
AD-A234 253

AL-TR-90-085 AD:

Final Report GPS - A PostScript-like Language
for the period for System Simulation-March 1990 to

October 1990

January 1991 Author: Argonne National Laboratory
H.K. Geyer 9700 South Cass Avenue

Argonne IL 60437-4841

A PP, 0 'iiAP. O 199A1 ,.. :

Approved for Public Release

Distribution is unlimited. The OL-AC-PL Technical Services-Office has reviewed this
report and it-is releasable-to the National Technical Information Service- where it
will be available to the general public, including-foreign nationals.

Prepared-for the: OL-AC, Phillips Laboratory (AFSC)
Air Force Systems Command
Edwards AFB CA 93523-5000

9! 2,3 092

NOTICE

When U.S. Government drawings, specifications, or other data are used for any purpose
other than a definitely related Government procurement operation, the fact that the Govern-
ment may have formulated, furnished, or in any way supplied the said drawings, specifica-
tions, or other data, is not to be regarded by implication or otherwise, or in any way licensing
the holder or any other person or corporation, or conveying any rights or permission to man-
ufacture, use or sell any patented invention that may be related thereto.

FOREWORD

This final report was submitted by Argonne National Laboratory, Argonne IL on completion
of Project AFAL-89016 with the OL-AC, Phillips Laboratory (AFSC) (formerly Astronautics
Laboratory), Edwards AFB CA 93523-5000. Argonne National Laboratory is operated by the
University of Chicago for the United States Department of Energy under Contract
W-31-109-Eng-38. OLAC PL Project Manager was Lt Tim Lawrence.

This-report has been reviewed and is approved-for release and distribution in accordance
with the distribution statement-on the cover andon the DD Form 1473.

TIMOTHY J. LAWRENCELT, USAF CLARENCE *C. COLEMAN, Capt, USAF

Project Manager Chief, Advanced Concepts Branch

DiA't L'. UW3. A" n V'i

FCURITY CLASSIFICATION OF THIS PAGE
" [Form Approved

REPORT DOCUMENTATION PAGE OMNo. 07040188

la, REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY -3. DISTRIBUTION /AVAILABILITY OF REPORT

N/A Approved for public release; distribution is
2b. DECLASSIFICATION I DOWNGRADING- SCHEDULE unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) -5. MONITORING ORGANIZATION REPORT NUMBER(S)

AL-TR-90-085

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

Argonne National Laboratory ANL Phillips Laboratory
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
9700 South Cass Avenue - OL-AC PL/LSVF
Argonne, IL 60437-4841 Edwards AFB, CA 93523-5000

8a. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
AFAL 89016

87c. ADDRESS (City, State, and ZIP Code)- 10. SOURCE OF FUNDING NUMBERS
MPROGRAM PROJECT OTASK WORK UNIT

ELEMENT NO. NO. NO ACCESSION NO

--62302F 3058 00 7D
11. TITLE (Include Security Classification)

GPS - A Postscript - like Language for System Simulations

12. PERSONAL AUTHOR(S)

Howard K. Geyer
13a. TYPE OF REPORT 13b. TIME COVERED- 14. DATE OF REPORT (Year, Month.Day) 1S. PAGE COUNT

Final FROM 90/03 TO90/10 91/01 108
16, SUPPLEMENTARY- NOTATION

OL-AC PL was formerly the Astronautics Laboratory (AFSC)

17. " COSATI CODES 18. SUBJECT TERMS-(Continue on reverse if necessary and-identify by block-number)
FIELD GROUP SUB-GROUP Mission analysis, nuclear propulsion, thermaihydraulics
21- 06

19. ABSTRACT (Continue on reverse if necessay and identify by block-number)
GPS is a post script (a registered trademark of Adobe Systems, Inc.) like language which
can be used to interact with the models and mathematical utility classes used with the
SALT (System Analysis Language Translater) code. This permits writing drivers that are
interpreted rather than compiled, as with the current version of SALT, thus saving the
resulting compile and load times on -the computer. Another advantage that GPS affords
over the SALT code is its ability to interrupt the execution of a system problem and then
query and change system variables. In- order to use GPS with a set of models, there are
several requirements to which the models must conform. However these requirements are not
complex, and in general, simply amount to adding a mechanism to locate model variables and-

* functions via -their names. GPS was developed as an alternative to directly writing drivers
for the SALT code (C++version) and is itself one of several alternative ways of developing
direct methods of doing system studies (as opposed to indirect methods in which the speciall
developed driver for the system must first be -compiled). For example, a general purpose

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
QUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT -0 DTIC USERS -Uncalssified I22a. NAME OF RESPONSIBLE INDIVIDUAL- 22b.TELEPHONE (Include Area Code)- 22c. OFFICESYMBOL

Lt Timothy J. Lawrence ,,805-275-5640 , LSVF
DD Form 1473, JUN 86 Previous editions areobsolete SECURITY- CLASSIFICATION OF THIS PAGE

i

19. ABSTRACT Cont.

driver could be written and linked to the SALT models which would provide a
number of different system configurations, possible system constraints,
parametric studies, etc. This is an approach often employed by system codes
and results in the easiest to use code in as much as the inputs must take a
fixed format. This approach also makes for a robust code. However, even the
most general hard wired drivers have limitations which are usually encountered
eventually. Another alternative would be to develop a general purpose
interpreted language for interacting with system models. This provides for
handling a greater range of potential system problems provided that the
developed language is sufficiently flexible. In order to obtain this flexibility
most of the capabilities of a general purpose programming language must be
provided, this means that a relatively sophisticated language parser must be
developed. As a third alternative, a language like post script or Forth might be
employed in which there is relativ ly little syntax structure and thus does not
nead a sophisticated parser. These languages are alsc extensible providing
even greater flexibility, however; these languages have a disadvantage in that they
are often hard to read due to their use of pnstfix notation and of stacks. While
these disadvantages cannot be entirely e- .idnated, with some suitable extensions
to the language and some discipline in writ ing input they can be reduced. GPS
makes use of this last alternative. The fist section presents an overview of the
GPS language and some of its differences with postscript. The second system
presents a brief discussion of the Postscript like language operators followed
by a section on the new operators for dealing with models developed.

i-i

/

Tableof Cotent

C h p er I C S a g ag ..
1. I tr du ti n ...

1. C S v rv ew ...

Chapter 1 Ge nua g oel....................eClase... 1
1.1 Introduction... 11
1.2 Class oveiw .. 2
1.3 C Stakocriike-operators.. .2
1.4 ATialOperators.. .72

Chapter 2 ass xGenesr..l.Model...and....athematical.....Utilities....Cla..ses.. 11
2.1 ntroducton... 15
2.2 lamp nntos.. 15
2.3 Eample. hre... 16
2.4 a l class.. ... 12
2.5.skCl Example... 18

2.5.1 Example one.. 19

2.5.2r Seayplae tw........Mdel...1
.3 Exap Itou three.. 21

32.. Seampltae four.......ase.. 1
233 Seampltae fivel..18
2.5.6 Exa)mpl e l si ... 19

Chptr3. Stad-Ser Pwer Sytemodel Classes.. 21
3. Introuton...mel. .. 21
.3 4 ea-Stat Modello classes.. 21

3.3. Staysturte odels. l... 23
3.3.1 Gas (gaps) o~p modeel.. .. 23
3.3.2 Mier (x)ne(model.. 24
3.3.3 Supte (sup) -model... 29
3.3.4 Heatuer (t)-model.. 26
3.3.10 Gasourbie ()-model .. 27
3..6 Gcopresor(p)odel...27

3.3.82 Pmpr (powep)- model .. 2
33 SediyfSae Exale Ode...2

3.5-Steady-State -Example Toe ... 32

3.6 Steady-State Example Three.. 34
3.7 Steady-State Example Four ... 35

Chapter 4 Dynamic Power System Model Classes.. 39
4.1 Introduction... 39
4.2 Dynamic Model Flow Classes.. 39
4.3 Dynamic Models ... 40

4.3.1 Gas (gas) model... 40
4.3.2 Shaft (shft) model... 41
4.3.3 Compressor (cp) modcl... 42
4.3.4 Exhaust nozzle (exnz) model .. 43
4.3.5 Gas turbine (gt) model ... 45
4.3.6 Heater (ht) model... 46
4.3.7 Mixer (mx) model .. 48
4.3.8 Pipe (pi) model.. 48
4.3.9 Pump (pump) model .. 49
4.3.10 Reactor (reac) model .. 50
4.3.11 Splitter (sp) model... 52
4.3.12 Valve (valv) model .. 53
4;3.13 Motor (mot) model .. 53
4.3.14 Generator (gen) model .. 54
4.3.15 Controller (cnfl) model.. 54

4.4 Dynamic system tasks... 55
4.5-Dynamic example one... 56

Chapter 5 Thermionic Power System Model Classes... 61
5.1- Introduction... 61
5.2 Thermionic Model Flow Classes ... 61
5.3 Thermionic models .. 61

5.3.1 Reactor (reac) model ... 62
5.312 Thermionic Converter (ti) model .. 63
5.3.3 Radiator (rad) model ... 63
5.3.4 Boost Converter (bc) model.. 64
53,5 Flow Splitter (sp) model ... 64
5.3.6 Resistor (res) model .. 65
5.3.7 Bus (bus) model ... 65
5.1~8 Mass (mass) model.. 65

5.4 Thermionic System Example ... 65

-Chapter 6 Graphics.............................I... 67
6.1-Introduction... 67
6.2 Two-dimensional Plots .. 67
6.3 System Diiafdms .. 68

6.311 Configuration- Windows... 68
6.3.2 Diagram Editing .. 69

Chapter 7 GPS Model Interfacing .. 71
7.1 Introduction... 71
7.2iterfacing- example I ... 71

7.3 O ther requirem ents ... 73

References ... 75

Appendix A Task-Class exam ples .. 76

Appendix B Steady-State Exam ple Four .. 85

Appendix C Steady-State Exam ple Four-w ith Constraints ... 86

Appendix D Dynam ic Exam ple O ne at-Design Point .. 88

Appendix E Dynam ic Exam ple One .. 91

Appendix F Therm ionic System Example 97

Appendix G Perform ance M ap Layouts .. 99

CHAPTER 1

GPS Language

1.1. Introduction

GPS is a PostScript' like language for performing steady-state and dynamic system simulations. The systcms
that .an be analyzed consist of arbitrary configurations of component models interconnected by various flows.
The component models can also be quite arbitrary in their modeling sophistication with new models being easily
added by the user. The flows are hkewise arbitrary in their complexity and may represent actual physical flows,
such as gasses or liquids in the case of a power system, or simply the flow of information in the case of a sensor
or control system. GPS also permits the user to include aritrary system constraints over part or all of the sys-
tem under consideration. In fact, dif..ent system constraints may be imposed on any -collction of user defined
nested or unnested subsystems. Additionally, GPS permits the user to define nonlinear objective functions to be
mmimizcd subject to-both equality or-inequality nonlinear constraints over any collection of subsystems. These
types of capabilities-permit one to quickly set up and perform -an almost endless variety of system scenario-stu-
dies.

GPS was developed to make use of the various component models previously developed for use within the
SALT (System Analysis Language Translator) code [1,2]. Thus, a number of component- models for power sys-
tems are currently available. In addition,-a number of fluid properties procedures are also available for use with
those models. Several of these model libraries are described in this report. In order to use GPS with any set of
models, there are several requirements to-which the models must conform. However, these requirements are not
complex, and, in general, simply amount to adding a mechanism to locate model variables and functions via
their names.

OPS has a number of advantages over the SALT code. SALT originally made use of a preprocessor tech-
nique in its PL/I version and in its C++ version required the user to simply write a driver-using the various-C++
model classes. In either case the resulting driver had to be compiled and then linked to the component models,
mathematical utilities, property procedures, etc. OPS drivers are interpreted rather than compiled, thus saving
the rculting compile and load times on the computer, and permitting very rapid turn around times in performing
a series of system studies. Another advantage that OPS affords-over the SALT code is its ability to interrupt the
execution of a system problem and then query and change system variables.

As an alternative to directly writing drivers for the SALT code, GPS is itself one of several alternative
ways of developing non-preprocessor methods for analyzing systems. For example, a general purpose driver
could be written and linked to the models which would provide -a number of different system configurations,
possible system- constraints, parametric studies, etc. This is an-approach often employed by system codes-and
results in the easiest-to use code in as much as the inputs must take a fixed format. This approach also makes
for a robust code. However, even the most-general hardwired drivers have limitations which are usually -encoun-
tered eventually. Another alternative would be to develop a general purpose interpreted -language for interacting
with system models. This provides for handling a greater range-of potential system- problems provided that the
declopcd language-is sufficiently flexible. In order to obtain this -flexibility most of the capabilities of a general
purpose programming language must be-provided. This means that a relatively sophisticated language parser
must be developed. As a third alternative, a language like PostScript or Forth might be employed in which
,hc, is r.laiveCly lit,,C syntax structure and- thus, does not nceda sophisticated parser. These lariguagez ahc ,ilo
extensible providing-for even greater flexibility. However, these languages have a disadvantage in that-they are
often hard to read due to their use of postfix notation and- of stacks. While these disadvantages can not be
entirely eliminated, with some suitable extensions to the language-and some discipline-in writing input they can

'postScript is a registered tradcmark of Adobe-Systems, Inc.

2

be reduced. GPS makes use of this last alternative.

The next section presents an overview of the GPS language and some of its differences with PostScripL
The third section presents a brief discussion of the PostScript like language operators followed by a se"tiun on
the new operators for dealing with models developed in C.

1.2. GPS Overview
The GPS language is structured exactly as the PostScript language with the few differences discussed below.
Thus, [] delimit arrays, () delimit procedures, and a / delimits literals. A % sign marks the beginning of a
comment, which is terminated by a newline mark. GPS makes use of dictionaries and a dictionary stauk as with
PostScript, with systemdict cocrtaining all of the builtin operators and userdic, die first of any user defihlcd dic-
tionaries. These two dictionaries can not be removed from the dictionary stack. The dictionary stak i-an hold
up to 20 dictionaries, the operand stack up to 500 elements, and the execution stack up to 250 clemcts. The
userdict is initially defined to ho!d up to 200 user defined entries. In GPS, however, no new words can 1, added
to the systemdict.

At present, GPS implements roughly 60 of the PostScript operators and, in addition, about a dulcn other
operators for dealing with model classes and the mathematical utilities currently within SALT. The full list of
PostScript like operators is given in the next section. Here we present some of the differences between GPS and
PostScript.

The first major difference between GPS and PostScript is that many of the operators within PostScript
have not been implemented simply because they were not needed for the purposes for which GPS is enaisioned.
These include all of the imaging operators, such as-lincto, moveto, stroke, show, etc., many of the file ou,.rator,,
and the error handling operators, such as stopped, stop, etc. Some of these, notably the error handling operators,
may eventually be added to GPS. Note the intention of GPS- is not to compete with PostScript but rather to
have a way of in:iracting with the SALT code models in an-interpreted way mh;le still maintaining the full
capabilities afforded by an actual C++ driver. Secondly, character strings within GPS are delimited by double
quotes ". as in C or C++. This frees up the use- of parenthesis for another purpose which is the third main
difference. Any collection of words that define -an -algebraic expression may be enclosed within parenthesis, in
which case the expression can be written in the usual infix notation. Thus, the expression

((x+y)*sin(ln(x)+ 1)-2*cos(x*y))

can be written exactly as is rather than
x y add x In I add sin mul 2 x y-mul cos mul sub

as in PostScript. This can greatly improve the readability of the language when used to define algebrik. expres-
sions.

Another difference between GPS and PostScript is that GPS keeps a reference count of all arrays, pro-
cedures, and dictionaries, objects that u.,. what PostScript calls virtual memory. These objects are ,,llo.ated in
£,-mor), and are pointed to by possibly many other objects. The number of objects that have a refermi., to one
of these virtual memory objects is kept track of and stored with the object. When this reference count eLomes
zero the memory occupied by the object is freed. Thus, the GPS code automatically performs its own g,irbage
collection and the usual save and restore type operations used in PostScript are not used.

Finally, there are a few minor differences between the GPS operators and the PostScript operaturs. These
differences will be discussed within of the-next section.

1.3. PostScript like operators
As many of the GPS operators are exazty like their PostScript counterparts, this section simply ecumerdtes
these operators, refc~czg tic jcdw to thc Postscript Language Referenec manuti [3] for thir duL. dd usge.
These operators are listed in Table 1 which is followed by a very brief introduction to the use of these
PostScript like operators.

The best way to understand the various GPS operators is to see how they are used in some examples.
Thus, we present some very simple examples making use of only those operators that occur in Tablu I in an
interactive GPS session.

3

GPS is started as an interactive session by simply typing GPS. The "gps>" prompt will then appear and
any valid GPS input can be input in a free form way. Alternatively, the input can be-typed into a file, edited,
and saved, then a GPS session can be started and the GPS run operator used to simply execute the file. That is,
after the "gps>" prompt, simply type

"file name" run

Note the run operator can also be used to initialize the system by simply executing a file containing any user
defined words, dictionaries, abbreviations, or whatever. To terminate the GPS session, simply type the quit
operator.

Table 1. OPS operators similar to PostScript
abs add aload and
array astore begin ceiling
clear cleartomark copy cos
count countdictstack counttomark currentdict
def dict div dup
end eq exch exit
false floor for forall
ge get gt if
ifelse index le length
In loop log It
maxlength mod mul ne
neg not or pop
Put quit repeat roll
run sin sqrt stack
store sub systemdict true
type userdict =

GPS also has an interrupt mode which is initiated by typing a Control-c character at the terminal. When
this mode is in effect the prompt is changed to "gpsjint>". Any GPS input is equally valid in this interrupt
mode, including the quit operator which will terminate the session just as in the normal mode. To go back to
the normal mode from the interrupt mode simply type resume.

When GPS is reading input from the standard input file any errors-that are found are reported and the ses-
sion continues. If an error does occur the operand stack should probably be cleared (i.e. simply type clear) or
examined (i.e. type stack to print out the current stack) before more input is typed in. When GPS is reading
from a file different from the standard input file any errors that occur are again reported, but in this case, the
GPS session is terminated.

GPS like PostScript makes use of a postfix notation,, imilar to a "reverse-Polish" calculator and thus
requires some getting use to. In general, numbers, character strings, and literals (words starting with a '') are
simply pushed onto an operand stack. Operators pop their arguments off of the stack, perform their function,
and then push their results back onto the stack. Thus, the input

gps> 2 3 add =

would push 2, then 3 onto the stack, the add operator would then pop the 3 then the 2 from the stack, add them
and push 5 back onto the stack. The = operator would then pop the 5 from the stack and display it on the con-
sole. Any of the arithmetic, logarithmic, exponentiation, and trigonometric operators can be used in a similar
way. For example:

gps> 2 sin.3 * =

2.7279e+00

gps> 1 log =

0.0000e+00

gps> 1.0 1.0 atan2 =

4

7.8540e-01
Thus, GPS can be used as a calculator. Since algebraic expressions written in postfix notation are not real clear,
expressions can also be written in the usual infix notation if they are inclosed in parenthesis. Thus the-above
examples could be written as follows.

gps> (2+3) =
5.0000c+00

gps> (3*sin(2))
2.7279c+00

gps> (log(l)) =
0.0M00e+00

gps> (atan2(I.0,1.0))-=
7.8540e-01

Variables can be assigned a name and defined as a word in a dictionary. This is done by first putting the
name of the word onto the stack as a literal (i.e. prefix by '/'), followed by the word's meaning, and then fol-
lowed by the def operator. The der operator will pop the preceding two elements from the stack and place the
definition into a dictionary. Thus, to define x to be 2.0 one would write

gps> /x 2.0 def
Actually, each such defined word appears within one or more dictionaries on a dictionary stack. The def opera-
tor places newly defined words into the topmost dictionary on this stack which is known as the currentdict.
Once defined, the word can be used in any place that its defined meaning can be used. Thus, x, defined above as
the number 2.0, can then be used-in any algebraic expression. For example,

gps> (x*x-l) =
3.0000e+00

To redefine x to some new value simply reuse the det" operator. Der" always checks to -see if a word- already
exists in the currentdict first before creating a new word. Thus,

gps> /x (x-l)-def
would replace the definition of x to be the value of x-1. Often the value of a word to be defined- will- appear on
the stack before the literal reprcsentation-of the word. In these cases the exch operator is useful. For cxample,

gps> 12/x exch defx =
1.2000e+01

The exch operator simply exchanges the top two stack elements. There are other stack manipulation operators -
pop, dup, index, copy, roll, clear, cleartomark, =, and stack which all work like their PostScript counterparts.
Briefly, pop deletes the top stack value, dup duplicates the top stack value and pushes it onto the stack, -index
takes a number from the stack, counts down-the stack by that number, and then duplicat,- ,at stack element on
top of the stack, copy takes a number from the stack and then duplicates that many stacK elements on top of the
stack, roll takes two numbers from the stack, the first the number of stack rotations and the second represents
the number of stack elements to rotate. Here-a rotation is a circular shifting of the top element- to the-bottom -and
each other element moving up-one slot-on-the stack. When the number of stack rotations is negative the rota-
tions are performed in the opposite direction-with the bottom element moving to the top and each other element
moving down one slot on the stack. Clear-deletes the entire stack, cleartomark deletes down to a '1' mark, =
pops the top stack element and -displays- it -(ar best-as-it can) on the console, and finlly, stack displays -theentire
stack on the console while leaving the- stack- unchanged.

There is also another operator lor-deining words into a dictionary called store, Store-differs from-def in
that if the word being defined does not-appear within the currentdict, all other dictionarys on the dictionary stauk
are searched for the word. If found in any -of -the dictionaries it is replaced, otherwise, the word is- added- as a
new definition within the currentdict.

The dictionary stack is complctely separae from the cperand stack and-is used-to dzfine the context iP
which the user defined words are interpreted. A dicionary can be created -by uing Ile dic, oprator which-
takes an integer from the operand stack represendng die numLer of words 8te diktionary is to hoid. "be diction-
ary itself is then left on the operand stack-and tan be given a name .wd stored in the cmrcnt Vet or ar.y %ehcr
dictionary. For example,

gps> /mydict 20 dict def
defines iiydict to be a dictionary to hold 20 woids. "ibe dictic~iary rvack itself can be inanipula:e I ': y u.mig thc
operators begin and end. Begin takes a dictiomary from the operand stack Pnd pusL; it to the dictiona) itick
where it becomes the currentdict. End pops thc topmost JicUorary from De dicianar stack and makes tIe dic-
tionary below it on the dictionary stack the curren:di't. Thas,

mydict begin

end
can be used-to define a local context with mydict as the cunentdict. Note any-newly dcfined word using def';
used between the begin and end would then -v placed in mydict. Likewise- any wu:d . erenzed b, ,ween die
begin and end would be searched for within the dictionary stack starting with myclict. When GPS is started tv,
dictionaries are on the dictionary stack, systemdict which actually holds ail of-the builtin uperats±, - add. sub,
mul, div, sin, cos, et., and userdict which is initially empty but can hold-up to 200 words. These two dic-
tionaries cannot be popped off of the dictionary stack using the end operator. The words systemdct, userdict,
and currentdict are also operators which push-onto the operand stack their corresponding dictionaries.

As -the above tends to imply words can be defined to hold anything within the language, such as the
mydict- dictionary, and not just numbers. Thus,

gps> /y "this is a string" def
gps> /z (2 exch sin *) def
gps>/u [1 2 3 4 def

defines y -to- be a character string, z to be-a- procedure, and u to be an array. Procedures and arrays are com-
posed of -user- defined words, fiterals, operators, and even other procedures and arrays. Procedures are delimited-
by curly braces and arrays by square brackets (similar to C). Both can be manipulated as a single stack element
once their-right delimiter, either '}' or ']' is-encountered. The main difference-between the two is that as pro-
cedures are input a deferred state of execution exists. That is, words used-within the procedure, as it is being
input, are-not executed. The words are simply collected into a single operand stack element. Procedure execu-
tion only occurs when some other word explicitly executes the procedure such-as when a named procedure -is
referenced-or used in a flow control construct. For example, using the definition of z-above, the input

gps> 10 z =
-1.0880e+00

would evaluate 2*sin(10) and print the results. Note that, due to this deferred- execution, procedures may -con-
tain words- that have not yet been defined. However, all procedures that are -executed will require that each
word within-them be defined, otherwise the undefined error will occur.

GPS has a number of execution flow control constructs, similar to the C language's for, while, if, and if-
else statements. Very briefly, these constructs-include the if, ifelse, for, repeat, loop, and while operators. The
operand stack syntax for their use is defined-as-follows.

cond { ... } if
cond .(...) ifelse
start ine bound { ... } for
count (...) repeat

I loop
while

Here the "{ ... }" indicate an arbitrary GPS procedure and should be thought of as a-single stack element, "cund"
is either a true or false, "count", "start", "Inc", and "bound" are numbers. In-each case the preceding stack ele-
ments before-the operator are popped from the stack before the operators are executed. These operators work as
follows. The if operator checks "cond", if -true- it- executes the procedure. The ifelse operator checks "cond", if

6

true it executes the first procedure, if false it executes the second procedure. The for operator pushes onto the
stack a value beginning with "start" and then executes the procedure. The value is then incremented by "inc",
pushed onto the stack, and the procedure reexecuted. This continues until the value has been incremented
beyond the "bound" value. The repeat operator executes the procedure "count" times. The loop operator exe-
cutes the procedure indefinitely. Note in this case the builtin exit operator must be used to terminate the loop.
The exit operator would be somewhere within the procedure, probably within an if or ifelse construct. Exit can
also be used to prematurely terminate the for, repeat, and while loops also. The while operator is not similar to
anything within the current PostScript language and will be discussed within the next section. One other looping
operator exists that takes an array or dictionary as an argument in addition to a procedure, this is the forall
operator,

[...] (...) forall
dict (...) forall

Here each element within the array is, in turn, pushed onto the stack and the procedure is executed. In the dic-
tionary case, each word and its meaning is, in turn, pushed onto the operand stack and the procedure is exe-
cuted.

In forming the cond value used in the-if or ifelse operators, most of the standard logical connectives are
available - or, and, eq, ne, It, le, gt, ge. Each of these take two stack values and return to the stack a true or
false. Actually, GPS does not have the boolean type and true is really a I and false is a 0. All of the relational
operators work with numerical data values and, at present, no checking that the operands are numerical is done.
Like the algebraic expressions relational expressions can also be formed within parenthesis in an infix way.
When this is done the usualFC representation of these connectives should be used - "r', "&&", "-w, ", , "<,

"<=", ,and ">=". Thus,

(x>=y && x<=z)
in the C language would be written exactly the same way in GPS. However, the parsing of these expressions do
not have the-same precedence rules as in the C language. Thus, in forming expressions using both the relational
operators and the algebraic operators additional parenthesis should be used to clearly reflect the intended pre-
cedence. The parser works on both the algebraic and relational expressions at the same time, in order to keep-it
simple, with the precedence of the >% >=, <, etc. operators the same as "*" or '/"t and-the precedence of
the "&&" and "1" operators the same as "+" or "-". The two operators eq and ne can also be used with literals
and strings.

In addition to the forall operator for dealing with arrays, there are several others. Like the dict operator
there is an array operator for creating arrays. Array takes a number from the stack representing the numbei of
elements the array is to hold and then creati.s-an array of that-size. Thus,

gps> /myarray 10 array def
creates myarray as an array-of ten elements. Arrays created-this way are initially empty. Elements within the
array may be assigned values using the put-operator. Put takes an array, an array element index (the first ele-
ment is 0 as in C), and a value from the stack and Lien redefines that element to be value. Similarly there is a
get operator that takes an array and an array clement index from the stack and then returns that element from
the array to the stack. The put and get operators ca., Jso be used to put and-get elements from a dictionuy. In
this case rather than an element index, a literal defining the dictionary word-is used. In this regard, put is a
third way, besides the def and-store operators for defining words in a dictionary. At present, unlike PostScript,
put and get cannot be used with strings.

Two other array operators are used to store and load (to-the stack) whole arrays. The-first is called astore
which takes-the top element from the stack which should be-an array, determines it length, and then pops from
the stack enough elements to-fill the array. The aray with its newly defined elements is then left mi top of the
stack. The second operator is called aload and take.s the topsck element which should be a arram), and then
pushes onto the stack each element of that array followed by the array itself.

At times it is useful to be able to determine the type of word that appears on the operator stack. The type
operator can -be used for this. Type takes an-element from the stack and returns a literal with one of the follow-
ing names - numbertype, nametype, dicttype, arraytype, proctype, stringtype or unknowntype.

7

1.4. Additional GPS Operators
Some additional operators which are not defined in PostScript or are sufficiently different from those in
PostScript are listed in Table 2. Some of the more complex of these are described in more detail below, others
are simply abbreviations to -the PostScript operators so that the usual infix notation can be exploited in
parenthesized expressions.

The trigonometric functions in both Tables 1 and 2 take their arguments in radians rather than degrees as
in PostScript. The additional trigonometric functions and the pow function in Table 2 all correspond to their C
language counterpart, each popping the arguments that they need from the stack. For those functions requiring
two arguments, the arguments are placed on the stack in the order that the C function requires. Thus, pow(x,y)
in C would be x y pow in GPS.

Table 2. Additional GPS operators
operator - meaning operator meaning

+ abbreviation for add abbreviation for sub
* abbreviation for mul / abbreviation for div
atan arc tangent function tan tangent function
atan2 arc tangent function asin arc sin function-
acos arccos function bind implements operator-binding
pow -C pow function exp C exp function
min minimum of two values max maximum of two values
while implements -while loop debug turns on debugging
fopen -C-like fopen function fclose C-like felose -function
printf C-like printf function fprintf C-like fprintf function
sintrp signal -interrupt mode resume resume main -mode
rangecheck turns-on rangechecking estack print execution-stack

The while operator takes two procedures from the stack and executes the first. This procedure should
return either a true or -false value to the-stack. The value is then popped from -the stack and checked. If the
value was true the second procedure is executed and the while loop executes the first- procedure again repeating
the process. If the value was-false the loop is terminated. Note that the true or false-returned by the first pro-
cedure is consumed by the while -operator and is not on the stack when the second-procedure is executed or
when the loop terminates. However, one or both of the procedures may leave other values on the stack. This
looping operator was-furnished to-give a mechanism similar to the C while loop. Basically, the C-language con-
struct

while- (condition) (...}

becomes
(condition) (...}=while

in GPS.
The fopen operator is similar to the PostScript file operator taking two character- string arguments from the

stack. The second argument-popped from the stack is the name of the file and the -first-argument pl)opped from
the stack is the mode in which- the file is opened. At present, only "w" for writing- or "a" for appending are
valid modes. The operator leaves-on-the stack a file descriptor. For example,

.file" "w" fopen-

will open a file named "file" -for writing, leaving the file descriptor on the stack.
The fMlose operator takes a-file descriptor argument from the stack and closes the-associated file.
The printf operator takes-either one or two arguments from the stack. If the top -stack element is an array

then printf pops an additional- stack element which should be a character string argument- representing the for-
mat control of a C-like printf&function. Like the C format control string, instances- of % -followed by the usual
format control characters, i.e. e, d, f, or s are recognized. In addition the usual -escape seluence of 'W'

corresponds to a new line as in C. For each occurrence of a %, a corresponding element of the array argument
will be printed. For example, to-print the variables x, y, z with the C format string

'x=%.2f y=%5Ae z=%d"

one would write
"x=%.2f y=%5.4e z=%d" [x y z] printf

At present only the format controls e, f, d, and s are recognized. Printf can also be-called with just a format
string as an argument if no variables need to be printed.

The fprintf operator is exactly like the printf operator except that an additional argument is required on
the stack before the format string representing a file descriptor obtained from the fopen operator. For example,

fd 'Mnx=%e" [x] fprintf
will print the value of x, labeled by "x=", onto the file associated with tie file descriptor, fd.

The bind operator is used to bind all of the builtin operator names that appear within a procedure to the
operations themselves. This prevents looking up the operators within systemdict during the execution of a pro-
cedure thus speeding up its execution. Bind takes either an integer or a procedure from the stack. If its argu-
ment is a procedure, bind performs its function on that procedure (but excluding any nested procedure) and
returns the procedure to the stack. If its argument is a number, it should be either-a zero or one. A one indi-
cates-that an autobinding should-take place for every procedure as it is defined. A zero turns off this autobind-
ing mechani sm. Initially autobinding is on. Additionally, -binding resolves any variable defined in the model-
classes to a pointer to the variable.

The debug operator is used to set the level of debugging. Debug takes the top stack argument as-the
appropriate debugging level. There are 5 levels of debugging. Zero turns off any debugging. A one prints out
the top fiye stack elements followed by the current word being executed. These words-are preceded by the word-
stack-and three comma separated -numbers. The first number is the top stack element-number, the second is the
top exc ution stack element number and the third is the top dictionary stack element number. A two level-
debug -gives the same as level- one plus also shows the elements for each array or procedure. A three gives the
sanie-as-the two level plus shows-each word as it is collected into procedures. Finally, a four gives the same as
level-three plus, shows each model class variable that is:bound to its location and-shows the virtual memory
counts-for each array, procedure, or dictionary as well as -their hexadecimal locations. As each word is shown,
either -in executing, collecting, or binding, both the name (if known) and the type are shown with the type
printed: first followed by the name separated by a colon. in- the case of arrays, procedures, or dictionaries, the
type is followed by the current reference count for the object separated by a colon. There are a number of type
letiers that can presently appear. These are shown in Table 3. Initially debugging -is-off.

The sintrp operator is used to take the GPS interpreter- into an interrupted- mode. When this operator -is
called GPS suspends its current execution and prompts for additional GPS input from the console. To distin-
guish this mode from the normal -mode, the prompt is changed to "gpsjn>". Any legitimate GPS input can-

Table 3. Word-types
type - meaning - type meaning
0 type not yet set L literal
S character -string N number
D dictionary A array
P procedure -O builtin operator
I infix parenthesis expression F file descriptor
d model cla.q donbe variabhle i model class-int variable
s model class char* variable e model class double and literal
j model-class int and literal t model class char* and literal
9 model class function and literal f model class-function

9

then be entered. This input is kept completely separate from the suspended work in so far as the operand stack
is concerned. However, all the user defined words, dictionaries, model classes, etc. used by the suspended work
can still be -used. Thus, sintrp can be used to interrupt the execution of some GPS -input for examining vari-
ables or even reassigning different values to variables. For instance, the debug operator could be turned on or
off. However, in changing variables that are being used in some su7,nded work, one should be careful that
such changes make sense. Thus, the use of sintrp should be carefully thought out-before the GPS input is exe-
cuted. An example of the use-of sintrp will be shown in the next-chapter.

At times it is useful to be able to interrupt the execution of some GPS input, not from within the GPS
input itself, but from the keyboard. This is done by simply typing Control-c. When this interrupt signal is
caught by the GPS interpreter, the interrupt mode will commence.

The resume operator is used to resume the normal processing mode when in the interrupt mode. The pro-
cessing mode that is resumed is exactly that-which was executing before the interrupt. Thus, if a file was being
executed with the run operator, that file execution is resumed.

The rangecheck operator is used to suspend checking of the array bounds when using the put or get
operators with arrays. The operator takes one argument from the stack which should be either a 0-for turning
off rangechecking or 1 for turning on rangechecking. Note, that like many other codes, if rangechecking is
turned off and the bounds are exceeded, a segmentation fault will probably occur. Thus, at least initially,
rangechecking should probably be kept on. The on state is the default. The ability to turn off rangechecking is
provided to-speed up execution of those inputs -making use of many large arrays.

The estack operator -is similar to the stack operator only -it prints out the state of the current- execution
stack.

Several additional operators are also furnished for dealing with model classes and the mathematical utili-
ties classes. These operators- are listed in Table 4. Examples of their usage are presented in the next chapter.
A model-class is a C data structure and a collection of functions-that take a pointer to that structure-as an argu-
ment. Thus,-a GPS model class is similar to a-C++ class. An instance of a model-class is simply an-allocation
of the C structure. In general-once a model class instance has been allocated, its variables can be used just like
any other variable within the-GPS input. However, in order that GPS can determine that these variables are
model class variables a restriction is placed on -the names that variables can have in the GPS input. Variables
that are not-model class instances must never have a "." embedded within their names. Variables thatare model
class instances are referenced exactly as they-would be in C, as the-instance name, followed by ".",-followed by
the variable-name. The additional operators will-now be explained.

cinit - cinit is used to initialize any mechanisms needed by the model classes before any such class is
defined. This operator should -be called once before any model -class is used (i.e. such as with enew). Cinit
requires no stack values as arguments and returns no stack values.

cnew - cnew is used-to allocate a new model class instance and store it -on a special stack for use in
referencing its member functions and variables. Cnew requires -one array object on the stack, the elements of

Table 4. Operators for handling GPS model classes
operator meaning
cinit initializes model class interface mechanism
cnew allocates a new model class instance
cdel deletes-a model class instance
call calls-a-model class member function
vary defines- variables to be varied
cons defines-equality constraints
icons defines inequality constraints
mini defines objective functions-for optimizations
diff defines differential equations

10

which -are a literal specifying the class type, a literal specifying the name of the class instance and -zero, one, or
more pairs of elements consisting of a class variable name specified as a literal and a value foi that variable.
For example, to allocate a new instance, denoted x, of the model class abc, and to assign values 1, 2, and "abc"
to the class members parml, parm2, parm3, one would write

[/abc x /parml I /parm2 2 /parm3 "abc" I cnew

Cnew returns no stack values. Note that within the array argument to cnew the model class variables are
referred to without being qualified by the instance name and thus, do not contain the embedded '.'. Note also,
that class abe may have many other vaiiables besides parml, parm2, and parm3. Not alt of the class variables
have to be initialized with-cnew. Additionally, class variables do not have to explicitly appear within a cnew
operation in order that they may be referenced later. Thus, once a class instance is allocated with cnew all the
variables of the class can be referenced.

cdel -cdel is used to- free up any model class instance allocated by the chew operator. It requires one
stack value which is the name of the class instance used in the cnew operator. Thus, to free the instanme x of
class abe defined in the previous example, one would write

/x cdel

Cdel returns no stack values. As it is sometimes necessary to free all of the variables allocated by all of the
Cnew operations, the special literal value /all is recognized by cdel. In this case all of the model classes v ill be
freed. Once a class is freed any reference to it will be flagged as an undefined error. Cdel used with the /all
argument will also free variables that might have been allocated with cinit. Thus, cinit would have to be
-recalled to make use of further model classes in the same- input.

call - call is used- to reference a model class -function which takes arguments. In general, a model class
function can be called- simply -by specifying its name. For example, if model abe had a function c taking no
arguments, then to call-the-x instance of that function one would simple write x.c in the GPS input. However,
suppose the model also had-a function d taking 4 arguments then the call operator should be used. The call
operator takes from the stack an array of values representing the arguments in the order that the function
requires and the name of the-function specified as a-literal. For instance

[1 2 3 4] /x.d call

Note that call does not return any stack values, however the funtion being called may return an integer, double,
or character string, which will be simply pushed onto the stack. At present, only funttions vith numerical and
string arguments may be called.

vary - vary calls the C function necessary for solving systems of algebraic equations and-or differential
equations. When used in solving algebraic equations vary requires four stack values consisting of a variable to
be varied specified as a literal, a sta-ting value, a lower bound value and-an upper bound value. When- used with
differential equations vary requires two stack values consisting of the dependent variable of the differential
equation specified as a literal and the initial value-of-that variable. Vary does not return any values-to-the stack.

cons -cons calls-the-C function used for defining and storing system constraints. Coms requires two stack
'alues consisting of a variable specified as a literal (this is used to delimit this constraint from others, that is, as
a-constraint label) and the-current value of the constraint residual. Cons returns no values to the stack.

icons -icons calls the C function for defining inequality constraints and works exactly as cons, requiring
two stack values.

mini - mini call the C function for defining and storing objective functions used in optimizations and
requires-one stack value -reprcscnting the turrent value of the objetive funtion. Mini does not return any 'alucs
to the stack.

diff - diff calls the-C function for defining differential equations and-requires two sta .k values. The first
is the -name of the variable to be integrated written as a literal followed -by tie current value of the variable's
derivative.

Chapter 2 will explain the use of the vary, cons, icons, mini, and diff-opcrators in more detail, along with
examples of their use.

CHAPTER 2

General Model and Mathematical Utiities Classes

2.1. Introduction
The GPS code was designed to analyze systems consisting of arbitrary lumped component -models interconnected
by various "flows". Most often these "flows" represent actual physical flows, such as gasses or liquids, although
they may just represent information that needs to be passed from one model to another. The models represent
discrete entities through which the flows pass. In physical systems these entities are the-pumps, compressors,
turbines, nozzles, diffusers, heat exchangers, reactors, mixers, splitters, etc., that make up the system. The inter-
connectivity of the models by the flows represents the system configuration. GPS was designed to handle an
arbitrary system configuration. In addition, GPS was designed to let the user impose on the system arbitrary
system constraints, parameter sweeps, optimization studies, etc. In this chapter we consider tie general features
of the model and utility classes. Later chapters will discuss specific model classes for-handling power systems
and thermionic systems. There are actually several different collections-of model classes with each collection
being stored in a different library of models.

The -next section describes some general conventions used by the different classes followed by a section
on the use of stacks. The fourth section discusses the task class and its-member functions. This class is-one of
the most -important classes in that it is the controlling mechanism in solving most system analysis problems.
This section is followed-by a section giving a series of examples of the use of the task class.

2.2. Class conventions
A model or utility class-in GPS is nothing-more than C-data structure and a collection-of functions. As men-
tioned briefly in chapter one, the C variables within the-data structure are-referenced within the GPS input-as the
class instance name, followed by a ".", and then the variable name, that-is, they are referenced exactly as they
would be -in C. The function names are also referenced- within the GPS--input in the same way, as the class
instance name, followed by a ".", and then the name defining the function. We will often refer to the functions
associated-with a class as-member functions analogously to the terminology used in C++.

The-elements of a-model class structure may, themselves, be instances of other classes, i.e. substructures.
For example the substructure holding the -values of the model powers and flow variables-are treated like model
classes. Thus, there really is no limitations on what can be placed within the model class-structure. For- unifor-
mity, the actual C membe- tunctions of the class are usually named the same as the data structure followed-by a
suffix delimiting the specific function. Usually, the first argument to these functions is -a- pointer to the data
structure.

In-general, the model -classes each have an allocator -function denoted by the suffix "new" which is used to
allocate an instance of-the class and to-define the default-values to the model data structure members. This new
function -requires a character string argument which represents the class instance name and-is stored in a variable
denoted as "name". In addition, this function will usually-place the model-onto a stack, which can then be-used
to manipulate all of the models as a unit. All of the models have a calculational function, usually denoted by
the suffix c, and a printout function, denoted by the suffix-print. The calculational function is where the-actual
model equations are solved. In addition,-each of the models has a ref function for referencing the model- vari-
ables by-name. This ref function is the communicating link between the GPS code and the model variables and
will be explained in more-detail in a later-chapter.

2.3. C Stacks
The model and utility classes make much-use of various-stacks for storing and retrieving information. These
stacks are themselves composed of a data structure and member functions and thus, are themselves model
classes as we are defining these. These stacks are also completely different than the stacks used in OPS. The

11t

12

GPS stacks are completely under the control of the user. The stacks used by the model and utility classes are
only controlled by the user in an indirect way. Thus, as mentioned above, when a new- model instance is allo-
cated it is usually placed on a stack. Whether or not it actually is is dependent on the specific model. When
the user defines system constraints, as will be discussed later, these constraints are also placed onto a stack.
Other stacks are used to hold the flows that are passed from model to model. Some of these stacks have specific
names that can be referred to within the GPS inputs. For example the stack upon which the models are placed
is denoted as "mods". This stack has a print function referenced as "mods.print", which when called will,-in
turn, call the print functions of all-the models on the mods stack. Similarly, the stack used to hold-the gas flows
in the power system component library is denoted as "gass". A similar print function, "gass.print", when called
will produce tables of the all the gas flows within the system. Each model class library will, in general, have
one or more of these stacks that need to be present in order that the models will work properly. The cinit func-
tion is used to allocate and properly set up any such stacks required by the models.

2.4. Task class
The task class is used to set up and control the iterations used by the mathematical utilities. The current set of
utilities includes a hybrid steepest descent/quasi Newton update technique for solving systems of nunlinear alge-
braic equations [4], a sequential quadratic programming technique-for solving nonlinear constrained optimization
problems [51, and Gear's method for solving systems-of stiff and nonstiff ordinary differential equations [6).
The task class makes use of some member functions to collect into separate stacks the problem data for the par-
ticular task -being solved. These include the variables -being varied using vary, the equality constraints using
cons, the inequality constraints using icons,-the objective functions-using mini, and differential equations using
diff. When the controlling function of the task, denoted as c, is called, it determines the type of problem that
has been set up, allocates the appropriate work space, and then calls the appropriate mathemati al tility. While
the details of the equation solvers, optimizers, and ODE solvers is-beyond- the scope of this document, the. task
variables should be understood to -effectively-use the task class within the GPS-input.

The complete list of user variables for the task class is given below. For each variable an -indication of
whether the-variable is- an input or output is -given, along with its default value specified in parenthesis.
maxit - integer defining-the maximum number of iterations that are allowed in solving equations and-in

performing optimizations (40). InpuL Maxit should be less than 1000, as iteration counts
greater than that have a special meaning the the equation solver and optimizer.

prt - integer specifying various amounts of output be pinted during the iterations that the task is
performing (2). Input. The value zero will turn off all printing requiring that any output be
generated explicitly by the GPS input. Values greater than zero will produce greater and
greater amounts of output. The actual output that is generated is dependent on the task being
solved and also-requires for its interpretation a greater understanding of-the mathematical utili-
ties than can be quickly explained here. However, the default value of 2-provides-for a reason-
able amount of output for most tasks and, as this is the default, this -level of output will be
explained.
For the equation solving tasks the following is obtained. For each iteration, the output will con-
sist of the task name (as furnished by the user within the GPS input) labeled as (task:), the
iteration number-labeled as-(n=), and the square root of the sum of the squares of the constraint
residuals labeled-as (f=). Note that this last value should gradually be reduced-to zero as the
iterations proceed. Following these values is the list of independent variable values, i.e. the
unknowns of the problem, labeled as (x=) and the list of constraint equation residuals labeled
as (c=). This last list of numbers should also gradually be reduced to zero as the iterations
proceed. Following these items is a line of output giving some values-of Newton step norms,
steepest descent step norms, etc. Only one of these will be important in most cases, and that is
the variable labeled as (mu=). 7his variable gives some measure of the ratio of Newton step
versus steepest descent step and will generally be a small number, (less than about 3) if the
equations solver is not having problems. If mu uecomes larger (greater than 10) then one
should reconsider the problem being solved. For example, it might be singular or not even
have a solution.

13

For the optimization tasks, the outputs give the task name (task:) and the iteration number (it).
The number of equality constraints (meq=) and the objective function value (f=) are then given.
The next line (x=) give tie values of tie independent variables. The-(c=) line then gives the
values for the constraints with the equality constraints specified first, followed by the inequality
constraints. Note that unlike the equation solver m"'!, the number of independent- variables
and constraints may be different. A line labeled as (1=) gives the value. of the terminations
function (a function similar to the gradient of the Lagrangian only with absolute values within
its sums). When this value is less than the specified task accuracy the problem is considered
solved. The value of I is only calculated after a quadratic subproblem has been solved and
thus, does not appear on ever iteration. Some of the iterations are line searches which will
include a output line that gives the number of the line searches (nf=) plus several other param-
eters pertinent to the line search.
For integration tasks, again the task name labeled as (tak:) is given followed-by the current
time (t=), the integrator state (state=) and integration order (order=-). The next line labeled as
(x=) gives the dependent variable values and the last line gives the dependent variable deriva-
tives (dxdt=).

acc - variable holding the termination accuracy criteria(le-3). Input. For equation solving tasks
when ever the square root of the sun of the squares of the constraint residuals becomes less
than ace the iterations are terminated.

del - variable indicating the amount of perturbation that the independent variables will undergo- when
the equation solver or optimizer is calculating gradients of the constraints (le-7). -Input.

meth - method used by the ODE integrator indicating whether Gear's backward differencing -method if
I or the Adams-Bashford-Moulton method if 0 is to be used-(l). Input.

state - variable indicating the state of the ODE integrator(0). Input. Initially this-variable is 0indicat-
ing to the integrator to start the integration. On output it is assigned a value-from 1 to 7indi-
cating the type of step that the integrator is performing. This variable should be manually
reset to zero at the start of an integration task if one is performing an iterative loop-around
such a task. State values of 1 indicate that the integrator has reached-a specified-output-tiie.
State values of 2 indicate that the integrator has reached a time value for which -the-dependent
variables are known to the requested accuracy. These two values of state-are the-only-ones for
which it is guaranteed that the time values reached will not become smaller. -For all other state
values, the integrator may be performing iterations, jacobian evaluations, or-other functions for
which a later step might actually be done for an earlier time value. This -would be the-case,
for instance, if the integrator could not maintain the requested accuracy for-the-current- integra-
tion step and had to reduce it. This is mentioned because it is often desirable to-print-out some
variables while an integration is being performed, and it is only when state-is 1 or 2 that- the
print out of such variables would make sense.

time - variable indicating the present value that the variable being integrated- over -has -reached- (0).
Input on the first call. Onl output time will contain the current-time reached-during-the-integra-
tion. This variable should also be manually reset if the integration task -is repeated within
some iterative loop. Note that this variable is denoted as time since very -often -time -is -the
independent variable for the integration. This, however, does not preclude using- the-integrator
for integrating over other variables, they must just be denoted as-time.

tout - variable indicating the output value to which the integrations will continue (1.0). Input. If
several output times are required, the integration task should simply be put-within-an iterative
loop over tout. Note that this loop does not repeat the integrations from their start-so time and
state should not be reset to zero in this case.

Class task also has five primary member functions, vary, cons, icons, mini, and diff. -(Note, that these
functions are used so often that the normal class naming convention of prefixing them with "task" is not- used.)
These, as briefly explained within the introduction, are used to setup the various task types. Each of these func-
tions should lie within a loop controlled by the c function of the task. This controlling -function-should becalled
before any of the member functions are called and returns a one if the task is-not yet satisfied- (i.e.-equations- not

14

yet solved or integration output time not yet reached) and a zero when the task is satisfied. The easiest way to
use this-function within the GPS input is to place the c call within a while statement:

(x.c)

"task body"

while

where x refers to the actual task object that has been declared for this task and "task body" will define the prob-
lem to be solved using the vary, cons, mini, etc. GPS operators.

The first task class member function, vary requires five arguments. The first is the address of the variable
being varied, the second is an expression of the starting value for this variable, the third and fourth are expres-
sions for the lower and upper bounds between which the variable will be constrained to lie. Initially, the vari-
able should be between these bounds. The fifth argument is the address of the specific task instance that this
variable is associated with.

The second member function, cons is used to define algebraic constraints or equations that need to be
solved. This function requires three arguments. The first is used only to reference the constraint and is the
address-of any variable that remains-in existence during the life of-the task's controlling loop-and that is not
used within any other cons function- call. Typically, one would -use- the address of one of the- variables being
varied within a vary call. If necessary, one could define a dummy variable and use that for this-first argument.
Note, -it-need not have a value or even-any meaning for the problem. Its only purpose is so that each time the
cons-function is called this variable can be checked to see what-constraint is being defined. The second argu-
ment -is-an expression representing the equation to be solved. At-the solution this expression- should become
zero (to -within a specified accuracy). The third argument is the same as with the vary function-and-is used to
refer to a specific task that this istraint is associated with.

The next member functie, icons is exactly as the cons -function, but is used to define -inequality con-
straints. This function would only be used when one is dcfining an optimization problem. Here, the second
argumentzat the solution will be constrainted to be greater than-or equal-to zero.

The mini function is used-to-define objection functions for-optimization problems. It requires two ,argu-

ments, -the- second of which again refers-to a specific task. The-firszargument is an expression representing the
objective function for the optimization task. At the solution this first argument should represent a local
minimum of the objective function.

The-last member function, diff is-used to define ordinary differential equations for the task. If this func-
tion is called, then cons, icons, and mini should not be called for this-task. It requires three arguments, the last
being the address of the task instance as with the other functions. The first argument is the address of the
dependent variable for the differential equation being defined. This equation is of the form

dx
(x ,t).

Thus,_the-first argument would be the x in this equation. The second argument is the expression f. As noted
above, the variable t is represented by- the class variable, time.

As mentioned previously, these task class functions are called- within the GPS input by using operators
with the same names, that is, vary, cons, icons, mini and diff. In-this-case, those arguments that-were required
as addresses-are specified as literals within the GPS inputs. In addition the last argument to eaCh function is
automatically filled in by the GPS coding. These functions are also sometimes used directly within .sumic of the
C model classes.

There are also several other task class member functions varyl, consl, iconsl, and difil which are exactly
like those described above except that a character string rather than a pointer is used for the -first argument.
These -functions are used only within the GPS code itself. Finally,-one other member function-diffv is used to
assign -initial- values to any variables- being integrated. This function -is also only used within the GPS odc.

15

2.5. Task Class Examples
In this section several examples are presented that make use of the task class. The examples presented should
give a flavor of the type of-problems that can be set up and solved by showing how to solve purely mathemati-
cal problems, such as solving equations, performing optimizations, and solving systems of differential equations.
These basic techniques will then be used in later chapters with actual s..ems models to form and solve system
constraints, optimizations, etc. Appendix A shows each of the following examples with their resulting output.

2.5.1. Example one
The first example sets up a purely mathematical problem of solving a single equation in a single unknown. The
equation is

Problems such as this are solved by varying the value of x iteratively until the equation is satisfied. Thus there
are three major aspects to solving he problem. First some iterative loop must be defined. This loop will be
called the task loop; the task, in this case, is to solve the equation. The task loop will need to control the itera-
tions and to terminate when the task is solved. The second aspect is to define what variable is being varied to
carry out this task and to define a starting value and bounds for this variable. The third aspect is to define the
equation to be solved. This equation will also be called the constraint for the task. In order to easily specify
each of these aspects some simple operators have been created. Thus, in order to specify the variable to be
varied the vary operator is used. For specifying the constraint equation, the cons operator is-used. For defining
task control, a task class instance is allocated using cnew and some GPS loop construct (e.g. the while operator)
is used to define the iterative task loop. The complete GPS input necessary to-solve the problem is as follows.

cinit
[/task /a] cnew
{a.c)

(/x 1.0 0.0 2.0 vary
/x (x*x-exp(-x)) cons

while
/a cdel

Here the cinit operator is called to perform any model class initiation. This must always be done before any
other reference to a model-class, including the task class is-made. The cnew operator is then -used to define the
task instance denoted as a. In general, the-task controlling function is given-by the task member function named
c. Thus, in this case the task controlling function would be-referenced within the GPS input as a.c. An iterative
while loop is then started to carry out the computations within the task. In this case the task controlling func-
tion a.c is called which will return a I (true) until convergence is obtained, thus causing the second procedure
defining the varying of the x and evaluation of the constraint equation to be executed iteratively. When conver-
gence has-been obtained the a.c function %till return a 0 and the while loop-will terminate. As indicated)revi-
ously, the vary operator takes the name of the variable to be varied specified as a literal, in this case /x, fol-
lowed by-a starting value, and lower and upper bounds, here taken as 1.0, 0.0, and 2.0, respectively. The cons
operator takes a literal (for labeling the constraint), here specified as /x, and-the equation residual. The last line
in the GPS input simply deletes the task a. Note that, since no parameters for the task a were initialized with
the cnew operator, the default value for the task printout will be in effect and thus, the default level (a.prt=2)
print out for this problem will appear on the-standard output file.

2.5.2. Example two
The second example extends the first example to a system of algebraic equations to be solved. For illustrations,
suppose these equations are

(x-1)2--y=O

y- 2 log(e +1)=0

16

z2-x=O.
Here the-GPS input would again consist of a single equation solving task but would include two additional vary
and cons operators to define the two additional variables to be varied and the two additional equation residuals.
Thus, the input is as follows.

cinit
[/task /a] cnew
(a.c)

(/x 2 (-20) 20 vary
/y 2 (-20) 20 vary
/z 2 (-20) 20 vary
/x (pow(x-1,2)-y) cons
fy (y-2*log(exp(x)+l)) cons
17 (*z-x) cons

while
'\nx=%.2f y=%.2f z=%.2r' [x y z] printf
/all cdel

As before -one must decide on some reasonable starting values for x, y, and z and on the upper and lower
bounds for these variables. At times this can be difficult and several different values may have to be tried in
order to ultimatelyfind a-solution. This is especially true if the problem at hand has several solutions and one is
seeking- a-particular one. In that case changing the bounds may be used to force the equation solver to search
for-a solution within a particular region. In this case, for lack of more information, the starting values for all
three unknowns were taken as 2, and the upper and lower bounds taken as 20 and -20, respectively. Addition-
ally, the-printf operator was used to print out the final values (however, like the previous example, the default
-print out each iteration will also appear).

Since the task a.acc parameter defining the termination criteria was not specified, the default value was
used stopping- the iterations when the square root of the sum of the squares of the equation residuals was less
then -le-3. This occurred on the 5th iteration where the sqrt of the sum of the squares of the residuals was
2.549055e-4. If additional accuracy is required, a.acc should be made smaller. If substantially greater accuracy
-is required then for more difficult problems- the default maximum number of allowed iterations, currently 40,
defined by a.maxit- will probably need to be made larger.

2.5.3. Example three
The third example sets up precisely the same problem as example two but in this case splits the problem into
two nested equation solving tasks. This is to show how complex problems might be decomposed into simpler
tasks (although this example is easily solved as a single task). In this case, after calling cinit, two class task
objects, a-and b, are allocated with cnew, one -for each of the two equation solving tasks. In the example, z will
be solved for within the inner task denoted as b and x and y will be solved for within the outer task denoted as
a. In order to reduce the- number of iterations to solve the problem, z is given the initial value 2 using a def
operator before -entering the task loops. In this way z can be initialized to its current value each time the inner
or b task loop is started. This z value will generally be better than simply taking z with some fixed starting
value. The complete-input would be as follows.

einit

[/task/a] cnew
f/task/b I] cnew
1z 2.0 def
(a.c)

{ix 2.0 (-20) 20.0 vary
/y 2.0 (-20) 20.0 vary
{b.c)

{/z z (-20) 20 vary
/z (z'z-x) cons
}

17

while
/x (pow(x-l,2)-y) cons
/y (y-2*log(exp(x)+l)) cons

while
"\nx=%.2f y=%.2f z=%.2f" [x y z] printf
/all cdel

As can be seen by the input, the only change compared to example two is the nesting of the inner task while
loop to solve the equation in z within the procedure used to solve for x and y. Decomposing a problem into
nested problems such as this is often an effective means of solving a problem that seems to be intractable using
only one task. Note, that if such a nesting is done, it often helps to keep the tolerance within the inner loops
tighter than the outer loops. This is to prevent the inner iterations from washing out the effects of small perur-
bations of the outer loop variables when gradients of the constraints are being calculated.

2.5.4. Example four
As a fourth example we show how a nonlinear constrained optimization problem can be solved. The problem for
illustrations is as follows,

min (x-1)2+(y-2)2+ze'

such that x-y=O

x-z >0
and where all of the variables lie within 0 to 10.

Again a single task class can be used to solve the problem, in this case, using the icons-and mini opera-
tors. The complete input to solve the problem is as follows.

cinit
[/task /a] cnew
(a.c)

(/x 10 10 vary
/y 2 0 10 vary
/z 3 0-10 vary
/x (x-y) cons
/y (x-z) icons
((x-1)*(x-l)+(y-2)*(y-2)+z*exp(z)) mini

while
'\nx=%.2f y=%.2f z=%.2f" [x y z] printf
/all cdel

Here, thz starting values where taken as 1, 2, and 3 for the three variables. Like the cons operator, the icons
operator takes a literal (used-only to label or delimit this constraint from others) and the constraint residual. For
inequality constraints this residual should be written such that it is greater than or equal to zero. Inequality con-
straints, of course, will not necessarily be zero at the solution, although they might be. For such optimization
problems more inequality constraints can be imposed than the dimension of the-problem. The mini operator is
used to inform the optimizer what the objective function to be minimized is. Optimization problems are
inherently more difficult to solve than purely equation solving problems; thus, at times one may need to redo the
problem with different starting points and adjustments in some of the parameters used by the optimizer.

As with the decomposition used in the third example, additional nested t3sKs defining other optimizations
or equation solvings can be included to define arbitrary problem types.

Although this problem is relatively easy to solve, with the final solution being obtained in ten iterations,
this certainly is not always the case, and several points about optimization problems should be mentioned. First,
such problems are considerably more difficult to solve than just solving algebraic equations. One cannot just
look at the potential solution and "see" that it is the solution. This is because, looking at the residual to the

18

constraint equations and noting that the equality and inequality constraints are satisfied is only part of what
needs to be considered. At the solution the Kuhn-Tucker conditions should hold. These conditions can only be
evaluated by knowning the Lagrangian multipliers and gradients of the objective functions and constraints.
Secondly, during the iterations it is quite possible that the value of the objective function may need-to increase,
for example, when one needs to go "uphill" in order to satisfy the constraints. Thirdly, iterative techniques- like
the one being used here, generally only find local minimums. To find a global minimum often requires -substan-
tially more work and sometimes requires apriori estimates of the second derivatives of-the objective functions
and constraints. These often are not available. Fourthly, the problem posed may not even have a local-solution.
This may occur, for example, when no feasible region exists for all of the inequality constraints taken-together.

With these and other potential problems there are several termination messages that may occur when
defining optimization tasks. The main ones are "initial line search gradient positive", "convergence of indepen-
dent variables", and "more than 5 function calls in line search". Some of these may indicate that-the solution
was not found, while in other cases, they may signify that the solution was found but not to the level of accu-
racy requested. In some cases rerunning the probltm from a different starting point can sometimes resolve die
difficulty. At other times this may be the best that can be done with the finite differencing used in calculating
the gradients. Sometimes a smaller (or even larger) value of del might be tried. Finally, one may have to
decompose the problem, for example putting th equality constraints within an inner nested task or even- resort-
ing to parameter sweeps rather than an optimization task. Sometimes parameter sweeps will-give greater insight
into the problem under consideration and will indicate that some variables might be eliminated from the optimi-
zation problem, thus, reducing the dimensionality of the problem.

2.5.5. Example five
As a fifth example we set up an integration of three differential equations.

dx
dt

dy y .
dt 2

dz-=x-ydt

Again cinit and cnew are used to define a task denoted as a. The default print out defined by tie prt- variable
for the task is also set to 0 so that no print out will be generated. In order to generate several-intermediate -out-
put values, a sweep is made on the variable defining the output times, denoted-as a.tout, using a-for operator.
Since the for operator pushes onto the stack the current iterative value, the first thing done within the-procedurc.
-is to use that value to redefine the current output value. Nested within this for loop is the task loop implemented
using the while operator as before. Within the procedure of the while operator the three differential equations
are defined using the vary operator to indicate the variables being integrated and to give these variables -starting
values and the diff operator for specifying the right-hand side of die differential equations. After the whih.
operator the printf operator is used to print out the values of the time, and the three variables. The complete
input is as follows.

cinit
[/task /a /prt 0] cnew
1.0 1.0 5.0

(/a.tout exch def
(a.c)

(/x 1.0 vary /y 2.0 vary 17 0.0 vary
/x (-x) diff
/y (0.5*y) diff
/z (x-y) diff

while
'"\time=%.2f x=%.3e y=%.3e z=%.3e" [a.time x y z] printf
)

19

for
/all cdel

Unlike the arbitrary nesting of equation solving and optimization tasks, differential equation solving tasks
cannot be nested within each other. However, differential equation solving can be nested within or outside of
equation solving or optimization tasks.

2.5.6. Example six
In this example, we consider the use of the sintrp operator. As described within the previous chapter, this
operator signals an interrupt just as if the user had typed a Control-c at the keyboard. By using sintrp within the
GPS input, the interrupt can be made to occur at exactly the right instance during the computations. Consider
an example similar to the previous, only now let-us suppose that after a predefined time, denoted as "trap" in the
following, we want the integrations to stop and to go into the interrupt mode. In order to add, at least, one other
parameter to the differential equations, the equations have been changed slightly with the parameter "p" intro-
duced into the first equation. Initially "p" takes the value one and the first time trap is taken as one second.
The inputs to accomplish this are as follows.

cinit
Utask /a /prt 0] cnew
/interup ('\ntime=%e" [a.time] printf sintrp) def
/trap 1.0 def
/p 1.0 def
1.0 1.0 10.0

(/a.tout exch-def
{a.c)

{(a.state<=2 && a.time>=trap) {interup) if
/x 1.0 vary /y 2.0 vary /z 1.0 vary
/x (-x*p) diff
/y (0.5*y) diff
/z (x-y) diff

while
'\ntime=%.2f x=%.3e y=%.3e z=%.3e" [a.time-x-y z] printf

for
/all cdel

Here, as with example five-the iterative task loop is set up defining the equations to be integrated, only
now the first-statement within that loop

(a.state<=2 && a.time>=trap) (interup] if

checks if the -integration state is less than or equal 2 (see the discussion of the state-variable in the task class)
and also checks to see if the time is greater than-or equal to the trap value. If these conditions are true- then the
procedure "intenip" is called. Here "interup" was defined prior to entering the task loop to first print out the
current time-and then execute the sintrp operator. At that point, the GPS interrupt mode will become active and
prompt for input at the terminal. Such input might simply be something such as

gpsJnt> x =-y = p =

which would-print out the values of x, y, and p. One might also redefine p to have a-new value, such-as
gpsJnt> /p 1.1 def

One must, however, before resuming, redefine the value of trap to be some later -time, else on the very next
iteration, the integrations will-again immediately go back into interrupt mode. Thus, to resume the integrations
and say, stop-at time greater than or equal to 8.2,-one would input

gpsJnt> /trap 8.2 def resume
When time becomes at least equal to 8.2 again the interrupt mode would be entered and variables can be

20

queried and/or changed as before. Note, that for this problem it would not make sense to change either x, y, or
z, since they are the dependent variables of the problem. Also, as this problem indicates, some thought as to
when the interrupt is to occur is usually required. In this case, it only makes sense when the integrator is in a
state with a.state less than or equal to 2.

When running a problem such as this, it is also possible to interrupt it from the keyboard with a control-c.
In that cpse, variabies can be queried, but the integrator state might not be appropriate for changing even an-
independent variable, such as the p variable in this problem. For instance, if p were changed while the integra-
tor was trying to calculate the Jacobian of the right hand side of the equations, a bad-Jacobian would result, pos-
sibly -preventing the integrator from working. Thus, when problems are constructed to-be interrupted at the key-
board, it is probably best to only adjust parameters within procedures that are called at appropriate times after
the interruption is resumed.

CHAPTER 3

Steady-State Power System Model Classes

3.1. Introduction
In this section we discuss the details of the component models that are used to analysis a steady-state power-sys-
tem. These models consist of the following.

gas - gas flow initiator
sp - gas flow splitter
mx - gas flow mixer
lit - gas flow heater/cooler
lix - gas flow heat exchanger

cp - compressor
gt - gas turbine
pump - pump
df - diffuser
nz - nozzle
power - calculate system powers
Each of these model classes have -various parameters and member functions. For example, the hx-model class
has c and h functions to perform the-calculations on the cold and hot sides of the heat exchanger. In-general
each model has several member functions, which in the following will be referred to by the suffix-name only.
Thus, the above hx class c function- is-actually encoded in C as the hxcO function. As discussed in-the- chapter
on model and utility classes each of the models has a allocator function denoted by the suffix, new,-requiring a
character string as an argument. This character string will be used for referencing the model instance in- any
printout of the model's flows or parameters. The allocator function will also assign default values to any input
parameters.

3.2. Steady-State Model Flow classes
Before discussing the model classes -within the next section, some understanding of the flow-classes required by
these models is necessary. As indicated previously, the flow classes represent the information which passes
between the different models. These classes will usually represent the variables describing real physical fluids,
but can also represent most anything- the -modeler desires. In general, the user will manipulate the flows-of-a sys-
tem by calling the models. In particular, for each flow class there is a special model that is used-to initialize the
flow and to save and restore the flow-to-a flow stack. This flow stack is unique for each flow class. Practically
all of the models have as part of their-class structure one or more instances of the flow classes. These are-used
to store the values of the flows-at -the exit of the model and can be used in forming constraints and/or-objective
functions within the GPS input.

The present list of steady-state models makes use of only one flow class, that of gastype-for representing
fluids and has the following variables.

id - pointer to the flow's-id
t - flow's temperature-in-K
p - flow's pressure in-atm

21

22

h - flow's enthalpy in J/kg

s - flow's entropy in J/kg-K
r - flow's density in kg/m3

q - flow's quality

m - flow's mass flow rate in kg/s

v - flow's velocity in m/s

atoms - flow's atom fractions
comp - flow's species-mole fractions
Normally, the values of id, t, p, h, ,., r, q, m, and v will be the only variables that a- user is likely to use. There
are actually several different thermodynamic property codes available within the system. The actual procedure
that is used to determine the properties is determined by the flow's identification pointer, id. This variable
should be assigned a character string of the type "GAS" or "THR-species", where species is one of the several
hundred species found in the THRDATA file. In the case where the pointer is to "GAS" the actual gas is
further determined by the contents of the comp array. This array is dimensioned by the number of gas species
defined in the prop.h file. For convenience, the species names (in-caps) are defined as a sequence of integers so
that the user -can refer to a particular species by referencing its name. For example, the C02 mole fraction
would be referenced as comp#C02. (Note that the usually way of referencing -this array element in the C
language would be comp[C02], however, the "[" delimiters in-GPS would define-a GPS array rather than an
element of-the comp array. Thus, the usual way of referencing a C array element in GPS is by suffixing the
array name with a "#" sign and then the element number. Note, however, that -this referencinig -is actually
defined not by-the GPS code but, by the ref function to the class, and thus, could-be changed by-the user, if
desired.)

In addition to the variables the gastype class-has several member functions. These are generally only used
within the model classes and thus, really don't-need to be of any concern to the casual-user, however- they would
be of concern-to a model developer. Prop is the general property -calculational procedure. For any instance of
this gastype class, prop can be-called to determine the thermodynamic properties of-the flow either as-a function
of p and t, p and h, or p and s by using as its second argument the letter 't', 'h', or 's', respectively. Prop's first
argument is the address of the-flow.

Another member function, sat is used to determine the saturation properties of the flow at the -flow's prcs-
sure. This function only returns values for flows with the "THR-species" id as the "GAS" flows are-not conden-
sible. If called with a "GAS" -flow an error message is displayed -and the run is terminated. Sat requires four
arguments, the first is the address of the flow and the rest are double precision variables representing the
returned values of critical pressure (atm), and the-saturation liquid-enthalpy and vapor enthalpy (J/kg).

The atom member function is only needed-for flows with "GAS" as the id and-is used to calculate the kg-
atom/kg of-the individual atoms-making up the-flow. This function requires one argument of the flow's address
and uses the flow's comp array -to determine the values of the flow's atoms array. Note that it is the atoms array
that actually-determines the chemical make up of-the flow. This array remains constant until the flow either has
new species added to it or removed from it. The flow's comp array, on the other hand, will change just like the
flow's temperature or pressure and reflects only- te current equilibrium species mole fractions.

One additional function is provided for use with the gastype class which is -gasge. and returns the next
flow from the gass.

The special initializing model for this gastype flow is denoted as gas and will be described -below. The
unique stack for this flow is-denoted as gass. The gass stack itself has several variables and two-member print
functions. These variables are as follows.
prt - print flag (0). input. Prt, when- set-to oie, is used to print out values of the flow each time die

properties code is called. Its use is really for debugging.
thrfsat - flag (1). Input. Thrfsat, when set-to one, will cause the THR properties code to first produce a

table of the saturation temperatures as a function of the pressure. This table is then used to
calculate the saturation temperature whenever it is needed by the THR properties routines.
This is only a-performance issue-to eliminate the iterations needed to calculate the saturation

23

temperature later on. Note, however, these iterations must be done initially to generate the
table.

quit - count of errors occurring within the property codes(5). Input. Quit is initialized to five and
decremented-on an error. When zero is reached it is assumed that-the run is having too much
difficulty and is terminated.

The two gass stack functions are the print function, which is used to print out tables of the flows' state vari-
ables, and the printc function, which is used to print out tables of the flows' species concentrations. Printc
should only be used when one or more of the flows have the "GAS" flow id.

3.3. Steady-state models
The present collection of steady-state models do not have a lot of process related details but represent a thermo-
dynamic description of the model's phenomena. This is basically the result of trying to keep a generic quality
to-the supplied models. New models with as much process detail as is required can be added by the user as will
be discussed in a later chapter.

3.3*1. Gas (gas) model
The gas model is used to initiate a gas flow as well as-providing member functions for performing the saving
and-restoring of flows for representing complex system configurations. The member function used to initiate a
gastype flow is denoted as-c. c requires no input flows and will generate one-output flow put onto the-gass
stack. The modeling begins- by simply assigning -values to the flow variables as follows.

id=id,,

m =mi,

v=Vin

p =pin

compj=compi1 ,, i=1 - . NS

where id is the flow id as-discussed above, m, v, and-p are the flow's mass flow rate, velocity, and pressure,
-respectively, comp, is the flow's i-th species mole fraction- and NS is the total number of species. The subscript
in represents input values. Note, that NS is fixed by the property calculations procedures and is thus, -not
directly input.

The gastype's atom function is then called to determine the contents of the-flows atom array. Note,-that
the-assigning of species to the comp array and calling the atom function is really-only needed for flows with-the
id-of "GAS".

Next if the input value of temperature ti, is specified as zero, then the sat- property function is called to
determine the saturation liquid and vapor enthalpies, hl and h,. The flow's enthalpy, h is then determined-from

h =h, +q (hg -h1)

-where q is an input value for the flow's quality. If the temperature, t,,, is non-zero, then the flow's temperature
is simply assigned this input value

I =in

and the prop function is then called to determine the flow's enthalpy. In either case, the prop function is again
caed with enthalpy as the input to detc"mine the flow's density, entropy, etc.

The parameters to the model are as follows. The default values of the parameters are specified in
parenthesis and an indication of whether the parameter is an input is also given.

id-- gas flow id ("THR-tH2"). Input.
m -- flow rate (1.0 kg/s). Input.

24

v . flow velocity (10.0 m/s). Input.

p - flow pressure (1.0 atm). Input.
t - flow temperature (298.16 K). Input.
q - flow quality (0.0). Input.

comp#i - mole fraction of the i-th species. Input.
dp - difference in pressure between the flow entering the cycl function (see below) that that leaving

the c function.
dt - similar to the dp variable but for temperature.
dh - similar to the dp variable but for enthalpy.
dim - similar to the dp variable but for mass flow rate.
dv - similar to the dp variable but for velocity.
fl - exit flow structure from the model. Note that fl needs to be further qualified with one of the

gastype parameters, such as, "fl.C.
As noted above if the temperature is specified as zero then the model assumes that the flow is to start at the
saturation temperature corresponding to the input pressure. In this case the specified flow quality is used to
determine the inlet enthalpy. Thus, quality set to zero refers to the liquid saturation line and set to one, the
vapor saturation line.

The member function used to save a flow, that is remove a flow from the gass stack, is denoted as say.
When a gas model instance is defined for use in saving (and recovering) a flow it will never be used in any
-printout. Also no input model parameters need to be specified.

The member function for recovering a saved flow is denoted as rec.
An addition member function denoted as cycl is also provided. This function requires one input flow from

the gass stack and calculates the differences in temperature, pressure, enthalpy, mass flow, and velocity, denoted
respectively by dt, dp, dh, din, and dv, between this input flow and the output flow from the corresponding c
function. This function is provided to help set up the system constraints on a flow path that forms a closed
cycle. In addition, this function will calculate the difference in power (mass*enthalpy) between these two flows
and save this in the variable power.heat. Note that for a correctly formulated closed path, this variable should be
zero.

3.3.2. Mixer (mx) model
The mixer model is used to mix together two gastype flows using the member function c. This function requires
one input flow to be on the gas stack and puts one output flow back onto the stack. The other input flow is
obtained by calling another member function, s. This function, which must be called before the c function,
requires one input flow on the gass stack but generates no output flows. The model requires no input parame-
ters. Unlike the other models, since all the output is available within the gas flow outputs no print member
function is used.

The modeling within the mixer is dependent on whether or not die input flows are "GAS" flows. For such
flows, the output comp array of species mole fractions must be first calculated. This is done as follows.

mw i=>rn1Wi Comip l,

mwvz= mw, comp2

carn M;rn rwi fi • • • NS

moI2j=com1P2j m 21mw 2 i=1 .. NS

mo,=m?1ofll+mol2 i=1 . . NS

25

compi m I_,mj i=I ... NS

where =moI, compi, m, ,nwi , and mw are the molar flow rate array, flow mole fraction array, flow mass flow
rate, species molecular weight array, and flow molecular weight, respectively, and the subscripts I and 2
correspond to the two input flows. Once the mole fractions compi of the output flow are known, the atom func-
tion is then called to determine the flow's atom fraction values.

For both "GAS" and non-"GAS" type flows the following calculations are then made to determine the out-
put flow's pressure, enthalpy and mass flow rate.

p=min(p l,2)

h=(m h 1+m2h2)I (m +m2)

m=m l+m2

Finally, the prop function is called with enthalpy as an input to determine the flow's entropy, density, and tem-
perature. At present, the mixer model cannot mix together flows with different flow id's.

The only output parameter for the model -s
fi - representing the exit gastype flow-from the model. As with all model flows, fl would need to

be further qualified, such as fl.t when used within the GPS input.

3.3.3. Splitter (sp) model
The splitter- model is used to split a gastype flow -into two flows using the member function -c. The function
requires- one- input-flow on the gass stack and will-put one-output flow back onto the stack. The second output
flow can be-obtained by calling the member function-s. This function requires no input flows and should only
be called after the primary function c is called.

The-modeling done within the splitter is-dependent on whether the splitter is being-used-to split off certain
species or simply split the whole flow. If the-split ratio value, sr, is zero, then it is assumed that, at least, one
element of -the-species split ratio array, ssrj, is non-zero. In that case the mass flow rates-of each species must
be calculated to-determine the split off flow. Thisis done as follows.

mwi, =Zmwi compij ,

mZi=ssri comp.i mwi mix I mwR

-m l=(1-ssri) compi, mw1 m" / mwjn

where mw,, is the inlet flow's molecular weight, mlj and m2j are the individual species mass-flow rates of flow
I and 2, comp,. is the inlet flow's mole fraction array, mw, are the individual species molecular weights and m,,
is the inlet flow's mass flow rate. Once the individual-species mass flow rates are known, the-total flow rates for
the two flows can be determined.

M 1=1. MIl

The new mole-fraction arrays for each flow can then-be determined as follows.

complj=ml; 1mw1

comp I j =comp . I comp I j

comp 2i =m 2; / mwi

comp2j =coImp comp 2j

The atom function is then called for both flows to determine each flow's atom fraction array followed by a call

26

to the prop function with the inlet temperature as input to determine each flow's enthalpy, entropy, and density.
When sr is non-zero, the above calculations arc replaced by the following.

m2=sr Mi

m I=miR-m2

In this case there is no need to call the prop function as the exit flow's state variables are the same as the inlet
flow's.

The model's parameters arc as follows.
sr - split ratio representing the fraction of input mass flow rate that is split off to form the second

output flow (0.5). Input.
ssrgi - i-th species split ratio representing the fraction of the input mass flow rate of the i-th species

that is-split off to form the second output flow. Input.
fl - primary-flow structure from the model. Output.
fl2 - secondary or split-off flow from the model. Output.
The ssr array may only be used with flows having the "GAS" id and is used only when the sr parameter is set to
zero. Since both sr and ssr represent fractions of the input flow mass,-their values should be between 0 and 1.
The ssr array elements-should not be all zeros or ones, as this would-make one of the output flows have a zero
mass. Note that since-the-sr variable is by default not zero, if ssr is-to-be used sr must be explicitly set to zero.

3.3.4. Heater (ht)-model
The heater model is used to transfer heat into or out of a gastype flow. The model has one main calculation
function c. The function-takes one input flow from the gass stack and puts one output flow back onto the stack.

The model first calculates the exit flow pressure p based on an input pressure fraction fp as follows.

P =P -f, Pi.

where p,,, is the inlet flow pressure. The model then calculates the enthalpy change based on one of three
options. If the exit flow -temperature t is specified as non-zero, then the exit flow enthalpy is simply calculated
from the prop function- using t as input. If t is zero, then the model checks the exit flow quality, q and if that
variable is greater than- -100 then the sat function is used to determine-the saturation liquid and vapor enthalpics,
h, and h, at the exit flow pressure. These values are then used to calculate the-exit flow enthalpy from

h=ht +q-(h, -h).

Finally, if q is not greater- than- 100, the heat transferred, Q is used to determine the exit flow cnthalpy from

h=h,,, +Q-Im

where h,, is the inlet-flow enthalpy and m is the mass flow rate through the heater. Once the enthalpy of the
flow is known, the prop function- is called to determine the temperature, entropy, and density of the exit flow. In
addition, the heat transferred from either the input or from

Q=(h--hj.)l m

is stored for later print-out.
The parameters to-the model are as follows.

temp - temperature of the exiting gas flow (500 K). Input.
qual - ... ito h. exiti s g I 10). Input.

pfrac - fraction-of the-input pressure used as a pressure drop (0.0). Input.
heat - heat input-(w). Input.
fl - exit flow-from the model. Output.

27

Only one of temp, qual or heat should be input. Temp is used if not equal to zero. If temp is-zero, then qual is
used if greater than -100 (of course, if it is input it should be something reasonable). In this case the exit tem-
perature will be the saturation temperature at the exit pressure if qual is between zero and one. Note that qual
can be set less than zero to represent subcooled flow or greater than one for superheated flow. If either temp or
qual is used to determine the exit flow temperature, then heat is an-ou,,it variable. Finally, if temp or qual are
not used (i.e set to 0.0 and -1000, respectively), then heat is used directly to determine the exit temperature.
Note that heat can be a negative number in which case this model will act like a flow cooler.

3.3.5. Gas turbine (gt) model
The gas turbine model represents a simple expansion to a given-exit pressure at a given efficiency. The model
has a main calculational member function denoted c. This function requires one input flow from gass stack and
puts one output flow back onto the stack.

On entry to the model, the exit flow pressure, p is assigned the specified input value pe,

P =Pezit •

The prop function is then used with the inlet flow entropy as the input to determine the enthalpy h, of the flow
for an isentropic pressure change from the inlet to the exit. The exit flow enthalpy h is then determined from

h =h. - l (hi, - h,)

where T1 is the specified efficiency-and h, is the inlet flow enthalpy. The power produced-is then calculated-
from

Pow =m (hi,, -h).

Finally, the prop function is ealled-with enthalpy-as the input to-determine the-exit flow temperature, entropy,
and density.

The model has the following parameters:
pres - exit-flow pressure (1-atm). Input.
eff - efficiency of the expansion process (0.85). Input

power.work - thermodynamic work generated by the expansion -process. Output.

fl - exit flow from the model. Output.

3.3.6. Gas compressor (cp) model
The gas compressor model represents-a simple compression to a given exit pressure at a given efficiency. The
model -has one calculational member function denoted c. This function requires one input flow from the gass
stack and puts one output flow back onto the stack. The compressor model is- very similar -to the gas turbine
model-only the exit-flow enthalpy is calculated slightly differently. The model first assigns-the exit flow pres-
sure to-be the specified exit value.

P =Pexe.

Then the-prop function -is called to-determine the enthalpy h, of the isentropic compression to-the exit pressure.
The exit enthalpy h is then determined from

h =hl,,- +(h - hi,,)l/ il

and the power required from

Pow=m (h1, -h)

whciehi, is the inlet flow enthalpy, m is the mass flow rate, and ij is the specified efficiency.
The model has the following parameters:

pres - exit flow pressure (5.0 atm). Input.

off - efficiency of the compression process (0.85). Input.

28

power.work - thermodynamic work required by the compression process. Output. Note, that this parameter
is treated as an algebraic quantity, with negative values indicating work consumed. Thus, in a
normal compression process this parameter will be negative.

fl - exit flow from the model. Output.

3.3.7. Heat exchanger (hx) model
The heat exchanger models the transfer of heat from a hot gastype flow to a cold-gastype flow. This is done
using two member functions h for the hot side and c for the cold side of the exchanger. Both of these member
functions require one input flow from gass stack and put one output flow back onto- the stack.

The model has several options and makes use of either a toa or a . , to specify tie exit flow temperature
t on either the cold or hot sides. The particular variable that is specified should refer to the function that is
called first within the OPS inputs, either h or c. Thus, one has either

Q =m (it - h..)

or
:t =thet

Qn=m (hi. -h)

where h.. in the inlet flow enthalpy on the appropriate hot or cold side-and -the-exit flow enthalpy h is deter-
mined from a call to the prop function with the temperature as input. Once-Q is-known it is used on the other
side to calculate the exit flow enthalpy, which, in turn, determines the other exit -flow state-properties using a
call to the prop function. As an additional option, Q can be input directly -rathrevthan one of the exit tempera-
tures. In this case, both tcold and t,,o should be set to zero.

Once both sides of the heat exchanger have been called, the log mean- temperature difference is calculated
using stored values of the inlet and exit temperatures,

At,,.., =(x-y) / log(xly)

where x and y are the inlet and exit fluid temperature differences of the-heat-exchanger. Note that for the pur-
pose of using At,,,,, in system constraints, if either x or y or both become -less -than zero, a fictitious value of
At,,e is returned, although one that still shows the correct trend as a-function of x- and y. Based on specified
values of hot and cold heat transfer coefficients, u~, and uotI an overall- heat- transfer coefficient is determnied
from

1
illtMo + lhIUota

and the heat transfer area by

A =Q / (u At,,,)

The model's input parameters are as follows.
t_cold - exit temperature (0.0 K) of the cold side.
t_hot - exit temperature (0.0 K) of the hot side.
heat - amount of heat (0.0 watts) transferred from the hot to the-cold flows.
ufh - heat transfer film coefficient (03 ,,,o, 2W- -C,,. ,he hot-side.
ufc - heat transfer film coefficient (1000 watts/m 2K) for the cold side.
type - character string indicating the type of heat exchanger, "count" for counter flow or "paral' for

parallel flow ("paral").
Only one of tcold, thot, or heat should be input to the model. If either-t .cold- or tjhot is used then that side
of the heat exchanger should be called first. These parameters arc used-to determine the value of heat whi(li

29

then becomes an output parameter. If both t_cold and t_hot are zero, then the value of heat is used directly to
determine-the exit conditions.

The main outputs from the model are
Imtd - log mean temperature difference across the exchanger.

area - heat transfer surface area- (sq. meters).
fic - exit cold side flow.

flh - exit hot side flow.

Note that if system constraints are to be placed on either lmtd or area, then the system task loop should
include both the h and c functions for this model.

3.3.8. Pump (pump)- model
The pump model represents a simple liquid flow compression process to a specified pressure at a specified
efficiency. Note that this model assumes that the liquid is almost incompressible (constant density) and thus,
should only be called where the flow is in the liquid region. The model has one calculational member function
denoted c. This function requires one input flow from the gass stack and puts one output flow back onto the
stack.

The modeling consists of the following equations.

Pow =m (Pi -Pxi) / (P T)

h=hi, -Pow Im

P =Pexjl

where Pow is the power-required, pi, is-the inlet pressure, p,.,t is the specified exit pressure, p is the fluid den-
sity, m is- the mass flow rate, p is the exit flow pressure, h is the exit- flow enthalpy, and q1 is the specified
efficiency. Once the exit flow pressure and enthalpy are known a call to prop with enthalpy as the input-deter-
mines the exit flow temperature and entropy.

The-model's parameters are as follows.
pres - exit flow pressure (20.0-atm). Input.

eff - efficiency-of the compression process (0.85). Input.
power.work - the work required (watts) to accomplish- the pumping action. Output. Like the compressor

model, work consumed in the compression process will be indicated by a=negative value of this
parameter.

fl - exit flow from the model. Output.

3.3.9. -Diffuser (d) model
The diffuser model represents a gaseous flow diffuser. This model and-the nozzle model are the only steady
state models that make use of the flow velocity. The diffuser model has one calculational member function
denoted c. The model requires one input-flow from the gass stack and puts one output flow back onto the-stack.

On-entry to the model the total pressure p, of the-flow is determined by iterating-on the pressure at con-
stant inlet-entropy until a-value of the enthalpy equal to the total inlet enthalpy h, is obtained, where

h,=h +v2 12

and h is-the inlet enthalpy and v is the-inlet velocity. Once this total-pressure at the -inlet is known, the exit
values for the velocity, enthalpy and pressure are then determined from

V =Vejjt

ht =hi,, - v21/2

30

P=Pi, +(P, -P.)IP rt¢

where the subscript in corresponds to the inlet values and P.C is the pressure recovery coefficient. Finally, a
call to prop gives the exit values for the flow temperature, entropy, and density.

The model parameters are as follows.
vel - exit velocity (10.0 m/s) from the diffuser. Input.
presjc - pressure recovery coefficient (0.5). Input.

f - exit flow from the model. Output.

3.3.10. Nozzle (nz) model
The nozzle model represents a gaseous flow nozzle. The model has one calculational member funution c. It
requires one input flow and generates one output flow.

The model makes use of a specified exit pressure p,,,t and a call to the prop function with the inlet
entropy value to determine the enthalpy h, for an iscntropic expansion to the exit pressure. The exit flow velo-
city is then determined by

v=4vj + 2(h -h).

The exit flow enthalpy is then found from

h=h, +(vi -v 2)12

and the rest of the exit flow's state variables are determined-by a-call-to prop with die exit enthalpy as input.
For use as output variabL.5 the exit Mach number, thrust and- specific impulse are then calculated from

Mach =v f ThP).

thrust=mv +pA

impulse =thrust I (9.8m)

where m is the mass flow rate, A is the exit flow area, and-(Dplp), is calculated via finite differencing.

The input parameters are
pres - exit pressure (0.5 an) of the nozzle.

off - efficiency of the nozzle (0.85).

The output parameters are
area - exit flow area (m2) from the nozzle.

mach - exit mach number form the nozzle.
thrust - thrust (nt) generated by the nozzle.

impulse - specific impulse (s) of the nozzle.
fI - exit flow from the model.

3.3.11. Combustor (cb) model
The combustor model is used to burn a fuel with an oxidizing gas flow. The fuel is described by the input
parameters of the model while the oxidizing flow is-taken from the-gass stack, and must be a flow with a "GAS"
id. The model has one calculational member function denoted- as-c which takes one input flow from the stack
and puts back one output flow.

On entry to the model a reference gas calculation is made to ultimately determine the heat of formation of
the fuel. This is done by first calculating the mass flow rate of oxygen necessary to burn the fuel at a
stiochiometry of one from

m, =(2.6641 w, + 7.93045 wh + 0.99797 w, - w,) mfud

31

where w, wA, w, and w are the weight fractions of carbon, hydrogen, sulfur, and oxygen in the fuel and min11 ,
is the mass flow rate of the fuel. The molar flow rates for the carbon, hydrogen, sulfur, water, nitrogen, and
oxygen (including me) for a reference gas oxidizing the fuel at stoichiometry of one a: e then determined from

molij=wj infltInmi

where the subscript i stands for one of the above species and the mw are the molecular weights for these
species. By calling the prop function with for this reference combustion gas at a temperature of 298.16 K and a
pressure of 1.0 atm a reference enthalpy as well as the equilibrium composition can be determined. In particular
the amount of water vapor in the combustion products can be determined from the mole fraction of water in the
gas composition. Knowing the higher heating value of the fuel HIIV, the heat of formation of the fuel Ah.,,,
can be determined from

Ahfr,,=((mf~j + mo)(h -42 .- mf"'t 1ily I mf",,,

where h is the reference enthalpy calculated above and hh2,, is the saturation vapor/liquid water enthalpy

difference times the fraction of water within the combustion gasses given by

hh20 =1050.65* 2344.44* 18 .0I 53 4 *coPmph 1mw

where comipA,, is the mole fraction of h2o in the reference gas and mw is the molecular weight of the reference
gas.

Once this reference gas calculation is done the actual oxidizing flow can bc used to determine the actually
stoichiometry-of the-combustion from

mol 3 1.9988
stoich =conip 2

roweO, MO

where compM2 is the mole fraction of o2 in- the oxidizing flow, m, is the man. c, the oxidizing flow, and mw,
is its molecular weight. The molar flow rates of the actual combustion gass species consisting of the original
fuel species -and- the-actual oxidizing flow species can be determined from a simple addition

ioli=(comp).o m X + (m7ol)W1 1 .

Here the (no11)f., here does not include the m, as used in calculation of the reference gas. These molar rates
can be normalized to yield the combustion gas species mole fractions which can then be used through a call to
the atom function to determine the atom fractions for the combustion gas. The enthalpy and mass flow rate of
this gas is then determined from

mox hox + mfutl Ahfonn
mnox +mnf1 t

m =,, + mfuel.-

A- call to the prop function with this enthalpy as the input (and at the pressure of the oxidizing flow) will then
give the flame- temperature of the combustion products as well as their equilibrium composition and other state
variables.

For use in power summaries, the input power to the combustor is stored as

Pow=m71fuIlHV

The input parameters to the model are

maSs - the mass flow rate (1.0 kg/s) of the fuel.
carb - the carbon weight fraction within the fuel (0.25).
h - the hydrogen weight fraction within the fuel (0.75).

o - the oxygen weight fraction within the fuel (0.0).
s - the sulfur weight fraction within the fuel (0.0).

32

n - the nitrogen weight fraction within the fuel (0.0).
h2o - the water weight fraction within the fuel (0.0).
hhv. the higher heating value (J/kg) of the fuel (1e7).
The-model will generate three additional output parameters:
stoich - ratio of oxygen within the oxidizer to the amount of oxygen just necessary for 100% fuel oxi-

dation.
power.heat - total thermal power input equal to hhv time the fuel mass.
fl - combustion gas flow from the model.
The combustor model should only be used with oxidizing flows having the "GAS" id. In addition the gas pro-
perties codes should be compiled with, at least, the following species - C, CO, C02, 12,1120, S, S02, and N2.

3.3.12. Power (power) model
The power model is somewhat -different than the other models in that it does not process a particular flow, but
instead, makes use of a power class used by the other models. Each model- that produces work, such as the gas
turbine, or consumes work, such as the pump, will record this information in the work parameter of a power
class. Similarly, models that input heat, such as -the combustor, or lose heat from the system, such as a ht
model with a negative heat-load, will record this information in the heat parameter of this power class. Each of
the model's power class is then put onto a stack, denoted as pows, by calling the put member function of this
stack with the model's power class as an argument. The power model then- makes use of this poNss stac.k to cal-
culate the net work and heat associated with the entire-system. This is done-by calling the c member function.

The model has no input parameters, but does-calculate the following- output parameters.
prod - sum of all the positive power.work variables of all models.
cons - sum of the absolute values of all -negative power.work variables of all models.
input - sum of all-positive power.heat variables of all models.
lose - sum of the-absolute values of all-negative power.loss variables of all models.
Note even if the power model is not called the pows stack is available for printing out tables of the models'
power classes via pows.print. This power class gives an example of how-one can utilize information from all
of the other models and process it in a global way. Thus, one could add cost, reliability, or some-other subclass
to each of the model classes and then add a system cost, reliability, or-some other model to produce-global sys-
tem pammeters just like this power model.

3.4. Steady-State Example One
Consider a system consisting of a hydrogen tank, a compressor, a heater, and a gas turbin,; ,onnectcd tugether in
that order. Such a system could be analyzed using the following input to GPS.

cinit
[/gas lgasl id "THR-H2" /t 300/p 1.0 /m 1.0] cnew
[cp /cpl /pres 6.0 /eff 0.881 cnew
[ht htl /temp 1000.] cnew
[gt /gtl lpres 1.0 /eff 0.84] cnew

gasl.c cpl.c htl.c gtl.c

gass.print mods.print
/ail cdei

Here we use class gas-(gas flow initiator) to represent the hydrogen tank and define a specific inatance of that
class as gasl. Parameter values are then assigned- to initialize the flow. These include defining the flow as a
hydrogen gas using "THR 12", and then defining the values of temperature, pressure, and mass flow -rate using t,
p, and m. Instances of the compressor, heater, and gas turbine classes are then defined with their asociated

33

parameter values. Note that all input parameters have default values and thus, could be left out if the defaults
are appropriate for the problem. Finally, the. calculational functions for each class instance are called in the
order necessary for the problem and the gas stack and model stack print functions are called to obtain the
results. As can be seen the largest part of the coding is supplying the model parameter values, which is usually
the case.

Before defining more complicated system configurations, the mechanism for handling the fluid flow (or for
that matter any type of flow) between the models needs to be considered. -In the original SALT code, these
flows were defined as structures that were simply passed to the models as arguments. The user of the code basi-
cally indicated the flows as either pass-through, inputs, or outputs. This limited the models to a fixed number of
flows and also required that the flows be declared and known by the driver coding. In this implementation a
new way of handling the flows was developed that does not require them to be known within the driver.

Basically, each model will take off of a flow stack, gass, the number of input flows that it requires and put
onto the stack the output flows that it generates. Actually, only the address of the flows are saved on this stack,
but the-concept is the same. Thus, in the previous example, the gasl.c model, being an initiator of a flow, sim-
ply put one output flow onto the stack, cpl.c then took this flow off the stack and on completion of its calcula-
tions, put its output flow back onto the stack. Models htl.c and gtl.c then-did exactly as the cpl.c model taking
their single input flow off the stack and putting their single output flow back onto the stack.

In order to handle arbitrary system configurations, where some flows-may not be used by the next model
in the flew path, it is only necessary to be able to remove a flow from the- stack and, at a later point, place that
flow back--on the stack for further processing. For the gastype flows, this--is- done by two additional member
functions in the gas model class. These two functions are say for saving-the-flow (i.e. remove from the stack)
and rec for recovering the flow (i.e. put back on the stack).

As an example, suppose we have a-system consisting of a flow initiator, -gasl.c, a flow divider', dvl.c,-and
two heaters, htl.c and ht2.c, one for -each flow out of the divider. The system configuration could be
represented by

gasl.c dvl.c gas2.sav ht!.c -gas2.rec ht2.c
Here we-have used the say member function of a second gas model, gas2.sav, to save the second flow from the
divider-(i.e. last flow out of the divider is on the top of the stack). The htl will then pick up the first flowfrom
the dvi and process it. The recover entry of gas2 will place the saved flow-back on the stack to be processed
by the second heater, ht2.

In-reality, this example only shows-the pattern of using the save and-recover functions, since in this case,
we have lost the flow from the htl -model for further processing unless-a third gas model is used to save it
before restoring the flow from gas2.rec. Flows that are generated by a model and not used immediately by -a
subsequent model before other flows are generated are lost. At any point where a model is called, one only
needs to-look at the previous models to determine what the input flows may be. If a model requires two input
flows and-the previous model only generates one output, then, the model -before- the previous will also be-used to
obtain an -input flow. In this case the model providing the first input flow should probably be one not requiring
an input flow itself, like the gas.rec function.-It-is the responsibility of the-user to correctly sequence the models
to represent the system configuration.

Since models that have multiple input or output flows would place these-flows on the flow stacks in a-par-
ticular order, it becomes necessary to-remember this order to properly save-the -flows for later processing. Thus,
most of-the models that have such multiple inputs or outputs have secondary functions that do the saving -and
recovering within the model class itself. For example, if the flow splitter-is-used rather than the fictitious flow
divider-model in the above example, then the inputs would look like the following.

gasl.c spl.c htl.c spl.s ht2.c
Here, the spi. function only pla.s one flow baLk onto the gass stack- for -processing by the htl model. The-s
function-of the splitter model will then place the second or split-off flow onto the flow stack for processing-by
ht2. Use-of these secondary model functions often eliminate the use of the-gas model's save and recover func-
tions and also provide a clearer representation of the system configuration. They do not, however, completely

iThis flow divider is not actually in the currentmodel-library, but is only for illustration.

34

eliminate the use of the gas save and restore functions. For example, a gas.sav would still technically lx.
needed after htl if the output of this model were to be further processed. These secondary functions generally
perform no modeling, thus, for generating output flows, they should be called only after the primary model func-
tion is called and, for obtaining input flows, they should be called before the primary model function- is called.
An example of the latter is the use of the mixer model's mxs function-which saves the input flow for-later use
when the primary mx.c function is called.

In addition to the gastype flow class, other types of flows may exist. For example, the dynamic models to
be discussed in the next chapter make use of a shfttype flow class, representing the power extracted or delivered
to a model by a shaft. These other flows are passed between the models on a stack (a different stack for each
flow type) exactly like the gas flows. Thus, a model may pick up a gas flew from the gas flow stack gass and a
shaft flow-from the shaft flow stack, which is denoted as shfts. The different flow stacks are entirely indepen-
dent of each other. Thus, in determining the flow inputs to a model by considering the previous model what is
really meant is the previous model generating an output flow of the correct flow type. For example, a shaft flow
might be generated and then many models might be called requiring only gastype flows before the model that
requires the shfttype flow is called.

3.5. Steady-State Example Two
The last example shows how to set up a very simple gas-turbine system, however, that system is not too realis-
tic. A better example might include some constraint on-the power generated by the system to be fixed as sonic
value, say 40 MW. This constraint which is dependent on more than-one component of the system must be
specified by the user. Constraints like this are system related as opposed to being component model specific,
and, depending upon the system analysis being done, such constraints -may not always -be required. Thus, for
generality, these system constraints are- not automatically -established by some builtin -procedure. Additionally,
these constraints may often-be established in more than one way. For-example, in this-case, one might be able
to establish this constraint by varying the pressure levels or by varying the mass flow rate. In any- case the
imposing of the constraint is not difficult-and is nothing-more than performing an equation solving task, %here
the constraint equation is-the system power equal to 40e6 and the parameter to be varied is, say, the mass flow
rate - gassl.m. Adding this task to the input of example one, the input-becomes as follows.

cinit
f/gas /gasl /t 300 /p 1.0 /ni 1.0 /id "THR-tl-12"] cnew
[/cp /cpl /eff 0.88 /pres-6.0] cnew
/ht /htl /temp 1000) cnew

[/gt /gtl /eff 0.85 /pres 1.0] cnew
f/task /a] cnew
{a.c)

(/gasl.m 1. 0.1 50.0 vary
gasl.c cpl.c htl.c gtl.c
/gasl.m (cpl.power.work+gtl.power.work-40e6) cons
}

while
gass print mods.print
/all cdel

Here, the- task added was-denoted as a,-and the gasl.m (mass flow rate) variable was varied between 0.1 and
50.0 starting at i After the model calculational entries were called, the value of the power consumed by the
compressor, which is denoted as cpl.pxyer.work, and- the value of the power generated by the gas turbine,
gtl.power.work, will be known and the constraint can then be specified. When the while loop for this task a has
converged, the constraint will be equal to zero (to the default error tolerance, since none was specified).

3.6. Steady-State Example Three
Continuing with the preceding example, one might desire a particular exit turbine temperature or some other
constraint. These problems are solved by-simply using additional vary -and cons operators. Or one ought want
to optimize the efficiency subject to various constraints, both equality and inequality. These problems also are
solved by simply using additional vary, cons, icons, and mini operators. Here we add a parameter swcep to the

35

previous problem. Suppose it is desired to look at the previous system for different heater exit temperatures of
say, 80(), 1000, 1200, and 1400. This is accomplished by simple putting a for loop around the task loop and the
gass and mods print functions. The input in these case would be as follows.

cinit
i/gas /gasl /t 300-/p 1.0 /m 1.0 lid "THR-tH2"] cnew

[Ucp /cpl /eff 0.88 /pres 6.0] cnew
[/ht /htl /taemp 10001 cnew
[/gt /gtl /eff 0.85 /pres 1.01 cnew
[/task /a] cnew
800200 1400

(/htl.temp exch def
(a.c)

(/gasl.m 1. 0.1 50.0 vary
gasl.c cplc htl.c gtl.c
/gasl.m (cpl.power.work+gtl.power.work-40c6) cons
}

while
gass.print mods.print
for

/all cdel
Here the starting value of 800, and increment of 200, and upper bound of 1400 are pushed onto the stack then
the task loop and the output functions are inserted into a new procedure followed by the for operator. Since the
for operator pushes onto the stack-the value being iterated over, the first-line of the new procedure takes this-
value and assigns it to the htl.temp. Note that the print functions must be within the for loop otherwise only
the results for-the last value of the heater temperature- would be printed. In this case the temperature values are
equally spaced-and a for loop could be used. Alternatively a forall loop could be used with the previous start-
ing, increment, and upper bound values simple replaced by an arbitrary array of values, for example, [800 925
1130 1385]. Additional sweeps can be done simply-by nesting other iterative loops around- that for the heater
temperature loop.

3.7. Steady-State Example Four
For the next example we consider a somewhat more realistic example, a diagram of which is-shown in Figure
12. This system is of a simple space propulsive system. First, we consider the system formulated without any
constraints.

In Figure 1 a gastype flow is initialized using--an instance of the gas model, which has been named
gash2. As a-convention in naming the models we will use the model class type, an underscore, and a label.
Although, the flow being initialized-is a gastype, as explained previously, this-really refers to the-flow class type
structure, and not that the flow needs to be a gas. In-this case the gas..h2-model parameters -will -be defined to
initialize a-hydrogen flow within the liquid region. This hydrogen flow is then passed through low pressure and
high pressure pumps, denoted pump lp and pumphp. The flow then passes through a heat exchanger hx-nz,
representing the nozzle cooling. Note, the current nozzle model does not-include the provisions for a coolant
flow, thus, this heat exchanger is used to simulate these-effects. The flow is then split using a-splitter, sp_2, into
a main flow and a second flow which is further split using sp-l. These last two flows are then passed through
two gas turbines, gt-hp and gtjip which are used to drive the low and high pressure pumps. These gas turbine
flows are then mixed together in mx_1 and then mixed back into the main-flow in mx_.2. The resulting flow is
then passed through a heater model used to simulate a reactor, denoted as ht.reac and then through the hot side
of the hx-nz model and out the main thruster nozzle, nz_.

In formulating the inputs we will start with th,; model calls necessary to describe the system configuration.
This will be done exactly like the-simpler examples described above by simply listing the models in the order
that they process the gastype flows and using the secondary splitter and mixer functions where necessary. Note,

2 Note that system diagrams such as shown in Figure I can be semi-automatically generated through the GPS input itself as will be dis-

cusscd in a later chapter.

36

Figure 1.

depending on which flow from the splitters are treated as the primary flow and Which are treated as the split-off
or secondary flow, different system representations can be defined. Here we will assume that the primary flow
from sp_2 passes through spjl and that the primary flow from spjl passes through the gtjlp model. Thus, the
system is described up to the secondary function of the mx_l model by

gasjh2.c pump lp.c pumpgas hp.c hxnz. sp2.c sp. gtp.c mx ..s

At this point, the secondary function of the sp_.2 model can be called to retrieve its split-off flow which is th~en
processed into the secondary function of the rex._2 model using

sp._..s mx..2.s
Then the secondary function of the spil model can be called to retrieve its split-off flow. The rest of the
models can then be called in the order that they process the flows as follows.

sp~l~s gt.hp.c mxh.c mx.2.c ht_reac.c hxPnz.h nz.e.

Note, that here the mixer models will use the flows previously saved by their secondary functions. Also, note
that the hot side function is being called for the hx_nz model. The entire system configuration is thus
represented by

gas..h2.c pump lp.c punmp..hp.c hx~nz.c sp_.2.c spil.c gt_p.c mx_1.s
sp_.2.s mx_.2.s splj.s gt...hp.c mxjl.c mx.2.c ht..reac.c hx nz.h rnz_l.e

For each of the models used within the system one will need to allocate an instance of the model and to
define the appropriate model parameter values. These are, of course, Lomplelely dependent on the problem. For
example, the gas_1h2 model instance and its parameter values might be defined as follows.

Igas /gasjh2 /id "IT-IR-tH2" /t 20 /p 1.29 /m 7.387 /v 200] cnew

Here we define the model with the name gasjh2 and then assign its flow id paramleter the value "TtlIR-ttt2".
(Note, the "THR-tH2' represents a hydrogen gas flow, the small 't' before the !-2 denoles a ..,'';s,. version of
the hydrogen data valid for high temperatures.) The rest of the line then represent the chosen initial values for
the temperature, pressure, mass flow rate, and ,,eloc~ity. The other models used would need similar alloi..ations
and are shown in the final inputs to the problem.

The rest of the inputs to this problem are formed by adding the emuit call and two additional funttion calls,
one to print the gas flow output and ,mne to print the model parameter output. We also include in this example a
call to the power stack print function pows.print. Finally, we inc.lude a call to the cdel operator to delete the

37-

model classes used by the problem. The final complete input for this problem is as follows.
cinit
[/gas /gash2 /id "THR-tH2" t 20 /p 1.29 /m 7.387 /v 200]cnew
[Ipump /pumplp /eff 0.67 /pres 7.96] cnew
Ipump /pump-hp /eff 0.81 /pres 139.22]cnew
[/hx /hx_nz /t cold (1043.0/1.8) 1 cnew
[sp /sp.2 /sr 0.3] cnew
[Isp /sp_ /sr 0.3 1 cnew
[/gt /gtlp /eff 0.23 /pres 85.91 1 cnew
[/gt /gt_hp /eff 0.75 /pres 85.74] cnew
[/mx /mxl]cnew
[/mx /mx.2 cnew
U/ht /htreac /temp (5274/1.8)] cnew
[/nz /nz_l /cff 0.85 /lres 0.1) cnew
[/task /a] cnew

gasjh2.c pumpIp.c pump-hp.c hx.nz.c
sp.2.c sp-l.c gtlp.c mx_l.s sp_2 .s mx._2.s sp-l.s gt..hp.c
mx-l.c mx_2.c htreac.c hx_nz.h nz-l.c

gass.print mods.print pows.print
/all cdel

The outputs for this example, shown in Appendix B, are the results of the gass.print, mods.print and
pows.print calls. The gass.print call displays the table of state points of exit flow from each model. -All units in
this table are in SI with the exception of pressure-which is in atmospheres. Following the state point outputs-are
O.e individual model parameter outputs, which were generated by the mods.print -call. Finally, the tblc o
model powers - input, loss, produced, and-consumed are generated by the pows.print function.

In looking at-these outputs it can be seen-that if the pair of models gtjlp and pumpjp were
form a turbo-pump then the power consumed by the pump should equal the power produced by t
which-is not the case here. The same situation holds with the gthp and pump._hp model pairs. Thius, ,
be more appropriate to constrain the power produced and power consumed in these two model pairs. This is
nothing more than an equation solving task, similar to example two. The first step is to determine what parame-
ters could be varied-to establish these constraints. In general, there are usually many parameters that could be
varied within a system in order to establish constraints. The only criteria is that the constraints be-functionally
dependent on the chosen parameters. In this problem the-most obvious parameters would be-the pressure levels
at the exit of the models concerned. For this problem, however, the pressure levels out of the models represent
the pressure leading to the -reactor and the nozzle, and thus, are important parameters of the-problem. It would
be best to fix these-at the appropriate design level and vary some other parameters. Another set of parameters
might be the split ratios at-the two splitters. By varying these split ratios varying amounts of mass flow can be
directed to the two turbines generating more or less power. Using these split ratios the vary statements would
then look like the following.

/sp.2.sr 03 0.1 0.9 vary
/sp-l.sr 0.3 0.1 0.9 vary

where here the starting values, lower and upper bounds-were taken as 0.3, 0.1, and 0.9, respectively. The-con-
straints can be taken-as

/sp ').sr (gt, n , , ,,.,,,,pmpjp. cons

Isp-l.sr (gt..hp.power.work+pump-hp.power.work) cons

Here the constraint delimiters (the first argument) have been taken as the two split -ratios and the- actual- con-
straint expressions as the sum of the respective models power.work variables. Note, this variable-is algebraic
with negative values meaning work consumed and positive work produced. Thus, the sum is -used rather than a
difference to equate work consumed with work produced. Including the declaration of the task itself and adding

38

these vary and cons-statements to a task loop around the model calls is all that needs to be done to establish
these system constraints. The new complete inputs an as follows.

1/gas Igasji2 fid "TR4H2" /t 20 /p-l. 29 /m 7.387 /Y 200]1 cniew
1/pump /pumpjlp /eff 0.67 /pres 7.96] crnew
[/pump /pump-.hp /eff 0.81 /prcs 139.22] cnew
1/hx, /hx~nz /L~cold (1043.0/1.8)]1 cnew
[Isp /sp_.. /sr 0.3 1 cnew
[Isp /sp-jl /sr 0.3 1 cnew
[/gt /gtjp /off 0.23 /pres 85.91) cnew
1/gt /gt..hp /eff 0.75 /pres 85.74] enew
U/nix /mxjl I cnew
1/mx /mx..2 I cnew
[/ht /htreae /temp (5274/1.8)]1 cnew
1/nz /nj /eff 0.85 /pres 0.1 1 cnew
1/task /a] cnew

(ac
/sp...2.sr 0.3 0.1 0.9 vary
/sp-j.sr 0.3 0.1 0.9 vary
gasjU2. lpuinp-p.c pump-.hp.e hx-yz.c
sp_-2.e spjl.c gtjlp.e mxjl.s sp...2.s mx_2.s sp_1.s gt..hp.c
/sp_.2.sr (gtjp.power.work+pumpjp.power.work) eons
Is p.1.sr (gtjip.power.work+purpjip.power.work) cons

while
mx_1.c mx_2.c hlreae.e hxnz.h nz-i.e

gass.print mods.print pows.print
/all edel

Note that within thewe inputs those models that appeared after the gas turbines which -don't -affect dic constraints
were not included within the task loop. This is only a computational performance issue, as all the modcls could
be included if desired. In fact, the gas..h2, pumpjp, pump..hp, and hxjiz models- could be put before the
loop as varying the split ratios will not affect any of their outputs. If that were done then thle system
configuration and task loop would then look like the following.

gas...2.c pumpjlp.e puinpjp.c hx-nz.e
{a.c)

Is...r030109vr
/sp-.2.sr 0.3 0.1 0.9 vary

sp...2.c spjl.c gt.jp.c mx-l.s sp_.2.s mx_2.s sp-l.s gt.hp.c
/sp-.2.sr (g~ip.power.work+pumpjp.power.work) cons
/sp...1.sr (gt..hp.power.work+ptimpjhp.power.work) eons

while
mxjl.e nx_2.e hLreac.c hx_nz~h nz-i.e

The resulting output for this example is shown in Appendix C. The only differece between this output
and that within-Appendix B is the inilusiun of the task loop iterations and th,., resulting c.hanges within the mas
flow rates through the system.

CHAPTER 4

Dynamic Power System Model Classes

4.1. Introduction
This chapter discusses the components that are used to perform a dynamic power system analysis. These models
consists of the following.

gas - gas flow initiator

sp - gas flow splitter
mx- gas flow mixer
lit - hgas flow heater/cooler
reac - nuclear reactor
gt - gas turbine (based on a performance map)
cp - compressor (based on a performance map)

pump - pump
exnz - exhaust nozzle
pi - pipe

valv - valve

cntl- PID controller
shft - shaft flow initiator

mot - motor
gen - generator.

Note that the names of some of these models are actly the same as those in the steady-state collection.
Actually the steady-state collection could be combined , ,di these dynamic ones, -however, they have been kept
separate for two reasons. The- first is that the-dynamic models often require much more input information than
the steady-state models. Secondly, many of the dynamic models actually make use of the diff function in order
to define the ordinary differential equations of the model and, in some models, also use vary and cons calls-to
set-up the algebraic equations representing the fluid mass/momentum transfers. This means that the user must
be more familiar with the use of these models and, in particular, will need to define the appropriate task loops
within the inputs.

4.2. Dynamic Model Flow Classes
The present collection of dynamic models make use of two flow-classes. The first is that of gastype and is
exactly the same as that used by the steady-state model collection. The other flow type used, at present, is that
of-shfttype. This flow type is used to represent the-information present in a shaft and consists of the-following
variables.
rpm - shaft's rpm
inertia - cumulative polar inertia of all components on the-shaft
power - cumulative net power delivered to the shaft
The shfttype flows are all placed onto a stack, denoted as-shfts. The shfttype class has several member func-
tions one denoted as shftget is-used to retrieves a flow from this stack and like the gasget is only used internally
by the models. The shfts stack also has a member function-print which like the gass.print function can be used

39

40

to print out tables of the exit shaft flow from tie component models.

Likc the gas model, the shfttype class has a shft model that is used to initiate the shfttype flow and, to
save and recovcrthc flow from the shfts stack.

4.3. Dynamic Models
At present, the dynamic models require two different task loops. The first is the task dyn and represents the
dynamic integrations over time and the second, is the task sta and represents the calculations of the mass /
momentum transfers within the system. This second task loop should be nested within the dynamic task. A
more detailed discussion of these matters will be presented after the individual models have been presented.
Since both of these tasks must be defined for these dynamic models the allocations of these two tasks is carried
out for the user within the cinit function, and thus, no cnew calls need to be made for these two tasks.

Some of the dynamic models use a modeling that is relative to rated or design point values. Thus, to
properly use these models, the system under analysis must be set up and run at this design point first. This
design point run will then yield values that are put back into the model as inputs for doing an off-design run,
such as a system startup. In doing the design point run some of the task functions used-by the models may need
to be turned off. This is uniformly done by using the model's stat variable. Additionally, the dynamic integra-
tions performed by the dyn task would not be done for this design point run and thus, do not need to be set up
within the driver coding.

In addition-to these design point options, many of the models have options for-setting up the initial values
at the off-design starting points. For example, one may wish to set a particular -tempcrature distribution within
some heat exchanger or start with some particular fuel temperature within a reactor. Since no spec4ial model
functions are-called to perform these initializations -outside of the task loops that the user has coded within the
inputs, the models need some way of determining that these initialization calculations are necessary. This is
accomplished-by using the state variable within the-dyn task. As previously mentioned, state is used to control
the integration procedure. In addition, it is used-by the dynamic models to inform them- when the initialization
calculations are needed. When dyn.state is zero-the integration over time has not started: Thus, the dynamic
models can check this variable and perform their-needed initializations or other calculations needing to be dune
before the integrations start. It should be noted, -however, that when a sta task- loop -is nested within the dyn
task loop the models will be called many times while dynstate is zero. In the description of the models below
the calls where dyn.state is zero are referred to as the initializing calls.

4.3.1. Gas-(gas) model
As with the steady-state model, the gas model is used to-initialize a gastype flow. The-model has the initalizing
member function denoted as c. This function requires no input flows but does put one-output flow onto the gass
stack.

The modeling consists basically of assigning-the specified inputs to the models exit flow values of id, tem-
perature, pressure, mass flow rate, quality, and composition.

id=ido

1=10

P=PO

q=qo

comp; =comp oi

where the subscript 0 indicates user specified values. The model then calls the atom function to determine the
atom fractions of the chemical species within the flow (note, that this is really only needed for "GAS" type
flows). A call to the prop function ,ith temperature as the input then fumishes the exit-flow values of enthalpy,
entropy, and density. 1l1e exit flow area, A, is either directly input or calculated based-on an input diameter, d,

41

assuming a circular flow cross section.

A --rd2/4

The exit flow velocity is then calculated from

v =m I(A p)

where p is the fluid density at the exit.
The gas model's c function will also call vary to vary the flow's mass flow rate, m,-if the input variable

stat is set to zero. If stat is one then the mass flow rate is simply taken as m and is not varied. The constraint
to go along with this vary will be defined within some downstream model.

The gas model also has a function to save a flow from the gass stack, denoted as say, and a function to
recover the flow, denoted as rec for representing complex system configurations.

The model's parameters are as follows.

id - flow's id pointer ("THR-tH2"). Input.
t - flow's temperature (298.16 K). Input.

p - flow's pressure (1.0 atm). Input.
m - flow's mass flow rate (1.0 kg/s). Input.

v - flow's velocity (m/s). Output.

conip - flow's species mole fraction. Input.
area - flow's exit area (m). Input or output.

diam - flow's exit diameter (0.1 m). Input or output.

stat - specifies whether or not the steady-state option is -in effect (0). Input. Stat equal to one turns
the option on, zero turns it off.

fl - exit flow from the model. Note that fl will need to be further qualified with the name of a par-
ticular gastype parameter, such as "fl.t".

The id pointer should be assigned a value of either "GAS" or "THR-species" as described within the discussion
of the gastype flow class. At present, there is no options for starting a flow out-in the two phase region as with
the steady-state gas model. If diam is specified as zero then the area parameter is used to determine diam, oth-
erwise diam is used to determine area. Thus, either one or the other of these variables should be input.

4.3.2. Shaft (shft) model
The shft model is used to initialize a shfttype flow using the c member functiom This function requires no input
flows and puts one output flow onto the shfts stack.

The modeling within the shft model's c function consists of initializing -the shfttype flow.

rpm =rpmo

inertia =0

power=O

where rpmo is the specified input value.
The shaft model also has a function to save a flow from the shfts stack, denoted as say and a function to

recover the flow, denoted as rec. These functions are used-exactly as with-the save-and recover functions vithin
the gas model for representing complex system configurations.

In addition, the shaft model has an end member function which is-used to-define the differential equation
for the shaft speed. This function requires one input shfttype flow from the-shfts stack and uses the information
within this flow of the cumulative totals of power, power, supplied to the shaft and the cumulative totals of
polar moments of inertia, I, of models on the shaft to define the time rate of change of the rpm as follows.

42

drPm
(-)2 rpm ---t=power.

The model then calls the task related diff function with rpm as tie variable to be integrated. Thus, this end
function needs to be called in order to correctly model the speed-up or slow-down of a shaft. Since this function
will treat the rpm variable as a state variable it should not be input as a function of time within the driver cod-
ing. If it is desired to change the rpm of the shaft directly as a function of time (to simulate sonic additional
power input or output) then this end function should not be called.

The model's parameters are as follows.

rpm - initial revolutions per minute of the the shaft (0.0). Input and output.

drpm - time rate of change of rpm. Output.
inertia - total moment of inertia of all the components on the shaft (kg n 2). Output.

power - net power supplied to the shaft (w). Output.
shftf - exit shfttype flow from the model's c function. Output. Like the output gastype flows from

other models, shftf will need to be further qualified with one of the shfttype parameters, such
as "shftf.rpm".

4.3.3. Compressor (ep) model
Tke compressor model is 'sed to model a simple gastype flow compression process. The model is based on per-
formance maps rather than physical modeling mainly to keep the model generic in nature. The performance
maps-are obtained by calling the in member function which will read the maps from a file. Thus, this in func-
tion needs to be called once-before the calculational function is called. The calculational function is denoted as
c. C requires one gastype input flow from the gass stack and puts one output flow back onto the stack. It also
requires one shfttype flow from the shfts stack and puts one shfttype flow back onto this stack.

The modeling used in the compressor is dependent on whether the model is being called at a design point
or an off-design point. If at the design point, the model calculates a rated corrected mass flow parameter
cmass,0t,d and a rated corrected speed parameter crpmtd to be used in off-design runs.

cmassatd =mM, qilI

crpmrad=rMpin67

where m,, is the inlet mass flow rate, p,, is the inlet pressure, t,, the inlet flow temperature, and rpm,, in the
inlet shaft rpm. The rest of the modeling is the same whether at the design point or off-deign. A corrected
mass flow parameter crnass and corrected speed parameter crpm are calculated from

M int '11n/Pin

cmass=
Cl~aSSrated

crpm= Crprnrrattd

Note that, for the design point these values simply become 1. The performance maps are then called with these
two corrected parameter values to obtain a pressure ratio pr,,,,p and an efficiency i,,,. i order to make use of
the same performance maps for different sized compressors, these returned map values are further sL,,ded as fol-
lows.

(pr, at,-l)
pr =h lJr,,p-1)(.or,, _!)

1 rated11= ' Timap7Tratedmap

where the subscripts map refers to the quantity obtained from the map, rated refers to tie input rated quantity,
and ratedmap refers to the quantity from the map at the rated conditions.

43

The pr value is then used to determine the exit pressure

p=pr pi,

which is followed by a call to the prop function with ie inlet- entropy as input to determine the enthalpy h, of
an isentropic compression to the exit pressure. The actual exit flow enthsny h is then determincd from

h =hj. + (h, - hi)l Tl

and another call to the prop function with enthalpy as the input will then determine the other exit flow state
values.

The power required by the compressor is then calculated as

Pow =m (hi, -h)

which is then added (note the power is calculated as a negative number) to the shaft's power, along with the
compressor's moment of inertia.

The input pararieters to the model are as follows.
:at.cmass - rated or design point value of the corrected mass flow parameter. This value is obtained by

running the model at the design point with the stat parameter specified as one, in which case,
this parameter becomes an output value.

ratcspeed - rated value of the corrected speed parameter. This value is obtained as with the ratcmass
parameter.

rat-pr - rated value of the-compressor pressure ratio (outlet to inlet) (5.0).
rat_eff - -rated value of the compressor efficiency (0.8).
inertia - polar moment of inertia (5-0 kg in') for the compressor.
file character array holding the name of-the file containing the performance maps ("cp.dat").
stat-- flag for turning on (stat equal one)-or off (stat equal zero) the -steady-state design point option

(0).
Note, since the performance maps provide the pressure ratio and efficiency for the-compressor there really is not
much run-time input to the model. However, the model does need to be supplied the performance maps and
does need to-be run at-the design point first-in order to obtain-rat_cmass -and rat-cspeed. The two performance
maps, one for- the pressure ratios-and one for the efficiency, are both stored in the same input file defined by the
parameter file. The details of the-data layout within the performance map file is described in Appendix 0. The
output parameters from-the model are as follows.
power - power (watts) required by the compression process. -Note, that like the steady-state models,

power is treated algebraically with -negative values representing power consumed by- the model.
Thus, in a normal compressive process this parameter will be negative.

eff - efficiency.

cmass - the corrected mass parameter.
cspeed - the corrected speed parameter.
fl - exit gas flow from the model.

shftf - exit shaft flow from the model.

4.3.4. Exhaust nozzle (exnz) model
The exhaust nozzle model is used to model a nozzle where the back pressure is effectively- zero. Thus, the flow
will be choked at the smallest cross sectional area. The model has options for handling both converging nozzles
or converging/diverging nozzles. The input flow should be subsonic for the model to work-properly. The calcu-
lational member function for the class is denoted as c. c requires one gastype input flow from the gass stack
and-puts onegastype output flow back onto this stack. Note that although a flow-is put back onto the stack, this
flow is only for printout and should not be used as input for any other downstream model.

44

The model starts by calculating the area, A, or diameter, d, of the throat section given one or the other of
these variables and assuming a circular flow cross section. A check is then made to make sure that this flow
area is less than the inlet flow area. If it is not the model terminates the run with a message. The model then
determines the specific heat at constant pressure c, at the inlet temperature of the fluid by calls to the prop func-
tion and using finite differencing. The gas constant R and ratio of specific heats y for this flow are then deter-
mined assuming that the fluid is approximately an ideal gas.

R=pl(pt)

ep 1(ep -R)

These are then used to determine the inlet Mach number,

-4yRi'

The stagnation temperature,

to=1(1 M2)

stagnation pressure,

oPPO=P (tr-

flow temperature at the choke point or throat section,
2to

pressure at the choke point,

10

and finally, the velocity at the choke point,

Note, that usually, the models within GPS do not make use of such constant specific heat equations, preferring
instead, to iterate over tie property procedures. However, for the exhaust nozzle the above equations are rea-
sonably accurate and eliminate the iterations over the prop function resulting in a faster running and more robust

-model.
Knowing the flow conditions at the thr,.lt and the area of the throat, the mass flow rate required at tie

throatis determined form

m,,q =Ap'\9RFt

This mass flow rate defines a constraint on the inlet flow rate and, for the non-steady-state option is then used in
a cons-function call. For the steady-state option the inlet mass flow rate is assumed to be the correct value and
the area at the throat is then calculated from

if a value wis; furnishcd to the variable A ,,, representing any additona1ll ex)ansion beyond the throat sec-
lion, the flow is expanded by iterating over the exit Mach number, and using relations similar to above, calculat-
ing the exit flow temperature, pressure, and velocity, and hence, area. When the calculated area is the same as
Acxp the iterations are terminated, yielding the final exit Mach number as well as exit flow state variables.

For use in print out the thrust and specific impulse are calculated as follows.

45

thrust =mv +pA ,,

inpulse =thrust /(9.8m).

Note, that when A,,P is not furnished the thrust calculation uses the throat area instead.
The parameters to the model are as follows.

diam - throat (smallest) section diameter of the nozzle-(0.05 m). Input.
area - throat area (m2). If diam is set-to zero then area determines diam, otherwise diam is used to

determine area.
aexp - divergent section exit area (0.0 m2). If aexp is less than area no divergent section is calculated.
mach - initial estimate of the exit Mach number, only used when aexp is non-zero (1.5).
stat - steady-state options flag, one for steady-state option on and zero for off (0). Input.
mreq - mass required by the throat section. Output.
thrust - thrust generated by the exiting flow (wt). Output.
impulse - specific impulse of the nozzle (s). Output.
fl - exit flow from the model. Output.

4.3.5. Gas turbine (gt) model
The gas turbine model is used to model a simple gastype flow expansion process. The model is-based on per-
formance maps rather than physical modeling mainly to keep the model generic in nature. The-performance
maps are obtained by calling-the in member function which will read the maps from a file. Thus, this in func-
tion needs to be called once before the calculational function is called. The calculational function-is denoted as
c. C requires one gastype input flow from the-gass stack and puts one output flow back onto the stack. It also
requires one-shfttype flow from the shfts stack-and puts one shfttype flow back onto this stack.

The gas turbine model is-very similar to-the compressor model the only difference being the calculation of
the exit flow enthalpy, which for the turbine is given by

h =hi,, - il (h, - h.,,)

and the calculation of the exit-pressure

p=pj I pr

where the notation is the same as that used in the compressor model.
The parameters to the model are as follows.

rat_cmass - rated or design point value of the corrected mass flow parameter. This value is-obtained by
i,,,nin. *. . model at the design point with the stat parameter specified as one, in which case,
ti .r %"-,'t r becomes an output value.

rat.cspeed - rateo v. _ of the corrected speed parameter. This value is obtained as with the rat cmass
parameter.

cmass - the corrected mass parameter. Output.
cspeed - the corrected speed parameter. Output.
rat..pr - rated value of-the expansion pressure ratio (inlet to outlet) (5.0). Input.
rateff - rated value of the gas turbine efficiency (0.82). Input.
inertia - polar moment of inertia (kg m2) for the device. Input.
file - character array holding the name of the file containing the performance maps. Input.
stat - steady-state options flag, one for steady-state option on and zero for off (0). Input.
eff - efficiency. Output.

46

power power (watts) generated by the expansion process. Output.

11 - the exit gas flow from the model. Output.

shftf - the exit shaft flow from the model. Output.

As with the compressor model, there are two performance maps for the turbine both stored in the same input
file. The first supplies a pressure ratio as a function of the corrected mass and corrected speed and the second
gives the efficiency as a function of the corrected mass and corrected speed. The details of tie data layout
within the performance map file is described in Appendix G.

4.3.6. Heater (ht) model
The heater model represents the transfer of heat into or out of a gastype flow. The mo:.., has one calculational
member function denoted c. This function requires one input gastype flow from the gass stack and outputs one
gastype flow back to the stack.

There are several options to this model. The first is a steady-state mode in which the heat input Q is sim-
ply added to the inlet flow enthalpy hi, to generate the exit enthalpy.

h=hi, +Q Ii

where i is the mass flow rate of the fluid. The pressure drop Ap through the heater is given as
2

Ap=f ,atd Pi.

where the subscript rated refers to some input rated value and f is the fraction of the inlet flow representing the
pressure drop. The exit flow pressure is then given by

P =p .- AP

and the other exit flow parameters are then obtained from a call to the prop function.

The second option is a simple thermal delay mode. This option permits a number of nodes along the dev-
ice, with the exit enthalpies for each node given by

Dhi m (hj- -hj) + Q
K= ,1,...,nlat K

where K is some input constant, n is the number of nodes, and Q, is the amount of heat transferred at each
node. Presently Q, is taken as Qin. In this mode the pressure at the exit of each node is defined as

pj=Pi-j - tAp / n

where Ap is calculated as above. Note that this option is provided for those cases when one simply does not
have enough information concerning the heater to make use of the full calculational mode bit still desires some
thermal delay to be included.

The final or full calculational mode again makes use of multiple nodes, with both a wall temperature and
fluid enthalpies at each node calculated from tie following.

c, M, .- =Qj - ua At,

pVj "l t =m (hi-I - hi) + ua Ai

where
l[Atj=TS- - (t, + tj -1)1/2.

Here T, is the wall teimperature at tie i-th node, u is the oveall heat transfer coefficient, a is the heat transfer
surface area, c. is the wall specific heat, and M, is the wall mass at the i-th node. The exit pressure at each
node is determined as with the previous mode and the other flow state variables are then determined with a call
to the prop function with enthalpy as the input. The u that is used in the above equation is adjusted for changes

47

in mass flow rate from the rated flow using

U flratd

where Ur,'d is the heat transfer coefficient at m,.,,d. The flow proper.s-at the exit of the heater are taken as
those at the last node. Finally, for all modes, the exit velocity is calculated as

v=m/(piA)

where A is the exit flow area.
The input parameters to the model are as follows.

nun - number of internal nodes along the flow path within the model (0). If greater than zero, the
total heat transferred is equally divided into this many parts with each part transferred per
node. If equal to zero, ft, model works like a steady-state model with the resulting flow
enthalpy changing instanimneously with the heat transfer.

t#i - the flow temperature of the i-th node. This array, which should be defined for i from to one to
num, represents the initial gas temperature distribution. Thereafter t#i will be an output. If
num is zero, this array is not used.

heat - the total-heat load on the exchanger (le5 w). Generally, heat is used as an input only after the
initial call to the model, however, heat can be used on -the initializing -call to generate the
values of the t array.

diam - diameter-of the total flow passage through-the device (0.1).

area - area of-the total flow passage through the device. If dian- is zero then area is used to-deter-
mine diam, otherwise area is determined-by diam.

length - length of the flow passage through the device (1.0 m). Note length and area are used to deter-
mine the volume of the device and not the heat transfer surface area which is supplied by ua.

ua - heat transfer surface area-time the heat transfer coefficient per node at the-rated flow(le5 w/K).
rat.m - rated or design point mass flow rate through the device-(5-0 kg/s). This is used to adjust the ua

value and pressure drops for different off-design flow rates.
rat._pf - rated or-design point pressure drop through the device as-a fraction of the-inlet pressure -(0.05).
twall#i - wall temperature array. This array is used to give initial values for the gas passage wall- tem-

peratures. After the initializing call this array will be an- output. Note- that this array is-used
only if the wall is given-a-mass using mwall.

mwall - mass of-the walls containing the gas. If mwall is non-zero then the code will make use of the
full calculational mode and calculate the wall temperatures. In this case the heat load is distri-
buted uniformly along the wall.

cpwall - specific- heat of the wall material (1000 J/kg K).
tconst - constant- used for heat transferred to the gas in the simple thermal delay option (10). Tconst

represents the K defined above.
As-noted some of these variables are used as inputs only on the initializing call to the model and are sub-

sequently defined as outputs. Thus, one needs to be cautious when calling this model within a loop. Iterating
over different values of heat as inputs to establish some-initial constraint, for example, will not work. This is
because once the model is called with heat as an input, the-t#i array is then defined, and-hence on subsequent
iterations, this t#i array would be used rather than the heat parameter. However, one could iterate over the-t~i
values. Output parameters form the model include
heatO - initial heat load on the device (w). This can be used on subsequent calls- to give continuity to

the thermal input using the heat parameter when the t#i array is used on the initializing call.
vol - flow area times the heater length (m3).

fl - exit flow from the model.

48

4.3.7. Mixer (nex) model
The mixer model mixes together two gastype flows. The calculational member function is c and requires one
input flow from the gass stack and puts one output flow back onto the stack. The other input flow is obtained
by calling the member function s. This s function, which must be called before the c function, requires one
input gastype flow but generates no output flow.

As with the most of the other dynamic models the exit flow area is calculated using a specified diameter d
by

A --,d214

or if the area is input the diameter is determined from the same equation. The-exit mass flow rate is calcu i:..
from

m=m1+m 2
where the subscripts refer to the two inlet flows. The exit flow enthalpy is obtained from

h= Mh+21m +m2h

and the exit flow velocity from

v =m I(pA)

where the exit flow density is obtained from a call to the prop function with enthalpy as the-input.
In the dynamic mode the mixer model imposes a constraint on the entering flows that their pressures

should be equal. This is done by calling the task class cons function. In the steady-state mode this constraint is
not imposed. In-either case, the exit pressure is defined to be the mass weighted average of the inlet pressures

mIP1+m2P2

ml+in2

In a dynamic problem the inlet flow rates entering a mixer should rapidly adjust themselves such that- the inlet
pressures become equal. For the instantaneous representation of the mass / momentum effects us.d by the
models these pressures are thus, simply constrained to be calual. The actual parameter that is varied to order to
establish this constraint will appear within some other upstream model.

The parameters for the model are:
diam - exit flow diameter (0.01 m). Input.

area - exit flow area. If diam is zero, diam is determined by area, otherwise area is determined by
diam.

stat - flag used to turn on (stat=l) or turn off (stat=0) the dynamic mode constraint on inlet flow
pressures (0).

dp - difference in input flow pressures (atn). Output.
fl - exit flow from the model. Output.

4.38. Pipe (pi) model
The-pipe model models the pressure drop and optionally the enthalpy delays that occur within pipes. The model
has-a calculational member function, c, requiring one-input gastype flow from the gass stack and puts one output
flow back on the stack.

The pipe model is similar tc the heater modcl in the way that it calculates pressure drops. I1,. mudel also
can -make use of multiple nodes in repre,cnting enthalpy delays. Thus, the exit pressure and unthalpy form each
node-is calculated from

pi=p-i1 - Ap I n

49

ah.P i V i "-t --= m (h i- - hi)

where P=(pP+pjj)/2, V, is the i-th node volume, and n is the total number of nodes. Finally, the exit flow
velocity is determined from

v =m / (rho A np,)

where A is the pipe, n, is the number of pipes passing the flow in parallel. If the number of nodes is taken as
zero, the model only calculates the pressure drop and no enthalpy delays are calculated.

The parameters for the model are as follows.

diam - exit flow diameter (0.1 in). Input.

area - exit flow area. As with the other models, if diam is non-zero, diam determines area, otherwise
area determines diam.

length - length of the pipe (1.0 m). Input.

rat..pf - rated or design flow rate pressure drop as a fraction of the inlet pressure (0.01). Input.
rai., - rated or design flow rate (1.0 kg/s). Input.

num - number of nodes along the pipe length (0). Input. This is used to define the differential equa-
tions to simulate thermal delays. If num is zero, no thermal delays are modeled. For gas
flows in short pipes num equal zero is generally sufficient.

num-par - number of parallel flow segments or pipes in parallel that the model represents (1). Input.
dp - total pressure drop along the pipe (atm). Output.
fl - exit flow from the pipe. Output.

4.3.9. Pump (pump) model
The pump model, like the gas turbine and compressor, is based on performance maps rather than basic physical-
modeling. Again, this was done in order to have a generic model rather than a pump of a specific type. The
performance maps are obtained using the member function in. This function should be called once before the
calculational function is called. The layout of the data within the performance map file is discussed in Appen-
dix G.

The calculational function is denoted c. This function requires one input gastype flow from the gass stack
and- puts one-output gastype flow back onto this-stack. The function also requires one shfttype flow from the
shfts stack and puts one shfttype flow back onto the shfts stack. The pump model makes use of homologous
pump head and torque curves. These take the head as a function of the normalized flow and rpm as follows.

m
irated

rpm,,= rpm

x--n+tan' (m' ,
rpm,

II=(m. + rpm2) H(x) lratd

where L' is the pump head, H is the pump head function, and the sub-cripts rated stands for rated values and n
for normalized values. The torque T is calculated given the pump efficiency, 11, as

T60 m H

27c p T rpm
The torque can optionally be obtained from the homologous pump curves as

50

T=(m 2+rpm2) T(x) T.1d

and then the efticiency is calculated from the previous equation. (Note, that due to lack of good pump torque
curves the first approach with the efficiency given is currently hardwired in the coding.) The exit flow state vari-
ables are then determined from

p=pi. +H

h =hin + H/(p il)

and a call to the prop function.
The power required by the pump is calculated as

Pow =m (hin -h)

which is then added to the exit shft flow. In addition, the pumps moment of inertia is also added to the exit shft
flow.

The parameters for the model are as follows.

rat..m - rated or design point mass flow (1.0 kg/s) for the pump. Input.

rat rpm - rated design point rpm (1000). Input.
rat.dp - rated design point pressure rise (5.0 atm). Input.

rat.eff - rated design point efficiency (0.85). Input.
eff - pump efficiency (0.65). Input.
inertia - polar moment of inertia (0.1 kg m 2). Input.

dp- pressure rise across the pump (atm). Output.

power - power required by the pump (w). Output. Like the compressor model, this parameter will
appear as a negative number for power consumed.

fI - exit gas flow from the pump. Output.

shftf - exit shaft flow from the pump. Output.
file - file containing the performance maps ("pump.dat"). Input.

The model makes use of two performance maps both contained in the file defined by the parameter file.
The first gives a nondimensional head curve as a function of the nondimensional flow rate and nondimensional
rpm. The nondimensionalizing factor in all cases is the rated condition of the corresponding variable. The
second performance map is of the nondimensional torque as a function of the same two nondimensional parame-
ters. Note that unlike the gas turbine and compressor models, this model does not need to be run at the design
point first.

4.3.10. Reactor (reac) model
The reactor model is also very generic in nature being predominately a heat exchanger, although, point kinetic
equations are also provided as an option. The model has a main calculational member function denoted c. The
function requires one input gastype flow and generates one gastype output flow.

If the point kinetics option is specified, the following equations are solved for the neutronics.

dci P1pf i

71 i=

where P1 is the fission power, c, is the precursor nuclei concentrations, X, is the radioactive decay constants, 13,
is the i-th fraction of delayed neutrons, J3 is ,1ij, p is the reactivity, and l" is the prompt neutron generation
time. The reactivity is presently taken as follows.

51

where t is the control reactivity, p,001 is the coolant feedback reactivity, T,,01 is the average coolant tem-
perature, and Tco0 ,0O is the initial T,,t. If the point kinetics option is not on, then the fission power is assumed
to be an input.

The fission power is assumed to be dissipated in the fuel mass. The resulting fuel temperature, cladding
temperature, and coolant flow exit enthalpy is then obtained from the following equations.

aTf. =Pf -u'1(Tf. 1-Tct)
at cpfwlMf.1

DTa,= Ua (Tif_,T-W) -Uo 1 (AT,)
at CP.:wMctw

Ah uc.1(AT.)+m(hi.-h)

" =' p vol
where 7 is the average temperature, AT,, is the log mean temperature difference, h is the exit coolant enthalpy,
hi,, is the entrance coolant enthalpy, cp is the specific heat, M is the mass, p is the average coolant density, vol
is the coolant passage volume, u is the heat transfer coefficient, and the subscripts denote whether the quantity
is the fuel, cladding, or coolant fluid. The uoo, coefficient is also adjusted based on the fluid-flow rate as fol-
lows.

m ~o.S
ucool =U1coolte,.d (M)0.

flnraied

whereUcoot.,tued is the heat transfer coefficient at the rated mass flow rate.
The pressure drop through the reactor is given exactly like the heater model based on a pressure drop frac-

tion and adjusted as -a function of the mass flow rate. The rest of the exit flow- state variables are then deter-
mined from a call to the prop function with enthalpy as in input and the exit flow-velocity is determined from

v=m / (p A)

As an option, the cladding mass may be set to zero in which case the calculation of the cladding temperature is
not done.

The input parameters to the model are as follows.

ratm - rated or design point mass flow- through the reactor (5.52 kg/s). This parameter is used to scale
off-design pressure drops.

raLpf - rated pressure drop through the reactor as a fraction of the inlet pressure (0.2).

tcool - initial value of the exit gas flow temperature (K).
power - power level generated by the reactor (le6 w). This is either an input for all time or, if the

point kinetic equations are used, an initial value parameter.

ucool - heat transfer film coefficient for the gas/cladding or gas/fuel interfaces at the rated flow (1.3e6
w/K).

uclad - heat transfer coefficient between the fuel and cladding (1.3e6 w/K). Uclad is only used when
meald is non-zero.

mfuel - mass of the fuel material (220 kg).
mclad - mass of the cladding material (0.0 kg). If mclad is set to zero, no cladding material is

assumed.
cpfuel - specific heat of the fuel (1000 J/(kg K)).
cpclad - specific heat of the cladding (1000 J/(kg K)).
tclad - initial value of the cladding temperature. If tclad is set to zero, then it is taken as an equili-

brium value (i.e. its time rate of change is zero) based on the power and heat transfer

52

coefficients. Tclad is only used if mclad is non-zero.
tfuel - initial value of the fuel temperature. If tfuel is set to zero, then an equilibrium fuel tempera-

ture based on the power and heat transfer coefficients is used.
diam - diameter of the exit flow area (0.2 m).

area - area of the exit flow. Diam and area are used to determine each other as with the other
models.

vol - volume of the gas passage within the reactor (1.0 M3).
reactcntl - control reactivity (0.0).
reactcool - temperature coefficient of the reactivity (0.0). The total reactivity is taken as reactentl plus this

coefficient times the difference of the average coolant temperature and the initial average
coolant temperature. The average is taken as the mean of the inlet and exit temperatures.

option - flag used to turn on (option equal one) or off (option equal zero) the point kinetic calculations
(0).

beta#i - fraction of neutrons in the- i-th delayed group, i goes from 0 to 5 (0.00021, 0.00141, 0.00127,
0.00255, 0.00074, 0.00027).

bet - fraction of neutrons which are delayed (0.00645). Note, the code internally normalizes the beta
array so that its elements sum to bet.

lamb#i - radioactive decay constant-of the i-th group of precursors, i goes from 0 to 5 (0.0124, 0.0305,
0.111, 0.301, 1.1, 3.0).

The beta, bet, and lamb parameters are only used if option is set to one. The outputs from the model include
tcool0 - initial average coolant temperature (K).
powerO - initial power level (w).

fl - exit low from the reactor.

4.3.11. Splitter (sp) model
The splitter models the splitting of a gastype flow into two flows. The model has a calculational member func-
tion c which requires one input gastype flow and generates one output gastype flow. The other output flow is
obtained by calling the member function s, which should-be called only after the c-function has been called.

The dynamic splitter model works much like the steady-state splitter model but only includes the full flow
splitting and not the species splitting. Thus, given a split ratio sr the two exit flows, denoted by-subscripts 1 and
2, are obtained from the following.

m 1=sr m R

Mr2=Min-m 2

v 1=m1 I (pA 1)

v2=m2 1(pA 2)

The temperature, pressure, enthalpy, etc. for the exit flows are the same as the input values. Note that the split
ratio is varied for dynamic runs.

The parameters to the model are:
diaff,n. - diameter (m) of the i-th exit flow with i being either 0 or 1 (0.01 m). Input.
area#i - area of the i-th exit flow. If diam#i is zero the diam#i is determined from area#i, else area#i is

determined from diam#i.
stat - flag used to turn on (stat equal one) or off (stat equal zero) the steady-state option (0). Input.
sr - split ratio of the second output flow to the inlet flow (0.5). Input. If stat is zero then this

parameter only represents an initial value and is thereafter determined by some system

53

constraint.
flu - exit flows from the model. Output.

The splitter model generates a new gastype flow and as such will vary the mass flow rate for the flow pro-
vided that stat is zero. This is done by varying the sr parameter. When stat is one, the specified split ratio is
not changed.

4.3.12. Valve (valv) model
The value model has two options, one using a conductance factor and valve position along with an empirical
expression for the flow rate that can be passed as a function of the pressure drop, and a second option in which
the pressure drop is directly input, the valve position being determined after the fact. The model has a calcula-
tion member function c requiring one input gastype flow and generating one output gastype flow.

In the first option, with the valve position pos and conductance factor cv specified, the fraction of inlet
pressure pf representing the pressure drop across the value is found by solving the equation

m=cv pos (1-pf /3.0) 4ppjpf
where m is the inlet mass flow rate, pi. is the inlet pressure, and p is the inlet density. In the second option pf
is directly input and the above equation is solved for the valve position assuming a conductance factor-of one.
In either case the exit pressure is then determined from

P =Pit-Pf Pin

and the other state-values are determined with a call to prop with the inlet enthalpy as input.
The parameters to the model are

pf - ratio of the pressure drop to the inlet pressure (0.01). Input.

option - flag specifying direct input of pf (option equal to two)- or input of valve position and conduc-
tance (option- equal to one) (2). Input.

cv - valve conductance value. Input.
pos - valve position, treated as an number between zero and one (1.0). Input.

dp - pressure drop through the valve (atm). Output.
fl - exit flow from the value. Output.
If pf is input directly, then pos is an output actually representing the product of a valve conductance and a valve
position.

4.3.13. Motor (mot) model
The motor models an additional supply of power to a shaft flow. The model requires one shfttype flow from the
shfts stack as input and puts one shfttype flow back onto that stack on output.

The model has several different options, as specified by the parameter, option. If option is set to "zero",
the motor will add to the input shaft flow power exactly the correct amount necessary to produce a zero shaft
power at this point within the shaft flow. If the option is specified as "level", the model will add power to the
shaft flow only if -the current shaft flow power is less than some specified power level, Powero. In this case, the
power added will be the minimum of Powero or the amount of power necessary to give the shaft flow a power
level of Powero. In other words, the motor will attempt to level the shaft power to Powero at this point in the
shaft flow path. Finally if the option is set to something other than "zero" or "level", the motor will simple sup-
ply to the shaft flow the specified power.

thc param c,,vr of te model are as follows.
option - character string representing the option as discussed above (""). Input.

inertia - the moment of inertia for the motor (0.1 kg m2). Input.

power - the specified input power level if option is not specified as "zero" or "level" (w). Input when
option is not "zero" or "level", output otherwise.

54

powerO - specified Powero value as discussed above (le4 w). Input when option has been set to "level'.
shftf - exit shaft flow from the model. Output.

4.3.14. Generator (gen) model
The generator extracts power from a shaft flow in an attempt to model an electrical generator. This model is
only a very crude representation of such a generator. The model has the calculational function c which requires
one input shfttype flow from the shifts stack and puts one such flow back onto that stack.

The model has two options controlled using the stat parameter. When stat is zero, the power required and
extracted from the shaft is calculated as 4

Pow= -Pow rplmdI J
where Pow,*,.d is some design point rated power level and rpm,,d is the rpm at this rated power level. When
stat is one, the power required is assumed equal to the shaft power at this point in the flow path.

The model parameters are as follows.
inertia - polar moment of inertia for the generator (0.2 kg m2). Input.

ratrpm - rated rpm (17800 rpm). Input.
rat..pow - rated power (40e6 w). Input.
power - required power (w). Output. Negative quantities represent power consumed.
stat - design point or off-design point flag as discussed above (0). Input.

4.3.15. Controller (cntl) model
The controller models a proportional-integral-derivative (PID) controller. This model requires -no input flows
and generates no output flows. The controlling variable var is determined by the following equation.

1 t de
var--varO+ k (t, e + d

where e represents the error between the value of the variable to be controlled and some specified desired value,
varo represents a set point value of var at zero error, and k, tp, ti, and t d represent adjustable parameters of the
controller. Note, if t, is specified as 0, then the integral term is not include. Likewise if td is specified as 0,
then the derivative term will be zero. Thus, the controller also handles proportional, proportional-integral,
integral, integral-derivative, etc. type of controllers. However, to actually, make use of the derivative type- of
controllers, one must be able to accurately calculate the derivative of the error. For GPS usage, -this usually
means only those variables that are state values of differential equations for which the derivatives are known can
be used in derivative cor.trollcrs.

Since the cntl model changes the controlling variable, the cntl model could cause problems in iterative sta
task loop for dynamic problems. The controlling variable's changing value means that the constraints in this
loop might not be a true function of the specified parameters that are being varied within the loop. To eliminate
this problem, the cntl model has an option, controlled with the stat parameter, for putting the controlling -param-
eter within a vary-cons function pair internally within the model. Thus, when stat is zero, a temporary value
representing the value that the controlling variable is to obtain based on the above equation is calculated. var is
then varied within the same sta task loop as the other parameters until it becomes equal to this temporary value.
This permits the following method for using the cntl model. Within the inner loop of the dynamic problem, the
actually controlling variable is defined to be equal to var before the model in which the controlling variable is
found. After the error is calculated, the end model can then be called.

The parameters to the model are as follows.
stat - flag, when zero, turns on the implicit calculations of var using the vary-cons functions, and

when one turns off these implicit calculations (0). Input. Note that when stat is one, the
model will directly return the value of var.

55

var - the controlling parameter value. Input on initializing calls, output thereafter.

ti - ti value (0.0). Input.
tp - tP value (0.0). Input.

td - td value (1.0). Input.

k - k value (1.0). Input.

err - e value. Input.

derr - derivative of c (0.0). Input.

cntl0 - set point value of var when e is zero (0.0). Input.

cntlv - calculated value of var. When stat is equal to one, var is simply set equal to cntlv. When stat
is zero, var and cntlv are made equal using a vary-cons loop.

ub - approximate upper bound on var when used in the vary-cons functions (1.0). Input.

lb - approximate lower bound on var when used in the vary-cons functions (1.0). Input.

In order to prevent hitting either the upper or lower bounds within the-controller vary-cons loop iterations
the actual upper and lower bounds used are slightly adjusted from those that are specified by the user. Both
bounds are extended by one tenth the distance between the specified bounds and the calculated value of the con-
trolling parameter is truncated at the original user specified bounds.

4.4. Dynamic system tasks
As mentioned within the introduction to the dynamic models, many of the models make use of the task func-
tions for integrating the differential equations of the models and also for representing the mass/momentum
exchanges within the system. Each of these will require the user to include within the driver coding a task
loop. In the case of-the differential equations, the task name used by all of the models is denoted as dyn, thus,
the driver code requires a dyn task loop. This also means that the time variable is denoted as dyn.time.

In the case of the mass and momentum exchanges, the models use the task named sta. This task should
be set up within the driver coding nested within the dyn task. Since both of these tasks are always required
when using the dynamic models, both are defined within the cinit function and thus, do not need to be explicitly
allocated using the cnew operator. A generic representation of the dynamic inputs would look something-like
the following.

cinit

"model allocations, parameter specifications, etc.- using cnew"

0 tout_increment t_final
(/dyn.tout exch def
(dyn.c)

{(sta.c)

"model calls, parameter specifications, user define
vary and cons, etc."

while

while
gUaSs.print mods.pfint
"additional output"
)

for

Within the sta task loop the actual number of vary and cons function calls should balance with one vari-
able for each constraint. Thus, the user of the dynamic models must keep track of which models are using a

56

vary function and which are using a cons function. This is actually not difficult, since each time a-new flow
path is generated, a vary function is used and each time a flow path is terminated a cons function is used.
Thus, vary's are use within the gas and sp functions and cons's are used within the mx and exnz- functions.
Generally, the parameters that are varied adjust the mass flow rates along the flow path (m in the gas model and
sr in the sp model). The constraints are then equations that would define what the mass flow would be (such as
choked flow within the exnz model). At times it may be necessary to add within the driver coding additional
vary and cons function calls within the sta task loop. This might occur if a model's stat parameter is set to
one, implying that the model's vary or cons function is not called. There really is an endless number of possi-
bilities and the user must be clear as to what the problem is that is being set up with the input.

4.5. Dynamic example one
For an example of the use of the dynamic system components we will consider a dynamic, analysis of a space
nuclear rocket system. The model parameter values for this example are not meant to correspond to any partic-
ular system. The example is only for illustrative purposes in showing the type of thinking necessary to use the
OPS code for dynamic problems. Figure 2, shows a block diagram for the system. The main thruster nozzle is
exnz..., although part of the flow is diverted to drive the turbo pump, pump_tp, and is exhausted through a
second nozzle, exnztp. Several valves are provided for system control, a tank shut-off valve, valv.tsov, a
pump shut-off valve, valv.psov, a temperature control valve, valvtcv, and a turbine speed control valve,
valv_scv.

Figure 2.

II

57

In analyzing such a system, the first step is to develop a full power design point. This will be used to
determine pipe sizings for reasonable flow velocities, exhaust areas for the nozzles, and valve positions. Note,
that since this system configuration has one flow initiator and two splitters, there are three automatically imposed
parameter variations. Also, since there are two exhaust nozzles and one mixer there are three automatically
imposed constraints. As mentioned within the section on the models Phnve, many of the models have a special
steady-state option for turning these automatically imposed variations and constraints off. This is done by speci-
fying the mnodel's stat variable to one. With this option specified in the exhaust nozzles, the constraints on mass
flow rates (calculated from the flow areas) are not used. Instead, the mass flow rates are treated as the knowns
and the flow areas are calculated. This permits one to determine the design flow areas by specifying the design
point flow rates. In order to specify this design point flow rate, the stat option will need to be turned on (i.e. set
to one) in the gas model representing the hydrogen tank. This will prevent the automatic iterations over the
mass flow rate. Note that turning on the stat option within both exhaust nozzles we have turned off two automat-
ically imposed constraints and by turning on the stat option in the tank model we have turned off one automati-
cally imposed parameter variation. Thus, in order to rebalance the number of constraints and parameters being
varied, one additional constraint needs to be imposed or another of the parameter variations needs to be
removed. Since at-the design point there are several other constraints that need to be imposed we will add an
additional constraint.

First, at an equilibrium design point, the power required by the pump should be constrained to exactly
match the shaft power generated by the gas turbine. This additional constraint will rebalance the number of
constraints and-the number of parameters being varied. However, as an additional constraint on the system we
impose a design value on the gas turbine inlet temperature of 950K. This constraint will be met by varying the
temperature control valve pressure drop. By varying this pressure drop, a greater or lesser amount of cold gas
flow will be directed to the mixer, thus, affecting the downstream temperature.

The complete input necessary to determine the full power design point is as follows.

cinit
U/gas /gash2 /id "THR-tH2" /t 20 /p-3.0 /m 1.0 /diam .05 /stat 1 cnew
[!valv /valv_t.tsov Ipf 0.02] cnew
[(pi /pil Iratm 1.0 irat.pf 0.0002 /diam .05] Cnew
/pump /pumptp /raLrpm 60000. /rat_dp 84.0 /ratm 1.0] cnew
[/valv /valvpsov /pf 0.02] cnew
[Ipi /pL2 /raLm 1.0 /ratpf 0.0001 /diam .05] cnew
[/ht /ht..r /t#1 80.] cnew
[Isp /sp-1 /sr 0.05 /diam#0 0.05]cnew
[/pi /pL3 /rat.m 1.0 /ratpf 0.0001 /diam .03 1 cnew
[/reac /reacl /tcool 3000. /diain .05 /rat.m 1.0 /raLpf 0.05 /ucool le5 cnew
[/sp /sp_2 /sr 0.02 /diam#O 0.05 /diam#1 0.05 1cnew
[/pi /pi4 /ratm .03 /rat-pf 0.0001 /diam .05 cnew
[/exnz /exnzI /aexp 15e-3 /mach 3.5 /stat I] cnew
[/valv /valvjcv /pf 0.05276954] cnew
[/pi /pi_5 /ratm .08 /rat pf 0.0001 /diam .01]cnew
[/mx /mxl /p 0.92 /dian 0.02] cnew
[/pi /pi_6 /raLm .11 I/rapf 0.0001 /diam .02] cnew
[/valv /valv..scv /pf 0.5] cnew
[/pi /pi7 /rat..m .11 I/rat.pf 0.0001 /diam .02] cnew
[gt /gLtp /rat.pr 1.5 /inertia 0.2/stat 1 /rat.eff .86282] cnew
[/exnz /exnz..tp /diam le-2 /stat 1]cnew
/shft /shft.. /rpm 60000] cnew

pumpjtp.in gt_tp.in

/sta.prt 2 def /sta.acc le-3 def
(sta.c}

(/valvjcv.pf valvtcv.pf 0.02 0.17 vary

58

gas..h2.c valvjtsov.c pLi.c shftl.c
pumpjtp.c valv-pov.c pL2.c htr.c spjl.c
pL-3.c reacjLc sp...2.c exnzjl.c
sp-l.s valv-.tcv.c pi-5.c mx_is sp_ 2.s pL-4.c mx-jLc p1_6.c
valv..scv.c pL7.c gtjtp.c exnzjp.c shift_Lend
/sp-I.sr (pi-7.fl.t-950.) cons
Isp...2.sr (gu~p.power+pumpjp.power) cons

while
gass.print mods.print
/all cdel

The model names used in this input correspond to those shown in Figure 2. In order to simply the specification
of the system, many of the model parameters are left unspecified and thus, will assume thcir default values.
After the model paramictcr specifications, the performance maps for the pump and gas turbine are obtained using
the Hule

pumpjtp.in gt-tp.in

The sta task loop is then entered, where the three variables used to- control- the -three constraints are varied.
Note, that as discussed above, only the temperature control valve, valvjtcv, is explicitly varied. The other vari-
ables being varied are defined within the splitters. The system .onfiguration is then coded by calling the models
in the appropriate order as defined by Figure 2. The resulting mnodel calls representing the system should be per-
fectly clear. Finally the constraints are evaluated and the loop terminated. Here only two of the three constraints
arc explicitly written down. The third one is defined within the mixer (since its stat parameter was left as zero).
The last line then calls the gass print function and the mods print function to obtain-the output.

The resulting output from this code is shown in Appendix D. This Appendix-first shows the iterations per-
formed by the equation solver for the sta task necessary to establish the three -constraints. This output is exactly
as with any equation solver task and was explained within the section on-the task-examples. The rest of the out-
put is obtained from the gass.print and mods.print functions, and is also the same as with the steady-state
examples.

Now consider a start-up run of this same propulsion system. A similar set-of-inputs as those in design run
will be needed but with some minor changes. The final input is as follows.

emnit
1/gas /gasJ.2 [id "TI-R-tH2" /t 20 /p 3.0 /mn 0.3 /diam .051 cnew
1/valv /valvjtsov /pf 0.02] enew
1/pi /pL1 /rat-m 1.0 /ratpf 0.0002 /diam .05]) cnew
1/pump Ipump..tp /maLrprn 60000. /rat~dp 84.0

/rat-m 1.0 [inertia, 0.01 1 enew
[/valv /valv..psov /pf 0.02] enew
[Ipi /pL-2 /rat.m 1.0 /raLpf 0.0001 /diam .05]) cnew
[/ht /ht-r /t# 1 80 1 cnew
[Isp Isp_.. /sr 0.02 /diamll0 0.05 1 cnew
[/pi /pL3 /rat-in. 1.0 /rat-pf 0.0001 /diam .03] enew
[/reac /reae-I /teool 100. /tuel 300.

/diam .05 /ratm 1.0 /rat..pf 0.05
/ucool L.0e /mfuel 200. 1 cniew

[/sp /sp_2 /sr 0.01 fdiamNO 0.O5 /diamAiJ 0.05 1 cnev
Vpi /pi-A /rat-m .03 /raLpf 0.0001 /diam .05] enew
1/exnz /exnzjI /aexp 1.5e-02 /mach 3.7 /diam 2.6459e-02 c new
1/valv /valvjtcv /pf le-2]) cnew
[Ipi /pi-5 /rat..m .08 /rat..pf 0.0001 /diam .01 1 enew
Unix /mx~l /diaxn 0.02] enew
[/pi /pi-6 /ratjn .11 /rat..pf 0.0001 /diam .02 j enew

59

[/valv /valv scv /pf 0.02] cnew
[/pi /pi_7 /ntm .11 /ratpf 0.0001 /diam .02 1 cnew
F/gt /gt_tp /rat_pr 1.5 /inertia 0.02 /rat-eff .86282

/ratcmass 9.8004e-02 /rat cspeed 1.9467e+03] cnew
[/cxnz /exnxtp /diam 1.2760e-02] cnew
[/shft /shft..1 /rpm 5000] cnew
Ucnd l/cntl /var 0.02 /cntl0 0.5 b 0.02 /ub 0.98 /tp 1.0]cnew
/tl 0.0 def

pumpjtp.in gt-tp.in

/sta.prt 0 def /sta.acc le-3 def /sta.del (-le-3) def /sta.maxit 10 def
/dya.prt 2 def

0.0 1.0 30.0
(/dyn.tout exch def
(dyn.c)

(sta.c)
(dyn.time 15.0 It

{/reacj .power (reac_.powerO+42.442e6*dyn.time/15.0) def}
if
/valv.tcv.pf valvytcv.pf 0.001 0.98 vary
/valvscv.pf cntl1.var def
gasj2.c valvjtsov.c pi_l.c shftl.c
pumpjtp.c valv...psov.c pi_2.c hLr.c sp_L.c
pi_3.c reac_1.c sp._2.c exnz 1.c
sp_l.s valv..tcv.c pi5.c mx-l.s sp.-2.s pi_4.c mxl.c pi_6.c
valv._scv.c pi7.c gt tp.c exnz_tp.c shftl.cnd
Al (0.9*reael.fl.t) 950 gt (950.0) ((0.9*reac_1.fl.t)) ifelse def
/sp..2.sr (pi 7.fl.t-tl) cons
/cntl 1.err ((shfL.rpm-60000)/20000) def
cntl l.c

while

while
gass.print mods.print

for
/all cdel

First, the stat option for all models should be turned off (or removed from the input). Secondly, the critical
areas (or diameters) in the exhaust nozzles as calculated in the design run should be added as inputs. These
include exnzl.diam, exnzl.aexp, and exnztp.diam. The design point calculated values of the rated corrected
mass and corrected speed for the gLtp model should also be added as inputs. These parameter values basically
supply the design point sizing information necessary for those models that are based on modeling that is relative
to the design point.

Several other model parameters now need to be changed to reflect initial values for the start-up run. In
particular, the reactor gas exit temperature will need to be assigned some nominal starting value, say 100K.
Although it is possible to let the code calculate an equilibrium fuel temperature corresponding to this specified
gas exit temperature, here an initial 300K fuel temperature will be imposed. An actual system will probably
have some pre-flow power level resulting in some temperature somewhat higher than that of the incoming flow.
The inlet mass flow rate defined by gasl.m should also be lowered from the design point value. This flow rate
will actually be calculated by the code, however, a smaller value, say 0.3, will reflect a more reasonable starting

60

value for the iterations. The turbo pump shaft speed, defined by sliftl.rpm, should also be set to some starting
value. In the run below, this was set at 5000 rpm. Although, this could be set lower, in general, if the rpm is
set to low, insufficient pressure is developed by the pump, and depending on valve -positions, temperatures, etc,
the flow velocities may become extremely large as the system is initially starting. The flow might actually
become momentarily choked at places that the code was not expecting. A lumped component model of a sys-
tem can only handle choked flow where the model developer intends for it to occur.

Next, the integration loop needs to be added around the sta loop. In the run below, the integrations are
defined from zero to thirty second, with intermediate output requested at every second.

Finally, the control strategy for the system needs to be considered. This usually refers to the rate of reac-
tor power ramp-up and the rate of opening or closing of valves. For this system, the reactor power ramp-up will
be done linearly from some nominal power level, determined by the initial gas temperature rise and defined in
the variable reacl.power0, to the design value of 42.442 MW (plus the initial nominal value) in a time frame of
fifteen seconds. The tank shut-off valve and the pump shut-off valve will be instantaneously opened at time
zero. The same design point constraint on the inlet gas turbine temperature will be imposed, only now, rather
than fixing this temperature at 950K, it will be constrained to be 90% of the reactor outlet temperature up to
950K and constant thereafter. This is done within the inputs by defining the variable t1 to be this constraining
temperature value. Note, that since the temperature out of the mixer is an instantaneous function of its inlet
flow conditions, this gas temperature constraint can be meant by using the vary-cons operators within tie sta
loop. In a real system, some controller would be needed to actually sense the temperature and gradually adjust
the temperature control valve. Finally, to gain some control on the speed control valve, a proportional con-
troller, cntll, is added. Within-the sta task loop the variable-being controlled, valvscv.pf, is assigned the value
cntll.var. Upper and lower bounds are also specified for this controlled variable, as-well as a set point value of
0.5, corresponding to the design point value of valv._scv.pf. The value of the sensor error (i.e. the difference
between the variable being sensed and its desired value) is-calculated within the sta loop by the line

/cntl.err ((shftl.rpm-60000)/20000) def

Here, the error will be zero at 60000 rpm, at which point the controller will assign valvscv.pf the value of the
set point. The additional dividing factor of 20000 was used -instead of adjusting the controller's gain parameter,
k. Note, this is only a very crude- representation of a controller for the speed control- valve.

Some of the resulting computer run output is shown in Appendix E. Due to the-length of the entire output-
only -the zero, ten, twenty, and thirty second outputs are shown. This output clearly shows that considerably
more effort needs to go into the system control strategy even for this very simple example. The reactor fuel
temperature using this simple ramp-up has risen to 3343K while the gas temperature has reached only 1118K.
Also, the pressure levels are still a long way from the design point.

CHAPTER 5

Thermionic Power System Model Classes

5.1. Introduction
In this chapter we discuss the details of the component models that are used to analysis thermionic power sys-
tems. These models were assembled only as a very simple first approximation from existing models furnished
by the Air Force. Ultimately, these models will probably be replaced and possibly moved into the steady-state
and/or dynamic model class library. At present, these models include the following.
reac - reactor model
ti - thermionic converter

rad - thermal radiator
sp - power flow splitter
res - electrical resistor

be - boost converter
bus - electrical bus
mass - mass calculations

5.2. Thermionic Model Flow Classes
The models used in this collection don't make use of any fluid flow but instead make use of a power-flow. In
order to keep the models as simple as possible for this first approximation, only one type-of flow class-is used
and is simply denoted as flowtype. Flowtype is used to transmit both thermal e iergy flows and electrical flows.
At present, flowtype consists of the following variables.
pow - represents the power being transmitted by the flow in watts.
v - represents the voltage level in volts relative to ground for electrical flows. Note that for ther-

mal flows v is not used.
i - represents the current in amps for electrical flows. For thermal flows, i is not used.
At present, the thermionic models are so simple that no special model is used to generate a flowtype flow.
Instead the reac model is used instead. Note that as more modeling details are added to -the thermionic model
classes the flow structures will also probably need to be changed. The flowtype flows are, like all flows, placed
on a stack, here denoted as flows. Fiws can be used to print tables of the flows with flows.print.

5.3. Thermionic models
In this section we present the details of the thermionic power system models that are presently available. These
models are similar to models supplied by the Air Force with some rearranging so that they would fit within the
GPS structure. Most of the modeling is composed of simple correlations, some of which need to be replaced
with more accurate expressions.

Since the mass of the components IS an important consideration in the projected applications of these ther-
mionic systems, a masstype class was also included with the models. This masstype class is used to store the
various component masses-and, in some cases, sub-component mass. The masstype structures are stored on the
stack masss, which is then accessed by the mass model to calculate the total system mass. Masstype, at
present, consists of only the single variable,
mass - representing the mass of the corresponding object in kg.

61

62

5.3.1. Reactor (reac) model
The reactor model is used to initiate two flows. The first is the flow utilized by the thermionic converter and the
second is the waste heat flow. The split of the total reactor generated power between these two flows is given
by an input efficiency. Technically, this efficiency represents the thermionic conversion efficiency, but is
included within this model rather than the thermionic mcdel so that upstream model references are avoided.

The main calculations are performed within the model's c function and consist mainly of mass and sizing
calculations. The following calculations are performed.

Pow 1= Pow

Pow2=(1-11) Pow

r,,=0.13 104WPow<2x104

-0.20 2x10<Pow<4xlO
4

ho,, =2.81Pow 1-0.21

mco,,= 24.2Pow 1+23.5

m,=100

m,,=15.8Pow1+149 dp>15.0

=21.4Powl+262 l5>d4p 1O.0

=26.9Powl+374 l0>d,,,

r,,=l.56Pow1 +0.91

Vr,=lI3nth,(r.2+r.2+r,,rrc)

lboomdsep-

mb,, =Pbom lboom

where, Pow is the input reactor power level, Pow, is the power used in the thermionic component, Pow2 is the
rejected waste heat, r,, is the reactor core radius, r,, is the radiation shield radius, hcor is the reactor core
height, mt,, is the mass of the core, m, is the mass of the safety systems, m,, is the mass of the radiation
shield, mb,, is the mass of the boom, Vr, is the volume of the radiation shield, .nd lbo,, is the length of the
boom, and d,,, is the separation distance between the shield and core. The c function also outputs to the flow
stack the flow that is to be sent to the thermionic converter. The model's s function can be called to obtain the
waste heat flow.

The model has the following variables.

pow - reactor power level (le6 watts). Input.

eff - thermionic conversion efficiency (0.13). Input.

sep - separation distance d,,p (10 in). Input.
radius - core radius r, (in). Output.

height - core height h, (in). Output.

rhoboom - boom density Pbo,, (10.0 kg/m). Input.

]boom - length of the boom lb, (in). Output.

63

radiusrs - radius of the shield r, (m). Output.

heightrs - height of the shield h,, (0.37 m). Input.

volrs - volume of the shield Vr (M3). Output.

mcore - mass of the core in,, (kg). Output.

mss - mass of the safety systems m,, (kg). Output.

mrs - mass of the radiation shield mr, (kg). Output.

mboom - mass of the boom mb,,,, (kg). Output.

fl - primary flow to the converter. Output.

fls - secondary or waste heat flow. Output.

Note that each of the mass variables is really one of masstype and thus, for example, mcore would be referred
to as mcore.mass within the GPS inputs. Similarly, both of the output flows are of flowtype. Thus, the output
power to the converter would be referenced as fl.pow.

5.3.2. Thermionic Converter (ti) model
The thermionic converter model takes a power flow and partitions it into an I-V character. The model's calcula-
tional function c requires one flow on the flows stack and puts one flow back onto that stack. The following
calculations are performed.

lc.=v/Vcov

i=Powlv

nep =i lico,,

m=13.15Pow-3.5

where v is the specified output voltage from all converters, vo,,, is the individual converter output voltage, Pow
is the input power, i is the output current, ic0,, is the individual converter output current, n, and np are the
number of converters in series and parallel, respectively, and m is the total converter mass.

The model has the following variables.

v - total output converter voltage (250 V). Input.

vconv - individual converter output voltage v,, (0.67 V). Input.
iconv - individual converter output current 40,, (62.0 amps). Input.

ncs - number of converters in series n4,. Output.
ncp - number of converters in parallel n,,. Output.

In - total mass of the converter (kg). Output.

fl - output electrical flow from the converter. Output.

5.3.3. Radiator (rad) model
Rad models a thermal radiator. The model requires one flow from the flow stack and puts one flow back onto
the stack. The calculations are as follows.

Pow
A=T44 4 4

m=pA

where Pow is the input power (heat), e is the surface emissivity, ca is the Stefan-Boltzmann constant, A is the
radiator surface area, T is the surface temperature, Tp,, is the effective space temperature, p is the radiator
mass per unit surface area, and m is the total radiator mass.

64

The model has the following variables.

t - radiator surface temperature (K). Input.

tspace - effective space temperature (255K). Input.

rho - radiator density per unit area (44.0 kg/m 3). Input.

e - surface emissivity e (0.85). Input.

area- surface area (m 2). Output.

m - radiator mass (kg). Output.

fl - output flow.

5.3.4. Boost Converter (bc) model
The boost converter models a repartition of an input power flow inte new I-V- characteristics at a specified input
efficiency. The model's calculational function c requires one input flow from the stack and puts one flow back
onto the stack. The calculations are as follows.

Pow, =1 Pow

Pow, =(1-r1) Pow

i=Pow, lv

where Pow, Pow, and Pow,, are the input, electrical output, and waste heat output power flows, 'i is the con-
verter efficiency, v is the specified converter output voltage and i is the converter output current. The waste
power flow is obtained by calling the secondary s function of the model.

The model has the following parameters.

v - output voltage (250 V). Input.

eff - converter efficiency (0.95). Input.

fl - output electrical flow.

fls - output waste heat flow.

5.3.5. Flow Splitter (sp) model
The flow splitter model is used to split a single power flow into two flows based on an input split ratio. For
electrical flows this split ratio can be thought of as a current split ratio and for thermal- flows as a power split
ratio. The model's calculational function c requires one input flow and generates one output flow. The second
flow is then obtained from the model's secondary function s. The calculations are as follows.

i2j=sr ii.

V 2in

i 1=(1-sr)i4,

Pow2=sr PowM

A 1s) ~~\.~lwjn
where sr is the split ratio, i, v, Pow represent the current, voltage, and power, respectively, and the subscripts,
in, 1, and 2 correspond to the input, and two output flows.

The model has the following variables.

65

sp - split ratio (0.1). Input.
fls - second or split off flow. Output.
I1 - remaining flow. Output.

5.3.6. Resistor (res) model
The resistor models an electrical resistance and hence, an electrical voltage drop. The model's calculational
function requires one flow from the stack and outputs one flow back to the stack. The calculations- are as fol-
lows.

v =viz,-ii r

i =ii,

Pow=vi

where vi,, is the input voltage, v is the output voltage, ii, is the input current, i is the output current, r is the
resistance, and Pow is the output power.

The model has the following variables.
r - electrical resistance (0.0 Ohms). Input.

fl - output flow.

5.3.7. Bus (bus) model
The bus model, at present, does nothing, i.e. its only output flow is exactly as the input flow.

5.3.8. Mass (mass) model
The mass model is used to perform a global sum over all the stored masstype variables in all the models. In
addition, it is used to furnish an electrical distribution system mass and an instrument and control system mass.
Both of these, at present, are simply taken as fixed numbers.

me,=220

mk,=222

Note that since this model requires information that is calculated in all the other models, it should only be called
after all the other models have been called. The print-function for the mass model will-generate a table of the
masses of all the components.

The model has the following variables.
mic - mass of the instrument and control subsystem (kg). Output.
mdist - mass of the electrical distribution subsystem (kg). Output.
intot - total system mass (kg). Output.

5.4. Thermionic System Example
In this section we present a very simple thermionic power system example using GPS. The system diagram for
the example is shown in Figure 3. The example consists of a reactor (reac.1) driving a thermionic converter
(ti 1). The power flow from the converter is then partially split off (sp shunt) into a shunt radiator (rad-shunt)
with the rest of the power flow going through a resistance (res_ti), a boost converter (be..l), another resistance
(res be) and finally into the power bus (busl). The reactors waste heat is then feed into the primary radiator
(rad prim), the split off flow from spshunt is then feed into the shunt radiator (radshunt) and finally, the boost
converters waste heat is feed into another radiator (rad.bc).

One system constraint will also be imposed and that is to produce exactly 40 kw at the bus. The total
input necessary to run the problem is as follows.

66

Figure 3.

cinit
[/reac /rcacjl /pow 100c4] cncw
[fr /ti-I /v 61 cnew
[Isp /sp..shunt /sr 0.011 cnew
[/bc /bc-j /v 100 /cff 0.85] cnew
fires /resji /r le4] cnew
fires /resbc /r le-4] cnew
Urad /rad...prim /t 10001 cnew
f/md /rad..shunt At 400] cnew
f/md /radbc At 400] cncw
f/bus /busj] cnew
f/mass /mass-.Sys] cnew
f/task /a] cnew

(a.c)
(/rcaclI.pow 80e4 40e4 l20e4 vary
reacjc il.c sp_..shunt.c rcstixc bcjIc rcsi-bcx bus.-I.c
reac_1.s rad..prim.c
sp..shunt.s radshunLC
bcj.s radibc.c.
/rcacj.pow (bus_]flpow..40e3) cons

while
mass-sys.c flows~print mods.print
/all cdel

4r- AtluLii iS , pm. 1S1~ . N~LC "i output, Should boc considcrcj a typiacal

thermionic system as not all of the parameters had reasonable values assigned to them. This example is only
meant to show what a typical input and its resulting output would look like.

CHAPTER 6

Graphics

6.1. Introduction
The graphics currently available within GPS are only preliminary but are sufficient to generate simple two-
dimensional plots and system diagrams of component layouts. The two-dimensional plots are implemented
using a model class, a networking communications package, and the NeWS toolkit wire server. The system
diagrams also make use of the wire server -and thus, the graphics only are available when this wire server is
available.

6.2. Two-dimensional Plots
Two-dimensional plots of arbitrary user selected independent (x values) and dependent (y values) variables are
generated by using a model class denoted as-plot. For each plot desired an instance of this plot class-should be
generated using cnew. When the plot class instance is generated a new window will pop open on the screen.
Initially, the window will be blank with only the label specified. The label will be the same as the plot class
instance name.

The variables that can be defined for the plot model are as follows.
xl - character string representing the x-axis label ("x-axis"). Input.
xlb - lower bound of the independent variables (0.0). Input.
xub - upper bound of the independent variables (1.0). Input.
yl - character string representing the y-axis label ("y-axis"). Input.
ylb - lower bound of the dependent variables (0.0). Input.
yub - upper bound of the dependent variables (1.0). Input.
At present, the increment used along each axis is one fifth of the total axis length.

The data for each plot is obtained by using the c function for the class. This function requires arguments
and, as such, will need to be called using the call operator. The arguments are nothing more than the x,y pairs
of data to be plotted. Thus, one would write

[x y] /plotl.c call
to plot the x,y pair in plotl. The plots generated use straight line segments between the plotted points.

At present there is no delay between poping open a window and continuing the execution of the GPS
input. Thus, since the act of poping open a window may take some time, it is possible for very simple problems
that the entire GPS input may have been executed before the plot window has been opened. No data is lost in
this case, as the data going to the plot window is stored and simply plotted when the window becomes opened.
At present, only 400 x,y pairs are stored per window. A check is made when doing the plotting that the new x,y
pair is at least one pixel different than the previous x,y pair. Thus, 400 values are usually sufficient for most
plots. Data is also properly stored if a plot window is closed.

As the plot windows are based on the OpenLook windows, these plot windows can be moved, resized,
closed, and open. The resizing, however, does not resize the plot itself. Any damage to the window is automat-
ically repaired from the data stored for the plot. As the window is receiving information from both the GPS
code via the communications package and through the mouse interactions, the plot windows are implemented as
separate processes. Thus, one can quit a GPS session and any plot windows generated will remain. These win-
dows can be terminated by using the quit item of the windows frame menu.

67

68

The following GPS input is an example of the use of the plot class.
cinit

[/plot /a /xl "x label" /xub 2.0] Chew
f/plot /b /xl "x stuff" /xub 2.0 lyl "z stuff"] cnew
f/plot /c /xub 2.0 /yl "uavg"] cnew
00.1 2.0

[/x exch def/y (0.25*x*x) def /z (exp(-x)) def
[x y] /a.c call
[x z] /b.c call
[x (x*exp(-x))] /c.c call}

for
/all cdel

Here three plot windows will be popped open showing in window "a" a plot of x2/4 vcrsus x from 0 to 2.0, in
window "b" a plot of e' versus x, and in window "c" a plot of xe - versus x.

6.3. System Diagrams

As mentioned previously, GPS can be used to create system diagrams, such as those used in Figures 1, 2 and 3.
This is done by using the mods.config function. For each collection of components there is a C function
denoted as modsconfig, which will read a GPS- input file, parse it into the components that are being used, and
then pop open-a window in which a very simple linear representation of the system appears. This simple system
diagram can then be edited into-a reasonable representation of the-system under consideration.

The next section discusses the GPS inputs necessary to pop open this configurations window -followed by a
section that discusses the editing of the diagram using the mouse. This feature of generating the system
diagrams requires the use of the SUN NeWS window environment.

6.3.1. Configuration Windows

The mods stack class generally has a config function which when called will generate a configuration file and
thca pop open a NeWS window in which the system configuration diagram can be edited. This function requires
one character string argument representing the name of the GPS input file. Thus, in order to generate the
configuration window, one must first initialize the mods stack class using a call to cinit and then- use the call
operator to call-the mods.config function with the file argument. Thus, the GPS input necessary would look as
follows.

cinit ["file.dat"I /mods.config call

Here "file.dat" is the name of the GPS input file representing the system for which a diagram is required. Note
that this input file is noting special, just the typical input that was specified in the examples previously given.
System constraints, parameter sweeps, optimizations, ete, are all ignored by the mods.config function as they are
not pertinent to-the generation of the system diagram.

Once mods.config has been called the mouse cursor will change to a '+' indicating to the user to size a
window (using the middle mouse button). Initially, the window will display the system diagram as a series of
linear flow paths, some of which may be longer than that of the window. The editing of the flow paths into a
reasonable looking diagram is done entirely with the mouse and the left and middle mouse buttons. Once the
user is satisfied with the diagram the right mouse- button can be used to pop open the main menu.

Only four menu items exist. The first is to save the diagram. If selected the diagram is saved into a file
denoted as "file.conf", where "file" is the same name as used originally in the GPS mods.config call. The
second item is for repainting the diagram in case of damage that has not automatically been repaired. The third
item is to print- the diagram on the printer. This item also generates the file named "gsalt.prt". This file is the
PostScript code that was used to generate the diagram on the printer and can be resaved and edited manually if
desired. Note that "gsalt.prt" is overridden each time a new diagram is printed. Finally, the last menu item is
for quitting the diagram window.

The call to mods.config returns almost immediately, since it really generates a new UNIX's process for
dealing with the system diagram editing. Thus, it is possible to actually place the call to mods.config in the

69

same file that is being called, although, it is probably more useful to manually type the mods.config call and
generate a diagram before actually running the system problem using GPS. This is because the diagram clearly
shows, even though it is not well laid out, the model connectivity that the OPS inputs have defined. Thus, the
diagram might show an error that has been made in defining the configuration with the model calls.

Once a diagram has been generated and saved for a given inpu, file, this diagram is used the next-time
mods.config is called. This is true even if the new GPS file has been edited to a slightly different configuration
possibly with a greater or lesser number of models. The mods.config will attempt to merge the new
configuration with the old so that less diagram editing will be required to generate a reasonable looking diagram
the next time. It should be noted, however, that the diagram requires layout information that is not provided
when using GPS to analyze a system and thus, when new models are added to a configuration some strange
looking diagrams may initially appear. However, during the diagram editing no models can be added or
removed and the connectivity of the flows between the models can not be altered in any way, only the layout
can be altered. In other words, the diagram can only represent what was set up within the GPS inputs.

6.3.2. Diagram Editing
As mentioned previously, all the editing of a diagram is done using the mouse. Basically, there are only two
main ideas in editing a diagram. The first is moving the component models around and the second is anchoring
one or more of the models so that they will not be moved as others are. The moving of components is accom-
plished using the middle mouse button and the anchoring is done using the left mouse button. In each case, the
models of a flow path are affected. By "flow path", we mean a collection of models that are passed through by
a single flow. The first model in the path will generate the flow and the last will generally, terminate the flow.
Thus, for example, in the dynamic models, the gas.c, sp.s, and shft.c model calls generate flows and the mx.s,
exnz.c, and shft.end-model calls will-terminate flows.

Assuming first, that no anchored models have been specified, by placing the mouse cursor on a model,
pressing and holding the middle mouse button, and then dragging the mouse to a new point, the pointed to
model is translated rectilinearly to the new location. All other models within the flow path that this model was
in are also translated by exactly the same vector translation. No rotations or distortions occur.

By placing the mouse cursor on a model and- clicking (press and release) the left mouse button, the
pointed to model is anchored. This is indicated by a small ' sign appearing within the model's box. The
anchor can be changed by repeating the procedure on another model. If the left mouse button is clicked on the
background no model will be anchored. This anchor will be called the primary anchor. At any-one time only
one model can have a primary anchor. Once a model is anchored in a flow path, the translation that is done
using the middle mouse button is altered in the following way. Those models that appear between the primary
anchored model and the translated model undergo a rotation, those models that are after the translated model
undergo the usual rectilinear translation. By "after" we mean those models that are nearest the translated model
but not between the translated and primary anchored models. Thus, "after" could also mean "before" the
translated model in the since of the passage of the flow through the models.

At times it is necessary to anchor two models within a flow path, this is accomplished by pointing to the
first model, pressing the left mouse button, dragging the mouse to the second model, and then releasing the left
mouse button. Both the models should then have the anchor signs. The model pointed to first, as before, will
be the primary anchor and the second one will be called the secondary anchor. In this case, the translations are
affected as follows. Those models between the primary anchor and the translated model undergo a rotation,
while those between the translated model and the secondary anchor undergo a translation. If the translated
model is not between the anchored models, the models between the translated model and the closest anchor (as
measured along the flow path) undergo the rotation and the models "after" the translated model undergo a-trans-
lation.

When two models are placed on top of each other they will fuse into a single box, and a small "o" will
appear within the box indicating that there are overlayed models at this point. Overlayed models also act as if
they were anchored models. Small movements of such overlayed models can only be done by moving one
model completely away from the other, making the small adjustment, and then moving the overlayed model
back onto the adjusted model. Note that even after a -model has had other overlayed models moved away from
it, and thus effectively removing its overlayed status, the overlay status is not changed until that model itself is
moved.

70

The primary anchor is also used to clean up vertical and horizontal flow path lines. This is done by
anchoring a model and then clicking the middle mouse button on some other model approximately vertical or
horizontal to the anchored model. When this is done, the adjusted model will jump to exactly vertical or hor-
izontal position relative to the anchored model. In this case the adjusted model does not have to be within the
same flow path. Thus, models in different flow paths can be aligned relative to each other.

Initially, the flow paths between the models are straight line paths. This at times, is not sufficient, since
flow paths may need to make turns, etc. A turn or kink in the flow path, is generated by simply pointing to a
model, pressing the left mouse button and dragging the mouse to the very next model in the flow path. When
this is done, the flow path will show a small circle midway between the two models. This small circle can be
anchored and moved just like any other model in the system. For ease of use, however, the movement of the
circle only affects that circle. That is, movement of the circle is as if both models on either side of the circle
were anchored. Additional kinks can be generated by pointing to the model or circle with the left mouse button
and again dragging the mouse to the next model or circle in the flow path and releasing the button. TIhe kinks
can be removed by pointing to the kink with the left mouse button and dragging the mouse to the previous flow
model in the path (which may, of course, be another kink) and then releasing the mouse buUon.

CHAPTER 7

GPS Model Interfacing

7.1. Introduction
In general GPS was designed to be able to reference both model class functions and model class data structure
elements by name. in addition, GPS was designed to be as generic as possible and not refer internally to any
specific class type. In this way GPS could simply be linked with any suitable class library without the need to
make any changes to GPS itself.

In order to accomplish these goals, each model class instance needs a way of returning the location of a
class member given a literal reference for that member. To do this, each class has a substructure denoted- as
refee which contains three pointers, one to the class instance data structure itself, one to the name of the
instance, and one to a reference function for the class. This refee substructure is then placed on a stack, denoted
as cstack. GPS-then references this cstack-to locate any particular model instance, which in turn, given the loca-
tion of the reference function for the class. This reference function can then be called to either locate a particu-
lar model instance's variable-or call a particular model function. More details on-the model reference function
will be presented below.

New models are easily added to the any of the component libraries since each model is essentially self
contained. The-only interfacing with the GPS coding is through the-new model class instance allocator and the
model's ref function. However, in order to retrieve flows and make use of the property codes the model will
need to make appropriate calls to the flow and property class member functions. Once a new model is
developed, it is simply compiled and added to the appropriate component library.

In general, a model may contain most any C language coding that is necessary to describe the model's
phenomena. However, because models are called with- some of their input parameters perturbed slightly for
evaluation of derivatives used in the mathematical utilities, the models must represent true -functions of -the
inputs. Thus, the same outputs should be obtained from the model for each call using the exact same input
flows and parameter values. Note that this precludes using some modeling parameter that uses-a value from- a
previous call to the model, unless that parameter is simply used as an initial guess to some iteration. In -that
case these internal model iterations should converge to a tolerance that still permits evaluating model parameter
derivatives by finite differencing. Internal -iteration convergence should be kept fairly tight. It does not help to
speed up the code by loosening the convergence criteria, since this will often result-in more iterations being used
by the driver coding in solving system constraints.

7.2. Interfacing example
In order to describe the details of adding a new model, we will go through the steps of adding a fictitious model
to the dynamic model library. Let us suppose this model is called xmod and requires one gastype flow and one
shfttype flow as-inputs, both of which are also output flows. Further, let us suppose the model has two parame-
ters, parml and parm2, both double precision variables and that the parm2 parameter is governed by the equa-
tion

arm2
darm2 =f (parm 1parm2,...)

where the function f will be left unspecified, but, of course, would be known for some actual model. The steps
in developing this model would amount to defining a model class and its member functions. The model class
for this new model would be as follows.

struct xmod
(char name[16];
struct refee *z;

71

72

double parl, parm2;
struct gastype fl;
struct shfttype shftf;

struct refee *xmodnewO;
void *xmodrefo

The first variable, name should always be included. It is used to store the name of the model for use in prin-
touts. Next, the structure refee is used to locate this particular model's variables and member functions by the
GPS code. Its use and structure will be described later. Following the refee structure the two double parameters
are declared followed by the declarations of the gastype and shfttype flows, where we have used for their names
fl and shftf, respectively. These names are, of course, anything the modeler wishes to use.

The model's class member functions can be anything the model developer requires. However, two func-
tions must be provided. The first is an allocator function, recognized by having the same name as the model
class with the suffix new, which takes as an argument a character string representing the model's name. This
function must return a pointer to the structure refee which is defined in the header file util.h.

The second is the ref function which will be used by the GPS code to reference the models variables and
functions.

Once this xmod class declaration is defined, one needs to code up the member functions.

The new function is called whenever an instance of the class is required and is also die place where
default values for the model parameters can be defined. For our xmod model we would have the following.

xmodnew(char *s)
(struct xmod *z;
z=(struct xmod*)calloc(1,sizeof(struct xmod));
strcpy(z->name,s); z->z.spt=(void*)z; z->z.namp=z->name; z->z.ref=newref;
parml=1O.; parm2=20;
stackput(mods,(void*)&z->z,(void*)z->name);
retum(&z->z);
}

Here an instance of the xmod structure is allocated and the elements of the refee substructure and te variable
name are assigned -values. The refee structure contains the three variables listed, spt, which points to the newly
allocated xmod structure, namp which-points to the model's name and finally, ref, which is a pointer to the
model's ref function. The next iine gives the defaults to the two model parameters. The coding here would be
different for each model and can be most any type of initializations the modeler needs to make. Finally, the
-model's allocated structure is placed on the mods stack by placing the address of the substructure- refee on the
stack using the stackput function. The function terminates by returning the address of this refee substructure.
Note that this coding with the exception of different ref functions and model parameters would be the same for
every new model.

The calculational function for this xmod class is as follows.

void xmodc(z)
struct xmod *z;
(double f;
z->fl=*gasgetO; z->fl.namp=z->name;
z->shftf=*shftgetO; z->shftf.namp=z->name;
if (dyn->state==0)

/* do any initialization calculations *[

/* evaluate function f *1
diff(&z->parm2, f, &dyn);
/* evaluate exit flows */
z->fl = ...
z->shftf= ...

73

stackput(gass,(void*)&z->fl,O);
stackput(shfts,(void*)&z->shftf,O);

Here we declare a double precision variable f to store the value of the time derivative of parm2, then we obtain
the gastype and shfttype flows. Gasget simply retrieves a gastype flo,. from the gass and shftget retrieves a
shfttype flow shfts. After obtaining these flows their namp variable is assigned the model's name. In this way
the model name is associated with the flow for printout purposes.

If calculations are required before the integrations over time begins they can be placed within a condi-
tional block testing the dyn->state variable for zero. This variable is only zero before the integrations start.

The modeling calculations are then coded. At some place within this modeling a call to diff will be
required to represent the xmod's differential equation and the exit values for both the fl and shftf flows will
need to be calculated. These are then put back onto their respective flow stacks using the stackput function.

The model probably should have a print function, which could be coded as follows,
void xmodprint(z)

struct xmod *z;
(printf('"%- 12s parm l=%e parn2=%e",z->namez->parnl,z->parm2);

The model's reference function is denoted by the suffix ref. The ref function takes three arguments. The
first is a pointer to the model class's-structure, the second is-a character string argument representing a member
variable name, and the third is a char argument representing a variable type. For variables that are double preci-
sion, integer, or character strings, type is returned as either a 'd', 'i', or 's'. For member functions type is
returned as 'T. These are the values displayed in Table 3. In the each of these cases, ref also returns a pointer
typed cast to (void*) representing the address of the variable or, in the case of a function returning no values, a
null pointer. Additionally for functions, the ref function will also call the function if type is specified on input
to be 'z'. If the function has a returned value, type is then reassigned as either a 'd', 'i', or 's'. For this xmod
model the ref function would look like the following.

void *xmodref(z, st, type)
struct xmod *z; char *st, *type;
(if (strcmp(st,"c")=--0)

(if (*type=='z') xmodc(z); *type='f'; return 0;)
else if (strcmp(st,"print")==0)

(if (*type=='z') xmodprint(z); *type=f'; return 0;)
*type='d';
if (strcmp(st,"parm 1")---0) return (void*)&z->parm1;
else if (strcmp(st,"parm2")=0) return (void*)&z->parm2;
else

(printf('\%s.%s unknownOz->name,st); exit(-1);)
}

Here xmodref will either call the calculational function or print function or return the locations of parml or
parm2.

7.3. Other requirements
Besides these requirements on the individual C mode! classes, the GPS code expects that two functions will be
provided as externals. These two functions are called cnew and cinit. Function cnew takes two arguments. The
first is a character string pointer specifying the name of a C model class type and the second is a character
string pointer specifying the instance name of that class type. The function cnew should call the new function
of the appropriate class type returning the same pointer returned by that model's new function. It-should also put
that new model's refee substructure on the cstack. Note that cnew is the C function that is used by the GPS
cnew operator to allocate C model classes. Thus, any class that the OPS is to communicate with must be recog-
nized by the cnew function.

74

The cinit function takes no arguments and returns a void. This function is called by the GPS cinit opera-
tor and should allocate, by calls to cnew, any C model classes that must exist for the current collection of
classes that are being linked to GPS. An example of such a class is the mods -stack class instance for storing the
model instances. Cinit may also perform any other initialization tasks needed by this collection of classes.

References

1. H.Geyer and G Berry, "The Systems Analysis Language Translator (SALT): User's Guide," ANL/FE-85-3,
ANL, 1985.

2. H.Gcyer and G.Berry, "The Systems Analysis Language Translator (SALT): Programmer's Guide," ANL/FE-

85-4, ANL, 1985.

3. PostScript Language Reference Manual, Addison-Wesley Publishing Co. 1987.

4. Powell, M.J.D., "A Hybrid Method for Nonlinear Equations," in Numerical Methods for Nonlinear Algebraic
Equations, Gordon and Breach Science Publishers, New York, 1970.

5. Powell, M.J.D., "A-Fast Algorithm for Nonlinearly Constrained Calculations," presented at the 1977 Dundee
Conf. on Numerical Analysis, Dundee, U.K., 1977.

6. Gear, C.W. "Numerical Initial Value Problems in Ordinary Differential Equations," Prentice Hall, Englewood
Cliffs, NJ., 1971.

75

APPENDIX A

Task Class examples

This appendix shows each of the example problems described in section four and their corresponding output.
Lines in italics are not part of the inputs or outputs but were added to label and explain things.

EXAMPLE ONE

cnit
[/task /a] cnew
(a.c)

{/x 1.0 0.0 2.0 vary
/x (x*x-exp(-x)) cons

while
/a cdel

task: a n=O f=6.321206e-01
x= 1.000000e+00
c= 6.321206e-01
h= 7.1266e-02 hs= 7.1266e-02 mu=0.00e+00 n=7.13e-02 s=7.13e-02 a=1.OWe+00

:-,.%: a n=l f=5.690847e-02
x. 7.330436e-01
c= 5.690847e-02
h= 5.7761e-04 hs= 5.7761e-04 mu=0.00e+00 n=6.98c-04 s=6.98e-04 a=l.OOe+00

task: a n=2 f=6.02(6605e-03
x= 7.066324e-01
c= 6.026605e-03
h= 6.4778e-06 hs= 6.4778e-06 nu=O.0Oe+O n--9.79e-06 s=9.79e-06 a=1.Oe+00

task: a n=3 f=6.978994e-05
x= 7.035041e-01
c= 6.978994e-05

76

77

EXAMPLE TWO
cini t
[/task /a] cnew
(a.c)

{/x 2 (-20) 20 vary
/y 2 (-20) 20 vary
/z 2 (-20) 20 vary
/x (pcow(x-1,2)-y) cons
/y (y.2*log(cxp(x)+1)) cons
/z (z*z-x) cons

%hMi I
"\nx-%T.2f y=%O/.2f 7.-T.2f" [x y z] printf
/all cdcl

task: a n=0 f=2.241267e400
x= 2.000000e00X 2.000000e400 2.000000e400
c=-1.000000e400 1.525738e-01 2.000000e+00
h= 5.2328e-01 hs= 5.2328e-01 niu=4.55e-01 n=7.17e-01 s=1.68c-01 a=6.30e-01

task: a n=1 f=4.511650e-0I
x= 2.603536e+00 2.215696e+00 1.690980e+00
c= 3.556303e-01 -1.077238e-01 2.5587600-01
h= 4.7'315e-02 hs= 4.7315e-02 mu=0.00e400 n=3.66e-02 s=1.37e-02 a=7.23e-01

task: a n=2 f=1.463562e-01
x= 2.442031e+00 2. 197887e+00 1 .589939e+00
c=-1 .18434le-01 4.319375e-03 8.587682e-02
h= 3.9862e-03 hs= 3.9862e-03 nii=0.00e+00 n=3.81e-03 s=8.62e-O4 a=-6.27e-01

task: a n=3 f=1.840560e-02
x= 2.491854e400 2.233754c+00 1.583782e+00
c=-8.126091c-03 2.959046e-04 1.651197e-02
h= 3.3636e-05 hs= 3.3636e-05 nxi=0.0O+00 n=3.47e-05 s=7.34e-06 a=6.93C-01

task: a n-4 f=1.664113e-03
x= 2.495687e+00 2.236516c+00 1.580270e+00
c= 5.629013e-04 -1.760654c-05 1.565920e-03
h= 2.3278e-07 hs= 2.3278e-07 rnu=0.00e+00 n=3.21c-07 s=6.46e-08-a=-8.22c-0I

task: a n=5 f=2.549055e-04
x= 2.495456e+00 2.236347e+00 1.579781e+00
c= 4.208626e-05 -1.330936e-06 2.514037e-04

x=2.50 y=2.24 z=1.58

78

EXAMPLE THREE

cinit
[liask /a I cncw
[/task lb I cncw
/z 2.0 def
(a. c)

(/x 2.0 (-20) 20.0 vary
/y 2.0 (-20) 20.0 vary
(b.c)

(/z z (-20) 20 vary
/Z (z*z-x) cons

/x (pow(x-1,2)-y) cons
/y (y.2*log(exp(x)+1)) cons

%h iie
"\nx--T.2f y--T.2f z=F/.2f" [jx y z] printf
/all cdcl

task: b n=0 f=2.000000c+0
x= 2.000000c+00
c= 2.000000e+00
h= 2.5000c-01 hs= 2.5000e-01 nu=0.00e+00 n=2.50e-01 s=2.50e-01 a=1.OOc+00

task: b n=1 f=2.500001c-01
x= 1.500000e4W0
C= 2.500001C-01
h= 3.9063e-03 hs= 3.9063c-03 n1I=O.00e4O0 n=5.l0e-03 s=5.10e-03 a=1.OOc+00

task: b n=2 M=.081634e-02
x= 1.42857le+00
c= 4.081634c-02
h= 1.0412e-04 hs= 1.0412e-04 nxi=0.00c4O0 n=1.94e-04 s=1.94c-04 a=1.O0c+00

task: b n=3 f=I.189769e-03
x= 1.414634e+00
c= 1.189769e-03
h= 8.8472e-08 hs= 8.8472c-08 nu='0.00c4O0 n=1.75e-07 s=1.75e-07 a=I.O0c+00

task: b n=4 f=6.007310c-06
x= 1.414216ce00
c= 6.007310,,--06

task: a n=0 f=1.011572c+00
x= 2.000000c+00 2.000000c+00
c=-1I.OOOOO0e+00 1 .525738e-01

task: b n=0 f=5.807310e-06
x= 1.414216e+00
c= 5.807310c-06

task: b n=0 f=6.007310c-06
x= 1.414216e+00

79

c= 6.007310e-06
h= 2.7328e-01 hs= 2.7328e-01 £nj=1.16e400 n=6.10e-O1 s=7.76c-02 a=4.75e-01

task: b n=O f=4.287017e-01
x= 1.414216e+00
c=-4.287017e-01
h= 2.2973e-02 hs= 2.2973c-02 In10.00e4O0 n=2.30e-02 s=2.30c-02 a=1.00e+00

task: b n=1 f=2.297305e-02
x= 1.565784e+00
c= 2.297305e-02
h= 6.5970e -05 hs= 6.5970e-05 rnj=O.00e4O0 n=5.94e-05 s=5.94e-05 a=-1.00e.00

task: b n=2 f=1.109025e-03
x= 1.558075e+00
c=- 1.109025e-03
h= 1.5374e-07 hs= 1.5374e-07 nJJ0.00e4O0 n=1.26C-07 S=1.26e-07 a=1.00e400

task: b n=3 f=2.610819e.06
x= 1.,559430e+00)
c=-2.610819e-06

task: a n=1 f=1.058663e-01
x= 2.428708e+00 2.U37929e-+O
c=-4.672299e-02 -9.499813e-02
h= 9.570.4e-03 hs= 9.5704e-03 nii=1.57e-01 n=3.l0e-02 s=1.44e-03 a=5.67e-01

task: b n=O f=6.839740e-02
x= 1. 559430e+00
c=-6.839740e-02
h= 4.8155e-04 hs= 4.8155e-04 nu0.00e+00 n=4.82e-04 s=4.82c-04 a=-1.0OOei0

task: b n=1 f-4.815499e-04
x= 1.580375ei00
c= 4.815499e-04

task: a n=2 f=8.482725e-03
x= 2.497102e+00 2.233778ciO0
c= 7.537533e-03 -3.891300c-03
h= 2.9346e-05 hs= 2.9346c-05 nii=O.00e+O0 n=-9.87e-06 s=-9.77e-06 a=-9.96e-01

task: b n=O f=2.887597e-03
x= 1.580375e+00
c= 2.887597e-03
h= 8.3463c-07 hs= 8.3463e-07 miu=O.OOe4OO n=-8.35c-07 s=8.35c-07 a=1I.Ooe+0

task: b n=l f=8.34771le-07
x= 1.579461e+00
c= 8.347711e-07

task: a n=3 f=1.682825e-03
x= 2.494696e+00 2.235799e0
c=-1.681745e-03 6.02981k,-05
h= 7.1070C-07 hs= 7.1070e-07 niO.00c+00 n=1.Ole-06 s=1.39e-07 a=5.17e-01

80

task: b n=-O f=8.133102e-04
x= 1.579461e+00
c=-8. 133102e.04

task: a n=4 f=1.656567e-04
x= 2.495511e+00 2.236386c4MO
c= 1.655548e-04 -5.809680e-06

x=2.50 y=2. 24 z=1.58

81

EXAMPLE FOUR

cinit
[/task /a] cnew
{a.c)

(Ix 1 0 10 vary
/y 2 0 10 vary
/z 3 0 10 vary
/x (x-y) cons
/y (x-z) icons
((x-1)*(x-1)+(y-2)*(y-2)+z*exp(z)) mini

while
"\nx/b.2f y-T.2f z.b.2f" [x y z] printf
/all cdel

task a i t=1 rmq=l f= 6.0257e+01
x= 1.O000e+00 2.0000e+O0 3.0000e+00
c=-1.0000e+O0 -2.0000e+O0

task a it=3 rmq=l f= 2.0499e+01
x= 2.1731e+00 2.1731e+00 2.1731e+00
c=-5.0266e-06 -1.0053e-05
1= 6.6432e+01

task a it=4 ncq=l f= 1.0251e+Ol
x= 1.7231e+00 1.7231e+00 1.7231e+O0
c=-8.8818e-16 -1.5543e-15
1= 1.3760e+01

task a i t=5 rmq=l f= 4.3308c+00
x= 1.4263e+00 1.4263e+00 1.1771e+00
c=-2.2204e-16 2.4912c-01
1= 8.9207e+00

task a it=6 neq=l f= 1.9493e+00
x= 1.4975e+00 1.4975e+00 7.1147e-01
c= 0.O000e+O0 7.8600e-01
I= 3.4323e+00

task a it=7 meq=l f= 8.3524e-01
x= 1.5129e+00 1.5129e+00 2.5859e-01
c= 0.0000e+O0 1.2543e+00
1= 1.6097e+00

task a it=8 mq=l f= 5.0001e-01
x= 1.4973e+00 1.4973e+00 0.0000e+00
c= 0.O000c+00 1.4973e+00
1= 4.5265e-01

task a it--9 rmq=l f= 5.0000c-01
x= 1.4996e+00 1.4996e+00 0.O000e+O00
c= 0.O000e+O0 1.4996e+00
1= 4.4555c-03

82

task a it=1O nrq=l f= 5.0000e1O
x= 1.5000e+O0 1.5000c+00 O.O000e+eO
c= 0.0000e+00 1.5000e+O0
1= 9.8042e-04

x=1.50 y=l.50 z=O.O0

83

EXAMPLE FIVE

cinit
[/task /a /prt 01 cnew
1.0 1.0 5.0

(/a.tout cxch def
(a.c)

(/x 1.0 vary /y 2.0 vary /z 0.0 vary
/x (-x) diff
/y (0.5*y) diff
/z (x-y) diff

%hile
"\n t izm-/. 2f x~o. 3c y--Lb. 3c z--%. 3c" [a. tirrc x y zi pr in tf

for
/all cdel

tirnw=1.00 x=3.680e-01 y=3.298e+O0 z=-1.964e+0
timr=2.00 x=1.355e-01 y=5.438e+00 z=-6.Olle+00
timz,=3.00 x=4.983e-02 y=8.966e+OO z=-1.298e+01
itm=4.00 x=1 .834e-02 y=l .478e+01 z=-2.458e+01

t im-=5.00 x=6.739c-03 y=2.437e+01 z=-4.375e+01

84

EXAMPLE SIX

cini t
[/task /a /prt 0] cncw
/interup ('\ntin-Tcc' [a.tim] printf sintrp) def
/trap 1.0 def
/p 1.0 def
1.0 1.0 10.0

(/a.tout exch def
(a.c)

{(a.statc<=2 S& a.tirm>=trap) (interup) if
/x 1.0 vary /y 2.0 vary /z 1.0 vary
/x (-x*p) diff
/y (0.5*y) diff
/z (x-y) diff

"\ntint--O/.2f x--%.3e y-%.3c z~ff.3c" [a.tinm x y z] printf

for
/all cdel

gps> 'ex6.dat" run

tizm=1.0O x=3.680e-01 y=3.298c+00 z=-9.642c-01
inrr=1 .OOOOO0e+O0

gps-int> x = y = p=

3.6800e-01
3 .2981e+00
1 .OOO0e+00

gps..int> /p 1.1 dcf

gps-.int> /trap 8.2 def resum

t inr~r2.00 x=1 .223e-01 y=5.438c+00 z=-5.021e+0
t irm=3. 00 x=4.086e-02 y=8.967e+00 z=-1.200e+O1
tiim=-4.0O x=1.352e-02 y=I.479e+Ol z=-2.363e+O1
timzc=5.00 x=4.522e-03 y=2.439c+01 z=-4.282c+O1
tinr-=6.00 x=1.490c-03 y=4.O24e+Ol z=-7.452e+O1
t irn=7.00 x=4.985c-04 y=6.636c+OI z=-1 .267e+02
tinr,=8.00 x=1.667e-04 y=I.094c+02 z=-2.129c+02

in-e=8.229812c+O0
gps-.int> /trap 11.0 dcf rcsuim

tinxc=9.00 x=5.493e-05 y=1.805c+02 z=-3.551e+02
tiniz=10.00 x=1.838c-05 y=2.977c+02 z=-5.894c+02
gps> quit

APPENDIX B

Steady-State Example Four

thennldynamic data for HYMRXB with flow id = IIR-tH2

pc=12.800000, tc=33.200000, tb=20.400000, mlwt=2.016000

output of mnde flows

mdel tczrp pres mass enth entr dens velc qual

tank h2 20.0 1.29 7.387 -4.1363e+06 -1.0676e+05 7.716e+01 200.0 0.00
pumplp 24.8 7.96 7.387 -4.1232e+06 -1.0623e+05 6.783e+01 200.0 0.00
pump-hp 39.0 139.22 7.387 -3.8811e+06 -1.0235e+05 7.148e+01 200.0 1.00
ht_nz 579.4 139.22 7.387 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
sp_2 579.4 139.22 5.171 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
spil 579.4 139.22 3.620 3,9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
gtlp 562.8 85.91 3.620 3.6566c+06 -5.7260e+04 3.658e400 200.0 1.00
sp2 579.4 139.22 2.216 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
spl 579.4 139.22 1.551 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
gt_hp 521.6 85.74 1.551 3.0768e+06 -5.8324e+04 3.935e+00 200.0 1.00
mix turb 550.4 85.74 5.171 3.4827e+06 -5.7565e+04 3.732e+00 200.0 1.00
mix reac 559.6 85.74 7,387 3.6114e+06 -5.7333e+04 3.672e+00 200.0 1.00
reactor 2930.0 85.74 7.387 4.2500e+07 -3.1131e+04 7.145e-01 200.0 1.00
ht-nz 2498.4 85.74 7.387 3.4708e+07 -3.4007e+04 8.371e-01 200.0 1.00
nozzle 757.1 0.10 7.387 6.3970e+06 -2.5123e+04 3.245e-03 7527.4 1.00

tank.h2 dt=O.OOOOe+0 dp=0.OOOOe+00 dn=0.0000cOO dh=0.0000e+O0
pumplp eff-6.7OOe-01 po~er=-9.6565e+04
pump.hp eff8. 1O00e-01 pomr=-1.7881e+06
ht-nz heat=5.7566e+07 lmtd=2.4046e+03
sp_2 sr=3.0OOe-01
spjl sr=3.0OOOe-01
gtlp eff=2.3000e-01 powr=9.2323c+05
gt-hp eff=7.5OOe-0l po cr=1.2951e406
reactor hea t=2.8727e+08
nozzle eff8.5000e-01 area=3.0240e-01 vel=7.5274e+03 much=3.5986+00

thrust=5.8669e+04 irrpulse=8.1042e+02

output of model powers

mdei input loss prod cons

p, Jp 0.OM 4W OM. - OMM.C'4W, 9.6565e+04
pumpnhp 0.0000e+00 0.0000e+00 0.O000e+00 1.7881e+06
gtIp 0.0000e+00 0.0000c+00 9.2323e+05 0.O000e+00
gt-hp 0.0000e+00 0.0000c+00 1.2951e+06 0.O000e+00
reactor 2.8727e+08 0.O00e+00 0.O000e+00 0 000e+00

85

APPENDIX C

Steady-State Example Four with Constraints

thermodynamic data for HrIRXEN with flow id = MHR-tH2
pc=12.800000, tc=33.200000, tb=20.400000, molwt=2.016000

task: a n=O f--9.624907e+05
x= 3.0000OOe-01 3.0000OOe-01
c= 8.266618e+05 -4.929691e+05
h= 4.0590e-01 hs= 4.0590e-01 mu=0.00c00 n=2.Ole-01 s=1.75e-01 a=9.65C-01

task: a n=1 f=6.200406e+05
x= 6.588144e-01 5.679687e-01
c= 1.811617e+05 -5.929846e+05
h= 3.7735e-02 hs= 3.7735e-02 niu=O.OOe+00 n=2.83e-02 s=2.81e-02 a=9.99e-01

-task: a n=2 f=2.498952e+05
x= 6.588144e-01 7.362034e-01
c= 7.301368e+04 -2.389908e+05
h= 6.1294e-03 hs= 6.1294e-03 niu=0.OOe+00 n=1.29e-02 s=1.25e-02 a=9.97e-01

task: a n=3 f=7.841918e-05
x= 6.588144e-01 8.497832e-01
c=-2.291224e-05 7.499731e-05

output of model flows

model tarp pres rmss enth entr dens velc qual

tankh2 20.0 1,29 7.387 -4.1363e-06 -1.0676e+05 7.716e+01 200.0 0.00
pmtp-1p 24.8 7.96 7.387 -4.1232e+06 -1.0623e+05 6.783e+01 200.0 0.00
purphp 39.0 139.22 7.387 -3.8811e+06 -1.0235e+05 7.148e+O1 200.0 1.00
ht nz 579.4 139.22 7.387 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
sp..2 579.4 139.22 2.520 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
sp.l 579.4 139.22 0.379 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
gt-lp 562.8 85.91 0.379 3.6566e+06 -5.7260e+04 3.658e+00 200.0 1.00
sp..2 579.4 139.22 4.867 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
sp.l 579.4 139.22 2.142 3.9117e+06 -5.8868e+04 5.672e+00 200.0 1.00
gt-hp 521.6 85.74 2.142 3.0768e+06 -5.8324e+04 3.935e+00 200.0 1.00
mix turb 527.8 85.74 2.520 3.1639e+06 -5.8157e+04 3.889c+00 200.0 1.00
mix reac 562.8 85.74 7.387 3.6566e+06 -5.7252e+04 3.651e+00 200.0 1.00
reactor 2930.0 85.74 7.387 4.2500e+07 -3.1131e+04 7.145e-01 200.0 1.00

-ht nz 2498.4 85.74 7."O7 3.4708c+07 -3.4007e+04 8.371e-01 2(X). 01.W
nozzle 757.1 0.10 7.387 6.3970e+06 -2.5123c+04 3.245e-03 7527.4 1.(X)

tankh2 dt=0.0000eOO dp=O. OO)Oe+00 div0. OOOOe+O dh=O.OOOOe+00
ptrp lp eff=6.7000e-01 po r=-9.6565ce-O4
pmPhp eff=8. l00ce-O1 po cr=-1.7881e+06
ht-nz heat=5.7566e+07 Imtd=2.4046e+03

86

87

sp..2 sr=6.5881e-O1
spjI sr=8.4978e-O1
gtjlp eff=2.3000e-Ol po~er=-9.6565e+4
gt.-hp cff=-7.5000e-O1 pomcr=1.7881e+O6
reactor heat=2. 8694e+08
nozzle eff=8.5OOOe-Ol area--3.0240e-Ol vel=7.5274c..03 nach=3.5986e4OO

thrust=5.8669e+04 inpulse=8. 1042e402

output of zmdel pomcrs

model input loss prod cons

pUT-.lp 0.0000e+00 0.0000e+00 0.0000e+00 9.6565e+04
pm-p O.0000e4W0 .OOOOOe+OO 0.0000e+00 1.7881e+06

gtjlp 0.0000e+00 O.OOOM+O 9.6565e+04 0.0000e+00
gt-hpO.0000e400 0.0000c+00 1.7881e+06 0.0000c+00

reactor 2.8694e.+08 0.0000e+00 0.0000e+00 0.0000e+00

APPENDIX D

Dynamic Example One at Design Point

thcnrodynamic data for H X with flow id = IR-tH2
pc=12.800000, tc=33.200000, tb=20.400000, tnolwt=2.016000

task: sta n=0 f=7.56329Oe+4
x= 5.276954c-02 5.0000OOe-02 2.0000OOe-02
c= 6.425210e-01 3.602149e+01 -7.563289c+04
h= 3.7461e-04 hs= 3.7461e-04 mnu=l.Oe+OO n=7.54e-04 s=1.02c-04 a=7.46c-01

task: sta n=l f=l.973103e+04
x= 4.488375e-02 7.153655e-02 3.305220e-02
c= 1.428151e-01 1.134402e+02 -1.973071e+04
h= 3.7498e-05 hs= 3.7498e-05 mu=8.880-03 n=8.54e-05 s=5.45c-05 a=9.76c-01

task: sta n=2 f=1.175786c+03
x= 4.153330e-02 8.905709e-02 3.750814e-02
c=-3.152815c-03 4.201986c+01 -1.175035e+03
h= 1.8831e-06 hs= 1.8831e-06 rmnu0.00e40 n=3.27e-06 s=5.28e-07 a=6.27e-01

task: sta n=3 f=9.639517c+Ol
x= 4.117667e-02 9.321568e-02 3.777773c-02
c=-1.281143e-03 1.520944e+01 -9.518771e+01
h= 2.3726c-07 hs= 2.3726e-07 rm=0.00c400 n=6.48e-07 s=6.97e-08 a=5.00c-01

task: sta n=4 f=3.650815e+00
x= 4.102025e-02 9.509075e-02 3.780441e-02
c=-1.123252e-04 2.114729e-€00 -2.975966e+00
h= 4.5750e-09 hs= 4.5750e-09 niu=O.OOeWO0 n=1.56e-08 s=1.36c-09 a=4.52e-01

task: sta n=5 f=1.629713c-01
x= 4.099520e-02 9.538108e-02 3.780582e-02
c=-4.213630c-06 7.386692c-02 -1.452699e-01
h= 5.5828c-12 hs= 5.5828e-12 u=0.00c00 n=2.06e-11 s=1.64e-12 a=4.38e-01

task: sta n=6 f=3.698913e-03
x=4.099430e-02 9.539164e-02 3.780588e-02
c=-7.882591e-09 -5.644356e-06 3.698909e-03
h= 7.9740e-19 hs= 7.9740e-19 u=O.OOe+O0 n=5.52e-18 s=1.24e-19 a=5.le-O1

convergence of independent variables in task sta

output of n-odel flows

nxodel terp pres mass enth entr dens velc qual

gas h2 20.0 3.00 1.000 -4.1681e+06 -1.0917e+05 7.739e+01 6.6 0.00
valv.tsov 20.0 2.94 1.000 -4.1681e+06 -1.0915e+05 7.745e+01 6.6 0.00
pi 20.0 2.94 1.0O -4.1681e+06 -1.0915e+05 7.745e+01 6.6 0.0()

88

89

PU-P 33.4 86.94 1.000 -3.9990e+06 -1.0425e+05 7.059e+01 6.6 1.00
valv..psov 33.4 85.20 1.000 *3-.9990e4)O(-1.0416c+05 7,024e+01 6.6 1.00
pi_.2 33.4 85.19 1.000 -3.9990e+06 -1.0415e+05 7.C023c4{)I 7.3 1.00
ht -r 80.0 85.02 1.000 -3.1339c40D6 -8.5657c+04 2.814e+O1 4.5 1.00
sp-I 80.0 85.02 0.905 -3.1339eq+06 -8.01652c+04- ').814e+01 16.4 1.00
pi_3 80.0 85.02 0.905 -3.1339e+06 -8,5651c,+04 2.1814401 45.5 1.00
rcac~j 3000.0 81.54 0.905 4.3783c+07 -3.0490?.44 6.639e-01 693.9 1.00
sp..2 3000,0 81.54t 0. 8,0 4.3783e407 -3.0490e-W9 6.639e-Q1k 667.7 1.00
exnz~l 1142.1 1.10 0.870 1.2123e+07 -2.8902e+04 23e- 8318.3 1.00
sp.. 80.0 83.0. 0.095 -3.1339e+06 -8,5652e+04- 2.81,4e401 43.2 1.00
valvjetv 79.6 81.54 0 -09, 5 -3ME,9e4O6 -8.54W6e41.#. 2.728d+01 43.2 1.00
pLS5 79.6 ?'4-53 0.095 -3.1339e+06 -8.54~9,e+04 2.728e+01 44.5 1.00
sp...2 3000.0 81.54 0.034 4.3783c+07 -3.0490e+04 6.639e-0i 26.2 1.00
pi-4 3000.0 81.53 0.034 4.3783e+07 -3.0489c.04 6.638e-M' 26.2 1.00
nix_1 9'48.5 81.53 0.130 9.2476e+06 -4.948&+04. 1.073c+00 198.5 1.00
pi T 6 948.5 81.52 0.130 9.2476C+06 -4.94t 1.440 2 078C+00 198.5 1.00
valv-scv 950.0 40.76 0.130 9.2476c+06 -4.6i93e+Ol l,046c4-i0 198.5 1.00
pi..7 950.0 40.76 0,130 9.'4476-.+06 -4.6593e+04 -1.046e+00 394.5 1.00
gt-tp 862.3 27.17 0.130 7.9430ci+06 -4.6350e, 04 7.697e-01 394.5 1.00
cxnzjgf 725.5 14.71 0.130 5 9485c+06 -4.6326e+04 4.963e-01 2046.4 1.00

output of mdel paramters

gasj..h diar-5.000002 area=1.9635e-03
valvtsov dp=6.0000e.r2 pf=2.OOe-02

pi-I dp=5.8800e-04
Jength=.OO,+0() diam5.OOe-02 area=l.9635e-03
rat_.pkf-2.0000e-04 rat..n-4 .0OO0ci0
nu-m.,ar=i .00

puiP..tP rpn-6 .OOO0o+0 dp=8 .4001e401I cff=6.5OOe-01 pomr=-1I.6907e405
ratjp=8.4000e4Ol rat-tcque=2.0577z+01 rat-.rpn=6.0000eiO4
rat m=1r-.0000000 rat-efM4.5O00e-01 inert io=.AM-01

valv...psov dp=1.7388ei+00 pfr2.OOOPe.-i)2
pi.2 dp-8.520le-03

length=l.0000e+00 diamr5.0000o-02 aea=1.9635e-03
rat.pf=1 .OOO0e-04 wvtjmJ .OOOc+()O
ninipar=1 .0

ht-.r heat=8.6509c+05 Op =1.;'039e-0I
ua=1 .0000c405 cpwagI=I.0000c4 03 fmdl=O.0000ei00 vol=7.853982e-03
diamd .OOO0e-01 ' rca=7.8540e-0,3 Icngth~1 .0000+00
tcons 1=1.0000040

spjI sr--9.5392e.-02
diwuOsS.0000c-02 '.1iA1X.000-02 areaO=1.9635c-03 area 1=7.8540ce-05

pi-~3 dp=6.957-ic-03
lcngth=1.t'00400 d%(.mn3.0OM-02 area=-7.0686c-04
rat..pf=I .0000e-04 ratUcr1 .0000e+00
ntm .par=1 OG0

reCC) pov~cr=4.2442c4O7l tfu0I=3.0054e1O3 tclad4).00~0040 dp-=3.4785e+00
1mtd-4 .6438e ,02

mfucI=2.2=OAOG2 n-l,-0 cpf:Iol=1.O0000c403 crclzd=I.0000c:v2
uc lad=l . 34)+063 ucool=1. .000c05
vo]=1 .OOOWe+ c11arr5.0000e-12 ai.za--.9635c-03

sp...2 sr=3.7806L -02
dimlDC-5.0000e.l2 diwW,5.CVO0-02 area0:-1.9635c-03 area 1=1.9635c -03

ni_4 dp=8.537c.-03

-90

Icngth=1.OOO0e+00 diamr5.0000e-02 area=1.9635e-03
rat~pf=1.0000e-04 rat-pmE3.0000e-02
ntn..par=1 .00

exnz-1 nreq=8.704le-01 thrust=8.9090e403 inpulse=1.04A44o3
diarrt2.6459e-02 area=5.4985e-04
imch=3.3662e+00 aexp=1 .5000c-02

valv -tcv dp=3.4854e400 pf=4.0994e-02
pi-5 dp=-8.1537e-03

length=1.0OO0c+00 dimin4.0000e-02 arca=7.8540e-05
rat..pf=1-.0000e-04 ratunr8.0OOOe-02
nutpar=1 .00

ni- dim-s=2.0000e-02 area=3.1416c-0.4
pi-6 dp=8.1529e-03

Icngth=I.OOOOc+00 dim2.OOO0c-02 arca=3. 1416c-04
rat..pf=1.OOO0c-04 rat_!n-1.1000c-Ol
ntm..par-1 .00

valv-scv dp-4.0760e4O1 pf=5.0OOOl0
p12 dp=4.0760e-03

Icngth=1.OOO0e+00 dim2.OOOOe-02 area=3. 1416e-04
rat..pf=1.OOO0e-04 rat_lml.1000c-01
ntm...par=1 .00

gtjtp rp"~.0000e4O4 ff--8.6282e-01 pomer=1.6907e+O5-
amss=1 .0000e+00 cspeed=1 .0000e+00
rat...cmss--9.8004c-02 ratspspeed=1 .9467e+03
rat-.pr=1 .5000e+00 inert ia=-2.00OOe-01

cxnztp- mircq=1 .2959e-01 thrust=4.5577e+02 iniulse=3.5888c+02
dianrdl.2760e-02 arca=1 .2788e-04

shft..1 rprr6.OOO0e+04 pomcr=3.6989e-03 inertia=3.OOOOe-01

APPENDIX E

Dynamic Example One

thenmdynarnic data for I-rEqwith flow id =71R-tH2
pc=12.800000, tc=33.200000, tb=20.400000, ntlwt=2.016000

t inl = 0.00001O0 *************************************

output of model flows

model tenp pres mass enth entr dens velc qual

gas._h2 20.0 3-.00 0.206 -4.1681e+06 -1.0917e+05 7.739e+01 1.4 0.00
valv.tsov 20.0 2.94 0.206 -4.1681e+06 -1.0915e+05 7.745e+01 1.4 0.00
pi-l 20.0 2.94 0.206 -4.1681e+06 -1.0915e+05 7.745e+01 1.4 0.00
prnptp 20.0 2.94 0.206 -4.1681e+06 -1.0915e+05 7.745e+01 1.4 0.00
valv..psov 19.9 2.88 0.206 -4.1681e+06 -1.0914e+05 7.750e+01 1.4 0.00
pi..2 19.9 2.88 0.206 -4.1681e+06 -1.0914e+05 7.750e+01 1.4 0.00
ht-r 80.0 2.88 0.206 -2.8889e+06 -6.9291e+04 8.922e-01 29.4 1.00
splj 80.0 2.88 0.191 -2.8889e+06 -6.9291e+04 8.922t-01 109.2 1.00
pi_3 80.0 2.88 0.191 -2.8889e+06 -6.9291e+04 8.922e-01 303.4 1.00
reae-l 100.0 2.88 0.i91 -2.6266e+06 -6.6350e404 7.094e-01 137.4 1.00
sp_2 100.0 2.88 0.176 -2.6266e+06 -6.6350e+04 7.094e-01 126.6 1.00
exnz_1 24.0 0.03 0.176 -3.6008e+06 -6.5922e+04 3.097e-02 1417.4 1.00
spjl 80.0 2.88 0.015 -2.8889e+06 -6.9291e+04 8.922e-01 212.4 1.00
valv.tcv 80.0 2.88 0.015 -2.8889e+06 -6.9283e+04 8.905e-01 212.4 1.00
pi_5 80.0 2.88 0.015 -2.8889e+06 -6.9283e+04 8.905e-01 212.8 1.00
sp_.2 100.0 2.88 0.015 -2.6266e+06 -6.6350e+04 7.094e-01 10.7 1.00
pi_4 100.0 2.88 0.015 -2.6266e+06 -6.6350e-04 7.093e-01 10.7 1.00
rK1 90.0 2.88 0.030 -2.7575e+06 -6.7732e+04 7.894e-01 120.3 1.00
pif6 90.0 2.88 0.030 -2.7575e+06 -6.7732e+04 7.894e-01 120.3 1.00
valv scv 90.0 2.82 0.030 -2.7575e+06 -6.7649e+04 7.737e-01 120.3 1.00
pi_7 90.0 2.82 0.030 -2.7575e+06 -6.7649e+04 7.737e-01 122.7 1.00
gttp 86.1 1.94 0.030 -2.8056e+06 -6.6657e+04 5.550e-01 122.7 1.00
cxnz-tp 70.5 -1.03 0.030 -3.0052e+06 -6.6609e+04 3.589e-01 649.7 1.00

output of nodel paraneters

gash2 dian=m5.O000e-02 area=1.9635e-03
valv.tsov dp=6.OOOe-02 pf=2.0OOOe-02
pi.1 dp=2.5000e-05

length=1.0000e00 dim=5.00OOe-02 area=1.9635e-03
rat_p f=2.00OOe-04 rat_mp1.0000e+00
ntmn par=1:.00

purpt p rpn=5.0000e+03 dp=0.0000e+00 eff=6.5OOe-01 pmcr=0.0000e+00
rat dp--8.4000e+01 rat-torque=2.0577+O1 ratrrp=6.0OOOe+04
rat mr1.0000e+O0 rateff"8.5000e-01 inertia=1.OOOOe-02

valv..psov dp=5.8800e-02 pf=2.0OOOe-02

91

92

pi_2 dp=1.2250c-05
Iength=1.OOOOe+00 dianm6.0OOe-02 area=1.9635e-03
ratpf=1.0000c-04 rat_yml.0000e+00
nim..par=1 .00

ht-r heai=2.6377e+05 dp-=2.4499e-04
ua=l.0000c405 cpwaII=1.0000e403 mvaI1=O.0000e+00 vol=7.853982c-03
dimin=1.0000c-01 area=7.8540e-03 Iength=1.0000e4O0
tconst=1 .0OO0c.+0

spjI sr=7.2185e-02
dianO.5.0000e-02 dianl=1.0000c-02 area0=1.9635e-03 areal=7.85400-05

pi-.3 dp=1l.0544e-05
Icngth=1.0000e+00 dimr-3.0O0c-02 area=7.0686c-04
rat-.pf=1.0000e-04 rat ftn4.0000e+00
nui..par=1 .00

reac-I jxmvr=5.0186e+O4 tfuel=3.0000e+02 tclad=O.0000e+00 dp=-5.2720c-03
Imtd=2.0984e+02
mftucI=2.0000e+02 niclad=0.0000e+00 cpfuel=l.0000C+03 cpclad=1.0000C+03
uclad=1 .3000e+06 ucool=1 .0000e+04
vol=1.0000e+00 dim5.0000c-02 arca=-i.9635c-03

sp...2 sr=7.8085c-02
duurO=5.0000c-02 dixnl=5.0000c-02 arcaO=1-.9635e-03 area1=1. 9635c -03

piL4 dp=7.1304e-05
Icngth=1.0000c+00 dim5.0000c-02 area=1.9635e-03
rat..pf=1.0000e-04 rat_m=3.0000c-02
rnun par=1 .00

cxnz j- mrweq=1 .7637e-01 thrust=2.9586e+02 inlpulse=l'.71 17c+02
dianmi2.6459e-02 arca=-5.4984e-04
imach=3 .7422e+00 aexp=l1 5000e -02

valv -tcv dp=-5.3439e-O3 pf=1.8549e.03
pi-.5 dp=-9.9541c-06

length=1.0000c+00 diml-.0OOe-02 arca=7.8540e-05
rat..pf=1.OOO0e-04 -rat nm-8.0000e-02
nunmpar=1 .00

mK I dian-2.0000e-02 arca=3.1416e-04
pi-6dp=2. 1137e-05

Icngth=1.0000c400 dia=2.OOM-02 area=3.1416e-04
rat..pf=1.OOO0e-04 rat_miz1.1000e-01
nm..par=1 .00

valv.scv dp=5.7511c-02 pf=2.OOOOe-02
p ij dp=2.0714e-05

Iength=I.OOO0c+00 dian;=2.0000e-02 arca=3.1416e-04
rat.pf=1.OOO0e-04 rat_mr1.lOO0c-01
nun par=1 .00

gtjtp rp~rm5.0000c+O3 ff--3.6967e-01 pmcr=1.4364e+03
amss=1 .0244e+00 cspeed=2.7074e-01
rat_cntss=-9.8004c-02 rat cspeed=1 .9467e+03
rat-.pr=I .5000e+00 inert-ia=2.0OOe~-02

cxnlz-tp mrcq=2.9826e-02 thrust=3.2667e+01 iffpulsc=1.1177c+02
diamiml.2760e-02 arca=I.2788e-04

shftlI rrmi=5.0000c+03 pomcr=l.4364e4tO3 inert ia=3.OOO~e-02
cntl_1 cntl=2.OOOOe-02 err=-2.7500c+00 icr=.O4 drr=0.0000c+00dr=. OO

k=l.0000e4M0 tp=1 .0000c+00 ti=O.0000e+00 td=1 .0000c40

********************HIMr = 1.0000c401

93

output of nxlel flows

nrodel teap pres mass enth entr dens velc qual

gas_h2 20.0 3.00 0.273 -4.1681e+06 -1.0917e+05 1.739e+01 1.8 0.00
valvtsov 20.0 2.94 0.273 -4.1681e+06 -1.0915e+05 7.745e+01 1.8 0.00
pi-l 20.0 2.94 0.273 -4.1681e+06 -1.0915e+05 7.745e+01 1.8 0.00
ptirptp 23.4 8.15 0.273 -4.1576e+06 -1.0812e+05 7.151e401 1.8 0.00
valvypsov 23.3 7.98 0.273 -4.1576e+06 -1.0813e+05 7.162e+01 1.8 0.00
pi._2 23.3 7.98 0.273 -4.1576e+06 -1.0813e+05 7.162e+01 1.9 0.00
htr 59.3 7.98 0.273 -3.1908e+06 -7.7807e+04 3.493e+00 9.9 1.00
sp_1 59.3 7.% 0.268 -3.1908e+06 -7.7807e+04 3.493e+00 39.1 1.00
pi_3 59.3 7.9E' 0.268 -3.1908e+06 -7.7807e+04 3.493e+00 108.6 1.00
reac_1 428.5 7.95 0.268 1.7699e+06 -5.1176e+04 4.548e-01 300.3 1.00
sp_2 428.5 7.95 0.233 1 7699e+06 -5.1176e+04 4.548e-01 261.3 1.00
exnz 1 110.2 0.09 0.23, 2 4861e+06 -5,0583e+04 1.933e-02 2971.1 1.00
sp-I 59.3 7.98 (1.005-. 1908e+06 -7.7807e+04 3.493e+00 17.0 1.00
valv tcv 59.3 7.95 0.005 1908e+06 -7.7792e+04 3.480e+00 17.0 1.00
pi5 59.3 7.95 0.005 -3.1908e+06 -7.7792e+04 3.480e+00 17.1 1.00
sp_..2 428.5 7.95 0.035 1.7699e+06 -5.1176e+04 4.548c-01 39.0 1.00
pi_4 428.5 7.95 0.035 1.7699e+06 -5.1176e+04 4.548e-01 39.0 1.00
nix_1 385.7 7.95 0.039 1.1833e+06 -5.2619e+04 5.053e-01 248.5 1.00
pi_6 385.7 7.95 0.039 1.1833e+06 -5.2619e+04 5.053e-01 248.5 1.00
valv_scv 385.7 7.79 0.039 1.1833e+06 -5.2535e+04 4.952e-01 248.5 1.00
pi_7 385.7 7.79 0.039 1.1833e+06 -5.2535e+04 4.952e-01 253.6 1.00
gttp 368.2 5.34 0.039 9.4542e+05 -5.1605e+04 3.557e-01 253.6 1.00
exnz tp 304.3 2.85 0.039 8.1564e+04 -5.1587e+04 2.298e-01 1343.4 1.00

output of model -parameters

gas..h2 dim=5.0000e-02 area=1.9635e-03
valv -tsov dp=6.0000e-02 pf=2.00OOc-02
pi.l dp-4.3764e-05
prptp rpmr l.5073e+04 dp=5.2063e+00 eff=6.50OOe-01 pomcr=-2.8588e+03
valv..psov dpFl.6293e-01 pf=2.00OOe-02
pi_2 dp=5.9419e-05
ht.r heat=2.6377e+05 dp =1.1884e-03
sp..1 sr=1.7098e-02
pi_3 dp=5.7396e-05-
reac-l poer=2.8345e+07 tfuel=9.5966c+02 tclad=0.0000e+00 dp=2.8698e-02

lmtd=6.9961e+02
sp..2 sr=1.2972e-01
pi..4 dp=7.9533e-04
exnz-1 mreq=2.3337e-01 thrust=8.2509e+02 inpulse=3.6077e+02
valvytcv dp=2.9548e-02 pf=3.7017e-03
pi_5 dp=2.7039e-06
pi-6 dp=l.0228e-04
valv.scv dp=1.5905e-01 pf=2.00OOe-02
pi..7 dp-.0024e-04
gt..tp rptn1.5073e+04 eff=4.1819e-01 pozr--9.3860e+03

anass=1.0143e+00 cspecd=3.9427e-01
cxnz-tp mreq=3.9449e-02 thrust=8.9914e+01 inrpulse=2.3258e+02
shftI rpln=1.5073e+04 povcr=6.5272c+03 inertia=3.00OOe-02
cntl_1 cntl=2.00OOe-02 err=-2.2464e-00 ierr=0.0000e+00 derr=0.0000e+00

94

~~~ ~~time = 2.0000e40 ** * ** * ** *

output of modlel flows

model tarp pres mss erith entr dens veic qual

gas-.h2 20.0 3.00 0.712 -4-.1681e406 -1.0917e+05- 7.739e+01 4.7 0.00
valv-tsov 20.0 2.94 0.712 -4.1681e+06 -1.0915e+05 7.745e+01 4.7 0.00
pilI 20.0 2.94 0.712 -4-.1681e+06 -1.0915e+05 7.745e+01 4.7 0.00
prP-tp 27.7 30.07 0.712 -4.1135e+06 -1.0629e+05 6.797e+01 4.7 1.00
valv..psov 27.7 29.47 0.712 -4.1135e+06 -1.0626e405 6.784c+01 4.7 1.00
pi -2 27.7 29.47 0.712 -4.-1135e+06 -1.0626e405 6.794c+01I 5.3 1.00
ht r 41.1 29.44 0.712 -3.7431e+06 -9.4009e+04 3.474e+01 2.6 1.00
sp.. 41.1 29.44 0.701 -3.7431e+06 -9.4009e+04 3.474e+01 10.3 1.00
pi-.3 41.1 29.44 0.701 -3.7431c+06 -9.4009e+04 3.474c+01 28.6 1.00
reac_1 803.7 28.71 0.701 7.0864e+06 -4.7608e+04 8.72le-01 409.4 1.00
sp-.2 803.7 28.71 0.609 7.0864e+06 -4.7608e+04 8.721c-01 355.7 1.00
exnz-1 225.7 0.33 0.609 -9 -6784e+05 -4.6659e+04- 3.573e-02 4125 .4 1.00
sp.. 41.1 29.44 0.011 -3.7431e+06 -9.4009e+04 3.474c+01 4.1 1.00
valv.tcv 40.9- 28.71 0.011 -3-.7431e+06 -9.3968e+04 3.433e+01 4-.- 1.00
pi540.9- 28.71 0.011 -3.7431e+06 -9.3968e+04- 3.433e+01 4.-1 1.00
sp.283728.71 0.092 7.0864e+06 -4.7608e+04 8.721c-01 53.7 1.00

p'-4  803.7 28.71 0.092 7 * 0864e+06 -4.7608e+04 8.720c-01 53.7 1.00
rm ~1 723.3 28.71 0.103 5.9223c+06 -4.9134e+04 9.684e-01 338- 8 1.00

pi-6723.3- 28.71 0.103 5 -9223e+06 -4.9134e+04 9.684ce-01 338.8 1.00
valv-scv 723.3- 28.13 0.103 -5 * 9223e+06 -4.9050e+04 9.491c-01 338.-8 1.00

pi-7723.3- 28.13 0.103 5.9223e+06 -4.9049e+04 9.490e-01 345.7 1.00
gtjtp 673.7 19.05 0.103 5.2070e+06 -4.8457e+04 6.913c-01 345.7 1.00
cxnzjtp 563.1 10.26 0.103 3.6394e+06 -4.8435e+04 4.461c-01 1812A3 1.00

output of model- paramotcrs

gas-h2 dian-5 * 0000e-02 arca=1.9635e-03
valv -tsov dp=6.OOOOe..02 pf=2.0OOe-02

pi-I dp=2.9826e-04
purpjtp rpir-3.5812e+04 dp=2.7130e+01- eff=6.5000e-01- pomvr=-3.8891e4
valv.psov dp=6.0140c-01 pf=2.0OOe-02

pi - 2dp=1.494ge-03
hit -r heat=2.6377c+0D5 dp =2.9894e-02
sp.J sr=1.5556e-02

pi_3 dp=1.4471e-03
reacI pofr=4.2109e+07 tfuel=2.5196e+03 tclad=0.OOc0dp725.1

lmtd=2 . 739e+03
sp...2 sr=1-.3120e-01

pi- - 4dp=-2.8712e.03
exnz -I1 rmrcq=6;0903e-01 thrust=3.0118e-03 inpulse=5.0452e+02
valv _tcv dp=7.2764e-01 pf=2.4718e-02

pi-5 dp=5.5062e-05
, -j~6 dp=2.5203e-0
vaiv -scv dp=5.7414e-01 pf=2.0000e-02

pi-7 dp=-2-A697e-03
gtjtp rpn,3.5812c+04 eff=6.4662c-01 po~wr=7.3725e+4

cass=l.0054c+iO0 cspeed=6.8401e-01
cxnZ p mrcq=1- .0319c-01 thrust=3.-1967c+02 izpulse=3. 1649e+02
shft-I rin3.5812e.+04 pomcr=3.4834e+04 inertia=3.OOOOe-02



95

cnt 11 cntl=2.OOo-02 err=-1.2094e+00 ierr=O.OOOOe400 derr=O.0000c+00

********************* [in-c - 3.0000c+0|*******************

output of model flows

model tcnp pres mass enth entr dens velc qual

gasj2 20.0 3.00 1.211 -4.1681e+06 -1.0917e+05 7.739e+01 8.0 0.00
valvtsov 20.0 2.94 1.211 -4.1681e+06 -1.0915e+05 7.745e+01 8.0 0.00
pil 20.0 2.94 1.211 -4.1681e+06 -1.0915e+05 7.745e+0l 8.0 0.00
pump-tp 31.3 65.56 1.211 -4.0421e+06 -1.0493e+05 6.969e+01 8.0 1.00
valvpsov 31.3 64.25 1.211 -4.0421e+06 -1.0487e+05 6.941e+01 8.0 1.00
pi_ 2  31.3 64.24 1.211 -4.0421e+06 -1.0487e+05 6.941e+01 8.9 1.00
ht-r 42.3 64.05 1.211 -3.8242e+06 -9.7708e404 5.372e+01 2.9 1.00
spl 42.3 64.05 1.191 -3.8242e+06 -9.7708e+04 5.372e+01 11.3 1.00
pi13 42.3 64.05 1.191 -3.8242e+06 -9.7707e+04 5.372e+01 31.4 1.00
reac-l 1118.0 60.84 1.191 1.1791e+07 -4.5795e+04 1.323e-00 458.2 1.00
sp..2 1118.0 60.84 1.086 1.1791e+07 -4.5795e+04 1.323e+00 417.9 1.00
exnzl1 334.1 -0.72 1.086 4.8451e+05 -4.4643e+04 5.287e-02 4917.5 1.00
spil 42.3 64.05 0.020 -3.8242e+06 -9.7708e+04 5.372e+01 4.8 1.00
valv tcv 42.1 60.84 0.020 -3.8242e+06 -9.7583e.i4 5.289e+01 4.8 1.00
pi_5 42.1 60.84 0.020 -3.8242e+06 -9.7583e+04 5.289e+01 4.9 1.00
sp_.2 1118.0 60.84 0.105 1.1791e+07 -4.5795e+04 1.323c+00 40.3 1.00
pi- 4  1118.0 60.84 0.105 1.1791e+07 -4.5795e+04 1.323e+00 40.3 1.00
rrK_-1 949.2 60.84 0.125 9.2469e+06 -4.8262e+04 1.556e+00 256.2 1.00
pi_6 949.2 60.83 0.125 9.2469e+06 -4.8262e+04 1.556e+00 256.2 1.00
valvscv 950.0 39.38 0.125 9.2469e406 -4.6451e4+04 1.Olle40 256.2 1.00
pi_7 950.0 39.38 0.125 9.2469e+06 -4.6451e+04 1.Olle+00 394.4 1.00
gt.p 866.2 26.32 0.125 8.0004e+06 -4.6151e+04 7.423e-01 394.4 1.00
exnz-tp 728.9 14.25 0.125 5.9974e+06 -4.6126e+04 4.785e-01 2050.7 1.00

output of model parameters

gash2 diam5.0OOe-02 area=1.9635e-03
valv -tsov dp=6.0000e-02 pf=2.OOOOe-02
pi-1 dp=5.8800e-04
ptnTtp rpn-5.7052e+04 dp=6.2619e+01 eff=6.5OOOe-01 pomvr=4l.5262c+05-
valv psov dp=1.3112e+00 pf=2.00OOe-02
pi-_2 dp=6.4247e-03
ht..r heat=2.6377e+05 dp =1.8840e-01
sp-l sr=1.6848e-02
pi_3 dp=6.4052e-03
reac-1 pomr=4.2109e+07 tfuel=3.3436e+03 tclad=0.0000OOe0 dp=3.2023e+00

lmtd=2.7282e+03
sp_.2 sr=8.8040e-02
pi_4 dp=6.0843e-03
exnz -lI mreq=1.0857e+00 thrust=6.4321e+03 imulse=6.0452e+02
valv..tcv dp=3.2144e+00 pf=5.0184e-02
pi_5 dp=3.9568e-04
pi_6 dp=6.0837e-03
valv scv dp=2.1448e+01 pf=3.5258e-O1
pi_7 dp=3.9383e-03
gttp rptm5.7052e+04 eff-8.2917e-01 pomr=l.5608e+05



96

amass=1 .0000c400 cspecd=-9.5084e-O1
cxnz-jp mireq=1 .2522e-O1 thrust=4.4137e+02 inpulse=3.5968e+02
shf tj rpw6;=.7052e+04 pcmcr=3-.4589c4+03 inert ia=3.OOO0e-02
cntljI cntl=3.5258c-O1 err=-1.4742e-O1 ierr=0.0000c4OO dcrr=0.OOO0e+OO



APPENDIX F

Thermionic System Examr'e

task: a n=0 f=2.244738c+04
x= 8.0000000+05
c= 2.244738e+04
h= 2.3043e+11 hs= 2.3043e+11 m=O.OOe+00 n=2.30e+ll s=2.30e+ll a=1.OOe+O0 b=O bMO

task: a n=1 f=8.971750e+03
x= 5.599855c+05
c= 8.971750e+03
h= 3.6809e+10 hs= 3.68o)c+10 niu=2.00e+00 n=2.55e+10 s=2.55e+10 a=1.OOe-O0

task: a n=2 f=5.562803e+02
x= 4.401386e+05
c= 5.562803e+02
h= 1.4151e+08 hs= 1.4151e+08 nu=l.OOe+00 n=6.28e+07 s=6.28e+07 a=1.OOc+0O

task: a n=3 f=3.960431e+O1
x= 4.322164e+05
c=-3.96043 1e+O1
h= 7.1728e+05 hs= 7.1728e+05 nu=0,00e+00 n=2.77e+05 s=2.77e+05 a=1.OOc+O0

task: a n=4 f=1.523882e-Ol
x= 4.327430e+05
c= 1.523882e-01
h= 1.0620e+01 hs= 1.0620e+01 mu=O.0e+00 n=4.07e+00 s=4.07e+00 a=l.OOe+00

task: a n=5 f=4.142651e-05
x= 4.327409e+05
c= 4.142651e-05

output of nudel flows

ndel power voltage current
watts volts amps/s

reacI 5.626e+04 0.000 0.000eO0
ti-l 5.626e+04 6.000 9.376e-03
sp-shunt 5.569e+04 6.000 9.282e+03
res_ti 4.708e+04 5.072 9,282e4O3
bcl 4.002e+04 100.000 4.002e+02
resjbc 4.000e+04 99.960 4.002e402
bus-l 4.O00e+04 99.960 4.002e-02
reac .s 3.765e+05 0.000 0000e400
rad._prim 3.765e+05 0.000 0.000e-00
sp-shunt.s 5.626e+02 6.000 9.376e+01
rad-shunt 5.626e+02 0.000 O. 000e-00
bc-l.s 7.062e+03 0.000 0.000e400
radjbc 7.062e+03 0.000 0.000e400

97



98

output of model parmetrs

reacI poA432740.9382 cff=0. 1300 radius=0.20 height=158.29
radiusrs=88.670 volrs=0.000 heightrs=0.370 scp=10.000

LU- v=6.0000 vconv=0.67 iconv=62.00 ncs4 .96 ncp=151.23
sp-.shunt sr=0.0100
bc_1 eff=0.8500 v=100.0000
rcsLi r=0.0001
rcsjbc r=0.0001
rad-.prim area=78.4625 t=1000.00 tspace=-255.00 e=0.85 rho=44.00 mass=3452.35
rad_shunt arca=5.4627 t=400.00 tspace=255.00 c=0.85 ho=44.00 rnass=240.36
rad~bc area--68.5710 t=400.00-tspace=255.00 e=0.85 rho=44.00 nruss=3017.13
busil po7mr=4 .000c+04 vol tagc--9.996ef01 currcnt-4 .002c+02

output of model rnusscs

mde I mass
kg

rcac-j 1.385c.+03
reac_1.ss 1.000c402
rcac-l.rs 1.466e+03
reac_1.boan 9.0000+01-
Li _1 7.363c+02
rad-.prim 3.452c403
rad..shunL 2.404e.+02
radbc 3.017e4+03
nuss-.sys.dist 2.2000+02
nss..sys. ic 2.220c+02

Inass..sys 1.093c4-04



APPENDIX G

Performance Map Layout

Several of the dynamic models make use of performance maps which are read from a file. Each of these perfor-
mance maps consists of functions of either one or two independent variables. This section describes the layout
within the files of this data and the interpolation classes that are used to obtain the data and to perform the inter-
polations. These interpolations, at present, are only -multilinear.

We start with the one dimensional interpolations. This class is used to define z as a function of x given
xi, Z pairs, where i=0 to n, as follows.

t=min(max(x ,xo),x)

Z=zi+(t-xi) (Zi+1-Zi)/xi+-xi)

where i is-the -largest i such that x>x, i<n. The class structure is defined as
struct intpl

(char label[16];
double *x, *z, y;
int n, im;

void intplnewo;
void intplin0;
double intplco;

The variables-have the following meaning.
label - -user defined name for the data.
x - pointer to the array of xi grid-values.

z - pointer to the array of z1 grid-values.

y - additional value for this data;-used only for two-dimensional interpolations.
n1 - number of elements in the x-(and z)-arrays.
im- additional parameter used only in ernally in the two-dimensional interpolations.

One-member function in is defined for the-class, which is called with a pointer-argument to the data struc-
ture and with a file descriptor argument to read-the data. The data in this file is-ipthe following order separated
by blanks-ornew lines. First, the user defined label is specified, followed by the number n of elements in the x
array and-then -followed by the additional y value. If only a one dimensional interpolation is being done, this y
value may-simply be set to zero. Following these three items, are the n sets of x,z pairs.

The- function intplc for the class defines-the function for doing the interpolation. This function takes as
arguments-a -pointer to the data structure and-a double precision variable representing the independent variable
value. As an-example of its use, suppose the file INI contains the data (laid out as specified above) for the pump
head-as a-function of-pump rpm. In this-c=se-the -rpm- values would be the x array and the head values the z
array. The-coding necessary to read in the data and then interpolate to find the head-for some rpm, would be as
follows.

#include "util.h"

-maino
(double h, rpm=600;

99



100

FILE *inp;
struct intpl head;
inp=fopen("INI","r");
intplin(&head,inp);
h=intplc(&head,rpm);

Note, the interpolations classes are defined within the "util.h" header file. Here a file descriptor, inp is declared
and associated with the file named "INI" using the fopen function, then the head variable is declared as a intpl
class instance, the intplin function is called with the file descriptor as an argument to read in the head data,
then intplc is called to return the value of t head for some rpm value, in this case, 600 rpm.

The reason the file descriptor is usel within the intplin function rather than the file name is so a single
file can be opened and used with several interpolation classes. This is done in the pump model where both the
head and the torque curves are defined as intpl classes with both sets of data in the same file. The independent
argument, however, is not the rpm as in this simple ec.amplc. More on that later.

The two dimensional interpolations, z as- a function of x and y, are performed by interpolating ov,.r two
fixed y grid values as one dimensional interpolations over x and then interpolating these results as a one dimen-
sional interpolation over y. As an option a curve in the xy plane can be input that describes some prominent
feature of the surface -z, ,y a ridge or valley, and the x interpolations are then performed relative to this feature
curve. That is, if the feature curve is denoted, X=xf,1 t(y), then the x interpolations at the two y grid values are
made-at xf,M(Yg8 ~j)+x-xf,,(Y), where y,,m is the y grid values. These two interpolation values are then inter-
polated as a one dimensional interpolation over y as before.

The-two dimensional interpolation class structure is defined as follows.
struct intp2

-(int n, ifeat;
intpl *a;

void intp2ino;
-double intp2co;

The variables have the following meaning.

n - number of y grid values.

ifeat - flag indicating that the interpolations are to be performed along some feature curve rathr than
on a rectangular xy grid.

a - ponter to an array of one dimensional interpolation classes used to hold all of de data. For
each of these classes the y variable holds the fixed y grid value.

The use-of this two dimensional interpolation class is exactly like the one dimensional class except that
the class is called as a function of two variables. The intp2in function makes use of the inptlin function to
obtain the data. The complete layout of the inpt2 data consists of eight dr ..y numbers (these numbers were
originially used to define a graphical reresentation of the data but are currently not used) followed by the
number, n, of y grid values. These are then followed by n sets of one dimensional interpolation data laid out
exactly as with the intpl class data. The last of these intpl sets may have the label, "feature", indicating that
this-set represents the feature curve. In this case the x values of the data represent the y values of the feature
curve, and the z-values represent the x values of the feature curve. Other than the use of the "feature" label, the
label used on the intpl data sets really isn't used for the intp2 class, although, some dummy label needs to be
supplied.

With-these interpolation classes defined, we can- now consider the actual performance maps that are used
by the dynamic pump, compressor, and gas turbine models.

The pump model requires two maps, one for a nondimensional head and one for a nondimensional torque,
where a nondimensional -quantity is defined by division by its rated value. These nondimensional head and
torque curves are-defined by



/

101

1,, =(M,+rpm.,) if (x)

T. =(m.2+.pmn2) T(x)

where
x--n+tan-t( mn .

rpm,

and the functions, H(x) and T(x), are the normalized head and torque curvs-at m 2+rpmZ=1. The pump perfor-
mance map file-contains H(x):as the first intpl class data and T(x) as the second intpl class data.

The compressor model also has two performance maps, one for the pressure ratio and one for the
efficiency. This time the maps are functions of two parameters, the corrected mass and corrected rpm, defined
as

Mcor=

Pr
rm rpml'1

rPMcor = rpm.-

where the r subscript refers to rated conditions. The corrected mass parameter is treated as the x variable and
the corrected rpm as the y parameter in a two dimensional interpolation. Both of these performance maps are
stored within the same file-with the pressure ratio map specified first.

The gas-turbine model has exactly the same-set of performance maps (although the-maps themselves are
different) as the compressor model. Note, that for both the compressor and the gas turbine, the model will per-
form some additional scaling of the -resulting pressure ratio and efficiency as explained .within the section
describing the=models.


