
Naval Research Laboratory
Washington, DC 20375-5000

NRL Report 9318

AD-A234 124

An Implementation of
the Singular Value Decomposition
on the Connection Machine CM-2

NHi-ANH CHU

Signal P, rocessing Branch
Acoustics Division

April 11, 1991

APR19a 1991,

Approvcd fot public rclcase-, dimtrihution unlimited.

"Y~ ~

Form ApprovedREPORT DOCUMENTATION PAGE OMB No 0704-0188

P., (, te rrnOturden 'Qr tns etOn nt tO-at P ,,t ratd ro a e-qe ! 10r be1 nOorse ,ctudnq the [,me for r eeaenq ,nr trArr' rear r.nq d. stg Cata vou1r1,
qathe-rnq aria ,nt nrrq he ata nedd and oo~einq and , ew, n !h e o, ecn o ,nfonatOn %end omnmenhs regarong thrs burden eslrate or any other aioert of th,s
rOI eol ot ,nf tnf alr,r nId-n .uqgest,or fo redo(.ng thr Ourden 10 vVa4lnqton Headujarlers Ser,_<e,, Dre<torate for nforhation Ooetatonr and Ref Ots 12 IS effeton
Da,s HP,ay S, Ce 1204 Arnton t A 22202 4302 and tc the Cofre Of Managerent and 8udget Papet-ork RedtuCton Project (0704,01BS) Was hnqon D)C 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 11, 1991

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

An Implementation of the Singular Value Decomposition on the Connection
Machine on CM-2

6. AUTHOR(S)

Chu. Nhi-Anh

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Washington. DC 20375-5000 NRL Report 9318

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release: distribution unlimited.

13. ABSTRACT (Maximum 200 words)

In modern digital signal processing, the singular value decomposition is increasingly recognized as an

important mathematical tool. The true measure of usefulness of such a tool is very much dependent on the abil-
ity to compute it at 'supercomputer" throughput rates. This report describes an implementation of the singular
value decomposition (SVD) on the Connection Machine CM-2 using parallel Fortran. The algorithm is based
on Hestenes's. which is a Jacobi iteration in which pairs of rows are rotated to become orthogonal. The For-
thii implementation of this algorithm on a full CM-2 is comparable in execution speed to the Linpack imple-
mentation on a Convex C220 processor.

14 SUBJECT TERMS 15 NUMBER OF PAGES

Singular value decomposition CM-2
SVD Esprit 16. PRICE CODE

Connection machine Music
17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRAz'

6 NALA:,,SlhiLb UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540 0 1 2905500 Standard orm 298 (Rev 2 89)
'1, -.e u, SN',. I ' f

CONTENTS

1 Introduction . 2

2 The Singular Value Decomposition 2

3 Previous Work 3

4 Implementation of the SVD on the CM-2 3

4.1 Connection machine CM-2 4

4.2 SVD Algorithm 4

One-sided Jacobi rotation 5

Numerical Issues 6

Permutation Scheme 7

Matrix Shape 9

4.3 Results 9

REFERENCES 10

APPENDIX A - CM Fortran Code For Subroutine SVD Optimized for m _ n 13

APPENDIX B - CM Fortran Code For Subroutine SVD Optimized for m > n 25

APPENDIX C - CM Fortran Code For Test Driver 37

Accession For

NTIS GPRA&I oe
DrIC TAB ~ f

Ju:3t i f

D t i A u l, ':F-
A

yt

AN IMPLEMENTATION OF
THE SINGULAR VALUE DECOMPOSITION

ON THE CONNECTION MACHINE CM-2

1. INTRODUCTION

In recent years, the singular value decomposition (SVD) has become an important tool for
modern digital signal processing to find higher resolution and more accurate algorithms to extract
underlying signal and system parameters fiom measurements. The SVD implemented in the LIN-

PACK [1] scientific library was designed for a serial or vector machine and is not directly portable
to the Connection Machine, which is of data parallel architecture. A parallel version of the SVD

is explored here.

In Section 2, the definition and important properties of the SVD are briefly stated. Section
3 reviews previous implementations of the SVD. Section 4 describes the implementation of the

algorithm on the Connection Machine. Details of the algorithm and results are also given.

2. THE SINGULAR VALUE DECOMPOSITION

If A is a m x n matrix of rank r then there exist real orthogonal matrices U = [Ul U2...Um] and
V = [vIv 2 ...v,] such that A = UEVt where

S= UtAV = [diag(al, a 2 ,...ar) 0]E A 0 01

r < min(m,n) and a, > aj+, > 0 for i = 1,..,r - 1. The ai are the singular values of A and the

corresponding vectors ui and vi are respectively the ith left and right singular vectors.

The most valuable aspects of the SVD for digital signal processing are in the rank and the dyadic

decomposition properties. The rank property says that the singular values can be considered as

quantitative measures of the inexact arithmetic measures of the exact mathematic notion of rank.

The dyadic decomposition describes a matrix as the sum of r rank-one matrices of decreasing
importance, as measired by the singular values:

Rank property: rank(A) = r where a, _ a2 > ... > Or > 0

r
Dyadic decomposition: A = F ajuv

Manuscript approved January 30, 1991.

N. A. CHU

With these properties, the application of the SVD to signal processing and to a wide variety of
other systems is often where a linear model is constructed from a sequence of observed data vectors.

The complexity of the system is reflected by the rank of the data matrix, and the parameters of
the model may often be extracted from certain subspace spanned by singular vectors.

These techniques and their applications to many problems are reviewed in Refs. 2 and 3. For
example, the linear least squares method uses the SVD to find a vector of model parameter x such

that the system output A x is as close to the actual observed output b as possible:

x = A+b,

the pseudo-inverse it x m matrix A+ = V +Ut , with += [- 0]

The SVD and the Generalized SVD [41 serve as the basis for ESPRIT [5], a technique devel-

oped by Roy and Kailath for applications such as direction-of-arrival (DOA) estimation in which

estimates of the spatial location of multiple sources whose radiation is received by an array of
sensors are sought. While somewhat less general than the well known MUSIC[6] method, ES-
PRIT should prove to be more practical because it does not rely on complete knowledge of the

antenna gain patterns, and it vastly reduces the amount of calculations. In an example given in
Ref. 5, a factor of 105 reduction of number of multiplications over MUSIC was estimated for
a twenty-element sensor array employed to cover 10 signals in an aperture of 2 radians in both
elevation and azimuth, with one milliradian resolution.

3. PREVIOUS WORK

Theoretically, the SVD may be performed directly following the observation that the singular
values ao are simply the nonnegative roots of the largest eigenvalues of the matrix AAt, and the
singular vectors ui and vi are the corresponding eigenvectors of AA t and AA. In practice, the

loss of numerical precision becomes so severe that smaller singular values are rendered incorrect
[7].

The most widely used algorithms used on serial machines are variants of those proposed by

Golub and Reinsch [8] and Golub and Kal an [9], in which the given matrix is bidiagonalized, then
the QR method is used to compute the singular values of the resultant bidiagonal form. This
method is inherently unsuitable for parallel processing [10,111].

The one-sided Jacobi method credited to Hestenes [12,13] and the two-sided variant [13,14]
that were superseded by the Golub serial algorithms are apparently suitable to parallel process-

ing because all row-pairs in the matrix may be processed concurrently and each element of each
row may also be operated on during the rotations. In the Jacobi iteration process the pair-wise

rotations must be done in a particular order for the process to converge. The standard cyclic-
by-rows method for .Tnrohi itration [11, ,bH. involves tho cequentid nioces :rg of row-pairs
(,),(I,3), .. ,(1,m),(2,3),(2,4),..., (2,m),...,(m- 1,m) is not suitable for concurrent processing

because of the obvious data dependency. Many other methods to process row-pairs concurrently
are reviewed in Ref. 16. The permutation scheme described in this report is akin to the bubble-sort
algorithm [17] in which each neighboring pair is transformed by a rotation that leaves the larger

(in the norm sense) row on top.

2

NRL REPORT 9318

Ewerbring et al. [11] implemented a similar algorithm on the Connection Machine using a par-
aflel variant of Lisp. Their report did not state the execution time. The implementation described
here is in Fortran, maps more matrix elements to a processor and uses a different permutation
scheme.

4. IMPLEMENTATION OF THE SVD ON THE CM-2

The massively parallel computer CM-2 on which the code runs is described in Section 4.1. In
Section 4.2, formulae to generate the rotation matrix and the permutation scheme are described
in detail. Results are discussed in Section 4.3. The Fortran code is included in the Appendices.

4.1. Connection Machine CM-2

Initially, the Connection Machine machine model was a single instruction multiple data (SIMD)
array of up to 64K (K=1024) bit-serial processors connected by a hypercube bit-serial interconnect
network. This paradigm is natural and useful in a number of applications, such as the method of
discrete simulation of fluid flow [18] in which each processor is mapped onto a "cell" of the fluid
body which interfaces only with a number of neighbor cells.

In the second generation CM machine [19], a 32-bit or 64-bit Weitek floating point arithmetic
unit (FPU) was added to each group of 32 processors to provide fast single or double precision
floating point capability.

The virtual processor concept allows automatic mapping of problems that require more nodes
than are available in the physical machine. In this virtual processor mode, every instruction is
executed n times, where the vp ratio n is the ratio of number of problem-domain nodes to the
actual number of pi'ocessors. The problem size is thus limited by the amount of memory in
each physical processor. At the Naval Research Laboratory Connection Machine Facility, the 16K
processor double precision CM-2 has 1 Megabit of memory per processor.

The core of the machine operation is in downloadable microcode. User programming languages
include an assembly language called Paris and parallel versions of other common high-level lan-
guages (HLL): *Lisp, C* and CM Fortran. CM Fortran is based on Fortran-8X, which is similar to
Fortran-77, augmented with array operations.

The recently introduced slicewise Fortran compiler used for this work employs a different ma-
chine model. The machine is presented to the compiler as up to 2048 depth-4 pipelined floating
point nodes; each node is a 32-bit or 64-bit processor. For certain problems, this machine model
produces compiled codes that are two to three times faster than the fieldwise modeled compiler by
streamlining of data in and out of the FPUs, and by using in-place FPU calculations.

The theoretical single precision, peak floating-point performance of a full (64K) CM-2 is 27
GFLOP'- ncuming that all of the floating point chips in the machine perform a multiplication and
an addition every clock cycle. On a full CM-2 with 32-bit FPU and microcode version 5.0, Levit [20]
reported a much lower peak performance of users code without interprocessor communication. This
so-called memory-bandwith-bound peak performance is cited to be 5.17 GFLOPS. For a 16K 64-bit
FPU., roughly 800 MFLOPS is expected for the communication-free portions of the code. Grid

3

N. A. CIU

communication (between power-of-two interprocesor points) i oniy 73 MIPS (in terms of number
of 32-bit words communicated per second) at vp ratio 1, to 1375 MIPS for adjacent communication
at a high vp ratio. The fast Fourier transform (FFT) has been coded and is reported to execute
at a sustained rate of more than 1 GFLOPS for very large FFTs on a 64K CM-2 [21].

4.2. SVD Algorithm

Consider mapping each element of a real matrix A of size m x n onto a node on a 2-D array
of virtual processors on the CM-2. Transformations of the matrix that require change to the value
of each element may take place on all processors simultaneously. The Hestenes one-sided Jacobi
iteration algorithm exploits this concurrency.

One-Sided Jacobi Rotation

Denote a matrix A in "mxf as A2 xn to emphasize that 2-element matrix operations ar to
22be performed on the ! pairs of the n-element rows.

In Hestenes's construction of the SVD, two rows of the matrix are rotated to be orthogonal
then permuted with other rows to continue the process until all are mutually orthogonal. This is
achieved by multiplying each pair of elements from the row pairs by a sequence of rotations {Rk},

SXn n

R=R2 2 . The rotated result is stored in a matrix H = H x .

The product of the rotation matrices is constructed by applying {Rk} to an initial identity

matrix I = Ix during the iterations. The result is kept in matrix Ut.

Hmxn [Ut]; Am n
2 ~ 2 2

where
- = [Rk] 2m2 ITX m (1)

k

Note that in Eq.(1), the rotation matrices Rk are replicated m times in each row to match the
dimensions of I.

After normalizing each row i of H by its norm ai, H = [hih 2 ... hi...hm] may be factored into
as a product of a pseudo-diagonal matrix (a diagonal matrix concatenated with null rows) E and
an orthonormal matrix Vt.

H = [hih 2 ... hi...h,...hm] t ZV t , (2)

where

1h,1 = al > 1h21 = a2.> Ih,.I = 7 > 0;

Vt =[VlV2..Vi...Vm]

where
f h/h, i =1,.,

0, i >r

4

NRL REPORT 9318

0 0"

In Eqs. (1) and (2), since Ut and V are orthonormal and E is pseudo-diagonal, we have the
defining equation for the SVD:

E Vt = UA. (3)

Two rows x and y are to be rotated into rows X and Y, respectively by using the premultiplier
rotation matrix R :

YY -sin0 cosO) " (4

The first criterion for selecting a value for the rotation angle 0 is for the resultant rows to be
orthogonal:

XtY = 0. (5)

Defining
a = xty

= 1x12 - Jy12 (6)-y = (a2+/3):,

and substituting the expansion of the right-hand side of Eq. (4) into Eq. (5), we have

tan20 = _

cos28 = (7)

sin20 = ±2 = 2sin cos0.

The ± sign ambiguity corresponds to the Z ambiguity of 20 which can be resolved by an
2

additional constraint that the norms of the rows become more orderly through each rotation in
order for the rotation process to converge. In fact, it will soon be shown that the + sign for cos 20

and sin 20 results in a rotation that puts the larger norm oji top while the - sign results in the
smaller norm on top.

The rotation matrix coefficients may then be derived from the above using the half-angle
trigonometry identities. Thus:

±(os0 =20=

sino = =(1-cos2O)i ±2) (8)

An arbitrary limitation of 11 < has been found to help in the convergence [22]. In Eq.(8),
this limitation is imposed by selecting the positive value for cos 0. The sign of sin 9 is the same as
that of sin 20 which is determined by the sign of a.

To see the significance of the sign for cos 28 and sin 20, calculate the change in norms of the

row, say x:

XIX-x'x = lasin20-O3sin 2 02 ±_C + 2 _ y + p 2 (9)
2- 20--0

- 21y 2y-Y 2
-y

5

N. A. CHU

If a + sign is chosen in place of the ± in the Eq. (9), the change in norm becomes

XtX - xx= (10)

in which case, Ixi has increased since the right-hand side of Eq. (10) is greater than zero (The
case of -" = 3 is considered separately as discussed below). A similar proof may be carried out for
yty - yty.

2

If a - minus is chosen, Eq.(10) becomes -2+"3, which is < 0.

Numerical Issues

Equations (8) should be used carefully. Specifically, avoid the case when (-y ± 3) requires a

subtraction that results in a loss of accuracy. An improved algorithm to construct the rotation

matrix R is:

If 3 0, calculate cos0 = (+) then calculate sinS= 0 =2 -y 27- o- a To , (1 2)
Ifl <0, calculate sinO = sign(a)(-P)7 then calculate cosB =

On a digital computer, the orthogonality condition in Eq. (5) can be satisfied to within a

quantity equivalent to the norm of a null row. The orthogonality condition (based on Ref. 22) is:

xty _ 6 min(IxI, jyl) (13)

where
b ElAI

c= (2 a 2.)2 (14)

The single precision (32-bit) and double precision (64-bit) floating-point machine precisions are

1.17e - 7 and 2.22e - 16, respectively.

When the norm of either vector becomes less than 6, the rotation becomes meaningless and

could be avoided. On a conventional machine, avoiding these calculations may reduce computation

time. On the CM-2, however, no saving is expected because the entire array has to be operated

on. Taking note of the occurences of null norm and of orthogonal row-pairs, however, serves to

establish the stopping criterion of the iteration, namely:

Stop when for all row pairs (xiy), i = 1, .., ',

Ixi < 6 or y, <6 or (xyj) _< 6min(lxl,yI). (15)

The calculation of the norms of the rows in Eq. (6) is expensive in terms of execution time on

the CNM-2 because of the interprocessor communication involved in adding the square of the row

elements, each assigned to a virtual processor. Alternatively, new values may be computed from

the elements of the rotation matrix R and the current values of the square- norms. The loss of

6

NRL REPORT 9313

4 3---3 1.1 21.2 .

(a)
odd sweep even sweep

D3ZzxA A> Qy

(b) (c)

Fig. 1 - Permutation scheme to visit all row pairs in a sweep. (a) The general structure is similar to a bubble-

sort using neighbor exchanges. Rotation followed by exchange achieves the required sorting effect that makes the

permutation scheme converges to a bubble-sort. (b) The rotation tends to put the larger (norm) row on top, thus in

an odd sweep, an exchange is required after rotation to permute the rows. c) In an even sweep, the inputs must first

be exchanged so that the order is enforced after the subsequent rotation.

accuracy in this calculation is sufficiently small for the algoritm to converge-care must be taken

to avoid calculating the aorta since it would mean taking the square-root of a negative real number.
Experiments with the code showed that there was no convergence penalty in terms of number of
sweeps.

Permutation Scheme

On the Connection Machine, high-speed algorithms must be designed with special care in the
assignment of variables that reside on different processors. A general assignment takes on the order

of a millisecond to send data between arbitrary processors, while an assignment using specialized

communication calls, such as eshift to exciange data in a systolic manner, is an order of magnitude

faster. Special hardware is used in the high speed execution of a set of specialized communication

utilities that includes scan, global, reduce, spread and multispread to implement the broadcast

and/or accumulation of values to/from n processors.

The desirability of the nearest-neighbor systolic communication and the mesh layout of the
matrix leads naturally to a pairing scheme as illustrated in Fig. 1 (a). For the purpose of illustration,

each of the m rows of the matrix is indicated by an index (1..., m)-m even. Suppose for a moment

that the rows are placed in descending order (from left to right) according to the vector norm, i.e.

IxIi 12 Ix21 > ... __ Ix,I. The rows are then exchanged pairwise: (1,2),(3,4),(5,6),...,(m - 3, m -

2),(m - 1, m)to become (2,1),(4,3),(6,5),..., (m- 2, m- 3),(m, m - 1). In the next iteration, the

process is repeated without the first and m-th rows: (2), (1,4), (3, 6),..., (m - 3, m). The iteration

repeats even-odd for a total of m cycles (a sweep) after which all pairing of the rows (1,...,m)

have been visited and the norm ordering is reversed, i.e. m,m - 1,...,2, 1.

If the row norms are not ordered, the same sorting effect described above can also be achieved

if each pair is exchanged conditionally on a particular ordering. When the conditional pairwise

7

N. A. CHiU

exchange is followed by neighbor swap, we have a permutation identical to that in th fan iliar
bubble sort algorithm.

The rotation with matrix R (Eq. (4)) also converges into a bubble-sort transformation bec?'lse
of the ordered-norm conditions described in Eq. (11). For each row-pair (x,y), as lxi keeps in-
creasing ard lj keeps decreasing, eve.itually lxj _ lyl. Experience with t' is SVD algorithm shows
that this ordered state is u-ually achieved in the first couple of sweeps.

Fig. 1(b) illustrates this concept: in -each of the m stages of an odd-numbered sweep, each

row-pair is shown to feed into an oval icon representing the premultiplication by matrix R. After
the rotation, the results are interchanged to realize the bubble-sort.

In Fig. 1(c) which illustrates an even-nimbered sweep, each input row-pair is unconditionally
exchanged before entering the rotation icon. The necessity of this step is clear if one keeps in

mind that the rotation tends (over a few iterations) to make the norm of the upper output larger
than that of the lower. Upon entering an even-numbered sweep, if this exchange is not a ie
to put the larger norm row on top, the subsequent rotation would effectively undo the rotation
of the preceding odd-numb -rea sweep. In the even-numbered sweeps. no exchange is required at

the output because the output norms ordering is to be reversed from the '-der produced by the
previous rotation (larger norm on top).

An alternative approach is to use a different set of values for R such that the rotation will result
in a smaller norm on top. This requires a change in Eqs. (12) that involves reversing the sign of
3 and the order of calculating cos 0 and sin 9. The simple mapping of one floating-point processor
node per matrix element actually uses only half the resources for computation because the rotation
of each row-pair is identical for each of the elements of the pair. The solution used here is to assign
a row-pair to one processor-row to make full use of all processor nodes for actual calculations.
Moru significantly, the number of interproceisor communication steps is reduced proportionally;
this should significantly reduce execution time. In fact, experiments showed this improved mapping
reduced the execution time by an order of magnitude.

Matrix Shape

As indicated at the beginning of Section 4.2.. if the matrix A is m >e n, then U and V are

in x rn and n x n, respectively. 'hen m 5 it, the constructive algorithm described above becomes
somewhat cumbersome for the 2-D layout on the CM-2. If r2 is slightly more or less than n, the
matrix A may be simply padded with 1m - ni null rows or columns. However, if m > n, the
algorithm will have to be modified t- avoid working directly with the large m x m matrix U. In
this case, Ut may be internally processed sequentially as matrices, each of size m x n. See
Appendix 1 for detail.

4.3. Results

A ('M-Fortran subroutine was written accrding to the algorithm and requirements presented

in the preceding section. Appendix A contains the source codes for the subroutine that is specific
for the case of ni _ n. Appendix B contains a modified version of Appendix A for the general case
of n? > n. Appendix C contains source codes for a test driver. The codes were tested on ransom

real matrices. The Connection Machine used was a 1K CM-2 with 64-bit FPII.

8

NRL REPORT 9318

Table 1 - Comp--ing CM-2 execution times with LINPACK. The CM Code was compiled by a slicewise Fortra'i
compile-. The LINPACK codes were run on a very lighltly loaded Sun-4/280 and one processor of a Convex C210.
The nor.-,alized residual error after 12 sweeps was on the order of le - 16.

Double Precision
Size Machine # processors exec time # sweeps
512 CM-2 16K 280 sec 12
256 CM-2 16K 39 sec 12
512 Coivex 1 141 sec
256 Convex 1 21 sec
256 Sun-,i 1 35 sec

In Table 1, the execution times for m = n are compared against the execution times of the
LIN PACK dsvdc codes on one processor of a Convex C210 and a Sun/4-?80. Both the Convex and
Sun/4-280 codes were compiled by using the respective Fortran compiler with optimization; loads
were minimal. The codes for the general cases where m > n were slightly slower.

Table 1 shows that the LINPACK implementation on one procressor of a Convex C210 is 2
times faster than the CM-Fortran implementation on the 16K CM-2 at m = n = 256 and 512. A
fiLl (64K) CM-2 is expected to run between 3 to 4 times faster than a 16K CM-2. It is rea. onable
tt, conclude that the CM-2 and Convex implementations are comparable in execution times.

For a great majority of runs on random matrices, the number of row rotations begins to drop
off at the end of 8 sweeps, and down to 0 by the end of 12 sweeps. Accuracy was checked by
computing

Error = max IA - USVtI. (16)

Errors in the CM-2 runs were on the order of le-14 for double precisioa and le-5 for single precision.
After normalizing by the F-norm of A, these errors were on the order of the respective machine
precisions. To gauge the efficiency in the usage of main hardware components (the FPUs), the
number of floating point operations in the innerloop of the Fortran code (subroutine svdcore in
Appendix A) was counted. By using a weight of 4, 2, and 1 for square- root, division, and
multiplication/addition/logical r-spectively, the FLOP count Q = 100 per virtual processor per
loop per sweep. This included 20 for the calculation of /, -/ and the conditions for rotation (Eq. (6)
and (15)), 40 each for > 0 and /3 < 0 for the calculation of cos 0, sin 0 and the subsequent rotations
according to Eqs (4) and (12). (On the CM-2, either-or code segments are sequentially executed
and thus must be counted towards the FPU usage.)

QFLOP = 100(2n)mI (17)

where I, is the number nf sweeps. By using Eq. (17) and the results of Table 1, the throughput
rates f,)r the double precision runs are 258 and 288 MFLOPS for matrix size 256x256 and 512x512,
respectively, on the 16K CM-2.

Interprocessor commnication associated with the calculation of the dot product of the row
pai-s (ax in Eq. (6)) and Lmie systolic comnim nication steps was timed to be 30% and 22% of the
total execution time for n = 256 and 512, respectively. After accour.'ing for the communication)

time. the performance shown in Table 1 is withir' a factor of 2 to 2.5 of :'e peak-memory-bound-
performance of the machine.

9

N. A. CIHU

Table 2 - Execution time per sweep (seconds). The prereleased slicewise Fortran compiler with some unrolling of
codes to streamline the inner loop improved execution times by 1.7 and 1.3 times for the smaller vp ratios (n = 256
and 512 respectively).

Double Precision
Size Fieldwise Slicewise, unrolled Fieldwise, unrolled
512 35 23 30
256 7.5 3 5

Table 2 shows the execution time per sweep in units of seconds for the cases m = n = 256
2.,d 512 by three versions of the CM Fortran code on the 16K CM-2. The best performance was
achieved when the matrix was laid out in shcewise mode and the inner loop was unrolled to remove
conditionals that fragmented the code.

5. REFERENCES

1. J.J. Dongarra et. al. ed., LINPACK Users' Guide, 7th printing, (SIAM, Philadelphia, PA
1979).

2. F. Deprettere, SVD and Signal Processing, Algorithms, Applications and Architectures, (North
Holland 1988).

3. Joos Vandewalle and Bart De Moor, "A Variety of Applications of Singular Value Decompo-
sition in Identification and Signal Processing," in Ref. 2, pp. 43-91.

4. G.H. Golub and C. F. Van Loan, Matrix Computations, (John Hopkins University Press,
Baltimore, MD, 1989).

5. I. Roy and T. Kailath. "ESPRIT - Estimation of Signal Parameters via Rotational Invari-
ance Techniques," in Ref. 2, pp. 233-265.

6. It. 0. Schmidt, "A Signal Subspace Approach to Multiple Emitter Location and Spectral
Estimation," PhD thesis, Stanford University, CA, 1981.

7. Ben Noble and James W. Daniel, Applied Linear Algebra. (Prentice Hall, 2nd Ed. 1977.)

8. G.H. Golub and C. Reinsh, "Singular Value Decomposition and Least Squares Solutions,"
Numer. Math, 14, pp. 403-420, (1970).

9. G.H. Golub and W. Kahan, "Calculating the Singular Values and Pseudo-inverse of a Matrix,"
J. SIA.M Scr. B: Numcr. Anal., 2, pp. 205-224, (1965).

10. Franklin T. l,1uk, "Computing the Singular Value Decomposition on the ILLIAC IV," ACAI
Transactions on Mathcmatical Software, 6 (4), pp. 524-639, (1980).

11. L. Magnus Ewerbring, Franklin T. Luk and Alan H. Ruttenberg, "SVD Computation on the
Connection Machine," IEEE (1988).

12. NAgnus I. Hestenes, "Inversion of Matrices by Biorthogonalization and Related Results," J.
Soc. Indust. Appl. Math. , 6(1), pp. 51 -91, (1958).

10

NRL REPORT 9318

13. J.C. Nash, "A One-sided Transformation Method for the Singular Value Decomposition and
Algebraic Eigenproblem." Compu. J., 18, pp. 74-76, (1975).

14. E.G. Kogbetliantz, " Solution of Linear Equations by Diagonalization of Coefficients Matrix,"
Quart. Appl. Math., 13, pp. 123-132, (1955).

15. J.H. Wilkinson, "Note on the Quadratic Convergence of the Cyclic Jacobi Process," Nu-
merische Mathematik, 4, pp. 296-300, (1962).

16. Uwe Schwiegelshohn and Lothar Thiele, "A Systolic Array for Cyclic-by-Rows Jacobi Algo-
rithms," J. Parallel and Distributed Computing, 4, pp. 334-340, (1987).

17. Donald E. Knuth, The Art of Computer Programming, Vol.3/ Sorting and Searching,
(Addison-Wesley Publishing Co. 1973).

18. "Introduction to Data Level Parallelism," Thinking Machines Corp Technical Report 86.14,
April 1986.

19. "Connection Machine Model CM-2 Technical Summary," Thinking Machine Corp. Technical
Report HA87-4, April 1987.

20. Creon Levit, "Grid Communication on the Connection Machine: analysis, performance, and
improvements," Proc. Conf. Scientific Applications of the Connection Machine, Horst D. Si-
mon, ed. World Scientific, Sep 1988.

21. S. L. Johnsson, R. L. Krawitz, R. Frye and D. MacDonald, "A Radix-2 FFT on the Connection
Machine," Proc. Supercomputing '89, pp. 809-819, (1989).

22. Christian Hansen, "Reducing the Number of Sweeps in Hestenes' Method," in Ref. [2] pp.
357-368.

11

Appendix A

CM FORTRAN CODE FOR SUBROUTINE SVD OPTIMIZED FOR m = n

N.B.-The main subroutine svd contains 5 units: svdcore contains the main Jacobi rotation codes;
two2one allocates arrays on the CM two row-elements per processor while one2two performs
the reverse process; evaluatel calculates the S and V matrices; evaluate2 calculates the residual
error. In this unrolled version, svdcore similar chunks of codes are sequentially repeated 4 times,
one slightly different from the others. This is to avoid invoking if-then clauses that would otherwise
fragment the resulting codes.

subroutine svd (ab,ub,vb,sv,m,n,irank,isweepeps)
C Author: Nhi-Anh Chu
C Connection Machine Facility
C Code 5153, Naval Research Lab
C Nov 9 1990
C Revised Jan 3 1991
C ab -- 2m x n matrix A, to be decomposed into singular values
C sv = diag (S) such that A = (U S Vt)
C ab is returned as (Ut A) where Ut is product of Jacobi rotation

C matrices on (At A)
C ub -- 2m x n matrix returned with Ut
C vb -- 2m x n matrix returned with Vt
C sv -- 2m-vector returned with diag(S), the singular values of A
C irank -- integer returned with the rank of A
C isweep -- integer returned with number of sweeps of the rotations;
C each sweep orthogonalize every row-pair combinations of A
C eps -- real number specifying the machine precision, used to determine
C a "zero"

integer m, n, irank, isweep
real ab(2*m, n), ub(2*m, n), vb(2*m, n), sv(2*m)
real eps, deltas
real a(m, n), ap(m,n), u(m,n), up(m,n), v(m,n), vp(m,n)
real aoriginal(2*m,n)

cmf$ layout a(:news, :news), ap(:news, :news), u(:news, :news)

cmf$ layout up(:news, :new:), v(:news, :news), vp(:news, :news)

cmf$ layout ab(:news, :news), ub(:news, :news), vb(:news, :news)

13

N. A. CHU

cmf$ layout sv(:news), a..original(:news, mnews)

interface
subroutine one2two(a,ap,b, m, n)
integer m, n
real a(m,n), ap(m,n), b(2*m,n)

cmf$ layout a(:news, mnews), ap(:news, mnews), b(:news, mnews)
end interface

interface
subroutine svdcore (a, ap, u, up, m, n, irank, isweep, deltas, eps)
integer irank, isweep, m, n
real a(m,n), u(m,n).ap(m,n), up(m,n), eps,deltas

cmf$ layout a(:news, :news), u(:news, :news)
cmf$ layout ap(:news,:news), up(:news, mnews)

end interface

interf ace
subroutine two2one(a,ap,b,m,n)
integer m, n
real a(m,n), ap(m,n), b(2*m,n)

cmf$ layout a(:news, mnews), ap(:news, mnews), b(:news, mnews)
end interface

interface
subroutine evaluatel (a,u,v,sv,irank,deltas,m,n)
integer m, n, irank
real a(m,n), v(m,n), u(m,n), sv(m), deltas

cmf$ layout a(:news,:news), u(:news,:news), v(:news,:news)
cmf$ layout sv(:news)

end interface

interf ace
subroutine evaluate2 (a,u,a-.original ,m,n)
integer m, n
real a(m,n), u(m,n), a-.original(m,n)

cmf$ layout a(:news,:news), u(:news,:news)
cmf$ layout a-.original(:news, mnews)

end interface
C--

a-.original = ab
print*, 'call one2two'
call CMtimer-.clear(1)
call CM.timer-.start (1)
call one2two(a, ap, ab, m, n)
call one2two(u, up, ub, m, n)
call CM-timer..stop(l)
call CI'Ltimer-print(l)

14

NRL REPORT 9318

print*, 'call svdcore'
call CM-.timer-.start(1)
call svdcore (a, ap, u, up, m, n, irank, iaweep, deltas, eps)
call CW..timer-.stop(l)
call CJ.Ltimer-.print(1)
call CI'Ltimer-.start(l)
print*, 'call two2one'
call two2one(a, ap, ab, m, n)
call two2one(u, up, ub, m, ni)
call CM-.timer-.stop(l)
call CM-.timer-.print(l)
print*, 'call evaluate'
call CM-.timer-.start(1)
call evaluatel (ab,ub,vb,sv,irank,deltas,2*m,n)
call evaluate2 (ab,ub,a-.original ,2*m,n)
call CM-.timer.print (1)
print*,' ... done svd'
call CM-.timer-.stop(l)
return
end subroutine svd

subroutine svdcore (a, ap, u, up, m, n,irank,isweep,deltas,eps)
integer m, n, irank, isweep
real a(m,n), u(m,n), ap(m~n), up(m,n), eps, deltas

C Main locals
real alpha (m,n), beta(m,n), gamma(m,n), c(m, n), s(m, n)
real norms(m,n), normsp(m,n)

C scalars to compute convergence criterion
real epss, Fnorms

C temporaries
real atemp(m,n), utemp(m,n), ntemp(m,n), ortho(m,n)
integer row(m,n), col(m,n), irotl(m,n), irot2(m,n)
logical rotate(m,n)

C loop control variables
integer m2, index, i, j. numsweep, numrotate

C constant
integer sup, sdown

C layout on the connection machine
cmf$ layout a(:news,:news), u(:news,:news)
cmf$ layout ap(:news,:news), up(:news, :news)
cmf$ layout norms(:news, :news), normsp(:news, :news)
cmf$ layout alpha(:news, :news), beta(:news, :news), gamma(:news, :news)
cmf$ layout utemp(:news, :news), atemp(:news, :news), ntemp(:news, :news)
cmf$ layout c(:news,:news), s(:news,:news)
cmf$ layout row(:news,:news), col(:news,:news)
cmf$ layout irotl(:news, :news), irot2(:news, :news)
cmf$ layout ortho(:news, :news), rotate(:news, :news)
C---

15

N. A. CHU

C initialize
m2 = 2*m
num weep = isweep
epss = eps*eps
sdown= +1 !a(k)< --- a(k+l)
sup =-1 !a(k+l)<-a(k)
norms =spread (sum(a*a,2),2,n)
normsp =spread (sum(ap*ap,2),2,n)
Fnorms = sum(norms(:,l),l) + sum(normsp(:,i),1)
deltas =epss*Fnorms
print*,'Frobenius norm squared z 1, Fnorms
print*,'Square of machine precision * Fnorm = ,deltas

forall (il:m, j1l:n) col(i,j) = j
u=0.0

up = 0.0
forall (i=1:m, j=1:n) row(i~j) = 2*i-I
where (row.eq.col) u= 1.0
forall (i=l:m, j1l:n) row(i,j) = 2*i
where (row.eq.col) up =1.0
forall (i1l:m, j=1:n) row(i,j) = i

C --
isweep M0

100 continue
C start odd sweep

isweep a isweep +1
norms - spread(sum(a*a,2),2,n)
normsp -spread(sum(ap*ap,2),2,n)

C unroll loop by 2
do index = 1, m2, 2

C start odd index
alpha = 2*spread(sum(a*ap,2),2,n)
beta = norms -normsp
gamma = sqrt ((alpha*alpha) 4(beta*beta))

ortho = 0.25*alpha*alpha - deltas*min(norms, normsp)
rotate = (norms.ge.deltas).and.(normsp.ge.deltas).and.(ortho.ge.0)
where ((beta.ge.0) .and.rotate)

c = sqrt((gamma~beta)/(2.0*gamma))
s = alpha / (2*gamma*c)
atemp = -s*a + c*ap
utemp a -s*u + c*up
ntemp = s*s*norms + c*c*normsp - alpha*c*s
ap = c*a + s*ap
up = c*u + s*up
normsp= c*c*norms + s*s*normsp + alpha*c*s
a a atemp
u = utemp
norms = ntemp

endwhere

16

NRL REPORT 9318

where ((beta.lt.O) .and.rotate)
s = sigrn(sqrt((gAmma-beta)/(2.0*gAnima)) , alpha)
c = alpha / (2.O*gAmma*s)
atemp = -B*a + c*ap

utemp = -s*u + c*up
ntemp = s*s*norms + c*c*normsp - alpha*c*s
ap = c*a + s*ap
up = c*U + s*up
normsp= c*c*norms + s*s*normsp 4 alpha*c*s
a = atemp,
u = utemp
norms = ntemp

endwhere
where ((beta.gt.O).and.(.not.rotate))

atemp = ap
utemp = up
ntemp =normsp
ap = a
UP = U
normsp = norms
a = atemp
u = utemp
norms = ntemp

endwhere
C communicate (a, ap) to/from processors aligned with odd rows

atemp = ap
utemp =up
ntemp = normsp
ap =cshiit(a, 1, sdown)
up =cshift(u, 1, sdown)
normsp =cshift(norms, 1, sdown)
a = atemp
u = utemp
norms = itemp

C start even index
alpha = 2*spread(sum(a*ap,2),2,n)
beta a norms -normsp
gamma = sqrt ((alpha*alpha) .(beta*beta))
ortho = O.25*alpha*alpha - deltas*min(norms, normsp)
rotate - (norms.ge.deltas) .and.(normsp.ge.deltas) .and.(ortho.ge.O)

.and. (row.ne.m)
where ((beta.ge.O) .and.rotate)

c a sqrt((gAmma+beta)/(2.o*gamma)) !cosine term
a alpha / (2*gamma*c) !sine term

atemp = -s*a + c*ap

utemp = -s*u + c*up
ntemp = s*s*norms + c*c*normsp - alpha*c*s
ap = c*a + B*ap

17

N. A. CHU

up =c*U + s*up
normsp= c*c*norms + s*s*riormsp + alpha*c*s
a = atemp
u = utemp
norms = ntemp

endwhere
where ((beta.lt.O) .and.rotate)

s - sign(sqrt((gamma-beta)/(2.*gaima)) , alpha)
c a alpha / (2.O*gainma*s)
atemp = -s*a + c*ap
Utemp = -s*u + C*Up
ntemp = s*s*norms + c*c*niormsp - alpha*c*s
ap = c*a + s*ap
up = c*u + s*up
normsp= c*c*norms + s*s*normsp + alpha*c*s
a = atemp,
u = utemp

norms = ntemp
endwhere
where ((beta.gt.O).and.(.not-rotate).and.(row.ne.m))

atemp = ap
utemp = up
fltemp = normsp

ap a
UP U1

normsp = norms
a = atemp
u a utemp
norms = ntemp

endwhere
C communicate (a. ap) to/from processors aligned with odd rows

atemp = a
utemp = u
ntemp = norms
a =cshift(ap, 1, sup)
* =cshift(up, 1, sup)
norms =cshift(normsp, 1, sup)
ap = atemp
up = utemp
normsp z ntemp

enddo ! end odd sweep
C start even sweep
C number of rotations kept in iroti and irot2

isweep = isweep +1
iroti =0
irot2 =0
do index =1, m2, 2

C start odd index

18

NRL REPORT 9318

alpha = 2*spread(sum(a*ap,2),2,n)
beta = normsp -norms
gamma = sqrt ((alpha*alpha) 4(beta*beta))
ortho = O.25*alpha*alpha - deltas*min(norms, normsp)
rotate - (norms.ge.deltas) .and.(normsp.ge.deltas) .and.(ortho.ge.O)
where ((beta.ge.o) .and.rotate)

c = sqrt((gamma+beta)/(2.O*gamma)) !cosine term
s = alpha / (2*ganima*c) !sine term
atemp = s*a + c*ap
utemp = s*u + c*up
ntemp = s*s*norms + c*c*normsp + alpha*c*s
ap = c*a -s*ap

UP = C*u -S*up

normsp= c*c*norms + s*s*normsp - alpha*c*s
a = atemp
u = utemp
norms = ntemp
irotl = iroti +1

endwhere
where ((beta.lt.O) .and.rotate)

s - sign(sqrt((ganma-beta)/(.*gaxma)) , alpha)
c = alpha / (2.O*ganima*s)
atemp - s*a + c*ap
utemp = s*u + c*up
ntemp = s*s*norms + c*c*normsp + alpha*c*s
ap = c*a - s*ap
up = C*U - s*UP
normsp= c*c*norma + B*s*normsp - alpha*c*s
a = atemp
u = utemp
norms = atemp
iroti = iroti +1

endwhere
where ((beta.gt.O) .and. (.not.rotate))

atemp = ap
utemp = up
ntemp a normsp
ap = a
up = U
normsp= norms
a = atemp
ii = utemp
norms = ntemp

endwhere
C communicate (a, ap) to/from processors aligned with odd rows

atemp = ap
utemp = UP
ntemp = normsp

19

N. A. CHU

ap = cshift(a, 1, sdown)
up = cshift(u, 1, sdown)
normsp= cshift(norms, 1, sdown)
a = atemp
u = utemp
norms - ntemp

C end odd index of even sweep
C start even index

alpha = 2*spread(sum(a*ap,2),2,n)
beta = normsp -norms
gamma = sqrt((alpha*alpha)+(beta*beta))
ortho = O.25*alpha*alpha - deltas*min(norms, normsp)
rotate = (norms.ge.deltas) .and.(normsp.ge.deltas) .and. (ortho.ge.O)

.and. (row.ne.m)
where ((beta.ge.O) .and.rotate)

c a sqrt((gaznma~beta)/(2.O*gamma)) !cosine term
s = alpha / (2*gamma*c) !sine term
atemp - s*a + c*ap
utemp = S*u + c*up
ntemp - s*s*norms + c*c*normsp + alpha*c*s
ap = c*a - s*ap

UP = c*u - S*up
normsp= c*c*norms + s*s*normsp - alpha*c*s
a = atemp
u = utemp

norms = ntemp
irot2 = irot2 +1

endwhere
where ((beta.lt.O) .and-rotate)

sa sign(sqrt((gamma-beta)/(2.*gamma)) , alpha)
c = alpha / (2.O*gamma*s)
atemp = s*a + c*ap
utemp = s*u + c*up
ntemp = s*s*norms + c*c*normsp + alpha*c*s
ap = c*a - s*ap
up = c*u - S*up
normsp= c*c*norms + s*s*normsp - alpha*c*s
a a atemp
U = uteinp
norms = ntemp
irot2 = irot2 +1

endwhere
where ((beta.gt.O).and.(.not-rotate).and.(row.ne.m))

atemp = ap
utemp = up
ntemp = normsp
ap = a
up = U

20

NRL REPORT 9318

normsp= norms
a = atemp
u = utemp
norms = ntemp

endwhere
C communicate (a, ap) to/from processors aligned with odd rows

atemp =a
utemp = u
ntemp = norms
a = cshift(ap, 1, sup)
u = cshift(up, 1, sup)
norms = cshift(normsp, 1, sup)
ap = atemp
up = utemp
normsp= ntemp

enddo !end even sweep
irotl iroti + irot2
numrotate = sum(irot1(1:m,1),1)
print*,' sweep ', isweep, I ',numrotate,' rotations'
if (numrotate.eq.0) goto 300
if (isweep.eq.numsweep) goto 300
goto 100

300 continue
print*,'done rotation... calculating singular values ...~
return
end subroutine svdcore

subroutine evaluatel (a,u,v,sv,irank,deltas,m,n)
integer m, n, irank
real a(m,n), v(m,n), u(m,n), sv(m), deltas
integer row(m,n), col(m,n), one(m), ier, i,j
real oned(m), tl(m,m), t2(m,m), t3(m,m)

cmf$ layout a(:news,:news), u(:news,:news), v(:news,:news)
cmf$ layout sv(:news)
cmf$ layout row(:news, :news), col(:news, :news)
cmf$ layout one(:news), oned(:news)
cmf$ layout tl(:news,:news), t2(:news,:news), t3(:news,:news)
C calculate singular values and rank

oned = sum(a*a,2)
sv = sqrt(oned)
where (oned.gt .deltas)

one *I
elsewhere

one =0
sv = 0.0

endwhere
irank = sum (one(l:m))

21

N. A. CHU

C calculate v
t3 =spread (sv,2,m)
v= 0.0

where (t3(1:m,l:n).gt.0) v(l:m, 1:n) - a(l:m, 1:n)/t3(1:m, 1:n)

C debug codes beyond the next statement

return
C detailed check

print*, 'max min of v'

print *, maxval(v(l:m, 1:n)), minval(v(l:m, 1:n))
C evaluate VtV

ti = 0.0
t2 = 0.0
tl(l:m, 1:n) = v(l:m, 1:n)

t2 = transpose(tl)
t3 = 0.0

t3 a matmul (t1, t2)

forall (iP1:m, j1l:n) row(i~j)= i
forall (i1l:m, j1l:n) col(i,j)= j
print*,'maxval VVt off diagonal ',

maxval(abs(t3(1:n,l:n)), mask=(row.ne.col))

C evaluate UUt
ti = 0.0

t2 = 0.0

t2 = transpose(tl)
t3 = 0.0

t3 = matmul (t1, t2)
print*,'maxval UUt of f diagonal '

maxval(abs(t3(1:n,l:n)), mask=(row.ne.col))

100 return

end subroutine evaluate 1

subroutine one2two(a,ap,b,m,n)
integer m, n

real a(m,n). ap~m,n), b(2*m,n)

cmf$ layout a(:news, :news), ap(:news, :news), b(:news, :news)

forall (i=l:m, j=l:n) a(i,j)- b(2*(i-1) +1, j)
foiall (i1l:m, j=1:n) ap(i,j)u b(2*i, j)
return

end

subroutine two2one(a,ap,b,m,n)

integer m, n

real a(m,n), ap(m,n), b(2*m,n)

cznf$ layout a(:news, :news), ap(:news, :news), bC:news, :news)

forall (i=1:2*m-1:2, j=l:n) b(i,j)= a(l+((i-l)/2), j)
forall (i=2:2*m:2, j1l:n) b(i,j)= ap~l.((i-l)/2),j)

22

NRL IWPOR*T 9318

return
end

subroutine evaluate2 (a,u~a~original,m,n)
integer m, n, irank
real a(m,n), u(m,n), a-original(m~n)

real tl(m,m), t2(m,m), t3(m,m)
cmf$ layout a(:news,:news), uC:news,:news)
cmf$ layout a-o.riginal(:news, mnews)
cmf$ layout tl(:news,:news), t2(:news,:news), t3(:news,:news.1
C

C evaluate USVt
ti = 0.0

t2 =0.0

t2 (1:m,1:n) = a
tl(1:m, 1:0) = u(1:m, 1:n)
t= transpose(tl.

t3 = 0.0

t3 = matmul (t1, t2)

t3(1:m,l:n) = t3(1:m, 1:n) - a-.original

print*,'error =max~abs(U S Vt -A))is ',maxval~abs~t3))
return

end subroutine evaluate2

23

Appendix B

CM FORTRAN CODE FOR SUBROUTINE SVD OPTIMIZED FOR THE CASE
m > n

N.B.-The main subroutine svd contains 7 units: svdcore contains the main Jacobi rotation codes;
two2one allocates arrays on the CM two row-elements per processor while one2two performs
the reverse process; evaluatel calculates the S and V matrices; evaluatc2 calculates the residual
error; p2one allocates an in x m array into m arrays, each M x n, while one2p performs the

n 2

reverse. In this unrolled version of svdcore similar chunks of codes are iepeated 4 times, each
slightly different from tne other. This is to avoid invoking if-then clauses that would otherwise
fragment the resulting codes. Further, calculations involving the matrix U is carried out in a
M-times do loop.

subroutine svd (ab,ub,vb,sv,p,m,n,irank,isweep,eps)

C Author: Nhi-Anh Chu
C Connection Machine Facility

C Code 5153, Naval Research Lab

C Nov 9 1990

C Revised Jan 3 1991
C p = 2*int(m/n)

C ab -- 2m x n matrix A, to be decomposed into singular values
C sv = diag (S) such that A = U S Vt)

C ab is returned as (Ut A) where Ut is prodict of Jacobi rotation

C matrices on (At A)
C ub -- 2m x 2m matrix returned with Ut

C vb -- 2m x n matrix returned 'ith Vt

C sv -- 2m-vector returned with diag(S), the singular values of A
C irank -- integer returned with the rank of A

C iswe,p -- integer returned with number of sweeps of the rotations;

C each sweep orthogonalize every row-pair combinations of A
C eps -- real number specifying the machine precision, used to determine

C a "zero"
integer p, m, n, irank, isweep
real. ab(2*m, n), ub(2*m, p*n), vb(2*m, n), sv(2*m)

real eps, deltas

real a(m, n), ap(m,n), u(p,m,n), up(p,mn), v(m,n), vp(m,n)

25

N. A. CHU

real aoriginal(2*m,n)
cmf$ layout a(:news, :news), ap(:news, :news), u(:serial, :news, :news)
cmf$ layout up(:serial, :news, :news), v(:news, :news), vp(:news, :news)
cmf$ layout ab(:news, :news), ub(:news, :news), vb(:news, :news)
cmf$ layout sv(:news), a-original(:news, :news)

interface
subroutine one2two(a,ap,b, m, n)
integer m, n
real a(m,n), ap(m,n), b(2*mn)

cmf$ layout a(:news, :news), ap(:news, :news), b(:news, :news)
end interface

interface
subroutine svdcore (a, ap, u, up, p, m, n, irank, isweep, deltas, eps)
integer irank, isweep, p, m, n
real a(mn), u(p,m,n),ap(m,n), up(p,m,n), epsdeltas

cmf$ layout a(:news,:news), u(:serial, :newas,:news)
cmf$ layout ap(:news,:news), up(:serial, :news, :news)

end interface

interface
subroutine two2one(a,ap,b,mn)
integer m, n
real a(m,n), ap(mn), b(2*m,n)

cmf$ layout a(:news, :news), ap(:news, :news), b(:news, :news)
end interface

interface
subroutine p2one(u,up,ubp,m,n)
integer p, m, n
real u(p,m,n), up(p,m,n), ub(2*m,p*n)

cmf$ layout u(:serial, :news, :news), up(:serial, :news, :news)
cmf$ layout ub(:news, :news)

end interface

interface
subroutine one2p(u,up,ub,p,mn)
integer p, m, n, k
real u(pm.n), up(p,m.n), ub(2*m,p*n)

cmf$ layout u(:serial, :news, :news), up(:serial, :news, :news)
cmf$ layout ub(:news, :news)

end interface

interface
subroutine Pvaluatel (au,v,sv,irank,deltas,m,n)
integer m, n, irank
real a(mn), v(m,n), u(m,m), sv(n), deltas

26

NRL REPORT 9318

cmf$ layout a(:news,:news), u(:newsneWS), V(:news,:news)
cmf$ layout sv(:news)

end interface

interface
subroutine evaluate2 (a,u,a-.original,m,n)
integer m, n
real a(m,n), u(m,n), a-.original(m,n)

cmf$ layout a(:news,:news), u(:news,:news)
cmf$ layout a-.original(:neus, mnews)

end interface
C --
C make sure that p is 2*m/n

if (p.ne.(2*m/n)) stop 'p must be equal to rn/n'
a-.original = ab
print*, 'call one2two'
call CM-timer-.clear(1)
call CM-.timer..start (1)
call one2two(a, ap, ab, m, n)
call one2p(u, up, ub, p. m, n)
call Cl'Ltimer-.stop(1)
call CM-.timer-.print (1)
print*, 'call svdcore'
call CM-.timer-.start(i)
call svdcore (a, ap, u, up, p, m. n. irank, isueep, deltas, eps)
call CM...tirer.stop(l)
call CM..timer..print (1)
call CM-timer-.start(l)
print*, 'call two2one'
call two2one(a, ap, ab, m, n)
call p2one(u, up, ub, p, m, n)
call CM-.timerstop(l)
call CM-.timer-.print (1)
print*, 'call evaluate'
call CM-.timer-.start(l)
call evalvuatol (ab,ub,vb,sv,irank,deltas,2*m,n)
call evaluate2 (abub ,a-.original ,2*m,n)
call CW..timer-.print(l)
print*,' ... done svd'
call CM-.t imer-.stop (1)
return
end subroutine svd

subroutine svdcore (a, ap, u. up, p, m. n~irank,isweep,deltas,eps)
integer p, m. n, irank, isweep
real a(m,n), u(p,m,n), ap(m,n), up(p,m,n), eps, deltas

C Main locals
real alpha (m,n), beta(rn,n), gamma(m,n), c~m, n), s~m, n)

27

N. A. CHIU

real norms(m,n), normsp(m,n)
C scalars to compute convergence criterion

real epss, Fnorms
C temporaries

real atemp(m,n), utemp(p, m,n), ntemp(m,n), ortho(m,n)
integer row(m,n), col(m,n), iroti(ni,n), irot2(m,n)
logical rotate(m,n)

C loop control variables
integer m2, index, k, i, j. numsweep, numrotate

C constant
integer sup, sdown

C layout on the connection machine
cmf$ layout a(:news, :news), u(:serial, :news, :news)
cmf$ layout ap(:news,:news), up(:serial, :news, :news)
cmf$ layout norms(:news, :news), normsp(:news, :news)
cmf$ layout alpha(:news, :news), beta(:news, :news), gamma(:news, :news)
cmf$ layout utemp(:serial, :news,:news)
cmf$ layout atemp(:news, :news), ntemp(:news, :news)
cmf$ layout c(:news, :news), sC:news, :news)
cmf$ layout row(:news,:news), col(:news,:nevs)
cmf$ layout irotl(:news, :news), irot2(:news, :news)
cmf$ layout ortho(:news,:rews), rotate(:news, :news)
C---
C initialize

m2 = 2*m
numsweep = isweep
if (m2.lt.n) then
print*,'There must be no more columns than rows.
print*,'Transpose the matrix'
irank = 0
stop

end if
epss = eps*eps
sdown= +1 !a(k)< --- a(k+l)
sup =-1 !a(k+l)'<-a(k)
norms spread (sum(a*a,2),2,n)
normsp - spread (sum(ap*ap,2),2,n)
Fnorms a sum(norms(:,I),l) + sum(normspC:,1),1)
delta. a epss*Fnorms
print*,'Frobenius norm squared = ,Fnorms

print*,'Square of machine precision * Fnormn=' deltas
u O.0

up W 0.0
do k =1, p
forall (izl:m, j~l:n) col(i,j) = j+ (k-l)*n
forall (izl:m, jzl:n) row(i,J) a 2*i-I
where (row.eq.col) u(k,:,:)= 1.0
forall (i1l:m, j=l:n) row(i,J) = 2*1

28

NRL REPORT 9318

where (row.eq.col) up(k,:,:) =1.0
enddo
forall (il:m, jil:n) row(i,j) -

C --
isweep = 0

100 continue
C start odd sweep

isweep = isweep +1
norms = spread(sum(a*a,2),2,n)
normsp = spread(sum(ap*ap,2),2.n)

C unroll loop by 2
do index =1, m2, 2

C start odd index
alpha =2*spread(sum(a*ap,2),2,n)
beta = norms -normsp
gamima -sqrt(C alpha*alpha) +(beta*beta))
ortho - o* 25*alpha*alpha - deltas*min(norns, normsp)
rotate = (norms.ge.deltas) .and.(norinsp.ge.deltas) .and.(ortho.ge.0)
where ((beta.ge.0) .and.rotate)

c = sqrt((gamma+beta)/(2.0*gamma))
s = alpha / (2*gamma*c)
atemp = -s*a + c*ap
ntemp = s*s*norms + c*c*normfsp - alpha*c*s
ap = c*a + s*ap

normsp= c*c*norms + s*s*normsp + alpha*c*s
a = atemp,
norms = ntemp

endwhere
where ((beta.1t.0) .and.rotate)

s = sign(sqrt((ganima-beta)/(2.0*gamma)) , alpha)
c = alpha / C2.0*gainma*s)
atemp = -s*a + c*ap
ntemp = s*s*norms + c*c*normsp - alpha*c*s
ap = c*a + s*ap
normsp= c*c*norms + s*s*normsp + alpha*c*s
a = atemp
norms = ntemp

endwhere
do kzl,p
where (rotate)

utemp(k,:,:) - -s*u(k,:,:) + c*up(k,:,:)
up(k,:,:) C *u(k,:,:) +*s*up(k,:,:)

u~k,::) -utemp(k,:,:)

endwhere
enddo
where ((beta.gt.0).and.(.not.rotate))

atemp =ap

ntemp =normsp

29

N. A. CHU

ap a

normsp -normsI
norms antemp

endwhere
do k =i,p

where((beta.gt.O) .and. (.not-rotate))
utemp(k,:,:) = up(k,:,:)
up(k.:,:) =u(k,:,:)

u~k,::) =utemp(k,:,:)
endwhere

enddo
C communicate (a, ap) to/from processors aligned with odd rows

atemp, z ap
ntemp = normsp
ap -cshift(a, 1, sdown)
normsp =cshift(norms, 1, sdown)
a - atemp
norms z ntemp
do k1I,p

utemp(k,:.:) - up(k,:,:)
up(k,:,:) ucshift(u(k,:,:). 1, adown)
u~k,:,:) - utemp(k,:,:)

enddo
C start even index

alpha = 2*spread(sum(a*ap,2),2,n)
beta =norms -normsp
gamma =sqrt ((alpha*alpha) +(beta*beta))
ortho =0. 25*alpha*alpha - deltas*min(norms, normsp)
rotate (norms.ge.deltas) .and.(normp.ge.deltas) .and.(ortho.ge.0)

.and. (row.ne.m)
where ((beta.ge.0) .and.rotate)

c = sqrt((gamma+beta)/(2.0*gakmma)) !cosine term
s a alpha / (2*gamma*c) !sine term
atemp = -s*a + c*ap
ntemp = s*s*norms + c*c*normsp - alpha*c*s
ap = c*a + s*ap
normsp= c*c*norms + s*s*normsp + alpha*c*s
a - atemp
norms - ntemp,

endwhere
where ((beta.lt.O) .and.rotate)

a*sign (sqrt ((gamma-beta) /(2. 0*gamma)) , alpha)
c*alpha / (2.0*gamma*s)

atemp - -s*a + c*ap
ntemp a s*s*norms + c*c*normsp - alpha*c*s
ap = c*a + s*ap
normspo c*c*norms + s*s*normsp + alpha*c*s

30

NRL REPORT 9318

a = at emp
norms = ntemp

endwhere
do k=i,p

where (rotate)
utemp(k,:,:) = -s*u(k,:,:) + c*up(k,:,:)
up(k,:,:) = c*u(k,:,:) +s*up(k,:,:)

u~k,,:) = utemp(k:,:)

endwhere
enddo
where ((beta.gt.O).and.(.not.rotate).and.(row.ne.m))

atemp =ap

ntemp =normap

ap a
normsp =norms

a =atemp

norms =ntemp

enduhere
do k=i,p

where ((beta.gt.0).and.(.not.rotate).and.(row.ne.m))
utemp(k,:,:) = up(k,:,:)
up(k,:,:) =u(k,:,:)
u~k,:,:) - utemp(k,:,:)

enduhere
enddo

C communicate (a, ap) to/from processors aligned with odd rows
atemp = a
ntemp = norms
a =cshift(ap, 1, sup)
norms =cshift(normsp, 1, sup)
ap = atemp
normsp = ntemp
do k1l,p

utemp(k,:,:) = u(k,:,:)
u(k,:,:) mcshift(up(k,:,:), 1, sup)
up(k,:,:) =utemp(k,:,:)

enddo
enddo ! end odd sweep

C start even sweep
C number of rotations kept in iroti and irot2

isweep - isweep +1
iroti =0
irot2 =0
do index = 1, m2, 2

C start odd index
alpha a2*spread(sum(a*ap,2),2,n)
beta a normsp -norms
gamma - sqrt ((alpha*alpha) *(beta*beta))

31

N. A. CHU

ortho = O.25*alpha*alpha - deltas*min(norms, normsp)
rotate = (norms.ge.deltas) .and.(normsp.ge.deltas) .and.(ortho.ge.O)
where ((beta.ge.O) .and.rotate)

c = sqrt((gamma+beta)/2.O*gamma)) !cosine term
s = alpha / (2*gaznma*c) !sine term

atemp - s*a + c*ap
ntemp, = s*s*norms + c*c*normsp + alpha*c*s
ap = c*a - s*aP
normsp= c*c*norms + s*s*normsp - alpha*c*s
a = atemp
norms = ntemp
irotl = iroti +1

endwhere
where ((beta.lt.O) .and.rotate)

s - sign(sqrt((gamma-beta)/(2.*gamma)) , alpha)
c = alpha / (2.O*gazima*s)
atemp - s*a + c*ap
ntemp = s*s*norms + c*c*normsp + alpha*c*s
ap = c*a - s*ap
normspu c*c*norms + s*s*normsp - alpha*c*s
a = atemp
norms = ntemp
iroti = iroti +1

endwhere
do k=i,p

where (rotate)
utemp(k,:,:) = s*u(k,:,:) + c*up(k,:,:)
up(k,:,:) =c*u(k.:,:) - s*up(k,:,:)

u~k,:,:) = utemp(k,:,:)

endwhere
enddo
where ((beta.gt.O) .and. (.not.rotate))

atemp, = ap
ntemp = normap
ap = a
normsp- norms
aa atemp
norms - ntemp

endwhere
do k *1,p

where ((beta.gt.O) .and. (.not.rotate))
utemp(k,:,:) = up(k,:,:)
up(k,:,:) = U~k,:,:)

u~k,::) -utemp(k,:,:)
endwhere

enddo
C communicate (a, ap) to/from processors aligned with odd rows

atemp -ap

32

NRL REPORT 9318

ntemp - normsp
ap = cshift(a, 1, sdown)
normsp= cshift(norms, 1, sdown)
a = atemp
norms = iltemp
do k=l,p
utemp(k,:,:) = up(k,:,:)
up(k,:,:) =cshift(u(k,:,:), 1, adown)
u~k,:,:) = utemp(k,:,:)

enddo
*C end odd index of even sweep

C start even index
alpha = 2*spread(sum(a*ap,2),2,n)
beta = normsp -norms
gamma = sqrt((alpha*alpha)+(beta*beta))
ortho = O.25*alpha*alpha - deltas*min~norms, normsp)
rotate = (norms.ge.deltas) .and. (normsp.ge.deltas) .and. (ortho.ge.O)

.and. (row.ne.m)
where ((beta.ge.O) .and.rotate)

c = sqrt((gamma+beta)/(2.O*g--ma)) !cosine term
s = alpha / (2*gamma*c) !sine term
atemp = s*a + c*ap
ntemp, = s*s*norms + c*c*normsp + alpha*c*s
ap = c*a - s*ap
normsp= c*c*norms + s*s*normsp - alpha*c*s
a = atemp
norms = ntemp
irot2 = irot2 +1

endwhere
where ((beta.lt.O) .and.rotate)

s M sign(sqrt((gamma-beta)/(2.O*gamma)) ,alpha)
c = alpha I (2.O*gamma*s)
atemp, = s*a + c*ap
ntemp = s*s*norms + c*c*normsp + alpha*c*s
ap = C*a - s*ap
normsp= c*c*norms + s*8*normsp - alpha*c*s
a = atemp
norms - ntemp
irot2 = irot2 +1

endwhere
do k1l,p

where (rotate)
utemp(k,:,:) as*u(k,:,:) + c*up(k,:,:)
up(k,:,:) =c*u(k,:,:) -s*up(k,:,:)

u~k,:,:) = utemp(k,:,:)

endwhere
enddo
where ((beta.gt.O).and.(.not.rotate).and.(row.ne.m))

33

N. A. CHIU

atemp = ap
ntemp = normsp
ap = a
normsp= norms
a = atemp
norms = ntemp

endwhere
do k=l,p

where ((beta.gt.O).and.(.not.rotate).and.(ro.le.m))
utemp(k,:,:) = up(k,:,:)
up(k,:,:) = uk::
u~k,:,:) = utemp(k,:,:)

endwhere
enddo

C communicate (a. ap) to/from processors aligned with odd rows

atemp =a
ntemp M norms
a - cshift(ap, 1, sup)
norms = cshift(normsp, 1, sup)
ap = atemp
normsp= ntemp
do k=1,p

utemp(k,:,:) = u(k,:,:)
u(k,:,:) = cshift(up(k,:,:), 1, sup)

up(k,:,:) = utemp(k,:,:)
enddo

enddo !end even sweep
irotl iroti + irot2
numrotate = sum(irotI(1:m,I),1)
print*,' sweep 1, isweep, I ',numrotate,' rotationsl
if (numrotate.eq.0) goto 300
if (isweep.eq.nulmsweep) goto 300

300 subroutne rotation... .calculating singular values...'

subrutie ealutel(a,u,v,sv,irank,deltas,m,n)
integer m, n, irank
real a(m,n), v(n,n), u(m,m), sv(n), deltas

integer row(m,m), col(m,m), i,

real tl(m,m), t2(n,n), t3(n,n)

cmf$ layout a(:news,:news), u(:news,:news), v(:news,:news)

cmf S layout sv(:news)
cinf$ layout row(:news,:news), col(:news, :news)

cmf$ layout tl(:news,:news), t2(:news,:news), t3(:news,:news)

34

NRL REPORT 9318

C calculate singular values and rank
t3 = a(l:n, 1:n)
sv = sqrt(sum(t3*t3,2))
irank = count(sv.gt.sqrt(deltas))

C calculate v
t2 =spread (sv,2,n)
V =0.0

where (t2.gt.0) v = t3/t2
C debug codes beyond the next statement

*C return
C detailed check

print*,'max min of v' ,maxval(v), minval(v)
C evaluate VtV

t2 = matmul (transpose(v), v)
forall (iml:m, j1l:m) row(i,j)= i
forall (i1l:m, j1l:m) col(i,j)i
print*,'maxval VVt off diagonal 1, maxval(abs(t2),

mask=(row(l:n, 1:n) .ne.col(l:n,1:n)))
C evaluate UUt

ti = matmul (transpose(u), u)
print*,'inaxval UUt off diagonal '

maxval(abs(ti), mask=(rov.ne.col))
100 return

end subroutine evaluatel

subroutine one2two (a,ap , b,m ,n)
integer m, n
real a(m,n), ap(m,n), b(2*m,n)

cmf$ layout a(:news, :news), ap(:news, :news), b(:news, :news)
forall (i1l:m, j1l:n) a(i,j)= b(2*(i-1) +1, j)
forall (iw1:m, j1l:n) ap(ij)= b(2*i, j)
return
end

subroutine two2one(a,ap ,b ,m,n)
integer m, n
real a(m,n), ap(m,n), b(2*m,n)

cmf$ layout a(:news, :news), ap(:news, :news), b(:nevs, :news)
forall (i=1:2*m-1:2, jz1:n) b(i,j)rn a(1+((i-1)12), j)
forall (i=2:2*m:2, j1l:n) b(i,j)= ap(1+((i-I)/2),j)
return
end

subroutine one2p(u,up,ublp,m,n)
integer p, M. n, k
real u(p,m,n), up(p,m,n), ub(2*m,p*n)

35

N. A. CHU

cmf$ layout uC:serial, :news, :news), up(:serial. :news, !news)I
cmf$ layout ub(:news, :news)

do k =1,p

forall (i=1:2*m-1:2, jk:(k+n-1)) ub(i,j)= u(k,l+((i-l)/2), j)
forall (i=2:2*m:2, jk:(k+n-1)) ub(i,j)= up(k,1+((i-I)/2),j)

enddo
return
end

subroutine p2one(u,up,ub,p,m,n)
integer p, m, n, k
real u(p,m,n), up(p,m,n), ub(2*m,p*n)

cmf$ layout u(:serial, :news, :news), up(:serial, :news, :news)
cmf$ layout ub(:news, :news)

do k 1I,p
forall (i=1:2*m-i:2, ju1:n) ub(i,j+(k-l)*n). u(k,I+C(i-I)/2), j)
forall (i=2:2*m:2, jul:n) ub(i,j.(k-l)*n). up(k,I+((i-1)/2),j)

enddo
return
end

subroutine evaluate2 (a,u,a-.original,m,n)
integer m, n, irank
real a(m,n), u(m,m), a-.original(m,n)
real tl(m,n)

cmf$ layout a(:news, :news), uC:news, :news)
cmf$ layout a-.original(:news, :news)
cmf$ layout tl(:news,:news)
C evaluate USVt
C (SVt) is already in matrix a

tl = matmul(transpose(u), a) - a-.original
print*,'error = max(abs(U S Vt - A)) is ',maxval(abs(ti))

return
end subroutine evaluate2

36

Appendix C

CM FORTRAN CODE FOR TEST DRIVER

program svdtest
C test program for singular value decomposition (svd) subroutine

integer, parameter:: mm=512, nn=512
integer m ,n ,irank, isweep, b(nmm,mm), ans, i
real a(mm, nn), u(mm,nn), v(mm,nn), sv(mm)
real eps, error

cmf$ layout a(:news, :news), b(:news, :news), u(:news,:news)
cmf$ layout v(:news, :news), sv(:news)

interface
subroutine svd (ab ,ub,vb,sv ,m,n, irank,isweep ,eps)
integer m ,n, irank, isweep
real ab(2*m,n), ub(2*m,n), vb(2*m,n), sv(2*m) ,eps

cmf$ layout ab(:news, :news), ub(:news, :news), vb(:news, :news)
cmf$ layout sv(:news)

end interface

call CM..set-.safety-.mode(0)
print*,'eps (default to 2.22e-16)'
read* ,eps
if (eps.le.0) eps = 2.22e-16
print* ,eps
a = 0.0
print*,'m, n of matrix ?

read*, m,n
print* ,m,n
print*,1max number of sweep ?I
read*,isweep
print* ,isweep
print*,'creating a random matrix'
call cmf-random (a(1:m,1:n))
print*,'maxval matrix =',maxval(a(1:m,1:n))
print*,'call svd routine'
call svd(a(1:m,I:n),u(1:m,1:n), v(l:m,l:n), sv(l:m),

m/2, n, irank, isweep, eps)

37

N. A. CHU

prto 'exit svd routine'4

end
so

38

