(0) = £"(0) and hence
ko = [I€"(0)l; = [[Um D30 (1, )],

is the curvature of the path € at 7o and the direction of £”'(0) equals that of the principal

normal of &.

With some sufficiently small #g € J set wy = top, wy = —tou and
(5.2) T :J'()+lv"du.‘,'+Umd’(w,‘), 1= 1,2,

If the triangle defined by the points ry, 1,72 is non-degenerate then the curvature of the

circumseribing cirele is given by Heron’s formula

b= 2 [s(s —a)(s — b)(s — o)]'/?

abe
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where s = (a+b+¢)/2,a = ||z) — zolly, b = ||r2 — 20||,. With the normalization a. = a/c,

b. = b/c this can be re-written as

- 1.1 1 2 .
(5.3a) ===+ =)(1- §)%sin a,
ca, a
where
(5.3b) 6 b co !
.3b = q, — be, = SY, Y= .
5 ac Qa = arcos 7y, vy P

When 1 — ~ falls below the machine precision then, in floating point arithmetic, o will be
zero and we set k = 0. Clearly, if ¢y tends to zero then the circle through z¢. 21, r2 tends
to the osculating circle of the path at z¢ and hence k becomes the curvature ko. Thus our

algorithm produces an approximation k of k.

If k is not zero then an approximation n of the principal normal of the path at zo can
be generated by orthogonalizing the sum-vector (ry — rg) + (r2 — xo) with respect to Ugpu

and then normalizing the result. In other words, we apply the algorithm
(5.4) n:=(x; —xy)+ (29 —x3p); ni=n-— (Ugp)TA)Uqp; 5= n/l|nl,-
Thus altogether

(5.5) U D?0(0) (1 ) & k.

The bilinearity and symmetry of Uy, D?(0)(y, i) implies that for any vectors py, iz €

R? and with v = ji; + pp we have

Um D?0(0) (1. p12) = 5[Um D*0(0)(v, v) = Um D*9(0) (1, 1) = U D*4(0) (a2, p12 )]

o1 =

Hence by applying the above algorithm three times we can compute also U, D?y(0) (1. p2).
Generally, for the evaluation of this derivative for arbitrary pairs of vectors pi;, s € R?
we need to compute only the d(d + 1)/2 terms U, D?*¥(0)(p4, ¢15), 1 <7 < j < d for some

basis pr1, . .., pua of R%, (see [6]).
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Now let V' = (V},, V) be any other local basis at ¢ € M with corresponding corrector

function ¢. Then it follows from (3.7) and D~(0) = VdTUd that for any up, 2 € R?
Vi D2(0) (VI Ugpr, V{ Uapa) + (Va + Vi E]D?4(0) (11, p2) = Um D*9(0) (1, pra).

Hence with

D*4(0)(p1, p2) = Vi U D*p(0) (1, p12)

and (3.9) it follows readily that
(5.6)  VaD2(O)V Uapr, Vi Uapz) = [V Vil = Ve SV U D*(0) (11, r2).

Now note that by (3.8)

a
~1

Va VI =V, Sv ] =V, VIP, P =1, -UyVyTUg) ' VT,

Since PV, =V}, and PU; = 0, we see that P € L(R", R"™) is the projection onto rge V;,
parallel to rge Uy. Moreover, it follows that V,VIP = (I, — VIV,)P = P whence by
(5.6)

(5.8) Vi D2 (0) (VI Ugpr, VI Ugpz) = PUm D*(0) (1, o), pti € RY, 1=1,2,

where the right hand side can be calculated by applying the above algorithm.

6. Some Example Problems

A simple 0-dimensional model of the global energy balance of the earth’s climate has been

discussed in (2] and (3] (sec also [10]). In dimensionless form it can be written as
dr 4
(6.1) ey = p(l —a(r)) — eatr®, (1) = max(min(b — p7, ¥min), Amaz)-

Here the state variable 7 is a dimensionless temperature defined as the quotient T/T} of

an average surface temperature T of a spherical planet and a reference tempecrature Tj.
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The function a is a model of the planetary albedo assumed to depend principally on the
extent of the surface snow cover. All constants are dimensionless and, in particular. ¢
characterizes the global heat capacity. The parameter ¢ defines the effective emissivity
which incorporates the effect of water vapor, carbon dioxide, dust, etc., upon terrestrial
radiation while i characterizes the variation of the solar radiation from the reference value
i = 1. The model assumes that all quantities are annually averaged to remove the seasonal
cyvele.

We use the reference temperature Ty = 288.6°A of [3] and the constants a = 1.14.

h =28 amin = 0.2, ame, = 0.8. As in [5], for the computation the albedo-definition is

replaced by a(7) = 3(b— pr) where

0.2 if s <0.2-246,
0.2+ (s —0.2+8)2/46 if |s —0.2| <6,

3(s) =« s if0.2+6<s<08-4,
s—(s—08+68)%/46 if|s—0.8] <6,

<
o |

if s > 084 4.

with 6 = 1073, Then the equilibrium configurations of the model (6.1) are the solutions

of the equation
(6.2) flx) = —aer* + p[1 = B3(b— pr)) =0, Vz = (r.e,11,p)T € R*.

and these form a three-dimensional manifold M in R?.

The equilibrium configuration ¢ € M is (asymptotically) stable if n(2) < 0 where
Ey
n(e) = u %2 p - daer?,
S

is the derivative of f with respect to 7. Moreover,the foldpoints on M with respect to the
space of the three parameters, are the points where n(z) vanishes. These foldpoints form
the two-dimensional sub-manifold

4(b-1) 27up?

M, = 5, = , . )7
IO {JER, T ( 3p 256a(b_1)3»/‘ p) }
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of M. Observe that on M, the albedo has the constant value 0.4. Table 6.1 lists some

points of M.
T p €

14 | 1.714 | 0.1370
1.3 1.846 | 0.1843u
1.2 2.000 | 0.2538u
1.1 2.182 | 0.3595u
1.0 2.400 | 0.5263u
0.98 | 2449 | 0.5706u
0.96 | 2.500 | 0.6197u
094 | 2,553 | 0.6741u
0.92 | 2609 | 0.7347u
0.90 | 2.666 | 0.8022u
0.88 | 2.727 | 0.8776u
0.86 | 2.791 | 0.9622u

Table 6.1 Foldpoint Submanifold

The current climate xg € M is assumed to have the components 79 = 0.9893, iy =
1.9 = 0.7071, pp = 2.6 where 7y corresponds to an absolute temperature of 285.5° i and p,
to the dimensioned slope 0.009 for the albedo decrease used in [10]. Since n(zq) = —0.5220

this current point is stable.

In the cited articles interest has focussed on the path on M through zy toward Al
when p 1s allowed to decrease while € = ¢5 and p = py are held constant. Some points on
this path and the corresponding values of the first-order sensitivity o = (o, 05, o03) are

given in Table 6.2.

H T m o1 02 g3 ol
1.0 0.989%4 -0.5226 -2.090 1.478 -1.893 3.184
0.995 0.9816 -0.4500 -2.352 1.672 -2.182 3.618
0.99 0.9730 -0.3703 -2.760 1.971 -2.628 4.290
0.985 0.9623 -0.2733 -3.978 2.569 -3.522 | 5.639
0.98 0.9501 -0.1658 -5.605 4.044 -5.732 8.979
0.9775 | 0.9411 | -0.8738(-1) | -10.23 7.402 -10.770 16.60
0.9758 | 0.9307 | 0.2462(-3) 3474. -2518. 3780. 5718.

Table 6.2 Decreasing Solar Radiation
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These data show clearly how the sensitivity increases as the points approach the foldset
Mpy. Since € incorporates the so-called greenhouse effect it is also interesting to see the

effect of decreasing e. Table 6.3 lists some points on the path on M through zo, when € is

allowed to decrease while u = po and p = py are held constant.

€ T n g1 g2 93 loll,
0.7 1.003 | -0.6236 | -1.852 1.297 -1.609 2.775
0.68 | 1.037 | -0.8549 | -1.540 1.047 -1.213 2.223
0.66 | 1.066 -1.046 | -1.408 | 0.9290 | -1.019 1.971
0.64 | 1.093 -1.215 | -1.341 | 0.8582 | -0.8998 | 1.829
0.62 | 1.120 -1.371 -1.308 | 0.8110 | -0.8170 | 1.743
0.60 | 1.146 -1.517 | -1.296 | 0.7776 | -0.7555 | 1.690
058 + 1.172 } -1.656 | -1.298 | 0.7530 | -0.7078 | 1.659

Table 6.3 Decreasing Emissivity

As a second example we consider the following model of an exothermic chemical

reaction with convective transport

—u" +vu' = (1 —u)exp(a —

t<1 =u(l) =0, a =121In10,
(1+u))’0< <1, u(0) =u(l) a n

discussed in [1]. We use the upwind discretization

A
(14 z)

—(1+vh)zioy + (24 vh)zi — 241 = h*(1 = z;) exp(a — ), (6.3)

i=1,...,n, ZO=2k+1=0.

on a uniform mesh with step-size h = 1/(k + 1). For k = 9 the 2-dimensional solution
manifold of (6.3) was triangulated by the algorithm of [9] in a neighborhood of the point
ro = (zg.Av) € R'1 for which A = 23.907, v = 999.978 and the state vector z =

Theenn 9)7 has the components
z1 = 4.6067(=3), z2 = 9.7851(-3), z3 = 1.5694(—2),
zq4 = 2.2570(=2), z5 = 3.0790(-2), z¢ = 4.1012(-2),
7 = 5.4582(~2), zq = 7.5449(—-2), z9 = 1.3374(-1),
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For the first 23 computed nodal points of the triangulation Table 6.4 lists the values
of the last (and largest) component zg of the state vector and the two (natural) parameters
v and A together with the Euclidean norm of the sensitivity ¥ at each point with respect

to the parameters.

node Tg v A 1],
(3,7) 1.70238(-1) | 23.9573 | 999.957 | 0.398724
(2,7) | 1.70246(-1) | 23.9573 | 1000.00 | 0.398640
(1,6) 1.67282(- ) 23.9494 | 999.935 | 0.435477
(2,6) | 1.55214(-1 23.9248 | 999.978 | 0.680829
(3.6) 1.67276(- 1) 23.9493 | 1000.02 | 0.435561
(1,5) 1.50738(-1) | 23.9187 | 999.913 | 0.851227
(2,5) 1.50739(-1) | 23.9187 | 999.957 | 0.851212
(-1)
1)

(3,5) | 1.50739 93.9186 | 1000.00 | 0.851198
(4,5) | 1.50740(- 23.9186 | 1000.04 | 0.851183
(1,4) | 1.30793(-1) | 23.9070 | 999.892 | 16.1791
(24) | 1.33738(-1) | 23.9072 | 999.935 | 8.80483
(34) | 1.33741(-1) | 23.9072 | 999.978 | 8.79455
(44) | 1.33743(-1) | 23.9072 | 1000.02 | 8.78402
(54) | 1.30793(-1) | 23.9069 | 100007 | 16.1566
(2.3) | 1.15878(-1) | 23.9132 | 999.913 | 1.07936
(3,3) | 1.15878(-1) | 23.9131 | 999.957 | 1.07939
(4,3) | 1.15879(-1) | 23.9131 | 1000.00 | 1.07942
(5.3) | 1.15880(-1) | 23.9130 | 1000.04 | 1.07945
(3,2) | 1.13146(-1) | 23.9157 | 999.935 | 0.922609
(4,2) | 1.13132(-1) | 23.9156 | 999.978 | 0.921912
(5,2) | 1.13119(-1) | 23.9156 | 1000.02 | 0.921225
(6,1) | 9.43086(-2) | 23.9451 | 999.957 | 0.448821
(7.1) | 9.43010(-2) | 23.9451 | 1000.00 | 0.448722

Table 6.4 Sensitivities at Triangulation Nodes

The nodes are indexed by a pair of integers (1, ;) where (3,4) is the above given point
ro. They form 30 triangles specified by the following node-triples
((.0), (67 + 1) G+ 1,5)), ((5),@+1,5 - 1), +1,5)),
1<2,141<4,1<7,74+1<7,5<:+;5<8.
In Table 6.4 the nodes (,4), ¢ = 1,...,5 carry a significantly larger value of ||Zj|,.

This indicates that this line of nodes should be near a foldline with respect to the natural
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parameter space. This is indeed the case. A foldpoint computation with a standard
augmentation of the mapping (6.3) started from zy converged very quickly and from the
resulting point a continuation process readily produced the expected foldline. Table 6.5

gives the values of zg, A, and v of some of the computed points on that foldline.

Tg v A
1.30771(-1) | 23.9074 |} 999.578
1.30773(-1) | 23.9071 | 999.848
1.30773(-1) | 23.9070 | 999.938
1.30774(-1) | 23.9070 | 999.978
1.30774(-1) | 23.9069 | 999.988
1.30774(-1) | 23.9069 | 1000.02
1.30775(-1) | 23.9068 | 1000.11
1.30777(-1) | 23.9065 | 1000.38
1.30780(-1) | 23.9061 1000.76

Table 6.5 Foldline

These results certainly show that the sensitivity norms represent an excellent indicator
for the existence of nearby foldpoints which could be used effectively in any computational

study of the characteristic properties of the solution manifold.
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