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ABSTRACT
Thig papsar treats the @otion  of long., unidirectional .
continuous ti1ibers through & HNewtonlan tresin. Thet e 1e a

consolidation +orce on the top row of fibers or an ettective totrce
on all the +fibers due Lo therr tension an & firament wownd

cylinder. An asymptotic analvsis for high fiber volume traction 1s

presented here. The results of the present rigorous asvmptotic
solution are compared to the results of a previous application ot
g ;
the lubrication approsimation. -
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1. INTRODUCTION

There are several objectives to be achieved duwing the
consolidation of a composite material. The elimination of voi1ds,
the removal of air and excess resin, a uniform degree o+ cure, a
uniform final fiber volume and conformation to a specitied fiber
orientation are all necessary in the +inal consolidated material.
The consclidation process may be initiated with a&a surface or
ptressure loading, or in the case ot fiber winding? consolidation
results from the fiber tension due to the winding. Both tLypes of

loadirg produce resin and void motion, and this motion depends ahn

the resin matrix  praoperties (such s viscosity, thermal
conductivity, cure behavior), the initial +iber volume +traction,
fiber orientation, arnd fiber properties cther mal conductivity,

diameter, fiber length).

The wiordk oresented here i1s concerned with the resin tlow  and
fiber motion in a fiber-resin system with an 1mitially high  fiber
volume typical of composites made with thermoplastic TESINS. We
_use an approximate approach to the analysis of the resin flow which
(1) will reveal much of the important physical phenomena assoclated
with the non—-Newtcnian resinhs, (<) wiil provide reasonably, good
quantitative predictions. and (3) will i1ndicate hbey simplitications
to the full boundary value problems which can then make a more
accurate model tractable.

The approximate approach vepvresents & esitension ot a model




developed by Lindt [1} for fiber motion 1n a Newtoniran resin,
Lindt assumes a rectangular array of +ibers arranged in paralliel
rows and constrained to vertical motion only. Lindt assumes that
the 1mportant resin flows are i1n the gaps between the fiber vows
and columns, and uses lubrication theory to trest these flows. A
correct version of this model represents the leading order term 1n
an  asymptotic solution for €741, where Ei 1is the ratio of the qap
size to the fiber radius. The model ie not restricted to Newtonian
fluids;y the only restriction is for the fiber volume to be large,
corresponding to narrow gaps between fibers. As  thermoplastaic
prepreq  tape for filament winding has little or no excess resln,
this asymptotic solution will be reasonably accurete tor
thermoplastic resin flows.

We  begin by presenting the asymptotic solution  +tor &
Hewtonian fluid 1n order to compare our results with the results of
Linmdt. This will provide a check on this work and on Lindt s work.
The scolution presented here 1s & rigorous asynptotic solution tor
et l, Wwith mabtching between the subregions in each narvrow aap. in
e tuture paper . the model will be applied to non-Newtonian tluids
and irvregular fiber arrays. In section = the +low +1eld 1n  the
narrow gap redi1ons will be determined, with the +torces on the
fibers due to these flows derived in section A, The nuneriical

analysis and conszolidation results are presenled 1n section 4.




2. FROBLEM FORMULATION FOR NEWTONIAN RESIN FLLOW

We consider the resin and fiber motion in a system of N rows
of moving fibers suspended in a high viscosityvy Newtonian fluid.
The fiber length is much larger than the fiber radiuvs. and the flow
along the tiber length is negligible. The tibers are arranged 1n
columna,'with the separation hetween adjacent columns equal to Z&,.
The adjacent fiber rows are separated by a distance Zh, (t), where 3
denotes the row of the fiber above, and the row gap 15 & Ffunction
ot time. The +iber columns are constrained to remain in  columns
with the same gap size for &ll time t. The geometry ot the fiber -
resin system is shown in fiqure 1. All fibers are subjected to an
applied force due to the fiber tension and the top row 0f fibers 13
zsubjected to a distributed su+tace force per umit length due to
the comsolidation process.

The Reynold s number tor the resin 1s Re=pU_R/p. where ¢ and
B are the density and viscosity of the resin, while U. and R are
the characteristic velocity and fiber radius. For consclidetion
with polymeric fluids, Re=-1, so that the i1nertial “torce”
associated with the resim acceleration i1s negligible compared to
the viscous force betweern the fiver and resin. Synce the density
ot the fibers 1s comparable to that ot the resin, the 1nerlial
"farce" assorrated with the fiber acceleration 1s also nealigible.
Therefore, there is om enuilibrics of he vertical forces for  teco

fiber.
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There are two flaow regimes for the given geaometry. The  +1ow
between adjacent rows, caused by the applied loading of the fibers
and subsegquent vertical wmotion of the fiber rows, 1s called the
squeezing fluw, after Lindt (11]. This flow 1s the souwrce of +iuad
which flows through the gaps between the adiacent columns, which 1s

called the normal flow, again after Linmdt [1].

. Squeeze Flow Between Fiber Rows

For the spueere flow between fiber rows, the top fiber (in
row 1) moves downward with a velocity Vi (t) and the bottom fiber
tin row 1+1) moves downward with a velocity vi+1(t). We choose a
coordinate system with an origin which is aligned with the +fiber
centers  and remains midway between the fiber row gap, as shown 1n

figure Ztald. Thus the origin moves with a velaol by =

J1+Vi+1)/2 relative to a fived coordinate frame. In the moving

trame, the top fiber i moves downward with a velocity

= Yy T Vi+1.
—_ = -
l]_ /S (1la)
while the bottom +iber 1+) moves upward with a velocity
vV.oo—- Y
o= l‘x i+1 (1b)

The squeezing +low between the 1 and 1+1 +i1bers 15 symmetric
about the x=0 and vy=0 planes. The position of the top fiber

surface is given by

-~ 3

RS = 5% (y=Rohy o ® o




This can be rewritten as

y = hi+R"R(1—xd/R£)1/d

()
where R is the fiber radius &nd hy 1s half the gap size between the

i and i+l rows. Equation () can be eypzanded for %<<R to qive

.'-_!. = 1 + _..__71., + ' L‘-T ‘ [
'i ZRRE - R7h, -
i 1

The equations governing the inertialess fluid flow are

0= -gp o+ uv“x} (Sia-C)
0O = -
g g % (&)
9 o=
where v = — + =
P ay <

and u,p,.p are the velocity, pressure and viscosity of the fluid.

We consider first the near reqgion of the sqgueeie tegion,

where » is comparable to h; and both x and h; are much less than R.

i
For i comparable to h;, the tiber surtace 1is asymptotically +lat,

and the surface 1s at y,h,;=1. MWe use the +tollowing scalingz  +or

region 1

— r . * . -— |.~ \* V7 e bi
vl-— liyl 9 ,«1 = |1,\1 E-NRsl
. » )
u = nlu* yooM, T oMU (Ba,b?
yl A .v\l
By b
1 ¥* 1 * .
= = (Falb)
Py Ao t s t a

where the dimensionless variables are denoted by an asterist.

The non—-dimensional equations for region 1, with the




asterisks dropped, are
Bp1 -
O = Tu (10ay
"y "y
8p1 -
O = - 5__‘+ TTu (10b)
Yy Y1
V-u = O (11)
N w
where v = —_  + i—h
s av™
1 1
bue to the symmetry of the flow and geometry, only the top fiber
row i need be considered in determining the squeezs flow. fhe
boundary conditions are
W= -1 . aoo= 0 at y. = 1 (1Za.b)y
) W 1
1 1
aut
“1 -
u = 0 . . = at v,= Q (1la,.b?
Y ay 1
1 i
Ju
Yy
u = 0 . - S at = W, Oy =l (1d4a,b)
3 o3 1 i
1 1
The boundary conditions (12,14 are symmetry conditions on the
sgueeze tlow and shear stress.
We replace each dependent variable bv & lTayvlior series with
powers of =y times coefficent functions of yy. The coefticents tor

the
differential

inhomogeneous
solutiqn,

boundary

different powers of xy decouple and are Qqoverned by
equations
boundary

11

while a

conditions,

ordlnary

1 yq. Urne  decoupled problem heas an
conditian (fse and thus has & non-Lero
ather decoupled problems have homoagengaus
and thus have only zerc as o solution.




Therefore, the solution represents ¢ Taylor series in ¥y with only
one term so that it applies at all Wy The only non-zero parts of

the Tavlior series are

w, = xlu“(yl) (15a)
1

uy]= V(yl) (15b)

p1= Hxl + Piyl) (1%e)

When the solutions (15) are substituted 1nto (10,11 arnd the

boundary conditions (1Z2-14) are satisfied, the solutions for reglion

1 are
v, = E—xltl-yl‘ (16a)
R TR DR o
u.yj = yl 1 _é I (ié&b)

(1éec?

where B 19 & constant ambient pressure to be determined.

When x*}hl. the curvature of the suwtace bhecomes 1mportant.

From equaticon (4, the leading order curvature term 1s U(l) when

.
1s comnparable to (Rhi)l/*. The position of the surface 1¢
parabulic in x +or region & where hiiﬁH=Q(th)1'ixﬂR, with
% s .
S == -+ PGS, 1)
h. 1 2Rh
i 1

The appropriate scalings for the region O 1low variables are




* 172 % hl *
yo= h.vy., ’ %= (Rh.) K., 5 —— M, (18a,b)
< 1 & ) 1 < € “
1
* LR
A s w, = —u t1%a.b)
Yfﬁ yr_. Ny €. Wom
. a“ a 1
uui x h1 x
p..= —=P.. t = P t (Za,.b)
T €eTh, H
i1
i .
where ci=(hl/R)]/‘. Thus for region %, the « varaiable 1S
compressed by the factor &, relative to y, which determines the
scaling for u, from conservation of mass. The rescaled non-

dimensional eqguations, using the scalings (18-u0) 1N equations

(S,6), are

adu
op.., oy
0O = = 4 - (Zlag
. .
2 dy.
p .,
D = - e 21k
ay.,
Lt Ju
: Y-
() = — = + "T—:‘ [
o, dy..

where the asterisks have besn dropped, and the 0(51)£ terms  have

been neglected. The boundary conditions are

uo= -1 . o= 0 at v.= £,0 ) = 1 4 (Lla b
Y s <l e
au
woo= 0 . —_— = 0 at y.= O CZda b
Y,-:, dv 3 e
u + U ’ u U as v+ 0O (2Sa.b)
yf.“' yl kS K ® 1 -
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Cond:ition (25) is a matching condition between region . and regilon
1.

Solving (21,22) with the boundarv conditions (23-25) vields
the solutions

w, = - — 7 - =

(Loa)

d"p_,._‘, J . yZ' } -~ dp
————:- l VR - = J-' + oLy fT —= (&b

-
I
ki

p,= == (L6c)

where p., represents the dimensionlese elevation of the pressure in

the squeeze gap above the ambient pressure for .01, The pressute

1s an even furnction of x.. The solutions (Z26) with x7=ax1¥£1 match

the nrnmsr regilon 1 solutions (16&) with xirmifef"l. and this
matching determines EB=1 1n the inner regiaon 1 pressure (l16c).

the +luwrd sgqueered out belween the 1 and 1+1 fibers 12 the
source  of {flurd flow throualt Lhe gaps between the +aiber columns.
It 15 this normal +low which 18 conmsidered next,
B. HNormal Flow between Fiber Columns

As  shown  an tigure (b)), the adiacent +fiber columns are

separated by a distance 2§ wher e &D Fenalns const ant t b Guabioil

O!
the consolidation process. The +4i1bers 1n row 1 move with &
velocity Vi. Far the normal flow, we use a coordinate systen at

rest wilth fiber row 1, with the origin ot the coordinate system

imdway between the adjacent columns. The: surface of the fiber 15




given by

i=6_-R1° + y© = RS (Z7a)
Q
or
c =6 4R+ (RS -yl (276)
o
In the normal gap, there 1s no interior region analagous to
CPalon 1 of the squeeze flow. The appropriate scalings for the

equatiors (5,6) 1n the normal gap are
& & j1/2
=& = =2 € _= 2
B o ' Y € ’ i R
n -
V.
* i *
u = Vou , uw = —u
x 1 X £ y
i K M ] i
Ry &
= 1 * £ = t&
pn— 2 pI"l * V
€ & 1
n o
For the nrormal gap reglon &Odﬂy=U(R60)1/ﬁﬂ{R,
O1MmMens1onal equations governing the fluid flow 1in the
Qap regiron are
a -
- pr:
o = ——
I
'—id;u
ap :
F i K ™
0 o= ~ 3 +
Y i’
du. dJu
+ Y
n i
Q0 = + -
d: ay

where the astericks have been dropped, and D(:g) terms

(Z8a.,b,c)

(2%9a,b)
{(ZQa,.b?

the non-

ith normal

(>Hlad

Vol

Cile)

have been




neglected. Because of the symmetry of the flow, only one side of
the ith fiber column need be considered. Here, we treat the right
side of the column cell. The boundary conditions on the normal

flow at the fiber surtace are

WSO, u =0 at w= §_(y) = 1+ L (ZZa,b)

in & ¥rame of reterence at rest with the +iber row 1. The position
of the surface is found by an expansion of (Z7b) using the scalings

(Z8). The symmetry condition is given by

dut
v
n . . . L
™ =0 u, =0 at x=0 (Zda,b)
“ .
= that reaches an extremum &t the center of the nmormal gap.
mn

lThere 15  an additional condition on the normal flbw which
represents a constraint on the amount of fluid passing through the
1ty column gaps. Ihe flurd which i1s squeezed out of the teqgion
betwean the 1 and 1+1 f1ber ows 1s forced into the 1 column  gaps,
and hence  flows upward. In the region between the 1+1 and 1+
Fows, fluid 1s also lost due to squeezing and i1s forced 1nto the
1+]  column gaps and upwatrds through the 1 normal gaps. the 1-1
normal gaps, and <o on until the +tluid reaches the top fiber eI
The total volume occupied by the resin—-{fiber columns chanqges as the
fluid 1is removed firukw the squeeze region, while the size ot the
columrn QqQaps remain constant. The charmge in volume of the column

from row i to row n (the static bottom fiber row) in a time &t 1S




equal to the volume of fluid which is squeezed and then peasses
through the column gaps. Thus @;, the volume flow rate per umt
length passing through the ith column gap, 1s given by

VAL

0. = :IR + 6 l———l
i | ol at

where 2(R+&6,) is the horizontal size ot the column cell about fiber
1 and Vjat 1s the total change 1n the vertical size ot the 1 to n
columwn cells. Then Qi represents the_accumulated tlow due to the
squeering between the fiber rows from i1 to n. The above expression

for @, can be simplified and rewritten as

0 = E'R + & 'V. (28
1 | ot 1

It should be noted that the total volume flow rate per unit length
can be calculated from the top fiber row velocity with i=1; this
determines the met loss of resin 1n the system.

The volume flow rate per wnit length @, corresponds to  the

flusw of fluid throwgh the 1th column gap. Thus, using the scalings
('B-20) . the conservatiorn of mass condition is
+ _ (y?
Y .
Gz
1 N
JoN BT o = . (26)
v oob
n 1 o

Ji)

For simplicity., we use the notation
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1
q.= = € + e 37

Equations (31,3%) are sclved, using the boundary conditions

(33,34) and conservation of mass (36), for the normal gap flow.

- \—-" l dpn
< - o + My Bz
- . J vE_ a7 (Z82)
1 9Pl = 2 ' (Z8b)
u, = T F 59 fn -
Y 2 dy
dp 5q
< n - - 11 (38c)
y {- Y
[g]

From eguation (3IBc) 1t 1s seen that there is a pressure drop &acraoss
the normal gap which drives the flow upward toward the surface of
the system, and that this pressure depends on the volume +low rate.
As y=+0, the soluticon (28 becomes zimple Foirseuille flow Dbetween
raras lel walle al =41, which ie the correcl solution +For  the
rnormal flow when the dimensional x and y are both comparable to é64.
While the squeezing flow requires a special solution 1n  the

interior  region 1, the normal flow does not reguire an  1nner

region, as previously stated.

3. FORCE BALLANCE ON THE F1RERS

Since the inertial "force'" due to the {fiber accelerations 15




negligible compared to the viscous forces of the resin on the
fiber, the sum of the forces on the fibers must be zero. The
forces on the fiber have two sources: (1) the externally applied
force due to a fiber tension or distributed surface force per unit
lerngth, and (2) the force the fluid exerts on the fibers. The

externally applied force per unit length is denoted as
A
F ‘ = -7 v (29)

, . . A . . .
where the applied load acts in the -y direction wititn a magnitude of
. at each tiber row.
The Forces the +luid erxerts on the ith <+1ber surface are

fournd using the relation

dF! = o' n da (40)
J jkk

where J%k is the stress tensor for the fluid due to flow about the
ith fiber. Equation (40 15 the incremental force 1n  the ath
direction which acts on an incremental surface area element da

which has a unit vector n.

A. Force due to the squeezing {1lows

There are two parts to the force on the ith fiber row due
to the sgueezing flows. The first part 1s the force on the 1th
fiter due to the squeeze +low bhetween the 1 and 1+1 <fiber rows

acting on the bottom of the ith fiber. The second part of the




16

force is due to the squeeze flow between the i—-1 and 1 fiber rows,
acting at the top of the 1th fiber.

The first step to finding the forces due to the squeezing
flow is to find the normal vector. The normal vector to a surtace

1s given by

A G L
n = I—% (41)

where 6=0 15 the equation of the surface. Using eguation (3), the
surface equation for the squeeze flow cell is given by

201/
v
S

G =R+ h ~y - (R* = 0 (43)

The normal vector to the top surface in the 1th squeese region 1s

-

) 3 R
<~ al 1 /o
s

\ N -
A b (R ) . .
= — x - (43%a)
"R R 4
A A . . ; ,
where x and vy are unit vectors. By substituting the scalinags (18)
into the e:pression (43a) , the normal vector becomes
=p A =
A= Rt 4 (432b)

wiiere  the Q(ei)‘ terms have been neglected 1n order to remain
consistent with previous approximations. The area element dA  for

the surface is found by a similar analysis. fFor a circular surtface

-1 "tz .
=K er =t & )]
dA=Rdé , where 6=tan l "(yv—R—hl)l (44

o

20 d
and de= -3—)'(—,_'d'.‘2 + W.,dyl'

~
~— oy
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Ignoring O(ei)i terms, the area element (44) is given by
dA=d)-:2 (45)

Thus, with (40,42b,45), the forces on the ith fiber row due

to the squeezing flow are

e

1 ' * | :
F., = ' LPRPC N U“y| di . (46a)
¥sq J ! 27 MY o

' r-(-,j.;. . ‘

i :
F = ' Ei%aT,, " GV”' di (446b)
Yeq ) 2 yx vy | z

where the limits are the asymptotic limits ot the suwrface, and the

asterisks denote the non—-dimensional variables.

For an incompressible, Newtonian fluid the stress is given by

I gu,
g = mph *op|—t 47
T3k Jk ' axp 831

The scalings (18,19,20a) and the sqgueere +low solutions (26)
are  substituted i1nto (47). The integranmd in (46a) 1s an odd
. . . _ A~
tunction of x and thus gives & zero net contribution to the x force
(45a). This 1z seern by examining the solutions (26): the pressure
is an even function in - as is ihe normal stress (Ju, 73x..), while

g‘l —
the shear stress (gu, /9dy-) 1s 0dd 1n -

' . A ,
There is a force i1n the v-direction due to the pressure.

With the pressure given by eqguation (26c), equation (46b) becomes
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. K. + I,
* x
ci | I p¥an® = i (aBa)
ysq,bot 6; —w T 2y2 EI

'S
This gives tne force on the bottom of the ith fiber row in the y-
direction due to the pressure generated by the squeezing flow
between the i and i1i+1 fiber rows. The force on the top of the ith

fiber row is directed downward, and is given by

. Iy,
F! = - 171 (48b)
ysq,top 2/25;*1

This force is due to the squeezing flow between the i1-1 and 1 fiber
FOWS. We have used the pressure (Z&c) throughout the squeeze aqap
region, but there is a very small region with x=0(h;) where the
pressure is given by eguation (16c) with B=1. The pressure in the
region x=0(«h;) is slightly less “"ban the pressure predicted by
(&) . However, the deviation 1s Uxei)z and extends over a small,

Ote;) portion of the surtace, so that the error 1s O(Ei)& smaller

than the forces i1n equations 48).

E. Force due to the mnormal +1low

To calculate the force due to the normal flow. we proceed as
we did for the squeezing flow. Using the expression (Z7b), the

equation for the right fiber surface 1n the normal gap is
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G = & _+R-(R™~ yo) S - x =0 (49)

The unit normal vector, found using the equations (28,41,49), 1is

given by
A A F Y -
n = -xX +g y vy (S50)
n
neglecting U(en)d terms, and the asterisks denote the non-—

dimensional variables. The area elemeht is dA=dy. Using equations

(40,50) , the forces due to the normal flow at the fiber surface are

“+ i
1 | ey
F = -g +€ y g dy (S1a
0 n Hy
n o=y
4+
1 * S
Fo = , -g + ;o | dy (S1b?
Y Y ] Y'Y
r .
where the limits are the asymptotic limits 4or the regilon. The

scalings (Z8-20z2) and the solutions (38) for the normal flow are
substituted into equations 47,591) ., The result for the force 1n

the x—direction 1s

where the i1ntegramd 1s in terms ot the non-dimensional variables,

and the asterisks have now been dropped. By examining the solution




(38c), the integrand of (Sla) is shown to be an odd function of v.
Thus, the force F; due to the normal flow is zero.
n
A
The force in the y-direction due to the normal flow is

. A
BV y

[
3

J R
}

where the integrand of (573) is in terms of the non-dimensional
variables (28-30), and D(sn)z terms have been neglected. This
force (93) is produced by the pressure distribution and shear
stress at the fiber surface.

Before evaluatinag equation (S3), the pressure distribution in
the normal gap is determined by 1ntegrating the equation (Z8c) to

cbtain

P. = -9 =Y + 7y .yt 2~ tan_—1

n 1 T - N . & .-
l,-.-'+yl 4,.-."+y| 4.2

Y

1 (54)
J

The Ffirst two terms 1n the expression (54) approach zero as y-=2»to,
but the last term approaches two different constant pressuwres as

yatw, s0 that

@nqi
: = (y ) Y A am) o= — (55
Apn pn(» ) Py VW o

This ap is the pressure drop needed to drive the +1low Ui through
the normal gap between the adjacent fibers 1n the 1th row.
Therefore, the ambient pressure above the ith fiber 1 less than

the ambient pressure below the 1t tiber. [he solutions (&6,38,54)




give the velocity and pressure 1n the squeeze and normal gaps, gaps
which represent a small, U(g) fraction of the total fiber surface.
The pressure drop (53) gives a pressure over the entire bottom of
the +fiber, a pressure which i1s greater than the pressure over the
entire top of the fiber by a value iApn . This pressure
diftference produces a net upward force on the fiber. We cannot
obtain this force by introducing the expression (54) into eguation
(5Z), as the unit normal vector ((50) is valid only in the normal
agap reqion where the fiber locally appears to be a parabola. 1+ we
were to introduce the pressuwwe (54) into the force expression (53),
we would obtain an infinite force, because there 1s & pressure
difference across a parabolic surtace, which has an infinite area.

To find the total vertical force due to the normal flow, we
first' consider the vertical force due *to the change 1n the
dimensional ambient pressur e

LV
Apf-lL 1
t ——T 'fOt’ N

=
-

Y

(56)
25 €

o n

on tte top and the bottom halves, respectively, ot the fiber with
the true circular cross section. This gives a pressure torce per

unit fiber length,

9nqiuvl

P PRV, Er‘




Since the force due to the pressures (96) has been accounted for in

the pressure force (57), the exupression (53) 1s replaced by the

expressian

I X 3
u
llv’ B e )
1 v 1 J Apn . B S
F = - = Yl —=— saniy) + p + = dy (58
Y n € < l < M di
r -

for the force per unit length on the lett side of the ith faiber,

=

due to the local parts ot the mormal gap flow. The integral (598)

with the expressions (Z8,954,35) 13 well detined and qives

InpV . q.
Floo= L (59)

i 4 ue”
n]

By symmetry, the +orce per unit length on the right side of the 1th
fiber 1s also given by the expression (359). The total normal force
due +to the ambilent pressure and local parts of the normal tlow 1s
Qiven by

A

: : GV .
F = F + K = —2 ]S + |" (60)

. . j ] [ n
n,tot Yp "n ngeﬁ"
i

As the 1nerti1al force associated with the +iber accelerations

is negligible, the downward force per unit length (39) must equal

the upward forces due to the squeeze «nd normal flows, where

T = F! + F! + ¢t (61)

ysq.bot ysq,top yn.tot




Introducing eguations (1,37,48,60), the force balance (&61) becomes

- bnu(vi— V1+1) gnp&vl_l— Vl) QWMVI . oy .
r, = = - = + = |1+ € (6.
4,2¢€” 4yze’ NV : .
Vg v €4 v £n

Equation (6L is the force balance tor a system of n-moving
fibers with squeeze gaps Ehl which satisfy the condition
hiii(Rhl)l/giiH. and normal gaps <&, which satisty CO?'kR&Q)I/d?nR.

The +force balance given 1n (&2) 15 applicable for all
interior faibers, 1= to nm—-1. The nth fiber 1s5 considered to be
stationary: the bottom tiber 1s constrained by a solid surface and
o remains motionless, with the +i1bers above 1t moving toward the

nth fiber. The top ti1ber 1=1 hes mo squeezirng flow due to a fiber

above 1t. Thus, tor 1=1, the force balance &2} 1=z moditied to

Ty

Iy _ WYy
1 = 1 Y R

42670 : Loeet
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4. NUMERICAL CALLULATIONS AND CUNSULLIDATION RESULTS

e consolidation behavior of the zet of n-moving fibers 1s
determined by sclving the set of n-—1 s1mul taneous equations
(& O, with the condition thal the 1=n fi1ber 15 staticonary, +or
the fiber velocitires, ti1ber displacements and volume flow rate per
unit length. To facilitate the calculation, the following scalings

are used 1in (6Z2,6£7),

TT T 7 . t = = (&4a,.by




R . *
V.= — ¥ , h = Rh . &t = RE (b4c—e)

1 t_ 1 o o

o
R 2 B * 1,2 ,
£ = l h.' “ 3 = |& l (644 ,a)
1 | ' n o | .
where the asterisks denote the non-dimensional quantites.

The valve ot 1_ is tabken to be the magmitude ot the tension
in the fibers ot of the distributed surface force per unit length.
The characteristic time 1s determined using the fluid viscosity,
fiber radius and characteristic applied force TC. Since the
Characteristic time depends on the tluld viscosity., a charnge 1n the
viscosit: wi1ll changs the value of tc, and the characteristic
veloZity, R/t(. Similerly, & change 1in the wvalue of the
charatoristic applied force will changQe t az  well ac the
characteri1stic velocity.

With the scalinas (64), the torce balance eguations (6l 6500
ar=s rewrittten as

I N 2
" » . ‘7’77‘?. + 1 (vll
.
HEI—. VLoV ' + AR (65)
1 . i < L
Al S/l E
X
e It | s St
! 400 70 1 ! 4,007 !
1 -1
insé* 1'“v
n o
+ = (66)
vs2e”
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As fluld 1s squeered out from between the +tiber rows., the oap




between the trows will change. o take this into account, the

squeeze gap Zhi 1is updated at each time step, where

2h (k+4at) = Zhct) +AE VY - V)
1 1 1+1 1

or using the scalings (64)

* * ¥* ¥* +* * * * .
h.(t + At ) = h. (t ) + at (V, - Nz (&7
1 1 1+1 1

The equations (&5,&6), &long with tohe zero velocity condition

cn the ntti fiber, are formed 1nto a set of simultaneous equatlions

""’l*z—[ * ]
Ju o1

of the form L The fi1ber velocities are found wusing &
routine tor solving sels of szaimultaneous linear algebrailc equations
£2). Unce the velccities ae bknown, the squeeze gaps Eh;, using
equatian (679, are updated and the next time step 1s performed

umt1l t¥*=t .

AL Consolidation from the top: Lindt s problem
We concider first the calculation corresponding to one of
Lindt £ systemse for n=1. +ibers. Ihe top fiber row (1=1) 1is loaded

by a distributed surftece torce per untit length 1, =0.005%M m, and

1
there are no other applied forces on the irterior fibers 1=2—-1Z.
Tt 2 fluwad viscosity 12 JOba ms «nd the fiber radius, R. 1 taken

to be 10 “m. The 1mitial gaps are given by

-

* . ) = .
h.«t =0) = §& = R =1u i (68)
i o

The characteristic ti1ime, t o, 15 e O ceconds. Hal + the

dimensionless distance between the ti1ber rows, hf. for (1=1-9) and




the dimensionless fiber velocities, Vr, for (i1=1-5), are shown 1n
figure 3I(a) and Z(b) respentively. The volume flo@ rate per unit
length may be calculated directly from the fiber velocities using
(3%5) and the scalings (64). The dimensional flow rate per unit

length 1s given by

8

)

0. = 10

* o *
(1 + &KV, m/s (69)
i o 1

The dimensionless normal force (60;) and dimensionless squweze force
(48) for the i=1 fiber 1s shown 1n figures 4(a), and figure 4(b)
shows the dimensionless normal and squeeze forces for the i1i=Z-4
frbers.

The resulte for this problem canm be intrepreted as a type of
consolidation wave' . Consider the i=! fiber for tax0, when the
velocity of the i=2 fiber 1s close to zZerc. From (&%), the ratio
ot the normai force to the squeeze force,

¥*
F

-
o
————

™

m R
— A —— ()
F* ~ = € C/70)

1

sq

Far cn=1, initis1lly 21%1, the normal force 1s 24 times larger than
the squeeze force. The 1=1 41ber i1s then in a free fall due to the
applied force, with the resistive force due to the normal f1low
onlys: the 1nteraction between fiber 1 and fiber 2 due to the

squeezing flow is very small. The velocity VT is then controlled

by the normal flow, and the veloccity can be determined by the




balance between the applied force and the normal force, with 1r=

9n' n 1'

1=1 T ———— (71)
/4. E‘J

- n

then V:=0.025 for En=1. The squeere force acting on the bottom of
the 1i=1 +Ffiber and top of the 1= fiber is small, but it does
influence the 1=2 fiber. As the 1=1 fiber moves downward, the
squeere force increases in maanitude, since qume;z. Thus, the
force balance requires that the normal force acting onn the 1=1
fiber decrease as the sgueerzre force increases. From equation (60)
1t 1s seen that anvi, so the velocity of the 1=1 fiber must
decrease to decrease the normal force. The squeeze force acting on
the 1=1 and i=%Z fibers begins to increase the velocity of the 1=X
fiber from zfero, 1n turn i1ncreasing the normal force on the 1=28
fiber, while the 1=2 fiber velocity 1s less than the 1=1 fiber
velocity. When the squeeze gap betweern the 1=1 and 1= +ibers
becomes small, the squeeze torce acting on the 1=1 fiber begins to
dominate. This ococurs at txil.4 seconds +or the 1=1,- fibers. At
this time, the squeeze +orce acting on the 1=F fiber 18 mainly due
to the interaction between ths 1= and 1=1 +fibers, wi1th the
interaction between the 1=2 and 1i=2 fibers very small, and the 1=.3
fiber almost stationary.

The applied load TT 15 distraibuted between the 1=1 and 1=02
fibers, atter txl'.4 seconds. The mnormal force on the two fibers is
equal, but only halt the value ot the inittial normal force on  the

1=1 fiber only. The squeeze force acting on the two fibers 1s




equal in magnitude but opposite in direction. The twa fibers are
then carrying the same load, and begin to move downward with the
same velocity. This velocity is roughly one-half the free-fall
velocity tor one fiber, as now the applied load has been split into
two. These two fibetrs have formed a consolidation front.

As the top two fibers move downward, the i=% fiber begins to
be influénced by the decrease in the squeeze gap. Ehz, between the
1i=2 and i=3% tibers. The squeere forces acting on the bottom part
ot the 1=2 fiber and the top part of the 1i=2 fiber increases 1n
magnitude a3 the sgqueezs gap decreases. As yet, the i=4 fiber 1is
stationary and does not contribute to the overall +orce balance.
Since the squsere force on the 1=3 fiber 1s non-~zero, the fiber
beains to move, slowly at first, but increasing as the 1=Z +iber
approaches. The velocity of the 1=3 fiber produces a normail t1low,
and hence & normal force, which opposes the sgueeze force «cting on
the top of the 1=2 fiber (with no squeeze force acting on  the
tottor of the 1=2 fi1ber) and aives a balance of the +{orces. The
total squeeze force acting on the 1=2 +iber decreases with the
aeddition of the opposing squeeze torce on the bottom of the 1=2
fiber. This decreaszes the velocity of the i=2 fiber further, and
through the force i1nteraction. the 1=1 velocity 18 also reduced.
Because the 1=3 fiber has no interaction with the 1=4 tiber as vet,
the i=7 fiber velocity steadily increases, although remaining less
than the velocities of the i=1,2 tibers.

When the squeeze gap between the 1=1 and 1=X {f1bers becomes




small, the total squeeze force acting on the 1=% and i1=2 fibers are
equal. This occurs at tx7 seconds. Further, force balance
requires that the normal forces are also equal. The normal force
aﬁting on the i=1-7 fibers is one-third of the initial normal force
acting on the 1=1 fiber. The applied force at tx7 seconds has then
been distributed among the three fibers, forming a three +iber
consolidation front, which moves with a velocity which is one-third
the free—-tall velocity for one fiber.

This consolidation process continues as the consolidation
front noves downward toward the fiber directly below the front.
Unce the squeete gap becomes sufficently small +or the total
squeezre force on the bottom fiber in the front to equal the squee:ze
force acting on the top ot the +4iber directly below the front, the
fiber below becomes a part of the consolidation front. This
process simply propagates downward row by row, with a velocity
which decreases as each row 1s added. The fromt starts to move
with & +free-+all velocity determned by the balance between the

rnormal force and an applied load distributed among the f-tibers 1n

the front. This fronlt free-+tall velocity is
[~ - T * T
* _ v 1n (72
free T

9nﬂ|z* + 1|5 J
.. 0l !

where L is the number of fibers in the consolidation front.
The tey to the consolidation 1s 1n the normal flovw. From

(60) 1t 1is seen that the normal +orce 1 strongly dependent on  the
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size of the normal gap. For large normal gaps, the fluid from the
squeezing flow encounters little resistance as 1t flows into the

norma:s gap region, and so the consolidation vyront can propogate

-
=]

rapidly. However, as the normal gap is decreased 1in size, the

resistance term, here defined as

becomes large, and so the free tall velocity of the front (72) 15
reduced. This indicates that the +luid in the squeeze region
cannot penetrate into the normal qQap, and so consolidation is
inhibited. Figures S5(a—-c) show the behavior of a system with the
narmal gap reduced by half, where &O=0.5R. This case has the same
loading, viscosity, f1iber radius and characteristic ﬁime and
initial squeere gap (h{(t=0)=R) as the previous case, and the f{iber
behavior conforms more closely to the +ree +all analysis already
discussed. This is due to the increase 1n the i1nitial normal force
caused by the decrease in the normal gap, where the ratio of the
normal force to the squeeze force (70) is 1ncreased by about a
factor of Z.Z. The i=1 fiber 1s 1n free fall, with a velocity
roughly one-third of the case for 60=R; this decrease 1s directly
related to the increase in the normal gap resistance to the flow
from the sqgqueezing action between tiber rows 1 and 2. Since the
velocities are reduced, the time reguired for the i=1 fiber to

close the squeere gap sufficently for the squeete force to dominate




increases. Unce the 1=1,% fibers form the front ( at ta7 seconds)
the front’'s velocity is half of the initial free fall velocity, as
determined by (72) with 0=Z. Again, the fibers are moving slowly
iﬁ a free ftall, until the next squeeze gap is small. The value of
the size of the sgueeze gap at which the normal and sgueere Jorces
are equal, is also reduced as the normal gap size is reduced, as
cindicated in (70).

I+ +the normal gap is reduced more, the behavior of the
consalidation would be similar to the first two cases, but with an
increase in the time for the fibers to consolidate, and a strongetr

caonformation to the free-fall behavior previously described.

E. Consolidation with unitorm fiber tension

The next case considered is one in which the n-1 fibers have
a uniform tension applied. The +iber radius has a value of
R=10""m, with h, (t=0)=6_=K, fluad viscosity is 10kg/m-s and the
applied force due to the fension of winding on a curve is O, 005N/ m,
such that 1:=1 tor 1=1 to n-1. Hali{ the dimencionless distance
between fiber rows, hf, and the dimensionless fiber velocities, Vr,
are shown 1 figures b&(a) and &) respectively, with the
dimensionless normal and squewre forces shown 1n figure 6(c).

The consolidation under uniform fiber temsion i1s similar to
the consolidation for uniform top loading. However, with a4 unitorm
tension on all of the fiber rows, the consclidation starts at the

i=11 fiber and progresses upward. lnitially, all n-1 fibers are in
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a uniform free—-fall ( i=n fiber is static), with a free-fall
velocity determined by (71) with T? replacing T:. It is the 1=11
fiber which experi=nces a squeezing force due to the presence of
tﬁe static i=12 fiber. The squeeze force acts on the bottom of the
i=11 +fiber, with the squeezing force between the 1=10 and 1i=1i1
tibers 1nitially zero and remaining small. As shown 1n figure
b{c), the behavior of the normal and squeeze forces for the i=11
fiber 1s analaqous to the force bethavior of the i=1 fiber in  the
uniform top loading case. As the i=11 fiber moves downward toward
the static i=1. +iber, the squeeze force increases as the squeese
aap decreases. This necessitates the decrease of the i=11 fiber
veelocity, to decrease the normal force and maintain the force
bal ance. However, unlike the top loading case, as the i=11 fiber
approaches  the 1=12 +i1ber, the squeseze force acting on the i=1Z2
tiber does nmnot produce the associated motion of the i=12Z fiber, due
to the boundeary condition that the 1i=12 or i=n fiber remain static.
Thus, the gap between the i1=11 and 1=12 fibers continues to
decrease, with the only resistance to the motion produced by the
.increasing upward directed squeeze ftorce on the bottom of the 1=11
fiber. The ratio of the normal force to the squeeze force for the
i=11 fiber under uniform tension is the same as that given in
equation (70), with i=1 replaced by i=11. When the squeete qgap.
2h:1, ie .Z4 ( at txl.é seconds), the normal and squeere fotrces
acting on the 1=11 fiber are equal. As the squeeze gap continues

to decrease, the normal force decreases, while the squeeze force




increases and the squeeze gap asymptotically approaches =zero
extent, with & velocity which also tends to zero. The normal force
approaches zern, and the large pressure in the squeeze gap between
tﬁe i=11 and 1=12 fibers produces a sufficent force to balance the
uniform tension, The 1=11 and 1=12 fibers form the consolidation
front.

The other fibers are completely unatfected by the interaction
between the i=11 and i=12 fibers, and the 1=1-10 fibers continue to
move 1n & tree—-fall with the velocity given by (71). However , once
the 1=11 fiber has virtually stopped, the 1=10 fiber closes the
squeere gap with the now static i=11 and i=1Y fibers. The decrease
in the squeeze gap between the 1i=10 and i=11 fiber increases the
squeece force from zero, and this force acts on the bottom ot the
1=10  fiber. Once the squee:ze force on the 1i=10 fiber beglins to
increase, the normal force must decrease and the velocity of the
i=12 fiber decreases fraom the free—-fall velccity. Once the squeeze
gap reaches a value of 0.X4 ( at tx%.2 seconds), the squeeze force
and normal force acting on the 1=10 fiber are equal. Since the
1=11,1% consolidation +ibers are static, the interaction ot the

i=10 fiber and the front does not produce any additional motion of

the <front. Thus, the sqgueeze gap between the i=10 fiber and the
front continues to decrease, until the 1=10 fiber reaches the
consolidation +front. The 1=10-17 fibers form the new static
consolidation front, and the 1=9 fiber moves toward 1it. This

process continues until all 1Z or 1 fibers are stacked.




When the normal gap is reduced, the free-fall velacity of the
fibers 1is decreased according to equation (71). This reduction
again arises from the increased resistance of the normal gap to
§i0w through the more narrow channel. The consolidation is much
slower, and the size of the squeeze gap for which the sgueere force

and normal force are equal is decreased. From equation (70), with

5.

uo=0.5R,.the value of the "critical sgueeze gap' is reduced to .11,

and the free—-fall velocity is reduced by a factor of Z.Z2. Hal+ the

dimensionless distance between fiber rows, the dimensionless
velocities and the dimensionless forces for £EF0O.5R are  shown in
figqure 7(a-c). The fiber velocities are approaching step

functions, indicating that the squeeze force remains small for a
longer period of time, and that the size of the squeeze gap oanly
contributes to the force when the gap is extremely small. ds  the
normal gap 1s reduce further, the normal force will remain
dominant , due to the large resistance to the normal flow. Unly
when the sgueeze gap approaches zero will the squeeze force rapidly
increase and slow the fiber from the +ree—+all velocity.

3. CONCLUS10ONS AND DISCUSSION

This paper treats the vertical motion of long fibers through

a Newtonian resin. The horizontal distarnce, 2& between adjacent

oY
fiber columns remains fixed, while the vertical distance, Ehl(t),

between the adjacent fiber rows 1 and 1+1 decreases with time. The

fiber motion is driven by: (1) a force on the top fiber row due to




an external consolidation force, or (Z) a faorce on each fiber due
to 1ts tension and the curvature in a filament-wound cylinder, or
(3) any combination of these two forces. Lindt [1] treats the
first case with only a +force on the top +fiber row. Lindt
simplifies the two-dimensional inertialess fluid motion equations
"using o modified lubrication approximation'. We present a
rigorous asymptotic solution for £n=(60/R)1/2{<1 and
c1=(h1/R)1/3u¢1, where R is the fiber radius. Unfortunately, Lindt
does not present any formulae for the fiber velocities, pressures
or forces, so that we cannot determine the differernce between his
lubrication approximation and our asymptotic analysis.

While ouw analysis is only valid for eniil and Eiail. we

present results for £i=1 at t=0 and en=1 in order to compare our
results in figures % and 4 to the results presented by Lindt (13 1n

R, T, and .

his figures 6-10, for the same values of hi(t=0), & 1

o
At t=0, Lindt predicts a top layver velocity in excess of 1mm/s,
while ouwr result in figure (b)) translates to & dimensional initial
top layer wvelocity which is two orders of magnitude smaller. We
suspect that there is an error in the scale for Lindt s fiqure 8,
as a top layer velocity of 1lmmn/s would consolidate the top two rows
in .02 seconds, while Lindt 1ndicates that this consolidation
takes more than 10 seconds. A more fundamental difference concerns
the period of time +for adjacent Fiber rows to reach eqgual

velocities. Lindt predicts that the top two rows reach an egual

velocity at roughly 7 seconds, and that the incremental period for




subsequent rows to reach equal velocities decreases with time. The
results 1n ow tfigure Z(b) indicate that the top two fiber rows
reach equal velocities at t=2.4 seconds, and that the period +for
sﬁbsequent row consolidation 1ncreases with time, with the increase
propotrtional to the number ot fiber rows consolidated. Clearly
there are some significant difference betweern the lubrication
solution of Lindt L1]l and the present rigorous asymptotic solution
for eniﬁl and aiﬁﬁl. In addition to vielding the correct {first
order solution for high +iber volume Fractions, the asymptotic
analysis detines the magnitudes of the neglected terms.

The results for & force on all of the fibers show that the
consolidation begins at the bottaom fiber row, with the outer fiber
rows moving toward the compacted fibers in the interior. We have
used only elsven moving fiber rows. However, evern this small
nuinber is not necessary, since the development ot distinct wave
fronts would permit a much simplier treatment. The wave fronts are
more abrupt for en=(0.5)1/£ than for €=l As £ and € decreass.
the normal flows between the fiber colunns becomes progressively
more dominant. Thus, the squeece {flows provide neqgligible or
constant forces except duwing the briet periods when a moving fiber
comes very close to a static fiber.

The results presented here and by Lindt L1]) provide physical
insights 1nto the local characterisztice of the flows duwing

consolidation. However , for a Newtomian resin, the macroscop:ic

characteristics of consolidation carm be derived from Darcy s law




for +flow through a porous medium, with laocal corrections of the
permeability as the local {fiber volume fraction increases [Z]. The
more important value of the present model is 1its potential +for
treating fiber-resin motiorns with strongly non-Newtonian resins
such as thermoplastics. Darcy s law 15 testricted to Newtonian
fluids. The decoupling of the normal and squeeze flows will
-provide & significant simplification for a non—-Newtonian resin.
The purpose of the present paper 1s to provide & rigorous
asymptotic derivaticy Ffor Limdt's lubrication solution. The
accurate definitions of ~elative magnitudes will be even more
important for a non—Newtonian fluid, as the model with & non-
Newtonian +fluid will i1nvolve additional dimensionless parameters,
time scales, etc. In 2 future paper, we will present extensions of
the present analysis to some nor~Newtonian constitutive equations

for thermoset and thermoplastic resins.
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FIGURE CAFTIUNS
FIG. 1 The ge-metry of the +iber-resin system, with tne normal
and the squeeze flow regirans.
Fig. 2 Close-up ot the +low regions. (a) the squeeze flow
region with adijiacent fiber rows moving with velocities Vi (top row)

and Vi+1 (bottom row. THe rows are separated by a distance Zhl(t),

and the +tiber surface 1s vy =f. (). (b) The normal flow regiron
between adjacent columns separated by a constant gap size Z&. The
fiber surface 1s at x=+n(y), and 01 indicates the volume flux per

uri length through the 1th normal gap.

Fig. 3 Recsults +For the Lindt s problem ot unitorm top ioading
of the i=1 fiber row only. The force per unit lenth 1is TC=O.OOS
N/m, p=10kg/m-s, {iber radius R=10_5m, and hl(t=0)=6D=R. ta) A plot
of halt the dimensionless distance between adjacent fiber rows, h:,
versus time. Shown are the displacements for 1=1 to 3. (b)) A plot
ot the dimensionless fiber velocities, VT. versus time, for i1i=1 to
<. Note the continually decreasing free fall velocity.

Fia. 4 Force results +or Lindt ' 's problem ot uniform top loading
of the i=1 fiber row only. t(a) The +torces on the 1=1 +{iber
separated into contributions from the squeezing flow and normal
flow. (b) The force: on the 1=% to 4 tiber rows separated i1nto the
contributions +rom the squeezing and normal +lows. The torce due
to the normal flow i1z greater than o equal to zero, while the
force due to the squeezing +flow 15 less tham or eqgal to :cero.

-

From left to right are the 1=2,2,4 force contribution.




Fig.5S Results for Lindt’'s problem of uniform top loading of
the 1=1 +fiber row only, but with a reduced normal gap size,
6D=0.5R. (a) The dimensionless fiber velocities Vi for i=1 to 3.
Comparison with the larger normal gap results show that the free
fall velocity +for the consolidation front is reduced. (b) The
forces on the 1i=1 fiber due to the squeezing and normal flows. ‘)
the forcés on the 1=2,7 fiber rows due to the squeezing and normal
flows. From the lett the forces on the i=Z fiber row are shown,
with the normal force on the 1=37 fiber increasing from zero, the

squeeze force decreasing from zero, at t=5% seconds.

Fiqg. & Results for the uniform fiber tension on all i=n fiber

FOWS. The torce per unit length is TC=O.OOSN/m, with p=10kag/m-s,
.

and hi(t=0)=60=R=10 “m. The i=n Ffiber row is considered

stationary. (a) Hal4 the dimensionlesse distance between adjacebt
fiber rows , hf, versus  time, tor 1i=7 to 11. Note that
consolidation starts at the i=11 row and progresses upward. (b)

. . . * . -
Dimensionless fiber velocity, V.. versus time, for 1=7 to 11 +fiber
1

rows. Note that all of the fibers start with the 4+free fall

velocity given 1 equation (71) with Ty replaced by 1,. () the
forces on the fibers separated into contributions from the
squeezing flow and notmal flow. For the case of unitorm tension on
all the fibers rows., the rows which have consolidated are

stationary, such that V¥V, ,.;=0. thus, tne normal force on each tiber
row decreases from one to zero, while the squeeste force 1ncreases

from zero to one during the time each fiber 1s moving downward.
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Fig. 7 Results +or unitorm tesion on all i=n fiber rows, but
with a reduced normal gap si:ze 60=0.5R. (a) Hal+f the dimensionless

distance between adjacent fiber rows, hf,

versus time for 1=10,11.
Tﬁis case conforms more closely to the ideal free fall behavior.
(b) The dimensionless fiber velocities, V:’ versus time for 1=9 to
11, The initial free fall velocity is reduced due to the decrease

in the normal gap size. (c) The +orces on the 1=11 +iber.




SYMBOL LIST
lce rho
cap U sub ¢
cap R
lc mu

Reynold’'s number

le delta sub "oh", lc delta sub "oh"

super #*

lc b sub i, sub "eye”

it

cap "vee'" of lc "tee”

sub "eye', sub "eye" super *

cap "ewe" sub "eye"

lc eta sub "evye"

le »x and vy, sub one., sub one

lc % and vy, sub two, sub two

lc v and vy, super #*
partial derivative
l.aplacian oper ator
gr adient operator

lc py sub one, sub one

lc p, sub two, sub two super

lleye bl .

super *
super #
*
¥*

lc p, sub lc n, sub lc n super *

lc "tee" sLper *
) P

cap delta lc "tee", super =*

lc "ewe" sub lc x sub sub one




n b

as above with super %
lc "ewe” sub 1lc y sub sub one
as above with super *
lc "ewe" sub lc x sub sub two

as above with super *

lc "ewe" sub 1lc y sub sub two

as above with super *
lc "ewe" sub lc w sub sub lc n

as above with super *

lc "ewe" sub lc v sub sub lc n

as above with super *

cap "ewe" sub lc x

cap "vee", cap "pee
lc epsilon sub lc "eye", sub lc n
1c £ sub two of 1lc  sub two,

lc £ sub two

1lc + sub lecn of lc y, lc £ sub 1o n

cap "cue” sub lc "eye

lo "cue" sub lc 'eye"

i

cap I super lc "eye'" sub lc "ext"
cap F super lc "eve" sub lc "jay

lc si1gma sub lc "jay" "kay"
super lc "eye"
lce n (vector)

lc n sub lc"kay"

Lo




cap '"tee" sub lc "eye",

lc theta

cap delta lc "pee'" sub lc

cap "tee" sub lc "see"
lc "tee" sub lc '"see"

script lc "el"

cap "double ewe" sub lc r

cap F super 1lc "eye" sub
sub sub l¢ "sq"

cap F super lc "eye" sub
sub sub lc "sq"

cap F super lc "eye" sub
sub sub lc "sq,bot"

cap F super lc "eye'" sub
sub sub lc "sg.top”

cap F super lc "eye'" sub
sub sub lc n

cap F super lc "eye"” sub
sub sub lc n

super

n

lc vy

lc vy

lc vy

lc »

lc vy
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