
ESD-TR-90-151

AD-A234 181 Annual Report

Knowledge-Based System Analysis
and Control Defense Switched

Network Task Areas

30 September 1990

Lincoln Laboratory
M.ASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXING TON, M.,S.S,4Cl1.NETTS

Prepared for the Defense Communications Agency
under Air Force Contract F 19628-90-C-0002. O TIC

Approved for public release; distribution is unlimited. R Z.

APR 1 7.1991'A

! J,

This report is based on studies performed at Lincoln Laboratory. a center for
research operated by Massachusetts Institute of Technology. The work was sponsored
by the Defense Communications Engineering Center of the Defense Communications
Agency under Air Force Contract F19628-90-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESD Public Affairs Office has reviewed this report. and
it is releasable to the National Technical Information Service.
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Hugh L. Southall. Lt. Col.. USAF
Chief. ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

KNOWLEDGE-BASED SYSTEM ANALYSIS AND CONTROL
DEFENSE SWITCHED NETWORK TASK AREAS

H.M. HEGGESTAD
Group 21

ANNUAL REPORT SUBMITTED TO

MR. TOM LAM

DCEC, DRFB
1860 WIEHLE AVENUE

RESTON, VA 22090-5500

1 OCTOBER 1989 - 30 SEPTEMBER 1990

ISSUED 17 JANUARY 1991

Approved for public release; distribution is unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

A major activity during FY90 has been the design and
implementation of a network management expert system to
operate in the Integrated Workstation (IW) that was developed
during FY90 for use by ACOC personnel at DCA-Eur to perform DSN
network management tasks. The IW was successfully tested on live
and archived data, and on fault conditions deliberately induced
by switch technician actions, during the period 25-28 September
1990. All parties declared that the IW features and demonstrated
performance were valuable and successful. The Expert System was
well received, in particular. An IW terminal has been installed
on the floor of the ACOC. and the staff have been directed to.;
familiarize themselves with its operation.

A number of changes and improvements were made in CCSIM and
related programs. All were converted to run under SUN OS 4.0.3.
The graphics interface program was rewritten to use the X-window
system. A new document called "Using The Call-By-Call Simulator
(CCSIM)" has been written, and the "CCSIM User's Manual" and the
"CCSIM Software Top Level Design Document" delivered in FY90 are
to be updated early in FY91.

Work was performed in expert systems development efforts for DCS
transmission system control with two main components:
implementation of the TRAMCON Event Generator (TEG), and
participation in the Tech Control Automation Proof-of-Concept
System (TCAPS). TEG had been specified during FY89, and has now
been written and successfully installed and demonstrated at a
number of locations. Lincoln's RADC-sponsored MITEC expert
system was incorporated in a DCA-sponsored set of TCAPS field
demonstrations.

Aooession For A
NTIS rPA&I
DTIC TAB C1

El
Ju iflcr tion

Di r: but 'ol]/ ____

Avaicilllity Ccdes

Avit Suei/or

iii D.~(Sc~a

Table of Contents

Abstract iii
List of Tables vii

1.0 INTRODUCTION AND SUMMARY 1

2.0 IWES DESIGN AND IMPLEMENTATION 3
2.1 IW System Design 3
2.2 IWES System Design 6
2.3 Anomaly Verification 8

2.3.1 Neural Net Anomaly Verification 9
2.3.2 Runtime Statistical Data Base 10

2.3.2.1 Need for a Statistical Data Base 10
2.3.2.2 Runtime Option 11

2.4 Statistical Data Ba~e 11
2.4.1 Introduction 11
2.4.2 Statistical Data Base Items 11
2.4.3 Computing Statistical Data Base Values 13

3.0 DCA-EUR TESTING 14
3.1 Summary 14
3.2 Background 14
3.3 The test of late April 1990 14
3.4 Planning for the September Tests 15
3.5 Test Results 16
3.6 Outbriefing 17

4.0 CCSIM DEVELOPMENT 18
4.1 Common Channel Signaling 18
4.2 New Trunk Damage Model 19
4.3 New Switch Damage Model 19
4.4 Handling of Loops and Shuttles 20
4.5 Network Management Control Changes 20
4.6 Switch Report Impovements 20
4.7 Busy-Destination Call Matrix 21
4.8 Utility Updates 21
4.9 Preplan Evaluation Experiments 21
4.10 CSSIM Integration with the IW 22

5.0 TRAMCON/DPAS ALARM INTEGRATION 23
5.1 The TRAMCON Event Generator 23
5.2 TCAPS Field Demo Participation 25

APPENDIX A IWES SYSTEM DESIGN 27
APPENDIX B IWES MONITOR & RULE DESCRIPTIONS 50
APPENDIX C IWES RESULTS FILE EXAMPLES 73
APPENDIX D STATISTICAL DATA BASE SOFTWARE DESIGN 75
APPENDIX E CCSIM NETWORK MANAGEMENT CONTROLS 85
APPENDIX F CCSIM SWITCH REPORTS 95

v

LIST OF FIGURES

Figure
No. Page

2-1 Integrated Workstation 4
2-2 Expert System Structure 7

vii

1.0 Introduction and Summary

A major activity during FY90 has been the design and
implementation of a network management expert system to operate
in the Integrated Workstation (IW) that was developed during FY90
for use by ACOC personnel at DCA-Eur to perform network
management tasks. The IW is the part of the Defense Switched
Network (DSN) Integrated Management Support System (DIMSS) that
is concerned with near-real-time monitoring and control of the
network. The IW integrates on a common platform (a SUN
SPARCSTATION) the network management capabilities that were
demonstrated at DCA-Eur at the end of FY89. These were the
Network Management Support System (NMSS), the LARS neural net
anomaly recognizer, and the Network Management Expert System
(NMES). The first two systems were developed by GTE. The
development of NMES was a major part of our work in FY89.
Development of the IW has been a joint effort between GTE and
Lincoln Laboratory with GTE having primary responsibility for the
design and implementation of the IW as a whole. Lincoln's
primary responsibility has been the design and implementation of
the IW Expert System (IWES), and we have had some interaction
with GTE on the overall IW design. Chapter 2 of this report
provides the details.

The IW was successfully tested on live and archived data, and on
fault conditions deliberately induced by switch technician
actions, during the period 25-27 September 1990. On 28 September
the IW was demonstrated to the Commander of DCA-Europe (Col.
Reinmann) by two of his own staff. All parties declared that the
IW features and demonstrated performance were valuable and
successful. The Expert System was especially well received, as
explained below. An IW terminal has been installed on the
operations floor of the ACOC, and the staff have been ordered to
familiarize themselves with its operation and to use it
continually. A full report of the DCA-Europe testing is provided
in Chapter 3.

A number of changes and improvements were carried out in FY90
with respect to CCSIM and its related programs. All programs
were converted to run under the new SUN Operating System 4.0.3
early in the fiscal year. The graphics interface program was
rewritten to use the X-window system instead of the previously
used Suntools environment which is no longer being supported. The
change makes our graphics compatible with the IW environment and
improves portability to other machines, but it has exacted a
price in speed of response and memory requirements. Chapter 4
describes the major changes and improvements in CCSIM and
experiments with CCSIM that were carried out in FY90. There are
no current plans for further CCSIM development. A new document
called "Using The Call-By-Call Simulator (CCSIM)" is being
written, and the "CCSIM User's Manual" and the "CCSIM Software
Top Level Design Document" previously written by 3S, Inc. are

1

being brought up to date. By agreement with DCEC, delivery of
these documents will take place in early FY91.

A component of DCEC FY90 tasking for Lincoln Laboratory was
DRTV-funded expert systems development efforts for DCS
transmission system control. This tasking is referred to as
TRAMCON/DPAS alarm integration, and has had two main components
in FY90: implementation of the TRAMCON Event Generator (TEG), and
participation in the Tech Control Automation Proof-of-Concept
System (TCAPS). TEG had been specified during FY89, as a result
of substantial efforts to gather and articulate all the rules and
relationships among TRAMCON equipment items, all the types of
faults, and all the primary and sympathetic alarm patterns. TEG
has been installed and demonstrated at a number of locations, as
described in Chapter 5. The TCAPS interactions started with a
modest part for Lincoln's RADC-sponsored MITEC expert system in a
DCA-sponsored set of field demonstrations at Ft. Detrick,
Maryland. In the course of the year the involvement grew to
include two MITECs at two field sites (Ft. Detrick and the
Pentagon). The details are described in Chapter 5.

A set of Appendices provide detailed documentation of specific
areas of FY90 work, as follows:

APPENDIX A. IWES System Design
APPENDIX B. IWES Monitor & Rule Descriptions
APPENDIX C. IWES Results File Examples
APPENDIX D. Statistical Data Base Software Design
APPENDIX E. CCSIM Network Management Controls

2

2.0 IWES Design and Implementation

A major activity during FY90 has been the design and
implementation of a network management expert system to operate
in the Integrated Workstation (IW) that was developed during FY90
for use by ACOC personnel at DCA-Eur to perform network
management tasks. The IW is the part of the Defense Switched
Network (DSN) Integrated Management Support System (DIMSS) that
is concerned with near-real-time monitoring and control of the
network. The IW integrates on a common platform (a SUN
SPARCSTATION) the network management capabilities demonstrated at
DCA-Eur at the end of FY89. These were the Network Management
Support System (NMSS), the LARS neural net anomaly recognizer,
and the Network Management Expert System (NMES). The first two
systems were developed by GTE. The development of NMES was a
major part of our work in FY89. Development of the IW has been a
joint effort between GTE and Lincoln Laboratory with GTE having
primary responsibility for the design and implementation.
Lincoln involvement has been limited to the design and
implementation of the IW Expert System (IWES) and some
interaction with GTE on the overall IW design.

In this section we briefly describe the overall IW design and
operating philosophy followed by a high-level description of the
IWES design and functionality. Further detail on IWES can be
found in Appendices A, B, C, and D.

2.1 IW System Design

Figure 2-1 shows a simplified flow diagram for the IW. The lines
in the diagram represent conceptual data flows. The actual data
transfers take place through a common data base that is accessed
by the program modules, and messages are sent through a message
dispatcher module (not shown) to inform the modules that desired
data has been deposited in the data base.

The DAI (Data Acquisition Interface) polls the switches for
Operational Measurement (OM) reports every five minutes. These
reports are the basic input to the IW. They are reformatted by
the COMM PROC module and made available to the USER INTERFACE
(UI), NEURAL NET (NN), and EXPERT SYSTEM (IWES) modules. The UI
provides displays of the OM data in the format similar to that
used by the earlier IBM PS/2-based NMSS system. In addition, the
UI module supports all other NMSS features, e.g., manual control
applications, in the IW.

The NN module processes the OM reports to recognize anomalies in
the switch and trunk data. It writes a file of recognized
anomalies to the database and signals to the UI that icon colors
in the display should be changed to indicate abnormal status of
switches and/or trunks.

3

U)7

z
C) OA

w
C-,-

/)m
wZo

-JU)
C7

0I- 3: -;0 f

z - cn C
cc-

cE o

D Z CL U)

0

Fr -j

IWES examines the file of anomalies generated by the NN and the
raw OM data and generates text for presentation to the operator.
The text includes a description of the problem corresponding to
the recognized anomaly, recommendations for action and network
management control applications (if any), and an explanation of
how the problem is recognized together with the data needed to
help the operator confirm or deny the reality of the problem.
The text also includes a history of observations relevant to the
problem.

When IWES has text for a switch or trunk problem, it signals the
UI to color a segment of the appropriate switch icon to indicate
to the operator that recommendations are available. Even though
IWES has some capability to recognize the presence of a problem
in the absence of a NN anomaly detection, it was agreed that
capability would be suppressed in the IW environment.
Consequently, IWES generates text only for situations in which a
NN anomaly has at some time been detected. Since IWES remembers
situations over time, it can generate recommendations for report
intervals in which no NN anomaly was detected. For example, IWES
will recommend the removal of controls when problems are observed
to have gone away.

The text generated by IWES is written to a 'results' file that is
read by the UI when the operator clicks the mouse button while
pointing to the 'recommendations-available' icon. If the
recommendations include the application of network management
controls, the IW design allows the operator to approve the
control application and have them sent directly to the switches
through the CONTROL MODULE and the COMM PROC module.
Alternatively, the operator can choose not to apply the
recommended controls, or to apply others using the facilities of
the UI and the CONTROL MODULE to assure that the commands to the
switches will be properly formatted.

In order to facilitate the direct application of recommended
controls, the IW design calls for them to appear in two forms in
the 'results' file. One is text for presentation to the
operator. The other is a special format meaningful to the
CONTROL MODULE. The latter form was not operational at the time
of the September tests.

In addition to polling the switches for OH reports, the COMM PROC
module also polls for control status at the switches. The
resulting reports are decoded and made available to the operator
on request. Figure 2-1 shows that information also being fed to
IWES, but that path is not currently operational, and its utility
is questionable since the information presently being returned
lacks the detail needed for use by IWES. Another path in the
figure shows control application information being fed back to
IWES from the CONTROL MODULE. This path is intended to provide
IWES with information about the operator's control actions. It

5

is not yet implemented, but could easily contain the requisite
detail. The IW provides a logging function through its data base
so that even if the operator does not use the mouse to observe
problems identified by the NN and IWES, the anomalies,
recommendations, etc. are preserved along with the OM report data
for later analysis.

2.2 IWES System Design

In the FY89 annual report we described an independent complete
NMES which processed data from the DAI, recognized patterns,
confirmed problems, devised controls and actions, and displayed
results to a network management operator. NMES was implemented
with the expert system shell CLIPS (C Language Integrated
Production System), developed by NASA/Johnson Space Center.
During FY90, NMES has been transformed into an integrated part of
the (IW), and is now called the Integrated Workstation Expert
System (IWES).

In order to permit integration with the IW, modifications were
made to the FY89 NMES structure. One major difference is that two
inputs have been added to the IWES front end: statistical
database values (see Section 2.4) which vary with time of day,
and neural network anomalies, which are processed as potential
problems to be validated by IWES. Another major difference is
that actions and controls are now being written to a file for the
IW to display instead of being sent to the NMES graphics. In the
future, switch control actions recommended by IWES, and accepted
by the operator, will be sent via the Control Module to be
applied at the switch.

Briefly reviewing the IWES structure (Fig. 2-2), at the lowest
level, when IWES is initialized, network representation and
statistical database values are read in and stored in C
structures. During each polling period, switch reports and
neural network anomalies are received, processed and stored in C
structures. These structures are scanned by monitors
(implemented in C) to identify neural network anomalies and other
interesting features and useful information. The outputs of the
monitors are asserted into CLIPS as facts comprising the abstract
state of the network. Problems are identified and validated by a
module comprised of CLIPS rules which looks for patterns of
symptoms in the abstract state of the network.

Validation of a problem announced by the neural net involves
assuring that IWES monitors detected corresponding interesting
features, that were abnormal for the time of day, in the raw
data. Validated and unvalidated problems are confirmed over tinie
by a confirmation module. A planning module recognizes a problem
and devises actions and controls to improve or correct the
situation. An observation module observes the effects of the
applied controls over time, and recommends removal of the

6

U.~

0 1 :0 0

CC 0X. Z)ujo '0a o a.z(-o 0 0 4LL II-

oil -j z LU
0. InL.

Iu C,

z U

-J In

-

zz
0z

L7 7 _

~ 0 I L 0 I 'C.)U

controls when the problem no longer exists. Each module adds
text observations to a C structure.

For each problem detected, whether validated or unvalidated, an
IWES results file is written which contains the results of the
planning module, recommendations for actions and controls, an
explanation of how the problem is recognized by a network
manager, and the array of observations. Each polling period, a
new results file is created and read in by the IW user interface
to be displayed to the user.

IWES does not have the same type of smoothing-over-time component
that was present in NMES. Smoothing over time is no longer
applied during confirmation of anomalies, although it is still
applied in some of the observations displayed to the user.
Originally we had introduced time smoothing to reduce the
probability of misrecognition due to noise on the lines between
the switches and the DAI. When using 15 minute polling, we found
that data errors did not occur frequently enough to justify the
delay introduced by time smoothing. The change to 5 minute
polling periods has raised this issue again. Analysis shows that
call counts and holding times are very noisy when computed from 5
minute data. In the future, threshold comparisons for these and
other fields that are noisy should be based on 15 minute averages
of live data, to prevent frequent false alarms.

The IWES communicates with the other IW processes via the
integrated workstation message dispatcher(IWMD). Socket
connections are made with the IWMD at initialization time.
Formatted messages are used to communicate between the two
processes. The IWMD alerts the IWES when raw data, neural
network results, and control status are available and IWES
informs the integrated workstation user interface(IWUI) when it
has results ready for display.

2.3 Anomaly Verification

In the September 1990 IW in Europe, the neural net is designated
as the primary detector for network anomalies. The role of the
IWES is to confirm or discount the anomaly using its own set of
detectors and a data base of expected values based on time of day
and trunk group or switch identity.

Section 2.3.1 describes how neural net anomalies are verified by
the IWES. Section 2.3.2 describes why a statistical data base
with expected values for important trunk group and switch
parameters is used to help detect and verify anomalies (see
section 2.4 for a description of the data in the statistical data
base). Additional details and future enhancements are found in
Appendices B (IWES Monitors and Rules) and D (Statistical Data
Base Software Design).

8

2.3.1 Neural Net Anomaly Verification

The neural net anomaly is read by IWES and is asserted as a CLIPS
fact. Since we did not know until virtually the week before the
September tests what anomalies the IWNN would recognize, the IWES
was prepared to deal at some level with all the items in the
following list. An asterisk beside an anomaly indicates that the
expert system has the knowledge to confirm the anomaly. There is
an entry for each original LARS neural net diagnosis, those
recommended in the Network Management Situation Diagnosis message
(Aug.24.1990), and those recognized by the Neural Net during the
September 1990 testing. The expert system was capable of
validating any IWNN diagnosis made during that week.

For Switch diagnosis:

outage-remote* rcvr-overflow-mf*
cpumismatch* rcvr overflow mf*
misc others* perm signal*
misc other* permanent-signals*
cpuinits* facility hits
congestionremote degraded_remote
congestion reporting degraded-reporting
cpusimplex internal problem
cp-originat ionproblem rcvrproblem
dist signal prob lineframejproblem
trunk systemfailure excessoverflows
exc rcvr out of service

For Trunk Groups:

signallingglare* signallingproblem*
nousage* signallingprob*
100%_skip* system busytrks*
exc trks oos* sbutrunks oos*
exctrunks_oos* system busyusage*
mbutrunks oos* permanentseizure*
facilityhit* tropofade*
degradedmd164 tgcongested
degradedmd163 dpas failure
tgfailure degradedfacility
failure span failure
continuity_failure trunk_testing
dtc failure transmissionfault

Whenever one of the above anomalies is found, it is asserted as a
fact in CLIPS. When CLIPS is run, the anomaly is:

1. Confirmed if supporting switch report data indicates a
problem;

2. Unconfirmed if switch report data does not indicate a
problem; or

9

3. No opinion if logic to confirm was not available or time
did not allow it to be implemented.

The CLIPS rules call a "C" function to set flags and status
information for the report sent to the user. When CLIPS has
finished executing, the results file is created. For each
anomaly detected by the neural net, the expert system supplies a
description of the problem and relevant switch or trunk group
data. The relevant data includes both the current switch data
and corresponding normal values for that time of day, obtained
from the statistical data base.

The switch anomalies that are confirmed by the expert system are
as follows. (Note that these outputs can be derived from more
than one input from the above lists.)

CPU mismatch Outage remote
CPU inits occurred Miscellaneous system failure
Permanent Signals Mf Receiver Overflow

Similarly, the trunk anomalies that are confirmed by the expert
system are:

Permanent Seizure Excess Trunks out of Service
Facility Hit/Tropofade Maintenance Busy Trunks Out of

Service
No Usage System Busy Trunks Out of Service
Signalling Glare Trunk Signalling Problem

2.3.2 Runtime Statistical Database

This section describes why the statistical data base is used in
the verification of neural net anomalies. See Section 2.4 for
more detail on the data in the statistical data base.

2.3.2.1 Need for a Statistical Data Base

Many of the tests for network anomaly detection proscribed by
expert network managers contain conditions such as:

above-average holding time
high CCB usage
high traffic
low traffic

The difficulty with these conditions lies in determining what is
normal for a specific switch or trunk group at a particular time
of day. Because there are often large differences between one
trunk group and another, and large fluctuations with time of day,
one cannot establish a single "normal" value that fits all trunk
groups or all switches for all time periods. For example,
neither the current operational system (NMSS) nor the neural net

10

can detect high traffic or high overflows accurately because they
have no knowledge of time of day and do not have separate
thresholds for each switch or trunk group.

As a solution to determining what is normal, and thus what is
abnormal, for any switch or trunk group at any given time, the
IWES uses a data base with averages and standard deviations for
important switch and trunk group values that fluctuate. This
data is indexed by time and by trunk group or switch.

Because the IWNN does not have a time parameter, it can
misdiagnose high and low traffic situations. IWES, using the
statistical data base, reports the expected values for the switch
or trunk group when the NN has detected an anomaly. This
information helps the operator determine if there is indeed a
problem.

2.3.2.2 Runtime Option

Specifying the runtime flag, statdb, in the IWES (NMES) execution
line enables the use of the stat data base. At IWES
initialization time the stat values (average and standard
deviation for each hour) for all switch and trunk group stats are
loaded from the offline ASCII files into a hash table. The hash
table provides the ES monitors and anomaly verifier with a fast
and efficient random access to any statistic.

2.4 Statistical Data Base

This section describes the data in the statistical data base,
including what is collected and how it is collected. The use of
the statistical data base to verify anomalies is discussed in
section 2.3. For a more detailed discussion of the statistical
data base, see Appendix D. How the statistical data base is used
by trunk group monitors is included in Appendix B.

2.4.1 Introduction

The statistical data base provides the IWES with a collection of
normal values for important switch and trunk group parameters
that fluctuate over time. For example, call control block (CCB)
seizures at a switch are a good barometer on how busy a switch is
at a given time. Large switches will use 200 to 700 CCBs in 5
minutes depending on the time of day. Small switches use only 0
to 30 CCBs during a 5 minute period. Without knowing which
switch is being diagnosed and what time of day it is, it is very
difficult to determine if a CCB count is normal or not.

2.4.2 Statistical Data Base Items

The statistical data base is designed to provide expected values
and ranges for any important network parameter that may vary by

11

switch or trunk group or over time. Currently 6 trunk group and
3 switch parameters are stored in the statistical data base.
Each item is based on a formula of switch report fields and
(normalizing) constants. The following table lists the switch
report fields used in the formulas:

SWITCH REPORT FIELDS USED IN STATSDB

FORMULA ITEM RECORD FIEL ESCRIPTION

MF_Use RCVR RCVTRU-MF KF (interswitch) receiver
usage

MF_Calls RCVR RCVSZRS-MF MF receiver seizures

MFTestCalls RADR RADTESTC-MF MF test calls

DGUse RCVR RCVTRU-DGT DG (intraswitch) receiver
usage

DGCalls RCVR RCVSZRS-DGT DG receiver seizures

DGTestCalls RADR RADTESTC-DGT DG test calls

TrunkUse TRK TRU Trunk group usage

Connects TRK CONNECT Successful OUT attempts

Inservice TRK Trks In Service Trunks available

Infail TRK INFAIL INCOMING calls that
failed

Intot TRK INCATOT INCOMING calls

Ovfl TRK NOVFLATB OUT attempts that
overflowed

Attmpt TRK NATTMPT OUT attempts

CCBS CP CCBSZ Call-ControlBlocks
seized

The following two tables list the statistic type, definitions,
and the formulas used to calculate them.

12

SWITCH STATS

TYPE DEFINITION FORMULA

ccb call control blocks/5 min. CCBs*PER/12
rmf Receiver MF holding time. 10*MFUse/(HFCalls -

MFTestCalls)
rdg Receiver DG holding time. O1*DGUse/(DG_Calls -

DGTestCalls)

TRUNK GROUP STATS

MNEMONIC DEFINITION FORMULA

aht average holding time. 100*Trunk Use/
(Connects+Intot-Infail)

cch Out calls/circuit/hour. Connects*PER/Inservice
icch In calls/circuit/hour. (Intot - Infail)*PER/Inservice

povfl Percent overflows. 100*Ovfl/Attmpt
puse Percent Trunk Group use. 100*PER*TrunkUse/36*Inservice
tcch Total calls/circuit/hour. icch + cch

2.4.3 Computing Statistical Data Base Values

The statistical data base is designed to provide the IWES with an
expected range of values given an item (switch or trunk group
name), a statistic type, and a time of day. This is accomplished
by computing the hourly average and standard deviation for each
statistic based on approximately 10 days of switch report data.

Hourly averages were chosen as a reasonable, first-try tradeoff
between precision and data base size. Experiments showed that
averages based on less than 15 minute periods produce noisy
results: the numbers constantly oscillate around averages based
on a longer period. It is expected that future system testing
and data analysis will determine if a shorter time period than 1
hour is needed. In any case, the statistical data base values
should be interpolated when averages are requested for in-between
times. For example, if 30 minute averages are stored in the
statistical data base, and the ES requests a normal value for
12:50, then statistical data base interface routine should return

value(12:30) + 2*(value(13:00) - value(12:30))/3.

Currently this is not done, even though traffic analysis shows
that during work start, lunch, and work end hours, the traffic
changes can be much greater than 1 standard deviation.

13

3.0 DCA-Eur Testing

3.1 Summary

The Integrated Workstation was successfully tested on live and
archived data, and on fault conditions deliberately induced by
switch technician actions, during the period 25-27 September
1990. On 28 September the IW was demonstrated to the Commander
of DCA-Europe (Col. Reinmann) by two of his own staff. All
parties declared that the IW features and demonstrated
performance were valuable and successful. The Expert System was
especially well received, as explained below. An IW terminal has
been installed on the operations floor of the ACOC, and the staff
have been ordered to familiarize themselves with its operation
and to use it continually.

3.2 Background

In September 1989 simultaneous demonstrations were done at
DCA-Europe with three separate developmental systems having
complementary DSN network management functions, as reported in
the FY39 Annual Report. These demonstrations clearly showed the
great potential of the systems, and they also pointed the way for
required effort in the ensuing months: it was obvious that the
three components should be integrated into a single system.
Efforts to that end began immediately, producing what came to be
called the Integrated Network Management Workstation or IW. From
the outset the FY90 objective was to test an initial operating
capability (IOC) of the IW in late September 1990.

The three systems that had been demonstrated in September 1989
were: the DCA-Eur NMSS (Network Management Support System), a
PC-based tool for gathering and displaying DSN switch data; the
Lincoln NMES (Network Management Expert System); and a GTE-built
LARS (Learning and Recognition System) Neural Net. The design
philosophy for the FY90 Integrated Workstation was to offer the
best features of all three through a single integrated user
interface. The Neural Net function would do pattern recognition
and symptom detection; the Expert System function would correlate
and reason about the symptoms over time, and would provide
operator action recommendations for each confirmed problem; and
the NMSS function would provide direct access to the raw switch
data for the sophisticated user addressing unusual problems.

3.3 The tests of late April 1990

From the time of the September 1989 demonstrations, there was
discussion at DCEC of operational testing of the neural net and
expert system installed at DCA-Europe at that time. A MITRE
staff member on contract to DCEC wrote a plan for a set of
on-site switch technician actions (such as applying the
"restrict" and "directionalize" commands), which would supposedly

14

replicate natural switch problem events. These tests were in
fact carried out at the end of April 1990, and the NN and ES both
performed badly. The reasons were:

1. There was no way to tell whether the NN and ES were capable
of detecting the artificial scenarios, without advance
performance of test scenarios followed by data analysis and
possibly software modification, and no opportunity existed
for such effort;

2. The MITRE person insisted that the NN and ES software be
"frozen" before and during the demos;

3. The test scenarios produced switch report data that was
markedly different from anything the NN and ES had
previously been trained to detect.

Due to the marginal performance, plans were immediately initiated
to do another set of tests in September 1990 and to have them be
a success.

3.4 Planning for the September Tests

DCEC wrote a sizeable DSN IW Engineering Test Plan incorporating
contributions from GTE and Lincoln as well as the table of test
scenarios used in April. The main elements of the September
tests were to be:

1. Verification that all the IW operator menus and functions
work;

2. Verification that the relational database menus and options
work;

3. Application of the IW to live network data;

4. Testing IW performance on archived data sets containing
known network problems; and

5. Testing IW performance on problems manually induced in the
actual network. This originally focused on the April MITRE
test scenarios, which turned out to be prohibited by DCA-Eur
authorities in September because of concern about disrupting
Desert Shield communications. The ACOC staff proposed
instead that switch technicians busy out certain trunk
groups.

It was stipulated as part of the test plan that it would be
acceptable for the IW to miss particular network problems the
first time through, and that the bugs causing the misses could be
found and fixed prior to retesting with similar data.

15

3.5 Test Results

Test categories 1 through 4 were addressed on Tuesday morning
(9/25), and the results were generally good except that half a
dozen bugs were found. Only one of these involved the expert
system, which became sporadically "stuck" indicating that
corrective action recommendations were continually available for
a switch, even when no problem conditions were present. All of
the bugs were found and fixed overnight, and Wednesday morning
(9/26) they were retested and shown to be corrected.

Also on Wednesday morning two trunk group outages were simulated
by site personnel, on the link from Donnersberg, Germany to
Torrejon, Spain and on the link between Fairford and Mildenhall
in the UK. The IW detected both. The test observers (including
a senior NCO from the ACOC) were especially impressed with the
Expert System displays, which provided concise problem
descriptions, action recommendations, explanations, and relevant
observations over several reporting periods. In fact, the Expert
System logs often were found to have picked up pertinent
observations about a fault before the Neural Net declared a
detection.

On Wednesday afternoon a number of archived data sets were
presented to the IW. The Neural Net detected anomalies in the
data sets it had been trained on, and the Expert System made
appropriate recommendations and observations. Several
previously-untried data sets were presented which were known to
have anomalies similar to those on which the Neural Net had been
trained, and it failed to detect them. Attempts were made to
retrain the Neural Net, with poor success.

On Thursday morning two more manually-induced trunk group outages
were introduced, and were successfully detected by the IW.
Having been trained overnight on some of the data sets it missed
Wednesday, the Neural Net was able to detect anomalies in those
sets Thursday. Attempts were again made to demonstrate
retraining of the Neural Net, and results were still poor. The
IW was operated on live network data for some time, and no major
network problems were observed.

On Friday morning the system was demonstrated (on live and
archived data) to Col. Reinmann and Col. Berger, the Commander
and Deputy Commander of DCA-Europe. The IW was operated by Air
Force Captain Paul Rovezzi, assisted by Master Sergeant Lugo,
both of the ACOC staff. They were both very enthusiastic about
the system, and about showing the two Colonels how well it
worked. The latter were completely satisfied, and felt that the
reverses of last April had been fully corrected.

16

3.6 Outbriefing

On Friday afternoon a briefing was presented to Col. Berger by
Captain Rovezzi and MSgt Lugo. It was obvious that they had been
favorably impressed by the performance of the IW. MSgt Lugo had
made a series of screen dumps of the Expert System displays for
his various trunk outage scenarios, and marked up the
observations with Hi-Liter to point out how the system had
detected all of them, and how well the annotations and
explanations served his needs.

Col. Berger was told that a Sun workstation had just been
installed in the ACOC proper to run the IW, and he said he would
be experimenting with it over the weekend. He declared the
testing exercises a success. He noted that he has looked at
numerous commercial network management products since April, and
the IW is the best he has seen by far, with respect to DCA needs.
He was especially enthusiastic about the Expert System displays
and advice.

17

4.0 CCSIM Development

A number of changes and improvements were carried out in FY90
with respect to CCSIM and its related programs. All programs
were converted to run under the new SUN Operating System 4.0.3
early in the fiscal year. The graphics interface program was
rewritten to use the X-window system instead of the previously
used Suntools environment which is no longer being supported. The
change makes our graphics compatible with the IW environment and
improves portability to other machines, but it has exacted a
price in speed of response and memory requirements.

The following sub-sections describe the major changes and
improvements in CCSIM and experiments with CCSIM that were
carried out in FY90. There are no current plans for further
CCSIM development. A new document called "Using The Call-By-Call
Simulator (CCSIM)" is being written, and the "CCSIM User's
Manual" and the "CCSIM Software Top Level Design Document"
previously written by 3S, Inc. are being brought up to date. By
agreement with DCEC, delivery of these documents will take place
in early FY91.

4.1 Common Channel Signaling

Implementation of the model for Common Channel Signaling (CCS)
that was designed in FY89 was completed in the first part of FY90
and delivered to DCEC in June 1990. The model allows an
experimenter to set arbitrary message sizes for call setup,
takedown, preemption, etc. messages. Altogether there are twelve
parameters specifying message sizes that are specified in the
'net.inval' file. From these, CCSIM calculates the CCS message
traffic on each CCS link involved in a call processing event.
From the average over a sampling period settable by the
experimenter, it estimates the expected queuing delay on each
link and uses this value in computing call setup time and the
time that resources are held up when calls block. Statistics are
generated showing the overall average signaling rate and the peak
observed in a sampling interval settable by the experimenter.

Whether a trunk group uses CCS or In-band signaling is specified
by a field in the 'net.clli' file. Two other files, 'net.baud'
and 'net.ccsd', allow the experimenter to set the signaling rates
and propagation delays that are to be used for each CCS link. In
the absence of these files, a uniform rate for all links is
assumed and set to a value specified in the 'net.inval' file.

All CCS signaling in CCSIM is assumed to be associated, i.e.,
CCSIM does not model an independent signaling network, and
switches do not forward signaling traffic for other switches.
There is no explicit model for damage to a signaling link, but
the same effect can be obtained by damaging all the trunks
between the associated switch pair.

18

4.2 New Trunk Damage Model

CCSIM now maintains the status of each trunk in a trunk group,
noting whether it is in service or not in service and whether it
is damaged or useable. When a trunk is damaged by command from
the experimenter, any call on the trunk is now taken down. In
earlier versions of CCSIM, such a call was left to hang up
naturally, but the trunk could not subsequently carry a call.
CCSIM now has a new command, 'SET-INSERVICE', to allow the
experimenter to specify the number of in-service trunks in a
group. Existing calls are not affected by changes to the
in-service status of a trunk, but only trunks marked as in
service can accept new calls. The in-service status of a trunk
can be different at the two ends, but damage is the same at both.
When a trunk group sustains partial damage or is to be considered
as partially in service, the trunks to be affected are chosen
randomly.

In routing a call, CCSIM searches a trunk group circularly,
starting from the trunk just beyond the last one used or searched
on the last attempt to use the group. It skips trunks that are
marked as not in service. It stops the search on finding a free
non-damaged trunk, on having searched the entire group, or on
having attempted to use 'nrlinetries' damaged trunks.
'nrlinetries' is a 'net.inval' parameter with a default value
of three. CCSIM models the time that would elapse waiting for
signalling acknowledgements ("winks") that would not be received
from the damaged trunks in a real network damage scenario.

4.3 New Switch Damage Model

CCSIM now takes down all calls through a switch at the time the
switch is damaged. On restoral, CCSIM now generates a switch
report at the next normal reporting time with values accumulated
during the time between restoral and report time. Earlier
versions of CCSIM left calls up until normal hang-up, and delayed
the next report until a complete interval's data was available.

Trunk groups to a damaged switch can now be modeled as either
'winking' or 'non-winking' while the switch is damaged. The
winking case corresponds to a situation in which receivers at the
damaged switch continue to function even though the switch is
unable to handle in-coming calls. The wink from the receiver
causes the neighbor switch to send its signaling information and
behave as though the call had been successfully routed, but since
the damaged switch cannot handle the call, it will fail, i.e.,
the caller will give up. CCSIM now models this situation, and
the experimenter can specify in the 'net.clli' file how an
individual group should behave in a switch damage scenario. If
marked as 'non-winking', behavior is the same as that for a
damaged trunk (see Section 4.2, above).

19

4.4 Handling of Loops and Shuttles

The question of how CCSIM should handle loops and/or shuttles in
a routing table was explored and revised. In a real network, if a
call loops or shuttles between or among nodes, there is a
possibility that another call will hang up during the process,
freeing a line and allowing the looping call to succeed. Such a
call will tie up an excessive number of trunks, and network
managers consequently work hard to avoid the situation. CCSIM can
not readily model this behavior because it operates on a
call-by-call basis, and there is no other call that could hang up
during the process. Therefore there is no possibility of a
looping or shuttling call ever succeeding in CCSIM. In earlier
versions, CCSIM would halt if it detected a looping or shuttling
call. It has now been changed to merely print a warning message
to the output file. The change helps experimenters debug new
routing tables, and allows experiments involving changes in
routing tables (reroutes) to get through transient conditions
during which loops and/or shuttles may be unavoidable because
routing tables in a set of switches cannot all be changed at the
same instant.

4.5 Network Management Control Changes

During FY90 the Protective Reservation of Equipment (PRE)'and the
Destination Code Cancellation (DCC) controls were added to CCSIM.
The formats used to invoke Cancel-To (CANT) and Cancel-From
(CANF) were changed to correspond to those used by the DMS
switches in DSN-Europe.

The complete CCSIM repertoire of network management controls can

be found in Appendix E.

4.6 Switch Report Improvements

The switch reports generated by CCSIM have been extended to
contain all of the OM reports being collected for the IW at
DCA-Eur. These include five new switch status reports, and nine
new fields in each trunk group report. Some of the new reports
and fields can be derived from data accumulated during the
simulations. Others, such as the 'glare' field in the trunk
group report, are simulated by random numbers with
experimenter-settable mean values. Still others, such as the
number of CPU mismatches that were observed during the reporting
period, are always set to zero.

Experiments with CCSIMN at DCA-Eur showed that reported seizures
and holding times for Call Condense Blocks (CCBs), MF receivers,
and Digitone receivers were not well matched to archived data
from the real network. By adjusting the algorithm for
calculating these values and tuning the local traffic
intensities, we achieved a considerable improvement in the

20

matches. Significant further improvement would require the
introduction of switch-dependent parameters into the simulation.

Appendix F contains detailed information on the switch reports
now available from CCSIM.

4.7 Busy-Destination Call Matrix

A new capability was added to CCSIM during FY90. In earlier
versions CCSIM provided a parameter in the 'net.inval' file
called 'pcbusy' that allowed an experimenter to specify that a
percentage of all call attempts would be simulated as having
reached a busy destination and would then retry with a
probability of 'prbusy' after a random time with a mean value of
'trbusy'. Now CCSIM can accept a matrix of 'pcbusy' values
contained in a file called 'net.busy' that allows an experimenter
to specify the percentage of busy-destination calls independently
for each source/distination pair. The intended use of this new
capability is to facilitate the simulation ' traffic problem
scenarios such as focused overloads.

4.8 Utility Updates

All the utility programs originally associated with CCSIM have
been reviewed and updated. Programs which use the link file now
expect satellite trunks above the diagonal and terrestrial trunks
below the diagonal. The program to generate routing tables
algorithmically, 'genrt', has been updated and a minor bug in the
original program has been corrected. A new variable 'longitude'
has been provided to allow the user to specify the average number
of statute miles to a degree of longitude in his network. The
utilities which create files for CCSIM such as 'genrt', 'genfile'
and 'link to clli' now produce files in the format expected by
the current CCSIM.

4.9 Preplan Evaluation Experiments

A series of experiments was carried out to demonstrate the
capability of CCSIM to aid in the evaluation of the effectiveness
of the preplans being developed at DCA-Eur. The runs included
two switch damage scenarios (UXB and FRD) and two switch
congestion cases. The latter were realized by increasing the
traffic destined for a particular switch (RTT) by factors of five
and ten. The switches simulated by CCSIM are based on the NTI
DMS switches in the DSN which do not display congestion symptoms
because their call processing capabilities are more than adequate
for the trunking used in the network, i.e., the switches can keep
up with the maximum rate that call attempts can come in over the
trunks. Consequertly, we did not expect to see any symptoms of
congestion go awa1 in response to the preplan actions. However,
the preplans have an effect on traffic in the network, and that
effect can be observed.

21

The results showed small improvements in Grade-Of-Service (GOS)
and Call-Failure-Rate (CFR) for the switch damage preplan
applications. (CFR measures the fraction of calls that fail to
succeed within the number of retry attempts allowed in the
simulation.) For the congestion scenarios, GOS showed an
improvement, but CFR worsened. The detailed results were
delivered to DCEC for further evaluation.

4.10 CSSIM Integration with the IW

CCSIM now writes switch reports to files in a format compatible
with the IW database. Such reports can be generated and held as
archived data to be fed manually to the IW. Further work is
needed in the IW and CCSIM to provide convenient interaction,
control of simulation time, and proper separation between the
real network and the simulation contexts to avoid confusing both
the operator and IW software such as IWES. Also, a Fortran
compiler for the SUN 4 machines at DCA-Eur is needed before CCSIM
could be compiled there.

If it were desired to use CCSIM for training IW operators,
further work on a trainer's interface would be needed to allow
the training supervisor to introduce anomalies such as CPU
mismatches that are not derived from the basic simulation and
damage models.

22

5.0 TRAMCON/DPAS Alarm Integration

A component of DCEC FY90 tasking for Lincoln Laboratory is
DRTV-funded expert systems development efforts for DCS
transmission system control. This tasking is referred to as
TRAMCON/DPAS alarm integration, and has had two main components
in FY90: implementation of the TRAMCON Event Generator (TEG), and
participation in the Tech Control Automation Proof-of-Concept
System (TCAPS).

5.1 The TRAMCON Event Generator

The TRAMCON (TRAnsmission Monitoring and CONtrol) system polls a
variety of communications and support equipment at a string of
manned and unmanned microwave radio stations, gathering status
and alarm information and displaying the results on a console at
the TRAMCON Master site (which is typically located at a Tech
Control Facility). It is commonplace for a microwave equipment
failure to trigger both a primary alarm from the failed equipment
and a constellation of sympathetic alarms from downstream sites
that (for example) react to the loss of an incoming carrier
signal. This situation can be very confusing to a human
operator, because all the alarms appear to be equally valid and
important, even though only one of them represents a genuine
outage. Worse, there are many different variations on this
theme, and they can greatly overload a human's ability to
logically deduce fault causes, especially when the person is
relatively junior.

Another complicating factor is partial overlap between TRAMCON
alarms and those generated by DPAS (Digital Patch and Access
System) facilities. Microwave sites typically handle multiple T1
carrier signals, many of which are connected to DPASs along with
T1 carriers from other sources (such as land lines and satellite
channels). The DPASs detect a standardized set of fault
conditions and produce alarm signals that can be monitored either
at the DPAS control console or at remote locations. Some of the
DPAS faults are directly related to TRAMCON faults, and others
are not. Clearly, access to both kinds of alarms would help a
human operator in reasoning successfully to infer the locations
of failure events; however, this additional dimension exacerbates
the problems of the operator in comprehending all the causes,
effects and variations.

The remedy that is being pursued is development of an expert
system that is capable of performing the required deductive
reasoning about patterns of TRAMCON and DPAS alarms. The FY89
Annual Report reproduced the result of initial efforts to that
end, which was a Specification for a TRAMCON Event Generator
(TEG). A major piece of work in FY90 was implementation of TEG,
as described below. It should be noted that these initial
efforts have focused upon the European version of TRAMCON;

23

generalization to the other versions is a significant but
straightforward piece of work which has not yet been addressed
under DCEC tasking to Lincoln Laboratory.

The motivation for creating TEG was to support knowledge
engineering for the alarm interpretation expert system, given
that we have essentially no prospect of access to a real TRAMCON
system operating in a live DCS environment. All such real
systems are in Europe, and the few examples in CONUS (e.g., at
Fort Huachuca, AZ and at CCSC, Tinker AFB, OK) are very limited
software maintenance systems running on canned data. Even if we
could spend extended periods at European TRAMCON sites, we would
clearly not be permitted to explore all the equipment failure
modes on operational DCS circuits. In order to !ill this need,
we decided to build a software system that would produce the same
alarm constellations as a real TRAMCON, for every possible
equipment failure in the string of microwave stations monitored
by the real TRAMCON.

In developing the TEG specification, we explored all available
sources of knowledge about TRAMCON and the systems it monitors.
Information was obtained from expert personnel at DCEC/DRTV, at
the Fort Huachuca and Tinker AFB locations mentioned above, and
at the 1945th Communications Group in Feldberg, Germany. In
particular, the senior Tech Control personnel at the 1945th made
available to us an extensive set of training aids they had
developed for local use, aimed at the two major microwave system
segments they monitor with TRAMCON. All of this knowledge was
organized and integrated into the TEG specification reproduced in
the FY89 Annual Report.

The design of TEG in FY90 began with the notion of exploiting the
forward-chaining capability of an expert system shell. Forward
chaining is the process of reasoning from a set of stated
conditions to the logical consequences of those conditions. The
TEG knowledge base is in effect a set of rules of the general
pattern, "given a system connectivity data base, and given a
failure of type x on element y in that data base, the resulting
TRAMCON alarms will be ..." . The expert system shell CLIPS (C
Language Integrated Production System), developed by NASA/Johnson
Space Center and furnished without charge to Government agencies,
was chosen for the project on the basis of prior successful
projects with CLIPS at Lincoln Laboratory.

As implemented in FY90, TEG is a free-standing system that will
run on any machine supporting CLIPS. In particular, this
includes UNIX and DOS computers and PCs. While the development
was done in the context of the DEB II microwave system in Europe,
TEG can be loaded with any legal TRAMCON network configuration
file. It interacts with the user via a succession of menus which
prompt the user to select a site, an equipment item, and a
failure type to inflict. TEG then produces a complete list of

24

the primary and sympathetic alarms that a real TRANCON would see
under similar conditions in the real world. No attempt is made
to reproduce all the menus, options and user interface details in
this report; the interested reader can arrange with DRTV to see
the actual system.

TEG has been installed at multiple locations besides Lincoln
Laboratory, including DCEC/DRTV and AFCC/CCSC, Tinker AFB. In
the latter case in particular, it was successfully brought up in
a few minutes on the Air Force standard minicomputer (the AT&T
3B2/600G), and was then exposed at length to scrutiny by two CCSC
staff personnel who had newly arrived from European assignments
where they worked daily with real TRANCON equipment. These
personnel gave their approval to TEG, noting that it produced
correct results and that it would be very useful for training
purposes.

An interesting application of TEG was initiated in FY90, on an
RADC-sponsored project to study the problem of distributing
modules of expert system intelligence throughout the DCS to
achieve efficient, distributed, survivable system control. The
first stage in that project is to create a computer-based
representation of a user-definable network including TCFs and
their internal equipment, transmission systems, TRAMCONs, DPASs,
and all the circuits carried by the network. TEG is in the
process of integration with this network simulation, where it
will be used to generate alarms in response to user-inflicted
network faults. This work will continue in FY91.

The primary FY91 purpose for TEG will be to furnish an
information source and development environment for the TRAMCON
alarm interpretation expert system. In the process, DPAS alarms
are to be studied and understood, and to be incorporated in TEG
as well. The expert system is effectively an inversion of the
rule base in TEG; however, it is far from simple. For example,
there is a many-to-one mapping in certain fault instances:
several different faults can lead to similar alarm patterns, and
the expert system will have to use collateral information and
complex inference strategies in attempting to resolve such cases.

5.2 TCAPS Field Demo Participation

DCEC/DRTV became involved in FY89 with a Modular Building Block
(MBB) demonstration effort, initiated by DCA Headquarters, to
develop and deploy a Tech Control Automation Proof-of-concept
System (TCAPS) based on available technology. The centerpiece of
this project was to be a modular cabling and control console
system developed earlier by Sandia National Laboratory, and
indeed it was very successful; the system is still in place where
it was demonstrated at the Army TCF at Fort Detrick, Maryland,
where it is in daily use for centralized polling, configuration
and control of a large number of AN/FCC-100 multiplexers.

25

DCEC/DRTV was aware of a separate Lincoln Laboratory project
sponsored by Rome Air Development Center, developing a Machine
Intelligent TEch Control (MITEC) expert system to automate the
operation of TCFs (Annual Reports, Knowledge-Based System
Analysis and Control, FY89 and FY90). The idea was advanced in
FY89 of having the DCA buy and install two MITECs at Fort
Detrick, together with the testbeds of modern remotely-accessible
TCF equipment required by MITEC in order to achieve hands-off
operation, and to integrate a demonstration of the available
MITEC technology with TCAPS. This integration was to take the
form of having the MBB operator alert a MITEC expert system of
the occurrence of a fault in the MITEC testbeds, whereupon the
MITEC would automatically isolate the fault, restore service by
electronically patching spares into the circuit, and send a full
report of the activity back to the MBB console.

As the planning progressed, interest developed at the Air Force
7th Commnications Group (a TCF in the Pentagon) in participating
in the demonstrations. A decision was made to locate one of the
MITECs at the 7th CG, and to provide a dedicated T1 circuit and
multiple telephone circuits between the MITECS at 7th CG and Ft.
Detrick. Numerous demonstrations of the systems were done at
both Ft. Detrick and the Pentagon, for a variety of visitors
ranging from working Tech Controllers to flag officers. More
complete details are given in the FY90 Annual Report on
Knowledge-Based System Analysis and Control, which was written
for RADC. In fact the MITEC demos in association with TCAPS were
pivotal in triggering a decision by the Air Force Communications
Command to fund the technology transfer of MITEC into the working
Air Force communications systems inventory. An excellent degree
of synergism has been realized between the MITEC and TCAPS work
in several areas, such as database design, report generation, and
FCC-100 control techniques. There is also the prospect of future
coupling between MITEC and the DCEC-sponsored TRAMCON expert
system.

26

APPENDIX A. IWES System Design

The Integrated Workstation Expert System (IWES) is written in 'C'
and in an expert system shell developed by the Artificial
Intelligence Section of the Mission Planning and Analysis
Division at NASA/Johnson Space Center. The shell is called CLIPS
('C' Language Integrated Production System). CLIPS, CLIPS
updates and CLIPS documentation are available at no cost for U.S.
government work. To register as a CLIPS user and receive update
information call the CLIPS Users Help Desk at (713)280-2233
during the hours 8:00 a.m. to 4:45 p.m., central time, Monday
through Friday. Any mail correspondences should include your
name, current address and phone number to keep records
up-to-date, and should be addressed to:

CLIPS Users Help Desk/M30
Computer Sciences Corporation
16511 Space Center Boulevard
Houton, Texas 77058

The IWES is the result of integrating an existing stand-alone
expert system, the Network Management Expert system (NMES), into
the Integrated Workstation (IW). Some NMES user options and
internal code relating to the original system are obsolete with
relationship to the IW, but still exist in IWES. Code still
exists to communicate with the NMES graphics, a call by call
simulator and a switch report translator. None of the standalone
options or code are visible to the IW operator, but they will be
invisible to anyone involved with programming the IWES. In the
future, we would like to remove all of the old NMES code that is
not in use.

A.1 Program Flow

Because most of the program logic of IWES is embodied in CLIPS
rules, which are highly unprocedural, we have decided to describe
IWES program flow in pseudo code. Below is a description of the
major procedural routines that constitute IWES. A description of
the CLIPS rules and 'C' monitors is found in Appendix B.

In the following pseudo code, we describe the programming
structures and the important functions executed in each major
routine. The order within the pseudo code routines is identical
to the order within the real IWES code. Functions are
decipherable from plain text descriptions by the () following
them. When a function is called it is also followed by the
section of this document it can be found in and by the name of
the actual 'C' routine within which it is located.

27

A.1.1 IWES main routine

main() (nmes.c)

nmesinit() (section A.1.2) (flues init.c)
nines_reset() (section A.1.2) (nines reset.c)
iwmdinit() (section A.1.2) (iwud. c)

loop while running
processpipejinput ((section A. 1.3) (processpipeinput. c)

A.1.2 Initialization routines

nines init() (nines mnit. c)
mnit_clips() (Clips routine)
load_clips rules() (section A. 1.2) (load clipsyrules.c)
read-node-file() (section A.1.2) (read node.c)
read_cli file() (section A.1.2) (read clli.c)
open initial iwes log file
read-ctrl-info() (section A.1.2) (read ctrl.c)

nines_reset() (Times reset. c)
reset_clips() (Clips routine)
assert_nodes() (section A.1.2) (read node.c)
assert-cllis() (section A.1.2) (read node.c)
load() (section A.1.2) (stats.c)
initialize IWES times
reset_switch_link() (section A.1.2) (nines reset.c)

iwindinit() (iwmd.c)
set up connection with iwmd

load clips_rules() (loadclipsrules .c)
load rules into clip

read_node_file() (read node. c)
IWGetSwitchTableOC (IWDB routine)
build IWES linked list switch structure

read_clii_file() (read -clli. c)
IWGetNetworkTableo((IWDD routine)
build IWES link and clii structures

read_ctrlinfo() (read ctrl .c)
read_sitetypefile() (section A.1.2) (read -ctrl.c)
readsyntax_file() (section A. 1.2) (read-ctrl.c)

assert_nodeso((read node. c)
assert node information into clips

assert_cllis() (readnode. c)
ansert Ali information into clips

28

load() (stats.c)
load statistical database containing normal
values into hash table and insert facts
into clips

reset switch link() (nesreset.c)
initialize-status arrays

readsitetype file() (readctrl.c)
read in the control sitetype file

read syntax file() (readctrl.c)
read in the control syntax file

A.1.3 Communication with the IWMD

processpipeinput() (processpipeinput.c)
checksocket() (section A.1.3) (checksocket.c)
if message available from message dispatcher

processiwmd() (section A.1.3) (iwmd.c)

checksocket()
check if any messages are available (checksocket.c)

processiwmd() (iwmd.c)
do while (remaining) /* while messages still remain */

read iwmd() (section A.1.3) (iwmd.c)
parse the message
if bad message, return
if polldone

process switchreport iwdb()(section A.1.4)
(processswitch_report.c)

send procdone message to the iwui
if not receiving neural network output
send recsdone message to the iwui

else if diagdone
if receiving neural network output
processneuralnet() (section A.1.6)

(processneuralnet.c)
send recsdone message to the iwui

else if polledst
print message - no other actions taken yet

else if ctrlsent
print message - no other actions taken yet

else if ctrlresp
print message - no other actions taken yet

else if decodedone
print message - no other actions taken yet

else
print don't know how to respond to message

29

readiwmd() (iwmd.c)
returns a single message from the message
dispatcher. Keeps track of any other messages
that have been read, but not processed, so it
can return them next time it is called

A.l.4 Processing switch reports

processswitch report iwdb() (processswitchreport.c)
IWGetTrafficTable() (IWDB routine)
get time from traffic table
if new date
open a new log file

for each switch a report was received from
store data in IWES network representation

structures
assert fact in to clips that a switch report has
been received

runswitchmonitors() (section A.1.5)
(switch monitors.c)

get iwdb clli() (section A.1.4) (process_switchreport.c)
runes() (section A.1.7) (runes.c)

get_iwdbcllio (processswitchreport.c)
for each trunk group a report was

received from, store data in IWES
network representation structures

clli monitors() (section A.1.4) (processswitchreport.c)
find-cllis withoutreports() (Section A.1.5)

(report monitors.c)

A.1.5 Running Monitors

run switch monitors() (switchmonitors.c)
if switch is reporting
markswitch_report received() (switchmonitors.c)
find no mf receiver free() (switchmonitors.c)
find no dialingreceiverfree() (switch monitors.c)
find_cpoverflows() (switch-monitors.c)
find mf radr overflows() (switchmonitors.c)
find-dial radr overflows() (switchmonitors.c)
find cpuoverflows() (switch monitors.c)
find trmtcm overflows() (switch-monitors.c)
find trmter-overflows() (switch_-monitors.c)
find trmtrs overflows() (switch monitors.c)
find-dcmoverflows() (switch-monitors.c)

Switch monitors detect anomalies in the switch report fields.
For descriptions of the above 11 switch monitors see section
A.7.1.1.

30

(Switch Monitors)

clli -monitors() (process switch report.c)
check fail-clli-report() (report monitors .c)
find stats() (stat_processor.c)
if using the statistical database
calculatestatistics() (statprocessor.c)

find clli trunks down() (reportmonitors.c)
findhundredove-rflow() (report monitors.c)
find zero overflow() (report monitors.c)
find~low_holding_time() (reportuonitors.c)
find low ht_100 overflow() (reportmonitors.c)
find-low ht calls() (report_monitors.c)
if receiving neural network output
find-max-usage_few-calls() (reportjmonitors.c)
find zerousagecalls() (report-monitors.c)

Clii monitors detect anomalies in the clli report fields.
For descriptions of the above clli monitors see section A.7.1.2
(Trunk Group Monitors)

run interval monitors() (interval monitors.c)
for each switch
find nodes not responding() (intervalmonitors.c)
find_no outgoing attempts() (interval monitors.c)

Interval monitors detect anomalies by analyzing fields in
neighboring switches report fields. For descriptions of the
above interval monitors see Section A.7.1.1.2 (Other Switch
Monitors)

A.1.6 Processing neural network output

processneuralnet() (processneuralnet.c)
IWGetfwnnReadDataStream() (IWDB routine)
read in neural network results
if neural network switch anomaly
find-nn switch-error() (section A.1.6)

(processneuralnet.c)
else (neural network trunk group anomaly)
nnclli error() (section A.1.6) (process-neuralnet.c)

remove old text from switch state array
remove old text from link state array
runes() (section A.1.7) (runes.c)

find nnswitcherror() (process neuralnet.c)
fill in neural network information structure
find switch structure
create text message
check nn switch validity() (section A.1.6)

(processneuralnet.c)

31

check nnswitch validity() (processneuralnet.c)
match with known neural network switch anomaly

add text message about anomaly to switch
state array
assert anomaly into clips facts

nn clli error (process_neuralnet.c)
fill In neural network information structure.
find clli structure
create text message
checknncllivalidity() (section A.1.6)

(process neuralnet.c)

checknn clli_validityO) (process_neuralnet.c)
match with known neural network clli anomaly

add text messge about anomaly to link
state array
assert anomaly into clips facts

A.1.7 Running the expert system

runes () (runes.c)
if time-to runclips() (section A.1.7)(runes.c)

if not the first time period
runinterval monitors() (section A.1.5)

(interval monitors.c)
assert the current time into clips
run(-l) /* run clips */ (clips run routine)

createresults_file() (section A.1.8)
(results.c)

resetreport received() (section A.1.7)
(runas.r)

time to run clips() (runes.c)
if receiving neural network output and neural

network output has not been received
return(0)

else
return(I)

reset reportreceived() (runes.c)

mark reports as not received

A.1.8 Creating the results file

create resultsfile() (results.c)
IWGetIwesWriteDataStream() (IWDB routine)
count the number of switches with information

to be put in the results file
write header line to file
for each switch

32

If switch information is available
addsw-info() (section A.1.8) (results.c)

add sw info() (results.c)
write switch name, alarm, and number of anomalies

to file
add sw-conclusions() (if any) (section A.1.8)

(results.c)
addsw_recommend() (if any) (section A.1.9.1)

(results.c)
count the number of trunk groups with information

to be put in the results file
if there are trunk groups with information
add-tginfo() (section A.1.8) (results.c)

add swconclusions() (results.c)
for each problem at the switch
get sw-descriptionso) (section A.1.8)

(rec description.c)
write description to file
write explanation from switch state array to file

getswdescription() (recdescription.c)
get normal values from statistical database

for use in description
switch on problem type

add description for problem to conclusion
structure

add_tginfo() (results.c)
for each clli with information
write clli name,trunk group number, src, dest,

alarm, and number of anomalies to file
add In conclusions() (if any) (section A.1.8)

(results.c)
add-tg-recommend() (if any) (section A.I.9.2)

(results.c)

addIn_conclusions() (results.c)
for each problem on the clli
get-In-descriptions() (section A.1.8)

(recdescription.c)
write description to file
write explanation from link state array to file

getin_description() (recdescription.c)
get normal values from statistical database

for use in description
switch on problem type

add description for problem to conclusion
structure

33

A.1.9 Determining Recommendations

A.1.9.l Recommendations for Switch Problems

addswrecommend() (results. c)
get sw_recommend() (section A.1.9.1)

(recommend. c)
write alarm, problems, actions and controls

to the file

get swrecommend() (recommend. c)
for each problem at the switch
get swproblem() (section A.1.9.1) (recprob.c)
if using preplans
getswppln() (section A.1.9.1) (preplan.c)
if no preplans were found
get sw actions() (section A.1.9.1)

(rec action.c)
get sw controls() (section A.1.9.1)

(recctrl.c)
else

get sw actions() (section A.1.9.1)
(recaction.c)

get sw controls() (section A.1.9.1)
(recctrl.c)

get swyproblem () (recprob. c)
switch on problem type

add problem text for problem to
recommendation structure

get sw ppln() (preplan.c)
get text for problem type
getsw_ppln fromfile() (section A.1.9.1)

(pre_plan. c)

getsw_pplnfrom file() (pre_plan.c)
read pre-Plan from file
if no actions are in the file
get sw_actions() (section A.1.9.1) (rec action.c)

if no controls are in the file
getasw_controls() (section A.1.9.1)

(recctrl.c)

get_swactions() (rec action. c)
switch on problem type

add actions for problem to recommendation
structure

34

get swcontrols() (rec-ctrl.c)
switch on problem type

add controls for problem to recommendation
structure

A.1.9.2 Recommendations for clli problems

addtgrecommend() (results.c)
getin_recommend() (section A.1.9.2)

(recommend.c)
write alarm, problems, actions and controls

to the file

getln_recommend() (recommend.c)
for each problem on the clli
get ln_problem() (section A.1.9.2) (recprob.c)
if using preplans
get ln ppln() (section A.1.9.2) (preplan.c)
if no preplans were found
get_in_actions() (section A.I.9.2)

(rec action.c)
get_in_controls() (section A.1.9.2)

(rec-ctrl.c)
else

get in actions() (section A.1.9.2)
(rec action.c)

get ln controls() (section A.1.9.2)
(rec-ctrl.c)

get ln_problem() (recprob.c)
switch on problem type

add problem text for problem to
recommendation structure

get ln ppln() (preplan.c)
get text for problem type
get_ln_ppln from fileo) (section A.1.9.2)

(preplan.c)

get lnppln_fromfile() (preylan.c)
read pre_plan from file
if no actions are in the file
get in_actions() (section A.1.9.2) (rec-action.c)

if no controls are in the file
get in controls() (section A.1.9.2)

(rec-ctrl.c)

getin_actions() (rec action.c)
switch on problem type

add actions for problem to recommendation
structure

35

get in controls() (recctrl.c)
switch on problem type
add controls for problem to recommendation

structure

A.1.1O Network Status Routines Called from Clips

nnswitchstatus() (nLstatus.c)
compare the status(problem) sent as a parameter

from clips with a list of expected status
parameters to find the correct status
store or remove text in the switch state array
describing the problem found.

add the problem to or remove the problem from
the current problems array

nnclli_status() (nnstatus.c)
compare the status(problem) sent as a parameter

from clips with a list of expected status
parameters to find the correct status
store or remove text in the link state array
describing the problem found.

add the problem to or remove the problem from
the current problems array

A.2.1 Inputs to IWES

A.2.1.1. Switch Reports

Switch reports are read into the IWES, processed for
anomalies and used in validating neural network results. A call
to IWDB routine IWGetTraffic(timestamp) is made in IWES routine
processswitchreport iwdbo, which is located in
processswitch report.c. This call returns a pointer to a
structure that contains traffic information for each switch
that responded to a poll for tha time period specified.

Format: Traffic information contains OMs for switches and
related trunk groups. For the exact format of the
structure see section 5.4 of the Integrated
Workstation Programmer's Guide.

A.2.1.2. Neural Network

Neural network results are read into IWES every time
interval. They are validated and used to determine network
problems and make recommendations for network management actions
to be taken to correct the problems. A call to IWDB routine
IWGetIwnnReadDataStream(timestamp) is made in IWES routine
processneuralnet), which is located in processneuralnet.c.

36

This call returns a file pointer to the neural network
anomaly file. IWES uses this file pointer to read in anomalies
line by line.

Format: See neural network output file (section 5.7 of the

Integrated Workstation Programmer's Guide)

A.2.1.3. Switch Representation

Switch representation information is read into IWES upon
initiation. IWES uses this information to set up a linked list
of switch structures, which are used through out all of the code.
A call is made to IWDB routine IWGetSwitchTable() in IWES routine

readnode fileo, which is located in read node.c. This call
returns a pointer to a structure that contains-information about
the switch.

Format: See IWDB section of the Integrated Workstation
Programmer's Guide(5.4).

A.2.1.4. Trunk Group Representation

Trunk representation information is read into IWES upon
program initiation. Trunk information is added to the related
IWES switch structures to be used throughout program execution.
A call is made to IWDB routine IWGetNetworkTable() in IWES
routine read clii_file(, which is located in read clli.c. This
call returns a pointer to a structure that contains information
about the trunk groups and their connectivity.

Format: See IWDB section of the Integrated Workstation
Programmer's Guide(5.4).

A.2.1.5. Preplans

Preplans allow a network management expert to tailor recommended
actions and controls for specific switches and trunk groups.
They are accessed directly from files in the IWES routine
get swpplnfrom-fileo, which is located in preplans.c. The
preplan files are located in the $(IWDATA)/iwesconfig/ppln
directory and have a filename format of:

preplan.X where X is a three character site name
e.g. preplan.UXB

or
preplan.X.Y where X is a three character site name

and Y is a short clli name
e.g preplan.UXB.SVN095

37

Format:

HeaderLine

<sWname or clliname> Where: swname - name of the switch
cllname - name of the clli

Problem recommendations (repeat for all types of problems
that have preplanned
recommendations)

<problem> Where: problem is a one of a predetermined set
of text strings associated with IWES problems.
These text strings are hard coded in IWES.
Presently hard coded IWES problems include:

Switch_Outage
SwitchCongestion (although no neural

network output is available for
this problem)

PermanentSeizure
Signalling Glare
Signalling-Problem

Actions
<actions[l]>

• Where: actions[i] = a line of text
* (80 chars max) ending with a
• newline character. n must be

less than 20.
<actions[n>

Controls
<control[i]> Where: control[i] = a line of text

for the user interface to display
(80 chars max) ending with a newline
character. n must be less than 20.

<controlparameters[l]> controlparameters[i] = a line

of . formatted text (80 chars max) ending
* with a newline character. n must be

less than 75. This text will be sent
on to the control module.

Presently, . formatting of the control parameters
is not complete.

<control[n]>
<controlparameters(n]>

End

A.2.1.6. Control Format Information

Control information is accessed by the IWES in order to
verify and format recommended controls accurately. It is

38

accessed directly from files in IWES routines
read sitetype file() and readsyntax file(C, which are located in
read ctrl.c. The control format information files are located in
the $(IWDATA)/iwes config directory and have filenames and
contents as follows:

ctrl-types.sites - contains a list of the
reporting sites followed by
their site type

ctrl-syntax.nr - contains a list of site types,
actions and controls followed
by an associated syntax
number.

ctrlsyntaxparams - contains a list of syntax
numbers followed by a set of
parameter numbers.

ctrl-syntax-labels - contains a list of parameter
numbers followed by a text
label and a parameter
definition.

IWES must go through 4 steps to get the complete set of control
parameters. First it determines the site type, then the syntax
number, then parameter numbers and finally the actual parmaters.

Presently, only ctrltypes.sites and ctrl syntax.nr are read

into IWES.

Formats:

ctrltype. sites

<sw name> <site-type> Where: sw name = name of the
switch sitetype - an integer
representing the type of the
site.

(This line is repeated for each reporting switch)

ctrlsyntax.nr

<sitetype> <action> <control> <syntax-number>

Where: sitetype - an integer representing the type of
the site.

action - action to take. One of: APPLY, LIST or
REMOVE.

control = One of a group of previously specified
controls.

syntax number - A syntax number associated with
the site-type, action and control.

39

(This line is repeated for each different set of

sitetype, action and control)

ctrlsyntax_params

<syntax-number> <parameter-numbers>

Where: syntaxnumber - A syntax number associated with
the sitetype, action and control.

parameter-numbers - a list of parameters numbers
in the order expected by the control module.

(This line is repeated for every syntax number)

ctrlsyntaxlabels

<parameternumber> <label> <parameter definition>

Where: parameter number = a parameter number from the
parameter numbers listed in the control
syntax parameters file.

label = a predetermined label for the parameter
number that IWES is aware of.

parameter definition = limits of the parameter.

(This line is repeated for every parameter number)

A.2.1.7 Statistical Data Base Input Files

Statistical data base input files are found in the
SDSNPATH/expert/stats/db directory. Specifying the runtime flag,
statdb, in the IWES (NMES) execution line enables the use of the
statistical data base. At IWES initialization time the stat
values (average and standard deviation for each hour) for all
switch and trunk group stats are loaded from the offline ASCII
files into a hash table.

In addition to the actual stat files, there are two files in the
stats/db directory that provide parameters for statistical data
base monitor thresholds and information on trunk groups that run
normally with INSERVICE set less than EQUIPPED.

A.2.1.7.1 Stat Files

Each file is an ASCII text file containing hourly stat
information for a specific stat (type) for one switch or trunk
group (item). Since there are up to 24 hours of switch report
data available, stat files will normally contain 24 records
representing hours 0 through 23. Each stat file record has the
following format:

40

Hour Average #OfSamples Minimum Maximum Standard Deviation.

For each of the 14 reporting switches in the European network,
there are 3 stat files: CCB usage per 5 minutes, MF receiver
holding time, and Digitone receiver holding time.

There are currently 102 trunk groups connecting the 14 reporting
switches with each other and other non-reporting switches. For
each of these trunk groups the statistical data base has 6 files:
percent overflows, average holding time, incoming calls per
circuit per hour, outgoing calls per circuit per hour, total
calls per circuit per hour, and percent use of total trunk group
capacity. In total, there are 654 (3 * 14 + 6 * 102) stat files
in the data base.

The stat file name format describes what data was used to compile
the stat values, and what stat type is being computed for what
item:

stat-<date>+<additionaldays>-<item>.<type>.

For example, the file "stat-900103+9-ezl.ccb" contains CCB
seizure information for the switch EZL. The data was computed
from 10 days of archived data beginning 900103. The file
"stat-900806+8-tjsO52.povfl" contains Percent Overflow data for
the trunk group 52 out of TJS. The data was computed from 9 days
of archived data beginning 900806.

The format of the statistical data base files allows them to be
directly processed by a plotting program, XGRAPH, when displaying
the averages over time. For example:

xgraph stat*.ccb

will display the CCB usage curves over 24 hours for the 14
switches.

A.2.1.7.2 Threshold Factor File

The stat-SD FACTOR.fact file contains factors for resetting the
threshoids the IWES uses to detect deviations from normal network
activity. The default thresholds for trunk group stats is 1
standard deviation above or below the average value. The .fact
file allows the IW operator to configure offline a different
standard deviation factor for each of the 6 trunk group stat
types. At IWES initialization time, if a .fact file is in the
stat/db directory, the trunk group stat thresholds in the array
statsdfactors[] will be reset. Each line in the .fact file has
one integer and corresponds to one trunk group stat type. The
order is implicit: percent overflows (povfl), incoming
calls/circuit/hour (icch), calls/circuit/hour (cch), total

41

calls/circuit/hour (tcch), average holding time (aht), and
percent trunk group use (puse).

The current .fact file contains 6 records: 2,2,2,3,2,2, which
indicatew that povflicch, cch, aht, and puse thresholds are set
at 2 times their standard deviation from average, and that tcch
is set at 3 times its standard deviation. Note, that because the
statistical data base contains a computed standard deviation and
average for every trunk group for every hour of the day, each
threshold check is specific for the trunk group and time of day.

A.2.1.7.3 Inservice File

The stat-<dates>-TGS.insrv contains trunk groups that normally
run with a low inservice count. The IWES uses this information
at runtime to inhibit messages warning of low inservice trunk
groups to the operator. Currently there is no .insrv file
because all trunk groups were running normally at their equipped
level when the system was installed in September 1990.

The format of each line is:

<local switch> <tg_#> <CLLI> <normallowinservice_#>
<destination-switch>

An example is:

ezl 90 ABE001 0 abe

A.2.2 Outputs from IWES

A.2.2.1. Results File

The results file is written by the IWES and read by the IWUI.
A call to IWDB routine IWGetIwesWriteDataStream(timestamp) is
made in IWES routine create results fileo, which is located in
results.c. This call returns a file pointer to the iwes results
file. IWES uses this pointer to write into the results file line
by line. The result files are located in the
$(IWDATA)/YYMMDD/iwes directory and have a file name format of:

YYMMDD.HHmm.iwes where: YY = year
MM = month
DD - day
HH - hour
mm - minute

e.g. 900927.1540.iwes

42

Format:

Header Line

Time: <Timestamp> Switches: <numofswitches>

Where: timestamp is in the format YYMHDD.HHM (described
in section ?)

nun of switches - the number of switches for which
i7nformation about the switch or any of the
trunk groups leaving the switch is contained
in the file.

Switch Information

<sw name>

Where: sw-name = name of the switch

Anomalyalarm: <alarm> Anomalies: <numofanomalies>
<Anomalies[1]>

<Anomalies[num of lines]>

Where: alarm = level of the anomaly alarm. The alarm
could be one of 6 values:

NODATA 0
NORMAL 1
LEVEL2 2
LEVEL3 3
LEVEL4 4
DOWN 5

As long as this alarm is greater than 1 conclusion
and recommendation information will be
available.

numof anomalies - number of anomalies at the
switch.

Anomalies[i] = a line of text (80 chars max)
ending with a newline character.

Descriptiont <num of lines> Where: num oflines - the
<Description[1]> number of

description lines
* that follow

Description[i] - a line
* of text (80 chars

max) ending with a
newline character.

<Description[num of lines]>

43

Explanation: <numoflines> Where: num of lines - the
<Explanation(!]> nuber of

. explanation lines
* that follow

Explanation[i] - a line of
text (80 chars max)
ending with a
newline character.

<Explanation(numof_lines]>
Recommendation Alarm: <recommendalarmlevel>

Where: recommend alarmlevel - level of the
recommendation alarm.

The alarm can equal either zero or one. If it
equals zero then no problems, actions or Controls
will follow (see example). If it equals one
problems, actions and/or controls will follow.

Problem: <num of lines> Where: numof-lines = the number
<Problem[i]> of problem lines that

• follow.
* Problem[i] - a line of text
* (80 chars max) ending with

a newline character.
<Problem[numnof lines]>

Actions: <num of lines> Where: num of lines = the number
<Actions[i]> of action lines that

follow.
Actions[i] = a line of text
(80 chars max) ending with
a newline character.

<Actions[num of_lines]>
Controls: <numof controls> Where: num of controls =

<control[l]> the number of
controls that
follow.

control(i] = a line of text for the
user interface to display
(80 chars max) ending
with a newline character.
n must be less than 20.

<controlparameters[l]> controlparameters(i] - a line of formatted
text (80 chars max)
ending with a new line
character. n must be less
than 75. This text will
be sent on to the control
module. Presently,
formatting of the control
parameters is not
complete.

44

<control(numberofcontrols]>

<controlparameters [numberof-controls]>

Trunk_ ro]ps: <numoftrunkgroups>

Where: num oftrunksgroups - the number of trunk groups
leaving this switch for which information is
contained in the file. The following trunk
group information will be repeated for each
trunk group.

Trunk arouR information (repeat for all trunk groups with

anomalies)

<Clli-name> Num: <trunkgroupnum> Src: <src> Dest: <dest>

Where: c1liname = name of the cdli.
trunkgroupnuN - the trunk group number.
src = the source switch.
dest = the destination switch.

Anomalyalarm: <alarm> Anomalies: <num of anomalies>
<Anomalies [1]>

<Anomalies[num of lines]>

Where: alarm = level of the anomaly alarm. The alarm
could be one of 6 values:

NODATA 0
NORMAL 1
LEVEL2 2
LEVEL3 3
LEVEL4 4
DOWN 5

As long as this alarm is greater than 1 conclusion
and recommendation information will be available.
nunofanomalies - number of anomalies for the trunk
group.

Anomalies[i] = a line of text (80 chars max) ending
with a newline character.

45

Description: <numoflines> Where: num of lines - the
<Description~i]> number of
* description lines
* that follow
* Description[iJ - a
* line of text (80
. chars max) ending
* with a newline

character.
<Description[numnof_lines]>

Explanation: <numoflines> Where: nun of lines - the
<Explanation[l]> number of explanation
• lines that follow
• Explanation[i] - a line
• of text (80 chars max)
* ending with a newline

character.
<Explanation[numnof lines]>

Recommendation Alarm: <recommend alarm level>
Where: recommend-alarm level = level of the

recommendation Alarm
The alarm can equal either zero or one. If it
equals zero then no problems, actions or
Controls will follow (see example). If it
equals one then problems, actions and/or
controls will follow. At this point, this alarm
is not used in the user interface.

Problem: <num_of lines> Where: numoflines = the
number of

<Problem[1]> problem lines that follow.
Problem[i] = a line of text
(80 chars max) ending with
a newline character.

<Problem[numoflines]>

Actions: <num-of lines> Where: nun of lines = the
number of

<Actions[l]> action lines that follow.
Actions[i] - a line of text

* (80 chars max) ending with
a newline character.

<Actions[num oflines]>

46

Controls: <nunofcontrols> Where: nun of controls - the
number of controls that
follow.

<control[l]> control(i] - a line of text for the user
interface to display

(80 chars max) ending with a newline
character. n must be less than 20.

<controlparaueters(l]>
* controlparameters[i] - a line of formatted text
* (80 chars max) ending with a newline
* character. n must be less
• than 75. This text will be
* sent on to the control
. module. Presently,

formatting of the control
. parameters is not complete.

<control[numberofcontrols]>
<controlparameters[numberofcontrols]>

A.2.2.2. Log File

The log file contains additional observations about network
status. The log file is written to directly in IWES routine
write logo, which is located in compackage.c. The log is
written into the $(IWDATA]/log/iwes directory and has a file name
format of:

YYMMDD.iwes.log where: YY = year
MM = month
DD = day

e.g. 900927.iwes.log

Format:

<time> <observation> where: time is in the form HH:MM:SS
HH = hour
MM - minute
SS = seconds
observations = a line of text

(Th4 is repeated for as many observations as there are
during the day)

A.3 Message Dispatcher Messages

A.3.1 Received from the Message Dispatcher:

Messages are read from message dispatcher in IWES routine
read iwmdo. Read iwmd() is called by processiwmdo. In
processiwmd() IWES analyses the messages it has receives and

47

determines what actions it should take as a result of receiving
the message. Both read_iwmd() and process_iwmd() are located in
iwmd.c.

A.3.1.1 Polldone

Format: <src> <dest> polldone <timestamp>

When IWES receives a polldone message it accesses raw switch
reports from the IWDB, runs monitors and statistical database
monitors to detect switch report anomalies and asserts switch
report anomalies into CLIPS as facts.

A.3.1.2 Diagdone

Format: <src> <dest> diagdone <timestamp>

When IWES receives a diagdone message it reads the neural network
output file and asserts neural network anomalies into CLIPS as
facts.

A.3.1.3 Polledst

Format: <src> <dest> polledst <timestamp>

Presently, no actions are taken when IWES receives a polledst
message.

A.3.1.4 Ctrlsent

Format: <src> <dest> ctrlsent <timestamp>

Presently, no actions are taken when IWES receives a ctrlsent
message. In the future, IWES could read the ctrlsent file and
check for controls that it had recommended.

A.3.1.5 Ctrlresp

Format: <src> <dest> ctrlresp <timestamp>

Presently, no actions are taken when IWES receives a ctrlresp
message.

A.3.1.6 Decodedone

Format: <src> <dest> decodedone <timestamp>

Presently, no actions are taken when IWES receives a decodedone
message.

48

A.3.2 Sent to the Message Dispatcher

Both of the messages described below are sent to the message
dispatcher in processiwmd() which is located in iwmd.c

A.3.2.1 Procdone

Format: iwes iwui procdone <timestamp>

IWES sends a procdone message to the user interface when it has
completed processing the switch reports. Presently, the user
interface is not taking any action when it receives the procdone
message.

A.3.2.2 Recsdone

Format: iwes iwui recsdone <timestamp>

IWES sends a recsdone message to the user interface after it has
completed processing the neural network results, running clips
and writing out its results. Upon receiving the recsdone message
the user interface accesses the IWES results file.

49

APPENDIX B. IWES Monitor & Rule Descriptions

This Appendix contains descriptions of the monitors and the rules
used in IWES (the version of NMES created for the IW
workstation.)

The monitors described below are C routines. The rules are
written in CLIPS. Monitor names are those used in IWES. The
program name is followed by an English language name intended to
be descriptive of the function of the monitor.

The confirmation of anomalies involves an interaction between
monitors and CLIPS rules. When the switch report data is read,
the fields are checked by monitors. If the contents of a switch
report field is not normal, then a CLIPS fact is asserted which
states this abnormality. When the rules are run, these abnormal
data facts are matched with the neural net outputs to obtain
either confirmed or not-confirmed anomalies. There is a set of 8
rules for each anomaly recognized by the neural net. Rather than
describe all the rules, we present a description in some detail
of a template for these 8 rules (Section B.2.1). The description
omits some details that relate to CLIPS syntax and other internal
programming issues in order to simplify the presentation without
losing information relative to the functions performed by the
rules. Following the description of the template, we present an
English language explanation of the logic involved in the
confirmation of each anomaly.

B.1 IWES Monitors

Monitors are C language routines that process switch report data
and/or the outputs of other monitors and store the results in a
set of C language structures representing the network. Many of
them also work to help maintain (in C arrays) lists of switches
and trunk groups that have anomalous (non-normal) states. The
items on the lists combine the switch or trunk group with an
anomaly identifier. When a monitor recognizes an anomaly, it
appends an item to the appropriate list. It may also remove an
item previously put on the list. There can be more than one item
on the list for a particular switch or trunk group, but in such a
case, the anomaly will be different. These lists are reported to
the IW as "Observations."

Many of the monitors assert their findings as CLIPS facts. When
operating with the Lincoln Laboratory graphics, monitors
generally write messages to a scroll window so that the user can
be made aware that a monitored situation has occurred. That
activity does not take place when IWES is running in the IW and
is omitted from the descriptions that follow.

The order in which individual monitors are run is important since

some use the results generated by others. In the following

50

sections, they are described in the order in which they run in

MNES.

B.1.1 Switch Monitors

The monitors in this and the following section are run as each
switch report arrives.

,B.1.1.1 Switch Report Register Monitors

These monitors check the individual registers in the switch
report for a non-zero value which can indicate an abnormality
with the system. The checks all follow the following logic:

IF the value of the register is greater than zero THEN
assert for CLIPS the fact that switch X showed an instance
of
a non-zero register for this time cycle
append a register-failure state to the switch state list

ELSE remove any register-failure state for switch X which
might be left from a previous cycle

The following includes a list of the switch monitor routines and
the individual registers they are checking. They are all found
in the file switch monitor.c.

Monitor - find no mf receiver free
Check the switch report RCVR Mf Receiver Overflow register

for evidence that attempts to assign a Multi-Frequency (MF)
receiver found none free (overflow occurred).

Monitor - find no dialingreceiver free
Check the switch report RCVR DGT Receiver Overflow register

for evidence that attempts to assign a Digitone receiver found
none free (overflow occurred).

Monitor - find-cp_overflows
Check Call Processing (CP) Registers for:
CCB overflow during attempt to seize a Call Condense Block
(CCB)
CP failures due to illegal software conditions (CP TRAP)
CP failures due to unexpected results detected (CP SUIC)
Call originations denied during warm and cold restarts

(INITDENY)

Monitor - findmfradr overflows
Check MF RADR Registers for:
MF failure to get response from receiver within the lower

delay threshold (RADLDLYP)
MF failure to get response from receiver within the upper
delay threshold (RADUDLYP)

51

Monitor - find dialradr overflows
Check Digitone RADR Registers for:
DGT failure to get response from receiver within the lower
delay threshold (RADLDLYP)

DGT failure to get response from receiver within the upper
delay threshold (RADUDLYP)

Monitor - findcpuoverflows
Check CPU registers for:
CPU mismatch interrupts due to interprocessor differences
between the two CPU's (MTCHINIT)
CPU data store, program store, CMC link or CMC data port
system busied following a mismatch or trap interrupt
(CPUFLT)
CPU warm restart and cold restart (SYSWINIT, SYSCINIT)
CPU simplex -
SYNCLOSS - Processor made simplex following mismatch
interrupt MSYLOSSU - Time usage of simplex mode due to
manual intervention
SSYLOSSU - Time usage of simplex mode due to system action

Monitor - find cmc overflows
Check CMC registers for calls to diagnostics on the CMC as a

result of errors and faults on the registers CMC 0 and CMC 1.

Monitor - find trmtcm overflows
Check TRMTCM registers for:
TCM partial digit calls occurred - i.e. one or more digits
received but not enough for translation (TCMPDIL)
TCM permanent signal calls occurred - i.e. Seizure with no
ensuing digits (TCMPSIG)
TCM vacant code calls - i.e. Translation occurred but no
matching pattern is found (TCMVACT)

Monitor - find trmter overflows
Check TRMTER registers for:
TER miscellaneous system failure calls (TERSYFL)
TER reorder calls which can be caused by mutilated digits,
forced release, unexpected stops, excessive digits for
translation, invalid start signals, invalid translations and
others.(TERRODR)

Monitor - find trmtrs overflows
Check TRMTRS registers for:
TRS emergency treatment 1 for deflected calls for CBK, DCC,
ARC, or anything sent to EAl (TRSEMR1)
TRS emergency treatment 2 for deflected calls for CBK, DCC,
ARC, or anything sent to EA2 (TRSEMr2)

52

Monitor - find dcm overflows
Check DCM registers for:
DCM referrals of a digital trunk for diagnostics (DCMCCTDG)
DCM digital trunk diagnostic failures (DCMCCTOP)

B.1.1.2 Other Switch Monitors

These switch monitors are independent of neural net anomaly
recognition. They check for receiving switch reports, not
receiving switch reports, and evidence of activity at neighbor
switches.

Monitor - markswitch-report received (in switchmonitor.c)
Remove any not-reporting state information for the switch.
(The 'reporting' state is not considered an anomaly and is
not kept on the switch state list.)

IF a switch report is received from switch X
THEN remove any not-reporting state for switch X that might
be left from a previous cycle

Monitor - remove switch monitors (in switch monitor.c)
Remove switch monitor states when node is not responding.

IF a switch report is not received from switch X
THEN remove any reporting state for switch X that might be
left from a previous cycle including switch report field
states

Monitor - find nodes notresponding (in intervalmonitors.c)
Find the nodes that haven't responded during the last
time period.

IF switch X is a porting switch
AND switch X did .ot report this cycle
THEN assert for CLIPS the n'3de-not-responding fact for switch
X For each clii associated with the nodes:
update link state for associated trunk groups assert for

CLIPS the fact no-clli-information-received
ELSE remove any node-not-responding states for this switch
which might be left from a previous cycle.

Monitor - findno outgoingattempts (in intervalmonitors.c)
Check for evidence of outgoing call attempts by switch X seen
as incoming calls from switch X at its neighbors.

IF one or more neighbor switches to switch X reported
AND the total incoming attempts from switch X seen by those
neighbors was not greater than zero
THEN assert for CLIPS the fact that
neighbors-see-no-incoming-signals from switch X at this time

53

append a no-outgoing-attempts state for switch X to the
switch state list
ELSE remove any no-outgoing-attempts state for this switch
which might be left from a previous cycle

B.1.2 Trunk Group Monitors

A normal switch report contains OM reports for each of the trunk
groups that connect the switch to its neighbors. Each trunk
group (tg) report is identified by a group number. Communication
problems during switch polling may cause the loss of any or all
of the tg reports associated with the poll. The following
monitors are run as the switch report is being processed. They
are run for all the tg reports that actually arrive. An
additional monitor is run at the end to identify trunk groups for
which no report was received.

B.1.2.1 Trunk Group Register Monitors

These monitors check the individual registers in the trunk group
switch report for a non-zero value which can indicate an
abnormality with the system. The monitors all follow the
following logic:

IF the value of the register is greater than zero
THEN assert for CLIPS the fact that trunk group X showed an
instance of a non-zero register for this time cycle Append a
register-failure state to the trunk group state list
ELSE remove any register-failure state for trunk group X
which might be left from a previous cycle

The following includes a list of the trunk registers checked.
They are all found in a single routine in the file
reportmonitor.c.

Monitor - check fail cli_report
Check the following trunk registers for:
Maintenance Busy Usage (MBU) on trunks due to manual actions
adjust adjustedinservice variable for holding time
calculations System Busy Usage (SBU) on trunks due to system
problems. adjust adjusted_inservice variable for holding
time calculations
Incoming failure including permanent signals, partial digits,
mutilated digits, receiver problems, etc. (INFAIL)
Failure to effectively seize the chosen trunk due to hardware
problems (OUTFAIL)
Machine detected glare on the selected trunk (GLARE)
Preemption attempts which were unsuccessful because there
were no trunks available with a lower precedence level
(PREOVFL)

54

B.1.2.2 Other Trunk Group Monitors

Monitor - find stats (in statprocessor.c)
Calculate from the current switch report and store in the tg
structures values corresponding to the statdb trunk group
stat types:

aht - Average holding time
cch - Outgoing connections per circuit per hour
icch - Incoming connections per circuit per hour
tcch - Total connections per circuit per hour
puse - Percent usage
povfl - Percent overflow

Monitor - calculate statistics (in statprocessor.c)
Check for current statdb trunk group stat type values falling
outside their acceptable ranges.

For each of the tg stat types defined in the find-stats monitor
above:

Compute an acceptablerange equal to the statdb normal value plus
or minus FACTOR times the statdb standard deviation (FACTOR comes
from the stat-SDFACTOR.fact file described in section
5.8.x.1.2.)

IF the current value is outside the acceptable-range
OR the value = 100%
THEN assert for CLIPS the fact that an abnormal value was
detected;

IF the abnormal condition has occurred twice in a row
THEN append an abnormal high or low state to the trunk group
state list
ELSE remove any abnormal high or low state for the trunk
group which might be left from a previous cycle

Monitor - find low ht calls (in report monitors.c)
Find trunks with many connections but low holding time
IF there have been outgoing attempts on the trunk group
AND the holding time is less than 20 seconds but more than 0
seconds
AND there are trunks in service
AND there are at least 36 calls per circuit per hour
THEN assert for CLIPS the fact that there is an instance of
low-ht-with-calls for this time cycleaon this tg append a
low-ht-with-calls state to the trunk group state list
ELSE remove any low-ht-with-calls state which might be left
from a previous cycle

55

Monitor - findmax usage_few calls (in report-monitors.c)
Find trunks with high usage and few calls, i.e., more usage
than the current time cycle calls would be expected to
generate

IF there are fewer calls than there are trunks inservice
AND the maximum usage the calls could generate is less than
the usage register indicates
THEN assert for CLIPS that there is highusagefew calls for
this time cycle append a high-usage-few-calls state to the
trunk group state list
ELSE remove any high-usage-few-calls state which might be
left from a previous cycle

Monitor - findzero usage_calls (in report monitors.c)
Check for calls with no usage

IF there is at least one outgoing or incoming call connection
AND the TRU usage register reports 0 usage
AND there is at least one trunk in service after accounting
for MBU and SBU
THEN assert for CLIPS the fact that there is an instance
of zerousagecalls for this time cycle on this tg append a
zero-usage-with-calls state to the trunk group state list
ELSE remove any zero-usage-with-calls state which might be
left from a previous cycle

Monitor - find cli trunks down (in report monitors.c)
Check tg report for evidence that the number of trunks in
service is less than the equipped value, and/or is less than
the number reported previously.

IF the reported number of trunks in service is less than the
reported equipped number
THEN append a decreasedcapacity state for this tg to the tg
state list
ELSE remove any decreasedcapacity state for this tg which
might be left from a previous cycle
IF the reported number of trunks in service is less than the
number reported previously
THEN assert for CLIPS the fact that a capacity change has
occurred on this tg during this cycle

Monitor - find hundredoverflow (in report monitors.c)
Check tg report for the case where the overflow peg count
equals the outgoing attempts peg count and the usage value is
zero. This situation corresponds to one type of trunk
failure.

IF there are outgoing attempts on the trunk group
AND the overflows equal the outgoing attempts
AND the trunk usage is zero

56

THEN assert for CLIPS the fact that a
hundred-percent-overflow-zero-usage condition exists on this
tg at this report time

Monitor - find zero overflow (in reportmonitors.c)
Check tg report for the case where there are outgoing
attempts, no overflows, and no usage. This situation can
occur if 103% SKIP controls are put on at both ends of the tg.

IF there are outgoing attempts on the trunk group
AND the overflow peg count is zero
AND the trunk usage is zero
THEN assert for CLIPS the fact that a
zero-percent-overflow-zero-usage condition exists on this tg
at this report time

The following monitor is run after the monitors described above
have been run for all the trunk groups reported in a switch
report.

Monitor - find cllis withoutreports (in report-monitors.c)
By going through a list of trunk groups that exist at the
reporting switch and for which reports are expected, find and
mark those missing.

FOR all trunk groups in the C structure representing switch X
DO
IF the time stored in the trunk group representation does not
equal the time of the current switch report
THEN assert for CLIPS the fact that a
no-tg-information-received condition exists for this tg at
this report time append a no-cill-report state for this tg to
the tg state list remove all other tg states for this tg
which can no longer be believed in the absence of a tg report
ELSE remove any no-clli-report state for this tg which might
be left from a previous cycle

B.2 IWES Rules

B.2.1 General Rules for Neural Net Confirmation

The anomalies which the IW Neural Net diagnosed were specified
two days before the September testing started. The IWES had to
be able to handle all possible anomalies to be prepared for the
testing. Therefore, a shell of anomaly rules were designed and
written which handled the original neural net anomalies, the
anomalies defined in the Network Management Situation Diagnosis
(Aug.24.1990) and others mentioned in discussions with GTE during
the August visit to Germany. The rules were all designed using
the detailed anomaly template specified below. However, the
initial set of anomalies did not have confirmation logic added
and were designed to give a non-committal response as an anomaly

57

confirmation. When examples of switch data representing the
anomalies became available, confirmation logic was added to the
rules. The IWES had confirmation knowledge for all of the Neural
Net anomalies diagnosed at the September tests. The anomalies
which do not have confirmation logic will still provide the user
with essential data in the output to allow the user to confirm or
not confirm the anomaly.

The rules used to confirm the neural net anomalies use the same
eight-rule template. The eight rules are designed to:

1. Confirm first time anomaly (nn-anomaly)

2. Confirm subsequent anomaly (nn-anomaly-still)

3. unsupported first time anomaly (nn-anomaly-disagree)

4. unsupported subsequent anomaly (nn-anomaly-disagree-still)

5. Remove confirmed anomaly when no neural net anomaly present
(nn-nmes-not-reconfirmed-anomaly)

6. Remove confirmed anomaly when neural net anomaly no longer
supported (nn-nmes-to-nn-only-anomaly)

7. Remove unsupported anomaly when no neural net anomaly present
(nn-only-not-reconfirmed-anomaly)

8. Remove unsupported anomaly when neural net anomaly is

confirmed (nn-only-to-confirmed-anomaly)

B.2.1.1 Inputs to Neural Net Anomaly Rules

There are two classes of anomalies - switch anomalies and trunk
group anomalies. To report on a switch anomaly, the switch name
is needed along with the status message. To report on a trunk
group anomaly, the clliname, name of the source switch, name of
the destination switch, and the status message is required. The
Source and Destination names for the trunk groups are found in
the CLLI fact which is asserted when the expert system starts
execution.

The rules require the following facts:

1. A Neural Net diagnosis of an anomaly for this time period.
The CLIPS fact will be prefaced by a "NN" with the anomaly
information contained in it. That the NN fact is from the
current reporting time is assured by requiring a match
between the variable ticks-now and the current time fact.

58

2. A "confirmed" or "not-supported" fact indicates that this is
not the first time the anomaly has appeared. These facts
are asserted by the neural net rules when they are fired.
Absence of this fact means that this is the first time the
anomaly has been confirmed or not-supported.

3. A switch report data fact (or facts) which describe
non-normal conditions in the network. These facts are
asserted by expert system monitors using the switch reports
and the statistical data base.

4. The NET-TIME fact is the hour-minutes-second translation
used by the logging procedures.

5. The CURRENT-TIME fact is the current time represented in
tenths of seconds.

B.2.1.2 Outputs of Neural Net Anomaly Rules

The actions taken when an anomaly is confirmed or not supported
are:

1. Retract the confirmed or not supported fact if it exists

2. Assert a fact to be used the next time period

3. Call a C routine - either nn switch-status or nn clli status
where the appropriate status messages are logged and flags
set.

4. Call C routine clipswrite scroll to log the expert system
action (if running with the LL graphics interface).

The actions taken when an anomaly no longer exists are:

1. Retract the confirmed or not supported fact

2. Call C routine nn switch status or nncllistatus to remove
anomaly status information.

There are two built-in fields in the call to the C status
routines which are intended to be used to return related data for
the user messages. The first field is a count of the number of
times the expert system has seen the same problem. The second
field is used when an unidentified neural net anomaly is found.
The other neural net anomalies return the variable "sw-data"
which is never used by the C routine.

59

B.2.1.3 Neural Net Rule Template

For each neural net anomaly there are the following 8 rules:

nn-anomaly: This rule is designed to confirm a first-time
anomaly.

IF there is an NN fact for this time period
AND the relevant switch report data is there
AND this anomaly was not confirmed last time period
THEN Assert a fact stating a confirmed anomaly for over-time
evaluation
Call a C routine to flag confirmation to IW Log conclusion

nn-anomaly-still: This rule confirms that a problem found in the
previous time period still exists.

IF there is an NN fact for this time period
AND the same problem was confirmed last time period
AND the relevant switch report fact is there
THEN Retract the confirmed problem fact from previous time
period Assert a fact stating a confirmed anomaly for
over-time evaluation
Call a C routine to flag confirmation to IW Log conclusion

nn-anomaly-disagree: This rule finds a neural net anomaly that
the data does not confirm.

IF there is an NN fact for this time period
AND the relevant switch report data is not there
AND this anomaly was not confirmed last time period
THEN Assert a fact stating an unsupported neural net anomaly
was found
Call a C routine to flag non-confirmation to IW Log
conclusion

nn-anomaly-disagree-still: This rule finds that an unsupported
anomaly found in the previous time
period still exists and is still
unsupported.

IF there is an NN fact for this time period
AND the same anomaly was unsupported last time period
AND the relevant switch report fact is not there
THEN Retract the unsupported statement from previous time
period Assert a fact stating an unsupported anomaly was
found
Call a C routine to flag non-confirmation to IW Log
conclusion

60

nn-nmes-not-reconfirmed-anomaly: This rule finds a confirmed
fact from the previous time
period with no new NN statement
and removes the confirmed fact.

IF there is a confirmed anomaly fact from last time period
AND there is not a new neural net fact for the anomaly
THEN Retract the confirmed fact
Call a C routine to flag that the anomaly has disappeared

nn-nmes-to-nn-only-anomaly: This rule removes a confirmed fact
from the previous time period when
the new NN anomaly is not confirmed
by the switch report.

IF there is a confirmed anomaly fact from last time period
AND there is a new neural net fact for the anomaly
AND the relevant switch report fact is not there
THEN Retract the confirmed fact
Call a C routine to remove the confirmed conclusions

nn-only-not-reconfirmed-anomaly: This rule removes an
unsupported fact from the
previous time period when no
new NN fact exists.

IF there is an unsupported anomaly fact from last time
period
AND there is not a new neural net fact for the anomaly
THEN Retract the confirmed fact
Call a C routine to flag the anomaly has disappeared

nn-only-to-confirmed-anomaly: This rule removes an unsupported
fact from the previous time period
when the new NN statement is
confirmed by the switch report.

IF there is an unsupported anomaly fact from last time
period
AND there is a new neural net fact for the anomaly
AND the relevant switch report fact is there
THEN Retract the confirmed fact
Call a C routine to remove the unsupported conclusions

B.2.1.4 Rules for Switch-Related Neural Net Anomalies

The Neural Net and IWES in some cases use different terms
(spellings) for the same anomaly. Section B.2.1.6 has a table
that shows the translation between the sets of terms.

The switch anomalies that are confirmed by the expert system are:

61

CPU mismatch Outage remote
CPU inits Miscellaneous system failure
Permanent Signals Mf Receiver Overflow

The switch anomalies for which there is no confirmation logic
are:

congestion remote degraded remote
congestion reporting degraded reporting
cpu simplex internal problem
cp origination problem rcvr problem
line frame problem distant switch signal problem
trunk system failure excess-receiver out of service
facility hits

The confirmation logic for each anomaly is included in the
description of the rules. For the anomalies with no confirmation
logic, a discussion of possible confirmation logic is included.

B.2.1.4.1 CPU Mismatch (nn-cpu.clp)

CPU mismatch is recognized by a non zero count in the CPU
MTCHINIT register. This register counts the number of mismatch
interrupts due to inter-processor differences the switch has
experienced in the last reporting period. This anomaly is
confirmed by a fact asserted by the switch monitors when this
register is not zero. If the Neural Net fact for cpumismatch on
a specific switch and the IWES monitor fact of a non-zero value
in the cpu mismatch register on the same switch are in the CLIPS
fact base then the CPU mismatch anomaly is confirmed. If the
Neural Net fact for cpumismatch on a switch is not accompanied by
a IWES monitor fact, the rules decide that the neural net anomaly
cpumismatch is not confirmed.

B.2.1.4.2 CPU Initialization (nn-cpu.clp)

CPU inits is recognized by a non zero count in the CPU SYSWINIT
or CPU SYSCINIT registers. These registers indicate the number
of warm or cold restarts the switch has experienced in the last
reporting period. This anomaly is confirmed by a fact asserted
by the switch monitors when one or both of these registers are
not zero. If the neural net fact for cpuinits on a specific
switch and the IWES monitor fact of a non-zero value in the cpu
restart registers on the same switch are in the CLIPS fact base
then the CPU inits anomaly is confirmed. If the Neural Net fact
for cpuinits on a switch is not accompanied by an IWES monitor
fact, the rules decide that the neural net anomaly cpuinits is
not confirmed.

62

B.2.1.4.3 Permanent Signals (nn-switch-problems.clp)

Permanent signals are recognized by MF receiver usage increasing
with no great increase in seizures. There is a permanent signal
register in the TCM Register that indicates when permanent signal
call seizures occur. The CLIPS rules require the IWES monitor
fact of non-zero permanent signals to confirm the neural net
permanent signal anomaly. The ratio of MF Receiver usage/seizure
is also essential. This ratio is calculated by subtracting the
RADR MF test count from the number of RCVR MF seizures, dividing
this count of actual MF seizures into the RCVR MF usage and
multiplying by 10 (to change from tenths of seconds to seconds).
This information is available from the statistical data base and
should be added to the rules.

B.2.1.4.4 Outage Remote (nn-switch.clp)

Machine failure or Switch Outage Remote is recognized by no
incoming calls and low holding time, possibly followed by high
overflow if trunks go out of service or are put out of service.
The neural net anomaly is confirmed if IWES sees that the switch
did not report and the neighbors of the switch did not see any
calls from the switch. If the node did report or the neighbors
did see calls from the switch, then the neural net anomaly is not
confirmed. The data from the trunks connected to the switch with
the outage should indicate the accessibility of the switch.

B.2.1.4.5 Miscellaneous System Failure (nn-switch-problems.clp)

Miscellaneous system failure calls are recognized by a non-zero
count in the TRMTER Register TERSYFL. If the IWES switch monitor
detects a non-zero value in this register, the neural net anomaly
will be confirmed. If the value of the TERSYFL register is zero,
the neural net anomaly will not be confirmed.

B.2.1.4.6 MF Receiver Overflow (nn-rcvr.clp)

Mf receiver overflow is determined by non zero values in the RCVR
MF. Overflow register of the switch report. If the switch
report shows overflows, then this neural net anomaly will be
confirmed. The ratio of usage/seizures will probably not be in
the normal range. If there were no RCVR MF overflows, the neural
net anomaly will not be confirmed.

B.2.1.4.7 Congestion at Remote Switch (nn-congestion.clp)

Congested Remote Switches are difficult to diagnose. There
should be high traffic flow on most of the surrounding trunk
groups. The neural net anomaly that diagnosed this was removed
before September 1990 testing. IWES does not have any
confirmation logic for this anomaly.

63

B.2.1.4.8 Congestion at Reporting Switch (nn-congestion.clp)

The DMS reporting switches should not experience congestion with
the trunking available in the European DSN. The neural net
anomaly to diagnose this problem was removed prior to September
1990 testing. IWES does not have any confirmation logic for this
anomaly. It is expected that, should congestion occur, the
symptoms would include CCB and RCVR overflows. Currently, IWES
would infer other problems from those symptoms alone.

B.2.1.4.9 CPU Simplex (nn-cpu.clp)

CPU simplex is recognized by a non zero count in the CPU SYNCLOSS
MSYLOSSU, or SSYLOSSU registers. The CPU SYNCLOSS register
counts the times the processor complex was made simplex following
mismatch interrupts. The CPU MSYLOSSU register contains the
usage time of simplex CPU mode due to manual intervention. The
CPU SSYLOSSU contains the usage time of simplex CPU mode due to
system action. IWES does not have any confirmation logic for
this anomaly yet and the neural net is not trained to recognize
it. However, the CLIPS rules would need to look for a fact
stating CPU simplex to contain the required knowledge for
confirmation.

B.2.1.4.10 CP Origination Problem (nn-switch-problems.clp)

Switch origination Problems can be recognized by a non-zero value
in the CP INITDENY Register. The CP INITDENY Register contains an
estimate of call originations denied during warm and cold
restarts. This neural net'anomaly was not included in the
September testing and IWES does not have confirmation knowledge
coded. However, to confirm the anomaly, the CLIPS rules would
need to look for a fact stating CP initdeny failure.

B.2.1.4.11 Line Frame Problem (nn-switch-problems.clp)

Line Frame Problems are recognized by CCB seizures, digitone
receiver seizures, and usage dropping to a minimal level. The
anomaly was included in the Network Management Situation
Diagnosis document but the neural net was not trained to detect
it. IWES has no confirmation knowledge coded to confirm this
anomaly, nor has a specific example of the problem been stated.
However, to confirm the anomaly IWES could compare the actual
ratio of RCVR Digitone usage/seizures to the normal value. The
actual value should be lower than usual as usage should decrease
according to the anomaly definition. The CCB seizures actual
value should be higher then the normal value.

B.2.1.4.12 Trunk System Failure (nn-switch-problems.clp)

Trunk System Failures are recognized by high receiver and CCB peg
count with no overflow and no usage. The anomaly was included in

64

the Network Management Situation Diagnosis document but the
neural net was not trained to detect it. IWES has no
confirmation knowledge coded to confirm this anomaly, nor has a
specific example of the problem been stated. However, to confirm
the anomaly IWES could compare the Ratio of MF usage/seizure
actual value to the normal value and the Ratio of DGT
usage/seizure actual value to the normal value. The actual
values should be much lower than the normal values. An additional
confirmation would be that the switch monitors did not have find
any receiver overflows.

B.2.1.4.13 Degraded Remote (nn-switch.clp)

Degraded Remote Switch is recognized by low or no incoming calls
and low holding time on the surrounding trunk groups. The
anomaly was included in the Network Management Situation
Diagnosis document and in the original neural net training set
but the neural net was not trained to detect degraded remote
switches during the September 1990 testing. IWES has no
confirmation knowledge coded to confirm this anomaly. However,
to confirm it, the CLIPS rules would have to look for low holding
time or low incoming call facts for all trunk groups which have
this remote switch as a destination. More code than the standard
8-rule template would be required.

B.2.1.4.14 Degraded Reporting (nn-switch.clp)

A degraded reporting switch could be caused by several particular
problems indicated by receiver and ccb problems. The anomaly was
included in the original neural net training set but the neural
net was not trained to detect degraded reporting switches during
the September 1990 testing. IWES has no confirmation knowledge
coded to confirm this anomaly. More knowledge of the symptoms of
a degraded reporting switch is needed to confirm it.

B.2.1.4.15 Internal Problem (nn-switch-problems.clp)

Switch internal problems are identified by the inability to make
a receiver connection or CCB connection. The anomaly was
included in the Network Management Situation Diagnosis document
and in the original neural net training set but the neural net
was not trained to detect degraded remote switches during the
September 1990 testing. IWES has no confirmation knowledge coded
to confirm this anomaly. A test set of data has not been
defined. More information is needed before IWES can confirm this
anomaly.

B.2.1.4.16 RCVR Problem (nn-rcvr.clp)

Receiver problems are identified by RADR and/or receiver
overflows without an increase in CCB seizures. The anomaly was
included in the Network Management Situation Diagnosis document

65

but the neural net was not trained to detect receiver problems
during the September 1990 testing. IWES has no confirmation
knowledge coded to confirm this anomaly. A specific test case
has not been identified. However, to confirm it, the CLIPS rules
would have to check for either MN or DGT RCVR overflows or MF or
DGT RADR overflows while the ratio of usage/seizures remains
normal for both MF and DGT RCVRs. The number of CCB seizures
would be in the normal range too.

B.2.1.4.17 Distant Switch Signal Problem (nn-switch-problems.clp)

Distant Switch signalling problems are recognized by an increase
in reorders and vacant codes with no increase in CCB or receiver
seizure. The anomaly was included in the Network Management
Situation Diagnosis document but the neural net was not trained
to detect excessive receivers out of service during the September
1990 testing. IWES has no confirmation knowledge coded to
confirm this anomaly. A specific test case has not been
identified. However, to confirm it, the CLIPS rules would have
to check for switch monitor facts stating that the TRMTER
Register value for reorder calls, TERRODR, and TRMTCM Register
value for vacant code calls, TCMVACT, are not zero. There also
should be normal values for CCB seizure and the RCVR
usage/seizure ratio.

B.2.1.4.18 Excess Receiver Out of Service (nn-rcvr.clp)

Excessive Receivers out of Service is identified by receiver
overflow with normal level of CCS. There should be receiver
system busy usage (SBU) or maintenance busy usage (MBU). The
anomaly was included in the Network Management Situation
Diagnosis document but the neural net was not trained to detect
excessive receivers out of service during the September 1990
testing. IWES has no confirmation knowledge coded to confirm
this anomaly. A specific test case has not been identified.
However, to confirm it, the CLIPS rules would have to check for a
no mf receiver free fact and check that the SBU and MBU registers
values are not zero.

B.2.1.4.19 Facility Hits (nn-switch-problems.clp)

Facility hits are recognized by permanent signals, MF receiver
overflows and MF RADR delays. The anomaly was included in the
Network Management Situation Diagnosis document but the neural
net was not trained to detect excessive receivers out of service
during the September 1990 testing. IWES has no confirmation
knowledge coded to confirm this anomaly. A specific test case
has not been identified. However, to confirm it, the CLIPS rules
would have to check for switch monitor facts stating non-zero
values were found for the TRMTCM Register TCMPSIG (permanent
signal calls), RCVR Register MF RCVOVFL (receiver overflows), and

66

either RADR MF RADLDLYP (lower threshold delay) or RADR MF

RADUDLYP (upper threshold delay).

B.2.1.5 Rules for Trunk-Related Neural Net Anomalies

The Neural Net and IWES in some cases use different terms
(spellings) for the same anomaly. Section B.2.1.6 has a table
that shows the translation between the sets of terms.

The trunk group anomalies that are confirmed by the expert system
are:

Permanent Seizure Excess Trunks out of Service
Facility Hit/Tropofade Maintenance Busy Trunks Out of

Service
No Usage System Busy Trunks Out of

Service
Signalling Glare Trunk Signalling Problem

The trunk group anomalies for which there is no confirmation
logic are:

Degraded trunk Congested trunk group
Dpas failure Trunk group failure
Degraded facility Span failure
Continuity failure Trunk testing
Dtc failure Transmission fault

The confirmation logic for each anomaly is included in the
description of the rules. For the anomalies with no confirmation
logic, a discussion of possible confirmation logic is included.

B.2.1.5.1 Permanent Seizure (nn-tg-problem.clp)

Permanent seizure, or trunks permanently held up but not with
real traffic, is recognized with full usage and high holding
time. The pattern continues with no supporting peg counts.
There must be more usage on the trunks than the incoming and
outgoing calls would be expected to generate, and there must be
fewer total calls than the number of in-service trunks. These
rules were used to confirm a neural net diagnosis of permanent
seizure. The difficulty is recognizing when a partial set of the
trunk group has been seized, thus allowing some calls to get
through while blocking other calls. The number of calls, usage,
number of inservice trunks, holding time and percent usage are of
interest to this anomaly.

B.2.1.5.2 Facility Hit/Tropofade (nn-tg-failure.clp)

Facility Hit is recognized by a very high peg count and a very
low holding time. This anomaly was called tropofade in the
original neural net, LARS. There is a monitor which detects more

67

than 3 calls per circuit with a low holding time and at least one
inservice trunk group. The number of calls, usage, number of
inservice trunks, holding time and percent usage are of interest
to this anomaly along with the normal statistics for these
fields.

B.2.1.5.3 No Usage (nn-tg-failure.clp)

The no-usage anomaly was called 100%-skip in the original neural
net. There are calls but no usage and no holding time. There
should also be no or very few overflows. The number of incoming
and outgoing calls, the number of overflows, the percent usage,
and the holding time are all used to determine this anomaly.

B.2.1.5.4 Signalling Glare (nn-tg-failure.clp)

Trunk Signalling Glare problems are identified by low holding
time and glare counts in the switch report. This anomaly is
confirmed by a non-zero count in the Glare register on the trunk
group report. The ratio of failure is the total of outfails and
glare in relationship to attempts. A high ratio of failure can
indicate a trunk signalling problem instead of a signalling glare
problem.

B.2.1.5.5 Excess Trunks Out of Service (nn-tg-oos.clp)

Excess Trunks Out of service requires the trunk group to have
less than 75 percent of equipped trunks in service. This is a
determined by the ratio of the Trunks In Service Register divided
by the Trunks Equipped Register.

B.2.1.5.6 Maintenance Busy Trunks Out of Service (nn-tg-oos.clp)

Trunks Out of Service due to Maintenance Busy are identified by a
count multiple of 3 for 5 minute data or 9 for 15 minute data in
the MBU register. There should be overflows and some connections
if some of the trunks are not out of service. The numbers of
equipped and inservice trunks along with the call statistics are
useful in confirming this problem.

B.2.1.5.7 System Busy Trunks Out of Service (nn-tg-oos.clp)

Trunks Out of Service because of System Busy are identified by a
count multiple of 3 for 5 minute data or 9 for 15 minute data in
the SBU register. There should be overflows and connections if
some of the trunks are not out of service. The numbers of
equipped and inservice trunks along with the call statistics are
useful in confirming this problem.

68

B.2.1.5.8 Trunk Signalling Problem (nn-tg-failure.clp)

Trunk Signalling problems are identified by low holding times
sometimes accompanied by higher peg counts. A significant
portion of outgoing attempts fail or experience glare. The ratio
of failure is the total of outfails and glare in relationship to
the number of attempts. If this ratio is indicates more than 50%
of the attempts fail, then the anomaly is confirmed.

B.2.1.5.9 Degraded Trunk (nn-tg-failure.clp)

A Degraded Trunk is difficult to confirm. It was included in the
original neural net as excess traffic outgoing and excess traffic
both ways. This anomaly was not included in the list of
anomalies shown in September. It was felt that a more specific
diagnosis was preferred to a general trunk problem diagnosis.
The current trunk statistics and their normal values may be
helpful in detecting this anomaly.

B.2.1.5.10 DPAS Failure (nn-tg-problem.clp)

DPAS Failure is identified by Multiple connection office receiver
problems. There are general, across the network, problems. This
anomaly was detailed in the Network Management Situation
Diagnosis Document but was not included in the September 1990
testing. The logic to confirm this anomaly would include
comparing the trunk statistics with the normally expected values
for significant decreases in holding time and increases in
connections. More information would be needed in the data base
to define the interconnection of the network DPAS.

B.2.1.5.11 Degraded Facility (nn-tg-problem.clp)

Trunk facility failure or degraded facility is recognized as a
signalling problem for the originator. The terminating office
will show high peg count (maybe), receiver overflow, permanent
signals, and RADR problems. This anomaly was detailed in the
Network Management Situation Diagnosis Document but was not
included in the September 1990 testing. The logic to confirm
this anomaly would include the switch permanent signal register
being non-zero and high incoming and outgoing attempts.

B.2.1.5.12 Continuity Failure (nn-tg-problem.clp)

Continuity failure is indicated by low holding time. This
anomaly was detailed in the Network Management Situation
Diagnosis Document but was not included in the September 1990
testing. The logic to confirm this anomaly would include looking
at data from the trunk reports for the source and destination
switches and comparing this data to the normal expected values
for holding time and connections. A test case for this anomaly
needs to be identified before the rules can be written so that

69

this anomaly can be differentiated from other anomalies

identified by low holding time.

B.2.1.5.13 DTC Failure (nn-tg-problem.clp)

DTC problems or digital trunk frame problems are identified by
the originating office showing trunk groups with high attempts
and low holding times. This anomaly was detailed in the Network
Management Situation Diagnosis Document but was not included in
the September 1990 testing. The logic to confirm this anomaly
would include looking at data from the trunk reports for the
source and destination switches and comparing this data to the
normal expected values for holding time and outgoing attempts. A
test case for this anomaly needs to be identified before the
rules can be written so that this anomaly can be differentiated
from other anomalies identified by low holding time.

B.2.1.5.14 Congested Trunk Group (nn-tg-failure.clp)

Trunk Congestion is difficult to confirm. It was included in the
original neural net anomalies. This anomaly was not included in
the list of anomalies shown in September. It was felt that a
more specific diagnosis was preferred to a general trunk problem
diagnosis. The current trunk statistics and their normal values
may be helpful in detecting this anomaly. A test case for this
anomaly needs to be identified before the rules can be written so
that this anomaly can be differentiated from other anomalies.

B.2.1.5.15 Trunk Group Failure (nn-tg-failure.clp)

Trunk Failure is recognized by no incoming calls, and 100%
overflow. Usage is either very low or very high. This anomaly
was included in the original neural net and in the list of
anomalies detailed in the Network Management Situation Diagnosis
Document but was not included in the September 1990 testing. The
logic to confirm this anomaly already exists in the NMES
detection of trunk failure and these neural net rules just need
to be linked to the fact asserted by the existing rules.
B.2.1.5.16 Span Failure (nn-tg-problem.clp)

Span failures are indicated by low holding time. The terminating
office may have multiples of 24 trunk permanent sianals. There
may also be referrals to diagnostics. This anomaly was detailed
in the Network Management Situation Diagnosis Document but was
not included in the September 1990 testing. The logic to confirm
this anomaly would include looking at data from the trunk reports
for the source switch and comparing this data to the normal
expected values for holding time. The permanent signal register
for the switch should be non-zero as should the referrals to
diagnostics register. A test case for this anomaly needs to be
identified before the rules can be written so that this anomaly

70

can be differentiated from other anomalies identified by low

holding time.

B.2.1.5.17 Trunk Testing (nn-tg-probles.clp)

Trunk testing is indicated by an incoming pegcount at the
terminating end with no originations on the other end. This
anomaly was detailed in the Network Management Situation
Diagnosis Document but was not included in the September 1990
testing. The logic to confirm this anomaly would include looking
at data from the trunk reports for the source and destination
switches and comparing the source incoming peg count to the
destination outgoing attempts. If there are no or very few
destination attempts with many incoming counts, then this anomaly
would be confirmed.

B.2.1.5.18 Transmission Fault (nn-tg-problem.clp)

Trunk transmission fault is recognized as a signalling problem
for the originator. The terminating office will show high peg
count (maybe), receiver overflow, permanent signals, and RADR
problems. This anomaly was detailed in the Engineering Test
Plan, Live Network Test Scenarios but was not included in the
September 1990 testing. A test case for this anomaly needs to be
identified before the rules can be written so that this anomaly
can be differentiated from other anomalies.

B.2.1.6 Anomaly Terminology

The neural net and IWES use different terminology and sometimes
different spellings for the same anomaly. The following tables
may be helpful to readers who have access to neural net as well
as IWES documentation.

SWITCH ANOMALIES
Neural Net Term IWES Term

congestionreporting congested reporting switch
degradedreporting degraded reporting switch
outage remote switch outage remote
degraded remote degraded remote switch
cpumismatch cpu mismatch
cpuinits cpu inits
congestionremote congested remote switch
rcvr-overflow-mf mf receiver overflow
rcvr overflow-mf " "
facility hits facility hits
cpu_simplex cpu simplex
internal_problem switch internal problem
cporiginationproblem switch origination problem
rcvr_problem receiver problem
exc-rcvroutofservice excess receiver out of service

71

permanentsignals permanent signals
perms ignal x o
excess overflows excess overflows
dist signalprob distant switch signalling problems
line frameproblem line frame problems
trunk systemfailure trunk system failure
misc other miscellaneous system failure calls
miscothers W a a

TRUNK GROUP ANOMALIES

Neural Net Term

degradedmd163 degraded trunk
degradedmd164
tgcongested trunk congestion
tropofade facility hit
facilityhit
failure trunk failure
tg_failure
exctrunksoos excess trunks out of service
exc trks oos ""
sbutrunks oos system busy trunks out of service
systembusytrks o"
systembusyusage " "
mbutrunksoos maintenance busy trunks out of

service
permanent seizure permanent seizure
100% skip No usage
nousage of
degradedfacility trunk facility failure
signalling_prob trunk signalling problems
signallingproblem H "

signallingglare trunk signalling glare problems
dpas_failure dpas failure
spanfailure span failure
continuity_failure continuity failure
trunktesting trunk testing
dtc failure dtc problem
transmissionfault trunk transmission fault

72

APPENDIX C. IWES Results File Examples

Appendix C is composed of two results file examples, one at 8:10
and the other at 9:00 on September 26, 1990. The first one
contains recommendations for a single problem, excessive trunks
out of service, detected at 8:10. The second example contains
recommendations for permanent seizure on two separate trunk
groups at 9:10.

Time: 900926.0810
MHL

MHLFRD115 Num: 159 Src: MHL Dest: FRD
Description:

Excess Trunks out of service requires the trunk to have less
than 75 percent of equipped trunks in service

MHLFRD115 Equipped: 24 Inservice: 0 Percent Inservice: 0.0
Observations:

08:00:00 MHLFRD115 Low In Service
08:10:00 MHLFRD115 24 trunks out of service - equipped: 24

in service: 0
08:00:00 MHLFRD115 excessive trunks out of service
08:05:00 MHLFRD115 Switch Report shows Maintenance Busy

Usage Count > 0
08:10:00 MHLFRD115 Abnormal High Overflows
08:10:00 MHLFRD115 Low Holding Time With 100 Percent

Overflows
08:10:00 MHLFRD115 Anomaly is exctrksoos 1.0
08:10:00 MHLFRD115 possible trunk group outage
08:10:00 MHLFRD115 Confirmed more than 25 percent of

trunks are oos
Problem:

MHLFRD115 has excessive trunks out of service
More than 25 percent trunks out of service on MHLFRD115

Actions:
Confirm with switch maintenance crew that MHLFRD115
at MHL has excessive trunks out of service
Actions not specified

Controls:

Time: 900926.0900
TJS
TJSUXB084 Num: 66 Src: TJS Dest: UXB

Description:
Permanent seizure or trunks permanently held up but not with
real traffic is recognized with full usage, and high holding
time. The pattern continues with no supporting peg counts.

TJSUXB084 Ins: 0 Connects: 0 Tru: 6 Sbu: 0 Mbu: 0 Inservice: 2
Ht: 0.0 Norm ht: 2.2 Infails: 0 Percent Use: 100.0 Norm

Usage: 82.9

73

Observations:
08:00:00 TJSUXBO84 Low In Service
08:00:00 TJSUXBO84 1 trunks out of service - equipped: 3

in service: 2
08:00:00 TJSUXBO84 excessive trunks out of service
09:00:00 TJSUXBO84 Usage is higher than calls could

generate
09:00:00 TJSUXBO84 Anomaly is permanent seizure 0.4
09:00:00 TJSUXB084 Confirmed permanent seizure

Problem:
TJSUXBO84 has excessive trunks out of service

Permanent seizure on TJSUXB084
Actions:

Confirm with switch maintenance crew that TJSUXBO84
at TJS has excessive trunks out of service
Call switch TJS and any associated technical control
facilities for confirmation of a permanent seizure on
TJSUXBO84. If conversation wit . site personnel indicates
control actions should be taken, then possible control
actions are:
RRTE, CBK or DCC if end office, SKIP if first route to
office, ARC if quasi-final.

Controls:
UXB
UXBTJS084 Num: 102 Src: UXB Dest: TJS

Description:
Permanent seizure or trunks permanently held up but not with
real traffic is recognized with full usage, and high holding
time. The pattern continues with no supporting peg counts.

UXBTJS084 Ins: 0 Connects: 1 Tru: 6 Sbu: 0 Mbu: 3 Inservice: 3
Ht: 0.0 Norm ht: 2.3 Infails: 0 Percent Use: 100.0 Norm

Usage: 84.3
Observations:

08:30:00 UXBTJS084 Switch Report shows Maintenance Busy
Usage Count > 0

09:00:00 UXBTJS084 Usage is higher than calls could
generate

09:00:00 UXBTJS084 Anomaly is permanent seizure 0.7
09:00:00 UXBTJS084 Confirmed permanent seizure

Problem:
Permanent seizure on UXBTJS084

Actions:
Call switch UXB and any associated technical control
facilities for confirmation of a permanent seizure on
UXBTJS084. If conversation with site personnel indicates
control actions should be taken, then possible control
actions are:
RRTE, CBK or DCC if end office, SKIP if first route to
office, ARC if quasi-final.

Controls:

74

APPENDIX D. Statistical Data Base Software Design

D.1 Statistical Data Base Input Files

Statistical data base input files are found in the
$DSNPATH/expert/stats/db directory. Specifying the runtime flag,
statistical data base, in the IWES (NMES) execution line enables
the use of the statistical data base. At IWES initialization
time the stat values (average and standard deviation for each
hour) for all switch and trunk group stats are loaded from the
offline ASCII files into a hash table.

In addition to the actual stat files, there are two files in the
stats/db directory that provide parameters for statistical data
base monitor thresholds and information on trunk groups that run
normally with INSERVICE set less than EQUIPPED.

D.1.1 Stat Files

Each file is an ASCII text file containing hourly stat
information for a specific stat (type) for one switch or trunk
group (item). Since there are up to 24 hours of switch report
data available, stat files will normally contain 24 records
representing hours 0 through 23. Each stat file record has the
following format:

Hour Average # Of Samples Minimum Maximum
StandardDeviation.

For each of the 14 reporting switches in the European network,
there are 3 stat files: CCB usage per 5 minutes, MF receiver
holding time, and Digitone receiver holding time.

There are currently 102 trunk groups connecting the 14 reporting
switches with each other and other non-reporting switches. For
each of these trunk groups the statistical data base has 6 files:
percent overflows, average holding time, incoming calls per
circuit per hour, outgoing calls per circuit per hour, total
calls per circuit per hour, and percent use of total trunk group
capacity. In total, there are 654 (3 * 14 + 6 * 102) stat files
in the data base.

The stat file name format describes what data was used to compile
the stat values, and what stat type is being computed for what
item:

stat-<date>+<additionaldays>-<item>.<type>.

For example, the file "stat-900103+9-ezl.ccb" contains CCB
seizure information for the switch EZL. The data was computed
from 10 days of archived data beginning 900103. The file
"stat-900806+8-tjs052.povfl" contains Percent Overflow data for

75

the trunk group 52 out of TJS. The data was computed from 9 days
of archived data beginning 900806.

The format of the statistical data base files allows them to be
directly processed by a plotting program, XGRAPH, when displaying
the averages over time. For example:

xgraph stat*.ccb

will display the CCB usage curves over 24 hours for the 14
switches.

D.1.2 Threshold Factor File

The stat-SD FACTOR.fact file contains factors for resetting the
thresholds the IWES uses to detect deviations from normal network
activity. The default thresholds for trunk group stats is 1
standard deviation above or below the average value. The .fact
file allows the IW operator to configure offline a different
standard deviation factor for each of the 6 trunk group stat
types. At IWES initialization time, if a .fact file is in the
stat/db directory, the trunk group stat thresholds in the array
stat sd factors[] will be reset. Each line in the .fact file has
one integer and corresponds to one trunk group stat type. The
order is implicit: percent overflows (povfl), incoming
calls/circuit/hour (icch), calls/circuit/hour (cch), total
calls/circuit/hour (tcch), average holding time (aht), and
percent trunk group use (puse).

The current .fact file contains 6 records: 2,2,2,3,2,2, which
indicates that povfl,icch, cch, aht, and puse thresholds are set
at 2 times their standard deviation from average, and that tcch
is set at 3 times its standard deviation. Note, that because the
statistical data base contains a computed standard deviation and
average for every trunk group for every hour of the day, each
threshold check is specific for the trunk group and time of day.

D.1.3 Inservice File

The stat-<dates>-TGS.insrv contains trunk groups that normally
run with a low inservice count. The IWES uses this information
at runtime to inhibit messages warning of low inservice trunk
groups to the operator. Currently there is no .insrv file
because all trunk groups were running normally at their equipped
level when the system was installed in September 1990.

The format of each line is:

<local switch> <tg_#> <CLLI> <normallowinservice_#>
<destination-switch>

76

An example is:

ezl 90 ABE001 0 abe

D.2 Statistical Data Base Enhancements

Because the statistical data base is a recent, experimental
enhancement to the ES, it is expected that there will be many
desirable extensions and modificstions. Known desirable new
features and possible ones requiring more analysis are listed in
the following two subsections.

D.2.1 Desirable New Features

Switch Parameter Threshold Checking

Currently only trunk group stat parameters are constantly
monitored for abnormal values given the time of day. Monitors
for the three switch stats should be added to detect when
receiver holding times and CCB counts are abnormal.

Interpolating Stat Data

The statistical data base contains hourly averages. Since each
hourly average is computed from switch reports from that hour,
the average is, in fact, for the midpoint of the sampled time: 30
minutes past -he hour. When the ES monitors and anomaly
verifiers compare the value from a specific switch report with
the expected value from the data base, they simply use the
current hour of the switch report to retrieve a statistical data
base average. Thus both the 7:00 and 7i55 switch report will be
compared with the 7:30 hourly average.

Since traffic volume can double or triple in one hour (for
example, work start time and after lunch), it is apparent that
one average for 60 minutes does not provide very fine threshold
checking during those volatile times.

The quickest solution to this problem is to (linearly)
interpolate stat values to obtain good approximations between
the hours. Thus, for example, a better 8:00 average can be
obtained by averaging the 7:30 and 8:3) values. Data analysis
comparing interpolated hourly averages with 15 minute averages
shows that this solution is quite adequate.

It is important to remember that during the volatile periods the
standard deviation also increases. Since ES monitor thresholds
are based on both the average and the standard deviation values,
any increase in error of the average value caused by rapidly
changing traffic levels is offset by the increase in allowable
range by the larger standard deviation.

77

Integrate Stat Graphics Into The IWUI

The type of display produced by the graph.com utility should be
integrated into the workstation's user display options. The
"trending" function, for example, currently displays only
tabular data. A graphical display showing recent switch report
values compared with normal values for those times would convey
the needed information more efficiently. Similarly, options to
display any trunk group or switch data graphically with
comparisons to normal data should be provided. Normal values
could be displayed from interpolated hourly averages, whereas
current or archived data should be displayed using 15 minute
averages since the operator will be interested in seeing timely
averages instead of "smoothed" ones. Averages based on less than
15 minutes are not recommended since they are usually too noisy
to be useful.

Add New Stats

Receiver seizure count6 (MF and DIGITONE) are often important
indicators of problems. Since they vary enormously from
switch to switch and over time of day, they should be added to
the statistical data base.

Calls (receiver seizures) to CCB seizures is also often a good
measure on how well a switch is doing. It provides a way of
checking call counts and CCB use with one index. Note, that if
the statistical data base already contains averages for receiver
and CCB seizures, than it does not need to compile and store the
calls to CCB ratio explicitly in the data base.

Instead, it need only compute it on-the-fly when needed.

Recompute Holding Times

Currently the holding time is assumed 0 if there are no call
counts to divide by. A suggested improvement based on P.
McClellan's (GTE) DAI code, is to assume calls based on the
maximum usage each call could provide to the usage count in the
switch report. For example, if usage is 10 CCs for a 12 minute
switch report and the call count was 0, assume there were in fact
4 calls: 3 each using the maximum 3 CCs per call, and 1 using the
remaining CC. See DAI code or iwui/calculatethreshstats.c for
more details.

Five minute holding time calculations are very noisy because the
calculation is based on 100 second usage scans and call
counts that may have been counted in the previous switch
report. The stats db program can be improved by delaying the
actual calculation of usage/calls to the end of the averaging
period. Instead of averaging the noisy 5 minute ratio of each
switch report, simply keep running totals of usage and call

78

counts for the period, and then divide at the end of the
period to obtain the average hold time.

Another possible way to reduce the noisy holding times in the
database is to replace average holding time in the statistical
data base with usage. The monitors or statistical data base
interface could then compute average holding time on-the-fly by
dividing average usage by average total calls.

Use 15 to 20 Minute Averages When Monitoring Live Switch Reports

Analysis shows that call counts and holding times are very noisy
when computed from 5 minute data. The default displays for
operators of live data should all be based on 15 minute or more
averages. Similarly, all threshold comparisons should be based
on 15 minute averages of live data to prevent frequent false
positives.

Filter Abnormal Highs And Lows From Data Base

The statistical data base averages are based on approximately 10
days of available, recent switch reports. The switch reports may
contain data transmission errors (i.e., garbage) or abnormal
values caused by actual network anomalies (switch and trunk group
failures). Using the utility graph.avg, one can see an
occasional maximum and minimum value that does not fit the curve.
The stat db.awk program should have sanity checks and specific
filters for each switch and trunk group.

Another option to consider is using the "mode" average instead of
the "mean" as a way to eliminate the abnormal values from the
computed average.

Fine Tune Thresholds

Since the IWES in the current system is serving primarily to
provide verification of (NN) suspected anomalies, rather than
to detect anomalies, its trunk group thresholds are set
conservatively at 2 standard deviations above/below average.

Assuming that the previously described enhancements: 15 minute
real time averages, stat value interpolation, and filtering of
abnormal data are done, then the monitor thresholds can and
should be tightened up.

D.2.2 Possible New Features Requiring More Analysis

Multiple Statistical Data Bases Based On Weekly, Seasonal, And
Holiday Variations

The current statistical data base assumes there is a normal
workday traffic load and is thus based on averaging Monday

79

-Friday switch reports. The 1 weekend set of data we have seen
indicates that traffic levels are much lower then. Holiday
traffic patterns have not been examined.

Questions to be asked are:

- What problems are unique to weekends and holidays, and
how are they handled?

- Are there known seasonal changes?

- Are there consistent weekly patterns? For example, does
Friday traffic trail off sooner because of the upcoming
weekend? If so, are these variations significant enough
to require a different set of norms?

Multiple statistical data bases, each appropriate for a
particular set of days, can be easily accommodated. The operator
or a smart program need only move or link the appropriate
statistical data base directory into the dsn/expert directory
prior to (re)starting the IWES.

Self-adjusting statistical data base

If trunk group and switch traffic levels continually change
slowly but significantly over time,, then a self-adjusting
statistical data base may be useful. For example, new daily
averages could be averaged into the statistical data base
averages to produce a new statistical data base. Adjustable
weight factors would control how fast the new averages affect the
old average.

Integrate statistical data base into the IWDB

By integrating the statistical data base stats into the IWDB, it
will be much easier for other IW functions to access the data.
For example, the graphical displays comparing current values with
expected could be called from the user interface as an option.
An open issue is whether it is more efficient to recompute daily
computed stats from the raw switch reports when displaying them,
or to compute the stats once and save them in the IWDB.

Hierarchical Stats

Currently the IW monitors and threshold checks only individual
trunk groups and switches. Nothing is reported about the network
as a whole, nor is there any information about groups of related
trunk groups such as links.

Using the statistical data base it is very easy to
establish expected traffic curves for the entire network of
reporting switches and their neighbors by totaling all CCBs,

80

receiver seizures, calls, etc. for each time period. Similarly,
when running, the IW could also total the individual switch and
trunk group counts each reporting period. New network level
monitors and display icons would provide the operator with
information about the overall state of the network which could be
useful in diagnosing or remedying a problem. For example, if
there is congestion at one switch but network monitors indicate
that overall net traffic is normal, than the operator can feel
more confident that a reroute solution will help rather than
worsen the problem.

Besides, network level data, composite data on related trunk
group could be useful. Monitoring traffic totals for all trunk
groups on 1 link could be useful in diagnosing a link problem.
Similarly, if trunk-group-to-physical-circuit information is
available, monitoring totals for all trunk groups on 1 physical
circuit could help diagnose a physical circuit problem.

When detecting a degraded or down remote (non-reporting) switch,
the ES already examines individually all trunk groups that
connect to the switch. If traffic stat totals are available for
remote switches based on the links connecting them, then the IW
could provide additional monitors and corroborating information
for those remote switches.

D.3 Statistical Data Base Utility Files

Utilities used to create and graphically display data in the
statistical data base are found in the directory
SDSNPATH/expert/stats/tool.

D.3.1 Gawk/AWK

The program which creates the stat files, stats db.awk is an AWK
script. Gawk is the GNU Project's implementation of the AWK
programming language. It conforms to the definition and
description of the language in The AWK Programming Language, by
Aho, Kernighan, and Weinberger, with the additional features
defined in the System V Release 4 version of UNIX AWK, and some
GNU-specific extensions. The standard SUN/UNIX AWK does NOT
support all the features used in the statsdb.awk script. The
current Gawk binary runs only on SUN3 hardware, but source code
is readily available.

D.3.2 90aug.xref

Since the switch reports do not contain the remote node id for
the trunk groups, the input file "90aug.xref" is used by the
stats db.awk program to identify which trunk group numbers are
interesting, i.e., connect to known switches. The name of the
file indicates it was created from the 1990 August set of NMSS

81

xref tables. When interesting trunk group numbers change, then

this file should be updated. Its format is:

<node-tg> <remote-node> <c1li> <tgtype>.

Only the first two fields are used by the statsdb.awk program.

D.3.3 Stats db.awk

Stats db.awk is an (G)AWK script that takes a set of switch
reports for 1 node and produces a corresponding set of stat
files. For example:

gawk -f stats db.awk $DSNPATH/expert/stats/tools/90aug.xref \
$IWDATA/9009??/switch/*.tjs

will process all archived switch reports in September, 1990 for
the switch TJS. The output will be 3 switch stat files (ccb,
rdg, rmf), and 6 trunk group stat files (povfl, puse, icch, cch,
tcch, aht) for each TJS trunk group that connects to a known
switch. The 90aug.xref file will be read to identify the
interesting trunk groups.

A "TG=" option is available that restricts the program to
processing only the specified trunk group instead of all
interesting trunk groups for the particular switch. By
specifying "TG=999" (or any other unknown trunk group number),
the program will only produce the 3 switch stat files.

The program currently only processes 1 switch at a time because
of the SHELL limitation on the number and size of parameters.
Processing 10 days of 5 minute switch reports at one time for all
14 switches will usually exceed the limit. I believe that the
program itself has no limitation on the number of switches it
processes at once, and did process all of them at one time in
earlier versions when there were only 4 switch reports per hour.
However the program has evolved considerably since, and the
current version has not been tested with multiple switches.

D.3.4 Xgraph

Xgraph is a public domain program that draws a graph on an X
display given data read from either data files or from standard
input if no files are specified. It can display up to 64
independent data sets using different colors and/or line styles
for each set. It annotates the graph with a title, axis labels,
grid lines or tick marks, grid labels, and a legend. There are
options to control the appearance of most components of the
graph. See the man pages for more information.

Xgraph is useful for displaying information in the offline ASCII
statistical data base files, or other files created by

82

stats db.awk. The current bin file runs on SUN3 hardware but the
complete source is available in the xgraph subdirectory in
stat/tools/.

D.3.5 Xgraphrc

The file xgraphrc is used to reset xgraph color and line choices.
By aliasing xgraph to

'xgraph <xgraph options> \1*
$DSNPATH/expert/stats/tools/xgraphrc'

xgraph will use the colors and line styles you have specified in
the xgraphrc file. See the xgraph man pages for more information
on the options.

D.3.6 Graph.avg <item> <stattype>

Graph.avg is a shell script that given an item name and stat
type, will display graphically their average, minimum, and
maximum values versus time of day. For example:

graph.avg tjs ccb

will display average CCB ranges for switch TJS. The script
extracts the average, minimum, and maximum values from the
appropriate statistical data base file, adds identifier strings,
and then calls xgraph to display it.

D.3.7 Graph.com <item> <stattype> <date>

Graph.com will graphically compare archived data and statistical
data base averages. The user supplies the item name, stat type,
and date to compare. The shell script program will then compute
on the fly using stats db.awk the averages seen each hour on the
specified day, and then using xgraph display the normal averages
from the statistical data base with the archived data averages.
For example:

graph.com tjs057 aht 900927

will graphically compare normal (statistical data base) holding
time averages for trunk group 57 out of TJS with the values seen
on September 27,1990.

D.4 Code

Code supporting the stat data base is found in 4 function (.c)
files and 2 header (.h) files.

83

D.4.1 Header Files

stats if.h defines all items needed to interface to the
runtime stat data base. Normally, an IWES module
would only need to include this file in order to
use stat data.

stats.h defines the global DEFs and data structures used

internally by the stat data base.

D.4.2 Function Files

nmesreset.c if the statistical data base flag is set, loads
the stat data base files into a hash table.

statprocessor.c
provides new trunk group IWES monitors based on
the stat data base values. Each time a trunk
group report is read, overflows, holding time,
trunk capacity usage, incoming, outgoing, and
total traffic is checked to see if they are within
the normal range for that trunk group at the
current hour of the day.

rec-description.c
provides corroborating switch and trunk group
information from the statdata base when an
anomaly is detected.

stats.c contains the stat support functions for loading
the data base into the hash table, and reading
stat data at runtime.

84

APPENDIX E. CCSIM Network Management Controls

Three types of controls are implemented in CCSIM. They are
listed in the following table. Pre-route controls are applied at
a switch before an attempt is made to route a call out of the
switch. Pre-hunt controls are applied before an attempt is made
to find a free trunk in the trunk group to which the control is
applied. Post-hunt controls are applied after the call has
overflowed the trunk group. Post-route controls are applied
after a call has failed to find a route out of the switch.
Within each group the controls are listed in the order in which
they are applied. The term 'DMS' in the right-hand column
indicates that the control is implemented in accordance with
Northern Telecom Practices for DMS switches. The term '490L'
after the DRZ control indicates that this is the directionalize
control as implemented in the AUTOVON 490L switches. The term
'EXP' after the CAN-EOC-OVF indicates a control introduced for
experimental purposes that does not correspond to a control to be
found in any real switch. A blank entry in the third column
indicates that the control is implemented according to our
interpretation of the DCA generic switch specification.

Pre-route Controls:
1. Code Block (CB) DMS
2. Call Gap (GAP)
3. Alternate Route Cancel (B) (ARC-B)
4. Destination Code Cancellation (DCC) DMS

Pre-hunt Controls:
1. Alternate Route Cancel (A) (ARC-A)
2. Directional Reservation of Equipment (DRE) DMS
3. Protective Reservation of Equipment (PRE) DMS
4. Directionalization (DRZ) 490L
5. Cancel To (Percent) (CANTP) DMS
6. Cancel To (Rate) (CANT-RATE)
7. Skip (SK) DMS

Post-hunt Control:
1. Cancel From (CANF) DMS

Post-route Control:
1. Cancel End-of-Chain Overflows (CAN-EOC-OVF) EXP

CCSIM does not have different commands for applying and removing
NM controls as do real switches. Instead, it uses the same
command both to apply and remove a control. Removal occurs when
a particular parameter (often a percent) is set to a particular
value (zero for the percent parameter). In the following
descriptions of the individual NM controls, the
percent-equal-to-zero-for-removal convention is assumed for all
controls having a percent parameter. For other controls, the
parameter values for removal are specified explicitly.

85

Controls that cancel calls have parameters specifying the kind of
announcement message to which a canceled call should be
connected. There are three such announcements. In CCSIM,
specifying Emergency Announcement 1 (EAl) or Emergency
Announcement 2 (EA2) will cause an affected call to be counted as
failed and not to be retried. The No Circuit Available (NCA)
announcement causes the call to be handled just as it would have
been if it had blocked due to the lack of a trunk out of the
switch at which the control was applied. In that case, CCSIM
will retry the call subject to the retry parameters applicable to
the simulation run.

CCSIM does not have tables to translate between codes (telephone
numbers) and switch (node) names. Consequently, controls such as
Code Block (CB) use destination node names instead of codes to
specify the calls that are to be blocked. In this respect, such
controls differ in syntax from those in real switches, but the
effect on traffic is the same as would occur if all office codes
at a switch were specified in a real network application of a
code control.

In the following descriptions the word 'ALL' is permissible as a
value for some parameters. When used, its affect is the same as
would be achieved by issuing a sequence of controls, one for each
of the allowable values of the parameter. For example, it allows
a CB control to be applied at all switches with a single command.
There is no corresponding capability in a real telephone network.

Pre-Route Controls:

CB - Code Block

The CB control is put on at a switch and applies to originating
calls only. It blocks a specified percentage of the traffic to a
destination switch from entering the network. When the control
is applied at less than 100%, only routine calls are affected.
At 100%, CB blocks calls of all precedences. Blocked calls are
handled according to the announcement type specified in the
control.

In a real network, the CB control would apply to codes and could
be used to block calls to individual telephone numbers. In CCSIM
it can be used only for all the codes identified with a
particular switch.

86

Usage: CB nodel node2 percent ann
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is the three-letter node name for the
destination switch to which calls are to be
blocked (or ALL)
percent is the percentage (0-100) of calls to block
ann is the announcement type (NCA, EA1 or EA2)

Example: CB ALL UXB 50 EA2
Cancels 50% of the routine calls from all nodes to
Uxbridge. The canceled calls will not be retried.

GAP - Call Gap

The GAP control is put on at a switch and applies to originating
calls only. It determines the rate at which traffic to a
particular destination switch is allowed to enter the network.
After an attempt to route a call to the specified destination has
been allowed by the GAP control, subsequent calls to that
destination are blocked for a period of time designated as the
"gap interval." After the expiration of the gap interval, the
next call to that destination will be allowed to attempt to find
a route. The gap interval is chosen from the interval set 0
(no-control), 0.10, 0.25, 0.50, 1, 2, 5, 10, 15, 30, 60, 120,
300, 600 seconds, and infinity. An infinite interval prohibits
all attempts. Blocked calls are handled according to the
announcement type specified in the control. At intervals 0
through 600, only routine calls are affected. At the infinite
interval, calls of all precedences are affected.

In a real network, the GAP control would apply to codes and could
be used to gap calls to individual telephone numbers. In CCSIM
it can be used only for all the codes identified with a
particular switch.

Usage: GAP nodel node2 index ann
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is the three-letter node name for the
destination switch to which calls are to be gapped
index is a pointer into the following table of gap
intervals (1 removes the control)

ann is the announcement type (NCA, EA1 or EA2)

87

Index Gap Interval Calls per
(Seconds/Call) Minute

1 0 All
2 0.1 600
3 0.2 240
4 0.50 120
5 1 60
6 2 30
7 5 12
8 10 6
9 15 4
10 30 2
11 60 1
12 120 1/2
13 300 1/5
14 600 1/10
15 Infinity None

Example: GAP ALL UXB 11 NCA
Allows only one call per minute to enter the
network from each of the other switches. Blocked
calls are allowed to retry.

ARC-B - Alternate Route Cancellation (Type B)

When the ARC-B control is put on at a switch, it applies to both
tandem calls and originating calls. All calls to the specified
final destination are allowed to use only the direct route out of
the switch. A call for which a free or preemptible trunk cannot
be found on the primary route will be blocked. The control can
be specified to apply to either routine-only or all-precedence
traffic.

Usage: ARC-B nodel node2 precedence
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is a three letter node name for the final
destination switch for the call (or ALL)

precedence is either R (routine-only), AP (all-
precedences) or NONE (remove the control)

Example: ARC-B TJS UXB R
Deny alternate routes for routine traffic between
Torrejon and Uxbridge

DCC - Destination Code Cancellation

The DCC control is put on at a switch and applies to all traffic,
both originating and tandem calls. It blocks a specified
percentage of the traffic to a destination switch and all end
offices reachable only from that switch from entering the

88

network. When the control is applied at less than 100%, only
routine calls are affected. At 100%, DCC blocks calls of all
precedences. Blocked calls are handled according to the
announcement type specified in the control.

Usage: DCC nodel node2 percent ann
node1 is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is the three-letter node name for the
destination switch to which calls are to be
blocked (or ALL)

percent is the percentage (0-100) of calls to block
ann is the announcement type (NCA, EA1 or EA2)

Example: DCC ALL UXB 50 EA2
Cancels 50% of the routine calls from all nodes to
Uxbridge and any end offices reachable only
through Uxbridge. The canceled calls will not be
retried.

Pre-Hunt Controls:

ARC-A - Alternate Route Cancellation (Type A)

The ARC-A control is applied to a link, i.e., one or more trunk
groups between a pair of switches. It causes traffic which would
normally use the link as an alternate route to skip to the next
route, if any, in the routing table. Its effect is to give
preference to traffic that would use the link as a direct route.
It can be applied to affect routine-only or all-precedence
traffic. Calls affected by these controls are not counted as
attempts on the link.

Usage: ARC-A nodel node2 precedence
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is a three letter node name of the switch at
the remote end of the link to which the control is
to be applied
precedencr is either R (routine-only), AP (all-
precedences) or NONE (remove the control)

Example: ARC-A TJS UXB AP
Allow only direct routed traffic to access the link
between Torrejon and Uxbridge at Torrejon

DRE - Directional Reservation of Equipment

The DRE control is applied at a switch to a trunk group. It
gives priority to incoming traffic by reserving a number of idle
trunks in the group. When the number of idle trunks is equal to

89

or less than the number of reserved trunks, all traffic (direct-
and alternate-routed) is skip-routed.

Calls of all precedences are affected by the DRE control. Calls
affected by these controls are not counted as attempts on the
link.

Usage: DRE node1 clli reserve
nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the cdli name of the trunk group to which
the control is to be applied
reserve is the number of trunks to be reserved
(reserve - zero removes the control)

Example: DRE UXB UXBTJS084 1
UXB must have more than one free trunk in the group
'UXBTJS084' before it can use that group for
routing a call of any precedence via Torrejon.

PRE - Protective Reservation of Equipment

The PRE control is applied at a switch to a trunk group. It
gives priority to incoming traffic by reserving a number of idle
trunks in the group. When the number of idle trunks is equal to
or less than the number of reserved trunks, all alternate-routed
traffic is skip-routed. Calls of all precedences are affected by
the DRE control. Calls affected by this control are not counted
as attempts on the link.

Usage: PRE node1 clli reserve
nodel is the three-letter node name for the switch
at which the control is to be applied
cli is the cl1i name of the trunk group to which
the control is to be applied
reserve is the number of trunks to be reserved
(reserve = zero removes the control)

Example: PRE UXB UXBTJS084 1
UXB must have more than one free trunk in the group
'UXBTJS084' before it can use that group as an
alternate route for a call of any precedence.

DRZ - Directionalization

The DRZ control is applied at a switch to a trunk group. It
places a limit on the number of trinks which may be used for
outgoing calls on the trunk group. The limit ranges from 1 to
the maximum capacity of the trunk group. Setting the limit to
zero removes the control. Traffic (direct and alternate-routed)
which would exceed the limit is skip-routed.

90

Calls of all precedences are affected by the DRZ control. Calls
affected by these controls are not counted as attempts on the
link.

Usage: DRZ nodel clli limit
nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name of the trunk group to which
the ccntrol is to be applied

limit is the number of trunks that may be used by
outgoing calls

Example: DRZ DVN DVNTJS080 3
Donnersburg may use no more than 3 trunks in the
group 'DVNTJS080' for outgoing calls to be routed
via Torrejon.

CANTP - Cancel To (Percent)

This control is applied to a trunk group. It cancels percentages
of the direct- and alternate-routed routine traffic offered to
the group. Calls affected by this control are not counted as
ittempts on the link. Canceled calls are handled according to
the announcement type specified in the control.

Usage: CANTP nodel clli percentl percent2 ann
nodel is the three-letter node name for the switch
at which the control is to be applied
clli is the clli name for the trunk group to which
the control is to be applied
percentl is the percentage (0-100) of direct-routed
calls to cancel
percent2 is the percentage (0-100) of
alternate-routed
calls to cancel
ann is the announcement type (NCA, EAl or EA2)

Example: CANTP UXB UXBTJS084 0 80 EAl
Cancels 80% of the routine alternate-routed calls
offered to the trunk group 'UXBTJS084' from
Uxbridge to Torrejon. The canceled calls will not
be retried. Direct-routed calls offered to the
trunk group are not affected.

CANT-DIRECT-RATE/CANT-ALTER-RATE - Cancel To (Rate)

These controls are applied to a trunk group. They control the
rate at which calls are allowed to access the group. After one
call is allowed access to the group, subsequent calls that
otherwise attempt to use the group are canceled until a period of
time (the 'gap interval') has elapsed. The first call to arrive

91

after the gap interval will escape cancellation and be allowed to
access the group. The gap interval is chosen from the interval
set 0 (no-control), 0.10, 0.25, 0.50, 1, 2, 5, 10, 15, 30, 60,
120, 300, 600 seconds and infinity. An infinite interval cancels
all calls attempting to access the group. CANT-DIRECT-RATE
affects only direct routed traffic. CANT-ALTER-RATE affects
only alternate routed traffic. When the interval is less than
infinity, only routine calls are canceled. An infinite interval
cancels calls of all precedences.

Usage: CANT-DIRECT-RATE nodel clli index
or CANT-ALTER-RATE nodel clli index

nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the cdli name of the trunk group to which
the control is to be applied
index is a pointer into the following table of gap
intervals (1 removes the control

ann is the announcement type (NCA, EA1 or EA2)

Index Gap Interval Calls per
(Seconds/Call) Minute

1 0 All
2 0.1 600
3 0.2 240
4 0.50 120
5 1 60
6 2 30
7 5 12
8 10 6
9 15 4
10 30 2
11 60 1
12 120 1/2
13 300 1/5
14 600 1/10
15 Infinity None

Example: CANT-DIRECT-RATE TJS TJSUXBO84 10 EA2
Allows at most 2 direct-routed routine calls per
minute to search trunk group 'TJSUXBO84' for a
trunk to Uxbridge from Torrejon. All other
direct- routed, routine traffic that would
otherwise search the trunk group will be canceled
and not retried.

SK-DIRECT/SK-ALTER - Skip

The SKIP control is applied to a trunk group. It skip-routes
traffic to the next trunk group in the routing chain. SK- DIRECT
affects only direct routed calls. SK-ALTER affects only

92

alternate routed calls. Calls of all precedences are affected by
the SKIP control. Traffic that is skip-routed is not counted in
the statistics as attempts on the link.

Usage: SK-DIRECT node1 clli percent
or SK-ALTER nodel clli percent

nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name for the trunk group to which
the control is to be applied
percent is the percentage (0-100) of calls to be
skip-routed

Example: SK-DIRECT UXB UXBTJS084 70
Skip-routes 70 percent of the direct-routed calls
that attempt to use trunk group 'UXBTJS084' from
Uxbridge to Torrejon.

Post-Hunt Controls:

CANF - Cancel From

The CANF control is applied to a trunk group. It cancels
specified percentages of the direct- and alternate-routed traffic
overflowing from the group and prevents it from continuing to the
next group in the routing chain. Canceled calls are handled
according to their announcement type. Only routine calls are
affected by this control. Calls affected by the CANF control are
counted as attempts on the link.

Usage: CANF node1 clli percentl percent2 ann
nodel is the three-letter node name for the switch
at which the control is to be applied

clli is the clli name of the trunk group to which
the control is to be applied

percenti is the percentage (0-100) of direct-routed
calls to cancel

percent2 is the percentage (0-100) of
alternate-routed

calls to cancel
ann is the announcement type (NCA, EA1 or EA2)

Example: CANF UXB UXBTJS084 10 100 EA2
Cancels 10% of the direct-routed and 100% of the
alternate-routed traffic that overflows trunk group
IUXBTJS084' from Uxbridge to Torrejon. The
canceled calls will not be retried.

Post-Route Controls:

CAN-EOC-OVF - Cancel End-of-Chain Overflows

93

The CAN-EOC-OVF control is applied at a switch. It cancels a
percentage of routine calls that overflow the last trunk group in
the routing chain for a specified destination switch. The
canceled calls are not retried. They are counted as attempts and
overflows for all trunk groups in the chain, and they are counted
in a special statistic associated with the control. This control
was added to CCSIM for experimental purposes. It is not found in
real switches.

Usage: CAN-EOC-OVF nodel node2 percent
nodel is the three-letter node name for the switch
at which the control is to be applied (or ALL)

node2 is the three-letter node name for the
destination switch for which overflowing calls are
to be canceled (or ALL)
percent is the percentage (0-100) of calls to
cancel

Example: CAN-EOC-OVF TJS ALL 50
Cancels 50% of the routine calls at Torrejon that
fail to find a route out of the switch, no matter
what their destination. The canceled calls will
not be retried.

94

APPENDIX F. CCSIM Switch Reports

CCSIM generates two different kinds of switch reports; a full
report and an IWDB report. The full report contains information
known to CCSIM about such things as call handling in the switches
and precedence call occupancy of trunks that is not contained in
the NTI DMS switch Operational Measurement (OM) reports gathered
by the IW. The full report is generated by CCSIM as an array of
integers and passed in that form to the CCSIM graphics interface
and to earlier versions of the expert system (NMES), but not to
IWES. CCSIM commands are available to cause the full reports to
be saved in ASCII files in either a compact or verbose format.
The verbose format includes labels for the report lines, and is
intended for a human reader. It also has a summary of total
trunk activity printed at the end of each switch report. The
compact format has just the report data with minimal labeling of
switch names, trunk identifiers, and report times. The saved
full reports are large (ten printed pages for a report from UXB
for one reporting period). The commands allow the experimenter
to select switches and report times to help keep the quantity of
data manageable. The files accumulate the reports for all
switches requested and all report times.

The IWDB reports are also written to ASCII files, but there is an
individual file generated for each switch and each report time.
The reports are smaller than the full reports because they
contain lessinformation and are not formatted for easy reading.
An IWDB-defined algorithm for generating file names is followed
so that the files can be readily accessed using IW conventions.
The values in the IWDB reports are calculated using values from
the full reports as described below.

In the following sections we first describe the full report and
then the IWDB report. Both reports are made up of a switch part
that has information about the switch itself and a trunk group
part for each trunk group at the switch. In the real network
situation, the switch polls can specify which trunk groups are to
be reported and some requested reports may be lost due to
communication line problems, but in CCSIM, reports always have
trunk group parts for all groups. The presentation makes use of
line numbers using the notation 'Sn' for line 'n' of the switch
part and 'Tn' for line 'n' of the trunk group part of the full
report. Since lines can be missing from the IWDB report, line
numbers there have no significance. The lines in that report are
identified by OM report names and numbers.

F1.0 The Full Switch Report

F1.1 The Switch Part

The switch part is made up of a header line, ten lines of call
statistics, and ten lines of simulated OM reports. The call

95

statistics lines each have peg counts for all of the five
precedence levels, with the lowest precedence (routine) counts
first. All peg counts are cleared at the start of the report
period. The report thus presents the number of the tallied
events that occurred during the report interval. CCSIM generates
reports every five minutes of simulated time, but after a switch
has been restored following an outage, the first report may have
counts for a shorter time interval.

In describing the simulated ON reports from the DMS switches, we
make use of terminology taken from NTI Practice 297-1001-114 to
identify the fields of the ON reports. When there is no notation
to the contrary, it may be assumed that a field of an OM report
is calculated by CCSIM as a part of the simulation. Otherwise a
notation will indicate when CCSIM uses its random number
generator to approximate a field or defaults it to zero.

The individual lines of the switch part are:

S1. Header. This line has the three-letter code for the
reporting switch name followed by the simulation time
of the report in 'hh:mm:ss' notation.

S2. Originating Calls. This line has peg counts for call
attempts that originated at this switch. They include
calls for which this switch is also the destination
(local calls).

S3. Tandem Calls. This line has peg counts for calls coming
into the switch from other switches in the network and
which are destined for other switches.

S4. Outgoing Calls. This line has peg counts for calls that
attempt to enter the network at the switch. It
includes all calls in S3 plus the calls counted in S2
that are not local calls.

S5. Originating-Outgoing Calls NC. This line counts calls
originating at the switch that blocked on attempting to
enter the network. ('NC' stands for 'incomplete'.)

S6. Tandem Calls NC. This line counts calls that blocked at the
switch on attempting to re-enter the network.

S7. Total Line Busy. This line counts calls that reached busy
destinations at the switch. Such calls are treated as
successful in other counts.

S8. Incoming Calls. This line counts all calls coming into the
switch from the network. The counts are the sum of
tandem (S3) and terminating (S9) calls.

96

S9. Terminating Calls. This line counts calls that terminate at
the switch. The counts are the sum of incoming (SS)
less tandem (S3) plus local (part of S2) calls.

S10. Code Cancel Calls. This line counts calls that are
deflected by the CB, GAP, and DCC network management
controls. Such calls are not counted as incomplete in
S5 or S6.

Sl. ARC Calls. This line counts calls that could not be routed
out of the switch because of action of the ARC-B
control. Such calls are not counted as incomplete in
S5 or S6.

S12. CP. This line corresponds to the Call Processing (CP) OM
report from the DMS switches. It has the following
fields:

CCBSZ - Count of number of times a Call Condense Block
(CCB) was seized to process a call.

CCBOVFL - Count of calls lost because there were no free
CCBs.

CPTRAP - Count of failures due to illegal software
conditions in the switch. (Not simulated, default to
zero.)

CPSUIC - Count of failures due to 'unexpected results
detected'. (Not simulated, default to zero.)

INITDENY - Estimate of call originations denied during
warm or cold restarts. (Not simulated, default to
zero.)

S13. CPU. This line corresponds to the CPU OM report from the
DMS switches. It has the following fields:

MTCHINIT - Count of mismatch interrupts due to
inter-processor differences between the two processors
in the switch. (Not simulated, default to zero.)

CPUFLT - Count of times a CPU or other resource was
system-busied following a mismatch or trap interrupt.
(Not simulated, default to zero.)

SYSWINIT - Warm restart. (Not simulated, default to
zero.)

SYSCINIT - Cold restart. (Not simulated, default to
zero.)

SYNCLOSS - Count of times processor complex was made
simplex following an interrupt. (Not simulated, default
to zero.)

MSYLOSSU - Usage time in simplex mode due to manual
action. (Not simulated, default to zero.)

SSYLOSSU - Usage time in simplex mode due to system
action. (Not simulated, default to zero.)

97

S14. CMC. This line corresponds to the Central Message
Controller

(CMC) OH report from the DMS switches. The report has two
fields that show counts of the number of times the system called
diagnostics for the CMC. Both fields are set to zero by CCSIM.

S15 and S16. RCVR. These two lines correspond to the Receiver
(RCVR)

OH report from the DMS switches. This OM report shows activity
relating to both MF (S15) and Digitone (S16) receivers in the
switch. Each line has the following fields:

RCVSZRS - Count of number of times a receiver was
assigned in response to a request (including tests
tallied in the RADR report (S17).

RCVOVFL - Count of number of times no receiver was
available.

RCVTRU - Receiver usage (accumulated count of number of
receivers busy with call processing when scanned at
0-second intervals.

RCVSBU - Receiver usage because of system action. (Not
simulated, default to zero.)

RCVMBU - Receiver usage because of manual action. (Not
simulated, default to zero.)

S17. RADR. This line corresponds to the Receiver Attachment
Delay Recorder (RADR) OM teport from the DHS switches. It
has three fields for each of the two receiver types (MF
first). They are:

RADTESTC - Count of test attempts.
RADLDLYP - Count of test attempts that did not get a

receiver assigned within a lower delay threshold. (Not
simulated, default to zero.)

RADUDLYP - Count of test attempts that did not get a
receiver assigned within an upper delay threshold. (Not
simulated, default to zero.)

S18. TCM. This line corresponds to the TRMTCM OM report from
the DMS switches. It has the following fields:

TCMPDIL - Partial digit calls. Not enough digits
received for translation. CCSIM generates a random
value with a mean of 'mtcmpdil' percent of the total
offered call count. The total offered calls are the
sum of S2 and S8. 'mtcmpdil' is settable by the
experimenter in the 'net.inval' file.

TCMPSIG - Permanent signal calls. Receiver seizure
occurred, but no digits were received. CCSIM generates
a random value with a mean of 'mtcmpsig' percent of

98

the total offered call count. 'mtcmpsig' is settable by
the experimenter in the 'net.inval' file.

TCMPVACT - Vacant code calls. Translation occurred, but
no matching pattern was found. CCSIM generates a
random value with a mean of 'mtcmvact' percent of the
total offered call count. 'mtcmvact' is settable by the
experimenter in the Inet.inval' file.

S19. TER. This line corresponds to the TRMTER OM report from
the DMS switches. It has the following fields:

TERSYFL - Miscellaneous system failure calls. CCSIM
generates a random value with a mean of 'mtersyfl'
percent of the total offered call count. 'mtersyfl' is
settable by the experimenter in the 'net.inval' file.

TERRODR - Reorder calls. Causes include mutilated
digits, excess digits, and others. CCSIM generates a
random value with a mean of 'mterrodr' percent of the
total offered call count. 'mterrodr' is settable by the
experimenter in the 'net.inval' file.

S20. TRS. This line 7orresponds to the TRMTRS OM report from
the DMS switches. It has the following fields:

TRSEMR1 - Count of calls receiving EA1 treatment as a
result of network management control action.

TRSEMR2 - Count of calls receiving EA2 treatment as a
result of network management control action.

TRSNCRT - Count of calls receiving NCA treatment as a
result of network management control action.

•TRSGNCT - General No Circuit. A count of calls which
block because no circuit is available.

S21. DCM. This line corresponds to the DCM OM report from the
DMS switches. It has two fields that record the number of
times digital trunks were referred to diagnostics. Both
fields are set to zero by CCSIM.

F1.2 The Trunk Group Part

The lines in the trunk group part of the full report are ordered
in a fashion similar to that of the fields of the trunk group
report from the DMS switches. However, the meaning of the
numbers on each line does not always match that of the
corresponding field. Section F2.0 describes the algorithms used
to create the DMS fields from the lines of the full report.
Also, it should be noted that the lines of the trunk group part
of the full report (except for T1) have fields for each of the
five precedence levels.

A trunk group part is generated for each trunk group at a switch.
It represents activity seen on the trunk group by the switch.

99

The switch at the other end of the group may also generate a
report for the group. Numbers in the two reports for the same
group will not always match due to differences in report times,
numbers of trunks in service at the two ends, level of damage,
etc.

The individual lines of the trunk group part are:

T1. Header. This line has four fields. They are:

Distant End Switch Name - The three-letter for the switch
at the far end of the trunk group.

In-Service - The number of trunks marked as in service at
the end of the reporting period.

Equipped - The nominal number of trunks in the group.
Capacity - The number of working (undamaged) trunks at the

end of the report period.

T2. Incoming Attempts. This line has peg counts for incoming
calls.

T3. Incoming Failures. This line has peg counts for incoming
signaling failures detected by the switch. These are not
currently modeled by CCSIM and are set to zero.

T4. Outgoing Attempts. This line has peg counts that record the
number of times the switch attempted to use the group to
route outgoing calls. It includes calls that were deflected
by

CANT and SKIP network management controls.

T5. Overflows. This line has peg counts for calls that did not
find free trunks when attempting to access the groups.
Calls that may ultimately be carried as a result of
preemption are counted as overflows in T5. Thus the counts
here do not correspond to the 'NOVFLAT' field in the DMS
switch report or the overflows displayed in the CCSIM
graphics windows. Calls deflected by the CANT, SKIP, ARC-A,
and CANF controls are not counted in T5.

T6. Glare. This line has peg counts for calls for which a
'glare' condition was detected by the switch. To simulate
glare, CCSIM generates a random value with a mean of
'mglare' percent of the lesser of the sums of incoming
attempts (T2) or connections (T12) for all precedences. It
places the simulated glare value in the first (routine
precedence) field and sets the remaining four fields of T6
to zero. The 'mglare' parameter is settable by the
experimenter in the 'net.inval' file.

100

T7. Outgoing Failures. This line is intended to have peg counts
of failures to effectively seize a chosen trunk due to
various hardware problems. CCSIM generates counts in this
field when it attempts to use trunks that have been marked
as damaged.

T8. Deflected Calls. This line has peg counts for calls that
were deflected by the CANT and SKIP network management
controls.

T9. Traffic Usage. This line accumulates the results of
sampling the trunk status of each trunk in the group at 100
second intervals. If the trunk is carrying a call at sample
time, a count is registered in the appropriate precedence
field.

T10. System Busy Usage. This line is intended to accumulate
usage in the same way as T9, but of trunks made busy as a
result of system action. CCSIM does not currently model
such action and s~ts all values to zero.

Tl. Manual Busy Usage. This line is intended to accumulate
usage in the same way as T9, but of trunks made busy as a
result of manual action. CCSIM does not currently model
such action and sets all values to zero.

T12. Connections. This line has peg counts for successful
attempts at seizing trunks in the group.

T13. Tandem Calls. This line has peg counts for incoming calls
on the trunk group that turn out to be tandem calls.

T14. Preemptions. This line has peg counts for calls of each
precedence on the trunk group that were preempted during the
report period.

T15. Overflows After Preemption. This line has peg counts for
call attempts that overflowed the trunk group after having
failed to find either a free or preemptible trunk. Since
routine calls can never preempt, the first field of T15 is
always the same as the first field of T5.

T16. End-of-Chain Overflows. This line has peg counts for
overflows from the trunk group when the group is the last
group in the routing chain for the call destination. The
counted calls blocked at the switch.

T17. Canceled by CANT. This line has peg counts for calls that
were canceled by the CANT network management control.

T18. Deflected by SKIP. This line has peg counts for calls that
skipped over this trunk group as a result of the SKIP
control.

101

T19. Canceled by CANF. This line has peg counts for calls that

were canceled by the CANF network management control.

F2.0 The IWDB Switch Report

The IWDB switch report is an ASCII file containing a header line
with identification and date/time information followed by ten OM
reports. If the flag Itoiwdb' in the 'net.inval' file is set to
one, an IWDB switch report file is written for each non-damaged
switch at every report interval. Each ON raport is a line of
fields separated by commas except fcL the last report which has a
header line (TRK,16) followed by a line for each reporting trunk
group at the switch. Section F2.1 has an example of such a
report generated by CCSIM.

The OM reports are identified by name and report number, e.g.
'TRK,16', the numbers and names being those used in the DMS
switches. In the reports collected for the IW at DCA-Eur,
different report numbers occur for the same report from different
switches due to different software versions in the switches, but
CCSIM always generates the same numbers for the reports
independent of which switch is reporting.

The OM report lines are calculated as follows:

CP,1 The other five fields of this line are copied from the
fields of line S12 of the full report.

CPU,2 The other seven fields of this line are copied from the
fields of line S13 of the full report.

CMC,3 The other two fields of this line are copied from the
fields of line S14 of the full report.

RCVR,10 The other ten fields of this line are copied from the
fields of lines S15 and 516 of the full report.

RADR,11 The other six fields of this line are copied from the
fields of line 517 of the full report.

TCM,6 The other three fields of this line are copied from the
fields of line S18 of the full report.

TER,7 The other two fields of this line are copied from the
fields of line S19 of the full report.

TRS,8 The other four fields of this line are copied from the
fields of line S20 of the full report.

DCM,9 The other two fields of this line are copied from the
fields of line S21 of the full report.

102

TRK,16 This OH report consists of one line for each reportint7
trunk group. The fields of each line are as follows:

Group Number - The group number for the trunk is obtained from
the 'net.clli' file. In preparing the report,
the lines are ordered according to ascending
trunk group number.

Equipped - The nominal number of trunks in the group.

In-Service - The number in service at the end of the
reporting interval.

INCATOT - The number of incoming seizures. Calculated by
summing the fields of line T2 of the full report.

INFAIL - The number of incoming failures. Calculated by
summing the fields of line T3 of the full report.

NATTMPT - The number of outgoing attempts. Calculated by
summing the fields of line T4 of the full report.

NOVFLATB - The number of outgoing overflows. Calculated by
summing the fields of line T15 of the full report.

GLARE - The number of glare events detected. Calculated by
summing the fields of line T6 of the full report.

OUTFAIL - The number of outgoing failures. Calculated by
summing the fields of line T7 of the full report.

DEFLECTED - The number of calls deflected by network
management controls. Calculated by summing the
fields of line T8 of the full report. This value
does not correspond to the same field in the
reports from the real switches. We have been told
that there is a bug in the switch software, and
that the field is currently being ignored by the
IW. We believe that CCSIM's value is appropriate
for the intended meaning of the field.

TRU - Usage on traffic-busy trunks. Calculated by summing the
fields of line T9 of the full report.

SBU - Usage on system busied-out trunks. Calculated by
summing the fields of line T10 of the full report.

MBU - Usage on manually busied-out trunks. Calculated by
summing the fields of line Tll of the full report.

103

CONNECT -The number of apparently successful attempts at
trunk seizure. Calculated by suimming the fields of
line Tl2 of the full report.

TANDEM -The number of incoming calls initially routed to an
outgoing trunk group. Calculated by suimming the
fields of line T13 of the full report.

PREEX -The number of preemptions exercised on the trunk
group. Calculated by suimming the fields of line T14
of the full report.

PREOVFL - The number of precedence calls that overflowed.
Calculated by summing the last four fields of line
T15 of the full report.

F2.1 Example IWDB Switch Report

The following is the contents of an IWDB switch report written
to a file named '901205.0055b.uxb' according to IWDB conventions.

02:1990/12/05 00:55:00 WED; ccsimUXB: 1990/12/05 01:00:00 WED;
CP,1,350,0,0,0,0
CPU, 2,0,0,0,0,0,0,0
CMC, 3,0,0
RCVR,10,324,O,71,0,0,112,0,20,0,0
RADR, 11,75,0,0,75,0,0
TCM,6,4,0,16
TER, 7,0,0
TRS, 8, 0,0,0,41
DCM, 9,0,0
TRK, 16
72,7,7,9,0,1,0,0,0,0,0,1,0,0,0,0
87,8,8, 3,0,12,6,0,0,6,6,0,0,0,0,0
88,7,7,4,0,12,6,0,0,6,6,0,0,0,0,0
89,6,6,4,0,9,3,0,0,3,3,6,0,0,0,1
90,8,8, 0, 0,0, 0,0, 0, 0,0,0, 0, 0,0,0
91,7,7,0,0,8,1,0,0,1,1,7,0,0,0,0
92,7,7,4,0,0,0,0,0,0,0,0,0,0,0,0
93,24,24,9,0,1,0,0,0,0,0,1,0,0,0,0
95,10,10,17,0,12,1,0,0,1,1,11,0,0,0,0
96,3,3,1,0,14,9,0,0,9,9,5,0,0,0,0
97,1,1, 1,0,1,1,0,0,1,1,0,0,0,0,1
98,10,10,1,0,40,32,0,0,32,32,8,0,0,0,0
99,7,7,4,0,2g,,,,,,2,0p,,,
101,48,48,1000,1300,0,0,0,0,13,0,0,0,0
102,5,5,4,0,5,1,0,0,1, 1,4,0,0,0,0
103,3,3,3,0,16,12,0,0,12,12,4,0,0,0,0
104,8,8,6,0,32,26,0,0,26,26,6,0,0,0,6
105,6,6,9,0,31,24,0,0,24,24,7,0,0,0,0
108,24,24,10,0,24,0i,,,,,24,0,0,0,0
112,24,24,6,0,8,0,0,0,0,0,8,0,0,0,0

104

114,4,4,1,0,9,7,0,0,7,7,2,0,0,0,0
120, 4, 4 ,8, 0,1, , 0 0, 0 0, , , ,0,
127, 24, 24, ,0,4t,, , ,, 04, 0, 0, 0,0
128,8,8,12,0,6,4,0,0,4,4,0,0,0,0,0
137,l 1,,2, 0, 2, 1,0, 0, 1, 1,1, 0,,0
138, 24, 24, 25,0, 2, 0,0, 0,0, 0, 2,0,0,0, 0
140, 24, 24, 16, 0,6,0, 0, 0,0, 0,6, 0, 0,0,0
169,10,10,6,0, 1,0,,,,,,,,0,0

105

-1 Form Approved
REPORT DOCUMENTATION PAGE oDB No. 0704.0189

P,*ic Ing buden to, Vtoow 0ecbn of mtom'aon 's Iatontes to aeage I hour per resorse .ouchng the tine tot renmeenng n81 atCtuo searChng aovstng data soerres gatnerng em ,ntalnng the d" need
ma Co. ng a rem" ate 5c d. t of w mw Send tt rmgan 'dng te burden ad orat W &my other ASpeO 04 th4 odl etdn of r 'tnnaton mrkung Sggeotxo to #,0cVW th, brden to Wayyeado-
Hanew o Sns Dwectrate for IOntm Operatbon and Repons 1215 Jelferaon Dam S'hls y Stte 1204 ArknqtOn VA 22202-4302. and to te O ffim CO Mnagten an Budget Paoewft ReA oLCo Pro'ec

(07o4-t0180 WmtVtWn DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
30 September 1I90 Annual Report. 1 October 1989 - 30 September 19(I

4. "1 ITLE AND SUBTITLE 5. FUNDING NUMBERS

Knowledge-Based System Analysis and Control Defense Switched Network Task Areas

C - F19628-90-C-0002
6. AUTHOR(S) PE - 62702F

Harold M. Heggestad

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Lincoln Laborator. MIT
P.O. Box 73
Lexington. MA 02173-9108

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

DCA Engineering Group
1860 Wiehle Avenue ESD-TR-90-151
Reston. VA 22090-5500

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release. distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

A major activity during F1'90 has been the design and implementation of a network management expert system to operate in the
Integrated Workstation (lM) that was developed during FY90 for use by ACOC personnel at DCA-Eur to perform DSN network
management tasks. The 1W was successfully tested on live and archived data. and on fault conditions deliberately induced by switch
technician actions, during the period 25-28 September 1990. AI parties declared that the Ib features and demonstrated performance
were valuable and successful. The Expert System was well received, in particular. An 1W terminal has been installed on the floor of
the ACOC. and the staff have been directed to familiarize themselves with its operation.

A number of changes and improvements were made in CCSIM and related programs. All were converted to run under SUN OS
4.0.3. The graphics interface program was rewritten to use the X-window system. A new document called "Using The Call-By-Call
Simulator (CCSIM)" has been written, and the "CCSIM User's Manual" and the "CCSIM Software Top Level Design Document"
delivered in FY90 are to be updated early in FY91.

Work was performed in expert systems development efforts for DCS transmission system control with two main components:
implementation of the TRAMCON Event Generator (TEG). and participation in the Tech Control Automation Proof-of-Concept
System (TCAPS). TEG had been specified during FY89, and has now been written and successfully installed and demonstrated at
a number of locations. Lincoln's RADC-sponsored MITEC expert system was incorporated in a DCA-sponsored set of TCAPS field
demonstrations.

14. SUBJECT TERMS 15. NUMBER OF PAGES
expert systems system control Defense Switched Network (DSN) 116
communications control network management communication network simnilation 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified nI.'classified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std. 239-18
298-102

