
ONR-URI Composites Program UIUC-NCCMR-91-02
Technical Report No. 91-02

AD-A23 4 102

A MODEL FOR WET FILAMENT WINDING OF COMPOSITE
CYLINDERS WITH ARBITRARY THICKNESS

A. Agah-Tehrani* and Hong Teng**

January, 1991

National Center for Composite Materials Research
at University of Illinois, Urbana - Champaign

A DoD University Research Initiatives Center funded by the
Office of Naval Research, Arlington, VA

* Assoc. Mem. ASME

** Graduate Assistant



A Model for Wet Filament Winding of Composite Cylinders with

Arbitrary Thickness

A. Agah-Tehranit and H. Teng2

Department of Theoretical and Applied Mechanics

University of Illinois at Urbana-Champaign
Urbana, IL 61801

ABSTRACT

A continuum consolidation model is purposed for analyzing the filament winding of thermoset

composite cylinders with arbitrary thickness. The model takes account of the variation of both the

instantaneous stiffness and the permeability of the mixture with fiber compaction. Due to resin

filtration, the structure of the resulting initial-boundary value problem is similar to that of a moving

boundary problem. Based on this analogy, a finite difference scheme is devised for the solution of

the problem. For the case of winding onto a rigid mandrel, the results point to the existence of an

active and a passive zone of consolidation. The results further indicate the possibility that during

hoop winding of relatively thick cylinders, the tension can be completely lost in the portion of the

passive zone away from the mandrel.
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INTRODUCTION

The filament winding is a manufacturing process which can be used for forming composite

cylinders with high strength. The essence of this processing method is to successively add layers

with different winding angles onto a moderately stiff cylinder which is invariably circular (mandrel).

The layers may be wrapped in adjacent bands or in repeating patterns which eventually cover the

surface of the mandrel. The winding angle may vary from longitudinal (parallel to the axis of the

mandrel) to circumferential ( perpendicular to the axis of the mandrel). The binder is a thermoset
resin which can be epoxy, polyester, or vinyl ester. If the thermoset resin is mixed with the fiber

bundle during the winding stage, one has wet winding. Alternatively, if pre-impregnated B-staged

form of the mixture of resin and fiber bundle is used, one has dry winding ( for an exhaustive

discussion of filament winding see Shilbey, 1982). For a given composite system, the primary

control variables during winding can be identified as: the tension applied to each layer, the velocity

of the machine which traverses along the axis of the mandrel (cross-head velocity), and the angular

velocity of the mandrel (Calius, Springer, 1985).

Following the winding stage, the wound cylinder is initially cured at elevated temperatures

so as to cause cross-linking of the resin, and then it is cooled down to ambient temperature.

Alternatively one can envisage the case where curing is accomplished during winding. In such

case, the rate of heating the mandrel should also be considered as one of the control variables. In

order to predict the occurrence of damage in the final product (which is often in the form of the
fiber waviness or the transverse cracks in between the layers), thcre is a need ford 1eliable melthod

for predicting the state of the composite cylinder at the end of each of the three stages of the

manufacturing process: I)winding, 2)curing, and 3)final cool-down. For both dry and wet winding,

this requires prediction of the stresses which are generated during the winding process. During wet

winding, one must also determine the radial distribution of the fiber volume fraction which arise;s

as the result of the settling of fiber bundles in the liquid resin.

By assuming that successive layers are wrapped simultaneously on the mandrel, one can

utilize the existing models for stress analysis of tape winding ( Willett and Poesch, 1988; Lin and
Westmann, 1989) in order to simulate the dry winding. In so doing, one is neglecting the fact that

in reality the layers are wrapped sequentially next to each other resulting in the axial variation of

the outer radius. The analogy can be further completed by observing that dry winding is a generalized

plane strain problem while tape winding is a plane stress problem.

Irrespective of the thickness of the wound cylinder, theoretical modelling of wet winding

must take account of the resin filtration through tne fiber bundles which is induced by the existing

pressure gradient. Recently Calius and Springer (1990) have outlined a model for simulating the
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entire stages of wet winding. Their submodel related to the winding stage, which neglects radial

resistance of the fiber network, is based on considering the force equilibrium and the conservation

of mass within each layer. As it was duly noted, this model is only appropriate for thin cylinders
where the increase in the radial stiffness due to the consolidation of the fiber bundles can be neglected.

Within the framework of a discretized consolidation model, Bolotin et al. (1980) have included the

elasticity of the fiber network by introducing the term associated with the radial pliability in the

equilibrium of the layers whose thickness is below the critical value at which the radial resistance

arises.

Any comprehensive model of wet winding must take account of two important aspects which

are associated with fiber compaction: i) increase in the radial stiffness of the composite (Gutowski,

et. al; 1987a,b), and ii) reduction in the permeubility (Gutowski, et. al; 1987a,b, Gebart; 1990). The

significance of these attributes become particularly apparent when the thickness of the cylinder

becomes large. The primary aim of this paper is to provide a continuum consolidation model for

analyzing the wet winding of thermoset composite cylinders with arbitrary thickness which

incorporates the above characteristics. Such a model is developed by utilizing the rate form of the
Biot's consolidation mixture theory ( Biot; 1941). In comparison with the existing discretized

consolidation model purposed by Bolotin et. al. (1980), the present formulation has two distinct

advantages: One is that it is based on a continuous model, and the other is that it takes account of

the reduction of permeability with fiber compaction. Following the description of the key features
of the model, the details of the numerical calculation and interpretation of the results will be
presented. The article will be concluded by a discussion on the importance of including the

dependence of the radial resistance and permeability on fiber volume fraction in the analysis of wet
winding.

1. Development of the Model

The composite cylinder is assumed to be a mixture of incompressible fluid (resin) and solid

(fiber bundle). The fiber bundles are assumed to be in the hoop direction. The axial flow of the

resin due to the time delay in winding along the axis of the cylinder will be neglected; i.e it is

assumed that all layers along the axis of cylinder are laid simultaneously. Moreover, the angular

variation of the outer radius due to the helical riture of the winding will also be neglected, see

Fig.1. Because of these two assumptions, the only non-vanishing component of the velocity of

each phase will be the radial velocity, and the problem becomes one dimensional in space. In order

to facilitate the analysis, the following non-aimensional group of parameters are introduced
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C0  C,0
r=Ri x , , u= R pu z i--R U1 , C = ,' C~o

Y- , (,,, o,)=Coo(C,,,Coo, P) , (1)

where R is the outer radius of the mandrel, ti, and i! are radial displacements of the solid and fluid

phase, C,' and Co° are the moduli of the fiber network which has reached the maximum achievable

fiber volume fraction, and Co is the hoop stiffness of an individual fiber. ay,, and ag are, respectively,

the radial and the hoop stress components of the mixture, f is the partial pressure of the resin, t

denotes time, and K' is the permeability as the fiber bundle passes through the resin bath.

By utilizing the above relations, one can determine the following expressions for the non-

dimensional velocities of the fiber network and the resin denoted respectively by w, and wf?

au, tf aa,w- '(2)

ay R t

w-bf-taa ' (3)

with t = R/I °CO as the characteristic time for filtration.

The dependence of the instantaneous moduli of the fiber bundle C ,j and the instantaneous

permeability of the fiber network on the fiber volume fraction 0, are assumed to be of the form

given below

(C,.,,C, 0)=F(0,)(C,,,C0) , Ce 0= 4Cj, (4)

ic= IG(0s) (5)

The values of the moduli C. and C0, and the functions F(¢o) and G(0,) must be determined from

experiments on Jiber compaction (Gutowski, et. al; 1987b, Gebart; 1990). It should be noted that

for simplicity we have assumed identical dependence of C,, and C on the fiber volume fraction

In terms of the apparent density of the phases (p = mi/Vb, i = sjf), the conservation of mass

tor the fluid and the solid phase can be written as (Bowen; 1976, Kenyon; 1976)

3 It is important to note that these are the velocities of a continuum point which contains the two
phases.
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apy + V  [pflw =O , (6)

y + V.[pjwvJ=0 , (7)a3y

with V denoting the gradient operator.

By assuming that the densities of both solid and fluid phases remain constant during defor-

mation, (6) and (7) can be manipulated to obtain the following expressions for the conservation of

mass in terms of the volume fractions of individual phases (0i = piV~imi , i = fs)

a++ V k 1 wi=0 , (8)

ay

0.- + V. [OAw= 0 (9)ay

Addition of the above two relations, and usage of the identity o + 0, = I leads to the final

desired form of the conservation of mass which involves only the velocity of the solid and the
filtration flux q = of(wf - w,) (the surface integral of q over the outer radius of the cylinder is the

amount of the fluid leaving the mixture). By enforcing the condition that no resin passes through
the mandrel (q (1, y) = 0), The resultant expression can be integrated to obtain

1
q =-w,+xg(y) , (10)

where g (y) is the velocity of the interface between the mandrel and the composite. We assume that

the mandrel undergoes small deformation so that changes in the outer radius of the mandrel can be

neglected.

An important result of the conservation of mass analysis is the ability to determine the evo-
lution equation which governs the change in the fiber volume fraction. To obtain such relation,

one can simply rearrange the terms in (8) to get

- =_0V.wJ , (1l)

dy

where d/dy represents the total derivative. The above equation by itself does not contain the property

that the fiber volume fraction should not exceed the achievable volume fraction. In other words,

< 0, the above expression does not provide any upper bound on the value of 0. However, it
is understood that although the achievable fiber volume fraction 0. varies with the packing geometry,
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it will never exceed one. This consraint implies that as 0, -) 0, w, -) 0. As it will be indicated

later, this constraint will be satisfied if the variation of permeability with fiber volume fraction is

taken into account.

Since during wet winding the radial resistance of the layer just being wound on the mandrel

is very small, the resin material can flow through the fiber network leading to increases in both the

fiber volume fraction and the radial stiffness of the composite. Because of the finite changes in

the fiber volume fraction, one needs to distinguish between the initial and the instantaneous con-

figuration of the mixture. In so doing, we can either follow the motion of the fluid particle (resin)

or the solid particle (fiber network). Since the final radius of the composite cylinder depends on

the position of the last fiber layer which is being wound on the mandrel, the instantaneous con-

figurations of the mixture and the solid phase are considered to be identical. Thus, 5,,(x, y) and

YT,,(x, y) are the stress components of a mixture point at "time" y which is occupying the position

x of the solid phase. In conjunction with this, we adopt an "Updated-Lagrangian" formulation to

describe the motion of the mixture, that is at each instant of time the current configuration of the

solid phase is considered to be the initial configuration of the mixture.

Due to the variation of the outer radius with time, the constitutive behavior of the solid phase

and Darcy's Law are, respectively, expressed in the following rate form

T, +p =F (O) X +3- , (12)

aws wSO+p F as13 x +o-x-, (13)

q = -G (0)- L , (14)

where () y, and p is the resin pressure in the current configuration.

The presence of the term G (0,) in (14) implies that as G (0,) --- 0, the filtration flux approaches

zero ( fiber compaction comes to a halt). For the case of the rigid mandrel (g (y) = 0), it immediately

follows that the velocity of the solid will also approach zero. Thus, we have shown that at least

when the mandrel is rigid, considering the variation of the permeability with 0, leads to a bound on

the fiber volume fraction. Further limitation on the increase in compaction can be achieved by

incorporating the variation of radial stiffness with fiber volume fraction. This can be easily explained

by observing that the compaction will be suppressed once it has reached a level where the radial

stiffness of the fiber network is no longer negligible.

Substitution of (10,12,13,14) into the rate equilibrium equation in the radial direction
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+= O (15)
ax x

leads to the following parabolic partial differential equation (PDE) for w,

w F(,)d'w , I w, 01ayLGtJ=F~) ax2  X aX X

+ dF(,) do, awaw*, + 1 a [ ] (16)

The value of the function F( 5 ) will be very small (close to zero) near the outer layer (where

fiber compaction has not taken place), while in the inner layers where enough compaction has

occurred it will have a finite value. Because of this, the above equation is an example of a singularly

perturbed PDE.

2. Boundary Conditions

The formulation of the problem will be completed by providing the necessary and sufficient

boundary conditions for solving (16). The first boundary condition derived will be that associated

with the rate of change of the fluid pressure at the instantaneous outer radius X,. This can be

accomplished by first substituting (10) into (14), integrating the resultant equation, and enforcing

the boundary condition that at p(x =x.,y) = 0 for all the time y. The end result will be

G %1

Based on the above expression and (16), the material derivative of resin pressure will be

~(x~y) dxo[ w,(X,y) 1I g(Y)]f OsF --~W 4-F (00P31

=aw, v.,) , (18)
F(O (Xk ax + P x

where 00 is the fiber volume fraction in the layer just being wound.

Following Lin and Westmann (1989), we let the amount the material added to the cylinder

during the winding of each layer be
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d(Vol/unit length) = 2tx,,dx = wo(y)dyH , (19)

with H as the thickness of each fiber network j-:st being wound, and w, as the speed of the last

layer. In considering different possibilities for the variation of w, with "time" y, one can recognize

two special cases: one in which wo(y) = const, and the other in which the angular velocity is held

constant.

If the amount of resin filtration is small, then changes in the geometry can be neglected and

(19) can be integrated to determine the outer radius as a function of time. Indeed, this is the approach

adopted during the elastic or viscoelastic analysis of winding, (Willett and Poesch, 1988; Lin and

Westmann, 1989). In the current problem where resin filtration leads to changes in the position of

the fiber network, equation (19) will be interpreted with respect to instantaneous current configu-

ration of the fiber network. In this case (19) leads to

dx,, (2)
dy 2x,,(

The fact thai he evolution of the outer radius of the composite (the position of outermost

fiber network) is not known a priori at each moment in time indicates that the wet winding

problem is in some sense an example of a moving boundary problem, and one needs to

sequentially integrate the velocity equilibrium equation (16) for each instant of time in order

to obtain the relevant information at the end of the winding process. To accomplish this one

needs two boundary conditions on either the velocity or the strain rate of the solid, or a mixed

combination of both (recall that (16) was 2nd order in the radial direction). These boundary con-

ditions can be obtained by considering the continuity of traction and velocity across the mandrel/

composite interface

(.,(x = 1,y)=E',g(y) , (21)

with E',,, as the effective modulus of the mandrel, and utilizing the equilibrium of the last layer

keeping the hoop stress constant and equal to the applied tension

T,dx,, (22)
x,, dy

with T,, as the non-dimensional applied tension.

By utilizing (12) and (18), the boundary condition atx x, becomes
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-Todx0  chE rw'(x0,y) I g(y) 1w (23)
x0 dy dy L G(0) x. G(00) aF~1 ~~~ x J

while the boundary condition at x = 1 becomes

T -dX0 E , g( ) + F (0) - o( - ) P d 4 (24)

x, y 2 W 1

The fact that the variation of the outer radius with time is unknown provides an additional

difficulty in wet winding analysis which is absent in the analysis of either linear-elastic orviscoelastic

dry winding. This difficulty is related to the fact that in wet winding satisfaction of the boundary

conditions leads to an eigenvalue problem involving the outer radius. This dependence implies

that, unlike the linear dry winding problems, superposition of solutions in wet winding corre-

sponding to different outer radii leads to an error in satisfying force equilibrium.

3. Numerical Formulation

One major source of biased errors during integration of (16) in time is the lack of equilibrium

at the end of each increment. In order to eliminate this type of error, (15) is modified in the following

manner

a.(x,y + Ay) y(xy+Ay)-ee(x,y+Ay)

ax x

yl-aur(xY) + C,(xy)- (xY) 0 (25)

with the stress rates at time y + Ay being related to radial velocity at that time through the constitutive

relations (12,13). The term inside the brackA represents the residual body force at time y + Ay due

to the lack of equilibrium at time y. The above equation can be also interpreted as the force

equilibrium at time y + Ay in terms of the stress rates at that time and the total stresses at the previous

time.

The form of the modified rate equilibrium equation (25) readily renders itself to Euler

backward method (an implicit algorithm) for integrating in time. A finite difference scheme was

then used to replace the spatial derivatives. Since the solution of the problem requires the ability

to follow the history of winding from beginning (y = 0) to end y = y1, the size of the finite difference

mesh was sequentially increased as time increased, see Fig.2. Due to the change in the geometry

which is induced by the resin filtration, the sequential increase in mesh size resulted in non-uniform

mesh spacing. By applying Richardson extrapolation (Dahlquist and Bjorck; 1974) to the midpoint

rule, the first and second order spatial derivatives of the interior nodes can be obtained as
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=d"(), .)f,,(),_+e,() (26)
a1 I  ,

a2x
- -  = 2[h _()+ + h.,( )-, -(h" + h._,)( ),] 27
a2 I [MO ~ h O , (27)

where

h.2-1 h 2 h2 -h,
f m'

t" 1, I,

h, =xm+ -xm , 1= hhm.jh,+hm,, . (28)

Similar expressions can also be derived for the boundary nodes. Due to the large variations

that the function F(0.) can experience, .ne governing equation for w. will be stiff. In order to reduce

the limitation that this stiffness imposes on the time increment for stable integration, we p-oceed

in the following manner. First, we integrate the evolution equation for the fiber volume fraction

(11) between the time y > y,, and y = y,. The result will be

Inf-(X,Y) -I = + dy (29)( x,Y., ) ,. ax

By utilizing the abovc relation, one can then determine the following relation for the spatial

derivative of fiber volume fraction

aO.'(x,y) 0(x'y) aO4(x,y") f y(a2w, 1 aw, W, .

_____ __) + _ (30)
ax -(x, y) ax Y(x Y -2 +X x -Y

The final step in obtaining the finite difference e uation of the original PDE will be to substitute

(30) into (16), and then into (25). By utilizing the midpoint rule, integration of the resultant equation

between the time y = y,, and y = y, + leads to
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+1 +CIvm + Ij -on 11 m

[W' -' * =,p+'2 X[a. Wm ,b"Wm. m +1

Ay L Jm m mmi

in + I2/2. I r2 b mn+ I j3 ,+ I
Fm (d,,F. +lemF.+fmFm-))4mm +c1+ Iem+ Win +fmWMi 

L 11,. Xx) ,

1 ,,+ t +
"

n+ + 1 Y+ 1 + 1+ ,1(n+I-F ,,, , X., W +', + ( - +f mWM 11 (a w I t + + " +bm c"WZ ' +
L4" m M Xm mm-i

I g gKl + A -I ldo1r(,,+ 1 + + I+
xmAy (G +' G! Ay ,, ,+ (, -A1

I-aO",,, , for 2<m n,3<n (31)

wh.cre

2h, +d 2h,,, -2(h,,+h,,, _I)a / l,,+d, c,- +f,, , b - l,, +.

and the superscripts specify the time and tbe subscripts specify the node numbers.

The boundary condition (23) is replaced by the following difference equation

T, dxo dxo 1 .+l 1 F:+:iix + + )WV ,(32)

x, , dy dy G. xnx+I

with

2hn + h, - h, + h_ -I h,

h(hl+h.) -h (h.+h,)

The finite difference equation of the original PDE (31), and that of the boundary condition

(32) can be used to obtain the following systems of equations for the nodal velocities at time

YI = y. + Ay

AW + ' = B+Rgn+ (33)

where W T = [W2 ............ W,,, +I

The coefficients of the tridiagonal matrix A, and the column matrices B and R are givei in

the Appendix. Based en the above fnite difference formulation of the problem, the strategy for

the computation is as follows:
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a) For the first time increment, by assuming linear spatial variation of the velocity of

solid w,, the boundary conditions (23) and (24) are used to determine the nodal values

of w'.

b) During the subsequent increments, the nodal velocities are obtained through a

predictor-corrector method with each pass consisting of:

bI) Using (33) to obtain

T I = - [ B_ A R_ " 1  (34)

b2) Utilizing the boundary condition (24) to obtain the interface velocity g'

b3) Determining th~e nodal velocities from (34), and hence the increments of

stress, pressure and fiber volume fraction.

We used the total equilibrium equation in the radial direction to obtain the following estimate

of the error associated with the numerical calculation

error = [ (r ,) - (35)
(Y0Ld r (Te

4. Discussion and Results

In this section by assuming specific forms for the functions F(O,) and G (0k), we will analyze

response of the purposed. These forms are given as follows

F(,,)= F0(0, _,0) 5 +E0  (35)

G(4% ) G-f~l (36)

with 00 as the initial fiber volume fraction of the layer which is being wound onto the mandrel,

E0 C0 ,, as the initial stiffness of that layer, and G°ic° as its permeability. The constant F° is such

that F(O°)C°r, will be the radial stiffness of the fiber network with the maximum possible volume

fraction.

The form for G(0,), see Fig.3, is chosen based on the expression derived by Gebart (1990)

who showed that the variation of the transverse premeability of the mixture with fiber volume

fraction is fundamentally different from the variation of the axial permeability. The form of the

function F(,) is chosen so that the radial resistance will initially remain almost constant, see Fig.3.

The above forms have the interesting feature that the drop in the permeability is faster than the rise
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in the radial stiffness. This implies that based on the absumed forms for the functions F(,) and

G (%) even though compaction can be significantly reduced due to the decrease in the permeability,

the radial stiffness can still be small.

The material constants and the value of the parameters associated with the winding process

are given in the table below. In order to reduce the amount the computation involved, we have

considered winding onton iid mandrel.

Initially, the variation of the radial stiffness with fiber volume fraction was neglected, see

figure 4-8, however the permeability of the mixture was allowed to vary with 0,. This was done

so as to investigate the influence of the radial stiffness on fiber compaction. The time increment

for each calculation was At = 0.2 sec. Time increments greater than this lead to significant error

accumulation and eventual instability of the result. The results in table 2 present the maximum

error in equilibrium which happen to occui in the outer node.

The results in figure 4 shows the variation of the fiber volume fraction through the thickness.

As expected, this figure indicates that increasing the radial stiffness of the fiber network suppresses

fiber compaction. The interesting feature of this figure is that for cases where the initial resistance

of the fiber network is sufficiently small so as to allow significant compaction, there are two

boundary-layers: one close to the mandrel-composite interface and the other also close to the outer

layer. In between these two layers fiber volume fraction is nearly constant 4. Figure 5 presents the

details inside the boundary-layer close tox = 1. As the results indicate, the boundary-layer becomes

more diffused as the radial stiffness increases. In interpreting this figure, it is important to note that

the length of the boundary-layer is on the order of the thickness of an individual composite layer.

T h keeping in mind that fiber diameter is on the order of 10pm, adopting the continuum approach

in the manner presented in this study should be viewed with caution. Apart from the inner

boundary-layer which is dependent on the stiffness of the mandrel, the results presented in figures

4 and 5 imply that the profile of the fiber volume fraction can be separated into to a passive and an

active zone of consolidation. Inside the passive zone the compaction due to the winding tension

has reached its saturation limit, while inside the active zone the compaction is still taking place.

Figure 6 show the variation of the hoop stress in the composite cylinder. The results indicate

tlat the drop in the hoop stress (loss in tension) increases by increasing the thickness of the cylinder.

The loss in tension is more dramatic when the radial stiffness of the fiber is small. The drop in

hoop stress can be explained by observing that each time a layer is added to the cylinder there will

4 Numerical results indicate a slight linear variation of the fiber volume fraction with radial posi-
tion. The slope of this inner layer increases as the radial resistance of the fiber increases.
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be a compressive hoop strain increment and a compressive radial strain increment. These com-

pressive strain increments result in compressive hoop and radial stress increments. The larger the

magnitude of anisotropy ( the larger X), the more compressive the hoop stress increment. Thus as

the degree of anisotropy increases, the loss of the initial winding tension increases. The results in

Fig. 6 also indicate that in the case where the radial stiffness is very small (case 1), the hoop stress

will be almost zero in the interior of the cylinder.

Figures 7 and 8, respectively, present the variation of the radial stress and the pressure through

the thickness of the cylinder. The results in general indicate that increasing the thickness of the

composite leads to increases in the level of the compressive radial stress and the resin pressure.

Although the pressure distribution only shows the existence of outer boundary layer, the actual

numerical results do indicate both boundary layers. The results also indicate that for a given number

of layers, increasing the radial stiffness leads to a drop in the resin pressure and an increase in the

level of the compressive radial stress. When the radial resistance is sufficiently small that significant

fiber compaction can take place, increasing the thickness of the cylinder leads to the expansion of

the passive zone of consolidation. This can be seen from figure 8 where increasing the number of

layers leads to the enlargement of the region in which pressure is constant 5.

Figures 9 through 14 present the results of the numerical simulation in which the radial stiffness

was allowed to vary with the fiber volume fraction. The details pertaining to the limits on the radial

stiffness, the time increment, and the maximum error of each calculation is shown in table 3.

Figure 9 indicates that inclusion in the analysis of the variation of the radial stiffness with the

fiber volume fraction leads to an increase in the length of the inner boundary layer. Furthermore,

as figure 15 indicates, considering such an effect causes a non-monotonic dependence of the resin

pressure on the attainable radial stiffness. This is such that increasing the maximum radial stiffness

from 1.476 MPa to 147.6 MPa will actually increase the pressure inside the passive zone of the

consolidation. Aside from these differences, inclusion of the variation of the instantaneous elasticity

of the fiber network with fiber compaction does not alter any of the other characteristics of the

solution with constant radial stiffness.

5 Note that based on the Darcy's law (1.4) when the pressure is constant, the filtration flux drops
to zero and hence the consolidation stops
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Conclusion

By utilizing the rate form of the continuum mixture theory, the wet winding of circumfer-

entially reinforced composite cylinders is studied. The purposed formulation contains two important
characteristics of this manufacturing process, namely the variation of the instantaneous permeability

and elasticity of the mixture with fiber compaction. For the case of winding onto a rigid mandrel,

the numerical results, which are obtained based on a finite difference approximation, indicate that

when variation of the permeability with the fiber volume fraction is taken into account there will
be two distinct zones of consolidation. One in which fiber compaction has ceased to take place and

the other inside which the fiber bundles are continuing to compact under the influence of the applied

tension. Numerical results further indicate that the existence of these two regions does not depend
on whether or not the increase in the radial stiffness of fiber network is taken into account.

Based on the present results, an undesirable feature of this manufacturing process is the loss

of tension in the passive zone of consolidation away from the mandrel. However, the results indicate

that this drop in tension (hoop stress) decreases as the radial stiffness increases. Thus, if one is able

to increase the radial stiffness through the frontal curing of the layer close to the mandrel, one will

be able to reduce the drop in tension.

The results for the cases when the radial stiffness was allowed to increase from a relatively

small value to a large value show that one can achieve substantial resin pressure. This is a desirable

outcome since it prevents void formation during the curing process.

Further improvements on the present analysis can be achieved by developing more effective
algorithms for taking into account singularity of the velocity equilibrium equation. This enables

one to analyze the winding problem for arbitrary evolution of the elasticity of the network.
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Appendix

The elements of the tridiagonal matrix A, and the column vectors B and R_ are given as follows

A.,,M+ .,: GmR+ 1[-X,,F A + 11+ Xf,.. + Xac,,,

Am+i = Gm +1 [--.a,+ FI + ,_+A),, + .abJ,

A~y X,,X) .

1 GK+1[ g"] 1[ (e. ) 1
B Y Gm _ dm3.(+Rm& TB,, n x- AyG " +y doX.,t+ , o'(,+.o"( Ml---o ,

1
R.- (A.1)

AyX,.

where

+ + +

4 " ' 2 ' md +eF, +fF_, ,1

The above expressions are valid for all the nodal positions except the boundary nodes where one

has to take account of the boundary conditions. Utilizing (32), the equivalent expressions for the

nodes m =2 andm = n are

RA =R. -A., 1 i +

AXX = A.,X - A,,. + I 2

- T. dx.
BM = BA + A,,, + IVx,+, dy (A.2)

where
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- rdx0  I

- dx 1
'h Vdy G:+IX+I

A+1
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Velocity of deposition w0  0.256 m/s

thickness of the last layer H 0.25 mm

applied tension T (dimensional value) 10 [MPa]

Outside radius of the mandrel Ri 0.5 m

Hoop Stiffness of the fiber C 222 [GPa]

C,O/C °  0.204

initial fiber volume fraction o 0.5

Table 1- The constants used in the numerical solution

Radial stiffness C' Error

147.5 Pa 10.56%

1.475 [kPa] 1.78 %

14.75 [kPaI 0.217 %

1.475 [MPa] 5.02 x 10

0.1475 [GPa] - 4.52 x 10-'

Table 2 - The maximum error for the cases where the radial stiffness was considered constant
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Table 3

Initial radial stiffness C, (4*) Final radial stiffness C*() At sec Error

1.475 kPa 1.475 MPa 0.2 1.789 %

1.475 kPa 14.75 MPa 0.2 1.80 %

1.475 kPa 147.5 MPa 0.2 2.46 %

1.475 kPa 1.475 GPa 0.1 2.23 %

-20-
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Fig.2 Schematic of the finite difference mesh.
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C'. = 14.75 kPa and n =100 layers, 2) C*~ = 1.475 MPa and n = 50 layers, 3)

C', = 1.475 MPa and n =100 layers, 4) C,*, = 0. 1475 GPa and n = 50 layers, 5)

C* = 0.l1475 GPa and n = 100 layers.
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1.478 kPa5 <C_: 14.76MPa, 4) 1.478 kPa! C,5 147.6MPa, 5)
1.478 kPa! <C_ < 1.476GPa. The number of layers is held constant at 100.
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Fig. 12 Radial variation of the hoop stress for the following cases: 1)
C,* = 1.478 = const kPa, 2) 1.478 kPa _ C,5 _ 1.476MPa, 3)

1.478 kPa_ C,5_ 14.76MPa, 4) 1.478 kPa < C, < 147.6MPa, 5)
1.478 kPa < C, <1.476GPa. The number of layers is held constant at 100.
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Fig. 14 Radial variation of the resin pressure for the following cases: 1)
C"= 1.478 = const kPa, 2) 1.478 kPa! C,:5 1.476MPa, 3)

1.478 kPa 5 C_ 5 14.76MPa, 4) 1.478 kPa5 <C_: 147.6MPa, 5)
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