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and Applied Mechanics,

University ot Illinois at Urbana-Champaign. Variational principles are derived for some nonstandard problems inuolcing elastic
Urbana IL 61801 bodies in smooth contact. For these problems, the portions of the surfaces where

Fellow ASME one boundary condition holds rather than another must be determined as part of the
solution to the problem. Cases considered include a body containing a crack or
delatnination, indentation by a rigid punch, and contact with an elastic foundation.

Introduction Elastic Body With a Crack

The principles of minimum potential energy and minimum We assume that the strain-energy density W of the body is
complementary energy for infinitesimal elastic deformations positive-definite and we write
are well known for problems in which the tractions or the 2W(e) =c,1kje,eA I (c,,kl = ckl,j =c,)
displacements are specified at each point of the surface of an
elastic body (see Sokolnikoff, 1956, for example). The prin- where e are the infinitesimal strains referred to rectangular
ciples can lead to bounds on quantities of physical interest and Cartesian axes x,. The stresses t,1 are related to the strains

can be used to obtain approximate analytical and numerical through

solutions. For some problems, the portions of the surface t, = c1 k1 ek, e, = C,ltl,
where one boundary condition holds rather than another must where C,,Al have the same symmetries as c,, 1. The strain-
be determined as part of the solution to the problem. For ex- energy is also a positive-definite function W, of the stresses,
ample, in problems involving contact between elastic bodies,
the shape of the contact area can vary with the loading (for 2Wc (t) =Cjkittl.
references see Gladwell, 1980). Uniqueness of solution for In the unstressed reference state, the body occupies a region
typical problems of this type was considered by Shield (1982) Vwith surface Sand we suppose that it contains a crack across
for problems involving smooth contact between surfaces of which the material has no cohesion. The crack is defined by a
elastic bodies. Here we again consider elastic problems involv- surface C in V, and we use n to denote the unit normal to one
ing smooth contact and develop variational principles for side of the surface C. We use ± signs to indicate values of
some typical situations: loading of a body containing a crack quantities on the two sides of C, with the + sign referring to
across which there is no cohesion, bodies in smooth contact, the side of C with exterior normal n. We shall also use square
indentation by a smooth rigid punch, and contact with a brackets to indicate the difference in the values of a quantity
smooth elastic foundation. The examples can be combined to across C, so that for the displacement field u, for example,
treat more complex problems, such as the indentation of an = -
elastic body containing a crack.

The principles rest on the positive-definiteness of the strain Under loading of the body, we assume that at points of the
energy and they show that the potential 'and complementary crack surface C either (i) the crack opens with no traction
energies attain absolute minimum values only when the trial transmitted across C or (ii) the two sides remain in smooth
functions generate the strains or stresses of the actual solution, contact. Then at points of C we have
Weaker stationary principles apply without the assumption of (u - - = ul n 0, (I)
positive-definiteness of the strain energy. It is assumed that
the integrals involved are convergent if they are improper and and we require on C
this requires the states considered to have finite total strain either (i) T' = -T =0 when [ul.n < 0
energy or total complementary energy. The elastic material .It (2)
can be inhomogeneous. At an interface between two materials or (ii) T = -T = -pn when [ul = 0,
in a composite, the displacements and traction are assumed to t-
be continuous across the interface but delaminations can be where T is the surface traction and p(x) is the (nonnegative)
included if they are modeled as cracks across which there is no pressure transmitted across C. We set p = 0 at points of C
cohesion. where (i) holds.

The loading of the body is assumed to be caused by a body
Contributed by the Applied Mechanics Division for publication in the JoUR- force F. prescribed surface fractions T'i on a portion ST of S

NAL OF APPLIED MECHANICS. and prescribed displacements u(; on the remainder St of S.
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ASME, United Engineering Center, 345 East 47th Street, New York. N.Y. depending on the conditions on S 'Shield
10017, and will he accepted until two months after final publication of h displacement, di 
itself in the JOURNAL oF APPLIFD ME~CfANfCS. Manuscript received by ASM.. 1982).
Applied Mechanics Division, January 2, 1987. We define the potential energy P as the functional

768 /Vol. 54, DECEMBER 1987 Transactions of the ASME



i dV T udS- ' using the divergence theorem and r. [u] = 0 on the crack
Ss d (Clapeyron's theorem). We then have

for fields u' such that P1u'1 2! P1ul - Q tI , (9)
on S, Iu'on -5 0 on C. (4) and the principles provide upper and lower bounds for the

u =potential energy.
We set Smooth Contact Between Elastic Bodies

u U +1u. For simplicity we consider contact between two elastic

Then Au is zero on SL. and we have bodies occurring over parts of the surfaces of the bodies which
W(e') = W(e) + t,j.e, + W(.e). (5) are nearly plane, but the approach is easily generalized. In the

reference configuration the bodies touch at the origin 0 of
The stresses tj satisfy equilibrium with body force F and with coordinates and the plane x3 = 0 is tangent to both bodies at
the divergence theorem and boundary conditions we get 0. The bodies occupy regions V, and V, with the x, axis

pointing into V,. Under loading, contact may occur over sur-
Plu' I -Pul = W(Ae)dV+ T- [AuldS, faces C, and C, of the bodies, defined as the nearly plane sur-

Ic faces

where contributions from both sides of C have been included C1 : x 3 =f(xI , x,), CI: x 3 =g(x1 , x,),
in the integral over C. For the actual solution T - [ul is zero on where x,, x 2 lie in a region C of the x, - x, plane enclosing the
C in view of equations (2) and the integral over C has the value origin and

cT [u ']dS = - cP n [u ']dS " f (x I, x2) <_ g (x I,  x ,).

The contact is smooth and we denote the pressure between
the two bodies by the nonnegative function p(x,, x,), defineds.om equation (4) this is seen to be greater than or equal to over C. Then

zero and with W positive-definite, we havePu -Pu Tj3=- T =p(x1 ,x.)on C, (10)
Plu'l Plul where the superscripts indicate values for the two bodies. The

with equality if and only if u and u' have the sime strain; and bodies do not penetrate each/so that the displacement compo-
n * [u'] is zero where p is nonzero. nent u 3 satisfies L'"

Thus we have: For displacements which satisfy the displace-
ment boundarv conditions and have no interpenetration of uj - > f-g on C. (11)
material across the crack, the potential energy P is leastfor the At each point of C we require
displacements of the actual solution.

The complementary energy Q is defined as p 30 when uj - u > f-g, u - u =f-g when p > 0. (12)
On the remaining portions S, and S, of the surfaces of the two

£[ bodies, we suppose that tractions T'3 are specified on parts
Qst' I .wc(t )dV- T' UGdS (6) SIT, SI. and displacements uG are specified on parts S, , SL,

of S,, S,, respectively. We use ST and S,. to denote S17 + S,.

for stresses t,' in equilibrium with F and such that and Sju + S,(. The body force F is assumed known in
= on ST' = - - = -p'n on C, V= V, + V. The solution is unique except possibly for a rigidbody displacement (Shield, 1982).

wherep' _ 0. We set The potential energy P is again defined by equation (3) for

t'; =t,j + At,1 , displacements which satisfy the boundary conditions on S.
and which satisfy (1I) on C. As in the previous section, we

so that the stresses It,, satisfy equilibrium with no body force look at the difference between P[ u' I and P1 u 1, use equation
and have zero traction on Sr. We have (5) and the divergence theorem, and find that the difference

W" (t')= We(t) + At,se,, + W(,At), (7) involves the integral

and with the divergence theorem we obtain T
T.u'u)dS.

Qlt' I - Qlt I = . Wc (At)dV+ AT.ujdS. In view of equations (10) and (12), the integral becomes

As before T. [u] is zero on Cand the integral over C becomesj- g~PlU 2 -uU' (.f-g)IriS,

T' [udS= -~p'n.udS 20.and this is nonnegative because u satisfies (I I). Thus we can

show that: For displacements which satisfv the displacement
It follows that boundary conditions and which satisfy (11) on C, the poten-

QI t I > QI tial energy is least for the displacements of the actual solution.
The complementary energy Q is defined by

with equality if and only if t,; = t,1 in V, and we have: For
stress fields with the given surface tractions and in equilibrium QI , 1 W( t')dV- T' .u;dS- * p'(f-g)dS (13)
with the given body force and which transmit at most pressure QI t

across the crack, the complementary energy Q is least for the
stresses of the actual solution. for stresses t' in equilibrium with the given body force and

For the actual solution we have given tractions and which involve at most a pressure p' be-
tween the bodies across C. The difference between Ql t' I and

Plul +QtI =2l WdV- T-udS- F.udV=0, (8) QItI is transformed as in the previous section and we are led
Ji' is Jto consider the sign of
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U(T'-T)udS- (p' -p)(f-g)dS. Pu' = W(e')dV- T'.u'dS

This can be written as
SF-u'dV- Ld'-Ala -M,b' (18)

C for fields u' which satisfy the displacement conditions on St

and with equations (11) and (12) we see that the integral is and which are such that
nonnegative. Thus we can show that: For stress fields in u' 3 <_ g(x, x,)-d' + a'x, -b'x, on C, (19)
equilibrium with the given body force and given tractions and
whch involve at most a pressure between the bodies across C, where d', a', b' are constants. After transformation, we find

the complementary energy is least for the stresses of the actual that

solution.
For the actual solution we again have Plul = - Qtj and PIu' I -PIu j W(Ae)dV

the principles lead to upper and lower bounds on PI u1.

-. P(U,' - uj)dS- L(d' -d)- M,(a'"-a) - M(b' -b).

Indentation by a Smooth Rigid Punch

In order to illustrate problems in which an elastic body can If we set
come into contact with a rigid body of known shape, we con-
sider indentation by a smooth rigid punch when the possible v = u 3 + d-ax, + bx1 , v' = u; + d' -a'x 2 + b'.v,
area of contact is a region C of the x,-x2 plane enclosing the and use equations (16), then apart from the strain-energy term
origin 0. The exterior normal to the body at 0 is along the x, the right-hand side becomes
axis, and the remainder of the surface of the body is denotedby S . - 1" v dSWhen the movement of the punch is known, we will have C p(v' -v)dS.

u, :5 g(x,, x,) on C, (14) Now where p > 0, equality holds in (17) and v = g. Because
where g is a known function, and we require at each point of C v' -< g from (19), we then see that the integrand is non-

p=0 when u, < g, U3 =g when p > 0, (15) positive. Thus: The potential energy is least for the
displacements of the actual solution.

where p is tne contact pressure. Tractions are prescribed on a The complementary energy is defined to be
part Sr of S and displacements on the remainder Su of S, with
a known body force in the region V occupied by the body. W ' -w')dV- T'°udS+ pgdS

The problem can be considered as a limiting case of contact Q[ I= v C
between two elastic bodies. The potential energy is defined to
be the functional (3) for displacements which satisfy the condi- for stresses in equilibrium with the given body force and sur-
tions on S , and (14) on C. We can then proceed as in the face tractions and which involve a pressure p' in the contact
previous section to show that: The potential energy is least for area C satisfying the loading conditions (16). We can then
the displacements of the actual solution, show that

The complementary energy Q is defined to be

Qt I V Wc(t')dV u T'udS + p'dS Q1It' -Q~tI = V Wc(At)dV- C (p' -p)(u, -g)dS.

Because p' and p apply the same resultant force and moment
for stresses in equilibrium with the given body force and sur- over C, the integral over C can be written as
face tractions and which involve a pressure p' in the contact
area C. Then: Q will be an absolute minimum for the stresses (P)(U 3 -g+d-ax,+bx,)dS.
of the actual solution. c C

Instead of prescribing the movement of the punch, we may
prescribe the downward force L on' the punch and the Equality holds in (17) where p > 0 so that there is no contribu-
moments M1, M, of the force about the x1 , x, axes, with tion to the integral from p, and the contribution from p' is
prescribed loading on S as before. The contact pressure p must nonpositive in view of (17). It follows that: The complemen-
then satisfy tary energy is least for the stresses of the actual solution.

For the actual solution we have PIu = -QItI for both

L =pdS, M,= - pxdS, M 2= pxIdS. (16) punch problems of this section.

For a known punch shape g(x,, x,) the solution will satisfy Smooth Contact With an Elastic Foundation
Variational principles also hold for elastic bodies which can

u3 <_ g(x,, x2)-d+ax2 -bx 1 on C, (17) receive support from a foundation of the Winkler type. For
simplicity we assume here that the foundation has a plane sur-

with equality where p is nonzero. The constants d, a, b are face and lies below the plane xj = 0. Thc puion of the sur-
determined as part of the solution, which will be unique except face of an elastic body that can come i'.~' contact with the
possibly for a rigid body displacement (Shield, 1982). (Other foundation is the nearly plane surface
problems may be treated; for example, we may require the
punch to indent without tilting and then a, b are zero and M,, X1 =f(A-I, x,)
M2 are not prescribed.) touching the plane xj = 0 but lying entirely above it, where

The potential energy is defined as x,, x2 lie in a region C of the x, -x , plane. The reactive
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7ressure p of the foundation is proportional to the downward For ti complementary energy we take

displacement of the surface, so that on C we require

p=Owhen u1 - -f,p=-K(u,+f) whenu3 < -f, (20) Qlt'= Wc(t')dV- sT'udS

where K - 0 is the stiffness of the foundation (K may vary
with x,, x,). If we define q(u, by

q(u>=O when U3 t -f, q(u 3)= I when u3 < + (p' 2/2K+p'f)dS

then we can write

T, =p= -K(u 3 +f) q(u 3) on C, (21) for stresses in equilibrium with the given body force and sur-
face tractions and which involve a pressure p' on the founda-

while the tangential tractions are zero on C. Boundary condi- tion inte-face C, Using equation (7) and the divergence
tions on the remaining surface S of the body and a body force theorem, we can show that
field are prescribed as before.

The potential energy is defined to be - 1 W(At)dV

Pltt W(e')dV- = Wc(At'

+ I (p,2 -p 2)/2K+ (p' -p)(u, +f) JdS.

2 F.u'dV± 2- c K(u3'D2q'dS, From equations (20), the integrand of the integral over C is

found to be nonnegative and we see that: The complementary
where q' = q(u;), for displacement fields u which satisfy the energy is an absolute minimum for the stresses of the actual
displacement boundary conditions on S,,. Using equation (5) solution.
and the divergence theorem, we find that We can also show that PI u = QI t 1, so that the prin-

ciples can be used to bound PluI.
PI u'lI- P Iu I ' W(A1e)dV
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