
AD-A234 254 ENAlOENTAIONPAGE PNo07418
Pubhic reporling burden for (he coilectin of information is estimated to average 1 hour per response, icluding tthe time tor reviewing instrution. searching existing data sources gathering and maintaining tire Oala
needed, arnd revrewrrtg thle colledton of irtomratin. Send comments regarding tis burden estimate or any otti-r aspect of this collection of irforrnation. iuding suggestins for reducing tis burden. to Wasnmngion
Headquarters Serice. Directorate for Informration Oerations and Regatta, 1215 Jefferson Dave Highway. Sufe 1204. Arlington. VA 22202-4302 anid to thu Office of Infoirmation arid Regulatory Affairs. Office ot
Management and Budget Wasington. DO 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I I Final: 20 Aug 1990 to 01 Mar 1993

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SYSTEAM KG, AlsyCOMP_-025, Version 1.83, MIPS M/120-5 under RISC/os (Host
& Targett), 90081411.11041

6. AUTHOR(S)

IABG-AVF
Ottobwunn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION

IABG-AVF, lndustrieanlagen-Betriebsgeselschaft REPORT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSRO074
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301 -3081
11. SUPPLEMENTARY NOTES

1 2a. DIST RI BUTION/AVAI LABILITY STATEM ENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

SYSTEAM KGr AlsyCOMP_025, Version 1.83, Ottobrunn, Germanyr MIPS M/120-5 under RISC/os, Version 4.0 (Host &

14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.___________
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std 239-128

AVF Control Number: IABG-VSR 074

20 August 1990

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: #90081411.11041

SYSTEAM KG
AlsyCOMP_025, Version 1.83

MIPS M/120-5 under RISC/os Host and Target

-- based on TEMPLATE Version 90-04-03 --
-7

Prepared By:
IABG mbH, Abt. ITE
Einsteinstrasse 20
W-8012 Ottobrunn

Germany

A-A

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 14 August 1990.

Compiler Name and Version: AlsyCOMP_025, Version 1.83

Host Computer System: MIPS M/120-5 under RISC/os, Version 4.0

Target Computer System: MIPS M/120-5 under RISC/os, Version 4.0

As a result of this validation effort, Validation Certificate #90081411.11041
is awarded to Alsys. This certificate expires on 01 June 1992. This report
has been reviewed and is approved.

IABG mbH, Abt. ITE Ada Validation Organization
Michael Tonndorf 1 f)Director, Computer & Software
Einsteinstrasse 20 F Engineering Division
D-8012 Ottobrunn Institute for Defense Analyses
West Germany Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Systeam KG

Certificit- Awardee: Alsvs

Ada Validation Facility: IABG mbH. Abt. ITE

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: AlsyComp 025, Version 1.83

Host Computer System: MIPS M/120-5 under RISC/os, Version 4.0

Target Computer System: MIPS M/120-5 under RISC/os, Version 4.0

Declaration:

[I/we] the undersigned, declare that [I/we] have no knowledge of deliberate deviations
from the Ada Unguage Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the
implementation listed above.

1 /?t a, . l(eeii -ef. Date: ,/s]. l,
C"stonie? Signature

Ceti(CEa Date: go -de Sigt f [7
Certificate Aardee Signature

CONTENTS

CHAPTER 1 TEST INFORMATION 1

1.2 USE OF THIS VAIIDATION SUMMARY REPORT 1

1.2 REFERENCFS 2

1.3 ACVC TEST CLASSES 2

1.4 DEFINITION OF TERMS 3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES 5

2.1 WITHDRAWN TESTS 5

2.2 INAPPLICABLE TESTS 5

2.3 TEST MODIFICATIONS 8

CHAPTER 3 PROCESSING INFORMATION 10

3.1 TESTING ENVIRONMENT 10

3.2 TEST EXECUTION 11

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada*
Validation Procedures (Pro89] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation. For
any technical terms used in this report, the reader is referred to [Pro89]. A
detailed description of the ACVC may be found in the current ACVC User's Guide
(UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are accurate
and complete, or that the subject implementation has no nonconformities to the
Ada Standard other than those presented. Copies of this report are available
to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1]

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro89] Ada Compiler Validation Procedures, Version 2.0, Ada Joint Program
Office, May 1989.

(UG89] Ada Compiler Validation Capability User's Guide, 24 October 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A, B,
C, D, E, and L. The first letter of a test name identifies the class to which
it belongs. Class A, C, D, and E tests are executable. Class B and class L
tests are expected to produce errors at compile time and link time, respecti-
vely.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they are
executed. Three Ada library units, the packages REPORT and SPPRTl3, and the
procedure CHECKFILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECKFILE is used to check the contents of text
files written by some of the Class C tests for Chapter 14 of the Ada Standard.
The operation of REPORT and CHECKFILE is checked by a set of executable
tests. If these units are not operating correctly, validation testing is
discontinued.

Class B tests check that a compiler detects illegal language usage. Class B
tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of the
Ada Standard are detected. Some of the class B tests contain legal Ada code
which must not be flagged illegal by the compiler. This behavior is also
verified.

Class L tests check that an Ada implementation correctly detects violation of
the Ada Standard involving multiple, separately compiled units. Errors are
expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list of
the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and implementation-
dependent characteristics. The modifications required for this implementation
are described in section 2.3.

For each Ada implementation, a customized test suite is produced by the AU'F
This customization consists of making the modifications described in the
preceding paragraph, removing withdrawn tests (see section 2.1) and, possibly

2

INTRODUCTION

some inapplicable tests (see Section 3.2 and fUG89]).

In order to pass an ACVC an Ada implementation must process each test of the
customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementaticn.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer Functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes user-
written or user-designated programs; performs user-designa-
ted data manipulation, including arithmetic operations and
logic operations; and that can execute programs that modify

themselves during execution.A comuter system may be a stand-
alone unit or may consist of several inter-connected units.

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Confor=.ancc is realized cr attainable on the Ada implementation for

which validation status is realized.

3

INTRODUCTION

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or

complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs

Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.

Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [zPro89].

Validation The process of checking the conformity of an Ada compiler to

the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

4

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the Ada
Standard. The following 72 tests had been withdrawn by the Ada Validation
Organization (AVO) at the time of validation testing. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 30 July 1990.

E28005C B83022B CB7001B CD2A41E CD7004C CDA201E
B28006C B83022H CB7004A CD2A87A ED7005D CE2107I
C34006D B83025B CC1223A CD2Bl5C CD7005E CE2119B
B41308B B83025D BC1226A BD3006A AD7006A CE2205B
C43004A B83026B CC1226B CD4022A CD7006E CE2405A

C45114A C83026A BC3009B CD4022D AD7201A CE3111C
C45346A C83041A ADlB08A CD4024B AD7201E CE3118A
C45612B B85001L BD2AO2A CD4024C CD7204B CE3411B

C45651A C97116A CD2A21E CD4024D BD8002A CE3412B
C46022A C98003B CD2A23E CD4031A BD8004C CE3812A
B49008A BA2011A CD2A32A CD4051D CD9005A CE3814A
A74006A CB7001A CD2A41A CD5111A CD9005B CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for

a given Ada implementation. The inapplicability criteria for some tests are
explained in documents issued by ISO and the AJPO known as Ada Issues and
commonly referenced in the format AI-dddd. For this implementation, the
following tests were inapplicable for the reasons indicated; references to Ada
Issues are included as appropriate.

5

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L. .Y (14 tests) (*) C35705L. .Y (14 tests)
C35706L. .Y (14 tests) C35707L. .Y (14 tests)
C35708L. .Y (14 tests) C35802L. .Z (15 tests)

C45241L. .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L. .Z (15 tests)
C45524L. .Z (15 tests) C45621L. .Z (15 tests)

C45641L. .Y (14 tests) C46012L. .Z (15 tests)

(*) C24113W..Y (3 tests) contain lines of length greater than 255

characters which are not supported by this implementation.

C34007P and C34007S are expected to raise CONSTRAINTERROR. This
implementation optimizes the code at compile time on lines 207 and 223
respectively, thus avoiding the operation which would raise
CONSTRAINTERROR and so no exception is raised.

The following 21 tests check for the predefined type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C

CD7101F

C35173D and B86001Z check for a predefined floating-point type other than
FLOAT, SHORTFLOAT or LONGFLOAT.

C35702A, C35713B, C45423B, B86001T, C86006H check for a predefined type
SHORTFLOAT.

C41401A is expected to raise CONSTRAINTERROR for the evaluation of
certain attributes, however, this implementation derives the values from
the subtypes of the prefix at compile time as allowed by 11.6 (7) LRM.
Therefore, elaboration of the prefix is not involved and CONSTRAINTERROR
is not raised.

C45624A checks that the proper exception is raised if machine-overflows is
false for floating point types with digits 5.

C45624B checks that the proper excaption is raised if machineoverflows is
false for floating point types with digits 6.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point operations

for types that require a SYSTEM.MAXMANTISSA of 47 or greater.

C86001F recompiles package SYSTEM, making package TEXT 10, ani hance
package REPORT, ubsolete. For this implementation, the package TEXTIO is
dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

C96005B checks for values of type DURATION'BASE that are outside the range

6

IMPLEMENTATION DEPENDENCIES

of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type (see AI-00561).

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

CD2B15B is inapplicable as the collection size allocated is larger than
the size specified by the 'STORAGESIZE attribute.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions.

EE2401D contains instantiazions of package DIRECTIO with unconstrained
array types. This implementation raises USEERROR upon creation of such a

file.

The 21 tests listed in the following table are not applicable because the
given file operations are supported for the given combination of mode and
file access method.

Test File Operation Mode File Access Method

CE2102D CREATE INFILE SEQUENTIALIO
CE2102E CREATE OUTFILE SEQUENTIALIO
CE2102F CREATE INOUT FILE DIRECTIO
CE2102I CREATE IN FILE DIRECT_10
CE2102J CREATE OUT FILE DIRECTIO

CE2102N OPEN INFILE SEQUENTIALIO
CE21020 RESET IN FILE SEQUENTIALIO
C-,2102P OPEN OUTFILE SEQUENTIAL_10
CE2102Q RESET OUTFILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECTIO
CE2102S RESET INOUT FILE DIRECTIO
CE2102T OPEN IN FILE DIRECT_10

CE2102U RESET IN FILE DIRECTIO
CE2102V OPEN OUTFILE DIRECTIO
CE2102W RESET OUT FILE DIRECTIO
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT_10
CE3102G DELETE TEXT 10

CE3102I CREATE OUT FILE TEXTIO
CE3102J OPEN IN FILE TEXT_10

CE3102K OPEN OUTFILE TEXTIO

CE2107C, CE2107D, CE2107L, and CE2108B attempt to associate names with
temporary sequential files. The proper exception is raised when such an
association is attempted.

CE2107H a-4 CE2108D attempt to associate names with temporary direct
files. The proper exception is raised when such an association is attemp-
ted.

CE2203A checks that WRITE raises USEERROR if the capacity of the external

7

IMPLEMENTATION DEPENDENCIES

file is exceeded for SEQUENTIALIO. This implementation does not restrict
file capacity.

CE2403A checks that WRITE raises USEERROR if the capacity of the external
file is exceeded for DIRECTIO. This implementation does not restrict file
capacity.

CE3111B and CE3115A associate multiple internal text files with the same
external file and attempt to read from one file what was written to the
other, which is assumed to be immediately available. This implementation
buffers output (see 2.3).

CE3112B attempts to associate names with temporary text files. The proper
exception is raised when such an association is attempted.

CE3202A assumes that the NAME operation is supported for STANDARDINPUT
and STANDARD OUTPUT. For this implementation the underlying operating
system does not support the NAME operation for STANDARDINPUT and
STANDARD OUTPUT. Thus the calls of the NAME operation for the standard
files in this test raise USEERROR.

CE3304A checks that USE ERROR is raised if a call to SET LINELENGTH or
SETPAGELENGTH specifies a value that is inappropriate for external
files. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation the value of COUNT'LAST
is greater than 150000 making the checking of this objective impractical.

2.3 Tn-hT MODIFICATIONS

Modifications (see section 1.3) were required for 17 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24009A B29001A B38003A B38009A B38009B
B91001H BC2001D BC2001E BC3204B BC3205B BC3205D

The following tests compile without error, as allowed by AI-00256 -- the units
are illegal only with respect to units that they do not depend on. However,
all errors are detected at link time. The AVO ruled that this is acceptable
behavior.

BC3204C BC3204D BC3205C BC3205D

IMPLEMENTATION DEPENDENCIES

CE3111B and CE3115A were graded inapplicable by Evaluation Modification as
directed by the AVO. The tests assume that output from one internal file is
unbuffered and may be immediately read by another file that shares the same
external file. This implementation raises END ERROR on the attempt to read the
file at lines 87 & 101, respectively (see 2.2).

PROCESSING INFORMATION

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For a point of contact in Germany for technical information and sales informa-

tion about this Ada implementation system, see:

Systeam KG Dr. Winterstein
Am Ruppurrer SchloB 7
W-7500 Karlsruhe 51
Germany
Tel. +49 721 883025

For a point of contact outside Germany for technical information and sales
information about this Ada implementation system, see:

Alsys Inc.
67 South Bedford Str.
Burlington MA
01803-5152
USA
Tel. +617 270 0030

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

10

PROCESSING INFORMATION

3.2 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was tested,
the tests listed in section 2.1 had been withdrawn because of test errors.
The AVF determined that 293 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported by
the implementation. In addition, the modified tests mentioned in section 2.3
were also processed.

A magnetic data cartridge containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The contents of
the magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of tests
was processed by the Ada implementation. Tests were compiled, linked and
executed (as appropriate) using a single computer.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of the
processing options for this implementation. It also indicates the default
options.

Tests were compiled using the command

sas.c 'file name'

and linked using the command

sas.link -o 'file name' 'main unit'.

The option -o was used to assign a dedicated file name to the generated exe-
cutable image.

Chapter B tests, the executable not applicable tests, and the executable tests
of class E were compiled using the full listing option -1. For several tests,
completer listings were added and concatenated using the option
-L 'file name'. The completer is described in Appendix B, compilation system
options, chapter 4.2 of the User Manual on page 39.

Test output, compiler and linker listings, and job logs were captured on
magnetic date cartridge and archived at the AVF. The listings examined on-
site by the validation team were also archived.

11

MACRO PARAMETERS

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
following macro parameters are defined in terms of the value V of $MAX IN LEN
which is the maximum input line length permitted for the tested implementati-
on. For these parameters, Ada string expressions are given rather than the
macro values themselves.

Macro Parameter Macro Value

$BIGID1 (1 .V-1 -> 'A', V > '1')

$BIGID2 (1..V-1 -> 'A', V-> '2')

$BIGID3 (l..V/2 -> 'A') & '3' &
(l..V-1-V/2 => 'A')

$BIGID4 (1..V/2 -> 'A') & '4' &

(1..V-l-V/2 > 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 -> '0') & "690.0"

SBIGSTRING1 '"' & (1..V/2 -> 'A') & 'll

SBIGSTRING2 '"' & (1..V-l-V/2 -> 'A') & '1' & '"'

$BLANKS (1. .V-20 -> '

$MAXLEN_INTBASED_LITERAL
"2:" & (1..V-5 -> '0') & "11:"

$MAXLENREALBASED_LITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

SMAXSTRING LITERAL '"' & (1..V-2 -> 'A') & '"'

MACRO PARAMETERS

The following table contains the values for the remaining macro parameters.

Macro Parameter Macro Value

SMAXINLEN 255

$ACCSIZE 32

$ALIGNMENT 4

$COUNTLAST 2147483647

$DEFAULTMEMSIZE 2147483648

SDEFAULTSTORUNIT 8

SDEFAULTSYSNAME MIPS UMIPS

SDELTADOC 2#1.0#E-31

SENTRYADDRESS SYSTEM. INTERRUPTVECTOR(SYSTEM.SIGUSR1)

SENTRYADDRESS1 SYSTEM. INTERRUPTVECTOR (SYSTEM. SIGUSR2)

SENTRYADDRESS2 SYSTEM. INTERRUPTVECTOR (SYSTEM. SIGALRM)

SFIELDLAST 512

$FILETERMINATOR f

$FIXEDNAME NOSUCHFIXEDNAME

SFLOATNAME NOSUCHFLOATTYPE

$FORMSTRING

$FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"I

$GREATERTHANDURATION
0.0

SGREATERTHANDURATIONBASELAST
200000.0

$GREATERTHANFLOATBASELAST
16#1. 0#E+32

$GREATERTHANFLOATSAFELARGE
16#0. 8#E+32

SGREATERTHANSHORTFLOATSAFELARGE
0.0

MACRO PARAMETERS

$HIGHPRIORITY 15

$ILLEGAL EXTERNALFILE_-NAMEI
"/riodir/filel'

$ILLEGALEXTERNALFILE_-NAME2
"/wrongdir/file2"

$ INAPPROPRIATELINELENGTH
-1

$ INAPPROPRIATEPAGELENGTH
-1

SINCLUDEPRAGMAl PRAGMA INCLUDE ("A28006Dl.TSr")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")

SINTEGERFIRST -2147483648

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2147483648

S INTERFACELANGUAGE C

$LESS THANDURATION -0.0

SLESSTHANDURATIONBASEFIRST
-200_000.0

SLINETERMINATOR, ASCII.LF

SLOWPRIORITY 0

SMACHINECODESTATEMENT

NULL;

SMACHINECODETYPE NOSUCHTYPE

$MANTISSADOC 31

$MAXDIGITS 15

SMAXINT 2147483647

$MAXINTPLUS_1 2147483648

SMININT -2147483648

$NAME SHORTSHORTINTEGER

$NAMELIST MIPS UMIPS

MACRO PARAMETERS

SNAMESPECIFICATIONi /ben2/rpl83/acvcll/chape/X2120A

SNAMESPECIFICATION2 /ber2/mp183/acvcll/chape/X2120B

SNAMESPECIFICATION3 /ber2/mpl83/acvcll/chape/X3119A

$NEGBASEDINT 16#FFFFFFFE#

SNEWMEMSIZE 2147483648

$NEWSTORUNIT 8

SNEWSYSNAME MIPSUMIPS

$PAGETERMINATOR f

$RECORDDEFINITION NEW INTEGER

$RECORDNAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

$TASKSTORAGESIZE 10240

STICK 1.0/3600.0

$VARIABLEADDRESS GETVARIABLEADDRESS

$VARIABLEADDRESS1 GETVARIABLEADDRESS1

$VARIABLEADDRESS2 GETVARIABLEADDRESS2

$YOURPRAGMA RESIDENT

COMPILATION SYSTEM OPTIONS

APPENDIX B

COMPILATION SYSTEM OPTIONS

The coapiler options of this Ada implementation, as described in this Appen-
dix, are provided by the customer (Chapter 4.1 of the User Manual, pages 35
ff). Unless specifically noted otherwise, references in this appendix are to
compiler documentation and not to this report.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer (Chapter 5 of the User Manual, pages 50 ff).
Unless specifically noted otherwise, references in this appendix are to linker
documentation and not to this report.

Compiling Chapter 4

4 Compiling

After a program library has been created, one or more compilation units can be com-
piled in the context of this library. The compilation units can be placed on different
source files or they can all be on the same file. One unit, a parameterless procedure,
acts as the main program. If all units needed by the main program and the main
program itself have been compiled successfully, they can be linked. The resulting code
can then be executed.

§4.1 and Chapter 5 describe in detail how to call the Compiler, the Completer, which
is called to generate code for instances of generic units, and the Linker.
Chapter 6 explains the information which is given if the execution of a program is
abandoned due to an unhandled exception.
The information the Compiler produces and outputs in the Compiler listing is explained
in §4.4.
Finally, the log of a sample session is given in Chapter 7.

4.1 Compiling Ada Units

The command sas .c invokes the Compiler, and optionally Completer and Linker of
the SYSTEAM Ada System.

sas.c Command Description

NAME

sas.c - SYSTEAM Ada System compile command

SYNOPSIS

sas.c [option ...] [file ... I [-ld ldopt]

DESCRIPTION

Compilation, Completion and Linking are performed in that order. The Completer
is called if the -C or the -m option is specified. The Linker is called if the -m option
is specified. By default, only the compiler runs and compiles the source(s) in the
given files.

SYSTEAM Ada System - User Manual 35

Chapter 4 Compiling

The source file may contain a sequence of compilation units (cf. LRM(§10.1)). All
compilation units in the source file are compiled individually. When a compila-
tion unit is compiled successfully, the program library is updated and the Compiler
continues with the compilation of the next unit on the source file. If the compi-
lation unit contained errors, they are reported (see §4.4). In this case, no update
operation is performed on the program library and all subsequent compilation
units in the compilation are only analyzed without generating code.

The command delivers a non-zero status code on termination (cf. ezit(2)) if one
of the compilation units contained errors.

file specifies the file(s) to be compiled. The maximum length of lines in fde is 255.
The maximum number of source lines in file is 65534.
Note: If you specify a file name pattern, which is replaced by one or more file
names by the shell, the order of the compilation is alphabetical, which is not
always successful. Thus file name patterns should be used together with the
option -a. With this option the sources can be processed in any order.

The generation of listing output is controlled by options -1 and -L. The default
listing filename for a compilation is the basename, cf. basename(1), of the source
file with suffix .1; when the source file already has a suffix, it is replaced by the
suffix .1. When an automatic recompilation is performed through option -R the
basename is taken from the original source file name stored in the library.

-A Controls whether automatic inline expansion is performed. A sub-
program S is automatically inlined at a place P where S is called, if
the following conditions hold: S meets the requirements for explicit
inlining via pragma INLINE (cf. §15.1.1). Spec and body of S are in
the same compilation unit. The (estimated) size of the code of S is
less than a fixed limit. If you specify -A automatic inline expansion
is suppressed.

By default, automatic inline expansion is performed.

-a Specifies that the Compiler only performs syntactical analysis and
the analysis of the dependencies on other units. The units in file are
entered into the library if they are syntactically correct. The actual
compilation is done later.

Note: An already existing unit with the same name as the new one is
replaced and all dependent units become obsolete, unless the source
file of both are identical. In this case the library is not updated
because the dependencies are already known.

By default, the normal, full compilation is done.

-C unitlist Requests the completion of the units in unitlist, which is a white
space separated list of unit names. unitlist must be a single shell

36 SYSTEAM Ada System - User Manual

Compiling Chapter 4

argument and must therefore be quoted when it has more than one
item. Example with two units:

sas.c -C "our-unit my-unit"
The Completer generates code for all instantiations of generic units
in the execution closure of the specified unit(s). It also generates
code for packages without bodies (if necessary).
If a listing is requested the default filename used is complete.1.
The listing file contains the listing information for all units given in
unitlist.

-c Controls whether a copy of the source file is kept in the library. The
copy in the program library is used for later access by the Debugger
or tools like the Recompiler. The name of the copy is generated by
the Compiler and need normally not be known by the user. The
Recompiler and the Debugger know this name. You can use the
sas. list -1 command to see the file name of the copy. If a specified
file contains several compilation units a copy containing only the
source text of one compilation unit is stored in the library for each
compilation unit. Thus the Recompiler can recompile a single unit.

If -c is specified, the Compiler only stores the name of the source
file in the program library. In this case the Recompiler and the
Debugger are able to use the original file if it still exists.

-D When linking, the generation of debug information is suppressed.

-I Controls whether inline expansion is performed as requested by
PRAGMA inline. If you specify -I these pragmas are ignored.

By default, inline expansion is performed.

-1 Generates listing files with default filenames (see above) in the cur-
rent directory (use option -L for redirecting to another directory).

-L directory Generates listing files with default filenames (see above) in directory
directory.

-L file Concatenates all listings onto file fde.

-ld Idopt This option can be used to supply options for the call of ld when
linking a program by the -m option. -id followed by the options to
be pascd to Id(1) must be the last items of the command.

-m unit Specifies the name of a main program, which must be a parameter-
less procedure. This option will cause the completion of any generic
instantiations in the program; if a listing is requested, the listing
options have the same meaning as for the complete option; if the

SYSTEAM Ada System - User Manual 37

Chapter 4 Compiling

completer has already been called by the -C option, the listing out-
put is appended to that completer listing file. If all compilations
are successful, the linker is invoked to build an executable program;
if a listing is requested, the default filename for the linker listing is
link. 1.

-01 Restricts optimizations to level 1. Level 0 indicates no optimiza-
tions, level 1 indicates partial optimizations, level 2 indicates full
optimization. Default is full optimization. Partial optimizations
means those optimizations that do not move code globally. These
are: constant propagation, copy propagation, algebraic simplifica-
tions, runtime check elimination, dead code elimination, peephole
and pipeline optimizations. This Optimization level allows easier
debugging while maintaining a reasonable code quality.

-o fide When linking is requested by -m this option can be used to specify
the name of the generated executable program, which defaults to
the unit name of the main program.

-R Indicates that a recompilation of a previously analyzed source is
to be performed. This option should only be used in commands
produced by the sas .make command.

-r Suppresses the generation of an executable object file when linking
is requested. See the -r option of the sas. link command (§5) for
details.

-S Controls whether all run-time checks are suppressed. If you specify
-S this is equivalent to the use of PRAGMA suppress-all.

By default, no run-time checks are suppressed, except in cases where
PRAGMA suppress-all appears in the source.

-s Controls whether machine code is appended to the listing file. - s has
no effect if no listing is requested or -a (analyze only) is specified.

By default, no machine code is appended to the listing file.

-t; Suppresses selective linking. Selective linking means that only the
code of those subprograms which can actually be called is included
in the executable image. By default, the code of all subprograms of
all .packages in the execution closure of the main procedure is linked
into the executable image.

Note: The code of the runtime system and of the predefined units
is always linked selectively.

38 SYSTEAM Ada System - User Manual

Compiling Chapter 4

-v Controls whether the sas. c command writes additional information
onto standard error.
By default, no additional information is written.

-y library Specifies the program library the sas. c command works on. It needs
write access to the library.
The default library is adalib.

End of Command Descriptioi:

4.2 Completing Generic Instances

Since the Compiler does not generate code for instances of generic bodies, the Com-
pleter must be used to complete such units before a program using the instances can
be executed. The Completer must also be used to complete packages in the program
which do not require a body. This is done implicitly when the Linker is called.

It is also possible to call the Completer explicitly with the -C option of the sas. c
command.

4.3 Automatic Compilation

The SYSTEAM Ada System offers three different kinds of automatic compilation. It
supports

* automatic recompilation of obsolete units

* automatic compilation of modified sources

* automatic compilation of new sources with unknown dependencies

In the following the term recompilation stands for the recompilation of an obsolete
unit using the identical source which was used the last time. (This kind of recom-
pilation could alternatively be implemented by using some appropriate intermediate
representation of the obsolete unit.) This definition is stronger than that of the LRM
(10.3). If a new version of the source of a unit is compiled we call it compilation, not
a recompilation.

SYSTEAM Ada System - User Manual 39

Chapter 5 Linking

5 Linking

An Ada program is a collection of units used by a main program which controls the
execution. The main program must be a parameterless library procedure; any param-
eterless library procedure within a program library can be used as a main program.

The RISC/os system linker is used by the SYSTEAM Ada Linker.

To link a program, call the sas. link command. The Linker can also be called directly
from the sas.c command and from the sas. mak, command.

sas.link Command Description

NAME

sas.link - invoke the SYSTEAM Ada System linker

SYNOPSIS

sas.link [option ...] unit [-ld ldopt]

DESCRIPTION

The sas. link command invokes the SYSTEAM Ada Linker.

The Linker builds an executable file. The default file name of the executable file
is the unit name of the main program.

unit specifies the library unit which is the main program. This must be a para-
meterless library procedure.

-A Controls whether automatic inline expansion is performed. A sub-
program S is automatically inlined at a place P where S is called, if
the following conditions hold: S meets the requirements for explicit
inlining via pragma INLINE (cf. §15.1.1). Spec and body of S are in
the same compilation unit. The (estimated) size of the code of S is
less than a fixed limit. If you specify -A automatic inline expansion
is suppressed.

By default, automatic inline expansion is performed.

-c Suppresses invokation of the Completer of the SYSTEAM Ada Sys-
tem before the linking is performed. Only specify -c if you are sure

50 SYSTEAM Ada System - User Manual

Linking Chapter 5

that there are no instantiations or implicit package bodies to be
compiled, e.g. if you repeat the sas.link command with different
linker options.

-D By default debug information for the SYSTEAM Ada Debugger is
generated and included in the executable file. When the -D option
is present, debug information is not included in the executable file.
If the program is to run under the control of the Debugger it must
be linked without the -D option.

-I Controls whether inline expansion is performed as requested by
PRAGMA inline. If you specify -I these pragmas are ignored.

By default, inline expansion is performed.

-l This option is passed to the implicitly invoked Completer, which
by default generates a listing file complete.1. If -1 is specified the
Linker of the SYSTEAM Ada System creates a listing file containing
a table of symbols which are used for linking the Ada units. This
table is helpful when debugging an Ada program with the RISC/os
debugger. The default name of the listing file is link. 1. By default,
the Linker does not create a listing file.

-L directory The listing files are created in directory directory instead of in the
current directory (default).

-L fide The listing files are concatenated onto file fide.

-ld Idopt This option can be used to supply options for the call of ld. -ld
followed by the options to be passed to ld(1) must be the last items
of the command.

-01 This option is passed to the implicitly invoked Completer. See the
same option with the sas. c command.

-o file Specifies the n-me of the executable file.
The default file name of the executable file is the unit name of the
main program.

-r Suppresses the generation of an executable object file. In this case
the generated object file contains the code of all compilation units
written in Ada and of those object modules of the predefined lan-
guage environment and of the Ada run time system which are used
by the main program; references into the Standard C library remain
unresolved. The generated object module is suitable for further ld(1)
processing. The name of its entry point is main.

SYSTEAM Ada System - User Manual 51

Chapter 5 Linking

-S This option is passed to the implicitly invoked Completer. See the
same option with the sas. c command.

-s This option is passed to the implicitly invoked Completer. See the
same option with the sas.c command. If a listing is requested and
-s is specified, the Linker of the SYSTEAM Ada System generates
a listing with the machine code of the program starter in-the file
link. 1. The program starter is a routine which contains the calls of
the necessary elaboration routines and a call for the Ada subprogram
which is the main program.
By default, no machine code is generated.

-t Suppresses selective linking. Selective linking means that only the
code of those subprograms which can actually be called is included
in the executable file. With -t the code of all subprograms of all
packages in the execution closure of the main procedure is linked
into the executable file.

Note: The code of the runtime system and of the predefined units
is always linked selectively, even if -t is specified.

-v Controls whether the sas. link command writes additional infor-
mation onto standard output.
By default, no additional information is written.

-y library Specifies the program library the command works on. The sas. link
command needs write access to the library unless -c is specified. If
-c is specified the sas. link command needs only read access. The
default library is adalib.

End of Command Description

The RISC/os System Linker is called with the command

/bsd43/bin/ld [-N I -o resultfile /bsd43/usr/lib/cmplrs/cc/crt1.o \
obj rtslib ld.options -Ic /bsd43/usr/lib/cmplrs/cc/crtn.o

unless the -r option is specified. When -r is specified, the Linker is called with, the

command

/bsd43/bin/ld i-N] -o resultfile -r obj rtalib ld-options

Here, obj denotes the file containing the object module which is produced by the Ada
Linker and rtslib the archive library containing the Ada runtime system. (This may be

52 SYSTEAM Ada System - User Manual

Linking Chapter 5

librtsdbg.a resp. librts.a if the SYSTEAM Ada Linker is called with option -D.
In this case the -N option is missing.)

If you invoke ld by yourself to link the executable object rather than having the Ada
Linker doing it automatically, then you must explicitly specify a startup module (see
below) and any libraries you want linked into the Ada program. Furthermore, the ld
option -N should be specified to allow the resulting object file to be debugged by the
SYSTEAM Ada System Debugger. (Note that debugging IE only possible if the option
-D was not passed to the Ada Linker.)

The startup module must satisfy the following requirements:

* A global variable called environ is defined containing a pointer to the current
environment (cf. ezecl(3-bsd)).

* The Ada main program is called using the entry point main.
* argc and argv are passed as arguments to main.

Note that instructions following the call of main will never be executed.
By default, the Standard C startup routine /bsd43/usr/lib/cmplrs/cc/crt 1.o is
used.

SYSTEAM Ada System - User Manual 53

APPENDIX F OF THE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
Chapter 13 of the Ada Standard, and to certain allowed restrictions on repre-
sentation clauses. The implementation-dependent characteristics of this Ada
implementation, as described in this Appendix, are provided by the customer.
Unless specifically noted otherwise, references in this Appendix are to compi-
ler documentation and not to this report. The package STANDARD is included in
the implementer's Chapter 13, Predefined Language Environment, on pages 254ff.

Chapter 13 Predefined Language Environment

13 Predefined Language Environment

The predefined language environment comprises the package standard, the language-
defined library units and the implementation-defined library units.

13.1 The Package STANDARD

The specification of the package standard is outlined here; it contains all predefined
identifiers of the implementation.

PACKAGE standard IS
TYPE boolean IS (false, true);
-- The predefined relational operators for this type are as follows:
-- FUNCTION "" (left. right : boolean) RETURN boolean;
-- FUNCTION "/-" (left. right : boolean) RETURN boolean;
-- FUNCTION "<" (left, right : boolean) RETURN boolean;
-- FUNCTION "<=" (left. right : boolean) RETURN boolean;
-- FUNCTION ">" (left, right : boolean) RETURN boolean;
-- FUNCTION ">=" (left, right : boolean) RETURN boolean;
-- The predefined logical operators and the predefined logical
-- negation operator are as follows:
-- FUNCTION "AND" (left, right : boolean) RETURN boolean;
-- FUNCTION "OR" (left, right : boolean) RETURN boolean;

-- FUNCTION "XOR" (left, right : boolean) RETURN boolean;
-- FUNCTION "NOT" (right : boolean) RETURN boolean;
-- The universal type universal-integer is predefined.
TYPE integer IS RANGE - 2-147-483-648 .. 2-147-483-647;
-- The predefined operators for this type are as follows:
-- FUNCTION "i" (left, right : integer) RETURN boolean;
-- FUNCTION "I-" (left. right : integer) RETURN boolean;
-- FUNCTION "C" (left, right : integer) RETURN boolean;
-- FUNCTION "C-" (left, right : integer) RETURN boolean;
-- FUNCTION ">" (left, right : integer) RETURN boolean;
-- FUNCTION ">-" (left, right : integer) RETURN boolean;
-- FUNCTION " " (right : integer) RETURN integer;
-- FUNCTION "-" (right : integer) RETURN integer;
-- FUNCTION "ABS" (right : integer) RETURN integer;
-- FUNCTION "+" (left, right : integer) RETURN integer;
-- FUNCTION "-" (left, right : integer) RETURN integer;
-- FUNCTION "*" (left, right : integer) RETURN integer;

254 SYSTEAM Ada System - User Manual

Predefined Language Environment Chapter 13

-- FUNCTION "/" (left, right : integer) RETURN integer;
-- FUNCTION "REM" (left, right : integer) RETURN integer;
-- FUNCTION "MOD" (left, right : integer) RETURN integer;
-- FUNCTION "**" (left : integer; right : integer) RETURN integer;
-- An implementation may provide additional predefined integer types.
-- It is recommended that the names of such additional types end
-- with INTEGER as in SHORT-INTEGER or LONG-INTEGER. The
-- specification of each operator for the type universal-integer, or
-- for any additional predefined integer type, is obtained by
-- replacing INTEGER by the name of the type in the specification
-- of the corresponding operator of the type INTEGER, except for the
-- right operand of the exponentiating operator.
TYPE short-integer IS RANGE - 32-768 .. 32-767;
TYPE short-short-integer IS RANGE - 128 .. 127;
-- The universal type universal-real is predefined.
TYPE float IS DIGITS 6 RANGE

- 16#O.FFFFFF#E32 .. 16#O.FFFFFF#E32;
FOR float'size USE 32;
-- The predefined operators for this type are as follows:
-- FUNCTION "=" (left, right : float) RETURN boolean;
-- FUNCTION "/=" (left. right float) RETURN boolean;
-- FUNCTION "<" (left, right float) RETURN boolean;
-- FUNCTION "<=" (left. right float) RETURN boolean;
-- FUNCTION ">" (left. right float) RETURN boolean;
-- FUNCTION ">=" (left, right float) RETURN boolean;
-- FUNCTION "*" (right : float) RETURN float;
-- FUNCTION "-" (right : float) RETURN float;
-- FUNCTION "ABS" (right : float) RETURN float;
-- FUNCTION " " (left, right : float) RETURN float;
-- FUNCTION "-" (left. right : float) RETURN float;
-- FUNCTION "*" (left. right : float) RETURN float;
-- FUNCTION "/" (left. right : float) RETURN float;
-- FUNCTION "**" (left : float; right : integer) RETURN float;
-- An implementation may provide additional predefined floating
-- point types. It is recommended that the names of such additional
-- types end with FLOAT as in SHORT-FLOAT or LONG-FLOAT.
-- The specification of each operator for the type universal-real,
-- or for any additional predefined floating point type, is obtained
-- by replacing FLOAT by the name of the type in the specification of
-- the corresponding operator of the type FLOAT.
TYPE long-float IS DIGITS 15 RANGE

- 16#O.FFFPFFFFFFFFF8#E2568
16#O.FFFFFFFFFFFFF8#E256;

FOR longfloat'size USE 64;
-- In addition, the following operators are predefined for universal
-- types:
-- FUNCTION "*" (left : UNIVERSAL-INTEGER; right : UNIVERSAL-REAL)

SYSTEAM Ada System - User Manual 255

Chapter 13 Predefined Language Environment

RETURN UNIVERSAL-REAL;
-- FUNCTION "*" (left : UNIVERSAL-REAL; right : UNIVERSAL-INTEGER)

RETURN UNIVERSAL-REAL;
-- FUNCTION "/" (left : UNIVERSAL-REAL; right : UNIVERSAL-INTEGER)

RETURN UNIVERSAL-REAL;
-- The type universal-fixed is predefined.
-- The only operators declared for this type are
-- FUNCTION "*" (left : ANYFIXEDPOINTTYPE;

right : ANYFIXEDPOINTTYPE) RETURN UNIVERSAL-FIXED;
-- FUNCTION "I" (left : ANYFIXEDPOINTTYPE;

right : ANYFIXEDPOINTTYPE) RETURN UNIVERSAL-FIXED;
-- The following characters form the standard ASCII character set.
-- Character literals corresponding to control characters are not
-- identifiers.
TYPE character IS

(nul. soh. stx, etx, eot. enq, ack. bel,
bs, ht. if, vt, ff. cr, so, si,
die. dcl, dc2, dc3. dc4. nak. syn, etb,
can. em. sub, esc, fs. gs, rs, us.
* " " '"'3 I '#', 3$,, % '&', 33

*(' ') " ' * . ' I/3

Ott, #10, '2', 333, 343, *5 vo 960 373

PC#, 393, ':, *Co PON, BEP * , , * '7'
* 'AH 0 a1 , 'C',q a 9q 9 , 0E M 'F , *

'H' . 'I'. ' ' . 'K', 94' o '$' * '9 ', '0'

'g'. 'a' . 'b', ' 'T' , 'U'. f' 'g'

so Pa', 'b', 'c', 'd', 'e'. 'f', t' ,
'h , 'i', 'j', 'k1 *pr, 'i', n', os,

axe y, 'z, { 'I', , "l ' del);
FOR character USE -- 128 ascii CHARACTER SET WITHOUT HOLES

(0, 1. 2. 3. 4. 5, 125, 126, 127);
-- The predefined operators for the type CHARACTER are the same as
-- for any enumeration type.
PACKAGE ascii IS
-- Control characters:
nul : CONSTANT character := nul; soh : CONSTANT character : soh;
stx : CONSTANT character :- stx; etx : CONSTANT character :- etx;
eot : CONSTANT character : cot; enq : CONSTANT character : enq;
ack : CONSTANT character : ack; bel : CONSTANT character :m bel;
bs : CONSTANT character : bs; ht : CONSTANT character : ht;
if : CONSTANT character : if; vt : CONSTANT character : vt;
ff CONSTANT character : ff; cr : CONSTANT character : cr;
so : CONSTANT character : so; si : CONSTANT character : si;
die : CONSTANT character :- die; dcl : CONSTANT character : dcl;
dc2 : CONSTANT character :- dc2; dc3 : CONSTANT character : dc3;

256 SYSTEAM Ada System - User Manual

Predefined Language Environment Chapter 13

dc4 : CONSTANT character dc4; nak : CONSTANT character nak;
syn : CONSTANT character syn; etb : CONSTANT character etb;
can : CONSTANT character : can; em : CONSTANT character em;
sub : CONSTANT character : sub; esc : CONSTANT character esc;
fs : CONSTANT character fs; gs : CONSTANT character gs;
rs : CONSTANT character rs; us : CONSTANT character us;
del : CONSTANT character del;
-- Other characters:
exclam : CONSTANT character : '!';

quotation : CONSTANT character :=
sharp : CONSTANT character :
dollar : CONSTANT character :=
percent : CONSTANT character :
ampersand : CONSTANT character :
colon : CONSTANT character : ';
semicolon : CONSTANT character : ;';
query : CONSTANT character : '?;

at-sign : CONSTANT character :'';
lbracket : CONSTANT character := P[';

back-slash : CONSTANT character :
r-bracket : CONSTANT character : s]';

circumflex : CONSTANT character : '';
underline : CONSTANT character := '_;
grave : CONSTANT character : "';
l.brace : CONSTANT character :
bar : CONSTANT character :
r-brace : CONSTANT character :
tilde : CONSTANT character :
lc-a : CONSTANT character : 'a';

lc.z : CONSTANT character : 'z';
END ascii;
-- Predefined subtypes:
SUBTYPE natural IS integer RANGE 0 integer'last;
SUBTYPE positive IS integer RANGE I integer'last;
-- Predefined string type:
TYPE string IS ARRAY(positive RANGE <>) OF character;
PRAGMA byt.epack(string);
-- The predefined operators for this type are as follows:
-- FUNCTION "-" (left. right : string) RETURN boolean;
-- FUNCTION "/-" (left. right : string) RETURN boolean;
-- FUNCTION "<" (left. right : string) RETURN boolean;
-- FUNCTION "<" (left. right : string) RETURN boolean;
-- FUNCTION ">" (left. right : string) RETURN boolean;
-- FUNCTION ">-" (left. right : string) RETURN boolean;
-- FUNCTION "&" (left : string; right : string) RETURN string;
-- FUNCTION "W" (left : character; right : string) RETURN string;

SYSTEAM Ada System - User Manual 257

Chapter 13 Predefined Language Environment

-- FUNCTION "&" (left : string; right : character) RETURN string;
-- FUNCTION "&" (left : character; right : character) RETURN string;
TYPE duration IS DELTA 2#1.0#E-14 RANGE

- 131-072.0 .. 131-071.999-938-964-843-75;
-- The predefined operators for the type DURATION are the same
-- as for any fixed point type.
-- the predefined exceptions:
constraint-error : EXCEPTION;
numeric-error : EXCEPTION;
program-error : EXCEPTION;
storage-error : EXCEPTION;
tasking-error : EXCEPTION;

END standard;

13.2 Language-Defined Library Units

The following language-defined library units are included in the master library:

The package system
The package calendar
The generic procedure unchecked-deallocat ion
The generic function unchecked-conversion
The package io.exceptions
The generic package sequentialiio
The generic package direct-io
The package textio
The package low-level-io

13.3 Implementation-Defined Library Units

The master library also contains the implementation-defined library units

The package collection-manager
The package timing
The package command-arguments
The package textio-extension

258 SYSTEAM Ada System - User Manual

Chapter 15 Appendix F

15 Appendix F

This chapter, together with the Chapters 16 and 17, is the Appendix F required in the
LRM, in which all implementation-dependent characteristics of an Ada implementation
are described.

15.1 Implementation-Dependent Pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

15.1.1 Predefined Language Pragmas

The form and allowed places of the following pragmas are defined by the language;
their effect is (at least partly) implementation-dependent and stated here.

CONTROLLED
has no effect.

ELABORATE
is fully implemented. The SYSTEAM Ada System assumes a PRAGMA elabo-
rate, i.e. stores a unit in the library as if a PRAGMA elaborate for a unit u was
given, if the compiled unit contains an instantiation of u (or of a generic program
unit in u) and if it is clear that u must have been elaborated before the compiled
unit. In this case an appropriate information message is given. By this means it
is avoided that an elaboration order is chosen which would lead to a PROGRAM-
ERROR when elaborating the instantiation.

INLINE
Inline expansion of subprograms is supported with the following restrictions:
the subprogram must not contain declarations of other subprograms, tasks, generic
units or body stubs. If the subprogram is called recursively only the outer call of
this subprogram will be expanded.

264 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

INTERFACE
is supported for ASSEMBLER and C. PRAGMA interface (assembler) pro-
vides an interface with the internal calling conventions of the SYSTEAM Ada
System. See §15.1.3 for further description.

PRAGMA interface (C) is provided to support the C procedure calling stan-
dard. §15.1.4 describes how to use this pragma. The subprogram must not be
a function returning an uncontrained array type. Nor must it have OUT or IN
OUT parameters that are not passed by reference. If one of these restrictions is
violated, the program is erroneous.

PRAGMA interface should always be used in connection with the PRAGMA exter-
nal.name (see §15.1.2), otherwise the Compiler will generate an internal name
that leads to an unsolved reference during linking. These generated names are
prefixed with an underline; therefore the user should not use names beginning
with an underline.

LIST
is fully implemented. Note that a listing is only generated when one of the listing
options is specified with the sas. c (or sas .make or sas. link) command.

MEMORY-SIZE
has no effect.

OPTIMIZE
has no effect; but see also the -0 option with the sas. c command, §4.1.

PACK
see §16.1.

PAGE
is fully implemented. Note that form feed characters in the source do not cause
a new page in the listing. They are - as well the other format effectors (horizontal
tabulation, vertical tabulation, carriage return, and line feed) - replaced by a "
character in the listing.

PRIORITY
There are two implementation-defined aspects of this pragma: First, the range of

SYSTEAM Ada System - User Manual 265

Chapter 15 Appendix F

the subtype priority, and second, the effect on scheduling (Chapter 14) of not
giving this pragma for a task or main program. The range of subtype priority is
0 .. 15, as declared in the predefined library package system (see §15.3); and the
effect on scheduling of leaving the priority of a task or main program undefined by
not giving PRAGMA priority for it is the same as if the PRAGMA priority 0
had been given (i.e. the task has the lowest priority).

SHARED
is fully supported.

STORAGE-UNIT
has no effect.

SUPPRESS
has no effect, but see §15.1.2 for the implementation-defined PRAGMA suppress-
all.

SYSTEM-NAME
has no effect.

15.1.2 Implementation-Defined Pragmas

BYTE-PACK
see §16.1.

COMMENT c.callable not implemented in the umips version
EXTERNAL-NAME (<string>, <ada.name>)

<ada.name> specifies the name of a subprogram or of an object declared in a
library package, <string> must be a string literal. It defines the external name
of the specified item. The Compiler uses a symbol with this name in the call
instruction for the subprogram. The subprogram declaration of <adaname> must
precede this pragma. If several subprograms with the same name satisfy this
requirement the pragma refers to that subprogram which is declared last.
Upper and lower cases are distinguished within <string>, i.e. <string> must be
given exactly as it is to be used by external routines. The user should not define

266 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

external names beginning with an underline because Compiler generated names
are prefixed with an underline. This pragma will be used in connection with the
pragmas interface (c) or interface (assembler) (see §15.1.1) (see §15.1.2).

RESIDENT (<ada.name>)
this pragma causes the value of the object to be held in memory and prevents
assignments of a value to the object <ada-name> from being eliminated by the
optimizer (see §4.1) of the SYSTEAM Ada Compiler. The following code sequence
demonstrates the intended usage of the pragma:

x : integer;
a : SYSTEM.address;

BEGIN
x := 5;
a := x'ADDRESS;
do-something (a); -- let do-something be a non-local

- procedure
-- a.ALL will be read in the body
-- of do-something

x :- 6;

If this code sequence is compiled by the SYSTEAM Ada Compiler without the
-00 option the statement x : = 5; will be eliminated because from the point of
view of the optimizer the value of x is not used before the next assignment to x.
Therefore

PRAGMA resident (x);

should be inserted after the declaration of x.

This pragma can be applied to all those kinds of objects for which the address
clause is supported (cf. §16.5).
It will often be used in connection with the PRAGMA interface (c ...) (see
§15.1.4).

SUPPRESS-ALL
causes all the runtime checks described in the LRM(§11.7) to be suppressed; this
pragma is only allowed at the start of a compilation before the first compilation
unit; it applies to the whole compilation.

SYSTEAM Ada System - User Manual 267

Chapter 15 Appendix F

268 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

15.1.3 Pragma Interface (Assembler,...)

This section describes the internal calling conventions of the SYSTEAM Ada System,
which are the same as those used for subprograms for which a PRAGMA interface
(ASSEMBLER) is given. Thus the actual meaning of this pragma is simply that the
body needs and must not be provided in Ada; it is provided in object form using the
-ld option with the sas . link (or sas.c or sas .make) command.

In many cases it is more convenient to follow the C procedure calling stan-
dard. Therefore the SYSTEAM Ada System provides the PRAGMA inter-
face (c), which supports the standard return of the function result and
the standard register saving. This pragma is described in the next section.

The internal calling conventions are explained in four steps:

- Parameter passing mechanism
- Ordering of parameters
- Type mapping
- Saving registers

Parameter passing mechanism:

The SYSTEAM Ada System uses three different parameter passing mechanisms, de-

pending on the type of a parameter:

* by value and/or result: The value of the parameter itself is passed.

* by reference: The address of the parameter is passed (like an IN parameter of type
system.address, which would be passed by value).

* by descriptor. A descriptor for the parameter is allocated at the callers side and
is itself passed by reference.

The parameters of a subprogram are passed in registers where possible. The remaining
parameters, if any, are passed in an area called parameter block. This area is aligned
on a word boundary and contains parameter values (for parameter of scalar types),
parameter addresses or descriptors addresses (for parameter of composite types) and
alignment gaps.
For a function subprogram an extra register ($r4 or f0) is assigned containing the
function result upon return. Thus the return value of a function is treated like an
anonymous parameter of mode OUT. No special treatraent is required for a function
result except for return values of an unconstrained array type (see below).

A subprogram is called using the JAL instruction. The address of the parameter block
is passed in $r3, if necessary. The static link of a subprograms is passed in $r2, if
necessary.

SYSTEAM Ada System - User Manual 269

Chapter 15 Appendix F

When determining the position of a parameter within the parameter block the calling
mechanism and the size and alignment requirements of the parameter type are consid-
ered. The size and alignment requirements and the passing mechanism are described
in the following: Scalar parameters or parameters of access types are passed by value,
i.e. the values of the actual parameters of modes IN or IN OUT are copied into the
parameter register or into the parameter block before the call. Then, after the sub-
program has returned, values of the actual parameters of modes IN OUT and OUT
are copied out of the parameter register or the parameter block into the associated
actual parameters. The parameters are aligned within the parameter block according
their size: A parameter with a size of 8, 16 or 32 bits has an alignment of 1, 2 or 4
(which means that the object is aligned to a byte, halfword or word boundary within
the parameter block). If the size of the parameter is not a multiple of 8 bits (which
may be achieved by attaching a size specification to the parameter's type in case of an
integer, enumeration or fixed point type) it will be byte aligned. Parameters of access
types are always aligned to a word boundary.

Parameters of composite types are passed by reference or by descriptor. The descrip-
tors are allocated by the caller and are themselves passed by reference. A descriptor
contains the address of the actual parameter object and further information depen-
dent on the specific parameter type. The following composite parameter types are
distinguished:

" A parameter of a constrained array type is passed by reference for all parameter
modes.

* For a parameter of an unconstrained array type, the descriptor consists of the
address of the actual array parameter followed by the bounds for each index range
in the array (i.e. FIRST(l), LAST(I), FIRST(2), LAST(2), ...). The space allo-
cated for the bound elements in the descriptor depends on the type of the index
constraint. This descriptor is itself passed by reference.

* For functions whose return value is an unconstrained array type a reference to a
descriptor for the array is passed in the parameter block as for parameters of mode
OUT. The fields for its address and all array index bounds are filled up by the
function before it returns. In contrast to the procedure for an OUT parameter,
the function allocates the array in its own stack space. The function then returns
without releasing its stack space. After the function has returned, the calling
routine copies the array into its own memory space and then deallocates the stack
memory of the function.

* A constrained record parameter is passed by reference for all parameter modes.

* For an unconstrained record parameter of mode IN, the parameter is passed by
reference using the address pointing to the record.
If the parameter has mode OUT or IN OUT, the value of the CONSTRAINED at-
tribute applied to the actual parameter is passed as an additional boolean IN
parameter (which, when not passed in a register, occupies one byte in the para-
meter block and is aligned to a byte boundary). The boolean IN parameter and

270 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

the address are treated like two consecutive parameters in a subprogram speci-
fication, i.e. the positions of the two parameters within the parameter block are
determined independently of each other.

For all kinds of composite parameter types the pointer pointing to the actual parameter
object is represented by a 32 bit address, which is always aligned to a word boundary.

Ordering of parameters:

The ordering of the parameters is determined as follows:

The parameters are processed in the order they are defined in the Ada subprogram
specification. For a function the return value is treated as an anonymous parameter of
mode OUT at the start of the parameter list. The registers $r4.. $r22. $r24.. $r25
and $f0.. $f31 are available for parameter passing. A parameter block is only used
when there are more parameters. than registers of the appropriate class. Registers are
used from low numbers to high numbers, the parameter block starts at offset zero and
grows to higher offsets. Each parameter is handled as follows:

* A short-float parameter is allocated the next free even numbered floating point
register (the corresponding odd numbered floating point register is unused for
parameter passing). If no more floating point register is available one word is
allocated in the parameter block, see below.

f A float parameter is allocated the next free floating point register pair. If no
more floating point register is available a double word is allocated in the parameter
block, see below.

All other parameters (or their [descriptor] addresses, respectively) are allocated
the next free general purpose register from $r4.. $r22. $r24.. $r25. If no more
general purpose register is available for parameter passing, space is allocated in
the parameter block depending on the representation of the parameter type, see
below.
If a parameter cannot be passed in a register, space is allocated in the parameter
block as follows:

Because of the size and alignment requirements of a parameter it is not always
possible to place parameters in such a way that two consecutive parameters are
densely located in the parameter block. In such a situation a gap, i.e. a piece
of memory space which is not associated with a parameter, exists between two
adjacent parameters. Consequently, the size of the parameter block will be larger
than the sum of the sizes used for all parameters. , In order to minimize the size of
the gaps in a parameter block an attempt is made to fill each gap with a parameter
that occurs later in the parameter list. If during the allocation of space within
the parameter block a parameter is encountered whose size and alignment fit the
characteristics of an available gap, then this gap is allocated for the parameter

SYSTEAM Ada System - User Manual 271

Chapter 15 Appendix F

instead of appending it at the end of the parameter block. As each parameter
will be aligned to a byte, halfword or word boundary the size of any gap may be
one, two or three bytes. Every gap of size three bytes can be treated as two gaps,
one of size one byte with an alignment of 1 and one of size two bytes with an
alignment of 2. So, if a parameter of size two is to be allocated, a two byte gap,
if available, is filled up. A parameter of size one will fill a one byte gap. If none
exists but a two byte gap is available, this is used as two one byte gaps. By this
first fit algorithm all parameters are processed in the order they occur in the Ada
program.

A called subprogram accesses each parameter for reading or writing using the para-
meter register or using the parameter block address incremented by an offset from the
start of the parameter block suitable for the parameter. So the value of a parameter of
,a scalar type or an access type is read (or written) directly from (into) the parameter
register or parameter block. For a parameter of a composite type passed by reference
the actual parameter value is accessed indirectly via the parameter address passed in
a parameter register or in the parameter block. For a parameter of a composite type
passed by descriptor the actual parameter value is accessed via the descriptor whose
address is passed in a parameter register or in the parameter block. The descriptor
contains a pointer to the actual object. When standard entry code sequences are used
within the assembler subprogram (see below), the parameter block address is accessible
at address -12($r30).

Type mapping:

To access individual components of array or record types, knowledge about the type
mapping for array and record types is required. An array is stored as a sequential con-
catenation of all its components. Normally, pad bits are used to fill each component
to a byte, halfword, word or a multiple thereof depending on the size and alignment
requirements of the components' subtype. This padding may be influenced using one
of the PRAGMAs pack or byte-pack (cf. §16.1). The offset of an individual array
component is then obtained by multiplying the padded size of one array component by
the number of components stored in the array before it. This number may be deter-
mined from the number of elements for each dimension using the fact that the array
elements are stored row by row. (For unconstrained arrays the number of elements for
each dimension can be found in the descriptor that itself is passed by reference.)

A record object is implemented as a concatenation of its components. Initially, loca-
tions are reserved for those components that have a component clause applied to them.
Then locations for all other components are reserved. Any gaps large enough to hold
components without component clauses are filled, so in general the record components
are rearranged. Components in record variants are overlaid. The ordering mechanism
of the components within a record is in principle the same as that for ordering the
parameters in the parameter block.

272 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

A record may hold implementation-dependent components (cf. §16.4). For a record
component whose size depends on discriminants, a generated component holds the
offset of the record component within the record object. If a record type includes
variant parts there may be a generated component (cf. §16.4) holding the size of the
record object. This size component is allocated as the first component within the record
object if this location is not reserved by a component clause. Since the mapping of
record types is rather complex record component clauses should be introduced for each
record component if an object of that type is to be passed to a non Ada subprogram
to be sure to access the components correctly.

Saving registers:

The last aspect of the calling conventions discussed here is that of saving registers. The
calling subprogram assumes that the values of the registers $rl.. $r22, $r24.. $r25
will be destroyed by the called subprogram and saves them of its own accord. The
stack pointer $r29 will have the same value after the call as before except for functions
returning unconstrained arrays. The stack limit register ($r24) will have the same value
after the call as before unless the stack of the main task was extended. If the called
subprogram wants to modify further registers it has to ensure that the old values are
restored upon return from the subprogram. Note that these register saving conventions
differ from the C calling standard.

Finally we give the appropriate code sequences for the subprogram entry and for the
return, which both obey the rules stated above.

A subprogram for which PRAGMA interface(assembler,...) is specified is - in effect -
called with the subprogram calling sequence

move $4, ... I assign IN parameters, if any
move $fO....

Jal <subprogram address>

move $4 read OUT parameters, if any

Thus the appropriate entry code sequence is

addiu $sp.$sp.-12
sw $0.0($sp)
sw $fp.4($sp)
sw $31.8($sp)
addiu $15.$sp. -<framesize-4>

SYSTEAM Ada System - User Manual 273

Chapter 15 Appendix F

addiu $fp.Ssp.4
alt $1.$23.$15
bne $1.$O.L1
nop
jal _EXTSTCK I Storage check
move $24,$15

Li:
move $sp,$15

I The field at address -4($fp) is reserved
I for use by the Ada runtime system

The return code sequence is then

move $sp,$fp
1w $31.4($sp)
1w $fp,O($sp)
jr $31
addiu $sp.$sp,8

15.1.4 Pragma Interface(C,...)

The SYSTEAM Ada System supports PRAGMA interface (C....).

With the help of this pragma and by obeying some rules (described below) subpro-
grams can be called which follow the C procedure calling standard. As the user must
know something about the internal calling conventions of the SYSTEAM Ada System
we recommend reading §15.1.3 before reading this section and before using PRAGMA
interface (C).

For each Ada subprogram for which

PRAGMA interface (C. <ada-name>);

is specified, a routine implementing the body of the subprogram <ada-name> must be
provided, written in any language that obeys the C calling conventions cf. UMIPS
Documentation Set, Languages Programmer's Guide, Chapter 3, in particular:

- Saving registers
- Calling mechanism
- C stack frame format.

274 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

RISC/os system calls or subroutines are allowed too.

The following parameter and result types are supported:

C Type Ada Type

int standard. integer
float standard. float

double standard. long.float

pointer system. address

The calling mechanism for all parameter types is call by value. The type address

may serve to implement all kinds of call by references: The user may build all kinds

of objects and pass their addresses to the C subprogram or RISC/os system routine.

If

PRAGMA interface (assembler. <ada.name>);

is specified, a routine implementing the body of the subprogram <ada..name> and

obeying the internal calling conventions of the SYSTEAM Ada Compiler must be

provided.

The name of the routine which implements the subprogram <ada-name> should be

specified using the pragma external-name (see §15.1.2), otherwise the Compiler will

generate an internal name that leads to an unsolved reference during linking. These

generated names are prefixed with an underline; therefore the user should not define

names beginning with an underline.

The following example shows the intended usage of the pragma interface (C) to call

a RISC/os system routine. The given procedure serves to open a file with a fixed name.

It is called in the body of the main program.

WITH system;

PROCEDURE unixcall IS
read-mode : CONSTANT integer : 8#0#;

file-name : CONSTANT string : "/benl/test/fl" & ascii.nul;

PRAGMA resident (file-name);

ret-code : integer;
use-error : EXCEPTION;
FUNCTION unix.open (path : system.address;

oflag : integer) RETURN integer;

PRAGMA interface (C. unix-open);

SYSTEAM Ada System - User Manual 275

Chapter 15 Appendix F

PRAGMA external-name ("open". unix-open);
BEGIN

ret-code := unix.open (file.name'address, read-mode);
IF ret.code = -1 THEN

RAISE use-error;
END IF;

END unix-call;

15.2 Implementation-Dependent Attributes

The name, type and implementation-dependent aspects of every implementation-de-
pendent attribute is stated in this section.

15.2.1 Language-Defined Attributes

The name and type of all the language-defined attributes are as given in the LRM. We
note here only the implementation-dependent aspects.

ADDRESS
If this attribute is applied to an object for which storage is allocated, it yields the
address of the first storage unit that is occupied by the object.
If it is applied to a subprogram or to a task, it yields the address of the entry
point of the subprogram or task body.
If it is applied to a task entry for which an address clause is given, it yields the
address given in the address clause.
For any other entity this attribute is not supported and will return the value
system. address-zero.

IMAGE
The image of a character other than a graphic character (cf. LRM(§3.5.5(11)))
is the string obtained by replacing each italic character in the indication of the
character literal (given in the LRM(Annex C(13))) by the corresponding upper-
case character. For example, charactor' image (nul) - "NUL".

276 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

MACHINE-_OVERFLOWS
Yields true for each real type or subtype.

MACHINE-ROUNDS
Yields true for each real type or subtype.

STORAGE-SIZE
The value delivered by this attribute applied to an access type is as follows:
If a length specification (STORAGE-SIZE, see §16.2) has been given for that type
(static collection), the attribute delivers that specified value.
In case of a dynamic collection, i.e. no length specification by STORAGE-SIZE given
for the access type, the attribute delivers the number of storage units currently
allocated for the collection. Note that dynamic collections are extended if needed.
If the collection manager (cf. §13.3.1) is used for a dynamic collection the attribute
delivers the number of storage units currently allocated for the collection. Note
that in this case the number of storage units currently allocated may be decreased
by release operations.

The value delivered by this attribute applied to a task type or Wask object is as
follows:
If a length specification (STORAGE-SIZE, see §16.2) has been given for the task
type, the attribute delivers that specified value; otherwise, the default value is
returned.

15.2.2 Implementation-Defined Attributes

There are no implementation-defined attributes.

15.3 Specification of the Package SYSTEM

The package system as required in the LRM(§13.7) is reprinted here with all imple-
mentation-dependent characteristics and extensions filled in.

SYSTEAM Ada System - User Manual 277

Chapter 15 Appendix F

PACKAGE system IS

TYPE designated-byaddress IS LIMITED PRIVATE;
TYPE address IS ACCESS designated-by-address;
FOR address'size USE 32;
FOR address'storage.size USE 0;

address-zero : CONSTANT address := NULL;

FUNCTION "+" (left : address; right : integer) RETURN address;

FUNCTION "+" (left : integer; right : address) RETURN address;

FUNCTION "-" (left : address; right : integer) RETURN address;

FUNCTION "-" (left : address; right : address) RETURN integer;

FUNCTION symbolic-address (symbol string) RETURN address;

SUBTYPE external-address IS STRING;

-- External addresses use hexadecimal notation with characters
-- '0'..'9', 'a'..'f' and 'A'..'F'. For instance:
-- "7FFFFFFF"
-- "80000000"

-- "8" represents the same address as "00000008"

FUNCTION convert-address (addr : external-address) RETURN address;
-- convert-address raises CONSTRAINT-ERROR if the external address

-- addr is the empty string, contains characters other than
-- '0'..'9', 'a'..'f'. 'A'..'F' or if the resulting address value
-- cannot be represented with 32 bits.

FUNCTION convert-address (addr : address) RETURN external-address;
-- The resulting external address consists of exactly 8 characters

-- 0'..'9'. 'A'..'F .

TYPE name IS (mips-umips);
system-name : CONSTANT name : mips-umips;

storage-unit : CONSTANT : 8;
memory-size : CONSTANT := 2 ** 31;

278 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

min-int : CONSTANT - 2 ** 31;
max-i:w : CONSTANT 2 ** 31 - 1;
max-digits : CONSTANT 15;
max-mantissa : CONSTANT 31;
fine-delta : CONSTANT 2.0 ** (-31);
tick : CONSTANT 1.0/3600.0;

SUBTYPE priority IS integer RANGE 0 .. 15;

TYPE interrupt-number IS RANGE 1 .. 32;

interrupt-vector : ARRAY (interrupt-number) OF address;
-- The mapping of signal numbers to interrupt addresses is
-- defined by this array.

sighup : CONSTANT 1;
sigint : CONSTANT 2;
sigquit : CONSTANT : 3;
sigill : CONSTANT : 4;
sigtrap : CONSTANT : 5;
sigiot : CONSTANT 6;
sigabrt : CONSTANT : sigiot;
sigemt : CONSTANT : 7;
sigxcpu : CONSTANT : sigemt;
sigfpe : CONSTANT := 8;
sigkill : CONSTANT : 9;
sigbus : CONSTANT := 10;
sigsegv : CONSTANT 11;
sigays : CONSTANT : 12;
sigpipe : CONSTANT := 13;
sigalrm : CONSTANT :* 14;
sigterm : CONSTANT : 15;
sigusrl : CONSTANT : 16;
sigusr2 : CONSTANT := 17;
sigchld : CONSTANT := 18;
sigcld : CONSTANT : sigchld;
sigxfsz : CONSTANT : 19;
sigstop : CONSTANT := 20;
sigtstp : CONSTANT := 21;
sigpoll : CONSTANT : 22;
sigio : CONSTANT := 23;
sigurg : CONSTANT : 24;
sigwinch : CONSTANT :- 25;
sigvtalrm : CONSTANT : 26;
sigprof : CONSTANT : 27;

SYSTEAM Ada System - User Manual 279

Chapter 15 Appendix F

sigcont : CONSTANT 28;
sigttin : CONSTANT : 29;
sigttou : CONSTANT 30;
siglost : CONSTANT 31;

non-ada-error : EXCEPTION;

-- nonada.error is raised, if some event occurs which does not
-- correspond to any situation covered by Ada, e.g.:
-- illegal instruction encountered
-- error during address translation
- - illegal address

TYPE exception-id IS NEW address;

no-exception-id : CONSTANT exceptionid := NULL;

FUNCTION constrainterror-id RETURN exceptionid;
FUNCTION numericerrorid RETURN exception-id;
FUNCTION program-error-id RETURN exception-id;
FUNCTION storage.error-id RETURN exception-id;
FUNCTION taskingerrorid RETURN exception-id;

FUNCTION non-ada-error-id RETURN exception-id;

FUNCTION statuserror.id RETURN exception-id;
FUNCTION modeerror-id RETURN exception-id;
FUNCTION nameerrorid RETURN exception-id;
FUNCTION use-error.id RETURN exceptionid;
FUNCTION device-error-id RETURN exception-id;
FUNCTION end-error-id RETURN exception-id;
FUNCTION data-error-id RETURN exception-id;
FUNCTION layout-error-id RETURN exception-id;

FUI TION time.error.id RETURN exceptionid;

noerror-code : CONSTANT :- 0;

TYPE exception-information
IS RECORD

excp-id : exception-id;
-- Identification of the exception. The codings of

the predefined exceptions are given above.
code-addr : address;

-- Code address where the exception occured. Depending
-- on the kind of the exception it may be be address of

280 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

-- the instruction which caused the exception, or it
-- may be the address of the instruction which would
-- have been executed if the exception had not occured.

error-code integer;
END RECORD;

PROCEDURE get-exception-information
(excp-info : OUT exception-information);

-- The subprogram get-exception-information must only be called
-- from within an exception handler BEFORE ANY OTHER EXCEPTION
-- IS RAISED. It then returns the information record about the
-- actually handled exception.
-- Otherwise. its result is undefined.

PROCEDURE raise-exceptionid
(excp-id : exception-id);

PROCEDURE raise-exception-info
(excp-info : exception-information);

-- The subprogram raise-exception-id raises the exception
-- given as parameter. It corresponds to the RAISE statement.

-- The subprogram raise-exception-info raises the exception
-- described by the information record supplied as parameter.
-- In addition to the subprogram raiseexception-id it allows to
-- expicitly define all components of
-- the exception information record.

-- IT IS INTENDED THAT BOTH SUBPROGRAMS ARE USED ONLY WHEN
-- INTERFACING WITH THE OPERATING SYSTEM.

TYPE exit-code IS NEW integer;

error : CONSTANT exit-code 1;
success : CONSTANT exit-code : 0;

errno : integer;
FOR errno USE AT symbolic-address ("errno");

PROCEDURE setexitcode (val : exit-code);
-- Specifies the exit code which is returned to the
-- operating system if the Ada program terminates normally.
-- The default exit code is 'success'. If the program is
-- abandoned because of an exception, the exit code is
-- 'error'.

SYSTEAM Ada System - User Manual 281

Chapter 15 Appendix F

PRIVATE

-- private declarations

END system:

15.4 Restrictions on Representation Clauses

See Chapter 16 of this manual.

15.5 Conventions for Implementation-Generated Names

There are implementation generated components but these have no names. (cf. §16.4
of this manual).

15.6 Expressions in Address Clauses

See §16.5 of this manual.

15.7 Restrictions on Unchecked Conversions

The implementation supports unchecked type conversions for all kinds of source and
target types with the restriction that the target type must not be an unconstrained
array type. The result value of the unchecked conversion i: unpredictable, if

target-type'SIZE > source-type'SIZE

282 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

15.8 Characteristics of the Input-Output Packages

The implementation-dependent characteristics of the input-output packages as defined
in the LRM(Chapter 14) are reported in Chapter 17 of this manual.

15.9 Requirements for a Main Program

A main program must be a parameterless library procedure. This procedure may be
a generic instantiation; the generic procedure need not be a library unit.

15.10 Unchecked Storage Deallocation

The generic procedure uncheckeddeallocation is provided; the effect of calling an
instance of this procedure is as described in the LRM(§13.10.1).

The implementation also provides an implementation-defined package collection
manager, which has advantages over unchecked deallocation in some applications (cf.
§13.3.1).

Unchecked deallocation and operations of the collection-manager can be combined
as follows:

collection-manager.reset can be applied to a collection on which unchecked
deallocation has also been used. The effect is that storage of all objects of the
collection is reclaimed.

* After the first unchecked-deallocation (release) on a collection, all following
calls of release (unchecked deallocation) until the next reset have no effect,
i.e. storage is not reclaimed.

after a reset a collection can be managed by mark and release (resp. unchecked.
deallocation) with the normal effect even if it was managed by unchecked.
deallocation (resp. mark and release) before the reset.

15.11 Machine Code Insertions

A package machine-code is not provided and machire code insertions are not sup-
ported.

SYSTEAM Ada System - User Manual 283

Chapter 15 Appendix F

15.12 Numeric Error

The predefined exception numeric-error is never raised implicitly by any predefined
operation; instead the predefined exception constraint -error is raised.

284 SYSTEAM Ada System - User Manual

Appendix F Chapter 15

SYSTEAM Ada System - User Manual 285

Chapter 16 Appendix F: Representation Clauses

16 Appendix F: Representation Clauses

In this chapter we follow the section numbering of Chapter 13 of the LRM and provide
notes for the use of the features described in each section.

16.1 Pragmas

PACK
As stipulated in the LRM(§13.1), this pragma may be given for a record or array
type. It causes the Compiler to select a representation for this type such that gaps
between the storage areas allocated to consecutive components are minimized.
For components whose type is an array or record type the PRAGMA PACK has no
effect on the mapping of the component type. For all other component types the
Compiler will choose a representation for the component type that needs minimal
storage space (packing down to the bit level). Thus the components of a packed
data structu ,vill in general not start at storage unit boundaries.

BYTE-PACK
This is an implementation-defined pragma which takes the same argument as the
predefined language PRAGMA PACK and is allowed at the same positions. For
components whose type is an array or record type the PRAGMA BYTE-PACK has
no effect on the mapping of the component type. For all other component types
the Compiler will try to choose a more compact representation for the component
type. But in contrast to PRAGMA PACK all components of a packed data structure
will start at storage unit boundaries and the size of the components will be a
multiple of system. storage -unit. Thus, the PRAGMA BYTE-PACK does not
effect packing down to the bit level (for this see PRAGMA PACK).

286 SYSTEAM Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

16.2 Length Clauses

SIZE
for all integer, fixed point and enumeration types the value must be <= 32;
for short.float types the value must be = 32 (this is the amount of storage
which is associated with these types anyway);
for float types the value must be = 64 (this is the amount of storage which is
associated with these types anyway).
for long.float types the value must be = 96 (this is the amount of storage which
is associated with these types anyway);
for access types the value must be = 32 (this is the amount of storage which is
associated with these types anyway).
If any of the above restrictions are violated, the Compiler responds with a RE-
STRICTION error message in the Compiler listing.

STORAGE-SIZE
Collection size: If no length clause is given, the storage space needed to contain
objects designated by values of the access type and by values of other types derived
from it is extended dynamically at runtime as needed. If, on the other hand, a
length clause is given, the number of storage units stipulated in the length clause
is reserved, and no dynamic extension at runtime occurs.

Storage for tasks: The memory space reserved for a task is 10K bytes if no length
clause is given (cf. Chapter 14). If the task is to be allotted either more or less
space, a length clause must be given for its task type, and then all tasks of this
type will be allotted the amount of space stipulated in the length clause (the
activation of a small task requires about 1.4K bytes). Whether a length clause is
given or not, the space allotted is not extended dynamically at runtime.

SMALL
there is no implementation-dependent restriction. Any specification for SMALL
that is allowed by the LRM can be given. In particular those values for SMALL are
also supported which are not a power of two.

16.3 Enumeration Representation Clauses

The integer codes specified for the enumeration type have to lie inside the range of the
largest integer type which is supported; this is the type integer defined in package
standard.

SYSTEAM Ada System - User Manual 287

Chapter 16 Appendix F: Representation Clauses

16.4 Record Representation Clauses

Record representation clauses are supported. The value of the expression given in an
alignment clause must be 0, 1, 2 or 4. If this restriction is violated, the Compiler
responds with a RESTRICTION error message in the Compiler listing. If the value is
0 the objects of the corresponding record type will not be aligned, if it is 1, 2 or 4 the
starting address of an object will be a multiple of the specified alignment.

The number of bits specified by the range of a component clause must not be greater
than the amount of storage occupied by this component. (Gaps between components
can be forced by leaving some bits unused but not by specifying a bigger range than
needed.) Violation of this restriction will produce a RESTRICTION error message.

There are implementation-dependent components of record types generated in the
following cases :

* If the record type includes variant parts and the difference between the sizes of the
maximum and the minimum variant is greater than 32 bytes, and, in addition, if it
has either more than one discriminant or else the only discriminant may hold more
than 256 different values, the generated component holds the size of the record
object. (If the second condition is not fulfilled, the number of bits allocated for any
object of the record type will be the value delivered by the size attribute applied
to the record type.)

• If the record type includes array or record components whose sizes depend on dis-
criminants, the generated components hold the offsets of these record components
(relative to the corresponding generated component) in the record object.

But there are no implementation-generated names (cf. LRM(§13.4(8))) denoting these
components. So the mapping of these components cannot be influenced by a represen-
tation clause.

16.5 Address Clauses

Address clauses are supported for objects declared by an object declaration and for
single task entries. If an address clause is given for a subprogram, package or a task
unit, the Compiler responds with a RESTRICTION error message in the Compiler
listing.

If an address clause is given for an object, the storage occupied by the object starts at
the given address. Address clauses for single entries are described in §16.5.1.

288 SYSTEAM Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

16.5.1 Interrupts

Under RISC/os it is not possible to handle hardware interrupts directly within the Ada
program; all hardware interrupts are handled by the operating system. In RISC/os,
asynchronous events are dealt with by signals (cf. sigvec(2)). In the remainder of this
section the terms signal and interrupt should be regarded as synonyms.

An address clause for an entry associates the entry with a signal. When a signal
occurs, a signal catching handler, provided by the Ada runtime system, initiates the
entry call.

By this mechanism, an interrupt acts as an entry call to that task; such an entry is
called an interrupt entry. An interrupt causes the ACCEPT statement corresponding to
the entry to be executed.

The interrupt is mapped to an ordinary entry call. The entry may also be ca'led by an
Ada entry call statement. However, it is assumed that when an interrupt oc -irs there
is no entry call waiting in the entry queue. Otherwise, the program is erroneous and
behaves in the following way:

* If an entry call stemming from an interrupt is already queued, this previous entry
call is lost.

* The entry call stemming from the interrupt is inserted into the front of the entry
queue, so that it is handled before any entry call stemming from an Ada entry

call statement.

16.5.1.1 Association between Entry and Interrupt

The association between an entry and an interrupt is achieved via an interrupt number
(type system. interrupt-number), the range of interrupt numbers being 1 .. 31 (this
means that 31 single entries can act as interrupt entries). The meaning of the interrupt
(signal) numbers is as defined in 8igvec(2). A single parameterless entry of a task can be
associated with an interrupt by an address clause (the Compiler does not check these
conventions). Since an address value must be given in the address clause, the interrupt
number has to be converted into type system. address. The array system. interrupt.
vector is provided for this purpose; it is indexed by an interrupt number to get the
corresponding address.

The following example associates the entry ir with signal SIGINT.

SYSTEAM Ada System - User Manual 289

Chapter 16 Appendix F: Representation Clauses

TASK ,andler IS
ENTRY ir;
FOR ir USE AT system.interrupt.vector (system.sigint);

END;

The task body contains ordinary accept statements for the entries.

16.5.1.2 Important Implementation Information

There are some important facts which the user of interrupt entries should know about
the implementation. First of all, there are some signals which the user should not use
within address clauses for entries. These signals are sigfpe, sigsegv, sigbus and
sigalrm; they are used by the Ada Runtime System to implement exception handling
and delay statements (sigairm). Programs containing address clauses for entries with
these inter, ipt numbers are erroneous.

In the absence of address clauses for entries, the Ada Runtime System establishes signal
catching handlers only for the signals mentioned above, so all other signals will lead
to program abortion as specified in the RISC/os documentation.

A signal catching handler for a specific signal is established when a task which has an
interrupt entry for this signal is activated. The signal catching handler is deactivated
and the previous handler is restored when the task has been completed. Several tasks
with interrupt entries for the same signal may exist in parallel; in this case the signal
catching handler is established when the first of these tasks is activated, and deactivated
when the last of these tasks has been completed.

16.6 Change of Representation

The implementation places no additional restrictions on changes of representation.

290 SYSTEAM Ada System - User Manual

Appendix F: Representation Clauses Chapter 16

SYSTEAM Ada System - User Manual 291

Chapter 17 Appendix F: Input-Output

17 Appendix F: Input-Output

In this chapter we follow the section numbering of Chapter 14 of the LRM and provide
notes for the use of the features described in each section.

17.1 External Files and File Objects

An external file is identified by a string that denotes a RISC/os file name. It may
consist of up to 1023 characters.

The form string specified for external files is described in §17.2.1.1.

17.2 Sequential and Direct Files

Sequential and direct files are ordinary files which are interpreted to be formatted with
records of fixed or variable length. Each element of the file is stored in one record.

In case of a fixed record length each file element has the same size, which may be
specified by a form parameter (see §17.2.1.1); if none is specified, it is determined to
be (element-type'SIZE + system.storage.unit - 1)/ system.storage-unit.
In contrast, if a variable record length is chosen, the size of each file element may
be different. Each file element is written with its actual length. When reading a file
element its size is determined as follows:

" If an object of the element-type has a size component (see §16.4) the element
size is determined by first reading the corresponding size component from the file.

* If element-type is constrained, the size is the minimal number of bytes needed
to hold a constrained object of that type.

* In all other cases, the size of the current file element is determined by the size of
the variable given for reading.

17.2.1 File Management

Since there is a lot to say about this section, we shall introduce subsection numbers
which do not exist in the LRM.

292 SYSTEAM Ada System - User Manual

Appendix F: Input-Output Chapter 17

17.2.1.1 The NAME and FORM Parameters

The name parameter must be a RISC/os file name. The function name will return a
path name string which is the complete file name of the file opened or created. Each
component of the file name (separated by "/") is truncated to 255 characters. Upper
and lower case letters within the file name string are distinguished.

The syntax of the form parameter string is defined by:

form-parameter ::= form-specification { . form-specification }]
form-specification ::- keyword [=> value J
keyword :: identifier
value :: identifier I numeric-literal

For identifier and numeric-literal see LRM(Appendix E). Only an integer literal
is allowed as numeric-literal (see LRM(§2.4)). In an identifier or numeric
literal, upper and lower case letters are not distinguished.

In the following, the form specifications which are allowed for all files are described.

MODE -> numeric-literal

This value specifies the access permission of an external file; it only has an effect in
a create operation and is ignored in an open. Access rights can be specified for the
owner of the file, the members of a group, and for all other users. numeric-literal
has to be a three digit octal number.

The access permission is then interpreted as follows:

8#400# read access by owner
8#200# write access by owner
8#100# execute access by owner
8#040# read access by group

write/execute access by group, analogously
8#0048 read access by all others

write/execute access by others, analogously

Each combination of the values specified above is possible. The default value is
8#66#.
The definitive access permission is then determined by the RISC/os System. It will be
the specified value for MODE, except that no access right prohibited by the process's

SYSTEAM Ada System - User Manual 293

Chapter 17 Appendix F: Input-Output

file mode creation mask (which may be set by the RISC/os umask command, cf. sh(1)
and umask(2)) is granted. In other words, the value of each "digit" in the process's
file mode creation mask is subtracted from the corresponding "digit" of the specified
mode. For example, a file mode creation mask of 8#022# removes group and others
write permission (i.e. the default mode 8#666# would become mode 8#644#).

The following form specification is allowed for sequential, direct and text files:

SYNCHRO -> OFF I ON I ON-WAIT

It allows reader/writer synchronization of parallel file accesses by different processes,
such that only one process may write to a file (and no other process may read from
or write to the same file in parallel) or multiple processes may read a file in parallel.
This synchronization is achieved through the system call flock(2).
By default parallel accesses are not synchronized (SYNCHRO => OFF).
If the form specification SYNCHRO => ON is given, USE-ERROR is raised when the
access is not possible (because other processes are accessing the file when write access is
requested, or because another process is writing the file when r-ad access is requested).
If the form specification SYNCHRO => ON-WAIT is given, the process is blocked when the
access is not possible for one of the above reasons. When the access becomes possible,
the process is unblocked. USE-ERROR is not raised with SYNCHRO => ON-WAIT.

The following form specification is allowed for sequential and direct files:

RECORD-SIZE -> numeric-literal

This value specifies the size of one element on the file (record size) in bytes. This form
specification is only allowed for files with fixed record format. If the value is specified
for an existing file it must agree with the value of the external file.

By default, (element .type'SIZE+ eystem.storage.unit - 1)/system.storage-unit will be chosen
as record size, if the evaluation of this expression does not raise an exception. In this
case, the attempt to create or open a file will raise USE.ERROR.

If a fixed record format is used, all objects written to a file which are shorter than the
record size are filled up. The content of this extended record area is undefined. An
attempt to write an element which is larger than the specified record size will result
in the exception use-error being raised. This can only happen if the record size is
specified explicitly.

294 SYSTEAM Ada System - User Manual

Appendix F: Input-Output Chapter 17

17.2.1.2 Sequential Files

A sequential file is represented by an ordinary file that is interpreted to be formatted
with either fixed-length or variable-length records (this may be specified by the form
parameter).

If a fixed record format is used, all objects written to a file which are shorter than
the maximum record size are filled up. The content of this extended record area is
undefined.

RECORD-FORMAT => VARIABLE I FIXED

This form specification is used to specify the record format. If the format is specified
for an existing file it must agree with the format of the external file.

The default is variable record size. This means that each file element is written with
its actual length. A read operation transfers exactly one file element with its actual
length.

Fixed record size means that every record is written with the size specified as record
size.

APPEND -> FALSE I TRUE

If the form specification APPEND -> TRUE is given for an existing file in an open for an
output file, then the file pointer will be set to the end of the file after opening, i.e. the
existing file is extended and not rewritten. This form specification is only allowed for
an output file; it only has an effect in an open operation and is ignored in a create. By
default the value FALSE is chosen.

TRUNCATE -> FALSE I TRUE

If the form specification TRUNCATE -> TRUE is given for an existing file in an open for
an output file, then the file length is truncated to 0, i.e. the previous contents of the
file-are deleted. Otherwise the file is rewritten, i.e. if the amount of data written is
less than the file size, data previously written will remain at the end of the file. This
form specification is only allowed for an output file; it only has an effect in an open
operation and is ignored in a create. By default the value TRUE is chosen.

SYSTEAM Ada System - User Manual 295

Chapter 17 Appendix F: Input-Output

The default form string for a sequential file is

"RECORD-FORMAT => VARIABLE, APPEND => FALSE. " k
"TRUNCATE => TRUE, MODE => 8#666# " &
"SYNCHRO => OFF"

17.2.1.3 Direct Files

The implementation dependent type count defined in the package specification of
direct-io has an upper bound of:

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)

A direct file is represented by an ordinary file that is interpreted to be formatted
with records of fixed length. If not explicitly specified, the record size is equal to
(element-type'SIZE + system.storageunit - 1) /system.atorage-unit.

The default form string for a direct file is :

"RECORD-SIZE -> MODE => 8#666#. SYNCHRO => OFF"

17.3 Text Input-Output

Text files are sequential character files.

Each line of a text file consists of a sequence of characters terminated by a line termi-
nator, i.e. an ASCII.LF character.

A page terminator is represented by an ASCII.FF character and is always preceded by
a line terminator.

A file terminator is not represented explicitly in the external file; the end of the file is
taken as a file terminator. A page t,.d,-inator is assumed to precede the end of the file
if there is not explicitly one as the last character of the file.

Output to a file and to a terminal differ in the following way: If the output refers to
a terminal it is unbuffered, which means that each write request in an Ada program

296 SYSTEAM Ada System - User Manual

Appendix F: Input-Output Chapter 17

will appear on the terminal immediately. Output to other files is buffered, i.e several
characters are saved up and written as a block.

Terminal input is always processed in units of lines.

17.3.1 File Management

Besides the mode specification (cf. §17.2.1.1) the following form specification is allowed:

APPEND => FALSE I TRUE

If the form specification APPEND => TRUE is given for an existing file in an open for an
output file, then the file pointer will be set to the end of the file after opening, i.e. the
existing file is extended and not rewritten. This form specification is only allowed for
an output file; it only has an effect in an open operation and is ignored in a create. By
default the value FALSE is chosen.

The default form string for a text file is

"APPEND => FALSE. MODE -> 8#666#. SYNCHRO => OFF"

17.3.2 Default Input and Output Files

The standard input (resp. output) file is associated with the standard RISC/os files
stdin resp. stdout.
Writing to the RISC/os standard error file stderr may be done by using the package
text .io.extension (cf. §13.3.4).

SYSTEAM Ada System - User Manual 297

Chapter 17 Appendix F: Input-Output

17.3.3 Implementation-Defined Types

The implementation-dependent types count and field defined in the package specifi-
cation of text-io have the following upper bounds :

COUNT'LAST = 2-147-483-647 (= INTEGER'LAST)
FIELD'LAST = 512

298 SYSTEAM Ada System - User Manual

Appendix F: Input-Output Chapter 17

17.4 Exceptions in Input-Output

For each of name-error, use-error, device-error and data-error we list the condi-
tions under which that exception can be raised. The conditions under which the other
exceptions declared in the package io-exceptions can be raised are as described in
LRM(§14.4).

NAME-ERROR

* in an open operation, if the specified file does not exist;

* if the name parameter in a call of the create or open procedure is not a legal
RISC/os file name string; i.e, if a component of the path prefix is not a directory.

USE-ERROR

0 whenever an error occurred during an operation of the underlying RISC/os system.
This may happen if an internal error was detected, an operation is not possible for
reasons depending on the file or device characteristics, a capacity limit is exceeded
or for similar reasons;

* if the function name is applied to a temporary file or to the standard input or
output file;

* if an attempt is made to write or read to/from a file with fixed record format a
record which is larger than the record size determined when the file was opened
(cf. §17.2.1.1); in general it is only guaranteed that a file which is created by an
Ada program may be reopened and read successfully by another program if the
file types and the form strings are the same;

* in a create or open operation for a file with fixed record format (direct file or
sequential file with form parameter RECORD-FORMAT -> FIXED) if no record size is
specified and the evaluation of the size of the element type will raise an exception.
(For example, if direct-io or sequential-io is instantiated with an unconstrained
array type.)

if a given f ori parameter string does not have the correct syntax or if a condition
on an individual form specification described in §§17.2-3 is not fulfilled;
in a create or open operation with form specification SYNCHRO -> ON when the
requested access is currently not possible; see §17.2.1.1 for the exact conditions.

DEVICE-ERROR
is never raised. Instead of this exception the exception use-error is raised when-
ever an error occurred during an operation of the underlying RISC/os system.

DATA-ERROR
the conditions under which data-error is raised by text-io are laid down in the
LRM.

SYSTEAM Ada System - User Manual 299

Chapter 17 Appendix F: Input-Output

In general, the exception data-error is not usually raised by the procedure read
of sequential-io and direct-io if the element read is not a legal value of the
element type because there is no information about the file type or form strings
specified when the file was created.
An illegal value may appear if the package sequential-io or direct-io was
instantiated with a different element-type or if a different form parameter string
was specified when creating the file. It may also appear if reading a file element
is done with a constrained object and the constraint of the file element does not
agree with the constraint of the object.
If the element on the file is not a legal value of the element type the effect of
reading is undefined. An access to the object that holds the element after reading
may cause a constrained-error, storage-error or non-ada-error.

17.5 Low Level Input-Output

We give here the specification of the package low.level-io:

PACKAGE low-level-io IS
TYPE device-type IS (null-device);
TYPE data-type IS

RECORD
NULL;

END RECORD;
PROCEDURE send-control (device : device-type;

data : IN OUT data-type);
PROCEDURE receive-control (device : device-type;

data : IN OUT data-type);
END low-level-io;

Note that the enumeration type device-type has only one enumeration value, null-
device; thus the procedures send-control and receive-control can be called, but
send-control will have no effect on any physical device and the value of the actual
parameter data after a call of receive-control will have no physical significance.

300 SYSTEAM Ada System - User Manual

Appendix F: Input-Output Chapter 17

SYSTEAM Ada System - User Manual 301

