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INTRODUCTION

The fiber/matrix interface has a significant influence on the structural integrity of a fibrous
composite. For example, the stronger the interface bond, the higher the composite’s static strength.
However, a strong interface bond also yields a brittle and notch-sensitive composite? and, on the other
hand, a weaker interface results in a higher fracture toughness composite.**

Conventional methods for predicting the stress at the fiber/matrix interface can be divided into three
categories. These are: shear lag theory,**® two-dimensional, finite-element analysis,”® and three-
dimensional, finite-element analysis.® These methods all assume zero interface thickness and uniform,
homogeneous matrix properties.

Recently, several researchers have suggested that the volume of material immediately surrounding
the fiber is significantly different from the bulk matrix.®'"'*** This volume of material is commonly
referred to as the interphase. Drzal'® has suggested that this material may be more rigid than the bulk
matrix. Piggott'" has found that to explain the Young's moduli of short-fiber composites, the interphase
must have a very low modulus, i.e., much softer than the bulk matrix.

No direct evidence has been found for the presence of an interphase in organic matrix composites
nor are its properties and dimensions known. The objective of this study is to prove the existence of
interphase and to determine interphase elastic properties, if possible. Included in this work is an
investigation to determine the influence of interphases on stress at the fiber/maiiix interfaces on
displacements and on fracture toughnesses of fibrous composites.

SHEAR LAG THEORY WITH DISTINCT INTERPHASE

To include the interphase into a composite-material structural analysis model, material properties
and the thickness of the interphase must be known in advance. Experimental data on interphase
properties does not exist. One way to deduce the interphase characteristics is to assume initial values
for the interphase and then iterate the properties and thickness until analytical results converge to match
the corresponding experimentally observable results.

Since the thickness of interphase can be very small compared with the fiber diameter, a very large
number of finite elements would be needed if the finite element technique was used for the iteration
procedure. This would be time-consuming and costly. A closed-form sciution, based upon shear-lag
theory, was empioyed instead.

In the following, a shear lag analysis, which includes and interphase region between the fiber and
bulk matrix, has been developed. Mandell's microdebonding test data' was used to determine the
interphase material properties and thickness.

THEORY

Mandell's microdebonding test,’ Figure 1, was modeled as shown in Figure 2. Four types of
materials were included in this model; namely, fiber, interphase, matrix, and composite. Note that a load
is applied at the end of a fiber, and that the material outside the matrix was modeled as equivalent
smeared composite material.

By employing the shear lag theory, the following assumptions were made:

(1) Axial load is carried by the fiber alone, while the interphase and matrix carry the shear load only.
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Figure 1. Schematic of Loading for Microdebonding Test.
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Figure 2. Modeling of Fiber/Matrix Interface.
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{2) Fixed boundary conditions apply at the boundary between the matrix and equivalent composite.

The freebody diagrams of the loaded fiber and adjacent interphase and matrix are shown in Figures

3a and 3b. The equilibrium equations are as follows:

%4‘27‘7"1“ =0

dF
—&?+21tr,,'t,,, =0

From equations (1) and (2), we have:

where

F fiber force at z

ref, radius of fiber and interphase, respectively

T

T

Vv

From the theory of elasticity and Figure 4:

where 1 is the shear stress in the interphase, and G, is the shrar modulus of interphase.

™ shear stress of interphase and matrix, respectively.

)

@)

)

()
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Figure 3a. Free Body Diagram Involving Fiber and Interphase.
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Figure 3b. Free Body Diagram Involving Fiber, Interphase, and Matrix.
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Figure 4. Axial Displacement of Fiber, Interphase, and Matrix.
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From equation (3):

substituting equation (5) into (4) and integrating, we have:

‘t,-r‘-ln c
w = G, (r)+

but,
at r=rp ow=w

Applying these boundary conditions to equation (6), we have:

(wy—-wy)G;
= —
r,-ln(-—'-)

Ty

By the same procedure and noting that at r=r,, w = 0 we have:

"WzG
‘tm - -——}:—
TmIn (=)

[}

Also,

aw
F=Enr2—

dz

(6)

(6)

™

®)

©)
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substituting equations (7) through (9) into equation (1) and (2) we have:

d*w, 2G;
2 (WI_WZ) = 0
o n (-
idi (r )
f
d*w, 2G,,
2 - Wy = 0
dz 2F |

After some algebraic manipulations of equations (10) and (11), we have:

dzwl
dz?

"a2W1 =0

where

2G;

r:
E rfin(—)
2_ d di

r
G,-ln (-2-)
r.

1+

G in(Z
w135

The solution of equation (12) is:

w=C (cosh (az)+Cysinh(0z)

(10)

(1)

(12)

(13)
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since
dW 1
dz

zZ = 0, F = —P.o= “1["/26-= Efﬂffz

z=1, w;=0 (14)

where G is the average applied stress at the fiber end.

Applying the boundary conditions (i.e., equation (14)) to equation (13), we have:

w, = --E%(-mnh (ol)cosh(az)+sinh(az)) (15)

w, is obtained from equations (11) and (15) such that:

r
2 2 m
Era‘in (—
rFErein(S7) (16)
W2= ZGm Wl

From equations (7), (15), and (16), the interphase shear stress at r=r, is written as:

oVG,, Tr (=tanh(ol)cosh(oz)+sinh(0z)

s 1, 2E, I G , 3 17
s P () In ()
Gi f[ r;

From equation (3), the interphase shear stress at r=r; is written as:

—. _g_,‘, G (=1anh(al)cosh (02)+ sinh(az))
‘o ﬁ Ef ’ G

om i Im (18)
G, In(r, )+in( r )

The maximum interphase shear stress occurs at:

= . _ B Al Gm tanh (al)
Tmax=(%i)=0 = 3 E! G, I r; l I, (19)
E,_ n(;f-)+ n( r,~ )

Note that equation (19) contains two unknowns to be determined (namely, G, and r).
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CORRELATION WITH MANDELL'S MICRODEBONDING TESTS
DETERMINATION OF INTERPHASE PROPERTIES

We now postulate that debonding of fiber from the matrix is due to interphase shear failure. Based
on this assumption, the debonding criterion for the fiber/matrix interface is written as follows:

oz 20 Cnm tank (al)
" V2 N E G, 1 T (20)
—In(—)+in(—)
Gi r f r;
where
1, = interphase shear strength
g, = average applied stress at the fiber end which causes
fiber-matrix debonding (referreu to as the debonding stress).
Let
§ o=ty
Im =r f + tm

where t, is interphase thickness and t,, is the thickness combining interphase and matrix.

Equation (20) becomes:

. ’ mnh(al) -
Ef 2‘
(—==-1)

ln(1+—)+ln(l+ )
dy

From equation (21) we conclude that:

G ofanh (ol
Sotanh(al) = constant (22)
;; (-——l)ln(l+—)+ln(1+2——)
G; ds

By selecting t,,/d,=0.4 and t,./d,= 1.0 to correlate the test data,' the following results were obtained
(for detailed calculations, refer to Appendix A).

10
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For S-glass/epoxy,
Om Din(1+ 2"')- 1.8446
( G, o d’ T
(23)
To = 39 MPa
For graphite/epoxy
(G"‘ Din(1+ 2"')- 2.0672
G e’
(24)

19= 27 MPa

Note that G; and ¢, cannot be determined separately from equations (23 and (24), but if t, can be
determined from an experiment, then G, can be determined. Tables 1 and 2 list the interphase
properties of S-glass/epoxy and graphite/epoxy, respectively, for various interphase thickness values
and show the interphase shear modulus to be softer than bulk matrix for both S-glass/epoxy and
graphite/epoxy composite materials.

CORRELATION WITH MICRODEBONDING TEST RESULTS

After the interphase shear strength has been determined, the debonding stress 3, is determined as
follows:

2,
oo_rto—\/ _.L'\/ (—--l)ln(1+-7)+ln(l+ d,) (25)

Making use of equations (23) and (24), and noted that we have for S-glass/epoxy:

S, ‘\f Ey ‘\f18446+l (1+2 )
CGr= 1 — n _—
°m e Gm dy (26)

and for graphite/epoxy:

co_to'\/ 2—\[ (20672+ln(1+ ) )

Equations (26) and (27) are plotted in Figures 5 and 6. The correlations with the microdebonding
test results are excellent.

1
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Table 1. Interphase Properties of S-glass Epoxy

interphase Shear Strength = 39 MPA

t;/ds t; (nm) Gm/Gj
.001 10 922
005 50 .'I 84
01 100 92
05 500 18
. 1000 9.0

Table 2. Interphase Properties of Graphite/Epoxy

Interphase Shear Strength = 27 MPA

t;/dg 1} (nm) Gm/G;
.0014 10 724
.0071 50 145
.0143 100 74
0714 500 15
.143 1000 7

12
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INFLUENCE OF INTERPHASE PROPERTIES ON INTERPHASE
SHEAR AND FRACTURE TOUGHNESS OF COMPOSITES
INTERPHASE SHEAR STRESS

Equation (19) can be rewritten as:

G, 4 4
Let
K, = (stress concentration factor) = M E
[ G
Thus
1 1
K, = =
V2 ‘\/ G, 2 2t,,
—_1 +—=—)+In(1+——)
( G, )in(1 d,) ( 2,

(8)

(29)

(30)

Equation (30) is plotted in Figures 7 and 8 for K, vs. G,,/G, for various ratios. We can conclude that:
(1) The lower the G, /G, ratio, the higher the stress concentration and the more likely debonding.

(2) The thinner the interphase thickness, t, the higher the stress concentration, again making
debonding easier.

MODE | FRACTURE TOUGHNESS

Murphy,® etc., showed that the Mode | fracture energy of unidirectional composites can be

expressed as follows:

(G))e = (1~v;)Gp+ vy (Gp+Gnr) (31)

where

(G). = Mode | fracture energy of composite

15
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G, = Mode | fracture energy of matrix

G: = Mode | fracture energy of fiber

7] = volume fraction of fiber

Gue = Mode | fracture energy associated with the decohesion of the fiber matrix interface.

Murphy further showed that:

400
G 1-g+ 3 —(— 1-g)?2
INF = ar, E, ————(1-g+g%-¢ )( )( g)%) 32)
where
s, = ultimate stress of fiber
I = (dg/41¢) (o5, ~ )
% = debonding stress
IR = fiber pull-out length
T4 = post debonding friction shear stress
Sy
8= 2 = debonding fracture ratio
(o] fu
(33)

Examining equations (31) and (32), it can be seen that the smaller the g (i.e., weaker interface), the
larger the G, and hence, the tougher the composite. On the other hand, the larger, the g (i.e,
stronger interface), the smaller the G, yielding a more brittle composite. If g=1, (i.e., the fiber breaks
with no debonding between fiber and matrix), equation (31) reduces to:

(GI)C = (l—VI) GM re VIG

Murphy® showed that for high-volume fractions the Mode | fracture energy, (G).. of composites can
range over five orders of magnitude, while the debonding fracture ratio, g, ranges from zero to one.
From equations (29) and (33}, g can be expressed as follows:

To 1 Es (34)
c.f“ K-' Gm

g:

18
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To demonstrate how interphase properties will effect the Mode | fracture toughness of the
coinposite, equation (32) is rewritten as follows:

GinrF
CinF

1.4
= l-g+gi=g'+ () 1-p)" s)

where

_ d,o?.,
CINF - 4T!Ef

For simplicity, assume /,=0 (i.e., no fiber pull-out occurs during fracture of composite). Equation
(35) then becomes:

Ginr
Cive §re-e (36)

Assuming that the interphase strength, r,, is constant for various interphase thicknesses and making
use of equation (34), equation (36) is plotted as shown in Figures 9 and 10. The detailed calculation
is shown in Appendix B.

From the plots, it can be seen that when the interphase property, G, is closer to the bulk matrix,
G... the composite material will have higher fracture toughness. Note that the thinner the interphase
thickness, t, the tougher the composite material.

FINITE ELEMENT SIMULATION
MICRODEBONDING PROBLEM

An axisymmetric finite element model that includes the interphase was developed. Interphase
properties were obtained by either using the values contained in Tables 1 and 2 or those derived from
using equation (23) for S-glass/epoxy and equation (24) for graphite/epoxy for various interphase
thicknesses. Only those results for graphite/epoxy are presented. Figures 11 and 12 are typical models
used to analyze the microdebonding problem. The NASTRAN computer code was used to perform the
analysis. Note that the top surface and side surface corresponding to outside radius were assumed
fixed. A 1 N force was applied at the center of the cylindrical composite disc.

Figure 13 shows the typical interphase shear distribution along the axis. The maximum shear stress
occurs at approximately 0.4 fiber diameter below the surface. Shear lag theory positions the maximum
shear at the surface. Note that the magnitude of the interface shear for composite without an interphase
(i.e., G,./G,=1.0) is much higher than for a composite with an interphase. This result agrees with the
conclusion from the shear lag analysis in the foregoing section.

19




NADC-90001-60

.P.ou\v\su 10} 8ysodwoy) 1aqid4 [euonoapiun e jo ABiaug ainjoes4y epop BuuadQ uo aseydsdiu) Jo 10843 ‘6 ainbiy

Ig /Wy
000’01 000°L ool oL
TTTT1 T 1 TITTT 1 T T LR LALLILE I
s00 =?p/4
to-=¥p/h
Loo'=3p/%
by anig
ny
g ot

.._Z_U\uz_mv

o.

oL

20




NADC-90001-60

o.—u\ p/“) 10} @ysodwo) 18qi4 [RUCKOBIPIUN © JO
ABiau3 ainjori4 apop Bujuad( uo aseydisau| Jo 10ay3 01 ainbiy

ig/Wo
000’1 ool

ol

LRLELBLL

100°=4#p/4

J—-—-d ] —ﬂq--

soo =3p/Ys

o' =#fp/h

-

—-_-- T

T

NIy /dNIg

21




NADC-90001-60

‘PIIOS OMIBWWASIXY 10) |OPOW BWIZ dyulg 11 dinbly

wri  HIONI]
N 3J¥04
:SLINN d
T wr 00$ —
ISVHAUILNI T\ |
“ . /
w 00z (3LSOdWO)) (X1uLvW) (u3g1a)
5 w 1] 3
Y

3

00ST = SINIW3I11 40 "ON TVI1OlL
L9€T = SIAON 30 ‘ON 1VI1OL

ISV HJY3LNI |\ Z *

22




NADC-90001-60

"wdjqold BuipuoqapoIoI 10 [9POYY WUBWS)T duul4 dBWWASIXY 21 8inbigy

23




NADC-90001-60

00¢Z

08!l

(W 1°0=" 'v'0="A '98'0="p/") 1eays feEpaIY} UG 18y dseydiaw) ‘€1 by

30093l 0/ M + asppdjul /M o
(w o) Z

081 . oyl oct 001 08 08 4 oc

0
1 ] ! ] 1 1 1 1 ) L P ! rlmw.
-

o

O oo 0o~ O NN &+ M N T

p—0Lx(Ww ool /N)¥sip 408ys |DI2DIU

24




NADC-90001-60

Figure 14 shows the prediction of debonding stress 3,, for t,,/d;=0.1 and t,,/ds=1.0, where data
for t,,/d¢=0.4 was used to determine the interphase shear strength. We see that the model, which
includes the interphase, provides a better solution than those without the interphase.

Also, note that interphase shear strength predicted by finite element analysis, 23.9 mpa, is close to
that predicted by the shear lag theory. (For detailed calculation, refer to Appendix A. This interphase
shear strength value is different from the values of interfaclal shear strength obtained by other
investigators.'

Figure 15 shows the fiber end displacement in the axial direction under a 1.0 N axial load applied
at the fiber end. The correlation between the finite element analysis and new shear lag theory is very
good, validating the adequacy of the shear lag theory.

INTERPHASE EFFECT ON OUT-OF-PLANE DISPLACEMENT

Finite element calculations were performed to determine the effect of the interphase on the out-of-
plane displacement using the model shown in Figure 16. This model corresponds to the experimental
geometry used for tensioned fiber tests in reference 14. Figures 17 and 18 show the predicted out-of-
plane displacements with and without interphase for G,,,/G,=25 and G,,/G,=74 respectively. It can be
seen that a significant displacement gradient occurs in the vicinity of interphase region. Thus, the
interphase region may be defined as a region with a very high displacement gradient allowing the
dimension of interphase to be determined through direct measurement of the length of this high
displacement gradient region.

The results shown in Figures 17 and 18 were adjusted for a 0.4% fiber strain load and corretated
with test results' as shown in Figure 19. Interphase properties with G,,/G,=25 and t,=0.1:m match the
test data. However, if this method is not believed adequate to determine the exact interphase thickness,
then the radial displacement field must also be measured in addition to the axial displacement field so
that the test results can be correlated to determine separate values for the interphase thickness and
modulus. Note that the softer the interphase, the greater the displacement gradient in the interphase
region.

DISCUSSION AND CONCLUSION

The ratio between interphase shear modulus and thickness can be established from shear lag
analysis, but not specific values for G, or T, separately. If the interphase thickness can be determined
from an experimental measurement, then equation (23) or equation (24) can be used to caiculate the
interphase shear modulus for S-glass/epoxy and graphite/epoxy, respectively. If the interphase
thickness is not available experimentally, then an iteration procedure must be performed using equations
(23) and (24) as starting values for interphase shear modulus and thickness. Iterate G, and T, until the
analytical results (i.e., out-of-plane displacement and radial displacement) converge to the test results.
More studies need to be pursued of this approach to compute G, or 7,

In this report it is assumed that the interphase Is an axisymmetric region of uniform modulus and
fixed radial dimension. We recognize that the true interphase region has radially varying properties and
can also exhibit circumferential property gradients.

For a tougher composite, equation (32) and Figures 9 and 10 suggest that the composite material
must possess:

25




3.
4.

Although interphase shear strength, 7, and post debond frictional shear stress vary with interphase
thickness, t, Figures 9 and 10 give approximate guidelines for obtaining tougher composite materials.
Note that the weaker interface (i.e., small interphase shear strength) provides tougher fracture
resistance, but may affect the strength of composite, especially short fiber composites.

NADC-90001-60

Larger fiber diameter and fiber ultimate stress
Smaller post debond frictional shear stress and fiber Young's modulus
Smaller interphase shear strength

Smaller interphase thickness and G,,/G, ratio.

The following conclusions are drawn trom this study:

1.

By including the interphase, both shear lag analysis and finite element analysis provide much

better predictions of material response.

2. The interphase exists and is softer than the matrix for the composites used by Mandell in his

microdebonding tests (j.e., S-glass/epoxy and graphite/epoxy).

3. The properties and thickness of the interphase have significant influence on the interface stress,

displacement, and fracture toughness of fibrous composites.
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VERTICAL DISPLACEMENT (A)
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Figure 19. Correlation of Finite Element Analysis and Out-of-Plane Displacement
Test Data for 0.4% Fiber Strain Load With t,=0.14 m.
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APPENDIX A: DETERMINATION OF INTERPHASE PROPERTIES
FOR S-GLASS/EPOXY AND GRAPHITE/EPOXY

NEW SHEAR LAG THEORY
INTERPHASE PROPERTIES
From equation (22), we have:

¢ tanh(a /) - Const

G, 2 2t )" | (A-1)
{(E-,).n(hz),.n(,,zj}

Substituting t,./d¢=1.0 and t,,/d¢=0.4 into equation (A-1), and note that tanh (e /)=1.0, we have:
Sw _ ___ 5m "2)
(A +1.0986)'2 (A +0.5878)'2

where
%. 9,0 = debonding stress of fiber/matrix interface corresponding to t,,/ds=1.0 and
t,./ds=0.4, respectively
A - (ﬁﬂ - 1)ln [1 + ﬁ) (A-3)
G, h
Equation (A-2) can be rearranged as follows:
[&_1],,,[“& _ (1.0986 - 0.5878 B) (A)
G, I, B-1)

where

B= (31.0/ 30.4)2 (A-5)

For S-glass/epoxy, from reference 1:

2w 44
Co.4

B - 121

A-1




NADC-90001-60

equation (A-4) becomes:
(Eﬂ - 1) ln(1 +ﬁ) - 1.8446
G, [/

For graphite/epoxy, from reference 1:

210 | 1,082

%04

B-1.1924

equation (A-4) becomes:
(-Gﬂ - 1]In(1 + -‘l) - 2.0672
G, n

INTERPHASE-SHEAR STRENGTH

From equation (28), the maximum interfacial shear stress can be written as follows:

- 112
i fﬂ{(zm.-,).np SR 3_)} ~e)
2N & (G Iy d,
For S-glass fiber G,,=1.07 GPA, E;=86 GPA from reference 1, for t,/d¢=0.4, =777 MPA,

equation (A-6) becomes:

7o = 39 MPA

For G,/G, G,=1.21 GPA, E¢=241 GPA, from reference 1, for ¢, /d;=0.4, =883 MPA, equation
(A-6) becomes:

1o = 27 MPA

OUT-OF-DISPLACEMENT OF FIBER

From shear lag theory, the fiber axial displacement at z=0 can be written as:

-2 A-7
W E'a ( )
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where

AEICR AT G

For graphite/epoxy an P=1 N, equation (A-7) becomes:

W - o _ 25884 1 _ 0.1078 (A-9)
Esa 241 ¢« a
2¢ -2
« - 0.0286 {2.0672 + In(1 + d"']} (A-10)
1

DEBONDING STRESSES
Graphite/Epoxy
From equation (A-1), we have:

c C0

]}-'ﬂ " (2.0672 + 1.0086)'7

{2.@72 +in (1 + 2Ly
df

After simplification, we have:

2t \|'"*
o - 542.36 {2.0672+ ln(1 + de}
(4

o vs. t,,/dy is tabulated as shown in Tabie A-1.
S-glass/Epoxy

From equation (A-1) we have:
o ) %0
2t \I'?  {1.8446 + 1.0986)"2
1.8446 + In (1 + T"’)
t

After simplification we have:

2t \|'"*
T - 498.375 {1.8446 . In(1 . _dﬂ)}
!

A-3
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o VS. 1,,/d; is tabulated as shown in Table A-2.

Table A-1. & vs. t,,/ds for Graphite/Epoxy

/9 % 100 (MPA) g (MPA) Eole
0.1 773.6 813.45 5.2
0.2 826.8 840.86 1.7
0.3 859.7 863.9 0.48
0.4 883.0 883.0 0.
0.5 902.9 901.09 -0.2
0.6 918.8 916.51 -0.25
0.7 932.5 930.37 -0.23
0.8 944.5 942.94 -0.17
0.9 955.3 954.4 -0.09
1.0 965.0 965.0 .

Table A-2. 3 vs. t. /d; for S-glass/Epoxy.

t/d, 3 1o (MPA) Z(MPA) Eope
0.1 673.0 709.5 5.4
0.2 723.0 736.0 1.8
0.3 754.0 758.2 56
0.4 777.0 777.0 0.
05 795.5 793.92 -0.2
0.6 810.8 808.7 -0.26
07 823.9 821.95 ~0.24
0.8 835.4 833.95 -0.17
0.9 845.7 844.02 -0.09
1.0 855.0 855.0 )

A4
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FINITE ELEMENT ANALYSIS

From finite elemant analysis, for center fiber subjected to 5=25,984.0 MPA (i.e, P=1 N), the
computer outputs for interfacial shear, », and out-of-plane displacement, w, are shown in Table A-3.

Table A-3. Finite Element Results for P=1 N (t,=.1um).

tw/d, w T
(xm) {MPA)
0.10 5.62 775.0
0.35 6.23 710.7
1.0 6.86 641.0

INTERPHASE SHEAR STRENGTH

Define the interphase shear stress at =883 MPA, which corresponds to the debonding stress of
composite with ¢, /d¢=0.4 as interphase shear strength, then r,=704/25984x883=23.9 MPA.

DEBONDING STRESS 3 vs. t,,/d,

The debonding stress of composite for various t,,/dy can be written as follows:
G- 2%, 29

T

(A-11)

where
1* = computer output of interphase shear stress corresponding to =25984 MPA.
Making use of data from Table A-3, we have the comparison of finite element results with the test

results as shown in Table A-4.

Table A-4. Comparison of Debonding Stress
Between Test and Finite Element Analysis.

*

Oront 4 G
t/ (MPA) (MPA) MPA
0.1 773.6 775.0 801.3
0.35 874.2 710.7 874.2
1.0 965.0 6410 969.2
A-5
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OUT-OF-PLANE DISPLACEMENT
The comparison of cur-nt-phase displacement for shear lag theory and finite element analysis is
shown in Table A-5. Shear lag solution is based on equations (A-9) and (A-10).

Table A-5. Comparison of Out-of-Plane Displacement Between
Shear Lag Theory and Finlte Element Analysis.

w(um)
SHEAR w(zm)
/0, 1AG EEA

0.1 5.653 5.62
0.2 5.84 -
0.3 6.004 -
04 6.075 6.23
0.5 6.2623 -
0.6 6.37 -
0.7 6.47 -
0.8 6.55 -
0.9 6.63 -
1.0 6.71 6.86

A6
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APPENDIX B: CALCULATION OF INTERPHASE SHEAR STRESS
CONCENTRATION FACTOR AND MODE | FRACTURE
ENERGY OF UNIDIRECTIONAL COMPOSITES
INTERPHASE SHEAR STRESS CONCENTRATION FACTOR, K,

From equation (30) we have:

K, - L~ 1

2 (g, 2, 2t )" (8-1)
{(—Fl- )ln[h?; +ln(1+-7'] .

Equation (B-1) is used to calculate K, for t,/d,=0.1 and t,/d,=1.0, respectively, as tabulated in
Tables B-1 and B-2.

Table B-1. K, vs. G, /G, for Various t/d, (t,/d,=0.1).

K
Gn/G; 1,/d,=0.001 t,/d,=0.005 t,/d,=0.01

1 1.66 1.66 1.66
10 1.58 1.36 1.17
102 1.15 0.65 0.48
10° 0.48 0.22 0.16
10 0.16 0.1 0.05
10° 0.05 0.02 0.02

Table B-2. K, vs. G,,/G, for Various t,/d, (t,./d,=1.0).

K
G./G, t,/d,=0.001 t,/d,=0.005 t,/d,=0.01

1 0.675 0.675 0.675
10 0.669 0.649 0.626
10? 0.621 0.49 0.404
10° 0.402 0.21 0.155
10°* 0.15 0.07 0.05
10° 0.05 0.02 0.02

B-1




NADC-90001-60

MODE 1 FRACTURE ENERGY OF UNIDIRECTIONAL COMPOSITE

From equation (29):

-~ ltmaxl EI b
*- eta

The debonding stress of fiber/matrix interface can be written as follows:
17
s-To[E&
Kl Gm

From equation (33):

For graphite/epoxy:

0.027 {241 }"2 _ 0.1524

" 25K, |1.21 K,

where K, can be obtained from equation (B-1) and Tables B-1 and B-2.

Table B-3. G/Cue V8. G./G, for Various t,/d, (t../d,=0.1).

1,/d,=0.001 1/d,=0.005

G, ‘G, g 1g+g~g® G./G g 19+0°9° Gy/G

1 0.092 0.9157 1 0.092 0.9157 1
10 0.0965 0.912 10 0.112 0.90 10
10° 0.1325 0.883 10° 0.235 0.810 10°
10° 0.3175 0.751 10° 0.693 0.455 10°
10 0.9526 0.09 2130 1.0 0. 1078

10680 1.0 0.

B-2

(8-2)
(B-3)
(B-4)
(8-5)
t fdt =0.01
9 1g+geg
0.092 0.9157
0.1303 0.885
0.3175 0.751
0.9526 0.09
1.0 0.
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Table B-4. G:/Cwe vs. G,./G, for Various t./d, (t,./d,=1.0).

ti/df=0‘001 E/d'=°-005 t/d,=0.01
G,/G, g Tg+g-g’ Gy/G g 1g+g2-g’ G,/G g ig+ge-g’
1 0.2258 0.8137 1 0.2258 0.8137 1 0.2258 0.8137
10 0.2278 0.8123 10 0.2348 0.8074 10 0.2435 0.8014
10° 0.2454 0.800 10° 0.311 0.756 10° 0.3772 0.7114
10° 0.3791 0.71 10° 0.72 0.425 10° 0.98 0.
10* 1.0 0. 2043 1.0 0. 1032 1.0 0.
B-3
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