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ABSTRACT

1his paper treats the motion of long, unidirectional,

conti nuou.s fibers through & Newtoni an resin. 1her e is a

consolidation force on the top row of fibers or an, e*tective force

on all t-he tibers due to thei r tension in 0 fi l ament wound

cylinder. An asymptotic analysis for high fiber volume faction is

presented here. The results of the present rigorous asv.mptotic

solution are compared to the results of a previous applicatio| a+

the 1 ubr i c ation ip . i mat i on. .
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1. INTRODUCTION

There are several objectives to be achieved during the

consolidation of a composite material. The elimination of voids,

the removal of air and excess resin, a uniform degree o4 cure, a

uniform final fiber volume and conformation to a specified fiber

orientation are all necessary in the final consolidated material.

The consolidation process may be initiated with a surface or

pressure loading, or in the case of fiber winding, consolidation

results from the fiber tension due to the winding. Both types of

loadirg produc-e resin and void motiorn, and this motion depends on

the resin matrix properties (such as viscosity, thermal

conductivity, cure behavior), the initial fiber volume fraction,

fiber orientation, and fiber properties (thermal conductivity,

diameter, fiber length).

-rce work presented here is concerned with the resin + low and

fiber motion in a iber.-resin svstem with an initiallv high fiber

volu .e typical of composites made with thermoplastic resins. We

use an approximate approach to the analysis of the resin flow which

(1) will reveal much of the important physical phenomena associated

with the non-Newtonian resins, ko will provide reasonably good

quantitative predictions. and (.) will indicate key simplifications

to the full boundary value problems which can then make Q more

accurate model tractable.

The approximate approach rw.,-escntn a., e,Leision ol a model



developed by Lindt [1] for fiber motion in a Newtonian r esi1,1i.

Lindt assu~mes a rectanguklar array Of fibers ar-ranged in patallel

rows and constrained to vertical motior only. Lindt assuines that.

the important resin flows are in the qaps between the fiber r-OWS

and col umns,* and uses 1lubr ication theory-), to treat these lon

correct version of this model represents the leading order term in

anC- asymptotic SOIlution- for E<, 1 , where E is the ratioJ of the cp

si~e to the fiber radius. The model is: not restricted to Newtonrian

fILki ds, the only restriction' is for the fiber volL(ME' to be large,

corresponding to narrow gaps be:tween -fibers. As thermoplastic

pr Ppregl tape for- f ilament w'inrding has little or no e ,cZTSs r e =i r,

this asympt oti C: Sol uti1on will be reasonably accurate for

thermc-.plastic resin flows.

WP begin by presen.-t ang t he a&Eymp.ot) jc S 01Lkt i onl 1or a

Newtoni an -flu.IdC in ordePr to compare out~ reSil t= with the res' 'its of

Li ndt . rhis will provide a check or, this work and on, Li ndt's work[.

The sol uti on' presented here is a rigqorous asorrptoti c sol utio tr 1or

F .- 1 , w i t h fi,& t c: h i r q bet wcen t he Sutbreg i uis i ri &aC t Firat-r L-W C gap. in

& +ut ur e pap e , t he modelI w ill be ap-1pi ied toi- non.-Newt onian, t Iu ids

and i rregUl at f iber ar rays In section 2 the f low field in the

nar row gap regi ons will be determi ned, with the torces oni the

fibers due toj theose f lows cler. ved in sectiaorn . I he n u er j. calI

analysis anid consolidation resultsi -ic presented in 1m&LtiDv,- 4.
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2. PROBLEM FORMULATION FOR NEWTONIAN RESIN FLOW

We consider the resin and fiber motion in a system of n rows

of moving fibers suspended in a high viscositv Newtonian fluid.

The fiber length is much larger than the fiber radius, and the flow

along the fiber length is negligible. The fibers are arranged in

columns, with the separation hetween adjacent columns equal to 26 0 .

The adjacent fiber rows are separated by a distance 2h i (t), whet e

denotes the row of the fiber above, and the row gap is a function

of time. The fiber columns are constrained to remain in columns

with the same gap size for all time t. The geometry ot the +iber--

resirn system is shown in figure 1.. All fibers are subjected to an

applied force due to the fiber- tension and the top row of fibers is

sbjected to a distributed surface force per unit length due to

the consolidation process.

The Reynoldos number for the resin is e=.UR/ p, where p and

p are the density and viscosity of the resin, while U. and R are

the characteristic velocity and fiber radius. For consolidation

with polymeric fluids, Re<ii, so that the inertial "force"

associated with the resin acceleration is negligible compared to

the viscous force between the fiber and resin. Since the density

of the fibers is comparable to that of the resin, the i nerLial

"f+rce" asso,-ated with the fiber acceleration is also negligible.

Therefore, thare is wr7 quilihrit- 2V- he vertic~l forces for 0-:1

fiber.



There are two flow regimes for the given geometry. he flow

between adjacent rows, caused by the applied loaaing of the 4ibet s

and subsequent vertical motion of the fiber rows, is calJeo the

squeezing flow, after Lindt [1]. This flow is the source of fluid

which flows through the gaps between the adjacent columns, which is

called the normal flow, again after Lindt [].

A. Squeeze Flow Betweer- Fiber Row5

For the squeeze flow between fiber rows, the top fiber (in

row, i moves downward with a velocity V i (t) and the bottom fiber

(in row i+1) moves downward with a velocity V i  (t). We choose a

coordinate system with an origin which is aligned with the fiber

centers and remains midway between the fiber row gap, as shown in

foiure 2(a). Thus the origin moves with a veloc ty Ui=

.. (A+V i+)/i2 relative to a fixed coordinate frame. In the movIr,

frame, the top fiber i moves downward with a velocity

_ IV --. .. i+ lI 2 l&)

while the bottom 4iber i+i moves upward with a velocity

i = i i+i ib)

The squeezing +low between the i and i+1 fibers is symmetr ic

about the .=0 and y=- planes. The position of the top fiber

surface is given by

2 , 2_ (y- - ,



This can be rewritten as

y=hi+R--R(l-x21R2 /

where R is the fiber radius and h i is hali the gap size between the

i and i4l rows. Equation ( ) Lan be e,,.p7nded for x.k to qilve

4""+ O, I 1 1 4)

h . 2Rh. . Fh h.
i 1

The equations governing the inertialess fluid flow are

-XP + pv(t.&, C)

C) = V -(6)

where V - +

and u pp are the velocity, pressure and viscosity of the fluid.

We consider first the near region of the squeeze reai on,

wJhere 'is comparable to h i and both x and h i are muc:h less than R.

For comparable to hi, the fiber surface is asymptotically +*lat,

and the suirface is at yihi=l. We use the 4ocilow ir sCal 1 fi. L or

reqion 1

P 'i 7a., b

I *

S ht t b)
1 I 1I

where the di mensionless variables c-d e denoted by an aster is.

The non--dimensional equations for region 1, with the
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asterisks dropped, are

-p + 2' ( 1 1aiU p + V I Lb

1 1ay + V U Y(10)b)

V-u = U (ii1

where V +

1 1

Due to the symmetry of the flow ard geometry, only the top fiber

row i need be considered in determining the squeeze flow. [he

boundary conditions are

U " 0-1 = I at Y 1 (12ab)

aU
U . . = t (11a b)I1 I

U at ay 0,Oy15 ]ab
U U * U at. v U: ( 14:a b)

1 1

-M e bounrdary co~ndit£ions (10L, 14) are sym,,-etry conditions on the

squeeze flow and shear stress.

We replace each dependent variable by a la.lor series with

powers of x, times coefficent functions of y. -he coeffie, tS fo

•the different powers of x, de~coup] e and are go:verned Inv or dinryr

di ffer ent-ial equations in Vl" One decoup] ed problem has or-

irhomoeneors boundaryi toni o (12. a; and t.hus has a rn or- er,-

solution, while all other decoupled problems have homoene a s

boundary coridi tions, and thuL.s have only zero as A sol ,t 1 on.
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Therefore, the solution represents , Taylor series in x, with only

one term so that it applies at all x"I The only non-zero parts of

the Taylor series are

Uv 1 U, (Yl) (15a)
1

u = V(y) ( 15b)

1l 1;I+ P Y (15 )

When the solutions (15) are substituted into (10,11) and the

boundary conditions (12-14) are satisfied, the solutions for- region

1 ro

II = - *..

S. -y (16a)

2 2 -.

= - vI i-16

. . :-- .

where 6: is a constant ambi ent pr essure to bM. determi ned.

When ">h i the c:u.r-vature of the surf ace beccmes i mportant.

From equation (4), the leading order curvature term is 0 () when X

is comparable to (Rhi) T/ -he position of the surface is

parabulic in m for region 2 where hi.<:=O(Rh3 1'2.<R, with

2

+ O ,)
h . 2Rh

1 I

The appropriate scalirqs for the region z iow variables are
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h*1/2 * _ i *

Y2 = h Y- 1 = (Rh,) "- -. (18ab)
1

il1 .Lk = 7 'LkU I u, L 'a.b)

" h

p.- - p,, t - t (2'a *

E i '

1 1where E i ( I / R  gin hc

compressed by the factor E relative to y, wtich detet Ti nE- the

scal ing for u,, from conservation of mass. The rescaled ono,-

di mensi onal equataors, uSir Fg the scalings k18- q iF equ1ti on s

(5,6). are

2au

= r 1

where the aster i s have beer-, dropped, and the 0 E terrc; have

been neglected. The boundary, conditions are

LI = -U1 , U = (.I at A. = 1 + -.

= ) - C) at y h =  .

LI U.L LIk Lk ( 5 b
y :Y Y ":



I (I)

Condition (25) is a matching condition between region 2 and region

1.

Solvinq (21,22) with the boundary conditions (23-25. yields

the solutions

dp_. ..

- p --

U-. - .(26b

p, (26c)
242

where p. represents the dimensionless elevation of the pressure in

the squeeze gap above the ambient pressure for n-I. 1he pressure

is an even function of n.. The solutions (26) with x,=EX> .l match2 1

the inrner region I solutions (16i with x ,[.. :I= and this

matchinq determines B=I in the inner region I pressure (16c).

h + 1 ui d squee: ed out bet ween the i and 1 + 1 f i bers 1a the

source of fluid flow throuoh Lhe gaps bhetNeeni the fiber coltmns.

It is this riomal f]ow which is considered ne"t.

B. Normal Flow between Fiber Columns

As shown in +igure 2(b) , the adjacert fiber columns are

separated by a distance 26., wher, 6. renar s const ant tht cuohool

the consolidation process. Jhe fibers in row i move with a

velocity V. For the normal sIow, we use a coordinate system at

r est with fiber row i, wi t the, origin o1 the coordinate s.st em

midway between the adjacent columns. ThEu surface of the fiber is
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given by

(x-6 -R) + y = R- (2/a)

or

- = 6 +R ± (R 2 y / (y7

In the normal gap, there is no interior region analaQouLS to

* 2qion 1 of the squeeze flow. The appropriate scalings for the

equat i ons (5,6) in the normal gap are

C) y E v , n= (28ab,c)
n "

V.

U = V U , - U (29a b)1.,y 1 y

n n Yn n n

1 * ot
p V tb

n n
n o

For the normal Qap reqi on 6oLy 3.Y0R 6o R' /2 , the non-

0i men s1 oiaI equations qovernincl the fluid flow in the ith normal

qap region are

rp

L
n, +

(9 = + n. 1 c

where the astericks have been dropped, and O(r) terms have been
n
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neglected. Because of the symmetry of the flow, only one side of

the ith fiber column need be considered. Here, we treat the right

side of the column cell. The boundary conditions on the normal

flow at the fiber surface are

2
k = 0 u Q at .= f (y) = I+ (3a,b);. - y n2

nnn Yn

in a 4 rame of reference at rest with the fiber row i. The position

of the surface is found by an expansion of (27b) using the scalings

(28). The symmetry condition is given by

au
Y'n

(n - LI = - at x=O ('4a,b)

n

s, that u reaches an extremnum at the center of the normal gap.

Ihere is an additional condition or the normal flow which

represents a constraint on the amount of fluid passing through the

It1, C CI LIm ri Qaps. lhe fl id which is squeezed out 01 the regi on

between the i and i +- 1 T i-er . ow is f orced into the i col irn gaps,

rd hen c > f owJs U[pwOrd. In the region between the i+1 and i +

rows, fluid is also lost due to squeezing and is forced into the

i 4 I cl Umn gaps arid upwards through the i normal gaps. the i -1

normal gips, and so On until the +Juid reaches the top fiber row.

The total volume occLupied by the resin-fiber columns changes as the

fluid is removed frui the squeeze region, while the size of the

col Inr, qaps remain constant. ]he change in volume of the cC LiTiri

fronm row i to row n (the static bottom fiber row) in a time At is



equal to the volume_ of flid which is squeezed and then passes

through the column gaps. Thus Qi, the volume flow rate per unit

length pasing through the ith column gap, is given by

V.At
0. = 21R + o -

where 2(R+&,) is the horizontal size of the column cell about fiber

i and ViAt is the total change in the vertical size of the i to n

column cells. Then 0i represents the accumulated +Jow due to the

squeezing between the fiber rows from i to n. The above expression

for 01 can be simplified and rewritten as

0, = 2R + 6 V

It should be noted that the total volume flow rate per unit length

can be calculated from the top fiber row velocity with i=I; this

determines the net loss c-f resin in the system.

The volume flow rate per unit length 01 corresponds to the

fI ,,A of fluid through the ith column gap. thus, using the sca,1 i, ns

0'8-70), the corservatior of mass condition is

-f (y)n C! E
2 y d,.' = iv r,-

u dx ~V i 6
'Iu t n 1 d

For simplicity, we use the notation
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Q. s
i n 1

qi _ n E + (.7)2V. b En E

1 0 n

Equations (31,32) are solved, using the boundary conditions

(33,34) and conservation of mass (36), for the normal gap flow.

The solutions are

d p dpnU = j n V ,- ,x'- + xyf (38a)
x n d ," / n 3 " n dy

I dPn 2 '(38b)

Y n 2 d y .. n.

dp n-Q (38c)
dy .3

n

From equation (8c) it is seen that there is a pressure drop across

the normal gap which drives the flow upward toward the surface of

the svstem, and that this pressure depends on the volume flow rate.

An y-O, t-he solution (78) becomes simple F'oiseuille flow between

p ralle! walls at n"11I.., which is the coi-r ,L solutio, for the

normal flow when the dimensional ' and y are both comparable to 60.

While the squeezing flow requires a special, solution in the

interior region 1, the normal flow does not require an inner

region, as previously stated.

1. FORCE BALANCE ON THE F1BERS

Since the inertial "force" due to the fiber accelerations is
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negligible compared to the viscous forces of the resin on the

fiber, the sum of the forces on the fibers must be zero. the

forces on the fiber have two sources: (1) the externally applied

force due to a fiber tension or distributed surface force per unit

length, and (2) the force the fluid exerts on the fibers. The

externally applied force per unit length is denoted as

i A
F y-1Y (19)
fN ext i

where the applied load acts in the -y direction with a magnitude of

Ii at each iiber row.

he forces the fluid exerts on the ith fiber surface are

found using the relation

dF i  = r i43Mi n d A ( 40 )
_) 3 k

where al k is the stress tensor for the fluid due to flow about the

ith fiber. Equation (40) is the incremental force in the )th

direction which acts on an incremental surface area element dA

which has a unit vector nk.

A. Force due to the squeezing ilows

There are two parts to the force on the ith fiber row due

to the squeezing flows. The ±irst part is the force on the ith

fiber due to the squeeze flow between the i and i+l fiber rows

acting on the bottom of the ith fiber. Ihe second part of the
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force is due to the squeeze flow between the i-I and i fiber rows,

acting at the top of the ith fiber.

The first step to finding the forces due to the squeezing

flow is to find the normal vector. The normal vector to a surface

is given by

An - (41)

where G=O is the equation of the surface. Using equation (1), the

surface equation for the squeeze flow cell is given by

2: 2. 1/
G = R + h - y -(R -- X>i " = ;j (42)

The normal vector to the top surface in the ith squeeze region is

. "' 1/2v A (R -;.,a)
n = x - R Y (43a)

A A
where x and y are unit vectors. by substituting the scalinqs (18)

into the expression (41a, , the normal vector becomes

A *1 A

n =  E:.:-.. -X y (43b1

where the E(I)' terms have been neglected ir order to remain

consistent with previous approximations. The area element dA for

the surface is found by a similar analysis. For a circular surface

dA=RdO , where O=tan I44) (y...-R-h

e ae
and dO= dm + ay 2Ox. ay
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Ignoring O(Ei ) 2 terms, the area element (44) is given by

dA=d x (45)

Thus, with (4,4.b,45), the forces on the ith fiber row due

to the squeezing flow are

F EI ",a, LiT . . d x .. (46a )

K s q . ," a .

where the limits are the asymptotic limits of the Srface, and the

"3 : . .P k + jj") + -, . (47)

The scal nqs (18, 19 2" a) ind the squeeze flow solUtiOns (26)

are substituted irnto (47). The integrand in (46a) is an odd

functior, of - and thus Qives a zero net contribution to the x force

(46a). This is seen by eamining the solutions (26): the pressure

is an even funct ion i n as is the, nor mal stress ( (fu., ax,,) , whi le

the shear stress (u /ay,) is odd in x,

There is a force in the y---directior, due to the precsure.

With the pressure given by equation (26c), equation (46b) becomes



F E _ _ _(48a)

~sq,bot E

This gives tne force on the bottom of the ith fiber row in the y-

direction due to the pressure qenerated by the squeezing flow

between the i and i+1 fiber rows. The force on the top of the ith

fiber row is directed downward, and is given by

F - ____(48b)'

~sq~top 22

This force is due to the squeezing flow between the i-i and i fiber

rows. We have used the pressure (26c) throughout the squeeze gap

reqion, but there is a very small region with .,=O(h i) where the

pressure is given by equation) (16c) with B=1. The pressure in the

region .,=O(hi) is slightly. less '-har the pressure predicted b'y

C.2b6c) However. the devitation is Oki2arid ex-Itends over a small,

0(E 1 ) portion of- the SUrface, soj th-at the error is 0(E )' smaller

than the forces ini equationIS (48).

Bi. Force due to the normal f low

1o Cal cul ate the -force due fo the normal fl1ow, we proceed as

we did for the squeezing flow. Usinq the expression (27b), the

equation for the right fiber sur-face in the normal gap is
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o 1/2

G = b +R-(R2_ y2) - = (49)

The unit normal vector, found using the equations (28,41,49), is

given by

A A *
n = -x +E y y (5(0)

neglecting O(En ) terms, and the asterisks denote the non-

dimensional variables. The area element is dA=dy. Using equations

(40,50). the forces due to the normal flow at the fiber surface are

F-0 +E '" 0 dy 151aM
n n

F 1 
=-a + E Ya d y (51b)

where the limits are the asymptotic limits for the region. The

scalings 028-3ua) and the solutions (38) for the normal flow are

substituted inrto equations 47,51). The result for the force in

the x-direction 3s

Fi PV pd/+'Q"

n E n
n

where the integarid is in terms of the non-dimensional variables,

and the asterisks have now been dropped. By examining the solution
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(38c), the integrand of (51a) is shown to be an odd function of y.

Thus, the force F, due to the normal flow is zero.
n

The force in the y-direction due to the normal flow is

F i _ PVi du'::  I O n dy<1

NY 2i -y - Ox dy.- I y(5
n E

where the integrand of (5.. is in terms of the non-dimensional

variables (28-30), and OEn )2 terms have been neglected. This

force (53) is produced by the pressure distribution and shear

stress at the fiber surface.

Before evaluatino equation (53), the pressure distribution ir-

the normal gap is determined by integratinq the equation (18c) to

obtain

p n q l y 22+ 9" + 9 t -i b4
2 + y 4 2 + y' 4/2 2

The first two terms in the expression (54) approach zero as y±._...,

but the last term approaches two different constant pressures as

y4±. so that

AP' = p (Y O-) - p y -:,) (5-)
n n 42

This 6p n is the pressure drop needed to drive the flow Ui through

the normal gap between the adjacent fibers in the ith row.

Therefore, the ambient pressure above the ith fiber is less than

the amb3ent pressure below the ith +iber. [he solutions k26,38,54)
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give the velocity and pressure in the squeeze and normal gaps, gaps

which represent a small, O(E) fraction of the total fiber surface.

The pressure drop k55) gives a pressure over the entire bottom of

the fiber, a pressure which is greater than the pressure over the

entire top of the fiber by a value I Lp n I . -his pressure

difference produces a net upward force on the fiber. We cannot

obtain this force by introducing the e;.pression (54) into equation

(57-, as the unit normal vector (50) is valid only in the normal

gap reqion where the fiber locally appears to be a parabola. 1f we

were to introduce the pressure (54 into the force expression (5.),

we would obtain an in finite force, because there is a pressure

difference across a parabolic surface, which has an infinite area.

Fo find the total vertical force due to the normal flow, we

first consi der the verti cal force due to the change i r, the

dimensional ambient pressu te

p I.,V.

+ n 1 for < - , (b)

o n

on the top and the bottom halves, respectively, ot the fiber with

the true circular cross secLion. This gives a pressure force per

unit fiber length,

i qqi pV(
- (57

n



Since the force due to the pressures (56) has been accounted for in

the pressure force (57), the expression (53) is replaced by the

expression

I'i i - p rdu -

F i  - + dy (58)-. Y -2sgn (y) +~ Pn
n En

for the force per unit length on the left side of the ith fiber,

due to the local parts of the normal gap flow. The integral (58)

with the expressions (8,54,55) is well defined and gives

1 I9T VV i q I
F (59)F1  2

n

By symmetry. the force pet- unit l ncith on the right side o4 the ith

fiber is also given by the expression (59). The total normal force

due - o the armbient pressire and local parts of the normal flow is

given by

ri V~ C~ 'P nF 1- + 'K .60))

n.tot >p n £V/E
f'I

As the inertial force associated with the fiber accelerations

is negligible, the downward force per unit length ($9) must equal

the upward forces due to the squeeze and normal flows, where

I. F i  + F I  + V i  (6I)
,sqbct sq,top vr-, tot



Introducing equations (1,07,48,60), the force balance (61) becomes

3T ,(V. - V ) snp V - V ) 9ni 1 11 +1 i-i i " 2
T' 5 +

420 42AT 2V2E n
1 i-I n

Equation (62) is the force balance for a system of r-moving

fibers with squeeze gaps 2h which satisfy the condition
1

hi1 (Rh1) 1/2<. <R, and normal gaps 2L.o  which satisfy G 0q L. .... Q

lhe force balance given in (62) is applicable for all

interior fibers, i=2 to n-1. The nth fiber is considered to be

stationary; the bottom fiber is constrained bv a solid surface and

so remains motionless, with the fibers above it moving toward the

nth fiber. The top fiber i=1 has no squee2ing flow due to a fiber

above it. Thus, for i=l, the force balance Y62 is modilied to

1 n + W1n V - V 1 nn

4. NUMERICAL LALLULA1 IONS AND L(JNSuLI-if iON RESULI%

[he con-solidation behavior of the set of n--moviFrq fibers is

determined by sci vinq the set of n-i si mul taneoLs equat ions

(62,J.) , with the condition thal the I=n fiber is stationary. tor

the fiber velocities, fiber displacements and volume flow rate per

unit length. To facilitate the co]cul ation, the following scalings

are used in (62,6.),

Tv 7 , t - 4a.b)
1 c i c -
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R * * *
V.=-R V h Rh b, R6 64c-e)i t 11 0 0c

E = h , = & M ,gq)

where the asterisks denote the non-dimensional quantites.

The vale of 1 is ta ken to be the magnitude o+ the tension

in the fibers or of the distributed surface force per unit length.

The characteristic time is determined using the fluid viscosity,

fiber radius and characteristic applied +orce T c. Since the

chi-racteristic time depends or the +luid viscosity, a change in the

viscosit, will change the value of to, and the characteristic

velocity, R/t . Similaly, a change in the value of the

charnter isti c -appl ied force will change tc as well as the

characteristic velocity.

With the scalings k64, the force balance equations %2,03)

arm rewritten as

* _ _ TI ,* * ,

v V 1 -- Vj 4, (b 5)
I I2 nz,'
*T

IF

1 4.1:2 4 _-

9H Ei 11

A 1 (66)

n

4s fluid is squeezed out from between the ±iber rows, the o.Ap
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between the rows will change. Yo take this into account, the

sqileeze gap 2h i is updated at each time step, where

2h (t+Mt) = 2h t) +At(V - V

or using the scalings (64)

h (t + At = h (t ) + At (V - V )/2 (67)1 1 i+l 1

The equations (65,66), along w-ith tne zero velocity condition

on the nth fiber, are formed into a set of simultaneous equations

of the form L 1 *]*. The fiber velocities are found using aji1 i J]

r out ine +or solvirg sets of simultaneous linear algebraic equations

[2 3. Oni-ce the velocities are known , the squeeze gaps 2hi using

equation (67), are updated and the next time step is performed

until t *=t

A. Consolidaticn from the top: Lindt s problem

We conzider first the calculation corresponding to one of

Lindt s sy'.tems for n=12 +ibers. Ihe top fiber row (i=J) is loaded

b, a di str i buted surtace + orce per un L t l ength , I=:.UO , if, and

there are ro other applied forces or the irterior +ibers i=2-12.

T f 103 d iscocit 1y is ,.,,i,-"h an~d the fiber radius, R, is taken

to be 10-'M. Fre initial gaps are giver by

h. (t =-u = 1 R l , (b8)
1 0

The characteristic time, t , i I .,: seconds. Half the

dimensionless distance between the fiber rows, h* , for (i1=-5) and

u i I[ [] Il • I II|• || • Bil • IIIII • [
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the dimensionless fiber velocities, V*, for (i=1-5), are shown in

figure 3(a) and .(b) respectively. The volume flow rate per unit

length may be calculated directly from the fiber velocities using

(35) and the scalings (64). The dimensional flow rate per unit

length is given by

-8 * * 2
. = 10 (1 + b )V m /s (69)
1 0 1

The dimensionless normal force (601 and dimensionless sq,,eze force

(48) for the i=1 fiber is shown in figures 4(a), and figure 4(b)

shows the dimensionless normal and squeeze forces for the i=2-4

fibers.

The results for this problem can be intrepreted as a type of

consolidation wave'. Consider the i=1 fiber for tw, when the

velocity of the i"2 fiber is close to zero. From (65), the ratio

of the normai force to the squeeze force,

F1 bIK + 2
n .1 - (70);

• 5 1
F 1 En

i n
sq

For E n=1, initioly E11, the normal force is 24 times larger than

the squeeze force. ]he i=1 fiber is then in a free fall due to the

applied force, with the resistive force due to the normal flow

only; the interaction between fiber 1 and fiber 2 due to the

squeezing flow is very small. The velocity V is then controlled

by the normal flow, and the velocity can be determined by the
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balance between the applied force and the normal force, with 1*

Vir~i f i 0/1)

ri=E '
n *

then Y*=0. 025 for E =1. The squeeze force actinrg on the bottom of
I n

the i=1 fiber and top of the i=2 fiber is small, but it does

influence the i=2 fiber. As the i=l fiber moves downward, the

squeeze force increases in maqnitude, since F :-- Thus, the
sq I

force balance requires that the normal force acting on the i=1

fiber decrease as the squeeze force increases. From equation (60)

it is seer that F n:V, so the velocity of the i=1 fiber mustit s sentha Fn i1

decrease to decrease the normal force. The squeeze force acting on

the i=1 and i=2 fibers begins to increase the velocity of the 1=2

fiher from zero, in turn increasing the normal force on the i=2

fiber, while the i=2 fiber velocity is less than the i=1 fiber

velocity. When the squeeze gap between the i=l and i=2 fibers

becomes small, the squeeze force acting on the i=1 fiber begins to

dominate. This occurs at tnj.4 seconds for the i=1,2 fibers. At

this time, the squeeze 4orce actinq on the i=2 fiber is mainli due

to the interaction between the i=2 and i1= fibers, with the

interaction between the i=2 and i=T fibers very small, and the i=5

fiber almost statiniary.

The applied load T* is distributed between the i=1 and i=2

fibers, after tt2.4 seconds. Thu normal force on the two fibers is

equal, but only half the vaile oi the initial normal force or the

i=1 fiber only. The squeeze force acting on the two fibers is
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equal in magnitude but opposite in direction. The two fibers are

then carrying the same load, and begin to move downward with the

same velocity. This velocity is roughly one-half the free-fall

velocity for one fiber, as now the applied load has been split into

two. These two fibers have formed a consolidation front.

As the top two fibers move downward, the i=3 fiber begins to

be influenced by the decrease in the squeeze gap, 2hi, between the

i=2 and i=3 fibers. The squeeze forces acting on the bottom part

of the i=2 fiber and the top part of the i=3 fiber increases in

magnitude as the squeeze gap decreases. As yet, the i=4 fiber is

stationary and does not contribute to the overall force balance.

Since the squeeze force on the i=3 fiber is non-zero, the fiber

begins to move, slowly at first, but increasing as the i=2 fiber

approaches. The velocity of the i= fiber produces a normal flow,

ard hence a normal force, which opposes the squeeze force ccting on

the top of the i=3 fiber (with no squeeze forre acting on the

bottom of the f=3 iber) and Oires a baiance of the forces. The

total squeeze force actino oo the i=2 fiber decreases with the

addition of the opposirg squeeze force on the bottom of the i=2

+iber. This decreases the velocity of the i=2 fiber further, and

through the force interaction, the i=1 velocity is also reduced.

Because the i=3 fiber has no interaction with the i=4 fiber as yet.

the i=7 fiber veluciLy steadily increases, although remaining less

than the velocities of the i=1,2 fibers.

When the squeeze gap between the i=2 and i=3 fibers becomes
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small, the total squeeze force acting on the i=1 and i=2 fibers are

equal. This occurs at t%7 seconds. Further, force balance

requires that the normal forces are also equal. The normal force

acting on the i=1-3 fibers is one-third of the initial normal force

acting on the i=1 fiber. The applied force at tT7 se-onds has then

been distributed among the three fibers, forming a three tiber

consolidation front, which moves with a velocity which is one-third

the free-fall velocity for one fiber.

This consolidation process continues as the consolidation

front moves downward toward the fiber directly below the front.

Unce the squeeze gap becomes sufficently small for the total

squeeze force on the bottom fiber in the front to equal the squeeze

force acting on the top of the fiber directly below the front, the

fiber below becomes a part of the consolidation front. This

process simply, propagates downward row by row, with a velocity

which decreases as each row is added. The front starts to move

with a free-fall velocity determined by the balance between the

normal force and an applied load distributed among the 1-fibers in

the front. This front free-fall velocity is

2M 5
*n (72)

free 9 j 4T Q I

where Q is the number of fibers in the consolidation front.

The key to the consolidation is in the normal flo . From

(60) it is seen that the normal force is strongly dependent on the



size of the normal gap. For large normal gaps, the fluid from the

squeezing flow encounters little resistance as it flows into the

normal gap region, and so the consolidation Vront can propaqpte

rapidly. However, as the normal gap is decreased in size, the

resistance term, here defined as

2: + 12

W = n . (73)

n

becomes large, and so the free fall velocity of the front (72) is

reduced. This indicates that the fluid in the squeeze region

cannot penetrate into the normal gap, and so consolidation is

inhibited. Figures 5a-c) show the behavior of a system with the

normal gap reduced by half, where 60=0.5R. This case has the same

loading, viscosity, fiber radius and characteristic time and

initial squeeze gap (h (t=O) =R) as the previous case, and the fiber

behavior conforms more closely to the free fall analysis already

discussed. This is due to the increase in the initial normal force

caused by the decrease in the normal gap, where the ratio of the

normal force to the squeeze force (70) is increased by about a

factor of 3.2. The i=1 fiber is in free fall, with a velocity

roughly one-third of the case for 6o=R; this decrease is directly

related to the increase in the normal gap resistance to the flow

from the squeezing action between fiber rows 1 and 2. Since the

velocities are reduced, the time required for the i= fiber to

close the squeeze gap sufficently for the squeeze force to dominate
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increases. Once the i=1,2 fibers form the front ( at t17 seconds)

the front's velocity is half of the initial free fall velocity, as

determined by (72) with Q=2. Again, the fibers arp moving slowly

in a free fall, until the next squeeze gap is small. The value of

the size of the squeeze gap at which the normal and squeeze forces

are equal, is also reduced as the normal gap size is reduced, as

.indicated in (70).

If the normal gap is reduced more, the behavior of the

consolidation would be similar to the first two cases, but with an

increase in the time for the fibers to consolidate, and a stronger

conformation to the free-fall behavior previously described.

B. Consolidation with uniform fiber tension

The next case considered is one in which the n-I fibers have

a uniform tension applied. The fiber radius has a value of

R=i'-5m, with h I (t=(0)=6j=F , fluid viscosity is lkg/m-s and the

applied force due to the tension of winding on a curve is O.)005N/m,

such that 1=I for i=1 to n-l. HalW the dimensionless distance

between fiber rows W , and the 0imensionleys fiber velocities, V,,

are shown in figures 6(a) and b(b) respectively, with the

dimensionless rormal and squseze fc.rces shown in figure 6(c).

The consolidation under uniform fiber tension is similar to

the consolidation +or uniform top loading. However, with a uniform

tension on all of the fiber rows, the consolidation starts at the

i=11 fiber and progresses upward. Initially, all n-i fibers are in
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a uniform free-fall ( i=n fiber is static), with a free-fall

velocity determined by (71) with T* replacing T I* It is the i=11

fiber which experiences a squeezing for-e due to the presence of

the static i=12 fiber. The squeeze force acts on the bottom of the

i=11 fiber, with the squeezing force between the i=10 and i=11

fibers initially zero and remaining small. As shown in figure

6(c), the behavior of the normal and squeeze forces for the i=1l

fiber is analagous to the force behavior of the i=1 fiber in the

uniform top loading case. As the i=11 fiber moves downward toward

the static i=12 fiber, the squeeze force increases as the squeeze

gap decreases. This necessitates the decrease of the i=11 fiber

velocity, to decrease the normal force and maintain the force

balance. However, unlike the top loading case, as the i=11 fiber

approaches the i=12 fiber, the squeeze force acting on the i=12

fiber does not produce the associated motion of the i=12 fiber, due

to the boundary conditiorn that the i=12 or i=n fiber remain static.

Thus. the gap between the i=11 and i=12 fibers continues to

decrease, with the only resistance to the notion produced by the

increasing upward directed squeeze force on the bottom of the i=1

fiber. The ratio of the normwal force to the squeeze force for the

i=11 fiber under uniform tension is the same as that given in

equation (70), with i=l replaced by i=11. When the squeeze gap,

2h1 1  is .24 ( at t%1.6 seconds), the normal and squeeze forces

acting on the i=11 fiber are equal. As the squeeze gap continues

to decrease, the normal force decreases, while the squeeze force



increases and the squeeze gap asymptotically approaches zero

extent, with a velocity which also tends to zero. The normal force

approaches zer-, and the large pressure in the squeeze gap between

the i=11 and i=12 fibers produces a sufficent force to balance the

uniform tension. The i=11 and i=12 fibers form the consolidation

front.

The other fibers are completely unatfected by the interaction

between the i=11 and i=12 fibers, and the i=1-10 fibers continue to

move in a free-fall with the velocity given by (71). However, once

the i=11 fiber has virtually stopped, the i=10 fiber closes the

squeeze gap with the now static i=l1 and i=12 fibers. The decrease

in the squeeze gap between the i=10 and i=l1 fiber increases the

squeeze force from zero, and this force acts on the bottom of the

i=10 fiber. Once the squeeze force on the i=10 fiber begins to

increase, the normal force must decrease and the velocity of the

i=10 fiber decreases from the free-fall velocity. Once the squeeze

gap reaches a value of 0.24 ( at t-7.2 seconds), the squeeze force

and normal force acting on the i=10 fiber are equal. Since the

i=i1,12 consolidation fibers are static, the interaction ot the

i=10 fiber and the front does not produce any additional motion of

the front. Thus, the squeeze gap between the i=10 fiber and the

front continues to decrease, until the i=10 fiber reaches the

consolidation front. The i=10-12 fibers form the new static

consolidation front, and the i=9 fiber moves toward it. This

process continues until all 12 or n fibers are stacked.
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When the normal gap is reduced, the free-fall velocity of the

fibers is decreased according to equation (71). This reduction

again arises from the increased resistance of the normal gap to

flow through the more narrow channel. The consolidation is much

slower, and the size of the squeeze gap for which the squeeze force

and normal force are equal is decreased. From equation (7)), with

o=O.5R, the value of the "critical squeeze gap" is reduced to .11,

and the free--fall velocity is reduced by a factor of 3.2. Half the

dimensionless distance between fiber rows, the dimensionless

velocities and the dimensionless forces for &,=..5R are shown in

figure 7(a-c). The fiber velocities are approaching step

functions, indicating that the squeeze force remains small for a

longer period of time, and that the size of the squeeze gap only

contributes to the force when the gap is e>-tremely small. As the

normal gap is reduce further, the normal force will remain

dom inanrt, due to the large resistance to the normal flow. Only

when the squeeze gap approaches zero will the squeeze force rapidly

increase and slow the fiber from the free-fall velocity.

5. CONCLUSIONS AND DISCUSSION

This paper treats the vertical motion of long fibers through

a Newtonian resin. The horizontal distance, 6 between adjacent

fiber columns remains fixed, while the vertical distance, 2h1 (t),

between the adjacent fiber rows i and j+l decreases with time. The

fiber motion is driven by: (1) a force on the top fiber row due to
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an external consolidation force, or (2) a force on each fiber due

to its tension and the curvature in a filament-wound cylinder, or

(3) any combination of these two forces. Lindt [13 treats the

first case with only a force on the top fiber row. Lindt

simplifies the two-dimensional inertialess fluid motion equations

.using a modified lubrication approximation". We present a

rigorous asymptotic solution for E n '(60/F)1/20 and

cI =(h 1i R)/2 1, where R is the fiber radius. Unfortunately, Lindt

does not present any formulae for the fiber velocities, pressures

or forces, so that we cannot determine the difference between his

lubrication approximation and our asymptotic analysis.

While our analysis is only valid for n<<1 and Ei A<l, we

present results for Ei=1 at t=O and n=1 in order to compare our

results in figures 3 and 4 to the results presented by Lindt [I in

his figures 8-10, for the same values of h. (t=0), 60j RI T 1 and P.

At t=u, Lindt predicts a top layer velocity in excess of imm/s,

while our result in figure .(b) translates to a dimensional initial

top layer velocity which is two orders of magnitude smaller. We

suspect that there is an error in the scale for Lindt s figure 8,

as a top layer velocity of 1mm/s would consolidate the top two rows

in 0.02 seconds, while Lindt indicates that this consolidation

takes more than 10 seconds. A more fundamental difference concerns

the period of time for adjacent fiber rows to reach equal

velocities. Lindt predicts that the top two rows reach an equal

velocity at roughly 7 seconds, and that the incremental period for
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subsequent rows to reach equal velocities decreases with time. The

results in our figure 1(b) indicate that the top two fiber rows

reach equal velocities at t=2.4 seconds, and that the period for

subsequent row consolidation increases with time, with the increase

proportional to the number of fiber rows consolidated. Clearly

there are some significant difference between the lubrication

solution of Lindt Li] and the present rigorous asymptotic solution

for En <<I and E I<<1. In addition to yielding the correct first

order solution for high fiber volume fractions, the asymptotic

analysis defines the magnitudes of the neglected terms.

The results for a force on all of the fibers show that the

consolidation begins at the bottom fiber row, with the outer fiber

rows moving toward the compacted fibers in the interior. We have

used only eleven moving fiber rows. However, even this small

number is not necessary, sinc-e the development of distinct wave

fronts would permit a much simplier treatment. The wave fronts are

more abrupt for c = (0.5) i 2 than for e J i. As En and E decrease.rn n17

the normal flows between the fibet columns becomes progressively

more dominant. 1hus, the squeeze flows provide negligible or

constant forces ezcept durirg the brief periods when a moving fiber

comes very close to a static fiber.

The resul]ts presented here and by Lindt Li] provide physical

insights into the local characteristics of the flows during

consolidation. However, for a Newtonian resin, the macroscopic

characteristics of consolidation Lan be derived from Darcy s law
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for flow through a porous medium, with local corrections of the

permeability as the local fiber volume fraction increases [M]. The

more important value of the present model is its potential for

treating fiber-resin motions with strongly non-Newtonian resins

such as thermoplastics. Darcy's law is restricted to Newtonian

fluids. The decoupling of the normal and squeeze flows will

provide a significant simplification for a non-Newtonian resin.

The purpose of the present paper is to provide a rigorous

asymptotic derivati<i for Lindt's lubrication solution. The

accurate definitions of relative magnitudes will be even more

important for a non-Newtonian fluid, as the model with a non-

Newtonian fluid will involve additional dimensionless parameters.

time scales, etc. In a future paper, we will present extensions of

the present analysis to some ron-Newtonian constitutive equations

for thermoset and thermoplastic resins.
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FIGURE CAFTIUNS

FIG. 1 The geometry of the fiber-resin system, with toe normal

and the squeeze flow regions.

Fig. 2 Close-up of the flow regions. (a) the squeeze flow

region with adjacent fiber rows moving with velocities V i (top row)

and Vi+ 1 (bottom row. The rows are separated by a distance 2h1 (t),

and the fiber surface. is y=(). (b) The normal +low region

between adjacent columns separated by a constant gap size 2b. The

fiber surface is at x=fn (y), and 0 indicates the volume flux per

unik length through the ith normal gap.

Fig. 3:. Results for the Lindt's problem ot uniform top loading

of the i=I fiber row only. The force per unit lenth is T c ....

N/m, p=lOkg/m-s, fiber radius R=lO-m, and h (t=O)=& =R (a) A plot

of half the dimensionless distance between adjacent fiber rows, h*

versus time. Shown are the displacements for i=l to 5. (b) A plot

o+ the dimensionless fiber velocities, i versus time, for i=1 to

5. Note the continually decreasing free fall velocity.

Fiq. 4 Force results +or Lindt's problem o+ uniform top loading

of the i=1 fiber row only. (a) The forces on the i=1 fiber

separated into contributions from the squeezing flow and normal

flow. (b) The force on the i=2 to 4 tiber rows separated into the

contributions +rom the squeezing and normal flows. The force due

to the normal flow is greater than or equal to zero, whlle the

force due to the squeez i nq fl ow is less than or eq 'al to zero.

From left to right are the i-2.,.4 force contribution.
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Fig.5 Results for Lindt's problem of uniform top loading of

the i=i fiber row only, but with a reduced normal gap size,

60 =O.5R. (a) The dimensionless fiber velocities V i for i=1 to 3.

Comparison with the larger normal gap results show that the free

fall velocity for the consolidation front is reduced. (b) The

forces on the i=1 fiber due to the squeezing and normal flows. ?c)

the forces on the i -=2 ,l3 fiber rows due to the squeezing and normal

flows. From the left the forces on the i=2 fiber row are shown,

with the normal force on the i=3 fiber increasing from zero, the

squeeze force decreasing from zero, at t=5 seconds.

Fig. 6 Results for the uniform fiber tension on all i=n fiber

rows. The force per unit length is Tc . C),5N/m, with P=I :g/m-s

and hI (t=0)=6 =R=l0 5m. The i=n fiber row is considered1 0

stationary. (a) Half the dimensionless distance between adjacebt

fiber rows! hi, versus time, for i7 to 11. Note that

consolidation starts at the i=11 row and progresses upward. (b)

Dimensionless fiber velocity, V., versus time, for i=7 to 11 fiber

rows. Note that all of the fibers start with the free fall

velocity given in equation (71) with T, replaced by ]I. (c) the

forces on the fibers separated into contributions from the

squeezing flow and normal flow. For the case of uniform tensiorn or

all the fibers rows, the rows which have consolidated are

stationary, such that Vi+ -O. thus, t e normal force on each fiber

row decreases from one to zero, while the squeeze force increases

from zero to one during the time each fiber is moving downward.
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Fig. 7 Results for uniform tesion on all i=n fiber rows, but

with a reduced normal. gap size 6o='.5R. (a) Half the dimensionless

distance between adjacent fiber rows, h versus time for i=10,11.

This case conforms more closely to the ideal free fall behavior.

(b) The dimensionless fiber velocities, V i , versus time for i=9 to

11. The initial free fall velocity is reduced due to the decrease

in the normal gap size. (c) The forces on the i=11 fiber.
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SYMBOL LISI

P ic rho

Ac  cap U sub c

R cap R

b ic mu

Re Reynold's number

60 ,0 oic delta sub "oh". Ic delta sub "oh"

super *

h (t) , h i , h i  Ic h sub i, sub "eye" super *

V (t), Vi, V cap "vee" of Ic "tee" sub "eye",

sub "eye", sub "eye" super *

i cap "ewe" sub "eye"

ni Ic eta sub "eye"

X1, Y. l , y 1  lc x and y, sub one, sub one super *

x2l Y2-, K21 Y2 Ic x and y, suLb two, sub two super *

y, y Ic x and y, super *

partial derivative

Lapl aci an operator

V gradient operator

P 1 P1  Ic p, sub one, sub one super *

p2, P2 Ic p, sub two, sub two super *

Pn, Pn Ic p, sub ic n, sub Ic n super *

t, t* Ic "tee", super *

at, 6t cap delta Ic "tee", super 4

U, , U Ic "ewe" sub ic x sub sub one"1 Aj1
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as above with super *

U U Ic "ewe" sub Ic y sub sub one

as above with super *

u u I c ewe sub I c x sub sub two

as above with super *

U Uy Ic "ewe" sub 1c y Sub sub two
y 2

as above with super *
*

u,,, u Ic "ewe" sub Ic X sub sub Ic n
n "n

as above with super *

U U Ic "ewe" sub Ic y sub sub Ic n

as above with super *

U, cap "ewe" sub Ic x

V, F cap "vee", cap "pee"

E i , Er Ic epsilon Sub ].c "eve", sub Ic n

.-, c- f . Ic f Sub two o- ]c IC sub two,

Ic f sub two

f n() +n Ic + sub icn of Ic y, Ic f sub Ic n

QI cap cLIe" sub ic "eye"

. .I.C 'CLE'" sub Ic eye

F 1  
cap f super Ic "eye" sub Ic "extF~ t

Fj cap F Super Ic "e-ve" sub lc "jay"

aj k Ic sigma sub Ic "jay' "kay"

super Ic "eye"

n ic n (vector)

n Ic n sub ic"kay"
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Ti, T cap "tee" sub Ic "eye", super *

e i c theta

zPn cap delta lc "pee" sub Ic n

Tc  cap "tee" sub Ic "see"

tc  ic "tee" sub Ic "see"

Cscript Ic "el"

Wr cap "double ewe" sub Ic r

F I  cap F super Ic "eye" sub Ic ,
sq sub sub Ic "sq"

F i  cap F super Ic "eye" sub Ic y
Ysq sub sub Ic "sq"

F i  cap F super ic "eye" sub ic y
Ysq,boL sub sub Ic "sq,bot"

F i  cap F super Ic "eye" sub lc y
sq,top sub sub ic "sq~top"

F i  cap F super Ic "eye" sub ic ,
n 

sub sub ic n

F i  cap F super Ic "eye" sub Ic y
fn sub sub ic n
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0.2

0.1

- 0.0

;-0.1

-0.2
-0.3

squeeze
-0.4-

- 0.5IIIIIIIII

0 2 4 6 8 10 12 14 16 18 20

TIME (SECONDS)

~k 4W -T-k



0.006

0.006- fi

0.004
*

f2
0.002

0.000 , , i

0 2 4 6 8 10 12 14 16 18 20
TIME (SECONDS)

(cmm o mmm m kKlmmmmm



1.0 -

normal
0.8-

squeeze

0.6

FA
T

C o.4

normal

0.2-- squeeze

0.0 - ,

0 2 4 6 8 10 12 14 16 18 20

TIME (SECONDS)

IFj~ Af\m%



0.5

0.4-

0.3
normal

0.2

F' 0.1

Tc o.o - -

-0.1

-0.2
-0.3

-0.4

-0.5 ,f-- ' -t "' i

0 2 4 6 8 10 12 14 16 18 20

TIME (SECONDS)



1.0-

0.9-

0.8-

0.7-

0.6-

h* .5- f 11 flO f9 f8 f7

0.4

0.3

0.2--

0.1--

0.0-
0 1 2 3 4 5 6 7 8 9 10

TIME (SECONDS)



0.025-

0.020

0.015-

V f 1f1 f9 f8f7
0.010--

0.005

0.000-
0 1 2 3 4 5 6 7 8 9 10

TIME (SECONDS)

Rc~vVc co&P



1.0

0.8--

F0i .6--
F' fl 1 flO f9

0.4-

0.2--

0.0-
0 1 2 3 4 5 6 7 8 9 10

TIME (SECONDS)



1.0-

0.8-

0.6

.4- fi 11f00.4

0.2

0.-I I i

0 1 2 3 4 5 6 7 8 9 10
TIME (SECONDS)

vi C WV~~~&~



' ' f9
0.008

0.006- f I1I

0.004

V.

0.002

0.000- .
0 1 2 3 4 5 6 7 8 9 10

TIME (SECONDS)



1,0 =

squeeze, fl 1
0.8-- normal, f 1

.0.6--
F
I

C 0.4

0.2-- squeeze, f 1! normal, fi 1

0.0I
0 1 2 3 4 5 6 7 8 9 10

TIME (SECONDS)


