



# Incremental Validity of New Tests in Prediction of Infantry Performance

Paul W. Mayberry Catherine M. Hiatt





A Division of Hudson Institute

CENTER FOR NAVAL ANALYSES

4401 Ford Avenue • Post Office Box 16268 • Alexandria, Virginia 22302-0268

DISTRIBUTION STRIFMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Work conducted under contract N00014-87-C-0001.

This Research Memorandum represents the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the Department of the Navy.

### REPORT DOCUMENTATION PAGE

Form Approved OPM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gathering and maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of nformation, including suggestions for reducing this burden, to Washington Headquarters Services, Directorsts for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Information of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

| the Office of Information and Regulatory Affairs, Office                                | <del>er en en jaron en en</del>                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. AGENCY USE ONLY (Leave Blank)                                                        | 2. REPORT DATE                                                                    | l l                         | AND DATES COVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                         | July 1990                                                                         | Final                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I. TITLE AND SUBTITLE                                                                   |                                                                                   |                             | 5. FUNDING NUMBERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Incremental Validity of New Tests in Pre                                                | diction of Infantry Performance                                                   |                             | C - N00014-87-C-0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                         |                                                                                   |                             | PE - 65153M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AUTHOR(S) Paul W. Mayberry, Catherine M. Hiatt                                          |                                                                                   |                             | PR - C0031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7. PERFORMING ORGANIZATION NAME(S) AN                                                   | D ADDRESS(ES)                                                                     |                             | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Center for Naval Analyses                                                               | •                                                                                 |                             | CRM 90-110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4401 Ford Avenue                                                                        |                                                                                   |                             | 0.0 70 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Alexandria, Virginia 22302-0268                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9. SPONSORING/MONITORING AGENCY NAMI                                                    | E(C) ADD ADDRESSES                                                                |                             | 10 000100000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9. SPONSORING/MONITORING AGENCY NAMI  Commanding General                                | פ(ס) אעה עההאנפט(נפ)                                                              |                             | 10. SPONSORING/MONTTORING AGENCY<br>REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Marine Corps Combat Development Com                                                     | mand (WF 13F)                                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Studies and Analyses Branch                                                             | ž                                                                                 | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Quantico, Virginia 22134                                                                |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11. SUPPLEMENTARY NOTES                                                                 |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| III JOIT AMAININ NOILS                                                                  |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12a. DISTRIBUTION/AVAILABILITY STATEMENT                                                | 7                                                                                 |                             | 12b. DISTRIBUTION CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Approved for Public Release; Distribution                                               | n linlimited                                                                      | :                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Approved for Fuelic Release, Distribution                                               | ii Oinninted                                                                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 13. ABSTRACT (Maximum 200 words)                                                        |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The Armed Services Vocational Aptitude                                                  | Battery (ASVAB) is highly oriented to n                                           | nath and verbal content are | as. New predictor tests that are unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| relative to the current ASVAB subtests n<br>investigate the incremental validity of sev | nay nave potenual for improving predictiveral new tests that were administered as | part of the Marine Corps    | of this research memorandum is to  Job Performance Measurement project for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| the infantry occupational field.                                                        |                                                                                   | ,,,,,,,,,,,,,,,,            | Freedom Fr |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                                                                                       |                                                                                   |                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. SUBJECT TERMS                                                                        |                                                                                   |                             | 15. NUMBER OF PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Aptitude tests, ASVAB (armed services v<br>requirements, Marine Corps personnel, M      | ocational aptitude battery), Enlisted pers                                        | onnel, Infantry, Infantryme | diatana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Proficiency, Reliablity, Skills, Statistical                                            |                                                                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| OF DEDOD'T                                                                              | OF THIS PAGE                                                                      | SECURITY CLASSIFICATION     | 20. LIMITATION OF ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CPR                                                                                     | CPR CPR                                                                           | OF ABSTRACT CPR             | SAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SN 7540-01-280-5500                                                                     |                                                                                   |                             | Standard Form 298, (Rev. 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Standard Form 298, (Rev. 2-89 Prescribed by ANSI Std. 239-18 299-01



## CENTER FOR NAVAL ANALYSES

A Division of Hudson Institute 4401 Ford Avenue . Post Office Box 16268 . Alexandria, Virginia 22302-0268 . (703) 824-2000

8 August 1990

#### MEMORANDUM FOR DISTRIBUTION LIST

Subj: Center for Naval Analys's Research Memorandum 90-110

Encl: (1) CNA Research Memorandum 90-110, Incremental Validity of New Tests in Prediction of Infantry Performance, by Paul W. Fayberry and Catherine M. Hiatt, Jul 1990

- Enclosure (1) is forwarded as a matter of possible interest.
- 2. The Armed Services Vocational Aptitude Battery (ASVAB) is highly oriented to math and verbal content areas. New predictor tests that are unique relative to the current ASVAB subtests may have potential for improving predictive validity. The purpose of this research memorandum is to investigate the incremental validity of several new tests that were administered as part of the Marine Corps Job Performance Measurement project for the infantry occupational field.

Director

Manpower and Training Program

Distribution List: Reverse page

#### Subj: Center for Naval Analyses Research Memorandum 90-110

#### Distribution List

```
SNDL
45A2
            CG I MEF
45A2
            CG II MEF
45A2
            CG III MEF
45B
            CG FIRST MARDIV
45B
            CG SECOND MARDIV
A 1
            ASSTSECNAV MRA
A1
            DASN MANPOWER (2 copies)
A2A
            CNR
            HOMC MPR & RA
A6
             Attn:
                     Code M
             Attn:
                     Code MR
             Attn:
                     Code MP
             Attn:
                     Code MM
                     Code MA (3 copies)
             Attn:
                     Code MPP-54
             Attn:
            CG MCRDAC, Washington
A6
A6
            HQMC AVN
FF38
            USNA
             Attn:
                     Nimitz Library
FF42
            NAVPGSCOL
FF44
            NAVWARCOL
FJA1
            COMNAVMILPERSCOM
FJB1
            COMNAVCRUITCOM
FJA13
            NAVPERSRANDCEN
                     Technical Director (Code 01)
             Attn:
             Attn:
                     Technical Library
                     Director, Manpower Systems (Code 11)
             Attn:
             Attn:
                     Director, Personnel Systems (Code 12)
                     Director, Testing Systems (Code 13)
             Attn:
                     CAT/ASVAB PMO
             Attn:
FT1
            CNET
V8
            CG MCRD Parris Island
V8
            CG MCRD San Diego
V12
            MCCDC
             Attn:
                     Studies and Analyses Branch
             Attn:
                     Director, Warfighting Center
             Attn:
                     Warfighting Center, MAGTF Proponency and
                     Requirements Branch (2 copies)
                     Director, Training and Education Center
             Attn:
V12
            CG MCRDAC, Quantico
```

OPNAV OP-01

OP-11

OP-12 OP-13 Subj: Center for Naval Analyses Research Memorandum 90-110

Distribution List

#### **OTHER**

Defense Advisory Committee on Military Personnel Testing (8 copies)

Joint Service Job Performance Measurement Working Group (13 copies)

Military Accession Policy Working Group (16 copies)

# Incremental Validity of New Tests in Prediction of Infantry Performance

Paul W. Mayberry Catherine M. Hiatt

Force Structure and Acquisition Division



#### ABSTRACT

The Armed Services Vocational Aptitude Battery (ASVAB) is highly oriented to math and verbal content areas. New predictor tests that are unique relative to the current ASVAB subtests may have potential for improving predictive validity. The purpose of this research memorandum is to investigate the incremental validity of several new tests that were administered as part of the Marine Corps Job Performance Measurement project for the infantry occupational field.

#### EXECUTIVE SUMMARY

The Armed Services Vocational Aptitude Battery (ASVAB) is the test used by the military services to select and classify recruits. The ASVAB is composed of ten subtests that measure four general content areas: verbal, mathematical, technical, and speed. The purpose of this research memorandum is to investigate several new tests that differ in content and scope from the current ASVAB. Each new test was judged relative to its ability to improve the prediction of infantry performance by the ASVAB.

The new tests included paper-and-pencil measures of spatial ability (space perception (SP), reasoning (RS), and assembling objects (AS)), a video-firing test (VF), and a background questionnaire (Armed Services Applicant Profile--ASAP). The measures of infantry performance were developed for or collected as part of the Marine Corps Job Performance Measurement (JPM) project: a hands-on performance test (HOPT), a written job knowledge test (JKT), proficiency marks (PRO), and training grades from the school of infantry (GPA).

Examinees were first-term infantrymen from four military occupational specialties (MOSs). Over 1,000 riflemen were tested, and about 300 Marines in three other infantry specialties were examined: machinegumer, mortarman, and assaultman. Two days were required for each Marine to complete all performance testing.

#### RESULTS

The estimation of validity coefficients is influenced by a variety of factors: restriction of score distributions due to the selection process, shrinkage in multiple correlations when applying optimal regression weights to other samples, criterion unreliability, time of administration for the predictors, etc. The impact of these factors as well as sampling errors on validity coefficients is even further magnified when the primary issue is the difference between validity coefficients. Efforts were taken to account for several potential error sources in the estimation of validity coefficients.

The multiple correlations between all ASVAB subtests and each performance criterion were computed to provide the base against which increments in validity by the new tests would be judged. These multiple correlations showed that ASVAB was highly related to JKT, HOPT, and GPA. The ASVAB was moderately related to PRO. Figure I shows both the sample and range-corrected ASVAB validity bases (computed for the enlistment ASVAB and also for a concurrently administered ASVAB) against hands-on performance. These ASVAB bases were also computed for the other performance criteria. The new tests had to demonstrate improvements in validity above and beyond these levels that ASVAB is currently able to achieve. For the infantry rifleman hands-on test, the

VF test improved the ASVAB validity by 0.015 to 0.03 validity points. The incremental validities against rifleman hands-on performance for each new predictor are plotted in figure I.

Table I highlights the best single new predictor test against each criterion for all four specialties. Several new predictor tests resulted in the largest increments in validity against HOPT. These findings were consistent with the differences in job requirements, which were reflected in differences in hands-on test content for these specialties. Part of the hands-on test for the rifleman specialty required each Marine to negotiate an unknown trail as if on a squad patrol and to engage popup targets with the M16A2 rifle. The prediction of accurately hitting these targets and other rifleman tasks was improved by the VF test. For the assaultman MOS, each Marine was required to fire the Launch Effects Trainer (LET), a device that simulates firing of the Dragon missile. Again, the VF test was one of the better new predictors in improving the assaultman validity; AS also was found to enhance the validity. Job requirements for the machinegunner and mortarman specialties tended to be more spatially oriented. Machinegumers were required to establish intersecting fields of fire as well as to prepare range cards that document direction, elevation, and range of targets. The space perception (SP) test was found to be the best new predictor in improving the prediction of machinegumer job performance. The mortarman hands-on test required the Marine to complete many procedural requirements in mounting, boresighting, and laying the mortar. The assembling objects (AS) test resulted in the most incremental validity for this specialty.

Table I. Best new predictor test for each criterion

| -             |        | Cri    | terion |                 |
|---------------|--------|--------|--------|-----------------|
| MOS           | HOPT   | JKT    | PRO ,  | GPA             |
| Rifleman ·    | VF     | AS     | ASAP   | VF <sup>a</sup> |
| Machinegunner | SP     | AS     | ASAP   |                 |
| Mortarman     | AS     | AS, SP | ASAP   |                 |
| Assaultman    | VF, AS | AS     | ASAP   |                 |

a. Validity results against GPA were based on examinees from all MOSs. Findings were consistent for both training locations.

The JKTs for each MOS contained many common infantry items although each test also had some items that were unique. AS was found to be the best new predictor test in improving the validity against each JKT in the range of 2 to 4 percent. Such a consistent outcome may partially be due to the similarity of test content across these specialties.

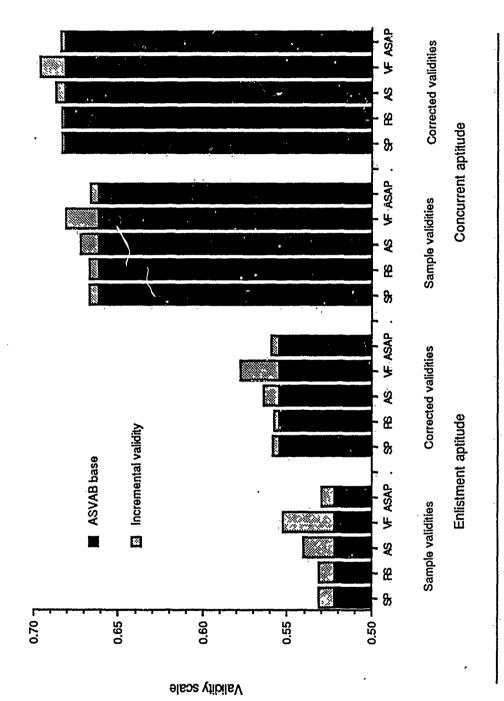



Figure I. Sample and corrected validities for enlistment and concurrent aptitude against hands-on performance for infantry riflemen

The ASVAB only moderately predicted PRO marks; the validity was about 0.35. The ASAP was consistently the best new predictor for improving the validity for these supervisor ratings. Despite significant improvements in the prediction of PRO marks, the absolute validities were still relatively low.

Several corrections were made to be validity coefficients to account for the impact of various extraneous sources of error. The impact of these corrections is noticeable in figure I. Such corrections tended to significantly reduce the gains in validity due to the new predictor test. Incremental validities corrected for range restriction were typically half as large as the sample incremental validities. Increments based on concurrent aptitude were likewise less than gains computed for enlistment aptitude by a factor of a half. Adjustments for time in service reduced even further the incremental gains (this impact is not determinable from figure I). The impact of these error sources highlights the potential for considerable overestimation of incremental validities if appropriate corrections and adjustments are not made.

#### CONCLUSIONS

Data from the Marine Corps JPM project allowed for a thorough examination of the measurement and prediction of infantry performance. These analyses showed that the ASVAB does an excellent job of predicting a variety of infantry performance measures—hands—on performance tests, written job knowledge tests, and infantry school training grades. ASVAB moderately predicts an infantryman's proficiency rating. The ability of any new predictor test to enhance the ASVAB's ability to predict infantry performance was slight and mixed (except for proficiency marks, which are questionable as objective measures of job performance).

The estimation of validity coefficients is influenced by a variety of factors. Efforts were taken to account for several potential error sources. Such corrections and adjustments tended to significantly reduce the gains in validity due to the new predictor test. Substantial overestimation of incremental validities is possible if appropriate corrections and adjustments are not made.

Given the variability of incremental validity estimates across MOSs and criteria, it is difficult to make a strong recommendation as to which, if any, of the new predictors should be considered for possible inclusion in the ASVAB. Although similar gains found in other research have been noted to possibly have considerable dollar value, any true benefit that would result in fiscal savings has yet to be demonstrated. Therefore, the slight validity gains found in these analyses have yet to demonstrate any tangible significance that would positively impact the overall manpower selection and classification process.

Even if "significant" increments in validity had been noted, further investigation of the measurement properties of any new tests is still required. For example, while the video firing test tended to be one of the better tests against hands-on performance, the test may be susceptible to practice effects as demonstrated in the significant test-retest gains over the period of 7-10 days. Performance on such video tests may also be affected by previous experience with video games or computers. Such practice effects or experience may possibly cancel any validity gains if the test were used for operational testing. Additional issues that would need to be researched include subgroup analysis, coaching and test-taking strategies, and logistical concerns for implementing the test within an operational testing program.

Given the challenge to improve the prediction of infantry performance, it was found that larger percentage gains can be achieved by refining the current aptitude composites or by using an optimal classification system based on all ASVAB subtests than can be achieved by adding new predictor tests to the ASVAB. Such gains may be achieved by simply correcting known inefficiencies in the current classification system. With only minimal gains resulting from new predictor tests and an unknown benefit associated with such small gains, it would be more prudent to concentrate on refining the existing classification system.

#### CONTENTS

| rage .                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------|
| Íllustrationsxii                                                                                                         |
| Tablesxii                                                                                                                |
| Introduction                                                                                                             |
| Technical Considerations for Assessing Incremental Validity                                                              |
| Test Administration                                                                                                      |
| Results                                                                                                                  |
| Conclusions                                                                                                              |
| References                                                                                                               |
| Appendix A: Sample and Corrected Correlations ofA-1 - A-29 Infantry Criteria and Predictors                              |
| Appendix B: Sample and Corrected Increments inB-1 - B-6 Validity by New Predictor Tests, Controlling for Time in Service |

#### ILLUSTRATIONS

|    | Page                                                                                                             |
|----|------------------------------------------------------------------------------------------------------------------|
| 1  | Percentage Increment in Validity for Infantry Rifleman21 Performance: Enlistment Aptitude Scores                 |
| 2  | Percentage Increment in Validity for Infantry Rifleman21 Performance: Concurrent Aptitude Scores                 |
|    | TABLES                                                                                                           |
| 1  | Reliability of Hands-On Performance Test                                                                         |
| 2  | Reliability of Job Knowledge Test10                                                                              |
| 3  | Reliability of Proficiency Marks11                                                                               |
| 4  | Reliability of New Predictor Tests11                                                                             |
| 5  | Uniqueness Estimates for New Predictor Tests Relative12 to Enlistment and Concurrent Aptitude Scores             |
| 6  | Correlations of Infantry Rifleman Criteria and Predictors13<br>Corrected for Range Restriction                   |
| 7  | Increments in Validity by New Predictor Tests for15 Infantry Rifleman Performance                                |
| 8  | Increments in Validity by New Predictor Tests for16 Infantry Machinegunner Performance                           |
| 9  | Increments in Validity by New Predictor Tests for17 Infantry Mortarman Performance                               |
| 10 | Increments in Validity by New Predictor Tests for18 Infantry Assaultman Performance                              |
| 11 | Increments in Validity by New Predictor Tests for19 Infantry Training Grades                                     |
| 12 | Best New Predictor Test for Each Criterion and MOS22                                                             |
| 13 | Means and Standard Deviations of Percentage Gains24 in Incremental Validity for All New Predictor Tests and MOSs |

#### INTRODUCTION

The Armed Services Vocational Aptitude Battery (ASVAB) is the test used by the military services to select and classify recruits. The ASVAB is composed of ten subtests that measure four general content areas: verbal, mathematical, technical, and speed. Various aptitude composites, computed from the ten ASVAB subtests, are used to classify recruits into clusters of military occupational specialties (MOSs) that are most suited to their aptitudes.

Various analyses have confirmed the four general content areas of the ASVAB [1], although these factors tend to be correlated. This implies that the ASVAB is limited in the number of dimensions that it effectively measures. To the extent that military jobs are multidimensional and require a variety of skills and abilities, the ASVAB may not be sensitive to the prediction of these qualities. The consideration of new dimensions that might supplement the existing ASVAB by expanding its range of predictors may hold significant promise for improving the overall selection and classification system.

However, the consideration of new predictors is unjustified if there is not a similar concern for the performance measure against which the new tests are to be validated. The ability of the ASVAB to predict the traditional military performance criterion of training grades is typically good due to their shared academic nature. Training grades are often based on written examinations of job knowledge obtained in a classroom setting. Persons performing well on written predictor tests also tend to perform well on written criterion tests. The possibility of additional (or different) predictors significantly improving the ASVAB-training grade relationship across a variety of jobs or clusters of jobs is unlikely.

The joint-service Jcb Performance Measurement (JPM) project offers a unique opportunity for the validation of new predictor tests. A primary purpose of the JPM project has been to develop objective and standardized measures of job performance that reflect the broad range of military job requirements. The expanded scope of the hands-on performance tests will measure the unique abilities that are needed in the work setting but that are not necessarily required for academic success. In this way, the services will be able to differentially

<sup>1.</sup> Efforts within the joint-service computerized adaptive testing (CAT) project for the ASVAB are examining the use of computers for expanding the measurement of aptitudes beyond those currently assessed by the paper-and-pencil ASVAB. The Defense Advisory Committee on Military Personnel Testing has noted that, "to a significant extent, the practical value of a nationwide CAT system will depend on the success of this research effort [investigation of additional predictive validity of new predictor tests]" [2, p. 21].

associate the skills and abilities required in various jobs with the predictors of those abilities so that the match of the person and job can possibly be improved.

Without simultaneous research in both the predictor and criterion realms, analyses of incremental validity for any new predictor tests may be somewhat misleading and will certainly be incomplete. By limiting the focus to the existing ASVAB subtests predicting the more complete criterion measures of the JPM project, only that part of job performance that is the product of the four highly related content factors will be illuminated. The prediction of any differential abilities required for successful job performance will potentially be masked due to the inadequacy of ASVAB to predict those dimensions (and therefore appear as a lack of relationship with the ASVAB). Conversely, research involving new predictors validated against traditional performance measures will possibly be fruitless as well. Increments in validity against training criteria may be hard to obtain or may even restrict the types of new predictors to tests that are not overly different from the current math and verbal orientation of the ASVAB.

The purpose of this research memorandum is to investigate the ability of several new predictor tests to improve the prediction of infantry performance beyond what the ASVAB is currently able to achieve. The new predictor tests were administered as part of the Marine Corps JPM project. These tests included paper-and-pencil measures of spatial ability, a video-firing test, and a background questionnaire. Increments in validity due to these new tests were judged relative to the complete battery of ASVAB subtests. Two sources of aptitude scores were examined: ASVAB at time of enlistment into the Marine Corps and a concurrent ASVAB administered as part of the project. Four different performance criteria were also examined: hands-on job performance tests, written job knowledge tests, proficiency marks (Marine Corps operational supervisory ratings), and final course grades in the infantry training school. Reliability estimates for both the predictors and criteria were computed in addition to the absolute and incremental validities of each new predictor test. Summary remarks noting the practical significance of the incremental validity for the new predictors conclude the research memorandum.

#### TECHNICAL CONSIDERATIONS FOR ASSESSING INCREMENTAL VALIDITY

The relationship between a selection test (a predictor) and a performance measure (a criterion) is typically expressed in terms of their correlation (a validity coefficient). The difficulties that impact the estimation of validity are well known. Such difficulties are magnified when examining incremental validity since such analysis involves differences in validity coefficients. The incremental validities computed for this research memorandum are not a unique statistic but rather the difference between two validity coefficients. The validity of the ASVAB to predict infantry performance serves as the

base and is subtracted from the validity of the ASVAB when supplemented by an additional predictor test. Some of the technical considerations affecting the computation of validities are briefly discussed.

#### Performance Criterion

The measure of job performance must be an accurate and objective reflection of what an individual is required to perform on his job. If the performance criterion is not representative of actual job performance, its measurement is meaningless and its prediction would be of no value.

In 1981, the Joint-Service Job Performance Measurement (JPM) project was initiated to facilitate the services' development of valid measures of military job performance. Because of its high fidelity to actual job performance, hands-on performance of job-sample tasks was established as the benchmark criterion measure. A National Academy of Sciences (NAS) committee that provides technical oversight to and evaluation of the joint-service project endorsed the services's declaration of hands-on tests as the benchmark criterion:

The hands-on technology is not just another means of assessing performance. It is the only method, short of observing people on the job, that elicits the actual behaviors required to perform job tasks....The very directness of the hands-on methodology makes it in theory the ideal criterion measure... [3, p. 27].

Other performance measures were also developed or collected as part of the Marine Corps JPM project (e.g., written job knowledge tests, training grades, operational performance ratings). Therefore, the criteria collected by the JPM project offer a diverse array of performance measures against which to evaluate the incremental validity of new predictor tests. However, greater emphasis will be ascribed to the outcomes associated with the hands-on performance measures due to their greater fidelity to actual job behaviors.

#### Aptitude Measures

Incremental validity of new tests must be determined relative to the existing set of predictors in the ASVAB. The complete set of ASVAB subtests, not a composite of the subtests or a derived measure of general cognitive ability, must be used as the validity standard against which new tests are judged. This requirement provides a common base for comparison of validity increments as well as recognizes the potential fallibility of any composite. Any definition of the predictor set, other than the full complement of ASVAB subtests, would possibly lead to underestimates of absolute validity, and thereby overestimates of incremental validity. Therefore, all ten ASVAB subtests were used as predictors to maximize the predictive validity currently available in the ASVAB.

A second aptitude-relevant issue concerns the timing of test administration for both the ASVAB and the new set of predictors. Ideally, both the ASVAB and the new predictors should be administered at the same time (preferably at time of enlistment). However, such a longitudinal analysis of increments in validity is not possible for the current study.

An alternative strategy is to readminister the ASVAB so that it is concurrent with the administration of the new predictor tests. This concurrent administration of all predictor measures attempts to control for extraneous factors. Such factors may possibly include gains in test performance due to training, experience, or individual maturity that may have occurred during the lapse between testing periods. Also, concurrent administration seeks to minimize motivational differences across testing sessions. Since administration of the new predictors was not possible at the time of enlistment for this project, the ASVAB was readministered as part of the Marine Corps JPM project so that differences in incremental validity could be evaluated as a function of enlistment and concurrent aptitude.

#### Correction for Range Restriction

A validity coefficient computed on a sample of job incumbents will generally underestimate the true validity of a selection test for the population of applicants to which the test is administered. This is because the selection process restricts the distributions of both predictor and criterion scores by screening out potentially unsuccessful applicants. The degree of range restriction differs across specialties: standards for low-level jobs would tend to screen out relatively few applicants; standards for more technically demanding jobs would tend to be more restrictive.

To be able to compare validity coefficients across jobs with differing degrees of selection, the coefficients must be placed on a common scale. "Correction for range restriction" produces this common metric by estimating what the validity would be in the full population of potential applicants. The 1980 youth population served as the reference population from which all corrections for this research memorandum were derived [4]. A multivariate range correction procedure was used that accounts for the effects of selecting individuals on all ten ASVAB subtests [5]. Because population variances are not available for the new predictor tests, corrections to validity coefficients due to range restrictions accounted for explicit selection only on the ASVAB, not the new predictors. The new predictors were treated as incidental selection variables in the correction procedures.

Shrinkage of Multiple Correlations and Cross Validation

Multiple correlations (MRs) are merely extensions of simple correlation coefficients in that the criterion is regressed on multiple predictor measures as opposed to one. The square of the MR expresses

the magnitude of the predictive power of the regression. Regression weights are assigned to each predictor to maximize the MR for the sample on which the regression is computed. If the regression weights are then applied to a different sample, the resulting MR will almost always be smaller than the MR obtained in the original sample. This decrement in MRs is referred to as "shrinkage."

The degree of shrinkage is primarily a function of the number of predictors and sample size. The best procedure for estimating the degree of shrinkage is to perform a cross-validation. This requires that the available observations are split into two random samples (one for estimation and the other for validation). Predicted values of the criterion variable are computed in the validation sample based on the weights determined in the estimation sample. The correlation between the actual and predicted values is then computed. The difference between this correlation and the MR in the estimation sample is an estimate of the shrinkage. If the shrinkage is small (and MR is meaningful), then the estimation regression is warranted for future predictions.

Formula methods have been derived to estimate the degree of shrinkage in MRs as opposed to the computing of separate regressions on a split sample [6]. These formulas make use of all observations and result in more precise estimates of the shrinkage.

Computing an estimate of the population cross-validated multiple correlation (CVR) is a two-stage process. First, an estimate of squared population multiple correlation ( $\hat{\rho}^2$ ) is computed:

$$\hat{\rho}^2 = 1 - \frac{N-1}{N-p-1} (1 - R^2)$$
 (1)

where N is the sample size, p is the number of predictors, and  $R^2$  is the observed squared multiple correlation. This quantity is then used as input for computing the CVR:

$$CVR^{2} = \frac{(N-1) \hat{\rho}^{4} + \hat{\rho}^{2}}{(N-p) \hat{\rho}^{2} + p}$$
 (2)

where all symbols are defined above. The square root of this quantity is the value used throughout this research memorandum for computing the validity base and incremental gains due to the new predictors.

Formula (1) applies only to the case where the predictors are considered fixed, as in a typical selection and classification process. Fixed predictors imply that generalizations based on the CVR pertain only to the exact set of predictors under investigation (the ten ASVAB subtests in this case) and not to a population of predictors.

#### Criterion Unreliability

All performance criteria are not measured with the same reliability. To the extent that the criteria are unreliable and contain measurement error, estimates of validity coefficients will also be affected. Theoretically, a test cannot correlate with another variable more highly than it correlates with its own true score (a test score measured with no error); therefore, test validity cannot exceed the square root of test reliability.

It follows that the increments in validity of new predictor tests computed against multiple performance criteria may be affected by differences in criteria reliabilities. Corrections to validities can be made to compensate for unequal measurement reliability (see [7, p. 69]). Such corrected values are the maximum coefficients that are obtainable if all measurement error could be eliminated, i.e., perfect criterion reliability. An accurate estimate of the criterion reliability is essential to obtaining the proper correction.

The primary concern for this research memorandum is relative comparisons among validity gains for new predictors within a criterion, not absolute comparisons of the magnitude of validity increments across criteria. The focus of the analyses is on the hands-on performance measures, and the other criteria were examined for the relative consistency of outcomes. Therefore, corrections to validity coefficients for criterion unreliability were not computed. (As will be shown in a later section, to differences in criterion reliability were not as discrepant as expected, so such corrections would not have a differential impact on the results.) However, sufficient information is provided in the tables to allow such corrections to be calculated.

#### Controlling for Time in Service

As noted earlier, validities may be adversely affected by a time lapse between the administration of the enlistment predictors and the new predictors of interest. To account for the possible impact of temporal differences, the ASVAB was readministered so that all predictor information would be collected at the same time and under the same conditions.

However, the examinees of the JPM sample also differed with respect to their length of service, ranging from 5 to 48 months. Such time differences may affect performance on the predictor tests and/or the performance tests simply due to on-the-job experience, training, or maturity. To control for these potential developmental effects, a separate set of analyses used time in service (TIS) and its square as covariates in each regression before the new predictor test was entered. In this manner, performance scores were statistically adjusted as if all examinees had the same number of months of service.

#### TEST ADMINISTRATION

Each Marine was tested for two days. One day was devoted to handson testing and the other day was for written tests. All tests were
administered by retired Marines who received extensive training in how
to administer tests in a standardized manner and accurately score and
record test performance. The administrators specialized in giving
either the hands-on tests or the written tests. Multiple administrators
rated the performance of selected examinees to monitor the scoring
consistency and accuracy of test administrators throughout the fourmonth testing period.

Examinees were first-term infantrymen from four MOSs. Over 1,000 riflemen were tested, and about 300 Marines in each of the other three specialties were examined: machinegunner, mortarman, and assaultman. Examinees were randomly selected for testing by Headquarters, Marine Corps, so that reasonable distributions of time in service, paygrade, and educational level were obtained. Approximately 20 percent of the riflemen were retested on all materials after an interval of 7-10 days.

#### Criterion Measures

Four performance measures were collected for each Marine. A description of each measure follows.

Hands-on performance tests (HOPT) were developed for the four first-term infantry MOSs. Based on official Marine Corps publications, training materials, and extensive task analyses by job experts, the domain of infantry job requirements was specified. Tasks were organized into relatively homogeneous content areas, called duty areas (e.g., land navigation, tactical measures, grenade launcher, squad automatic weapon). Job requirements differed across the four MOSs, although there was a large core of common infantry tasks. Each MOS had 13-14 duty areas. Tasks were sampled from each duty area so that hands-on test scores would generalize to the full range of infantry job requirements within that duty area [8]. Alternate forms of the hands-on test were developed in response to test security concerns and also to examine test reliability.

A written job knowledge test (JKT) was also developed to parallel the content of the hands-on test. A separate written test composed of about 200 items was developed for each MOS. No time limits were imposed, but examinees typically finished in two hours. An alternate form of the JKT was also constructed.

Operational Marine Corps supervisory ratings, called proficiency marks (PRO), were obtained from Headquarters, Marine Corps. Proficiency marks are given every six months to enlisted personnel, or earlier if an individual is transferred to another unit. The rating score used for these analyses was the mean of all available proficiency marks for an

individual. Over 90 percent of the Marines tested in the JPM project had received at least three proficiency marks; the average person had received more than five ratings.

Training grades (GPA) in the School of Infantry were also collected from historical records. Grades could not be found for all Marines who were administered the new predictor tests. Other analyses of training grades have shown that different relationships exist between aptitude and grades for the two training locations (Base A and Base B) [9]; therefore, the two bases were analyzed separately.

#### Predictor Tests

The new predictors included three paper-and-pencil tests, a video firing test, and a biographical questionnaire. Below is a description of each.

The Space Perception (SP) test was a paper-and-pencil test that measured spatial visualization. The test was administered as part of ASVAB 5/6/7 and was composed of 20 items that required visualization of paper-folding and -unfolding tasks. Twelve minutes were allowed to complete the test.

The Assembling Objects (AS) test was obtained from the Army's JPM project [10]. The paper-and-pencil test was a measure of spatial visualization and mental rotation. There were 36 items and the time limit was 18 minutes.

The Reasoning (RS) test was also obtained from the Army's JPM project [10] and was composed of 30 written items that measured spatial reasoning and pattern recognition. A time limit of 12 minutes was imposed.

A test of video firing (VF) was administered to assess psychomotor skills. The test required firing a pistol at moving targets on a video screen. The test consisted of four shooting trials for up to five scenarios of increasing difficulty. The test was untimed but typically required 10-15 minutes to complete.

A shortened version of the Armed Services Applicant Profile (ASAP) was also administered. ASAP was a biographical questionnaire that was obtained from the executive agent for the joint-service instrument [11]. The administration was untimed but required approximately 20-30 minutes to complete the 60-item form.

The ASVAB was readministered so that the new predictor tests could be evaluated relative to concurrent aptitude information. The full battery was group administered and required approximately three hours to complete. To motivate examinees to perform to the best of their abilities, a strong incentive was provided--if the ASVAB scores from the JPM administration exceed an individual's scores of record, the higher

JPM scores would be substituted. This motivator was effective because many enlisted personnel seek to transfer to other occupational fields or apply for the warrant officer program, which have higher aptitude requirements. Approximately 60 percent of the Marines who participated in the JPM testing satisfied the necessary criteria and improved their aptitude scores of record.

#### RESULTS

#### Reliability Estimates

Tables 1 through 4 present the reliability estimates for three of the criterion measures (reliability could not be computed for training grades) and all the new predictor tests. Where appropriate, the following reliability estimates were computed:

- o Test-retest: both test forms of the hands-on test and job knowledge test and the same form for the new predictors were readministered to about a 20-percent sample of the infantry riflemen after an interval of 7-10 days.
- o Alpha coefficient: a measure of the internal consistency of test items (or tasks) that reflects the degree to which item responses are homogeneous.
- o Scorer agreement: the percentage agreement between two test administrators as they observe and score the step-level performance of one examinee.
- o Analysis of variance (ANOVA) reliability: similar to the alpha coefficient in that the statistic indicates the consistency among multiple observations of the same performance measure.

The hands-on tests were found to be very reliable (see table 1). Test-retest reliability was 0.70. There was a significant retest gain in performance of over 0.8 standard deviation. Such gains over a time period of 7-10 days may reflect the positive impact of practice on the performance of infantry tasks or simply a better understanding of the hands-on testing procedures. Further analysis of these retest improvements showed that the gains were not related to aptitude; both high- and low-aptitude personnel made equivalent advances in performance. Alpha coefficients were consistently high for all MOSs. Test administrators also agreed on the scoring of the performance that they observed.

As expected, the written job knowledge test was found to be slightly more reliable than the hands-on measures. Table 2 shows that the test-retest reliability was 0.73 with no retest gains. The alpha coefficients ranged from 0.87 to 0.90 for the four MOSs. The JKT was a difficult test: an infantryman on average answered about 45 percent of the written items correctly.

Table 1. Reliability of hands-on performance test

| Reliability measure | Reliability<br>estimate | Oth       | er re | levant in | formatio | on       |
|---------------------|-------------------------|-----------|-------|-----------|----------|----------|
| Test-retest         |                         | Initial t | ·st   | Ret       | ect      |          |
| TODO TOUBE          |                         |           | SD    | Mean      | SD       | <u>N</u> |
| Rifleman            | 0.70                    |           | 8.6   | 59.4      | 8.2      | 190      |
| Alpha coeffic       | ient <sup>a</sup>       | Number of | test  | items     |          | _N_      |
| Rifleman            | 0.87 '                  | 71 and    | 68 t  | asks      |          | 880      |
| Machinegunn         | er 0.87                 | 72 and    | 70 t  | asks      |          | 257      |
| Mortarman           | 0.88                    | 75 and    | 72 t  | asks      |          | 217      |
| Assaultman          | 0.83                    | 80 and    | 76 t  | asks      |          | 239      |
| Scorer agreem       | ent                     |           |       |           |          |          |
| Rifleman            | 0.90                    |           |       |           |          |          |
| Machinegunn         | er 0.90                 |           |       |           |          |          |
| Mortarman           | 0.89                    |           |       |           |          |          |
| Assaultman          | 0.90                    |           |       |           |          |          |

a. Alpha reliability estimates are the mean for the two forms of the hands-on test. Differences between the two coefficients for any MOS were never greater than 0.02.

Table 2. Reliability of job knowledge test

| Reliability E  | Reliability<br>estimate | (             | Other re      | levant in   | formatio   | on  |
|----------------|-------------------------|---------------|---------------|-------------|------------|-----|
| Test-retest    |                         | <u>Initia</u> | <u>L test</u> | Ret         | <u>est</u> |     |
|                |                         | <u>Mean</u>   | SD            | <u>Mean</u> | SD         | N   |
| Rifleman       | 0.73                    | 43.5          | 9.0           | 43.8        | 10.5       | 189 |
| Alpha coeffic: | ient <sup>a</sup>       | Number        | of tes        | t items     |            | N   |
| Rifleman       | 0.89                    | 199 for       | r each to     | est form    |            | 896 |
| Machinegunne   | er 0.89                 | 190 for       | r each to     | est form    |            | 306 |
| Mortarman      | 0.90                    | 189 for       | r each to     | est form    | •          | 312 |
| Assaultman     | 0.87                    | 190 for       | r each to     | est form    |            | 314 |

a. Alpha reliability estimates are the mean for the two forms of the job knowledge test. Differences between the two coefficients for any MOS were never greater than 0.02.

A simple analysis of variance design of subjects, ratings, and their interaction showed that proficiency marks were reasonably stable and consistent. Three reliability estimates were computed based on the three, four, and five most recent ratings that an individual had received. Table 3 reports reliabilities for the ratings that ranged from 0.66 to 0.70.

Table 3. Reliability of proficiency marks

| Reliability           | Reliability | Mean s  | quares |      |
|-----------------------|-------------|---------|--------|------|
| measure               | estimate    | Between | Within | N    |
| ANOVA reliability     |             |         |        |      |
| 3 most recent ratings | 0.66        | 24.09   | 8.17   | 1755 |
| 4 most recent ratings | 0.67        | 25.54   | 8.42   | 1406 |
| 5 most recent ratings | 0.70        | 25.42   | 7.67   | 1104 |

Given that the new predictor tests were somewhat shorter in length, their reliabilities tended to be slightly lower than those of the criterion measures. Table 4 shows that test-retest estimates were high for SP and ASAP, and relatively low for the other three tests. The ASAP is a factual questionnaire, so such high reliabilities were expected. A significant retest gain of about 0.75 standard deviation was noted for VF; all other tests showed negligible improvements. Again, further analysis of the VF retest improvements showed that they were not related to aptitude. Alpha coefficients for each test were also moderately high.

Table 4. Reliability of new predictor tests

| Reliability<br>measure | Reliability<br>estimate | 01            | ther rele  | evant in | Formatio | n        |
|------------------------|-------------------------|---------------|------------|----------|----------|----------|
| Test-retest            |                         | <u>Initia</u> | l test     | Ret      | test     |          |
|                        |                         | <u>Mean</u>   | <u>_sv</u> | Mean     | SD       | <u>N</u> |
| SP                     | 0.73                    | 11.4          | 3.9        | 11.9     | 4.2      | 197      |
| RS                     | 0.58                    | 18.9          | 5.8        | 19.2     | 6.2      | 197      |
| AS                     | 0.57                    | 22.3          | 7.2        | 22.3     | 8.1      | 197      |
| VF                     | 0.63                    | 198.6         | 30.3       | 221.2    | .38.3    | 211      |
| ASAP                   | 0.90                    | 5.8           | 13.1       | 5.2      | 13.9     | 192      |
| Alpha coeffi           | Lcient                  | Number        | of test    | items    |          | N_       |
| SP                     | 0.78                    |               | 20 items   |          |          | 1837     |
| RS                     | 0.85                    |               | 30 items   |          |          | 1837     |
| AS                     | 0.88                    |               | 36 items   |          |          | 1837     |
| VF                     | 0.82                    |               | 4 trials   | 5        |          | 1849     |

#### Estimates of New Predictor Uniqueness

A necessary, but not sufficient, condition for new predictors to demonstrate increments in validity is that the new tests need to measure aptitudes that are somewhat unique relative to the ASVAB. Predictors that have high correlations with ASVAB can improve validity only by enhancing test reliability, which is unlikely given the already high ASVAB reliabilities. New tests that measure unique aptitudes have potential for incremental validity.

The uniqueness (U) of a new test is defined as the reliable variance of the test that is not related to ASVAB:

$$U = Rel(NP) - R^2(NP, ASVAB)$$
 (3)

where, Rel(NP) is the reliability of the new predictor test (NP), and  $R^2$ (NP, ASVAB) is the squared multiple correlation for the regression of the new predictor test on all ASVAB subtests adjusted for shrinkage. The estimates of uniqueness for each new predictor test are presented in table 5. These estimates were computed based on both enlistment and concurrent aptitude information using test-retest as the measure of reliability.

Table 5. Uniqueness estimates a for new predictor tests relative to enlistment and concurrent aptitude scores

| New<br>predictor | Aptitud    | e scores   |
|------------------|------------|------------|
| test             | Enlistment | Concurrent |
| SP               | 0.39       | 0.36       |
| RS               | 0.25       | 0.20       |
| AS               | 0.29       | 0.25       |
| VF               | 0.40       | 0.39       |
| ASAP             | 0.81       | 0.78       |

a. Estimates were based on test-retest reliability of new predictors and multiple correlations of the new predictors regressed on all ASVAB subtests. Reliabilities and multiple correlations were corrected for range restriction.

There was essentially no difference in the uniqueness estimate based on enlistment and concurrent aptitude. The ASAP showed the highest uniqueness due to both its high test-retest reliability and lack of relationship with the ASVAB subtests. Video firing and the space perception test were comparable with moderate levels of uniqueness; the reasoning and assembling objects tests showed the least promise of

having unique and reliable variance. From the uniqueness perspective, ASAP, video firing, and space perception would be the best candidate tests for possibly improving the validity of the ASVAB against infantry job performance.

#### Intercorrelations and First-Order Validity

The intercorrelations among the new predictors were examined to determine the degree to which the tests measured the same concept. The relationship between the new predictors and ASVAB as well as the validity of each test with five performance criteria were computed. Table 6 reports these results for the infantry rifleman. The correlations are corrected for range restriction; sample and corrected correlation values are reported in appendix A for each MOS.

Table 6. Correlations of infantry rifleman criteria and predictors corrected for range restriction

| PT JKT   | PRO  0.34                                                                            | GPA A <sup>a</sup>                                                                                                                                         | GPA B <sup>a</sup>                                                                                                                                                                                                | SP    | Predic<br>RS | AS    | VF    | ASAP  |
|----------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|-------|-------|-------|
|          | N 34                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       |       |
|          | n 34                                                                                 |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       |       |
|          |                                                                                      | 0.61                                                                                                                                                       | 0.40                                                                                                                                                                                                              | 0.47  | 0,60         | 0.47  | 0.42  | 0.27  |
|          |                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       |       |
| 3 0.78   |                                                                                      | 0.65                                                                                                                                                       | 0.40                                                                                                                                                                                                              | 0.55  | 0.63         | 0.54  | 0.49  | 0.23  |
| 57 0.80  | 0.38                                                                                 | 0.66                                                                                                                                                       | 0.41                                                                                                                                                                                                              | 0.61  | 0.65         | 0.59  | 0.54  | 0.33  |
|          |                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       |       |
| 58 0.81  | 0.38                                                                                 | 0.61                                                                                                                                                       | 0.40                                                                                                                                                                                                              | 0.50  | 0.63         | 0.52  | 0.44  | 0.29  |
|          | -                                                                                    |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       | 0.26  |
|          |                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       | 0.37  |
| 0.03     | 0.41                                                                                 | 0.07                                                                                                                                                       | 0.42                                                                                                                                                                                                              | 0.04  | 0.69         | 0.03  | 0.55  | 0.57  |
|          |                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       |       |
| 45 0.46  | 0.23                                                                                 | 0.37                                                                                                                                                       | 0.24                                                                                                                                                                                                              | 1.00  | 0.54         | 0.59  | 0.38  | 0.10  |
| 47 0.59  | 0.29                                                                                 | 0.43                                                                                                                                                       | 0.33                                                                                                                                                                                                              | 0.54  | 1.00         | 0.63  | 0.40  | 0.21  |
| 47 0.55  | 0.23                                                                                 | 0.41                                                                                                                                                       |                                                                                                                                                                                                                   |       |              |       | -     | 0.17  |
|          |                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       | - • - | 0.11  |
|          |                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       |       |
| 22 0.29  | 0.31                                                                                 | 0.14                                                                                                                                                       | 0.09                                                                                                                                                                                                              | 0.10  | 0.21         | 0.17  | 0.11  | 1.00  |
| 80 44.35 | 43.69                                                                                | 49.83                                                                                                                                                      | 50.13                                                                                                                                                                                                             | 11.01 | 18.76        | 22.03 | 196.1 | 6.56  |
| 22 12.08 | 2.19                                                                                 | 11.62                                                                                                                                                      | 10.51                                                                                                                                                                                                             | 4.32  | 6.40         | 7.86  | 33.71 | 13.03 |
|          |                                                                                      |                                                                                                                                                            |                                                                                                                                                                                                                   |       |              |       |       | 870   |
|          | 58 0.81<br>53 0.80<br>59 0.83<br>45 0.46<br>47 0.59<br>47 0.55<br>49 0.42<br>22 0.29 | 0.81 0.38<br>0.80 0.39<br>0.83 0.41<br>0.59 0.23<br>0.55 0.23<br>0.47 0.55 0.23<br>0.49 0.42 0.27<br>0.29 0.31<br>0.40 0.29<br>0.29 0.31<br>0.41 0.29 0.31 | 0.81 0.38 0.61<br>0.80 0.39 0.63<br>0.83 0.41 0.67<br>0.45 0.46 0.23 0.37<br>0.47 0.59 0.29 0.43<br>0.47 0.55 0.23 0.41<br>0.49 0.42 0.27 0.44<br>0.22 0.29 0.31 0.14<br>0.44 0.25 43.69 49.83<br>0.20 0.21 11.62 | 58    | 58           | 58    | 58    | 58    |

a. Statistics for GPA include examinees from other MOSs.

b. The correlations and validities for ASVAB represent multiple correlations based on all ASVAB subtests.

Three major observations were drawn from table 6. First, the three paper-and-pencil measures of spatial ability (SP, RS, and AS) were highly correlated (0.54 to 0.63). The video firing test was moderately related to the spatial tests and, as expected, the ASAP was not overly related to any of the other predictor measures. Second, the intercorrelations between the new predictors and the existing ASVAB subtests showed RS to be most highly related to ASVAB, and ASAP the least related. The results were consistent for both enlistment and concurrent aptitude scores. Third, the pattern of validities between the new tests and the five performance criteria were very similar: ASAP was least related to each performance criteria; all other new predictors were about equally related to the performance measures. Similar correlations were noted for the other MOSs that are reported in appendix A.

The multiple correlations noted in table 6 between ASVAB and each performance criterion provided the base against which all judgments of incremental validity were made. The validities show that ASVAB was highly related to JKT (0.80), HOPT (0.67), and GPA for Base A (0.66). The ASVAB was moderately related to PRO (0.38) and GPA for Base B (0.41). Similar validities were noted for concurrent aptitude information. The new tests would have to demonstrate improvements in validity above and beyond these levels that ASVAB is currently able to achieve.

#### Incremental Validity

Tables 7 through 11 report the ASVAB validity base (taken from table 6) and the validity increments due to each new predictor test. A separate table is reported for each MOS. The tables contain the following information:

- o Multiple correlations (MR), sample validities, and validities corrected for range restriction
- o Estimates of the cross-validated multiple correlations (CVR)
- o Increment (IN) in the cross-validated multiple correlation over the ASVAB validity base due to the new predictor
- o Increment expressed as a percentage improvement (%) over the ASVAB base (IN divided by ASVAB-base CVR).

Grade point average was combined for all four MOSs and reported in a separate table because all individuals received the same initial infantry training. Findings are reported for both enlistment and concurrent aptitude information.

Table 8. Increments in validity by new predictor tests for infantry machinegunner performance

| ASVAB 0.6550 0.6154 0.6356 0.6164 0.5751 0.2364 0.0688 0.0533 135.  ASVAB 0.6550 0.6154 0.0091 1.5 0.6356 0.0154 2.7 0.3020 0.1621 0.0933 135.  ASVAB 0.6550 0.6154 0.0091 1.5 0.6356 0.6906 1.0 0.2364 0.0688 0.0503 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.0505 0.050 |               |          |        |        | a.  | Panel A: |     | Sample validities | 8   |        |        |        |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|--------|--------|-----|----------|-----|-------------------|-----|--------|--------|--------|-------|
| VR         IN         %         MR         CVR         IN         %         MR         CVR         IN         %         MR         CVR         IN         %         MR         CVR         IN         IN<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |          | НОР    | ř      |     |          | JKT |                   |     |        | PRO    | _      |       |
| 963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | MR       | CVR    | Z      | ĸ   | ¥.       | CVR | Z                 | ĸ   | MR.    | CVR    | N.     | ×     |
| 0.2364 0.0688<br>154 0.0091 1.5 0.6336 0.5906 0.0154 2.7 0.3020 0.1621 0.0933<br>104 0.00041 0.7 0.6255 0.5811 0.0060 1.0 0.2427 0.0621 ** 0.0033<br>105 0.0056 0.9 0.6219 0.5770 0.0018 0.3 0.2356 0.0506 ** 0.00134 2.2 0.6216 0.5770 0.0015 0.3 0.3953 0.2962 0.2274<br>197 0.0134 2.2 0.6216 0.5766 0.0015 0.3 0.3953 0.2962 0.2274<br>197 0.0134 2.2 0.6891 0.6578 0.0180 2.7 0.3103 0.1751 0.0556<br>1983 0.0067 1.1 0.6966 0.6530 0.0051 0.8 0.2705 0.1195<br>1994 0.0048 0.8 0.6949 0.6610 0.0032 0.5 0.2682 3.1072 ** 0.0048 0.8 0.6570 0.0316 4.8 0.2682 3.1072 ** 0.0058 0.6142 2.4 0.6915 0.6571 ** 0.4075 0.3125 0.1930 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Enlistn       | ment apt | itude  |        |     |          |     |                   |     |        |        |        |       |
| 154 0.0091 1.5 0.6336 0.5906 0.0154 2.7 0.3020 0.1621 0.0933 104 0.0041 0.7 0.6255 0.5811 0.0060 1.0 0.2427 0.0621 ** 334 * 0.6566 0.6171 0.0419 7.3 0.2366 0.0506 ** 119 0.0056 0.9 0.6219 0.5770 0.0018 0.3 0.2365 0.0503 ** 197 0.0134 2.2 0.6216 0.5766 0.0015 0.3 0.3953 0.2962 0.2774  916 0.0154 2.7 0.7080 0.6758 0.0180 2.7 0.3103 0.1751 0.0556 983 0.0067 1.1 0.6966 0.6630 0.0051 0.8 0.2705 0.1112 ** 914 0.0048 0.8 0.6949 0.6610 0.0032 0.5 0.2682 3.1072 ** 915 0.0142 2.4 0.6915 0.6571 ** 916 0.0048 0.8 0.6915 0.6571 0.0031 0.3103 0.1033 0.1033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASVAB         | 0.6435   |        |        |     | 9.6164   |     |                   |     | 0.2364 | 0.0688 |        |       |
| 104 0.0041 0.7 0.6255 0.5811 0.0060 1.0 0.2427 0.0621 **  334 * 0.6566 0.6171 0.0419 7.3 0.2366 0.0506 **  119 0.0056 0.9 0.6219 0.5770 0.0018 0.3 0.2355 0.0503 **  197 0.0134 2.2 0.6216 0.5766 0.0015 0.3 0.3953 0.2962 0.2774  316 0.06891 0.6578 0.0180 2.7 0.3103 0.1195  326 0.0067 1.1 0.6966 0.6630 0.0051 0.8 0.2705 0.1112 **  327 0.0142 2.4 0.6915 0.6571 **  328 0.0048 0.8 0.894 0.6510 0.0336 4.8 0.2652 0.1037 **  328 0.0142 2.4 0.6915 0.6571 **  329 0.6610 0.0032 0.5 0.2682 0.1033 **  320 0.0048 0.8 0.8 0.6510 0.0031 0.5 0.3125 0.1930 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SP            | 0.6550   |        | 0.0091 | 1.5 | 0.6336   |     |                   |     | 0.3020 | 0.1621 | 0.0933 | 135.6 |
| 934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS            | 0.6506   |        | 0.0041 | 0.7 | 0.6255   |     |                   |     | 0.2427 | 0.0621 | *      | *     |
| 119 0.0056 0.9 0.6219 0.5770 0.0018 0.3 9.2365 0.0503 * 197 0.0134 2.2 0.6216 0.5766 0.0015 0.3 0.3953 0.2962 0.2274  916 0.6891 0.6578 0.0180 2.7 0.3103 0.1751 0.0556  923 0.0067 1.1 0.6966 0.6530 0.0051 0.8 0.2705 0.1112 * 934 0.0048 0.8 0.6949 0.6619 0.0032 0.5 0.2659 0.1033 * 954 0.0048 0.8 0.6949 0.6619 0.0032 0.5 0.2682 3.1072 * 958 0.0142 2.4 0.6915 0.6571 * * 0.4075 0.3125 0.1930 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΥS            | 0.6446   |        | •      | •   | 9.6566   |     |                   |     | 0.2366 | 0.0506 | *      | *     |
| 197 0.0134 2.2 0.6216 0.5766 0.0015 0.3 0.3953 0.2962 0.2274  916 0.6891 0.6578 0.0180 2.7 0.3103 0.1751 0.0556  983 0.0067 1.1 0.6966 0.6630 0.0051 0.8 0.2705 0.1112 *  984 0.0048 0.8 0.6949 0.6619 0.0032 0.5 0.2653 0.1033 *  964 0.0048 0.8 0.6949 0.6610 0.0032 0.5 0.2653 0.1930 1  989 0.0142 2.4 0.6915 0.6571 * 0.4075 0.3125 0.1930 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Α.<br>Α.      | 0.6519   |        | _      | 6.0 | 0.6219   |     |                   |     | 9.2365 | 0.0503 | *      | *     |
| 916<br>976<br>976<br>976<br>987<br>983<br>983<br>984<br>984<br>985<br>984<br>984<br>984<br>984<br>984<br>984<br>984<br>985<br>984<br>985<br>985<br>985<br>985<br>985<br>985<br>985<br>985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>A</b> S/iP | 0.6587   |        | -      | 2.5 | 0.6216   |     |                   |     | 0.3953 | 0.2962 | 0.2274 | 330.4 |
| 0.6306       0.5916       0.6891       0.6578       0.2659       0.1195         0.6482       0.6076       0.0160       2.7       0.7080       0.6758       0.0180       2.7       0.3103       0.1751         0.6402       0.5983       0.0067       1.1       0.6966       0.6530       0.0051       0.8       0.2705       0.1112         0.6322       0.5981       *       *       0.7199       0.6894       0.0316       4.8       0.2659       0.1033         0.6385       0.5964       0.0048       0.8       0.6949       0.6610       0.0032       0.5       0.2682       3.1072         0.6466       0.6058       0.0142       2.4       0.6915       0.6571       *       0.4075       0.3125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Concur        | rent Apt | i tude |        |     |          |     |                   |     |        |        |        |       |
| 0.6482       0.6076       0.0160       2.7       0.7080       0.6758       0.0180       2.7       0.1751         0.6402       0.5983       0.0067       1.1       0.6966       0.6630       0.0051       0.8       0.2705       0.1112         0.6322       0.5891       *       0.7199       0.6894       0.0316       4.8       0.2659       0.1033         0.6385       0.5964       0.0048       0.8       0.6949       0.6610       0.0032       0.5       0.2682       3.1072         0.6466       0.6058       0.0142       2.4       0.6915       0.6571       *       0.4075       0.3125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ASVAB         | 9.6396   |        |        |     | 0.6891   |     |                   |     | 0.2659 | 0.1195 |        |       |
| 0.6402       0.5983       0.0067       1.1       0.6966       0.6530       0.0051       0.8       0.2705       0.1112         0.6322       0.5891       •       •       0.7199       0.6894       0.0316       4.8       0.2659       0.1033         0.6385       0.5964       0.0048       0.8       0.6949       0.6610       0.0032       0.5       0.2682       3.1072         0.6466       0.6058       0.0142       2.4       0.6915       0.6571       •       0.4075       0.3125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SP            | 0.6482   |        |        | 2.7 | 0.7080   |     |                   | 2.7 | 0.3103 | 9.1751 | 9.0556 | 46.5  |
| 0.6322 0.5891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS            | 0.6402   |        |        | -:  | 9.6966   |     |                   | 8.8 | 0.2705 | 0.1112 | *      | *     |
| 0.6385 0.5964 0.0048 0.8 0.6949 0.6610 0.0032 0.5 0.2682 3.1072 0.6466 0.6058 0.0142 2.4 0.6915 0.6571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٧S            | 0.6322   |        | •      | •   | 9.7199   |     |                   | 4.8 | 0.2659 | 0.1033 | *      | •     |
| 0.6466 0.6058 0.0142 2.4 0.6915 0.6571 * * 0.4075 0.3125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٧F            | 0.6385   |        | 0.0048 | 8.8 | 0.6949   |     |                   | 9.5 | 0.2682 | 3.1072 | •      | *     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ASAP          | 0.6466   | _      | 0.0142 | 2.4 | 0.6915   |     |                   | •   | 9.4075 | 0.3125 | 0.1930 | 161.5 |

Panel B: Validities corrected for range restriction

|          | ×                             |         |        | 23.9   | *      | *      | •      | 67.1                |         |        | 14.7   | *      | *      | •      | 56.4   |
|----------|-------------------------------|---------|--------|--------|--------|--------|--------|---------------------|---------|--------|--------|--------|--------|--------|--------|
|          | N.                            |         |        | 9.0533 | •      | •      | •      | 0.1497              |         |        | 9.0353 | *      | *      | •      | 0.1352 |
| PRO      | CVR                           |         | 0.2233 | 9.2766 | 0.2172 | 0.2112 | 9.2111 | 0.3730              |         | 0.2399 | 0.2752 | 0.2340 | 0.2282 | 0.2297 | 0.3751 |
|          | MR                            |         | 0.3344 | 0.3808 | 0.3386 | 0.3345 | 0.3344 | 0.4541              |         | 0.3462 | 0.3798 | 0.3503 | 0.3462 | 0.3473 | 0.4557 |
|          | ĸ                             |         |        |        |        |        | 0.1    |                     |         |        |        | 9.5    |        |        |        |
|          | N                             |         |        | 0.0072 | 0.6027 | 0.0231 | 0.0008 | 9000.0              |         |        | 9.9115 | 9.0040 | 0.0188 | 0.0026 | •      |
| JKT      | CVR                           |         | 0.7645 | 9.7717 | 9.7672 | 0.7846 | 0.7653 | 0.7651              |         | 9.8004 | 0.8119 | 0.8044 | 0.8192 | 0.8030 | 0.8000 |
|          | MR                            |         | 0.7846 | 0.7930 | 0.7890 | 0.8045 | 0.7873 | 9.7871              |         |        |        |        |        |        | 0.8184 |
|          | к                             |         | •      | 9.6    | 9.3    | *      | 4.0    | 6.9                 |         |        | 9.1    |        | *      |        | 1.0    |
| <b>—</b> | X.                            |         |        | 0.0048 | 0.0021 | •      | 0.0029 | 0.0071              |         |        | 0.0119 | 0.0058 | *      | 0.0043 | 0.0017 |
| HOPT     | CVR                           | tude    | 0.7626 | 9.7674 | 0.7647 | 0.7611 | 9.7655 | 0.7697              | tude    | 0.7469 | 0.7588 | 0.7527 | 0.7467 | 9.7512 | 9.7546 |
|          | MR CVR<br>Enlistment Aptitude | 9.7828  | 0.7891 | 0.7867 | 0.7835 | 9.7874 | 0.7911 | Concurrent Aptitude | 9.7686  | 9.7814 | 0.7760 | 9.7796 | 9.7746 | 9.7776 |        |
|          |                               | Enlistm | ASVAB  | S      | RS     | ٧S     | ٧F     | ASVP                | Concurr | ASVAB  | SP     | RS     | ΥS     | ٧F     | ASAP   |

Increment in cross-validated multiple correlation by new test was negative due to adjustment made for shrinkage.

Table 7. Increments in validity by new predictor tests for infantry rifleman performance

| ASVAB 0.5371 0.5225 SASVAB 0.5472 0.5315 0.0090 RS 0.5468 0.5311 0.0086 AS 0.5553 0.5401 0.0176 VF 0.5673 0.5299 0.0074 Concurrent Aptitude  ASVAB 0.5684 0.553 0.0074 Concurrent Aptitude  ASVAB 0.5684 0.553 0.0035 RS 0.5731 0.5581 0.0028 AS 0.5735 0.5581 0.0028 AS 0.5735 0.5581 0.0028 AS 0.5735 0.5592 0.0039 ASAP 0.5735 0.5592 0.0039 | ww 00-40       | 0.5999<br>7 0.6055<br>7 0.6025<br>4 0.6392<br>8 0.6032<br>4 0.614<br>6 0.6614<br>6 0.6626<br>5 0.6695<br>7 0.6672<br>7 0.6672 | CV C | 98453<br>.03233<br>.0338<br>.03233<br>.0323<br>.0323<br>.0333<br>.0333<br>.0333        | % 0.2.0.0.0 0.1.1.0.0 o.0.0 o. | 0.2452 0.0.2563 0.0.2487 0.0.2487 0.0.2656 0.0.3347 0.0.2829 0.0.2829 0.0.2852 0.0.2852 0.0.2853 0.0.2853 0.0.2865 0.0.2853 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2865 0.0.2 | CVR<br>0.2028<br>0.2050<br>0.2025<br>0.2025<br>0.2228<br>0.3022<br>0.2442<br>0.2457<br>0.2457<br>0.2457<br>0.2457    | 0.00833<br>0.00893<br>0.00994<br>0.0994<br>0.099121 | * + . 4<br>9 . 9<br>9 . 9<br>4 . 9<br>1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------|
| ment aptitude  0.5371 0.5225 0.5472 0.5315 0.5468 0.5311 0.5553 0.5401 0.5673 0.5527 0.5456 0.5299  rent Aptitude 0.5735 0.5587 0.5735 0.5587 0.5778 0.5587 0.5778 0.5587 0.5778 0.5581                                                                                                                                                         | ww- 00-40      | 0.5999<br>0.6055<br>0.6224<br>0.6392<br>0.6332<br>0.6147<br>0.6614<br>0.6626<br>0.6630<br>0.6672                              | •                                        | . 0045<br>. 0223<br>. 0338<br>. 0022<br>. 0023<br>. 0002<br>. 0039<br>. 0050<br>. 0050 | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2452<br>0.2508<br>0.2508<br>0.2563<br>0.2487<br>0.2656<br>0.3347<br>0.2829<br>0.2838<br>0.2852<br>0.2852<br>0.2852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2028<br>0.2050<br>0.2055<br>0.2025<br>0.2228<br>0.3022<br>0.2453<br>0.2453<br>0.2453<br>0.2453<br>0.2530<br>0.3586 | 00 00                                               | -4 00 4                                                                       |
| 0.5371 0.5225<br>0.5472 0.5315<br>0.5468 0.5311<br>0.5553 0.5401<br>0.5673 0.5527<br>0.5456 0.5299<br>rent Aptitude<br>0.5684 0.5553<br>0.5731 0.5587<br>0.5778 0.5581<br>0.5778 0.5581<br>0.5778 0.5581                                                                                                                                        | n.n 00-40      | 0.5999<br>0.6955<br>0.6224<br>0.6392<br>0.6147<br>0.6614<br>0.6626<br>0.6630<br>0.6672                                        |                                          | . 0045<br>. 0223<br>. 0398<br>. 0021<br>. 0199<br>. 0006<br>. 0050<br>. 0050           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.2452<br>0.2568<br>0.2563<br>0.2487<br>0.2656<br>0.3347<br>0.2838<br>0.2838<br>0.2852<br>0.2852<br>0.2852<br>0.2852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.2028<br>9.2050<br>9.2117<br>9.2025<br>9.2228<br>9.3022<br>9.2442<br>9.2442<br>9.2457<br>9.2457<br>9.2457<br>9.2457 | 00 00 00                                            | - 4 0 0 4 10 10 10 10 10 10 10 10 10 10 10 10 10                              |
| 0.5456 0.5511<br>0.5573 0.5527<br>0.5456 0.5299<br>rent Aptitude<br>0.5684 0.5553<br>0.5731 0.5587<br>0.5778 0.5581<br>0.5778 0.5581<br>0.5778 0.5581<br>0.5778 0.5581                                                                                                                                                                          |                | 0.65224<br>0.63224<br>0.6932<br>0.6147<br>0.6626<br>0.6626<br>0.6630<br>0.6630                                                |                                          | . 60223<br>. 60223<br>. 60424<br>. 60424<br>. 60424<br>. 6056<br>. 6056                | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2553<br>0.2487<br>0.2487<br>0.2556<br>0.3347<br>0.2838<br>0.2838<br>0.2852<br>0.2852<br>0.2853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.2453<br>6.2028<br>6.2028<br>6.3022<br>6.2442<br>6.2445<br>6.2457<br>6.2457<br>6.2457<br>6.2598<br>6.3286           |                                                     | - 4 0 0                                                                       |
| 0.5553 0.5491<br>0.5673 0.5527<br>0.5456 0.5299<br>rent Aptitude<br>0.5731 0.553<br>0.5731 0.5587<br>0.5778 0.5581<br>0.5778 0.5581<br>0.5778 0.5581<br>0.5778 0.5581                                                                                                                                                                           |                | 0.6322<br>0.6932<br>0.6932<br>0.6147<br>0.6626<br>0.6695<br>0.6630<br>0.6672                                                  |                                          | . 0029<br>. 0029<br>. 00199<br>. 00199<br>. 0050<br>. 0050                             | Ō                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2487<br>0.2556<br>0.3347<br>0.2829<br>0.2838<br>0.2852<br>0.2852<br>0.2852<br>0.3833<br>0.3833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2028<br>0.2028<br>0.3022<br>0.2442<br>0.2447<br>0.2457<br>0.2457<br>0.2457                                         |                                                     | 4 6 6 4 4 5 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                            |
| 0.5673 0.5527<br>0.5456 0.5299<br>rent Aptitude<br>0.5684 0.5553<br>0.5731 0.5587<br>0.5778 0.5587<br>0.5778 0.5637<br>0.5915 0.5781<br>0.5735 0.5592                                                                                                                                                                                           |                | 0.6032<br>0.6147<br>0.6626<br>0.6695<br>0.6815<br>0.6630<br>0.6672                                                            |                                          | . 00002<br>. 00002<br>. 00006<br>. 00006<br>. 00000                                    | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2556<br>0.3347<br>0.2829<br>0.2838<br>0.2852<br>0.2852<br>0.2858<br>0.3833<br>0.3583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.2228<br>9.3822<br>9.2442<br>9.2442<br>9.2457<br>9.2457<br>9.2457<br>9.2598<br>9.3286                               | 00 00                                               |                                                                               |
| 0.5456 0.5299 rent Aptitude 0.5684 0.5553 0.5731 0.5587 0.5778 0.5581 0.5778 0.5637 0.5915 0.5781 0.5735 0.5592                                                                                                                                                                                                                                 | ÷ 00+40        | 0.6147<br>0.6614<br>0.6626<br>0.6695<br>0.6815<br>0.6672<br>1.dities                                                          |                                          | .0141<br>.0002<br>.00074<br>.0199<br>.0006<br>.0050                                    | , o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3347<br>0.2829<br>0.2838<br>0.2852<br>0.2859<br>0.2859<br>0.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3022<br>0.2469<br>0.2442<br>0.2457<br>0.2457<br>0.2530<br>0.3286                                                   | 0 00                                                | 49.<br>33.                                                                    |
| 0.5684 0.5553<br>0.5684 0.5553<br>0.5731 0.5587<br>0.5725 9.5581<br>0.5778 0.5581<br>0.5915 0.5581<br>0.5735 0.5592                                                                                                                                                                                                                             | 0,0,÷,0,       | 0.6614<br>0.6626<br>0.6695<br>0.6815<br>0.6672<br>0.6672                                                                      |                                          | .0002<br>.0074<br>.0199<br>.0050<br>.0050                                              | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2829<br>0.2838<br>0.2852<br>0.2852<br>0.2956<br>0.3583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2469<br>0.2442<br>0.2457<br>0.2432<br>0.2598<br>0.3286                                                             | 90                                                  | * * * * .<br>33.                                                              |
| 0.5684 0.5553<br>0.5731 0.5587<br>0.5725 0.5581<br>0.5778 0.5637<br>0.5915 0.5781<br>0.5735 0.5592                                                                                                                                                                                                                                              | 0,0,±,4,0,<br> | 0.6614<br>0.6626<br>0.6695<br>0.6815<br>0.6630<br>0.6672                                                                      |                                          | .0002<br>.00199<br>.0050<br>.0050                                                      | Ö                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.2829<br>0.2838<br>0.2852<br>0.2829<br>0.2966<br>0.3583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2469<br>0.2442<br>0.2457<br>0.2432<br>0.2590<br>0.3286                                                             | 00                                                  | * * * * .<br>                                                                 |
| 6.5731 6.5587<br>6.5725 9.5581<br>6.5778 6.5637<br>6.5915 6.5781<br>6.5735 6.5592                                                                                                                                                                                                                                                               | 00+40          | 0.6626<br>0.6625<br>0.6835<br>0.6630<br>0.6672                                                                                |                                          | .0002<br>.0074<br>.0199<br>.0006<br>.0050                                              | , o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2838<br>0.2838<br>0.2852<br>0.2966<br>0.3583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.2442<br>0.2457<br>0.2457<br>0.2590<br>0.3286                                                                       | 00                                                  | 4 4 4 5                                                                       |
| 0.5725 9.5581<br>0.5778 0.5637<br>0.5915 0.5781<br>0.5735 0.5592                                                                                                                                                                                                                                                                                | 4.0<br>        | 0.6695<br>0.6815<br>0.6630<br>0.6672                                                                                          |                                          | .0074<br>.00906<br>.0050                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2852<br>0.2829<br>0.2966<br>0.3583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2457<br>0.2457<br>0.2590<br>0.3286                                                                                 | 00                                                  | 3.44                                                                          |
| 0.5778 0.5637<br>0.5915 0.5781<br>0.5735 0.5592                                                                                                                                                                                                                                                                                                 | ÷ 4.0          | 0.6815<br>0.6630<br>0.6672                                                                                                    |                                          | .0199<br>.0006<br>.0050<br>for                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2829<br>0.2966<br>0.3583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2432<br>0.2590<br>0.3286                                                                                           | 00                                                  | 4 4 E                                                                         |
| 0.5735 0.5592<br>0.5735 0.5592                                                                                                                                                                                                                                                                                                                  | 4.0.           | 0.6630<br>0.6672<br>lidities                                                                                                  |                                          | .0006<br>.0050<br>for                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2966<br>0.3583<br>restrict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2590<br>0.3286<br>ion                                                                                              | 00                                                  | 33.                                                                           |
| 0.5735 0.5592                                                                                                                                                                                                                                                                                                                                   | .:             | 0.6672<br>lidities                                                                                                            |                                          | .0050<br>for                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3583<br>restrict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3286                                                                                                               | 60                                                  | 33.                                                                           |
| Pane                                                                                                                                                                                                                                                                                                                                            | ä              | lidities                                                                                                                      |                                          | for                                                                                    | abub.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | restrict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | no                                                                                                                   |                                                     |                                                                               |
| HOPT                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                               | \<br>\<br>\                              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Caa                                                                                                                  |                                                     |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                                                               | 5                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                     |                                                                               |
| MR CVR                                                                                                                                                                                                                                                                                                                                          | IN %           | MR                                                                                                                            | CVR                                      | NI                                                                                     | ĸ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CVR                                                                                                                  | Z                                                   | *                                                                             |
| Enlistment Aptitude                                                                                                                                                                                                                                                                                                                             |                |                                                                                                                               |                                          |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                     |                                                                               |
| 0.6712 0.6621                                                                                                                                                                                                                                                                                                                                   |                | 0.8017                                                                                                                        | 9.7968                                   |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3595                                                                                                               |                                                     |                                                                               |
| 0.6773                                                                                                                                                                                                                                                                                                                                          |                | 0.8041                                                                                                                        | 0.7986                                   | 0.0018                                                                                 | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.3873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3605                                                                                                               | 0.0010                                              | 6.3                                                                           |
| RS 0.6772 0.6674 0.00                                                                                                                                                                                                                                                                                                                           |                | 0.8112                                                                                                                        | 9.8060                                   | 0.0093                                                                                 | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.3906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.3640                                                                                                               |                                                     | -                                                                             |
| 0.0023                                                                                                                                                                                                                                                                                                                                          |                | 0.8163                                                                                                                        | 6.8136                                   | 89.69                                                                                  | - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.3861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                      | •                                                   | •                                                                             |
| 0:6764 0.6666                                                                                                                                                                                                                                                                                                                                   | .0044 0.7      | 0.8080                                                                                                                        | 0.8027                                   | 6.0059<br>0.0059                                                                       | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4188                                                                                                               | 0.0592                                              | 16.5                                                                          |
| Concurrent Aptitude                                                                                                                                                                                                                                                                                                                             |                |                                                                                                                               |                                          |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                     |                                                                               |
| ASVAB 0.6899 0.6815                                                                                                                                                                                                                                                                                                                             |                | 0.8260                                                                                                                        | 0.8217                                   |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3848                                                                                                               |                                                     |                                                                               |
| 0.6927 0.6835 0                                                                                                                                                                                                                                                                                                                                 | 0              | 0.8264                                                                                                                        | 0.8217                                   | 0.0000                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3830                                                                                                               | *                                                   | *                                                                             |
| 9.6925 9.6833 8                                                                                                                                                                                                                                                                                                                                 | .0018 0.3      | 0.8296                                                                                                                        | 0.8249                                   | 0.0032                                                                                 | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3840                                                                                                               | •                                                   | *                                                                             |
| 0.6958 0.6867 0                                                                                                                                                                                                                                                                                                                                 | 0              | 0.8347                                                                                                                        | 0.8303                                   | 0.0085                                                                                 | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3824                                                                                                               |                                                     | •                                                                             |
| 8.7849 8.6962 8                                                                                                                                                                                                                                                                                                                                 | 0              |                                                                                                                               | 0.8221                                   |                                                                                        | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3922                                                                                                               |                                                     | 9                                                                             |
| Ø.6938 Ø.6839 Ø.                                                                                                                                                                                                                                                                                                                                | 9924 9.4       | 0.8285                                                                                                                        | 0.8238                                   | 0.0021                                                                                 | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | 0                                                   | 13.                                                                           |

Table 9. Increments in validity by new predictor tests for infantry mortarman performance

|            |                     |        |         | Φ.     | Panel A: | Sample | Sample validities                          | 8       |                                       |        |        |       |
|------------|---------------------|--------|---------|--------|----------|--------|--------------------------------------------|---------|---------------------------------------|--------|--------|-------|
|            |                     | HOPT   | ۳       |        |          | JKT    |                                            |         |                                       | PRO    |        |       |
|            | MR                  | CVR    | Z       | к      | MR       | CVR    | ZI                                         | ĸ       | MR                                    | CVR    | NI     | ×     |
| Enlist     | Enlistment aptitude | tude   |         |        |          |        |                                            |         |                                       |        |        |       |
| ASV.AR     | 0.5846              | 0.5350 |         |        | 0.6302   | 0.5878 |                                            |         | 0.1843                                | *      |        |       |
| g,         | 0.6037              | 0.5521 | 9.9171  | 3.2    | 0.6512   | 0.6077 |                                            |         | 0.2125                                | •      | •      | •     |
| S          | 0.5963              | 0.5434 | 0.0084  | 9.     | 0.6701   | 0.6297 | 0.0419                                     | 7.1     | 0.3118                                |        | •      | •     |
| SY         | 0.6106              | 0.5603 | 0.0253  | 4.7    | 9.6698   | 0.6189 |                                            |         | 0.2710                                | 0.1015 |        | *     |
| <b>; ;</b> | 0.6027              | 0.5509 | 0.0159  | 3.0    | 0.6536   | 0.6105 |                                            |         | 0.2399                                |        | •      | •     |
| AS'YP      | 0.5998              |        | 0.0126  | 2.4    | 0.6424   | 0.5974 |                                            | 1.6     | 0.4251                                | 0.3298 | •      | *     |
| Concur     | Concurrent Aptitude | itude  |         |        |          |        |                                            |         |                                       |        |        |       |
| ASV/AB     | 0.5871              | 0.5379 |         |        | 0.7160   | 0.6858 |                                            |         | 0.2377                                |        |        |       |
| ç          | 0.6013              | 0.5493 | 0.0115  | 2.1    | 0.7255   |        |                                            |         | 0.2529                                | 0.0691 | 0.0091 | 15    |
| SS         | 0.5882              | 0.5338 |         | *      | 9.7226   |        |                                            |         | 0.3111                                |        | 0.1073 | 178   |
| S          | 0.6055              | 0.5542 | 9.9164  | 3.0    | 0.7262   | 0.6942 | 0.0084                                     | 1.2     | 0.2960                                |        | 0.0833 | 138.8 |
| 7          | 0.5935              | 0.5400 |         | 4.0    | 9.7212   |        |                                            |         | 0.2691                                |        | 0.0382 | 63    |
| AS'4P      | 0.5986              | 0.5461 |         | 1.5    | 0.7217   |        |                                            |         | 0.4424                                |        | 0.2925 | 487   |
|            |                     |        | -       | ;      | -        |        |                                            |         | • • • • • • • • • • • • • • • • • • • | (      |        |       |
|            |                     |        | Fane B: | ٥<br>د |          | correc | Vallatties corrected for lange restriction | a du de | ופארונטו                              |        |        |       |
|            |                     |        | ļ       |        |          | 5      | į.                                         |         |                                       |        | _      |       |

|          | ĸ   |                     |        | *               | •        | *      | *        | •               |                     |        | 31.6   | 99.0   | 56.6     | 79.0   | 505.8  |
|----------|-----|---------------------|--------|-----------------|----------|--------|----------|-----------------|---------------------|--------|--------|--------|----------|--------|--------|
|          | NI  |                     |        | •               | *        | *      | •        | •               |                     |        |        |        | 0.0919 1 |        |        |
| PRO      | CVR |                     | *      | 0.0114          | 0.1807   | 9.1174 | 0.0648   | 0.3368          |                     | 0.0587 |        |        |          | 0.1050 |        |
|          | MR  |                     |        |                 |          |        | 0.2505   |                 |                     |        |        |        |          | 0.2730 |        |
|          | ĸ   |                     |        | <del>1</del> .8 | 3.8      | 5.8    | 2.0      | 6.9             |                     |        | 6.0    | 4.0    | 6.0      | 4.0    | 9.3    |
|          | N.  |                     |        | 0.0126          | 0.0268   | 0.0198 | 0.0144   | 0.0060          |                     |        | 0.0067 | 0.0033 | 0.0010   | 0.0031 | 0.0026 |
| JKT      | CVR |                     | 9.7096 | 0.7222          | 9.7365   | 0.7294 | 0.7240   | 0.7157          |                     | 9.7674 | 0.7741 | 9.7707 | 0.7743   | 9.7704 | 0.7699 |
|          | MR. |                     | 9.7371 | 0.7508          | 0.7633   | 9.7572 | 0.7524   | 0.7451          |                     | 0.7886 | 9.7966 | 0.7936 | 0.7969   | 0.7934 | 0.7930 |
|          | ĸ   |                     |        | 2.5             |          | 3.3    | 2.1      | <del>1</del> .6 |                     |        | 1.7    | •      | 2.3      | 9.5    | 1.2    |
| <b>;</b> | Z   |                     |        | 0.0134          | 0.0065   | 0.0200 | 0.0125   | 0.0033          |                     |        | 9.0104 | •      | 0.0141   | 0.0030 | 0.0072 |
| HOPT     | CVR | tude                | 9.6057 | 0.6191          | 9.6122   | 9.6256 | 0.6182   | 0.6156          | tude                | 9.6008 | 9.6112 | 0.5975 | 0.6149   | 0.6039 | 0.6080 |
|          | MR  | Enlistment Aptitude | 0.6455 | 0.6608          | 0.6549   | 9.6665 | 0.6601   | 0:6578          | Concurrent Aptitude | 0.6413 | 0.6541 | 0.6423 | 0.6573   | 0.6478 | 0.6513 |
|          |     | Enlistm             | ASV.4B | S.              | RS<br>SS | SY     | <b>Y</b> | ASAP .          | Concurr             | ASVAB  | S      | RS     | YS       | γF     | ASAP   |

Increment in cross-validated multiple correlation by new test was negative due to adjustment made for shrinkage.

Table 10. Increments in validity by new predictor tests for infantry assaultman performance

| HOPT   |       |       |          |              |          |        |        |      |          |        |        |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|--------------|----------|--------|--------|------|----------|--------|--------|------------|
| Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | HOP   | <b>-</b> |              |          | JKT    |        |      |          | PRO    | ,      |            |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¥     | CVR   | N.       | ĸ            | ¥.       | CVR    | IN     | ×    | MR       | CVR    | NI     | к          |
| 592 0.3893 0.9167 4.3 0.5009 0.4400 0.9134 3.1 0.3123 0.1940 0.950 0.4606 0.4606 0.9167 4.3 0.5174 0.4524 0.0024 0.5 0.3157 0.2479 0.0530 0.996 0.4199 0.0306 7.9 0.5448 0.4865 0.0465 10.6 0.3157 0.2479 0.0556 0.4199 0.0306 7.9 0.5448 0.4865 0.0465 10.6 0.3592 0.1983 0.1042 0.2929 0.0306 7.9 0.5448 0.4855 0.0455 0.0155 3.5 0.3952 0.2983 0.1042 0.2497 0.0556 0.3392 0.0898 0.2497 0.0556 0.3392 0.0898 0.0455 0.4555 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155  | apt   | itude |          |              |          |        |        |      |          |        |        |            |
| 0.4060 0.0167 4.3 0.5174 0.4534 0.0134 3.1 0.3577 0.2470 0.0530 0.4066 0.0167 4.3 0.5174 0.4534 0.0134 3.1 0.3557 0.2470 0.0530 0.4536 0.306 7.9 0.5484 0.4555 0.0465 10.6 0.3539 0.1983 0.0043 0.3979 0.0086 2.2 0.5191 0.4555 0.0155 3.5 0.3595 0.2983 0.1042 0.3993 0.0086 2.2 0.5191 0.4555 0.0155 3.5 0.3595 0.2983 0.1042 0.3993 0.0084 0.0054 0.0054 0.0054 0.0054 0.0055 0.0055 0.0055 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0066 0.0065 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066 0.00 | 4592  | 0     |          |              |          | 4      |        |      | 0.3123   | 0.1940 |        |            |
| 632 6.3866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1787  | ø     | 0.0167   |              |          | •      | 0.0134 | 3.1  | 0.3577   | 0.2470 | 0.0530 | 27.3       |
| 986 0.4359 0.0856 7.9 0.5448 0.44855 0.0155 3.5 0.3552 0.2353 0.1042 0.3566 0.4412 0.6 0.5567 0.4455 0.0155 3.5 0.3596 0.2297 0.4959 0.0356 7.9 0.6160 0.5749 0.0556 0.0155 3.5 0.3596 0.2297 0.1042 0.5563 0.0412 10.6 0.5245 0.5841 0.0554 0.0556 0.0155 3.5 0.3595 0.2497 0.0556 0.0455 0.0155 0.0155 0.0352 0.2983 0.1042 0.543 0.5035 0.0049 1.9 0.6245 0.5844 0.0054 0.0054 0.0049 1.9 0.6245 0.5844 0.0054 0.0054 0.0054 0.0054 0.0054 0.0059 0.02597 0.0250 0.0556 0.0055 0.0147 0.0056 0.5704 0.0056 0.0055 0.0147 0.0259 0.0055 0.0056 0.0055 0.0056 0.0055 0.0056 0.0055 0.0056 0.0055 0.0056 0.0055 0.0056 0.0055 0.0056 0.0055 0.0056 0.0056 0.0056 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.005 | 632   | o,    | •        | *            |          | •      | 0.0024 | Q. 9 | 9.3157   | 9.1861 | * 0    | * 6        |
| ## CVR IN \$\text{Thirds}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 986   | 0     | 0.0306   | 6.7          | •        | •      | 0.0465 | 9.0  | 6.3239   | 0.1983 | 0.0045 | 7.70       |
| Aptitude  543 0.5035 0.0000 2.2 0.5131 0.7533 0.0133 0.3590 0.2597 0.0134  5643 0.5035 0.0000 2.2 0.5131 0.7533 0.0134 0.0054 0.0 0.3500 0.2503 0.0254  5653 0.5036 0.0000 1.0 0.6160 0.5704 0.0 0.3500 0.2503 0.0254  5653 0.5039 0.0005 1.1 0.6255 0.5816 0.0006 1.2 0.4306 0.3448 0.0850  Former B: Volidities corrected for range restriction  HOPT  Aptitude  A | 986   | 9 0   | 0.0412   | 9. c         |          | ۲, ٦   |        |      | 0.5390   | 0.2437 | 9.6336 | 7.07       |
| Aptitude  543 0.5935  6.524 0.6964  6.0524 0.9654  6.05264  6.0526 0.5704  6.0526 0.5704  6.0526 0.5704  6.0526 0.5704  6.0526 0.5704  6.0526 0.5704  6.0526 0.6556  6.5704  6.0526 0.5267  6.0526 0.6556  6.5704  6.0526 0.5267  6.0526 0.6556  6.5704  6.0526 0.5704  6.0526 0.5704  6.0526 0.5704  6.0526 0.6557  6.0526 0.5267  6.0526 0.6557  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0526 0.5267  6.0527  6.0527  6.0527  6.0527  6.0527  6.0528  6.0527  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0628  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6.0528  6. | 77/   | 20    | 9.0000   | 7.7          | <u>.</u> | ₹.     | •      | •    | •        | 5      | 7101.0 |            |
| 6.52 0.5035 6.52 0.5084 6.0049 1.0 0.6245 0.5804 6.0054 6.53 0.5084 6.0054 6.53 0.5084 6.00525 0.5804 6.00525 0.5804 6.00535 0.5104 6.00535 0.5104 6.00535 0.5104 6.0055 1.1 0.6255 0.5816 0.0065 1.2 0.4305 0.2827 6.00590 0.0055 1.1 0.6255 0.5816 0.0066 1.2 0.4306 0.3448 0.0850 6.53 0.5090 0.0055 1.1 0.6255 0.5816 0.0065 1.2 0.4306 0.3448 0.0850 6.53 0.5090 0.0055 1.1 0.6255 0.5816 0.0065 1.2 0.4306 0.3448 0.0850 6.53 0.5090 0.0055 1.1 0.6255 0.5816 0.0065 1.2 0.4306 0.3448 0.0850 6.53 0.5136 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.5136 6.50 0.50 0.5136 6.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5 | Apt   | itude |          |              |          |        |        |      |          |        |        |            |
| 1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972   1972      | !     | •     |          |              |          |        |        |      |          | 0      |        |            |
| 652 0.5084 0.0049 1.0 0.5245 0.5894 0.0047 2.6 0.3598 0.2499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5543  | 6     |          | ,            | 0.6168   | 0.5/49 |        | •    | 9.5538   | 6.2597 | 6      | 0          |
| Fig. 6   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.584   1.5   | 632   | 0     | 0.0049   | <u>.</u>     | 0.6245   | 0.5804 | 0.0054 | 9.0  | 9.3832   | 6.2821 | 770    | ο.         |
| HOPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5543  | 0     | •        | *            | •        |        | • (    | • (  | 9.3501   | 0.2503 | •      | •          |
| HOPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9999  | ø.    | 0.0034   | 6.           | •        |        | 0.0147 | 5.6  | 0.3598   | 0.2499 | * 0    | <b>*</b> ( |
| HOPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 678   | Ö     | 0.0104   | 2.1          | •        |        | •      | •    | 0.3837   | 0.2827 | 0.0230 | 8. g       |
| HOPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 636   | ø.    | 0.0055   | -:           | •        | .581   | 9900.0 | 1.2  | . 430    | •      | 0.0820 | 32.7       |
| MR         CVR         IN         %         MR         CVR         IN         MR         CVR         IN         MR         CVR         IN         IN         MR         CVR         IN         IN         IN         IN         IN         MR         CVR         IN         IN <t< td=""><td></td><td></td><td></td><td></td><td>lidities</td><td></td><td>for</td><td>ange</td><td>restrict</td><td>ion</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |       |          |              | lidities |        | for    | ange | restrict | ion    |        |            |
| Aptitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | HOH   | F        |              |          | JKT    |        |      |          | PRC    | •      |            |
| Aptitude  Aptitude  Aptitude  636 0.5136 0.6885 0.6575 0.6062 0.9 0.3583 0.2587 0.0422 0.3009 0.1 0.3516 0.5247 0.0111 2.2 0.6970 0.6637 0.0062 0.9 0.3681 0.2518 0.0442 0.515 0.515 0.0009 0.1 0.3611 0.2518 0.0027 0.3009 0.0444 0.3512 0.0055 1.1 0.6979 0.6647 0.0073 1.1 0.4301 0.3441 0.0854 0.0055 1.1 0.6979 0.6647 0.0073 1.1 0.4301 0.3441 0.0854 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.00 |       |       |          |              |          |        |        | 1    |          |        |        | ;          |
| Aptitude  1630 0.5136  0.6885 0.6575  0.5287  0.5287  0.5287  0.5287  0.6885 0.6575  0.6887 0.0062 0.9 0.3972 0.3089  0.6882 0.6583 0.0009 0.1 0.3511 0.2516  1851 0.5343 0.0206 4.0 0.7115 0.6802 0.9 0.3611 0.2518  1851 0.5343 0.0206 4.0 0.7115 0.6802 0.0027 3.5 0.3681 0.2614 0.0027  1723 0.5192 0.0055 1.1 0.6979 0.6647 0.0073 1.1 0.4301 0.3441 0.0854  Aptitude  Aptitude  Aptitude  Aptitude  2281 0.5889  0.7494 0.7256  3384 0.5952 0.0033 0.6 0.7542 0.7284 0.0028 0.4 0.3703 0.2645 0.0188  2282 0.5846  0.7494 0.7230  0.7549 0.7230  0.7549 0.7230  0.7549 0.7230  0.7549 0.7230  0.7549 0.7230  0.7549 0.7230  0.7549 0.7230  0.7549 0.7230 0.7332 0.0036 0.5 0.3508  1.0 0.3515 0.2566 0.0109  1.0 0.3515 0.2566 0.0109  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  1.0 0.7549 0.7230  | 뚪     | CVR   | Z.       | ĸ            | 쮼        | CVR    | Z.     | ĸ    | ZE V     | CVR    | Z      | ĸ          |
| 659 0.5136 6.5247 0.0111 2.2 0.6970 0.6637 0.0062 0.9 0.3583 0.2587 659 0.516 6.5343 0.0206 4.0 0.7115 0.6882 0.0009 0.1 0.3611 0.2516 6.5343 0.0206 4.0 0.7115 0.6802 0.0227 3.5 0.3681 0.2614 0.0027 6913 0.5416 0.0279 5.4 0.6909 0.6568 6.5192 0.0055 1.1 0.6979 0.6647 0.0073 1.1 0.4301 0.3441 0.0854  Aptitude  Aptitude  Aptitude  5281 0.5882 6.0077 1.3 0.7542 0.7284 0.0028 0.4 0.3763 0.2645 0.0188 5282 0.5846 6.0077 1.3 0.7593 0.7342 0.0086 1.2 0.3499 0.2362 5384 0.5965 0.0077 1.3 0.7593 0.7342 0.0086 1.2 0.3499 0.2566 0.0109 5353 0.5929 0.0040 0.7 0.7549 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 6.5942 0.0054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.000545 0.00054 0.9 0.7494 0.7230 7.00054 0.9 0.7494 0.7230 7.00054 0.0 | Apt   | itude |          |              |          |        |        |      |          |        |        |            |
| 5770 6.5247 6.0111 2.2 6.6970 6.6537 6.0062 6.9 6.3972 6.3009 6.0422<br>5659 6.5116 * * * 6.6923 6.6583 6.0009 6.1 6.3611 6.2516 * * 6.5923 6.583 6.0009 6.1 6.3611 6.2516 * * 6.5923 6.583 6.00227 3.5 6.3681 6.2614 6.0027<br>5913 6.5416 6.0279 5.4 6.6909 6.6568 * * * 6.3988 6.3031 6.0444<br>57723 6.5192 6.0055 1.1 6.6979 6.6647 6.0073 1.1 6.4301 6.3441 6.0854<br>Aptitude  Aptitude  Aptitude  2281 6.5889 6.4 6.7494 6.7256 6.4 6.3763 6.2457 6.2457 6.3896 6.3518 6.3831 6.6458 6.9188 6.3353 6.5922 6.0054 6.7 6.7234 6.0038 6.4 6.3763 6.2565 6.0169 6.3553 6.5929 6.7044 6.7236 * * 6.3441 6.3565 6.0169 6.3553 6.5929 6.7044 6.7236 * * 6.3441 6.3556 6.0169 6.3553 6.5929 6.7044 6.7236 * * 6.3451 6.3533 6.5969 6.3566 6.9169 6.3553 6.5929 6.7044 6.7236 * * 6.3451 6.3533 6.6966 6.9169 6.3553 6.5929 6.7040 6.7 6.7549 6.7232 6.0035 6.5 6.4216 6.3523 6.0866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56.30 | G     |          |              |          |        |        |      | 0.3583   |        |        |            |
| 659 0.5116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5778  | 6     | 9.0111   | 2.2          |          | 0.6637 | 0.0062 | 6.0  | 9.3972   | 0.3009 | 0      |            |
| 851 0.5343 0.0206 4.0 0.7115 0.6802 0.0227 3.5 0.3681 0.2614 0.0027 5913 0.5416 0.0279 5.4 0.6909 0.6568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5659  | 6     | *        | •            | 0.6923   | 0.6583 | 6000.0 | 9.1  | 9.3611   | 9.2518 | Ī      | •          |
| 5913 0.5416 0.0279 5.4 0.6909 0.6568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1851  |       | 9.9296   | 4.0          | 9.7115   | 9.6802 | 0.0227 | 3.5  | 0.3681   | 9.2614 | 0      | 1.0        |
| Aptitude  Aptitu | 5913  |       | 0.0279   | 5.4          | 6969.0   | 9.6568 | •      | *    |          |        | 0.0444 | 17.1       |
| Aptitude  1281 0.5889 1347 0.5922 0.0033 0.6 0.7542 0.7256 1282 0.5846 1293 0.0077 1.3 0.7593 0.7342 0.0086 1.2 0.3499 0.2360 1355 0.5942 0.0054 0.9 0.7494 0.7230 1355 0.5942 0.00640 0.7 0.7549 0.7292 0.0035 0.5 0.4210 0.3323 0.0866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 372   |       | 0.0055   | 1.1          | 0.6979   | 0.6647 | •      | -:   | •        |        | 0.0854 | 33.0       |
| 0.5889       0.7494       0.7256       0.3487       0.2457         0.5922       0.0033       0.6       0.7542       0.7284       0.0028       0.4       0.3703       0.2645       0.0188         0.5846       •       •       0.7494       0.7230       •       •       0.3515       0.2382       •         0.5965       0.0077       1.3       0.7593       0.7342       0.0086       1.2       0.3499       0.2360       •         0.5942       0.0054       0.9       0.7494       0.7230       •       •       0.3646       0.2566       0.0109         0.5929       0.0040       0.7       0.7549       0.7292       0.0036       0.5       0.4210       0.3323       0.0866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Apt   | itude |          |              |          |        |        |      |          |        |        |            |
| 0.5922 0.0033 0.6 0.7542 0.7284 0.0028 0.4 0.3703 0.2645 0.0188 0.5846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6281  | 6     |          |              | 9.7494   | 0.7256 |        | ,    | 0.3487   | 0      | •      | l<br>i     |
| 0.5846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6347  | œ.    | •        | •            | 0.7542   | 0.7284 | •      | 4.0  | 0.3703   | 6      | 0      | 7.7        |
| 0.5965 0.0077 1.3 0.7593 0.7342 0.0086 1.2 0.3499 0.2360 • 0.5942 0.0054 0.9 0.7494 0.7230 • • 0.3646 0.2566 0.0109 0.5929 0.0040 0.7 0.7549 0.7292 0.0036 0.5 0.4210 0.3323 0.0866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3282  | 6     | •        | •            | 0.7494   | 0.7230 |        | •    | 0.3515   | 0      | •      | •          |
| 0.5942 0.0054 0.9 0.7494 0.7230 * * 0.3646 0.2566 0.0109 0.5929 0.0040 0.7 0.7549 0.7292 0.0036 0.5 0.4210 0.3323 0.0866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5384  | ø.    | 0.0077   | <del>ب</del> | 0.7593   | 0.7342 | •      | 1.2  | 0.3499   |        |        | •          |
| 0.5929 0.0040 0.7 0.7549 0.7292 0.0036 0.5 0.4210 0.3323 0.0866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 636£  | 6     | 0.0054   | 6.0          | 0.7494   |        | •      | *    |          | •      | 0.0103 | 4.4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 335   | ø.    | 0.0040   | 0.7          | ۲.       | ۲.     | 0.0036 | 9.5  | . 421    | •      | 0.0866 | 35.3       |

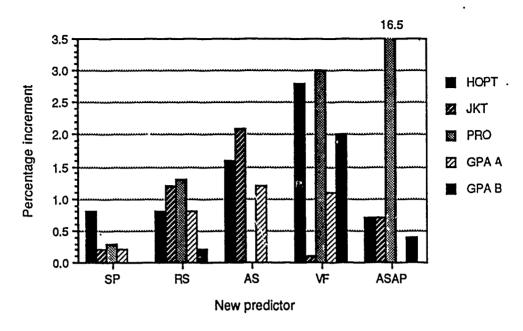
Table 11. Increments in välidity by new predictor tests for infantry training grades

ţ

| Enlistment Aptitude  ASVAB 0.5106 0.4832 0.08027 0.6 0.2679 0.2156 SP 0.5178 0.4825 0.08037 1.9 0.2679 0.2156 SP 0.5178 0.4825 0.08037 1.9 0.2679 0.2168 SP 0.5178 0.4825 0.08037 1.9 0.2679 0.2198 AS 0.5252 0.4952 0.0131 2.7 0.2681 0.2194 ASAP 0.5194 0.5097 0.6034 0.7 0.2839 AS 0.5376 0.5893 0.08034 0.7 0.2839 0.2299 AS 0.5376 0.5898 0.08034 0.7 0.2839 0.2299 AS 0.5376 0.5898 0.0803 1.8 0.2394 0.2394 ASAP 0.5294 0.5899 0.0803 1.8 0.2391 0.2374 0.2894 ASAP 0.5294 0.5899 0.0808 1.8 0.2991 0.2374 0.2899 ASAP 0.5294 0.5899 0.0808 1.8 0.2991 0.2374 0.2899 ASAP 0.5294 0.5899 0.0808 1.8 0.2991 0.2374 0.2899 ASAP 0.6529 0.6499 0.8991 0.2991 0.2374 0.2899 ASAP 0.6529 0.6499 0.0805 0.8 0.4147 0.3846 SP 0.6579 0.6495 0.0805 0.8 0.4147 0.3814 ASAP 0.6529 0.6496 0.0809 1.1 0.4243 0.3952 ASAP 0.6729 0.6465 0.0809 0.1 0.4243 0.3999 ASAP 0.6728 0.6599 0.0809 0.1 0.4232 0.3999 ASAP 0.6738 0.6598 0.6699 0.0918 0.1 0.4232 0.3999 ASAP 0.6739 0.6612 0.0031 0.5 0.4255 0.3945 0.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |          |                |                  |                  |        |          |        |     |             |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------------|------------------|------------------|--------|----------|--------|-----|-------------|--------|
| Aptitude  Asyab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |                | Вазе             |                  |        |          | Base   |     |             |        |
| Aptitude  ASVAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | ₩              | CVR              | NI               | ĸ      | MR       | CVR    |     | NI          | ĸ      |
| ASVAB 0.5196 0.4832 SP 0.5158 0.4859 0.0027 0.6 0.2679 0.2156 SP 0.5158 0.4859 0.0027 0.6 0.2679 0.2101 RS 0.5252 0.4852 0.0031 2.7 0.2681 0.2134 0.2134 ASAP 0.5110 0.4806 * * * 0.2754 0.2134 0.2134 ASAP 0.5110 0.4806 * * 0.2754 0.2134 0.2134 ASAP 0.5110 0.4806 * * 0.2754 0.2134 0.2134 ASAP 0.5294 0.5037 0.6019 0.4 0.2839 0.2299 RS 0.5376 0.5098 0.0082 1.2 0.2839 0.2299 ASAP 0.5294 0.5008 0.0019 0.4 0.2839 0.2299 ASAP 0.5294 0.5009 0.4 0.7 0.2839 0.2299 ASAP 0.5294 0.5009 0.4 0.7 0.2839 0.2299 ASAP 0.6539 0.6480 0.0014 ii. 8 0.2931 0.2374 0.2374 Aptitude ASVAB 0.6539 0.6480 0.0016 0.2 4147 0.3846 ASVAB 0.6539 0.6648 0.0005 0.4147 0.3846 ASVAB 0.6539 0.6648 0.0005 0.4147 0.3846 ASVAB 0.6539 0.6648 0.0009 0.4188 0.3821 0.4444 ASAP 0.6720 0.6549 0.0069 1.1 0.4243 0.3925 ASAP 0.6738 0.6581 0.0018 0.3 0.4233 0.3909 RS 0.6738 0.6581 0.0018 0.3 0.4233 0.3909 RS 0.6738 0.6659 0.0018 0.3 0.4233 0.3909 ASAP 0.6738 0.6659 0.0051 0.5 0.4233 0.3909 ASAP 0.6738 0.6656 0.0051 0.5 0.4233 0.3909 ASAP 0.6738 0.6556 0.0051 0.5 0.4233 0.3909 ASAP 0.6758 0.6565 0.0051 0.5 0.4233 0.3909 ASAP 0.6758 0.6565 0.0051 0.5 0.4233 0.3909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Enlistment |          | _ e            |                  |                  |        |          |        |     |             |        |
| SP 0.5158 0.4859 0.0027 0.6 0.2679 0.2101  RS 0.5217 0.4859 0.0093 1.9 0.2741 0.2178 0.458 0.5243 0.4952 0.0131 2.7 0.2881 0.2103 0.2103 VF 0.5243 0.4953 0.0121 2.5 0.2844 0.2304 0.2304 0.524 0.5110 0.4806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | ASVAB    |                | 4                |                  |        |          | .21    |     |             |        |
| RS 0.5217 0.4925 0.0093 1.9 0.2741 0.2178 0.4   ASAP 0.5243 0.4953 0.0121 2.7 0.2681 0.2103   VF 0.5243 0.4953 0.0121 2.7 0.2844 0.2304 0.2304   ASAP 0.5110 0.4806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | o S      |                |                  | 0.0027           | 9.6    |          | 0.2101 |     |             | •      |
| AS 0.5252 0.4962 0.0131 2.7 0.2681 0.2103 VF 0.5243 0.4953 0.0121 2.5 0.2844 0.2304 0.2304 ASAP 0.5110 0.4806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | SS       |                | •                | 0.0093           | 6.     | 9.2741   | 0.2178 | 9.6 | .0022       | 1.0    |
| ASAP 0.5143 0.4953 0.0121 2.5 0.2844 0.2304 0.  Aptitude  ASAP 0.5110 0.4806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | AS       | •              | •                | 0.0131           | 2.7    | 0.2681   | 0.2103 |     | •           | *      |
| ASAP 0.5110 0.4806 * * 0.2754 0.2194 0.  Aptitude  ASVAB 0.5294 0.5037 0.6019 0.4 0.2839 0.2299  AS 0.5376 0.5098 0.0062 1.2 0.2839 0.2299  AS 0.5376 0.5098 0.0062 1.2 0.2839 0.2299  ASAP 0.5294 0.5009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 7        |                |                  | 0.0121           | 2.5    | 0.2844   | 0.2304 | •   | 9148        | 6.8    |
| Aptitude  ASVAB 0.5294 0.5037  ASAP 0.5351 0.5055 0.0019 0.4 0.2839 0.2299  ASAP 0.5376 0.5098 0.0089 1.8 0.2932 0.2412 0.5294 0.5009  ASAP 0.5294 0.5009 0.4 0.2931 0.2412 0.5294 0.5009 0.4 0.2901 0.2374 0.2374 0.5294 0.5009 0.4 0.2901 0.2374 0.2374 0.5294 0.5009 0.4 0.2901 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374 0.2374  |            | ASAP     | •              | •                | *                | •      | 0.2754   | •      | •   | 9937        | 1.7    |
| ASVAB 0.5294 0.5037  ASAP 0.5351 0.5071 0.0034 0.7 0.2839 0.2299  ASAP 0.5376 0.5098 0.0062 1.2 0.2839 0.2299  VF 0.5401 0.5126 0.0089 1.8 0.2932 0.2412 0.2839  VF 0.5401 0.5126 0.0089 1.8 0.2932 0.2412 0.2839  VF 0.5401 0.5126 0.0089 1.8 0.2932 0.2412 0.2839  VF 0.5294 0.5099  0.2901 0.2374 0.2839  ASAP 0.5294 0.5009  0.2901 0.2374 0.28346  ASAP 0.6539 0.6480 0.4147 0.3846  ASVAB 0.6539 0.6480 0.4147 0.3846  ASAP 0.6554 0.0055 0.8 0.4147 0.3814  RS 0.6726 0.6554 0.0059 1.1 0.4243 0.3854  ASAP 0.6642 0.6465  0.4198 0.3862 0.841144  ASVAB 0.6726 0.6549 0.0069 1.1 0.4243 0.3999  ASVAB 0.6735 0.6581 0.0008 0.1 0.4233 0.3999  ASVAB 0.6738 0.6589 0.0008 0.1 0.4233 0.3999  ASAP 0.6738 0.6589 0.0008 0.1 0.4233 0.3999  ASAP 0.6738 0.6680 0.0018 0.3 0.4255 0.3945 0.6573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Concurrent |          | qe             |                  |                  |        |          |        |     |             |        |
| ASVAB 0.6539 0.6480 0.4197 0.2817 0.2239  ASAP 0.5536 0.6019 0.4 0.2839 0.2299  ASAP 0.5594 0.5009 0.2931 0.2299  ASAP 0.5594 0.5009 0.2932 0.2412 0.2839  ASAP 0.5594 0.5009 0.2932 0.2412 0.2931  APtitude  ASVAB 0.6559 0.6480 0.4147 0.3846  ASVAB 0.6572 0.6554 0.0015 0.2 0.4147 0.3814  RS 0.6726 0.6549 0.0069 1.1 0.4243 0.3854 0.2952 0.6465  ASAP 0.6559 0.6465 0.4148 0.3815  ASAP 0.6679 0.6465 0.4198 0.3853 0.3999  ASVAB 0.6735 0.6581 0.0069 0.1 0.4218 0.3925  ASVAB 0.6735 0.6589 0.0008 0.1 0.4233 0.3999  RS 0.6758 0.6589 0.0008 0.1 0.4233 0.3999  RS 0.6758 0.6589 0.0008 0.1 0.4233 0.3999  RS 0.6758 0.6589 0.0008 0.1 0.4233 0.3999  ASAP 0.6758 0.6589 0.0008 0.1 0.4233 0.3999  ASAP 0.6735 0.6569 0.00018 0.3 0.4286 0.3969 0.00038 0.6735 0.6556 0.8008 0.0018 0.3 0.4286 0.3969 0.005735 0.6556 0.8008 0.0018 0.3 0.4286 0.3969 0.005735 0.6555 0.8008 0.8018 0.3 0.4286 0.3969 0.005735 0.6555 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.8050 0.                             |            |          | 4004           |                  |                  |        |          |        |     |             |        |
| ASAP 0.6539 0.6480 0.4147 0.3846 ASAP 0.6539 0.6480 0.6532 0.64147 0.6532 0.6542 0.78 ASAP 0.6539 0.6480 0.6455 0.64147 0.3846 ASAP 0.6539 0.6480 0.6455 0.64147 0.3846 ASAP 0.6539 0.6480 0.6435 0.64183 0.3854 0.6539 0.6539 0.6539 0.6465 0.6539 0.4147 0.3846 ASAP 0.6539 0.6480 0.6435 0.6939 0.4147 0.3846 ASAP 0.6539 0.6480 0.6435 0.6393 0.4148 0.3815 0.4147 0.3846 ASAP 0.6539 0.6485 0.6952 0.8 0.4148 0.3815 0.4148 0.3815 0.4148 0.3815 0.4148 0.3854 0.4148 0.4183 0.3854 0.4148 0.6539 0.6549 0.6659 0.4148 0.3859 0.4148 0.4133 0.3999 0.6558 0.6589 0.6088 0.1 0.4243 0.3999 0.4148 0.6558 0.6589 0.6088 0.1 0.4233 0.3999 0.4148 0.6558 0.6589 0.6088 0.1 0.4233 0.3999 0.4148 0.6558 0.6589 0.6080 0.0018 0.3 0.4233 0.3999 0.4245 0.6558 0.6558 0.6059 0.4255 0.4255 0.3945 0.6558 0.6558 0.6059 0.4258 0.4258 0.3989 0.4258 0.6558 0.6568 0.6058 0.4288 0.3989 0.4258 0.6558 0.6558 0.6059 0.4258 0.4258 0.3989 0.4258 0.6558 0.6558 0.6059 0.4258 0.4258 0.3989 0.4258 0.6558 0.6558 0.6059 0.4258 0.4258 0.3989 0.4258 0.6558 0.6558 0.6059 0.4258 0.4258 0.3989 0.4258 0.6558 0.6558 0.6059 0.4258 0.4258 0.3989 0.4258 0.6558 0.6558 0.6059 0.4258 0.4258 0.3989 0.4258 0.6558 0.6558 0.6059 0.8059 0.4258 0.4258 0.5565 0.4258 0.4258 0.5565 0.4258 0.4258 0.3989 0.4258 0.6558 0.6558 0.6059 0.8059 0.4258 0.4258 0.5565 0.4258 0.4258 0.3989 0.4258 0.6558 0.6558 0.6059 0.8059 0.4258 0.4258 0.5565 0.4258 0.4258 0.3989 0.4258 0.6558 0.6565 0.8059 0.8059 0.4258 0.4258 0.5399 0.4258 0.6558 0.65658 0.6059 0.8059 0.4258 0.4258 0.3989 0.4258 0.6558 0.65658 0.6059 0.8059 0.4258 0.4258 0.3989 0.4258 0.6558 0.6059 0.8059 0.4258 0.3989 0.4258 0.65658 0.6059 0.8059 0.4258 0.3989 0.5989 0.6059 0.4258 0.65658 0.6059 0.8059 0.4258 0.3989 0.5989 0.6059 0.6059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 0.8059 |            | AVAB     | 0.5294         | •                | 0                |        | 7107.0   | 0.2324 |     | •           | •      |
| ASAP 0.5376 0.5098 0.0089 1.8 0.2932 0.2412 0.5299 VF 0.5491 0.5126 0.0089 1.8 0.2932 0.2412 0.2839 0.5294 0.5009 * * 0.2901 0.2374 0.2374 0.5294 0.5009 * * 0.2901 0.2374 0.2374 0.2901 0.5294 0.2901 0.5294 0.2374 0.2901 0.5294 0.2901 0.2374 0.2901 0.5294 0.2901 0.2374 0.2901 0.5294 0.2901 0.2374 0.2901 0.2901 0.2374 0.2901 0.2901 0.2374 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 0.2901 |            | ה מ<br>מ | 0.000<br>8.351 | •                | 0.00.0<br>AF00.0 |        | 0.2039   | 0 2233 |     |             |        |
| ASVAB 0.6735 0.6881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 2 4      | 100            | - 000            | 1000             | •      | 2023     | 0000   |     |             |        |
| ASAP 0.5294 0.5009 • • • 0.2901 0.2374 0.  Panel B: Validities corrected for range  - Base A  Aptitude  ASVAB 0.6639 0.6480 0.4147 0.3846  ASAP 0.6549 0.0016 0.2 0.4147 0.3814  ASAP 0.6549 0.0052 0.8 0.4147 0.3814  ASAP 0.6554 0.0075 1.2 0.4148 0.3815  VF 0.6725 0.6554 0.0075 1.2 0.4148 0.3815  ASAP 0.6559 0.0008 1.1 0.4243 0.3921 0.4141  ASVAB 0.6735 0.6581 0.4233 0.3999  RS 0.6738 0.6589 0.0008 0.1 0.4233 0.3999  RS 0.6738 0.6589 0.0008 0.1 0.4233 0.3999  ASAP 0.6559 0.0008 0.1 0.4233 0.3999  ASAP 0.6559 0.0008 0.1 0.4233 0.3999  ASAP 0.6735 0.6565 • 9.4266 0.3969 0.4265 0.3945 0.4265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | S F      | 6.3370         | 8.5030<br>8.5126 | 9.0002           | •      | 6 2932   | 0.2233 |     | 9988        | α      |
| Aptitude  ASVAB 0.6539 0.6480  ASVAB 0.6549 0.6052 0.8 0.4147 0.3846  ASVAB 0.6524 0.6052 0.8 0.4147 0.3846  ASAP 0.6549 0.6069 1.1 0.4243 0.3814  ASAP 0.6549 0.6069 1.1 0.4243 0.3815  ASAP 0.6549 0.6069 1.1 0.4243 0.3852 0.4141  ASVAB 0.6725 0.6581  Aptitude  ASVAB 0.6735 0.6581  Aptitude  ASVAB 0.6735 0.6581  ASVAB 0.6735 0.6088 0.1 0.4233 0.3909  RS 0.6738 0.6680 0.6018 0.3 0.4233 0.3909  RS 0.6738 0.6680 0.6018 0.3 0.4233 0.3969  ASAP 0.6735 0.6655 + 0.4286 0.3969 0.4285 0.5345 0.5345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | ASAP     | 0.5294         | 0.5009           | *                |        | 0.2901   | 0.2374 |     | .0049       | 2.1    |
| Aptitude  Asvab 0.6639 0.6480 0.4147 0.3846 SP 0.6670 0.6532 0.0016 0.2 0.4147 0.3846 SS 0.6704 0.6532 0.0052 0.8 0.4187 0.3814 SS 0.6725 0.6554 0.0075 1.2 0.418 0.3815 VF 0.6720 0.6549 0.0069 1.1 0.4243 0.3915 VF 0.6720 0.6549 0.0069 1.1 0.4243 0.3921 0.4011  Asvab 0.6735 0.6581 0.4233 0.3909 RS 0.6738 0.6589 0.0008 0.1 0.4233 0.3909 RS 0.6738 0.6589 0.0008 0.1 0.4233 0.3909 RS 0.6738 0.6680 0.0018 0.3 0.4232 0.3909 VF 0.6735 0.6565 0.8 0.4286 0.3969 0.4286 0.5345 0.3945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |          | u.             | 8                | Validit          |        | orrected | for    |     | restriction | ictio  |
| Aptitude  ASVAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | •              | Base             |                  |        |          | Base   |     |             |        |
| ASVAB 0.6639 0.6480  ASVAB 0.6639 0.6480  SP 0.6670 0.6495 0.0016 0.2 0.4147 0.3846  RS 0.6704 0.6532 0.0052 0.8 0.4187 0.3814  RS 0.6704 0.6554 0.0052 0.8 0.4183 0.3854 0.  ASAP 0.6642 0.6549 0.0069 1.1 0.4243 0.3921 0.  Aptitude  ASVAB 0.6735 0.6581  RS 0.6738 0.6589 0.0008 0.1 0.4218 0.3925  RS 0.6779 0.6600 0.0018 0.3 0.4233 0.3909  RS 0.6779 0.6612 0.0031 0.5 0.4232 0.3909  ASAP 0.6735 0.6565 • 0.4256 0.3945 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          | 器              | CVR              | Z                | ĸ      | MR       | CVR    |     | N           | ж      |
| ASVAB 0.6639 0.6480 SP 0.6670 0.6495 0.0016 0.2 0.4147 0.3846 RS 0.6704 0.6532 0.0052 0.8 0.4187 0.3814 RS 0.6704 0.6554 0.0052 0.8 0.4183 0.3854 0.85 AS 0.6725 0.6554 0.0055 1.2 0.4188 0.3854 0.385 ASAP 0.6642 0.6465 * • 0.4190 0.3862 0.89 APtitude  ASVAB 0.6735 0.6581 0.0008 0.1 0.4218 0.3925 RS 0.6758 0.6589 0.0008 0.1 0.4233 0.3909 RS 0.6779 0.6612 0.0031 0.5 0.4235 0.3909 ASAP 0.6735 0.6561 0.0050 0.8 0.4286 0.3969 0.8689 0.6735 0.6565 0.8969 0.8989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Enlistment |          | <b>B</b>       |                  |                  |        |          |        |     |             |        |
| SP 0.6670 0.6495 0.0016 0.2 0.4147 0.3814  RS 0.6704 0.6532 0.0052 0.8 0.4183 0.3854 0.8  AS 0.6725 0.6554 0.0055 1.2 0.4148 0.3815  ASAP 0.6642 0.6465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | ASVAB    | 0.6639         | •                |                  |        | 0.4147   | .38    |     |             |        |
| RS 0.6704 0.6532 0.0052 0.8 0.4183 0.3854 0.  AS 0.6725 0.6554 0.0075 1.2 0.4148 0.3815  ASAP 0.6642 0.6465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | SP       | 0.6670         | 0.6495           | 0.0016           | 9.5    | 0.4147   | •      |     | •           | *      |
| AS 0.6725 0.6554 0.0075 1.2 0.4148 0.3815 VF 0.6720 0.6549 0.0069 1.1 0.4243 0.3921 0.  ASAP 0.6642 0.6465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | RS       | 0.6704         | 0.6532           | 0.0052           | 8.8    | 0.4183   | •      | •   | 8000        | 9.5    |
| ASAP 0.6642 0.6465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | AS       | 9.6725         | 0.6554           | 0.0075           | 1.2    | 0.4148   |        |     | •           | *      |
| ASAP 0.6642 0.6465 + • 0.4190 0.3862 0.  Aptitude  ASVAB 0.6735 0.6581 0.4218 0.3925  SP 0.6758 0.6589 0.0008 0.1 0.4233 0.3909  RS 0.6768 0.6600 0.0018 0.3 0.4233 0.3909  AS 0.6779 0.6612 0.0031 0.5 0.4232 0.3909  VF 0.6735 0.6555 + • 0.4265 0.3945 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Υ.       | 0.6720         | 0.6549           | 6900.0           | -      | 0.4243   |        | •   | 3075        | 2.0    |
| Aptitude  ASVAB 0.6735 0.6581  SP 0.6758 0.6589 0.0008 0.1 0.4233 0.3909  RS 0.6768 0.6600 0.0018 0.3 0.4233 0.3909  AS 0.6779 0.6612 0.0031 0.5 0.4232 0.3909  VF 0.6779 0.6612 0.0050 0.8 0.4232 0.3969  ASAP 0.6735 0.6565 * * 0.4265 0.3458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ASAP     | 0.6642         | 0.6465           | •                | *      | 0.4190   | •      |     | 9016        | 4.0    |
| 0.6735 0.6581 0.0008 0.1 0.4218 0.3925 0.6758 0.6589 0.0008 0.1 0.4233 0.3909 0.6768 0.6600 0.0018 0.3 0.4233 0.3909 0.6779 0.6612 0.0031 0.5 0.4232 0.3909 0.6735 0.6555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Concurrent | Apt i t  | e<br>Qe        |                  |                  |        |          |        |     |             |        |
| 0.6758 0.6589 0.0008 0.1 0.4233 0.3909 0.6768 0.6600 0.0018 0.3 0.4233 0.3909 0.6779 0.6612 0.0031 0.5 0.4232 0.3909 0.6779 0.6612 0.0050 0.8 0.4286 0.3969 0.6735 0.6565 * 0.4286 0.3969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | ASVAB    | 0.6735         |                  |                  |        | 9.4218   | •      |     |             |        |
| 0.6768 0.6600 0.0018 0.3 0.4233 0.3909 0.6779 0.6612 0.0031 0.5 0.4232 0.3909 0.6798 0.6632 0.0050 0.8 0.4286 0.3969 0.6735 0.6565 * 0.4265 0.3945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | S        | 0.6758         | 6                | 0.0008           | 0.1    | 0.4233   | •      |     | •           | •      |
| 0.6779 0.6612 0.0031 0.5 0.4232 0.3909 0.6798 0.6632 0.0050 0.8 0.4286 0.3969 0.6735 0.6565 * 0.4265 0.3945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | RS       | 0.6768         | 0                | 0.0018           | 9.3    | 0.4233   | •      |     |             | *      |
| 0.6798 0.6632 0.0050 0.8 0.4286 0.3969 0.6735 0.6565 + * 0.4265 0.3945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | ΑS       | 0.6779         | 0                | 0.0031           | 6.5    | 0.4232   | •      |     | •           | •      |
| 0.6735 0.6565 + + 0.4265 0.3945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Υ<br>Έ   | 0.6798         | 0                |                  | 9<br>8 | 0.4286   | •      | 0   | .0044       | -:     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ASAP     | 0.6735         | 0                | *                | *      | 0.4265   | •      | 6   | 0.0021      | 9<br>3 |

 Increment in cross-validated multiple correlation by new test was negative due to adjustment made for shrinkage. There were occasional instances in which the increments in the CVR due to the new predictor tests were negative. This is due to adjustments that are made in computing the CVR to account for the additional predictor. For those cases in which the change in CVR was negative, the additional predictor did not improve the overall validity.

The analyses focused on the rifleman MOS because over 1,000 were tested as part of the JPM project. Complete criterion and predictor information was available for approximately 870 riflemen. Complete data for the other three infantry specialties were collected on less than 250 examinees. Due to the potential impact of sampling errors on computing differences in validity coefficients for specialties with relatively small samples, more emphasis was placed on the rifleman findings.


#### Enlistment Versus Concurrent Aptitude

The magnitude of the CVRs was greater for the concurrent than enlistment CVRs (see tables 7 through 11). However, the increments in CVRs were less for concurrent than enlistment aptitude scores. Given this combination of a higher validity base but lower increments, the percentage change for increments in validity was lower for concurrent than for enlistment aptitude scores. Therefore, the concurrent administration of the ASVAB does appear to account for some error sources resulting from time differences between the enlistment aptitude and the administration of the new predictors.

The percentages for validity increments based on concurrent aptitude scores were typically half as large as the percentage increments shown against enlistment aptitude scores. Figures 1 and 2 plot the percentage increments in the validity of all rifleman performance measures. The controlling effect of concurrent antitude was to increase the magnitude of the CVRs while reducing the validity gains due to the new predictor tests. Despite differences in incremental validities based on enlistment versus concurrent aptitude scores, the rank ordering of the new predictors yielding the largest validity gains was not affected.

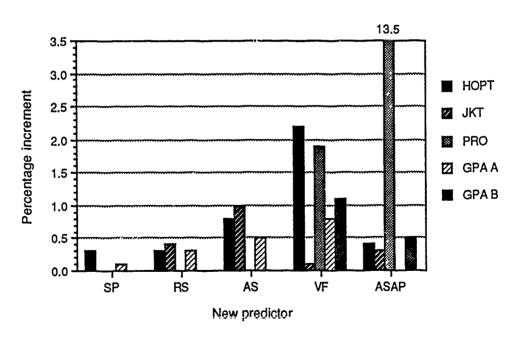

#### Best New Predictor for Each Criterion

Table 12 summarizes the information presented in tables 7 through 11 by highlighting the best single new predictor test against each criterion for all four MOSs. Several consistent trends emerged.



NOTE: Increases for training grades include data from other MOSs.

Figure 1. Percentage increment in validity for infantry rifleman performance: enlistment aptitude scores



NOTE: Increases for training grades include data from other MOSs.

Figure 2. Percentage increment in validity for infantry rifleman performance: concurrent aptitude scores

Table 12. Best new predictor test for each criterion and MOS

|               |        | Criterio | on   |     |
|---------------|--------|----------|------|-----|
| MOS           | HOPT   | JKT      | PRO  | GPA |
| Rifleman      | VF     | AS       | ASAP | vra |
| Machinegunner | SP     | AS       | ASAP |     |
| Mortarman     | AS     | AS, SP   | ASAP |     |
| Assaultman    | VF, AS | AS       | ASAP |     |

a. Validity results against GPA were based on examinees from all MOSs. Findings were consistent for both training locations.

Several new predictor tests resulted in the largest increments in validity against HOPT for the four MGEs. These findings were consistent with the differences in job requirements, which were reflected in differences in hands-on test content for these specialties. hands-on test for the rifleman specialty required each Marine to negotiate an unknown trail 45 if on a squad patrol and to engage popup targets with the M16A2 rifle The prediction of accurately hitting these targets and other rifleman tasks was most improved by the video firing (VF) test. Similarly for the assaultman MOS, each Marine was required to fire the Launch Effects Trainer (LET) from the sitting-, kneeling-, and standing-supported positions. This laser trainer simulated the actual firing of the Dragon missile. Again, the VF test was one of the better new predictors in improving the assaultman validity; the assembling objects test (AS) also was found to enhance the validity. Job requirements for the machinegunner and mortarman specialties tended to be more spatially oriented. Machinegunners were required to establish intersecting fields of fire as well as to prepare range cards that document direction, elevation, and range of targets. The space perception (SP) test was found to be the best new predictor in improving the prediction of machinegumner job performance. The mortarman hands-on test required the Marine to complete many procedural requirements in mounting, boresighting, and laying the mortar. The AS test resulted in the most incremental validity for this specialty.

The JKTs for each MOS contained many common infantry items although each test also had some items that were unique. AS was found to be the best new predictor test in improving the validity against each JKT. Such a consistent outcome may be due to the dominance of test content similarity for the core infantry tasks of these specialties.

The ASVAB only moderately predicted PRO marks. The ASAP was invariably the best new predictor for improving the validity for these supervisor ratings. Because of the low ASVAB validity base in predicting PRO, most of the percentage increments are large. Despite such significant percentage improvements, the absolute validities against PRO marks were still relatively low.

Validity Increments Controlling for Time in Service

Time in service and its square were entered into the regressions along with the ASVAB subtests as the incremental validity of each new predictor test was redetermined. Detailed tables of the absolute and incremental validities are reported in appendix B and summarized here.

The net effect of including time in service in the regression was a rather substantial increase in the absolute validity for HOPT and PRO but not for JKT. In other words, experience had a strong effect on the level of an individual's HOPT and PRO scores while individuals perform at comparable levels on the JKT despite any differences in experience. It followed that controlling for time in service also tended to reduce the percentage increment of the validity gain due to the new predictor. However, despite this reduction in percentage gains, the best set of new predictors for each criterion was the same as previously determined for enlistment and concurrent aptitude (as shown in table 12).

#### Summary

Several corrections were made to the validity coefficients to account for the impact of various extraneous sources of error. Such corrections tended to significantly reduce the gains in validity due to the new predictor test. Table 13 summarizes the impact of these corrections by reporting means and standard deviations of the percentage increments across all new predictors and MOSs (N equals at least 20 for each cell of the table--four MOSs and five new predictor tests). Given the extreme magnitude of the results for proficiency marks, they are not included in this table.

Incremental validities corrected for range restriction were typically half as large as the sample incremental validities, a mean percentage increment of 1.0 percent versus 2.0 percent. Increments based on concurrent aptitude were likewise less than gains computed for enlistment aptitude: a mean percentage increment of 1.2 percent versus 2.8 percent for differences in observed validities, and a mean percentage increment of 0.6 percent versus 1.3 percent for differences in corrected validities. Adjustments for time in service reduced even further both absolute and percentage increments (these figures are not summarized in table 13). The impact of these error sources highlights the potential for considerable overestimation of incremental validities if appropriate corrections and adjustments are not made.

Table 13. Means and standard deviations of percentage gains in incremental validity for all new predictor tests and MOSs

|                    |              | Obser                   | ved  |        |      | Corre                   | ected |                         |
|--------------------|--------------|-------------------------|------|--------|------|-------------------------|-------|-------------------------|
|                    | <u>Enlis</u> | stment                  | Conc | urrent | Enli | stment                  | Conc  | urrent                  |
| HOPT<br>JKT<br>GPA | 3.2          | (2.6)<br>(2.9)<br>(2.1) | 1.1  | (1.3)  | 1.3  | (1.4)<br>(1.2)<br>(0.7) | 0.6   | (0.7)<br>(0.6)<br>(0.4) |
|                    | 2.8          | (2.7)                   | 1.2  | (1.2)  | 1.3  | (1,2)                   | 0.6   | (0.6)                   |
|                    |              | 2.0                     | (2.  | 2)     |      | 1.0                     | (1.0) |                         |

NOTE: Standard deviations are in parentheses.

a. For HOPT and JKT, means and standard deviations are computed over four MOSs and five new predictor tests (N equals 20 for each cell). For GPA, the statistics are computed over two bases and five new predictors (N equals 10 for each cell).

A final point of interest is the magnitude of increments in validity. These analyses have been based on the use of all ASVAB subtests in the prediction of infantry performance, while in practice classification decisions are based on aptitude composites. As stated earlier, the GT composite is used for the specialties of the infantry occupational field. Table 6 shows the GT validities for multiple criteria for the rifleman specialty. The ASVAB validity bases are also reported. The differences between these validities computed for GT versus the ASVAB demonstrate the current inefficiency of the infantry classification system. By simply using a more optimal classification approach with all ASVAB subtests, validity gains in the range of 2 to 10 percent could be achieved against multiple criteria. Similar validity gains of 6 percent were achieved with the recent change in definition of the Armed Forces Qualification Test (AFQT) [12]. Increments in validity have been achieved in the past by revising composite definitions and still remain to be captured by further changes in the current classification system.

#### CONCLUSIONS

Data from the Marine Corps JPM project allowed for a thorough examination of the measurement and prediction of infantry performance. These analyses showed that the ASVAB does an excellent job of predicting a variety of infantry performance measures--hands-on performance tests, written job knowledge tests, and infantry school training grades. ASVAB moderately predicts an infantryman's proficiency rating. The ability of

any new predictor test to enhance the ASVAB's ability to predict infantry performance was slight and mixed (except for proficiency marks, which are questionable as objective measures of job performance).

The estimation of validity coefficients is influenced by a variety of factors: restriction of score distributions due to the selection process, shrinkage in multiple correlations when applying optimal regression weights to other samples, criterion unreliability, time of administration for the predictors, etc. The impact of these factors as well as sampling errors on validity coefficients is even further magnified when the primary issue is the difference between validity coefficients. Efforts were taken to account for several potential error sources in the estimation of validity coefficients. Such corrections and adjustments tended to significantly reduce the gains in validity due to the new predictor test.

Substantial overestimation of incremental validities is possible if appropriate corrections and adjustments are not made. Further corrections for criterion unreliability are necessary if policymakers are concerned about the absoluteness of incremental validities (as would be the case for a cost-benefit type of analysis) versus the relative comparison among many new predictors to determine which has the greatest potential for improving ASVAB validity.

The collection of concurrent aptitude information has important implications for the design of future incremental validity research. The written ASVAB requires about three to four hours to administer; the computerized adaptive version can be completed in about two hours. This is a significant time commitment which, if concurrent aptitude information is not necessary, could be devoted to the administration of additional new predictor tests. The results of these analyses show that concurrent aptitude was necessary to control for intervening factors between the administrations of the ASVAB and the new predictors. Although there was a high correlation between enlistment and concurrent aptitude scores, approximately 60 percent of the infantrymen improved their scores of record by about two-thirds of a standard deviation. These gains in aptitude could be the result of training, on-the-job experiences, or additional education. This requirement for concurrent aptitude information should be even stronger for more technically demanding specialties where training and job experience are even more intensive than for the infantry occupational field.

The Marine Corps was also able to enhance the motivation of the infantrymen taking ASVAB by changing their scores of record if they improved. This incentive was critical to the collection of accurate concurrent aptitudes and also should be incorporated into any future incremental validity research.

Given the variability of incremental validity estimates across MOSs and criteria, it is difficult to make a strong recommendation as to which, if any, of the new predictors should be considered for possible inclusion in the ASVAB. Although similar percentage gains found in

other research have been noted to possibly have considerable dollar value [13], any true benefit that would result in fiscal savings has yet to be demonstrated [12]. Therefore, the slight validity gains found in these analyses have yet to demonstrate any tangible significance that would positively impact the overall manpower selection and classification process.

Even if "significant" increments in validity had been noted, further investigation of the measurement properties of any new tests is still required. For example, while the video firing test tended to be one of the better tests against hands-on performance, the test may be susceptible to practice effects as demonstrated in the significant test-retest gains over the period of 7-10 days. Performance on such video tests may also be affected by previous experience with video games or computers. Such practice effects or experience may possibly cancel any validity gains if the test were used for operational testing. Additional issues that would need to be researched include subgroup analysis, coaching and test-taking strategies, and logistical concerns for implementing the test within an operational testing program.

Given the challenge to improve the prediction of infantry performance, it was found that larger percentage gains can be achieved by refining the current aptitude composites or by using an optimal classification system based on all ASVAB subtests than can be achieved by adding new predictor tests to the ASVAB. Such gains may be achieved by simply correcting known inefficiencies in the current classification system. With only minimal gains resulting from new predictor tests and an unknown benefit associated with such small gains, it would be more prudent to concentrate on refining the existing classification system.

#### REFERENCES

- [1] CNA Memorandum 83-3135, A Factor Analysis of ASVAB Form 8a in the 1980 DOD Reference Population. by Peter H. Stoloff, Aug 1983 (05833135)
- [2] Office of the Assistant Secretary of Defense (Force Management and Personnel), Biennial Report of the Defense Advisory Committee on Military Personnel Testing, Nov 1988
- [3] A. K. Wigdor and B. F. Green, eds. Assessing the Performance of Enlisted Personnel: Evaluation of a Joint-Service Research Project. Committee on the Performance of Military Personnel, National Research Council. Washington, DC: National Academy Press, 1986
- [4] CNA Report 116, The ASVAB Score Scales: 1980 and World War II, by Milton H. Maier and William H. Sims, Jul 1986 (94011600)
- [5] H. Gulliksen. Theory of Mental Tests. New York: John Wiley & Sons, 1950
- [6] P. Cattin. "Estimation of the Predictive Power of a Regression Model." Journal of Applied Psychology 65 (1980): 407-414
- [7] F. M. Lord and M. R. Novick. Statistical Methods of Mental Test Scores. Reading, MA: Addison-Wesley Publishing Co., 1968
- [8] CNA Research Contribution 570, Developing a Competency Scale for Hands-on Measures of Job Proficiency, by Paul W. Mayberry, Dec 1987 (02057000)
- [9] CNA Report 102, Validity of the Armed Services Vocational Aptitude Battery Forms 8, 9, and 10 with Applications to Forms 11, 12, 13. and 14, by Milton H. Maier and Ann R. Truss, Feb 1985 (94010200)
- [10] Human Resources Research Organization (HumRRO), American Institutes for Research (AIR), Personnel Decisions Research Institute (PDRI), and Army Research Institute (ARI). Improving the Selection, Classification and Utilization of Army Enlisted Personnel: Annual Report. Alexandria, VA: U.S. Army Research Institute for the Behavioral and Social Sciences, 1986
- [11] Navy Personnel Research and Development Center Technical Report 88-8, Joint Service Adaptability Screening: Initial Validation of the Armed Services Applicant Profile (ASAP), by Thomas Trent, Dec 1987

<sup>1.</sup> The numbers in parentheses are CNA internal control numbers.

### REFERENCES (Continued)

- [12] CNA Research Memorandum 89-103, Some Issues in the ECAT and CAT-ASVAB Projects, by D. R. Divgi, Feb 1990 (2790103)
- [13] F. L. Schmidt, J. E. Hunter, and W. L. Dunn. Potential Utility
  Increases from Adding New Tests to the Armed Services Vocational
  Aptitude Battery (ASVAB). Navy Personnel Research and Development
  Center, Contract Number Delivery Order 0053, Nov 1987

## APPENDIX A

SAMPLE AND CORRECTED CORRELATIONS OF INFANTRY CRITERIA AND PREDICTORS

#### APPENDIX A

# SAMPLE AND CORRECTED CORRELATIONS OF INFANTRY CRITERIA AND PREDICTORS

Correlations among the Marine Corps aptitude composites and all new predictor tests are presented in this appendix. The aptitude composites computed by the Marine Corps are General Technical (GT), Mechanical Maintenance (MM), Electronics Repair (EL), Clerical/Administrative (CL), and the Armed Services Qualification Test (AFQT). The five new predictor tests are space perception (SP), reasoning test (RS), assembling objects (AS), video firing (VF), and the Armed Services Applicant Profile (ASAP).

Separate tables are presented for each MOS and each performance measure: hands-on performance test (HOPT), job knowledge test (JKT), and proficiency mark (PRO). Grade-point average (GPA) is reported in separate tables because all MOSs had the same initial training. Sample as well as corrected correlations are presented. Descriptive statistics are also presented for each variable.

Correlation matrix for hands-on performance test (sample values): infantry rifleman (0311) Table K-1.

|            |               | ASAP | .13  | . 13<br>. 09<br>. 06<br>. 13                    | . 18<br>. 10<br>. 17<br>. 22                     | . 63<br>. 16<br>. 63<br>1. 69                      | 6.56<br>12.64<br>870   |
|------------|---------------|------|------|-------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------|
|            | tests         | VF.  | .38  | .36<br>.39<br>.39                               | .28<br>.36<br>.33                                | .29<br>.28<br>.30<br>1.00                          | 196.11<br>31.26<br>870 |
|            | New predictor | AS   | .35  | 54.<br>143.<br>138.<br>143.                     | . 40<br>. 47<br>. 45<br>. 39                     | .53<br>1.88<br>3.8<br>1.80                         | 22.03<br>7.25<br>870   |
|            | New pre       | RS   | .32  | 24.<br>84.<br>84.<br>84.<br>84.<br>84.          | 4.2.4.<br>8.4.0.4.                               | 1.000<br>1.000<br>.55<br>.28                       | 18.76<br>5.65<br>870   |
|            |               | dS   | .34  | 6. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | 4.<br>94.<br>98.<br>15.                          | 1.00<br>.46<br>.29<br>.29                          | 11.01<br>4.04<br>870   |
|            |               | ಕ    | .34  | .62<br>.57<br>.49<br>.59                        | .84<br>.78<br>.63<br>.76                         | .39<br>.26<br>.26                                  | 100.96<br>12.92<br>870 |
|            | t             | 13   | .50  | .77<br>.78<br>.76<br>.81                        | .89<br>.88<br>.88<br>1.00                        | .49<br>.50<br>.33                                  | 100.83<br>13.44<br>870 |
|            | Concurrent    | ¥    | .55  | . 64<br>. 74<br>. 81<br>. 71                    | .76<br>.88<br>.1.00<br>.88<br>.63                | .50<br>.49<br>.40<br>.10                           | 105.13<br>14.55<br>870 |
| es         | Co            | GT   | .48  | .73<br>.75<br>.71<br>.72                        | .93<br>1.00<br>.88<br>.89<br>.78                 | . 49<br>. 54<br>. 36<br>. 36                       | 103.30<br>14.66<br>870 |
| de scores  |               | AFOT | 14.  | .80<br>.75<br>.65<br>.75                        | 1.00<br>.93<br>.76<br>.89                        | . 48<br>. 48<br>. 28<br>. 28                       | 47.63<br>21.70<br>870  |
| Apt i tude |               | ၂    | .35  | .84<br>.73<br>.59<br>.76                        | .66<br>.69<br>.51<br>.53<br>.53                  | .33<br>.41<br>.34<br>.27                           | 101.50<br>10.55<br>870 |
|            | يد            | 답    | .45  | .90<br>.85<br>.85<br>1.00                       | .75<br>.72<br>.71<br>.81                         | 44.<br>88.<br>85.<br>85.                           | 199.93<br>13.12<br>879 |
|            | Eni istment   | ¥    | .52  | . 73<br>. 89<br>1. 00<br>. 85                   | . 65<br>. 71<br>. 81<br>. 76<br>. 49             | 84.<br>84.<br>86.<br>86.                           | 102.34<br>14.44<br>870 |
|            | ដ             | GT   | .47  | .89<br>1.00<br>.89<br>.87                       | .75<br>.75<br>.74<br>.78                         | 4.4.2.3.6.0.000                                    | 102.59<br>12.54<br>870 |
|            |               | AFOT | . 40 | 1.00<br>.89<br>.73<br>.90<br>.98                | .89<br>.73<br>.64<br>.77                         | 24.<br>24.<br>25.<br>25.<br>26.                    | 48.97<br>18.68<br>870  |
|            |               | HOPT | 1.00 | (AB 40 47 47 52 45 35 35                        | /AB<br>41<br>48<br>55<br>58<br>34                | tests<br>.34<br>.32<br>.35<br>.35<br>.13           | 52 80<br>8 98<br>870   |
|            |               |      | HOPT | Enlistment ASVAB<br>GT<br>MM<br>EL<br>CL        | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>EL | New predictor tests SP .3 RS 3 AS AS 3 VF 3 ASAP 1 | Mean<br>Std dev<br>N   |

Correlation matrix for job knowledge test (sample values): infantry rifleman (0311) Table A-2.

|           |               | ASAP | .20  | . 69<br>. 69<br>. 71<br>. 71                     | 113<br>10<br>10<br>12<br>22                      | . 63<br>. 10<br>. 10<br>. 03<br>1. 00                              | 6.63<br>12.63<br>862       |
|-----------|---------------|------|------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------|----------------------------|
|           | tests         | VF   | .27  | .26<br>.36<br>.39<br>.30                         | . 36<br>. 36<br>. 33<br>. 33                     | . 28<br>. 29<br>. 1.00<br>. 03                                     | 196.34<br>31.27<br>862     |
|           | New predictor | AS   | 4.   | E 4 4 E E E E E E E E E E E E E E E E E          |                                                  | . 53<br>1. 60<br>. 29<br>. 10                                      | 22.06<br>7.25<br>862       |
|           | New pro       | RS   | .42  | 4 4 4 4 4<br>8 8 4 4 4 4                         | 44.<br>44.<br>64.<br>65.                         | . 47<br>1.00<br>. 55<br>. 28<br>. 11                               | 18.79<br>5.62<br>862       |
|           |               | SP   | .34  | 94.<br>98.<br>94.<br>85.<br>85.                  | 4.<br>83.<br>83.<br>85.<br>85.                   | 1.00<br>.47<br>.53<br>.29                                          | 11.02<br>4.04<br>852       |
|           |               | ರ    | . 55 | 4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8          | .84<br>.78<br>.63<br>.76                         | .31<br>.38<br>.25                                                  | 101.11<br>12.77<br>862     |
|           | ٠,            | EF   | .64  | . 78<br>. 79<br>. 76<br>. 81                     | .89<br>.89<br>.88<br>1.00                        | .50<br>.46<br>.33                                                  | 100.96<br>13.36<br>862     |
|           | Concurrent    | *    | . 59 | . 64<br>. 74<br>. 81<br>. 71                     | .75<br>.88<br>1.00<br>.88                        | .51<br>.44<br>.40<br>.10                                           | 105.30<br>14.47<br>862     |
| 8         | ပိ            | 15   | .62  | . 74<br>. 76<br>. 71<br>. 73<br>. 60             | .93<br>1.00<br>.88<br>.89<br>.78                 | . 56<br>. 54<br>. 56<br>. 56<br>. 56                               | 103.51<br>14.52<br>862     |
| de scores |               | AFQT | .62  | .81<br>.75<br>.65<br>.76                         | 1.00<br>.93<br>.75<br>.89                        | . 48<br>. 48<br>. 28<br>. 18                                       | 47.88<br>21.60<br>862      |
| Aptitude  |               | ರ    | .50  | .84<br>.73<br>.59<br>.76                         | .67<br>.68<br>.59<br>.53                         | . 33<br>. 46<br>. 34<br>. 26<br>. 17                               | 101.56<br>10.53<br>862     |
|           | يد            | ᆲ    | . 56 | .98<br>.87<br>.85<br>1.00                        | . 76<br>. 73<br>. 71<br>. 81                     | . 45<br>. 39<br>. 30<br>. 12                                       | 100.07<br>13.11<br>862     |
|           | Enlistment    | ¥    | . 54 | . 73<br>. 89<br>1. 00<br>. 85                    | . 65<br>. 71<br>. 81<br>. 76<br>. 50             | 4.4.4.<br>8.4.4.6.<br>9.00.                                        | 102.42<br>14.43<br>862     |
|           | ដ             | GT   | .55  | .89<br>1.00<br>.89<br>.87                        | .75<br>.76<br>.74<br>.79                         | 84.<br>84.<br>86.<br>86.                                           | 102.64<br>12.52<br>862     |
|           |               | AFOT | .54  | 1.00<br>.89<br>.73<br>.90<br>.84                 | . 81<br>. 74<br>. 64<br>. 78<br>. 64             | . 46<br>. 33<br>. 26<br>. 13                                       | ,<br>49.01<br>18.64<br>862 |
|           |               | JKT  | 1.00 | AR.<br>55.<br>56.<br>58.                         | AB . 62 . 59 54 55                               | tests<br>.34<br>.42<br>.27<br>.20                                  | 44.35<br>9.02<br>862       |
|           |               |      | JKT  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests<br>SP .3<br>RS .4<br>AS .4<br>VF .2<br>ASAP .2 | Mean<br>Std dev<br>N       |

Correlation matrix for proficiency marks (sample values): infantry rifleman (0311) Table A-3.

|            |                     | ASAP | .26  | . 60<br>. 00<br>. 06<br>. 13                     | . 18<br>. 14<br>. 17<br>. 22                     | . 63<br>                                                                        | 6.56<br>12.64<br>870   |
|------------|---------------------|------|------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------|------------------------|
|            | tests               | VF   | .18  | .26<br>.36<br>.39<br>.39                         | .28<br>.36<br>.33                                | . 28<br>. 30<br>1.00                                                            | 196.11<br>31.26<br>870 |
|            | New predictor tests | AS   | .13  | £. 44.<br>£. 45.<br>£. 45.                       | .40<br>.47<br>.45<br>.39                         | .55<br>1.00<br>3.00<br>1.00                                                     | 22.03<br>7.25<br>870   |
|            | New pre             | RS   | .17  | 4 4 4 4<br>8 8 6 6 +                             | 84.<br>84.<br>84.<br>84.<br>84.                  | . 46<br>1.00<br>. 55<br>. 28<br>. 12                                            | 18.76<br>5.65<br>878   |
|            |                     | Sb   | 4.   | 0.4.4.0.0<br>0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.      | 4                                                |                                                                                 | 11.01<br>4.04<br>870   |
|            |                     | 7    | .22  | . 62<br>. 54<br>. 59<br>. 59                     | .34<br>.78<br>.63<br>.76                         | .31<br>.39<br>.26                                                               | 100.96<br>12.92<br>870 |
|            |                     | EL   | .24  | .77<br>.78<br>.76<br>.81                         | .89<br>.89<br>1.00<br>76                         | .49<br>.58<br>.33                                                               | 100.83<br>13.44<br>870 |
|            | Concurrent          | MM   | .24  | 46.<br>18.<br>17.                                | .76<br>.88<br>1.000<br>.88                       | .58<br>4.4<br>64.<br>64.                                                        | 105.13<br>14.55<br>870 |
| s          | S                   | GT   | .26  | .73<br>.75<br>.71<br>.72<br>.60                  | .93<br>1.00<br>.88<br>.89<br>.78                 | . 54<br>. 54<br>. 36<br>. 41                                                    | 103.30<br>14.66<br>870 |
| de scores  |                     | AFQT | .24  | .80<br>.75<br>.65<br>.75                         | 1.00<br>.93<br>.76<br>.89                        | 4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4 | 47.63<br>21.70<br>870  |
| Apt i tude |                     | 5    | . 18 | .84<br>.73<br>.59<br>.76                         |                                                  | .33<br>41.<br>27.                                                               | 101.50<br>10.55<br>870 |
|            |                     | 13   | . 18 | .90<br>.85<br>.85<br>1.00                        | .75<br>.72<br>.71<br>.81                         | 44.<br>438.<br>30.<br>13                                                        | 100.03<br>13.12<br>870 |
|            | Enlistment          | *    | .19  | .73<br>.89<br>1.00<br>.85                        | .65<br>.71<br>.81<br>.76                         | 84.4.6.00<br>00.000                                                             | 162.34<br>14.44<br>870 |
|            | E                   | 15   | .19  | .89<br>1.00<br>.89<br>.87                        | .75<br>.75<br>.74<br>.75                         | 94.<br>94.<br>96.                                                               | 102.59<br>12.54<br>870 |
|            |                     | AFOT | .18  | 00.1<br>89.7.7.89.                               | .80<br>.73<br>.64<br>.77                         | .39<br>.33<br>.26                                                               | 48.97<br>18.68<br>870  |
|            |                     | PR0  | 1.00 | AB                                               | . 24<br>2. 26<br>2. 25<br>2. 22                  | tests<br>144<br>177<br>13<br>18<br>26                                           | 43.69<br>2.09<br>870   |
|            |                     |      | PRO  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>EL | New predictor tests SP .1 RS .1 AS .1 VF .1                                     | Mean<br>Std dev<br>N   |

Table A-4. Correlation matrix for hands-on performance test (sample values): machinegunner (0331)

|                 |                     | ASAP | .24  | 51.<br>10.<br>10.<br>10.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.86<br>2.55<br>243       |
|-----------------|---------------------|------|------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                 | ests                | VF , | .27  | .16<br>.27<br>.30<br>.24<br>.15               | . 18<br>. 22<br>. 22<br>. 21<br>. 27<br>. 20<br>. 20<br>. 20<br>. 60<br>. 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 202.07<br>33.31 1:<br>243 |
|                 | fictor t            | VS   | .32  | 5.4.4.6.<br>4.5.4.4.6.                        | 644445<br>6644445<br>7665<br>7665<br>7665<br>7665<br>7665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.74 20<br>7.46 3<br>243 |
|                 | New predictor tests | RS   | 4.   | . 51<br>. 52<br>. 52<br>. 46                  | . 58<br>. 52<br>. 45<br>. 50<br>. 45<br>53<br>53<br>50<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.31<br>2.43              |
|                 | <del></del>         | SP   | .42  | 8.4.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8       | .38<br>.47<br>.47<br>.45<br>.33<br>.53<br>.53<br>.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.78<br>4.23<br>243      |
|                 |                     | ಠ    | .50  | .68<br>.62<br>.55<br>.70                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.65<br>243              |
|                 |                     | EL   | .57  | . 79<br>. 78<br>. 77<br>. 84                  | .99<br>.89<br>.1.00<br>.1.00<br>.50<br>.50<br>.50<br>.50<br>.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.88 1<br>13.84<br>243   |
|                 | Concurrent          | M    | .59  | .66<br>.74<br>.81<br>.73                      | . 76<br>1.00<br>1.00<br>1.00<br>1.88<br>1.88<br>1.84<br>1.47<br>1.22<br>1.22<br>1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 168.98<br>14.33<br>243    |
| න<br>4          | Cor                 | GT   | .58  | .78<br>.81<br>.78<br>.80                      | .91<br>.90<br>.90<br>.89<br>.71<br>.71<br>.72<br>.52<br>.52<br>.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165.53<br>14.35<br>243    |
| Aptitude scores |                     | AFOT | .54  | .85<br>.80<br>.72<br>.84                      | 1.00<br>91.91<br>76.90<br>.90<br>.90<br>.90<br>.90<br>.90<br>.90<br>.90<br>.90<br>.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51.13<br>21.36<br>243     |
| Aptitu          |                     | 5    | 44.  | .86<br>.74<br>.55<br>.75                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101.40<br>10.87<br>243    |
|                 | ţ                   | EL   | . 59 | .91<br>.88<br>.85<br>1.00                     | 48.<br>8.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4.00.<br>4. | 102.53<br>13.16<br>243    |
|                 | Enlistment          | W    | .61  | . 73<br>. 89<br>1.00<br>. 85<br>. 55          | . 27.<br>. 77.<br>. 77.<br>. 55.<br>. 444.<br>. 34.<br>. 444.<br>. 90.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106.70<br>13.78<br>243    |
|                 | En                  | 13   | .56  | .91<br>1.00<br>.89<br>.88<br>.74              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.94<br>12.34<br>243    |
|                 |                     | AFOT | .51  | 1.00<br>.91<br>.73<br>.91                     | 85.<br>96.<br>86.<br>86.<br>87.<br>86.<br>87.<br>86.<br>91.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 51.19<br>19.29<br>243     |
|                 |                     | HOPT | 1.00 | ASVAE<br>.51<br>.56<br>.59<br>.59             | ASVAB .54 .58 .59 .59 .57 .50 .50 .50 .50 .50 .50 .50 .50 .50 .50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.00<br>7.96<br>243      |
|                 |                     |      | HOPT | Enlistment AS<br>AFQT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAEI AFQT .55 GT .55 MM .55 EL .55 CL .55 New predictor tests RS .4 AS ASAP .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean<br>Std dev<br>N      |

Correlation matrix for job knowledge test (sample values): machinegunner (0331) Table A-5.

|           | 1             | ASAP     | .17  | 51.<br>10.<br>10.<br>18.                         | 25.<br>21.<br>24.<br>24.                 | 4.00.00                                      | 7.89<br>12.50<br>242                 |
|-----------|---------------|----------|------|--------------------------------------------------|------------------------------------------|----------------------------------------------|--------------------------------------|
|           | ts            | VF A     | .23  | . 16<br>. 27<br>. 38<br>. 38<br>. 15             | . 19<br>. 25<br>. 21<br>. 19             | .28<br>.23<br>.00<br>.09                     | <b>.</b>                             |
|           | or tests      | >        |      |                                                  |                                          | -                                            | 6 201.96<br>7 33.34<br>2 242         |
|           | edicto        | AS       | .46  | £ 4 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5          | 6.4.4.4.6.                               | .51<br>.60<br>.23<br>.15                     | 22.76<br>7.47<br>242                 |
|           | New predictor | RS       | 4.   | . 51<br>. 52<br>. 54<br>. 65                     | . 52<br>. 52<br>. 56<br>. 56             | .53<br>1.00<br>.57<br>.20<br>.09             | 19.38<br>5.32<br>242                 |
|           |               | SP       | . 40 | .37<br>.45<br>.46<br>.46                         | .38<br>.46<br>.45<br>.32                 | 1.00<br>.53<br>.51<br>.28<br>.14             | 11.74<br>4.20<br>242                 |
|           |               | ا ت      | . 59 | .68<br>.62<br>.55<br>.67                         | . 82<br>. 71<br>. 60<br>. 74<br>1. 60    | 32<br>45<br>45<br>91<br>94<br>24             | 102.37<br>11.65<br>242               |
|           | ىد            | EL       | .61  | . 78<br>. 77<br>. 77<br>. 84                     | . 96<br>. 89<br>. 88<br>1. 66            | 54.<br>54.<br>12.<br>19.                     | 103.85<br>13.04<br>242               |
|           | Concurrent    | WW       | . 59 | . 65<br>. 74<br>. 82<br>. 73                     | .76<br>.90<br>1.00<br>.38                | 4.4.5.<br>22.<br>12.2.                       | 165 96<br>14.30<br>242               |
| න<br>භ    | පී            | 61       | .61  | . 78<br>. 81<br>. 78<br>. 80                     | 1.90<br>1.90<br>.96<br>.89               | . 52<br>. 54<br>. 25<br>. 25<br>             | 105.63<br>14.30<br>242               |
| de scores |               | AFQT     | .62  | .86<br>.86<br>.72<br>.84                         | 1.00<br>.91<br>.76<br>.90<br>.82         | . 38<br>. 47<br>. 39<br>. 19                 | 51.21<br>21.37<br>242                |
| Aptitude  |               | ८        | .49  | .86<br>.74<br>.55<br>.75                         | .71<br>.63<br>.52<br>.65                 | 8. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | 101.41<br>10.89<br>242               |
|           | ٠,            | 岀        | .57  | .91<br>.88<br>.85<br>.1.00                       | .88<br>.80<br>.73<br>.67                 | . 52<br>. 52<br>. 40<br>. 24                 | 102.58<br>13.16<br>242               |
|           | En listment   | <b>≩</b> | .53  | . 74<br>. 89<br>. 1. 60<br>. 85                  | .72<br>.76<br>.82<br>.77                 | 4.4.6.<br>4.4.0.0.                           | 106.70<br>13.81<br>242               |
|           | En            | 51       | .55  | .91<br>.89<br>.88<br>.88                         | .80<br>.81<br>.74<br>.78                 | . 45<br>. 51<br>. 42<br>                     | 104.96 106.7<br>12.36 13.8<br>242 24 |
|           |               | AFOT     | .54  | 1.00<br>.91<br>.74<br>.91                        | .85<br>.78<br>.65<br>.79                 | .37<br>.34<br>.16                            | 51.24<br>19.31<br>242                |
|           |               | JKT      | 1.00 | .54<br>.55<br>.53<br>.57                         | .62<br>.61<br>.59<br>.59<br>.61          | tests<br>.40<br>.41<br>.45<br>.23            | 49.24<br>9.14<br>242                 |
|           |               |          | JKT  | Enlistment ASVAB<br>AFOT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAB<br>GT<br>MM<br>EL<br>CL | New predictor tests SP                       | Mean<br>Std dev<br>N                 |

•

Correlation matrix for proficiency marks (sample values): machinegunner (0331) Table A-6.

5 5 5 5 5 5 5 6 6 .22 .13 .28 .25 7.77 12.61 238 ASAP . 16 . 17 . 09 1. 00 34 201.95 33.58 238 24 28 28 18 . 36 . 36 . 37 . 24 .22 .22 .03 .09 .09 .04 New predictor tests <u>۲</u> 22.79 7.47 238 85 24 25 35 25 25 64.4.4.8. .51 .57 1.00 .22 .77 60 ٧ 19.23 5.32 238 55 55 56 56 58 .52 1.66 .57 .20 .11 .51 .53 .53 .53 .13 SS. 1.88 .52 .51 .27 35 44 45 35 35 .39 .45 .47 .36 .23 S .82 .71 .60 .73 102.18 11.67 238 .68 .62 .55 .67 .17 ರ 103.68 12.98 238 Ξ .79 .78 .78 .85 .65 .98 .88 .00.1 딤 Concurrent . 15 108.95 14.35 238 .65 .75 .74 .52 . 88 . 88 . 88 ₹ 105.42 14.37 238 .91 .90 .89 .71 .78 .82 .79 .81 . 52 . 52 . 54 . 54 . 57 5 G Aptitude scores 1.00 .91 .75 .90 .82 50.84 21.31 238 .85 .73 .73 .73 .39 .47 .48 .18 . 10 AFOT .86 .74 .55 .75 101.35 10.93 238 52 52 65 70 36 35 35 19 ರ 102.42 13.08 238 .91 .88 .85 1.00 .75 . 53 . 53 . 24 . 24 . 18 85 74 85 67 E En! istment 106.69 13.72 238 .75 .89 1.00 .85 .55 .73 .83 .78 .78 .55 54. 54. 55. 55. 55. . 09 ₹ 104.81 12.36 238 . 10 .91 1.00 89 .88 .74 .89 .82 .75 .79 .62 . 43 . 26 . 26 . 12 ST 1.00 .91 .75 .91 .86 50.93 19.20 238 .39 .47 .36 .16 AFQT .85 .78 .65 .79 .68 SP .23 RS .13 AS .09 VF .04 44.08 2.03 238 1.00 1.09 1.09 1.24 Enlistment ASVAB Concurrent ASVAB
AFQT AFOT GT MM EE CL Mean Std dev N 다.폭리 Xe¥

Correlation matrix for hands-on performance test (sample values): mortarman (0341) Table A-7.

|           |                     | ASAP | <u>.</u>        | . 1                                          | . 69<br>. 63<br>. 44<br>                              |                                           | 8.90<br>12.45<br>226     |
|-----------|---------------------|------|-----------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------|--------------------------|
|           | tests               | VF   | ,3 <del>4</del> | 23.<br>25.<br>15.<br>4.                      | .38<br>.39<br>.38<br>.22                              | .36<br>.34<br>.34<br>.08                  | 203.34<br>33.15 1<br>226 |
|           | dictor              | YS   | .42             | .39<br>.53<br>.47<br>.39                     |                                                       | .55<br>1.00<br>34<br>.13                  | 22.57 2<br>7.16<br>226   |
|           | New predictor tests | RS   | .35             | 64.<br>68.<br>68.<br>68.<br>64.              | . 61<br>. 53<br>. 53<br>. 53                          | 85.<br>88.<br>85.<br>85.<br>85.           | 19.23<br>5.75<br>226     |
|           |                     | SP   | .40             | 38<br>54<br>74<br>55<br>56                   | .37<br>.51<br>.38                                     | 1.00<br>3.39<br>3.56<br>3.6<br>6.         | 11.52<br>4.20<br>226     |
|           |                     | ರ    | .36             | .78<br>.65<br>.57<br>.66                     | .85<br>.78<br>.77<br>1.00                             | .38<br>.53<br>.47<br>.11                  | 13.94<br>13.94<br>226    |
|           | ىد                  | 급    | <b>4</b> .      | .82<br>.82<br>.79<br>.86                     | .91<br>.93<br>1.68<br>1.77                            | . 54<br>. 57<br>. 47<br>. 38<br>. 94      | 103.06<br>13.38<br>226   |
|           | Concurrent          | *    | .57             | .66<br>.75<br>.85<br>.76<br>.53              | . 76<br>. 89<br>1.00<br>. 89<br>. 65                  | . 55.<br>55.<br>54.<br>56.                | 108.67<br>13.91<br>226   |
| s e       | သ                   | GT   | .58             | .78<br>.81<br>.76<br>.79                     | 46.<br>1.00<br>89.<br>191.                            | 46.<br>61.<br>53.<br>86.                  | 106.27<br>14.80<br>226   |
| de scores |                     | AFQT | .39             | .84<br>.79<br>.67<br>.79                     | 1.00<br>4.00<br>7.00<br>1.00<br>1.00<br>1.00          | 55.<br>54.<br>69.                         | 58.94<br>22.55<br>226    |
| Aptitude  |                     | ಠ    | .24             | .85<br>.76<br>.60<br>.74                     | .71<br>.63<br>.53<br>.67                              | E                                         | 102.94<br>11.98<br>226   |
|           | +                   | ᆲ    | ‡               | .90<br>.88<br>1.00<br>47.                    | . 79<br>. 79<br>. 76<br>. 86<br>. 86                  | . 47<br>. 48<br>. 47<br>. 31              | 182.17<br>13.53<br>226   |
|           | Enlistment          | ₹    | .55             | 77.<br>88.<br>1.00<br>88.                    | .67<br>.76<br>.85<br>.79                              | .58<br>.52<br>.53<br>.37                  | 105.31<br>14.32<br>226   |
|           | E                   | E    | .43             | .91<br>1.00<br>.88<br>.90<br>.76             | . 79<br>. 81<br>. 75<br>. 82<br>. 65                  | . 43<br>. 56<br>. 47<br>. 29<br>62        | 105.09<br>12.81<br>. 226 |
|           |                     | AFQT | .33             | 9.1<br>.91<br>.74<br>.95                     | . 84<br>. 78<br>. 66<br>. 82                          | .38<br>.39<br>.21                         | 51.72<br>19.94<br>226    |
|           |                     | HOPT | 1 00            | AB 33 44 44 44 24 44 44 44 44 44 44 44 44 44 | AB 39 50 57 48 36 36 36 36 36 36 36 36 36 36 36 36 36 | tests<br>40<br>35<br>42<br>42<br>34<br>13 | 52 96<br>8.76<br>226     |
|           |                     |      | HOPT            | Enlistment ASVAB<br>GT<br>MM<br>EL<br>CL     | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL      | New predictor tests SP RS AS VF ASAP 1.   | Mean<br>Std dev          |

Correlation matrix for job knowledge test (sample values): mortarman (0341) Table A-8.

|            |                     | ASAP | . 12 | . 62<br>. 63<br>. 62<br>. 62<br>. 63             | .05<br>.05<br>.03                                | . 05<br>. 12<br>. 06<br>1. 00                      | 8.83<br>12.43<br>225   |
|------------|---------------------|------|------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------|
|            | tests               | VF   | .38  | .21<br>.37<br>.31                                | .39<br>.39<br>.38<br>.38                         | .36<br>.34<br>1.00                                 | 203.29<br>33.21<br>225 |
|            | New predictor tests | AS   | .48  | .39<br>.47<br>.53<br>.38                         | .52<br>.52<br>.47<br>.46                         | .55<br>1.00<br>34<br>.12                           | 22.52 2<br>7.15<br>225 |
|            | New pre             | RS   | .50  | . 52<br>. 52<br>. 59<br>. 43                     | . 55<br>. 60<br>. 57<br>. 53                     | . 39<br>1.08<br>. 55<br>. 36<br>. 95               | 19.24<br>5.76<br>225   |
|            |                     | SP   | 4.   | .37<br>.43<br>.49<br>.33                         | .37<br>.45<br>.50<br>.37                         | 1.66<br>.39<br>.56<br>.36                          | 11.50<br>4.19<br>225   |
| ,          |                     | ಠ    | .53  | . 79<br>. 65<br>. 56<br>. 65<br>. 71             | .85<br>.78<br>.65<br>.77                         | . 53<br>. 46<br>. 22<br>. 11                       | 104.66<br>13.87<br>225 |
|            | ب                   | 급    | .63  | .82<br>.82<br>.79<br>.86                         | .90<br>.91<br>.88<br>1.00                        | .45<br>.57<br>.38<br>.03                           | 102.97<br>13.34<br>225 |
|            | Concurrent          | ₹    | . 68 | .66<br>.75<br>.85<br>.76<br>.76                  | .76<br>.89<br>1.00<br>.88<br>.88                 | .50<br>.52<br>.60<br>.60<br>.60<br>.60<br>.60      | 108.58<br>13.89<br>225 |
| 80         | ပိ                  | 5    | .69  | . 78<br>. 81<br>. 76<br>. 79                     | .94<br>1.00<br>.89<br>.91                        | . 45<br>. 52<br>. 39<br>. 95                       | 106.20<br>14.79<br>225 |
| de scores  |                     | AFOT | .63  | .84<br>.79<br>.67<br>.79                         | 1.00<br>.94<br>.76<br>.90                        | . 37<br>. 55<br>. 38<br>. 39                       | 50.82<br>22.52<br>225  |
| Apt i tude |                     | ರ    | .36  | .85<br>.76<br>.59<br>.74                         | .78<br>.63<br>.52<br>.52                         | 55.<br>85.<br>41.<br>80.                           | 102.87<br>11.95<br>225 |
|            | ı                   | ಕ    | .56  | . 90<br>. 98<br>. 1 90<br>. 1 47                 | . 79<br>. 79<br>. 76<br>. 86<br>. 85             | . 47<br>. 47<br>. 31                               | 182.11<br>13.54<br>225 |
|            | Eniistment          | ¥    | .62  | . 24<br>                                         | .67<br>.76<br>.85<br>.79                         | .49<br>.52<br>.53<br>.37<br>.01                    | 105.27<br>14.33<br>225 |
|            | Ē                   | 15   | .55  | .91<br>1.00<br>.88<br>.90<br>.76                 | .79<br>.81<br>.75<br>.82                         | . 54.<br>. 51.<br>. 29.<br>03.                     | 105.04<br>12.80<br>225 |
|            |                     | AFQT | .48  | 0.1<br>.91<br>.74<br>.95                         | .84<br>.78<br>.66<br>.78                         | .37<br>.39<br>.39<br>.21                           | 51.63<br>19.94<br>225  |
|            |                     | JKT  | 1.00 | .48<br>.55<br>.62<br>.56<br>.36                  | . 63<br>. 68<br>. 68<br>. 63<br>. 53             | tests<br>.44<br>.50<br>.48<br>.38                  | 52.60<br>9.31<br>225   |
|            |                     |      | JKT  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>EL | New predictor tests SP .44 RS AS .56 AS .48 VF .33 | Mean<br>Std dev<br>N   |

Table A-9. Correlation matrix for proficiency marks (sample values): mortarman (0341)

|            |            | ASAP | .39  |                                                                                      | .00<br>.00<br>.00<br>.00<br>.00                  |                                                         | 8.85<br>2.50<br>224    |
|------------|------------|------|------|--------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|------------------------|
|            | ts.        |      | 19   | .28<br>.36<br>.13                                                                    | . 29<br>. 38<br>. 37<br>. 21                     | 35.<br>45.<br>88.<br>1                                  | -                      |
|            | r tests    | ¥    |      |                                                                                      |                                                  | <del>,</del>                                            | 32.21<br>32.98<br>224  |
|            | predictor  | VS   | .23  | .38<br>.47<br>.52<br>.38                                                             | . 53<br>. 53<br>. 52<br>. 47<br>. 46             | .56.<br>1.00.1<br>45.                                   | 22.50<br>7.15<br>224   |
|            | New pr     | RS   | .26  | 74.<br>15.<br>15.<br>15.<br>14.                                                      | . 61<br>. 68<br>. 57<br>. 53                     | 4.1.<br>88.<br>88.<br>88.                               | 19.26<br>5.69<br>224   |
|            |            | SP   | . 15 | 54.<br>74.<br>74.<br>74.<br>74.<br>75.                                               | .37<br>.46<br>.51<br>.38                         | 1.00<br>.41<br>.56<br>.36                               | 11.47<br>4.18<br>224   |
|            |            | 7    | Ξ.   | .70<br>.65<br>.56<br>.65                                                             | .85<br>.78<br>.65<br>.77                         | .38<br>.45<br>.12.                                      | 184.71<br>13.96<br>224 |
|            |            | EL   | .13  | . 82<br>. 82<br>. 79<br>. 86                                                         | . 90<br>. 91<br>. 88<br>1. 60                    | . 55.<br>74.<br>75.<br>70.                              | 103.01<br>13.39<br>224 |
|            | Concurrent | ¥    | . 17 | .66<br>.75<br>.85<br>.76<br>.76                                                      | . 76<br>. 89<br>1.00<br>. 88<br>. 65             |                                                         | 108.60<br>13.92<br>224 |
| en<br>ev   | တ          | GT   | . 12 | . 78<br>. 81<br>. 76<br>. 79                                                         | .94<br>1.00<br>.83<br>.91                        | . 61<br>. 53<br>. 38<br>. 95                            | 106.21<br>14.79<br>224 |
| de scores  |            | AFQT | .10  |                                                                                      | 1.00<br>1.94<br>.76<br>.90                       | .37<br>.25<br>.29<br>.09                                | 50.83<br>22.52<br>224  |
| Apt i tude |            | 5    | . 02 | .85<br>.75<br>.59<br>.74                                                             | .71<br>.63<br>.52<br>.67                         |                                                         | 102.81<br>11.94<br>224 |
|            | بد         | 립    | .07  | .91<br>.96<br>.87<br>1.00                                                            | .79<br>.79<br>.76<br>.86                         | .47<br>.46<br>.30                                       | 102.04<br>13.45<br>224 |
|            | Enlistment | ₹    | Ε.   | . 73<br>. 88<br>1. 00<br>. 87<br>. 59                                                | .67<br>.76<br>.85<br>.79                         | . 45.<br>52.<br>1.0.1                                   | 105.14<br>14.21<br>224 |
|            | ដ          | [B   | .04  | 1.00<br>1.00<br>88<br>.90<br>.75                                                     | .79<br>.81<br>.75<br>.82                         | . 43<br>. 51<br>. 28<br>03                              | 104.98<br>12.75<br>224 |
|            |            | AFQT | . 02 | 1.00<br>1.01<br>1.02<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03 | .84<br>.78<br>.66<br>.82                         | .37<br>.47<br>.38<br>.20                                | 51.54<br>19.89<br>224  |
|            |            | PRO  | 1 00 | SVAB .02<br>.04<br>.11<br>.07                                                        | SVAB .10 .12 .17 .13 .11                         | r tests<br>.15<br>.25<br>.23<br>.39                     | 44.13<br>1.61<br>224   |
|            |            |      | PRO  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL                                     | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests<br>SP .1<br>RS .2<br>AS .2<br>VF .1 | Mean<br>Std dev<br>N   |

Table A-16. Sorrelation matrix for hands-on performance test (sample values): assaultman (0351)

|                 |                     | ASAP     | .18  | 91.<br>81.<br>71.<br>25.                                | .22<br>.22<br>.22                                | 1.00                                                                                    | 8.89<br>12.27<br>244       |
|-----------------|---------------------|----------|------|---------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|
|                 | testa               | VF       | .38  | 22.7.2.2.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4                | .29<br>.29<br>.72<br>.24                         | . 22<br>. 22<br>1.00<br>1.00                                                            | 206.02<br>31.87<br>244     |
|                 | New predictor tests | AS       | .37  | 25.4.4.4.2.<br>25.4.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 4.00<br>6.00<br>6.00<br>6.44<br>6.44             | .59<br>1.66<br>1.22<br>1.71                                                             | 24.54 27.15<br>7.15<br>244 |
|                 | New pre             | RS       | . 26 | ,45<br>,47<br>,46<br>,46                                | 4.6.4.4.<br>8.4.6.4.6.4.                         | .41<br>1.69<br>.57<br>.26                                                               | 20.47<br>5.18<br>244       |
|                 |                     | SP       | .34  | .33<br>44.<br>45.<br>28.                                | E 4 4 4 E                                        | 1.68<br>.41<br>.59<br>.21                                                               | 12.22<br>4.46<br>244       |
|                 |                     | 5        | .38  | . 69<br>. 53<br>. 53<br>. 67                            | . 88<br>. 79<br>. 65<br>. 88<br>. 99             | £ 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 4 4 2 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 167 12<br>13.46<br>244     |
|                 |                     | ᆲ        | .51  | .79<br>.86<br>.77<br>.83                                | . 92<br>. 83<br>. 88<br>. 88                     | . 49<br>. 49<br>. 27<br>. 22                                                            | 168.62<br>13.96<br>244     |
|                 | Concurrent          | <b>3</b> | .54  | .66<br>.74<br>.75<br>.75                                | . 89<br>1.00<br>1.85                             | 34.4.5.<br>84.5.<br>7.5.                                                                | 113.19<br>13.51<br>244     |
| 87<br>20        | હ                   | E3       | . 58 | .74<br>.73<br>.75                                       | .93<br>1.98<br>.89<br>.91                        | .54<br>.56<br>.29                                                                       | 111.40<br>13.69<br>244     |
| Aptitude scores |                     | AFQT     | . 44 | .81<br>.78<br>.67<br>.77                                | 1.00<br>.93<br>.77<br>.52                        |                                                                                         | 59.94<br>21.98<br>244      |
| Aptitu          |                     | 당        | .30  | .86<br>.74<br>.60<br>.76                                | .68<br>.51<br>.54                                | . 28<br>. 35<br>. 35<br>. 18                                                            | 105.75<br>10.40<br>244     |
|                 | بد ا                | 립        | .43  | . 98<br>. 88<br>. 87<br>. 87<br>. 60<br>. 76            | .77<br>.76<br>.75<br>.83                         | 44.<br>45.<br>47.<br>7.                                                                 | 197.44<br>13.05<br>244     |
|                 | Enlistment          | ₹        | .43  | . 74<br>. 88<br>. 1. 09<br>. 87<br>. 60                 | .67<br>.73<br>.82<br>.77                         | . 45<br>. 47<br>. 27<br>. 27                                                            | 110.65<br>13.18<br>244     |
|                 | 급                   | 13       | .49  | .98<br>1.00<br>.88<br>.88<br>.74                        | .78<br>.78<br>.74<br>.80                         | 44.<br>.54.<br>.27.<br>.18                                                              | 110.19<br>11.66<br>244     |
|                 |                     | AFQT     | .36  | 3.00<br>.90<br>.74<br>.90<br>.90                        | . 81<br>. 74<br>. 66<br>. 79<br>. 69             | 34.<br>35.<br>40.<br>61.                                                                | 59.41<br>18.82<br>244      |
|                 |                     | HCPT     | 1.69 | 8                                                       | AR<br>. 50<br>. 54<br>. 51<br>. 51               | tests<br>.34<br>.26<br>.37<br>.30                                                       | 64.28<br>6.66<br>244       |
|                 |                     |          | HOPT | Enlistment ASVAB AFQT GT MM EL CL                       | Concurrent ASVAR<br>AFOT<br>GI<br>MM<br>EL<br>CL | New predictor SP<br>RS<br>AS<br>VF<br>ASAP                                              | Maon<br>Std dev<br>N       |

Table A-11. Correlation matrix for job knowledge test (sample values): assaultman (0351)

| Enlistment    AFQT   GT   MM   EL   CL   AFQT   GT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Concurrent New pred. :tor tests | MM EL CL SP RS AS VF ASAP | EL CL SP RS AS VF | 7 .52 .58 .52 .31 .39 .18 .22 | 91. 35. 45. 39. 69. 97. 99. | .74 .80 .65 .44 .51 .45 .27 | 5 .82 .// .53 .45 .4/ .40 .2/ .14<br>6 .75 .83 .64 .42 .46 .45 .24 .17 | .51 .64 .67 .28 .43 .35 .18 | 77 02 88 11 48 40 24 |     | 9 1.00 .89 .65 .46 .49 .48 .31 .15 | .89 1.00 .80 .41 .49 .48 .27 | .65 .80 1.00 .31 .46 .44 .24 | 3 .46 .41 .31 1.00 .41 .59 .21 .12 | 20 75 75 75 75 75 75 75 75 75 75 75 75 75 | 27. 00.1 /C. EC. 44. 04. 04. | 00.1 22. 02. 12. 42. 72. 16. | 1 +1: /1: 91: 21: 27: 27: 61: | 113.19 108.02 107 | 13:31 13:36 13:46 4:46 3:18 7:10 31:67 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|-------------------|-------------------------------|-----------------------------|-----------------------------|------------------------------------------------------------------------|-----------------------------|----------------------|-----|------------------------------------|------------------------------|------------------------------|------------------------------------|-------------------------------------------|------------------------------|------------------------------|-------------------------------|-------------------|----------------------------------------|
| Enlistment         JKT       AFQT       GT       MM       EL       CL         1.09       .47       .44       .48       .39         .47       .90       .74       .90       .86         .44       .74       .88       1.00       .87       .60         .44       .74       .88       1.00       .87       .60         .43       .90       .88       .87       1.00       .76         .44       .74       .88       1.00       .87       .68         .53       .86       .74       .60       .76       1.00         .53       .81       .78       .67       .77       .68         .53       .74       .78       .73       .76       .60         .53       .74       .78       .77       .83       .64       .67         .53       .79       .80       .77       .83       .64       .67         .53       .79       .80       .77       .83       .64       .67         .53       .74       .45       .45       .45       .35         .31       .45       .46       .45 <t< td=""><td>Conc</td><td></td><td></td><td>.58 .57</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ξ.</td><td>_</td></t<> | Conc                            |                           |                   | .58 .57                       |                             |                             |                                                                        |                             |                      | _   | •                                  |                              |                              |                                    |                                           |                              |                              |                               | Ξ.                | _                                      |
| JKT AFQT GT MM  1.09 .47 .47 .44  .47 1.00 .90 .74  .44 .74 .98 1.00 .88  .44 .74 .98 .87  .53 .81 .78 .67  .53 .81 .78 .67  .53 .81 .78 .67  .53 .79 .80 .77  .52 .69 .65 .73  ests  .31 .33 .44 .45  .39 .35 .45 .46  .19 .27 .27  .52 .19 .18 .16 .18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | t                         | C                 | •                             |                             |                             |                                                                        | -                           |                      | •   | •                                  | •                            | •                            |                                    |                                           |                              |                              |                               | 44 105.75         | 92 18.48                               |
| JKT AFOT GT  1.09 .47 .43 .44 .74 .8 .44 .74 .8 .43 .90 .10 .53 .81 .7 .52 .69 .6 .53 .79 .8 .53 .79 .8 .53 .79 .8 .53 .79 .8 .53 .79 .8 .53 .79 .8 .51 .70 .7 .52 .69 .6 .53 .75 .78 .7 .55 .79 .8 .57 .88 .79 .8 .57 .88 .79 .8 .57 .88 .79 .8 .57 .88 .79 .8 .57 .88 .79 .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | listment                        | 3                         | <b> </b>          | . 44                          | .74                         | 88.                         | 1.66                                                                   | 09                          | 73                   | , c | . 83                               | .77                          | .53                          | 5.                                 | .47                                       | 4.<br>0.0                    | 77.                          | <del>4</del> -                | 110.65 1          | <br>                                   |
| JKT<br>1.09<br>1.09<br>1.47<br>1.44<br>1.44<br>1.43<br>1.53<br>1.53<br>1.53<br>1.33<br>1.33<br>1.33<br>1.33<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E                               | '                         | . <b>!</b><br>!   | ٠                             |                             | _                           |                                                                        |                             |                      |     |                                    |                              |                              |                                    |                                           |                              |                              |                               | -                 |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                               |                           |                   | •                             | .47                         | 47                          |                                                                        |                             | ņ                    |     |                                    |                              |                              |                                    |                                           |                              |                              |                               |                   |                                        |

Correlation matrix for proficiency marks (sample values): assaultman (0351) Table A-12.

|            |               | ASAP     | .29  | 1.<br>71.<br>1.<br>1.<br>42.                       | .28<br>.14<br>.21<br>.21               | .11.71.71.00                                      | 8.02<br>12.25<br>243   |
|------------|---------------|----------|------|----------------------------------------------------|----------------------------------------|---------------------------------------------------|------------------------|
|            | tests         | VF       | .20  | .17<br>.25<br>.25<br>.25<br>.15                    | . 23<br>. 29<br>. 25<br>. 25           | . 19<br>. 21<br>. 21<br>. 12                      | 205.67<br>31.49<br>243 |
|            | New.predictor | AS       | . 19 | 6. 4. 4. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | . 39<br>. 44<br>. 48<br>. 44           | .58<br>.57<br>1.00<br>.21                         | 24.49<br>7.13<br>243   |
|            | New.pr        | RS       | .15  | 4.<br>52.<br>74.<br>74.                            | . 55<br>. 56<br>. 56<br>. 74           | . 41<br>. 60<br>. 57<br>                          | 20.48<br>5.19<br>243   |
|            |               | g        | .26  |                                                    |                                        | 00.1<br>14.<br>85.<br>81.                         | 12.19<br>4.44<br>243   |
| ļ          | 1             | 5        | .23  | 69<br>49<br>49<br>49<br>69<br>69                   | .87<br>.79<br>.64<br>.79               | 55.<br>74.<br>74.<br>72.<br>72.                   | 107.00<br>13.29<br>243 |
|            | t             | EL       | .30  | . 79<br>. 79<br>. 76<br>. 83                       | . 92<br>. 91<br>. 89<br>. 1 . 66       | . 50<br>. 50<br>. 25<br>. 25<br>. 21              | 107.91<br>13.82<br>243 |
|            | Concurrent    | ¥        | .30  | .65<br>.73<br>.81<br>.75                           | . 77<br>. 89<br>. 1.00<br>. 89<br>. 64 | 4.4.<br>4.4.<br>2.29<br>4.1.                      | 113.99<br>13.44<br>243 |
| es         | Co            | 61       | . 29 | .73<br>.78<br>.73<br>.76                           | .93<br>1.00<br>.89<br>.91              | . 55<br>. 55<br>. 28<br>. 18                      | 111.31<br>13.64<br>243 |
| de scores  |               | AFQT     | .26  | .81<br>.78<br>.66<br>.77                           | 1.00<br>.93<br>.77<br>.92              | .32<br>.39<br>.23                                 | 59.79<br>21.90<br>243  |
| Apt i tude |               | ರ        | 41.  | .86<br>.74<br>.59<br>.76                           | .67<br>.68<br>.58<br>.63               |                                                   | 105.63<br>10.23<br>243 |
|            | יַּ           | ᆲ        | .17  | . 89<br>. 88<br>. 87<br>1. 00                      | . 77<br>. 76<br>. 75<br>. 83           | . 41<br>. 45<br>. 45<br>                          | 107.33<br>12.97<br>243 |
|            | Enlistmen     | <b>₹</b> | . 15 | . 73<br>. 88<br>1. 00<br>. 87<br>. 87              | . 66<br>. 73<br>. 81<br>. 76<br>. 52   | . 44<br>. 45<br>. 25<br>. 13                      | 110.55<br>13.10<br>243 |
|            | Εn            | GT       | .20  | . 90<br>1.000<br>. 88<br>. 88<br>. 74              | . 78<br>. 73<br>. 79                   | 24.<br>24.<br>24.<br>27.<br>24.                   | 110.09<br>11.57<br>243 |
|            |               | AFQT     | . 19 | 1.00<br>.90<br>.73<br>.89                          | .81<br>.73<br>.65<br>.79               | .32<br>.46<br>.34<br>.17                          | 59.24<br>18.68<br>243  |
|            |               | PRO      | 1.00 | SVAB . 19 . 20 . 15 . 17 17                        | SVAB .26 .39 .30 .30 .23               | r tests<br>.26<br>.15<br>.19<br>.20<br>.29        | 44.23<br>1.48<br>243   |
|            |               |          | PRO  | Enlistment ASVAB<br>AFQT<br>GT<br>MAM<br>EL<br>CL  | /\                                     | New predictor tests SP .2 RS .1 AS AS .1 AS VF .2 | Mean<br>Std dev<br>N   |

Table A-13. Correlation matrix for grade point average from infantry training school (sample values): base A

|               |                     | ASAP | .08  | <u> </u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.72<br>12.68<br>512   |
|---------------|---------------------|------|------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|               | tests               | VF   | .32  | £ 44. £ 5. £ 5. £ 5. £ 5. £ 5. £ 5. £ 5.         | .33<br>.39<br>.39<br>.32<br>.32<br>.38<br>.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94.00<br>32.03<br>512  |
|               | dictor              | AS   | .31  | 22.<br>82.<br>44.<br>82.<br>82.                  | 36<br>446<br>447<br>448<br>36<br>36<br>37<br>38<br>38<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.48 1<br>7.41<br>512 |
|               | New predictor tests | RS   | .30  | .34<br>.38<br>.37                                | 04.4.6.1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.42<br>5.53<br>512   |
|               |                     | SP   | .29  | .34<br>.45<br>.27<br>.27                         | 25.<br>144.<br>156.<br>156.<br>156.<br>156.<br>156.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.97<br>4.11<br>512   |
| ļ             |                     | ಕ    | .35  | .62<br>.58<br>.50<br>.57                         | . 83<br>. 75<br>. 74<br>74<br>74<br>26<br>38<br>38<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100.90<br>12.66<br>512 |
|               |                     | 13   | .49  | . 78<br>. 79<br>. 79<br>. 82<br>. 62             | . 89<br>. 90<br>89<br>74<br>45<br>46<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 199.77<br>13.46<br>512 |
|               | Concurrent          | ₹    | .50  | . 65<br>. 76<br>. 84<br>. 73                     | . 75<br>. 89<br>89<br>60<br>60<br>64<br>42<br>43<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 164.79<br>14.80<br>512 |
| ຫ<br><b>ຍ</b> | હૈ                  | GT   | .46  | . 74<br>. 78<br>. 74<br>. 59                     | 200.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0.00.<br>0 | 103.21<br>14.37<br>512 |
| de scores     |                     | AFQT | 44.  | .81<br>.76<br>.67<br>.76                         | 0.1<br>0.92<br>0.75<br>0.83<br>0.44<br>0.35<br>0.35<br>0.45<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.75<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.86<br>20.94<br>512  |
| Aptitude      |                     | ८    | .36  | .82<br>.72<br>.59<br>.74                         | 48.<br>86.<br>86.<br>86.<br>86.<br>86.<br>86.<br>86.<br>86.<br>86.<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 101.54<br>10.18<br>512 |
|               |                     | EL   | . 47 | .90<br>.88<br>.88<br>1.00                        | 74<br>7.73<br>7.82<br>7.57<br>7.53<br>7.63<br>7.64<br>7.64<br>7.64<br>7.64<br>7.64<br>7.64<br>7.64<br>7.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100.12<br>13.29<br>512 |
|               | Enlistment          | ¥    | . 49 | . 90<br>. 90<br>. 1 . 60<br>. 59                 | 79.<br>748.<br>67.<br>85.<br>744.<br>744.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 162.13                 |
|               | Ę                   | 15   | .48  | .90<br>1.00<br>.90<br>.88                        | 7. 26 27 28 27 28 27 28 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 102.74<br>12.52<br>512 |
|               |                     | AFQT | 44.  | 1.00<br>.90<br>.77<br>.90                        | 18.<br>65.<br>78.<br>78.<br>78.<br>78.<br>78.<br>78.<br>78.<br>78.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.36<br>18.57<br>512  |
|               |                     | SPA  | 1.00 | ASVAB .44 .48 .48 .49 .49 .47 .36                | AFOT .44 GT .46 MM .50 EL .49 CL .35 Predictor tests SP .29 RS .31 VF .32 ASAP .08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.83                  |
|               |                     |      | GPA  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAB AFQT GT MM EL CL CL CL SP RS AS AS AS ASAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mean<br>Std dev        |

Table A-14. Correlation matrix for grade point average from infantry training school (sample values): base B

|            |                     | ASAP | 03   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 16<br>. 09<br>. 16                             | . 68<br>. 65<br>. 62<br>. 62<br>. 68                              | 6.67<br>12.60<br>641   |
|------------|---------------------|------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------|------------------------|
|            | tests               | VF   | .16  | .28<br>.38<br>.33<br>.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .22<br>.29<br>.33<br>.25                         | . 25<br>. 24<br>. 00<br>. 02                                      | 201.03<br>31.83<br>641 |
|            | New predictor tests | AS   | Ε.   | 8. 4. 4. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. 8. 6. | 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.           | .55<br>1.00<br>24<br>1.24                                         | 23.05<br>7.11<br>641   |
|            | New pr              | RS   | . 19 | 8. 4. 4. 8. 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .52<br>.54<br>.53<br>.53                         | 1.00<br>1.00<br>.55<br>.25<br>.05                                 | 19.21<br>5.91<br>641   |
|            |                     | SP   | . 12 | 44.4.6.<br>44.4.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 52<br>. 52<br>. 49<br>. 51<br>. 39             | 1.00<br>4.55<br>24.08                                             | 11.30<br>4.13<br>641   |
|            |                     | ᆸ    | . 19 | .65<br>.68<br>.52<br>.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .84<br>.78<br>.66<br>.77                         | . 39<br>. 44<br>. 19<br>21                                        | 102.45<br>13.10<br>641 |
|            | ید                  | 딥    | .26  | . 79<br>. 78<br>. 75<br>. 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .90<br>.90<br>.89<br>1.00                        | .51<br>.53<br>.47<br>.25                                          | 102.30<br>13.48<br>641 |
|            | Concurrent          | MM   | .25  | .66<br>.73<br>.80<br>.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 78<br>. 90<br>. 1. 60<br>. 89<br>. 66          | 64.<br>63.<br>54.<br>86.<br>86.                                   | 107.38<br>14.30<br>641 |
| .e.s       | ပိ                  | 61   | .26  | .75<br>.77<br>.72<br>.75<br>.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .93<br>1.00<br>.90<br>.90<br>7.8                 | . 52<br>. 57<br>. 49<br>12                                        | 105.26<br>14.82<br>641 |
| ude scores |                     | AFQT | .24  | .82<br>.77<br>.68<br>.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00<br>.93<br>.78<br>.90<br>.84                 | 4.<br>52.<br>22.<br>16.                                           | 50.01<br>22.32<br>641  |
| Aptitude   |                     | ರ    | .22  | .85<br>.73<br>.59<br>.76<br>.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .69<br>.62<br>.53<br>.67                         | .37<br>.38<br>.38<br>.16                                          | 102.80<br>10.76<br>641 |
|            | j.                  | ᆲ    | .26  | .91<br>.88<br>.85<br>.1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .78<br>.75<br>.72<br>.81                         | 4.4.4.<br>64.65.<br>64.05.                                        | 101.85<br>12.86<br>641 |
|            | Enlistment          | ₹    | .23  | . 74<br>. 89<br>. 1. 00<br>. 1. 00<br>. 59<br>. 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .68<br>.72<br>.80<br>.75                         | 4.<br>4.<br>3.<br>3.<br>4.<br>4.<br>4.                            | 105.20<br>13.76<br>641 |
|            | Ü                   | GT   | . 25 | .90<br>1.00<br>.89<br>.88<br>.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .77<br>.77<br>.73<br>.73                         | 4.3.<br>43.<br>43.<br>70.<br>70.                                  | 104.95<br>12.30<br>641 |
|            |                     | AFQT | . 25 | 1.00<br>.90<br>.74<br>.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .82<br>.75<br>.66<br>.79                         | 44.<br>338<br>200:<br>113                                         | 51.43<br>18.73<br>641  |
|            |                     | GPA  | 1.00 | SVAB .25 .25 .25 .23 .26 .26 .26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .24<br>.26<br>.26<br>.25<br>.25<br>.26           | . 12<br>. 13<br>. 19<br>16<br>                                    | 50.12<br>9.92<br>641   |
|            |                     |      | GPA  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | Nev. predictor tests<br>SP .1<br>RS .1<br>AS .1<br>VF .1<br>ASAP0 | Mean<br>Std dev<br>N   |

Corrected correlation matrix for hands-on performance test: infantry rifleman (0311) Table A-15.

|            | 1             | 101  | ٨ı   | N M M M M                                                                                          | o o n ∾                                          | 8-7-6                                                   | o n o                  |
|------------|---------------|------|------|----------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|------------------------|
|            |               | ASAP | .22  | .27<br>.23<br>.18<br>.26                                                                           | .29<br>.26<br>.24<br>.32                         | . 16<br>. 21<br>. 17<br>. 11.60                         | 6.56<br>13.03<br>870   |
|            | tests         | VF   | .49  | 4.<br>4.<br>5.<br>5.<br>6.<br>6.<br>6.<br>6.<br>6.<br>6.<br>6.<br>6.<br>6.<br>6.<br>6.<br>6.<br>6. | 4.4.6.4.4.<br>4.88.4.4.                          | .38<br>.40<br>.10<br>.11                                | 196.11<br>33.71<br>870 |
|            | New predictor | AS   | .47  | 74.<br>55.<br>55.<br>84.                                                                           | .52<br>.58<br>.57<br>.57                         | . 63<br>1.00<br>. 40<br>. 17                            | 22.03<br>7.86<br>870   |
|            | New pr        | RS   | .47  | .63<br>.59<br>.13<br>.73                                                                           | .63<br>.63<br>.65<br>.69                         | . 54<br>. 63<br>. 48<br>. 21                            | 18.76<br>6.40<br>870   |
|            |               | S.   | .45  | .55<br>.58<br>.53                                                                                  | .58<br>.59<br>.57<br>.54                         | 1.88<br>.59<br>.38<br>.18                               | 11.01<br>4.32<br>870   |
|            |               | 8    | .54  | . 86<br>. 71<br>. 81<br>. 85                                                                       | .93<br>.89<br>.77<br>.88<br>1.00                 | . 60<br>. 51<br>. 52<br>. 32                            | 100.96<br>20.09<br>870 |
|            | بدا           | ᆲ    | .64  | . 89<br>. 91<br>. 92<br>. 82                                                                       | .95<br>.93<br>1.00<br>88                         | .57<br>.65<br>.57<br>.48                                | 100.83<br>26.08<br>870 |
|            | Concurrent    | ¥    | .68  | . 77<br>. 85<br>. 96<br>. 84<br>. 68                                                               | . 84<br>92<br>1 . 00<br>. 93                     | .59<br>.58<br>.53                                       | 19.25<br>19.25<br>870  |
|            | Ŝ             | GT   | .63  | .83<br>.83<br>.83<br>.87<br>.80                                                                    | . 96<br>. 92<br>. 95<br>. 89                     | .56<br>.67<br>.58<br>.49                                | 103.30<br>21.24<br>870 |
| scores     |               | AFQT | . 58 | .92<br>.98<br>.79<br>.89                                                                           | 00.1<br>00.<br>00.<br>00.<br>00.<br>00.          | .58<br>.52<br>.44<br>.29                                | 47.63<br>34.28<br>870  |
| Apt i tude |               | 5    | .52  | . 94<br>. 86<br>. 71<br>. 86<br>. 1.00                                                             | . 86<br>. 88<br>. 82<br>. 83<br>. 84<br>. 86     | . 57<br>. 57<br>. 46<br>. 41                            | 101.50<br>20.02<br>870 |
| ∢          | <b>-</b>      | ᆲ    | .62  | 94.<br>96.<br>1.00<br>88.                                                                          | .89<br>.87<br>.92                                | .53<br>.61<br>.52<br>.46                                | 100.03<br>19.99<br>870 |
|            | Enlistment    | ₹    | 99.  | . 81<br>. 93<br>1. 60<br>1. 91                                                                     | . 79<br>. 98<br>. 97<br>. 71                     | . 55<br>. 55<br>. 52<br>                                | 102.34<br>19.99<br>870 |
|            | ង             | GT   | .63  |                                                                                                    | 98.<br>88.<br>88.<br>11.<br>11.                  | . 63.<br>43.<br>44.<br>54.                              | 102.59<br>20.04<br>870 |
|            |               | AFQT | .56  | 6.<br>95.<br>18.<br>19.<br>49.                                                                     | . 92<br>. 87<br>. 77<br>. 89<br>. 86             | . 47<br>. 60<br>. 42<br>. 24                            | 48.97<br>33.79<br>870  |
|            |               | HOPT | 1.80 | ASVAB .56 .63 .65 .65 .52 .52 .52 .52                                                              | ASVAB .58 .63 .68 .54 .54 .54                    | predictor tests<br>SP .45<br>RS .47<br>AS .47<br>VF .49 | 52.80<br>10.22<br>870  |
|            |               |      | HOPT | Enlistment<br>AFQT<br>GT<br>MM<br>EL<br>CL                                                         | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predic<br>SP<br>RS<br>AS<br>VF<br>VF<br>ASAP        | Mean<br>Std dev<br>N   |

Corrected correlation matrix for job knowledge test: infantry rifleman (0311) Table A-16.

|                 |               | ASAP | .29  | .26<br>.22<br>.17<br>.25<br>.28                                                         | .29<br>.28<br>.27<br>.31                      | . 69<br>. 20<br>. 17<br>. 10<br>1. 00                        | 6.63<br>13.00<br>862   |
|-----------------|---------------|------|------|-----------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|------------------------|
|                 | tests         | VF   | .42  | 4.<br>84.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1. | . 43<br>. 52<br>. 47<br>. 41                  | .39<br>.39<br>1.00<br>1.0                                    | 196.34<br>33.60<br>862 |
|                 | New predictor | VS   | .55  | 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.                                               | .5.<br>5.<br>8.<br>8.<br>8.<br>8.<br>8.       | .59<br>1.00<br>39<br>71.                                     | 22.06<br>7.82<br>862   |
|                 | New pr        | RS   | . 59 | . 59<br>. 59<br>. 59<br>. 56                                                            | . 66<br>. 63<br>. 63<br>. 63                  | .54<br>1.000<br>.63<br>.39<br>.20                            | 18.79<br>6.33<br>862   |
|                 | į             | SP   | .46  | 74.<br>53.<br>83.<br>44.                                                                | .49<br>.56<br>.60<br>.57                      | 1.00<br>5.55<br>5.9<br>5.09                                  | 11.02<br>4.32<br>862   |
|                 |               | 5    | .77  | .82<br>.71<br>.82                                                                       | .93<br>.89<br>.77.<br>.88<br>.1.00            | 65.<br>65.<br>14.<br>15.                                     | 101.11<br>20.01<br>862 |
|                 | t             | EL   | .81  | .98<br>.92<br>.82                                                                       | . 95<br>. 95<br>. 93<br>. 88                  | .57<br>.64<br>.74.                                           | 100.96<br>20.07<br>862 |
|                 | Concurrent    | *    | .75  | . 485<br>. 986<br>. 984<br>. 688                                                        | .84<br>.92<br>1.88<br>.93                     | .68<br>.63<br>.58<br>.52                                     | 105.30<br>19.17<br>862 |
| es              | တ             | 15   | .80  | 88.<br>88.<br>88.<br>18.                                                                | . 96<br>1.00<br>. 92<br>. 95<br>. 89          | .56<br>.65<br>.57<br>.48                                     | 103.51<br>21.23<br>862 |
| Aptitude scores |               | AFQT | 8.   | 68.<br>88.<br>88.<br>88.                                                                | 60.<br>60.<br>78.<br>78.<br>78.<br>78.        | .49<br>.51<br>.51<br>.29                                     | 47.88<br>34.38<br>862  |
| Aptitu          | :             | ರ    | .74  | . 94<br>                                                                                | .86<br>.81<br>.68<br>.82                      | 4.5.4.<br>64.6.4.<br>8.6.4.                                  | 101.56<br>20.02<br>862 |
|                 | 1             | 급    | 77.  | 40.<br>40.<br>10.<br>88.                                                                | .88<br>.88<br>.92<br>.92                      | .54<br>.52<br>.46<br>.25                                     | 100.07<br>19.98<br>862 |
|                 | Enlistment    | *    | .73  | . 93<br>1.00<br>1.00<br>17.                                                             | .86<br>.96<br>.87                             | .58<br>.59<br>.55<br>.71                                     | 102.42<br>19.99<br>862 |
|                 | ភ             | 61   | .78  | . 1<br>80. 1<br>80. 4<br>80. 4<br>80. 4                                                 | . 98<br>. 98<br>. 95<br>. 92                  | . 55<br>. 53<br>. 53<br>. 53<br>. 53                         | 102.64<br>20.04<br>862 |
|                 |               | AFQT | .77  | 6.1<br>6.2<br>7.8<br>7.8<br>7.8<br>7.8<br>7.8<br>7.8                                    | .93<br>.77<br>.90                             | 7.4.<br>7.4.<br>7.4.<br>7.4.<br>7.6.<br>7.6.<br>7.6.<br>7.6. | 49.01<br>33.80<br>862  |
|                 |               | J.KT | 1.60 | ASVAB .77 .78 .78 .73 .73 .73 .73 .73 .73 .73                                           | ASVAB .81<br>.80<br>.75<br>.75                | tests<br>.46<br>.55<br>.29                                   | 44.35<br>12.08<br>862  |
|                 |               |      | JKT  | Enlistment AS<br>AFQT<br>GT<br>MM<br>EL<br>CL                                           | Concurrent AS<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests SP .4 RS .5 AS .5 VF .5 ASAP .2          | Mean<br>Std dev<br>N   |

Corrected correlation matrix for proficiency marks: infantry rifleman (0311) Table A-17.

|                 |                     | ASAP | .31  | . 23<br>. 18<br>. 26<br>. 29                     | . 29<br>. 26<br>. 28<br>. 32                     | . 18<br>. 21<br>. 17<br>. 11         | 6.56<br>13.03<br>870   |
|-----------------|---------------------|------|------|--------------------------------------------------|--------------------------------------------------|--------------------------------------|------------------------|
|                 | tests               | VF   | .27  | 24.<br>52.<br>52.<br>4.<br>54.<br>54.<br>54.     | 4.4.6.4.4.<br>4.0.0.8.4.4.                       | 85.<br>04.<br>06.<br>1.00<br>1.      | 196.11<br>33.71<br>870 |
|                 | New predictor tests | AS   | .23  | . 55<br>. 55<br>. 55<br>. 55                     | .58<br>.58<br>.57                                | . 59<br>1. 60<br>1. 60<br>1. 17      | 22.63<br>7.86<br>870   |
|                 | New pre             | RS   | .29  | .63<br>.59<br>.61                                | .63<br>.63<br>.63<br>.69                         | . 54<br>1.00<br>. 63<br>. 40<br>. 21 | 18.76<br>6.40<br>870   |
|                 |                     | g    | .23  | . 55<br>. 58<br>. 53<br>. 53                     | .58<br>.59<br>.54                                | 1.00<br>54<br>.59<br>.38<br>.10      | 11.01<br>4.32<br>870   |
|                 |                     | b    | .36  | . 86<br>. 17.<br>. 18.<br>. 88.                  | .93<br>.89<br>.77<br>.88                         | .43<br>.60<br>.51<br>.42             | 100.96<br>20.09<br>870 |
|                 |                     | 급    | .38  | .89<br>.91<br>.92<br>.82                         | . 95<br>. 95<br>. 98<br>. 88                     | . 57<br>. 65<br>. 57<br>. 48<br>. 28 | 100.83<br>20.08<br>870 |
|                 | Concurrent          | ₹    | .37  |                                                  | . 92<br>1.00<br>1.93                             | .58<br>.53<br>.53                    | 19.25<br>19.25<br>870  |
| න<br>ආ          | Ŝ                   | GT   | .39  | . 83<br>. 83<br>. 83<br>. 88                     | 1.00<br>1.00<br>.92<br>.95                       | .56<br>.58<br>.49<br>.26             | 103.30<br>21.24<br>870 |
| Aptitude scores |                     | AFQT | .38  | . 92<br>. 98<br>. 79<br>. 89                     | 1.86<br>.96<br>.84<br>.95                        | .50<br>.52<br>.44<br>.29             | 47.63<br>34.28<br>870  |
| Aptitu          |                     | 5    | .34  | .94<br>.86<br>.71<br>.86                         | 88.<br>88.<br>88.<br>88.<br>88.                  | . 57<br>. 57<br>. 46<br>. 29         | 101.50<br>20.02<br>870 |
|                 | ţ                   | 급    | .35  | 46.<br>100.<br>100.<br>100.<br>100.              | .87<br>.87<br>.92                                | .53<br>.61<br>.52<br>.46             | 100.03<br>19.99<br>870 |
|                 | Enlistment          | ₹    | .34  | 18.<br>1.00<br>1.00<br>17.                       | .79<br>.83<br>.90<br>.87                         | .58<br>.59<br>.55<br>.52<br>.18      | 102.34<br>19.99<br>870 |
|                 | ភ្ន                 | 61   | .35  | 95.<br>1.00<br>93.<br>98.                        |                                                  | . 63.<br>43.<br>44.<br>54.           | 102.59<br>20.04<br>870 |
|                 |                     | AFOT | .34  | 00.1<br>.95<br>.81<br>.94                        | .92<br>.87<br>.77<br>.89                         | . 47<br>. 60<br>. 42<br>. 42         | 48.97<br>33.79<br>870  |
|                 |                     | PRO  | 1 00 | AB 34 35 35 35 35 35 35 35 35 35 35 35 35 35     | AB 38 39 37 37 38 38 38 38 38 38 38              | tests<br>23<br>29<br>23<br>27<br>31  | 43 69<br>2 19<br>870   |
|                 |                     |      | PRO  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests SP               | Mean<br>Std dev<br>N   |

Corrected sorrelation matrix for hands-on performance test: machinegunner (0331) Table A-18.

|                 | ;                   | ASAP | .36  | .32<br>.29<br>.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 33 34 53 53 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 55 54 54 | 1.00                                                               | 7.80<br>13.13<br>243     |
|-----------------|---------------------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------|
|                 | tests               | VF   | .30  | +45°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 25<br>. 25<br>. 25<br>. 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 28<br>1.00<br>11                                                 | 202.07<br>34.35<br>243   |
|                 | New predictor tests | AS   | .47  | 44.<br>55.<br>55.<br>55.<br>55.<br>55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88.<br>88.<br>84.<br>84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .65<br>1.00<br>28<br>.24                                           | 22.74 2<br>8.18<br>243   |
|                 | New pre             | RS   | .57  | .58<br>.63<br>.61<br>.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 65<br>. 65<br>. 69<br>. 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00<br>.65<br>.25                                                 | 19.28<br>6.05<br>243     |
|                 |                     | SP   | .53  | . 56<br>. 56<br>. 55<br>. 55<br>. 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 k k k k k k k k k k k k k k k k k k k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 59<br>. 32<br>. 24                                               | 11.70<br>4.61.<br>243    |
|                 |                     | ರ    | 69.  | .88<br>.84<br>.76<br>.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .93<br>.79<br>.79<br>88<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .66<br>.47<br>.19<br>.37                                           | 102.33<br>18.75<br>243   |
|                 |                     | EL   | .73  | . 89<br>. 98<br>. 93<br>. 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88. 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 53<br>. 22<br>. 34                                               | 103.80 1<br>18.97<br>243 |
|                 | Concurrent          | ₹    | .74  | .80<br>.87<br>.98<br>.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.                                                                | 19.85<br>19.85<br>243    |
| 84              | Co                  | 10   | .73  | . 89<br>. 92<br>. 94<br>. 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .96<br>1.00<br>94.<br>95.<br>97.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .565<br>.565<br>.32                                                | 105.53<br>21.38<br>243   |
| Aptitude scores |                     | AFOT | .70  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00<br>1.96<br>1.95<br>1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 55<br>81<br>35<br>35                                             | 51.13<br>33.72<br>243    |
| Aptitue         |                     | ಠ    | .63  | . 94<br>. 86<br>. 71<br>. 86<br>. 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .57<br>.43<br>.33                                                  | 101.40<br>19.91<br>243   |
|                 | بد                  | ᆸ    | .75  | 46.<br>40.<br>100.<br>100.<br>100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .93<br>.86<br>.93<br>.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 252<br>252<br>552<br>552<br>552<br>552<br>552<br>553<br>553<br>553 | 102.53<br>20.01<br>243   |
|                 | Enlistment          | *    | .76  | .93<br>1.00<br>1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .83<br>.88<br>.90<br>.87<br>.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .555                                                               | 196.79<br>19.95<br>243   |
|                 | En                  | GT   | .72  | 26. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. 000. 1. | . 91<br>. 92<br>. 98<br>. 98<br>. 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 522.                                                               | 104.94<br>19.97<br>243   |
|                 |                     | AFOT | .67  | 00.<br>00.<br>18.<br>19.<br>46.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.<br>88.<br>88.<br>88.<br>88.<br>42.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 884<br>441<br>32                                                   | 51.19<br>33.80<br>243    |
|                 |                     | HOPT | 1.00 | AB .67 .72 .76 .75 .75 .75 .75 .75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .57<br>.47<br>.30<br>.36                                           | 55.00<br>9.79<br>243     |
|                 |                     |      | HOPT | Enlistment ASVAB<br>AFQT<br>GT<br>MAM<br>EL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concurrent ASVAB AFOT CT NAM 77 EL 77 CL CL SG New predictor tests SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RS<br>AS<br>VF<br>ASAP                                             | Mean<br>Std dev<br>N     |

Corrected correlation matrix for job knowledge test: machinegunner (0331) Table A-19.

|           |                     | ASAP | .30  | . 31<br>. 28<br>. 32<br>. 32                                                                          | .34<br>.30<br>.33<br>.36             | .22<br>.21<br>.23<br>.00                                                 | 7.89<br>3.03<br>242    |
|-----------|---------------------|------|------|-------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|------------------------|
|           | <b>s</b>            |      | 9    | 40044                                                                                                 | രവയനമ                                | <b>~</b>                                                                 | -                      |
|           | test                | Y.   | .26  |                                                                                                       | . 19<br>. 25<br>. 26<br>. 23<br>. 20 | .33<br>.25<br>1.00<br>1.12                                               | 201.96<br>34.39<br>242 |
|           | New predictor tests | AS   | .56  | 4. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.                                                          | 64.<br>55.<br>55.<br>57.             | .59<br>.65<br>1.00<br>.28<br>.23                                         | 22.76<br>8.18<br>242   |
|           | New pr              | RS   | .57  | .58<br>.63<br>.61<br>.54                                                                              | . 65.<br>1.9.<br>1.9.<br>1.0.        | .68<br>1.08<br>.65<br>.25                                                | 19.30<br>6.05<br>242   |
|           |                     | SP   | .49  | 94.<br>64.<br>55.<br>15.                                                                              | 44.<br>153.<br>154.                  | 1.00<br>.59<br>.33                                                       | 11.74<br>4.54<br>242   |
|           |                     | ರ    | .77  | .88<br>.84<br>.76<br>.87                                                                              | .93<br>.87<br>.88<br>.1.60           | . 42<br>. 68<br>. 47<br>. 36                                             | 102.37<br>18.75<br>242 |
|           | ىد                  | EL   | 12.  | .89<br>.98<br>.93                                                                                     | 29.<br>29.<br>88.<br>88.             | . 53.<br>53.<br>53.<br>53.                                               | 103.85<br>18.91<br>242 |
|           | Concurrent          | M    | .75  | . 79<br>. 86<br>. 98<br>. 86<br>. 72                                                                  | 86.<br>1.00<br>1.00<br>23.           | .55<br>.55<br>.26<br>.27                                                 | 109.06<br>19.67<br>242 |
| 97<br>40  | ပိ                  | GT   | 71.  | . 88<br>. 92<br>. 94<br>. 91<br>. 88                                                                  | 96.<br>1.00<br>49.<br>29.<br>78.     | .55<br>.25<br>.38                                                        | 105.63<br>21.16<br>242 |
| de scores |                     | AFQT | .78  | 9. 6. 8. 8. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 7. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. | 1.00<br>96.<br>86.<br>59.            | 44.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10.<br>10 | 51.21<br>33.71<br>242  |
| Aptitude  |                     | 5    | .70  | . 94<br>. 86<br>. 71<br>. 86<br>. 1.00                                                                | .87<br>.72<br>.82<br>.83             | .39<br>.43<br>.32                                                        | 101.41<br>19.91<br>242 |
|           | ٠.                  | ᆸ    | .76  | 46.<br>100.1<br>100.1                                                                                 | . 93<br>. 98<br>. 98<br>. 58         | 13.<br>13.<br>13.<br>13.<br>13.<br>13.<br>13.<br>13.<br>13.<br>13.       | 102.58<br>20.00<br>242 |
|           | Enlistment          | *    | .71  | .93<br>1.00<br>1.07                                                                                   | .83<br>.98<br>.97                    | .55<br>.54<br>.32<br>.26                                                 | 106.70<br>19.96<br>242 |
|           | 끕                   | 15   | .73  | 26.<br>200.<br>1.00.<br>4.00.<br>8.00.                                                                | . 92<br>98<br>86<br>88<br>84         | . 63<br>. 51<br>. 25<br>. 28                                             | 104.96<br>19.98<br>242 |
|           |                     | AFQT | .73  | 1.00<br>.95<br>.81<br>.94                                                                             | .94<br>.89<br>.79<br>.88             | . 358<br>44.<br>41.                                                      | 51.24<br>33.82<br>242  |
|           |                     | JKT  | 1.00 | AB .73 .73 .71 .71 .76 .76 .76 .76                                                                    | AB .78 .77 .75 .75 .77 .77 .77 .77   | tests<br>. 49<br>. 57<br>. 56<br>. 36                                    | 49.24<br>11.61<br>242  |
|           |                     |      | JKT  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL                                                      | Concurrent ASVAB AFQT GT NAM EL CL   | New predictor tests SP .4. RS .5. AS .5. AS .5.                          | Mean<br>Std dev<br>N   |

Corrected correlation matrix for proficiency marks: machinegunner (0331) Table A-20.

|            |                     | ASAP | .38  | 33.29<br>33.88<br>53.88<br>53.88                 | .35<br>.29<br>.35<br>.35                         | .25<br>.23<br>.26<br>.12                             | 7.77<br>13.18<br>238   |
|------------|---------------------|------|------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------|------------------------|
|            | tests               | VF   | 80.  | £. 42.<br>22.<br>22.<br>21.                      | . 25<br>25<br>25<br>19<br>19                     | .32<br>.25<br>1.00<br>1.20                           | 201.95<br>34.71<br>238 |
|            | New predictor tests | AS   | . 18 | 44.<br>53.<br>53.<br>54.                         | .50<br>.56<br>.56<br>.54                         | .59<br>.65<br>1.00<br>.27<br>.26                     | 22.79 2<br>8.22<br>238 |
|            | New pre             | RS   | .23  | 83.<br>63.<br>65.<br>83.                         | . 65<br>. 65<br>. 68<br>. 68                     | 1.66<br>1.66<br>.65<br>.25<br>.25                    | 19.23<br>6.08<br>238   |
|            |                     | g.   | . 29 | . 51<br>. 57<br>. 53<br>. 53                     | 4.5.<br>4.6.<br>4.6.<br>4.4.                     | 1.00<br>.60<br>.59<br>.32<br>.25                     | 11.70<br>4.65<br>238   |
|            |                     | ี ฮ  | .28  | .88<br>.84<br>.76<br>.87                         | .93<br>.87<br>.79<br>.88                         | . 60<br>. 60<br>. 19<br>                             | 182.18<br>18.76<br>238 |
| · ·        | ıţ                  | EL   | .25  | 88.<br>98.<br>88.<br>£6.                         | .95<br>.95<br>.93<br>.98<br>.98                  | 46.<br>46.<br>42.<br>55.                             | 103.68<br>18.96<br>238 |
|            | Concurrent          | ₹    | .27  | . 79<br>. 86<br>. 91<br>. 86                     | . 98.<br>1.00<br>. 93.                           | . 57<br>. 62<br>. 56<br>. 25                         | 108.95<br>19.92<br>238 |
| 8          | ŏ                   | G    | .26  | . 89<br>. 92<br>. 92<br>. 18                     | . 95<br>1.00<br>194<br>. 95<br>. 95              | . 56<br>. 55<br>. 55<br>. 55<br>. 55                 | 105.42<br>21.43<br>238 |
| ude scores |                     | AFQT | .24  | 99.<br>198.<br>189.<br>189.                      | 1.00<br>2.95<br>86.<br>293                       | . 46<br>. 50<br>. 17<br>. 35                         | 50.84<br>33.74<br>238  |
| Aptitude   |                     | u    | . 26 | .94<br>.86<br>.71<br>.86                         | .87<br>.81<br>.77<br>.88                         | .58<br>.58<br>.32<br>.32                             | 101.35<br>19.90<br>238 |
|            | nt                  | ᆸ    | .26  | 46.<br>1.00.1                                    | .93<br>.86<br>.93<br>.87                         |                                                      | 102.42<br>20.01<br>238 |
|            | Enlistment          | ₹    | .23  | .93<br>1.00<br>1.91                              | . 88<br>. 88<br>. 76                             | .57<br>.62<br>.55<br>.32<br>.32                      | 106.69<br>19.95<br>238 |
|            | ш                   | 5    | .24  | .95<br>1.00<br>.93<br>.94                        | 9.92<br>9.93<br>9.98<br>9.98                     | . 53<br>. 24<br>. 24                                 | 19.97<br>19.97<br>238  |
|            |                     | AFQT | .24  | 00.<br>2.0.<br>1.8.<br>4.6.                      | .94<br>.89<br>.88<br>.88                         |                                                      | 58.93<br>33.78<br>238  |
|            |                     | PRO  | 1.00 | .24<br>.24<br>.23<br>.26<br>.26                  | .24<br>.26<br>.27<br>.25<br>.25                  | . tests<br>. 29<br>. 23<br>. 18<br>. 08<br>. 38      | 44.08<br>2.09<br>238   |
|            |                     |      | PRO  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests SP .2. RS .2. AS AS .1. ASAP .3. | Mean<br>Std dev<br>N   |

Corrected correlation matrix for hands-on performance test: mortarman (0341) Table A-21.

|                 |                     | ASAP | .13  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 69<br>. 69<br>. 69                             | . 67<br>. 68<br>                              | 8.90<br>12.55<br>226   |
|-----------------|---------------------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|------------------------|
|                 | tests               | VF   | .42  | .35<br>.35<br>.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.<br>15.<br>14.<br>17.                         | . 43<br>. 43<br>. 96                          | 203.34<br>35.61<br>226 |
|                 | New predictor tests | AS   | .50  | .48<br>.56<br>.57<br>.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0          | .53<br>1.88<br>4.43                           | 22.57<br>7.86<br>226   |
|                 | New pre             | RS   | .45  | .62<br>.67<br>.65<br>.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 68<br>. 73<br>. 72<br>. 76                     | 4. 1. 80. 80. 80.                             | 19.23<br>6.65<br>226   |
|                 |                     | SP   | 4.   | 84.<br>84.<br>88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85.<br>44.<br>15.<br>44.<br>36.                  | 1.00<br>: 43<br>: 59<br>: 67                  | 11.52<br>4.34<br>226   |
|                 |                     | 5    | .43  | .89<br>.75<br>.85<br>.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 94<br>. 98<br>. 79<br>. 89                     | .36<br>.67<br>.27                             | 104.77<br>22.24<br>226 |
|                 |                     | EL   | .53  | . 98<br>. 93<br>. 93<br>. 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 95<br>. 93<br>. 89<br>. 89                     | . 44<br>. 76<br>. 57<br>. 41                  | 193.86<br>19.69<br>226 |
|                 | Concurrent          | ₹    | .62  | . 77<br>. 86<br>. 92<br>. 86<br>. 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . 93<br>1.00<br>. 93<br>. 93                     | .51<br>.72<br>.63<br>.51                      | 108.67<br>18.75<br>226 |
| 9)              | S                   | 15   | .54  | . 83<br>. 98<br>. 98<br>. 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.<br>1.00<br>1.00<br>1.00<br>1.00              | 44.<br>.73<br>.68<br>.10                      | 106.27<br>21.44<br>226 |
| Aptitude scores |                     | AFQT | .45  | . 94<br>. 98<br>. 98<br>. 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00<br>1.07<br>1.05<br>1.05<br>1.05             | 88.<br>45.<br>55.                             | 50.94<br>35.58<br>226  |
| Aptitua         |                     | ರ    | .31  | . 94<br>. 86<br>. 71<br>. 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 89<br>. 88<br>. 82<br>. 88<br>. 88             | 38<br>2.<br>46<br>1.<br>1.                    | 102.94<br>19.96<br>226 |
|                 | ٠                   | 3    | .58  | 46.<br>40.<br>100.<br>100.<br>100.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.9.8.<br>8.9.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8      | .65<br>.57<br>.37                             | 102.17<br>20.00<br>226 |
|                 | Enlistment          | ₹    | . 69 | . 93<br>1.00<br>1.01<br>17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .81<br>.87<br>.92<br>.88                         | . 67<br>. 62<br>. 62<br>. 46                  | 105.31<br>20.01<br>226 |
|                 | 댭                   | 15   | 4.   | 26.<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1. | 98.<br>98.<br>98.<br>86.                         | .40<br>.67<br>.56<br>.35                      | 105.09<br>19.99<br>226 |
|                 |                     | AFOT | .39  | 0.00.<br>0.95<br>0.94<br>0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 94<br>. 89<br>. 90<br>. 89                     | . 33<br>. 62<br>. 48<br>24                    | 51.72<br>33.55<br>226  |
|                 |                     | HOPT | 1.00 | AB .39 .49 .60 .50 .31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .45<br>.54<br>.62<br>.53<br>.53                  | tests<br>. 44<br>. 50<br>. 50<br>. 13         | 52.96<br>9.31<br>226   |
|                 |                     |      | НОРТ | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests SP .4 RS AS .5 VF ASAP .1 | Mean<br>Std dev<br>N   |

Table A-22. Corrected correlation matrix for job knowledge test: mortarman (0341)

|            |                     | ASAP     | . 13 | . 69.<br>60.<br>80.<br>80.                            | . 12<br>. 09<br>. 08<br>. 08                     | . 68<br>                                         | 8.83<br>12.52<br>225   |
|------------|---------------------|----------|------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------|
|            | tests               | VF       | .45  | .25<br>.35<br>.75<br>.75                              | .33<br>.42<br>.41<br>.27                         | . 43<br>. 43<br>. 65<br>. 65                     | 203.29<br>35.67<br>225 |
|            | New predictor tests | AS       | .58  | . 56<br>. 56<br>. 56<br>. 56<br>. 45                  | . 53<br>. 68<br>. 52<br>. 54                     | .59<br>1.00<br>1.3<br>1.3                        | 22.52 ;<br>7.83<br>225 |
|            | New pre             | RS       | .62  | . 62<br>. 67<br>. 67<br>. 65<br>. 58                  | .69<br>.73<br>.72<br>.70                         | 1.00<br>1.00<br>63<br>.43                        | 19.24<br>6.67<br>225   |
|            |                     | g        | .47  | .33<br>.39<br>.45<br>.29                              | 8.4.8.<br>8.4.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8      | 1.88<br>.43<br>.59<br>.65                        | 11.58<br>4.33<br>225   |
|            |                     | ಕ        | . 65 | . 85<br>. 75<br>. 88<br>. 88<br>. 88                  | . 94<br>. 98<br>. 89<br>. 1. 00                  | .35<br>.67<br>.54<br>.13                         | 104.66<br>22.15<br>225 |
|            | 4                   | 급        | .73  | 96.<br>92.<br>93.<br>88.<br>88.<br>89.<br>89.         | . 95<br>. 96<br>. 98<br>. 98                     | .43<br>.76<br>.57<br>.41                         | 102.97<br>19.63<br>225 |
|            | Concurrent          | <b>₩</b> | .77  | . 77<br>. 86<br>. 92<br>. 86<br>. 68                  | . 93<br>1.00<br>1.00<br>1.03                     | .58<br>.52<br>.51<br>.51                         | 108.58<br>18.68<br>225 |
| 63         | ပိ                  | 12       | .76  | 8. 0. 8. 0. 8. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 98.<br>1.000.<br>1.000.<br>1.000.                | .43<br>.73<br>.60<br>.42                         | 106.20<br>21.41<br>225 |
| de scores  |                     | AFQT     | .71  | .93<br>.98<br>.98<br>.87                              | 1.00<br>96.<br>48.<br>95.<br>49.                 | .35<br>.69<br>.53<br>.33                         | 50.82<br>35.54<br>225  |
| Apt i tude |                     | ರ        | .52  | .94<br>.86<br>.71<br>.86                              | .89<br>.89<br>.68<br>.82<br>.82                  | . 58<br>. 58<br>. 45<br>. 18                     | 102.87<br>19.95<br>225 |
|            | ţ                   | <u> </u> | .68  | 946.<br>1.00.<br>1.00.<br>1.00.                       | 96.<br>98.<br>88.<br>58.<br>58.                  | . 45<br>. 56<br>. 37<br>. 37                     | 102.11<br>20.00<br>225 |
|            | Enlistment          | ¥        | .73  | . 93<br>1.00<br>1.01<br>17.                           | .86<br>.92<br>.88<br>.75                         | . 49<br>. 67<br>. 62<br>. 46<br>. 03             | 105.27<br>20.01<br>225 |
|            | En                  | GT       | .68  | 26.<br>60.1<br>8.9.<br>8.9.                           | . 91<br>. 92<br>. 92<br>. 95                     | .39<br>.56<br>.35<br>.35                         | 105.04<br>19.99<br>225 |
|            |                     | AFQT     | .61  | 0.1<br>.95<br>.94<br>.94                              | . 93<br>. 77<br>. 98<br>. 98                     | . 33<br>. 62<br>. 47<br>. 24<br>. 09             | 51.63<br>33.55<br>225  |
|            |                     | JKT      | 1.00 | .61<br>.68<br>.73<br>.68                              | .71<br>.76<br>.77<br>.73                         | tests<br>.47<br>.62<br>.58<br>.45                | 52.68<br>18.69<br>225  |
|            |                     |          | JKT  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL      | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests SP .4 RS .6 AS .5 VF ASAP .1 | Mean<br>Std dev<br>N   |

Corrected correlation matrix for proficiency marks: mortarman (0341) Table A-23.

| •                                            | _                                    |                              |                              |                              |                                         | Apt i tude                   | de scores                                          | en<br>Au                              |                                       |                                     |                                 |                          |                                    |                                 |                              |                                             |
|----------------------------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------------|------------------------------|----------------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------|---------------------------------|--------------------------|------------------------------------|---------------------------------|------------------------------|---------------------------------------------|
|                                              |                                      |                              | ᇤ                            | Enlistment                   | ٠,                                      |                              |                                                    | ပိ                                    | Concurrent                            | 4                                   |                                 |                          | New pre                            | New predictor tests             | tests                        |                                             |
|                                              | PRO                                  | AFOT                         | GT                           | ₹                            | 岀                                       | ಠ                            | AFOT                                               | GT                                    | XW.                                   | Et                                  | b                               | SP                       | RS                                 | YS                              | VF.                          | ASAP                                        |
| PRO                                          | 1.98                                 | .04                          | .07                          | .13                          | 60.                                     | .03                          | .10                                                | . 12                                  | .17                                   | .13                                 | . 10                            | .17                      | .25                                | .24                             | .21                          | .38                                         |
| Enlistment A<br>AFQT<br>GT<br>MM<br>EL<br>CL | ASVAB . 94                           | 60.1<br>8.95<br>18.<br>18.   | . 95<br>. 93<br>. 93<br>. 98 | .93<br>1.00<br>1.00<br>17.   | 94.<br>1.00.1                           | .94<br>.86<br>.71<br>.86     | 9. 0. 8. 0. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. | . 83<br>. 87<br>. 98<br>. 98          | .76<br>.86<br>.92<br>.86              | . 92<br>. 93<br>. 94<br>. 94        | .89<br>.86<br>.75<br>.85<br>.88 | .32<br>.39<br>.45<br>.29 | . 88<br>88<br>88<br>88<br>88<br>88 | .56<br>.56<br>.56<br>.56<br>.56 | .24<br>.35<br>.36<br>.36     | 99.<br>40.<br>89.<br>1-                     |
| Concurrent A<br>AFOT<br>GT<br>MM<br>EL<br>CL | ASVAB . 10 . 12 . 17 13              | . 94<br>. 89<br>. 90<br>. 98 | .92<br>.98<br>.92<br>.92     | .81<br>.87<br>.92<br>.88     | 9 9 9 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 88.<br>89.<br>88.<br>88.     | 00.1<br>.97<br>.85<br>.95                          | . 97<br>1.000<br>. 93<br>. 96<br>. 96 | . 85<br>. 93<br>1. 00<br>. 93<br>. 93 | . 95<br>. 96<br>. 93<br>1. 89<br>89 | .94<br>.90<br>.79<br>.89        | 88.<br>88.<br>84.<br>88. | . 69<br>. 74<br>. 73<br>. 73       | . 89.<br>50.<br>54.             | .32<br>.41<br>.50<br>.27     | £ 60. 0. 4.                                 |
| New predictor tests SP .1 RS .2 AS AS .2     | or tests<br>.17<br>.25<br>.24<br>.38 | .32<br>.63<br>.47<br>.24     | .39<br>.56<br>.35<br>.40     | . 68<br>. 62<br>. 45<br>. 03 | 24.<br>36.<br>36.<br>88.                | . 29<br>. 60<br>. 45<br>. 18 | .35<br>.69<br>.53<br>.32                           | . 443<br>. 60<br>. 69<br>. 69         | .58<br>.73<br>.63<br>.58              | 44.<br>17.<br>16.<br>16.            | .36<br>.68<br>.54<br>.27        |                          | 44.<br>.64.<br>.42.<br>.08         | .59<br>.1.00<br>.43<br>.43      | . 42<br>. 43<br>. 66<br>. 65 | 0.00<br>80.1.00.1.00.1.00.1.00.1.00.1.00.1. |
| Mean<br>Std dev<br>N                         | 44.13<br>1.61<br>224                 | 51.54<br>33.54<br>224        | 104.98<br>19.99<br>224       | 105.14<br>20.01<br>224       | 102.04<br>20.00<br>224                  | 102.81<br>19.96<br>224       | 50.83<br>35.67<br>224                              | 106.21<br>21.55<br>224                | 108.60<br>18.88<br>224                | 103.01<br>19.82<br>224              | 104.71<br>22.35<br>224          | 11.47<br>4.33<br>224     | 19.26<br>6.66<br>224               | 22.50<br>7.86<br>224            | 203.21<br>35.40<br>224       | 8.85<br>12.59<br>224                        |

Corrected correlation matrix for hands-on performance test: assaultman (0351) Table A-24.

|           |               | ASAP     | .25  | 32<br>32<br>32<br>38<br>38                            | 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                              | .15<br>.28<br>.23<br>.22<br>1.00                            | 8.03<br>12.91<br>244   |
|-----------|---------------|----------|------|-------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|------------------------|
|           | tests         | VF       | .40  | 14.<br>74.<br>44.<br>38.                              | 4.4.4.4.4.88.84.                                                     | .39<br>.39<br>1.09                                          | 206.02<br>35.14<br>244 |
|           |               | AS       | . 45 | . 38<br>. 52<br>. 52<br>. 52                          | £6.<br>56.<br>56.                                                    | .61<br>.31<br>.23                                           | 24.54 2<br>7.62<br>244 |
|           | New predictor | RS       | 4.   | . 65<br>. 67<br>. 68<br>. 63                          | . 69<br>. 72<br>. 67<br>. 69<br>. 67                                 | .45<br>1.06<br>.51<br>.39<br>.28                            | 20.47<br>6.34<br>244   |
|           |               | SP       | . 40 | .30<br>.45<br>.42<br>.25                              | 33.<br>44.<br>15.<br>15.<br>15.                                      | 1.00<br>.45<br>.52<br>.28<br>.15                            | 12.22<br>4.72<br>244   |
|           |               | ರ        | .47  | .89<br>.73<br>.84<br>.87                              | . 95<br>. 89<br>. 75<br>. 83                                         | .34<br>.45<br>.36                                           | 107.12<br>21.36<br>244 |
|           | <b>,</b>      | EL       | .58  | 88.<br>92.<br>79.                                     | . 95<br>. 95<br>. 98<br>. 89                                         | 25.<br>25.<br>25.<br>4.<br>4.<br>4.                         | 108.02<br>20.52<br>244 |
|           | Concurrent    | <b>₹</b> | .61  | 7. 5. 6. 6. 7. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | .83<br>.92<br>1.00<br>.92<br>.75                                     | .51<br>.67<br>.55<br>.26                                    | 113.19<br>18.16<br>244 |
| 8<br>8    | သိ            | 20       | .57  | .38<br>.38<br>.88<br>.78                              | 96.<br>92.<br>96.<br>96.<br>89                                       | 44.<br>53.<br>48.<br>10.                                    | 111.40<br>20.08<br>244 |
| de scores |               | AFQT     | .53  | . 93<br>92<br>93<br>93<br>93<br>93                    | <br>90.<br><br>83.<br><br>85.                                        | E. 0. 4. 4. E. 0. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | 59.94<br>36.24<br>244  |
| Aptitude  |               | 히        | . 49 | .86<br>.71<br>.86<br>.86                              | .86<br>.78<br>.79                                                    | .25<br>.63<br>.37<br>.38                                    | 105.75<br>19.96<br>244 |
|           | ب             | ω        | .53  | 94<br>9.<br>1.00<br>1.00<br>86                        | 9.08<br>9.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00<br>4.00 | 4.00<br>88.44<br>88.44<br>50.44<br>50.44                    | 107.44<br>20.06<br>244 |
|           | Enlistment    | *        | .54  | 18.<br>93.<br>1.60<br>17.                             | .82<br>.36<br>.93<br>.88<br>.73                                      | . 49<br>. 57<br>. 52<br>. 48                                | 110.65<br>20.06<br>244 |
|           | ភ្ជ           | 15       | .50  |                                                       | 9. 9. 9. 9. 8. 4. 6. 8. 6. 8. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. | .41<br>.47<br>.47<br>.32                                    | 116.19<br>19.91<br>244 |
|           |               | AFOT     | .45  | 68.<br>68.<br>18.<br>18.<br>49.                       | . 88<br>. 88<br>. 89<br>. 89                                         | 88.<br>88.<br>84.<br>84.                                    | 53.41<br>34.58<br>244  |
|           |               | HOPT     | 1.00 | AB                                                    | .51<br>.57<br>.61<br>.61<br>.58                                      | tests<br>. 40<br>. 45<br>. 46<br>. 25                       | 64.28<br>7.15<br>244   |
|           |               |          | HOPT | Enlistment ASVAB<br>AFQT<br>GT<br>AM<br>EL<br>EL      | Concurrent ASVAB<br>AFQT<br>GT<br>NM<br>EL<br>CL                     | New predictor tests SP .46 RS .41 AS AS .45 VF .46 ASAP .26 | Mean<br>Sta dev<br>N   |

Table A-25. Corrected correlation matrix for job knowledge test: assaultman (0351)

|           |                     | ASAP     | .33  | 45.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26<br>26<br>36<br>36                              | .15<br>.23<br>.22<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.09<br>12.91<br>244   |
|-----------|---------------------|----------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|           | tests               | VF       | .36  | 4.<br>4.<br>4.<br>4.<br>3.<br>8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44444<br>4888b                                    | .28<br>.39<br>1.00<br>.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 206.02<br>35.14<br>244 |
|           | New predictor tests | AS       | .46  | .38<br>.47<br>.52<br>.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.<br>53.<br>54.<br>55.                           | .62<br>1.00<br>.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.54 ;<br>7.62<br>244 |
|           | New pre             | RS       | .52  | . 66<br>. 71<br>. 67<br>. 68<br>. 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .69<br>.72<br>.67<br>.69<br>.69                   | . 45<br>1.00<br>. 51<br>. 39<br>. 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.47<br>6.34<br>244   |
|           |                     | SP       | .35  | .30<br>.41<br>.42<br>.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   | 1.00<br>.45<br>.62<br>.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.22<br>4.72<br>244   |
|           |                     | ا ت<br>ا | . 69 | .89<br>.73<br>.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 95<br>. 89<br>. 75<br>. 89<br>1. 89             | . 54.<br>54.<br>55.<br>56.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 107.12<br>21.36<br>244 |
|           |                     | 3        | .72  | . 89<br>. 91<br>. 92<br>. 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 95<br>. 96<br>. 92<br>1. 88                     | 4.00.0<br>6.00.0<br>6.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7.00.0<br>7. | 108.02<br>20.52<br>244 |
|           | Concurrent          | M        | 99.  | 7.<br>8.<br>90.<br>84.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .83<br>.92<br>1.00<br>.92<br>.75                  | .51<br>.67<br>.55<br>.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113.19<br>18.16<br>244 |
| S.        | Co                  | GT       | .72  | . 86<br>. 98<br>. 86<br>. 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 96<br>1.00<br>. 92<br>. 96<br>. 89              | .31<br>.53<br>.53<br>.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111.40<br>20.08<br>244 |
| de scores |                     | AFQT     | .73  | . 93<br>. 93<br>. 98<br>. 98<br>. 98<br>. 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00<br>.96<br>.83<br>.95                         | E 8 4 4 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59.94<br>36.24<br>244  |
| Aptitude  |                     | 5        | .61  | . 94<br>. 86<br>. 71<br>. 86<br>. 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .86<br>.78<br>.63<br>.79                          | .25<br>.63<br>.37<br>.38<br>.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105.75<br>19.96<br>244 |
|           | +                   | E        | .67  | 46.<br>1.00.1<br>88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.8.8.9.8<br>8.4.2.8                              | 4.6.4.6.<br>24.4.6.<br>44.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 197.44<br>20.06<br>244 |
|           | Enlistment          | <b>₹</b> | .63  | 18.<br>1.00<br>1.00<br>17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .82<br>.86<br>.90<br>.88<br>.73                   | . 49<br>. 67<br>. 52<br>. 48<br>. 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.65<br>20.06<br>244 |
|           | ដ                   | 15       | .67  | 95.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1.00.<br>1. | 92<br>98<br>98<br>198<br>198                      | . 14.<br>. 74.<br>. 74.<br>. 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.19<br>19.91<br>244 |
|           |                     | AFQT     | .67  | 00.1<br>.95<br>.81<br>.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .93<br>.86<br>.74<br>.89                          | 38<br>85.<br>14.<br>45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59.41<br>34.58<br>244  |
|           |                     | , k      | 1.00 | AB .67 .67 .63 .63 .67 .61 .61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AB .73 .72 .66 .66 .69                            | tests<br>.35<br>.46<br>.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53.24<br>9.03<br>244   |
|           |                     |          | JKT  | Enlistment ASVAB<br>GT<br>NAM<br>EL<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Concurrent ASVAB<br>AFQT<br>GT<br>MAM<br>EL<br>EL | New predictor tests SP .3 RS .5 AS AS AS ASAP .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean<br>Std dev<br>N   |

Table A-26. Corrected correlation matrix for proficiency marks: assaultman (0351)

|           |                     | ASAP     | . 29 | .33<br>.26<br>.31                                    | 52.<br>35.<br>35.<br>35.                         | . 29<br>. 23<br>1. 80<br>1. 80              | 8.02<br>12.88<br>243     |
|-----------|---------------------|----------|------|------------------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------|
|           | tests               | VF       | .18  | 6.4.4.6.<br>6.4.4.6.<br>6.4.4.6.                     | 4.4.4.<br>6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4      | .39<br>.30<br>1.00                          | 205.67<br>34.53 1<br>243 |
|           | New predictor tests | AS       | . 19 | .38<br>.46<br>.52<br>.49                             | . 55<br>. 55<br>. 55<br>. 55                     | . 62<br>1.00<br>. 30<br>. 23                | 24.49 20<br>7.62 3       |
|           | New pre             | RS       | .13  | . 68<br>. 68<br>. 69                                 | .78<br>.73<br>.67<br>.78                         | . 45<br>1.00<br>. 61<br>. 39<br>. 29        | 20.48<br>6.43<br>243     |
|           |                     | gs       | .26  | 2.<br>2.<br>4.<br>4.<br>4.<br>4.<br>4.               | .33<br>.43<br>.51<br>.30                         | 1.00<br>.45<br>.62<br>.27<br>.15            | 12.19<br>4.71<br>243     |
|           |                     | ರ        | 41.  | .89<br>.85<br>.73<br>.84                             | .95<br>.89<br>.74<br>.89                         | 88.<br>84.<br>14.<br>85.                    | 107.00<br>21.28<br>243   |
|           |                     | 급        | .21  | .89<br>.91<br>.88<br>.92                             | . 95<br>. 98<br>. 98<br>. 89<br>. 89             | . 52<br>. 52<br>. 54<br>. 33                | 20.49<br>243             |
|           | Concurrent          | <b>₹</b> | .24  | 44.<br>48.<br>98.<br>48.<br>63.                      | . 83<br>. 92<br>1. 00<br>. 92                    | .51<br>.67<br>.47<br>.25                    | 113.09<br>18.13<br>243   |
| es        | ပိ                  | 15       | . 20 | .86<br>.98<br>.86<br>.89<br>.78                      | 1.00<br>1.00<br>92<br>.96<br>.96                 | . 43<br>. 53<br>. 56<br>. 30                | 111.31<br>20.10<br>243   |
| de scores |                     | AFOT     | . 15 | . 93<br>92<br>98<br>98<br>86<br>86                   | 60.<br>80.<br>80.<br>80.<br>80.<br>80.           | 64.<br>84.<br>84.<br>84.                    | 59.79<br>36.25<br>243    |
| Aptitude  |                     | 5        | 90.  | . 94<br>. 86<br>. 71<br>. 86<br>. 1.00               | .86<br>.78<br>.63<br>.79                         | .36<br>.36<br>.37                           | 105.63<br>19.96<br>243   |
|           | ŧ                   | 岀        | . 12 | 4.60. t<br>4.00. t<br>6.00. t                        | 0 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8          | 4.069<br>64.04.04<br>1.000                  | 107.33<br>20.06<br>243   |
|           | Enlistment          | ₹        | Ε.   | . 93<br>1.00<br>1.00<br>17.                          | .82<br>.86<br>.90<br>.38                         | . 68<br>. 52<br>. 54<br>. 26                | 110.55<br>20.06<br>243   |
|           | En                  | 15       | .12  | . 1. 000<br>. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | 96.<br>98.<br>16.<br>178.                        | . 46<br>. 72<br>. 46<br>. 31                | 110.09<br>19.91<br>243   |
|           |                     | AFQT     | .10  | 0.1<br>95.<br>1.8.<br>4.9.                           | . 93<br>. 47<br>. 98<br>. 98                     | . 29<br>. 38<br>. 39<br>. 33<br>. 34        | 59.24<br>34.57<br>243    |
|           |                     | PRO      | 1.00 | . 10<br>. 12<br>. 11<br>. 12<br>. 15<br>. 06         | .15<br>.20<br>.24<br>.21                         | tests<br>.26<br>.13<br>.19<br>.18           | 44.23<br>1.51<br>243     |
|           |                     |          | PRO  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL     | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests SP .2 RS .1 AS .1 VF .1 | Maan<br>Std dev<br>N     |

Corrected correlation matrix for grade point average from infantry training school: base A Table A-27.

|           | ı             | Q. I | 4    | -0140                                            | ញ <del>ក</del> ∞ ញ ហ                             | តិ ៦                                               | 0 <u>0</u> 0           |
|-----------|---------------|------|------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------|
|           |               | ASAP | -    | .22<br>.22<br>.28                                | .23<br>.24<br>.18<br>.23<br>.25                  |                                                    | 6.72<br>12.86<br>512   |
|           | tests         | VF   | 4.   | . 55<br>. 55<br>. 4 8<br>. 4 4                   | 4.0.<br>4.0.<br>4.0.<br>4.0.<br>4.0.             |                                                    | 194.00<br>34.47<br>512 |
|           | New predictor | AS   | 4.   | 3.45<br>3.45<br>3.35<br>3.55<br>3.55<br>3.55     | .55<br>.55<br>.39                                | .60<br>1.00<br>1.51                                | 21.48<br>7.83<br>512   |
|           | New pr        | RS   | .43  | . 52<br>. 52<br>. 54<br>. 55                     | .52<br>.58<br>.57<br>.50<br>.50                  | . 1.00<br>. 1.00<br>. 1.00<br>. 1.00               | 18.42<br>6.00<br>512   |
|           |               | SP   | .37  | .33<br>.52<br>.44<br>.27                         | 35.<br>54.<br>54.<br>54.<br>86.                  | 00.1<br>00.4<br>00.0<br>00.0<br>00.0               | 10.97<br>4.32<br>512   |
|           |               | ರ    | .56  | . 87<br>. 71<br>. 71<br>. 81                     | .93<br>.88<br>.74<br>.87                         | .38<br>.39<br>.42<br>.25                           | 100.90<br>20.22<br>512 |
|           |               | ᆸ    | .65  | 88.<br>98.<br>88.<br>88.<br>88.<br>88.           | . 94<br>. 95<br>. 92<br>1. 80                    | .56<br>.50<br>.50<br>.53                           | 100.77<br>19.52<br>512 |
|           | Concurrent    | M    | . 65 | .75<br>.85<br>.91<br>.83                         | . 82<br>. 92<br>. 1 . 63<br>. 74                 | . 53<br>. 53<br>. 45.                              | 104.79<br>19.29<br>512 |
| g<br>e    | ပိ            | 61   | .63  | 8.<br>98.<br>88.<br>88.<br>88.                   | . 96<br>. 92<br>. 95<br>. 95<br>. 88             | 44.<br>5.<br>1.5.<br>1.2.                          | 103.21<br>20.80<br>512 |
| de scores |               | AFQT | .61  | .93<br>.90<br>.79<br>.89                         | 1.00<br>.96<br>.82<br>.94                        | .35<br>.52<br>.41<br>.45                           | 47.86<br>33.45<br>512  |
| Aptitude  |               | ರ    | .55  | . 94<br>. 86<br>. 71<br>. 86<br>. 1.00           | .86<br>.80<br>.80<br>.80<br>.80<br>.80           | .27<br>.45<br>.33<br>.41                           | 101.54<br>20.03<br>512 |
|           |               | 급    | .64  | 46.<br>1.00.1<br>186.                            | .88<br>.83<br>.92<br>.83                         | 44.65.44.22.22.22.22.22.22.22.22.22.22.22.22.      | 100.12<br>20.00<br>512 |
|           | Enlistment    | ¥    | .65  | 18.<br>1.00<br>1.00<br>1.7.                      | .79<br>.85<br>.91<br>.71                         | .52<br>.52<br>.52<br>.53                           | 102.13<br>20.03<br>512 |
|           | ដ             | C1   | .65  | 26.<br>200.<br>200.<br>400.<br>800.              | .98<br>.985<br>.985                              | . 52<br>. 52<br>. 54<br>. 51                       | 102.74<br>20.01<br>512 |
|           |               | AFQT | .61  | 00.1<br>.95<br>.8.<br>.46.                       | .93<br>.87<br>.75<br>.88                         | .33<br>.35<br>.42                                  | 49.36<br>33.76<br>512  |
|           |               | GPA  | 1 00 | ASVAB 61 65 65 65 65 65 65 65 65 65 65 65 65 65  | ASVAB 61 63 65 65 65 65 65 65 65 65 65 65        | or tests 37 43 41 44 14                            | 49 83<br>11 62<br>512  |
|           |               |      | GPA  | Enlistment ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor test<br>SP<br>RS<br>AS<br>VF<br>ASAP | Mean<br>Std dev<br>N   |

Corrected correlation matrix for grade point average from infantry training school: base B Table A-28.

|                 |               | ASAP | 60.            | .37<br>.32<br>.33<br>.33                                    | .38<br>.29<br>.37                                | .21<br>.25<br>.12<br>1.00                           | 6.67<br>13.53<br>641   |
|-----------------|---------------|------|----------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|------------------------|
|                 | tests         | VF   | .24            | 24.4.6.6.0.0<br>44.4.6.0.0.0                                | 8.4.4.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.         | .36<br>.38<br>1.00                                  | 201.03<br>34.13<br>641 |
|                 | New predictor | AS   | .23            | .53<br>.56<br>.56<br>.56                                    | . 57<br>. 69<br>. 69<br>. 57                     | . 64<br>                                            | 23.05<br>7.94<br>641   |
|                 | New pre       | RS   | .33            | . 68<br>. 71<br>. 67<br>. 69                                | . 73<br>. 69<br>. 71<br>. 71                     | .60<br>1.00<br>.65<br>.38                           | 19.21<br>7.09<br>641   |
|                 |               | Sb   | .24            | 60<br>60<br>60<br>60<br>60<br>84                            | .57<br>.62<br>.62<br>.52                         | 1.00<br>.60<br>.64<br>.36                           | 11.38<br>4.58<br>641   |
|                 |               | 75   | .36            | .87<br>.72<br>.72<br>.83                                    | . 98<br>. 98<br>. 98<br>. 98                     | .52<br>.66<br>.57<br>.33                            | 102.45<br>20.76<br>641 |
|                 | 4             | EL   | <del>4</del> . | 6. 6. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.                | 96                                               | .62<br>.71<br>.60<br>.39                            | 102.30<br>21.08<br>641 |
|                 | Concurrent    | ¥    | .39            | .82<br>.88<br>.90<br>.87                                    | 88.<br>46.<br>49.<br>49.                         | . 62<br>. 69<br>. 46<br>. 29                        | 107.38<br>20.42<br>641 |
| es              | Co            | GŢ   | <del>4</del> . | 8.<br>1. 4. 8.<br>1. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. | .97<br>1.00<br>94.<br>96.                        | . 62<br>. 73<br>. 61<br>. 42                        | 105.26<br>22.71<br>641 |
| Aptitude scores |               | AFQT | .40            | 26.<br>1.0.<br>1.0.<br>0.0.<br>0.0.<br>0.0.<br>0.0.         | 1.00<br>.97<br>.88<br>.96                        | .57<br>.78<br>.57<br>.36                            | 50.01<br>36.57<br>641  |
| Aptitu          |               | 히    | .37            | . 94<br>. 86<br>. 71<br>. 86<br>1. 00                       | 88.<br>73.<br>88.<br>88.                         | . 43<br>. 52<br>. 30<br>. 4                         | 102.80<br>19.97<br>641 |
|                 | ıt            | EL   | 4.             | . 94<br>. 94<br>. 1. 00<br>. 1. 00<br>. 1. 00               | .90<br>.83<br>.92<br>.92                         |                                                     | 101.85<br>19.98<br>641 |
|                 | Enlistment    | ₹    | .38            | . 93<br>1.00<br>. 91<br>. 71                                | .81<br>.84<br>.96<br>.86                         | .60<br>.67<br>.56<br>.47                            | 105.20<br>19.99<br>641 |
|                 | Ā             | 12   | . 40           | 29. 1<br>89. 1<br>89. 3                                     | e. e. g. g. g. g.                                | .60<br>.71<br>.57<br>.42                            | 104.95<br>19.99<br>641 |
|                 |               | AFQT | 4.             | 00.1<br>00.2<br>18.<br>18.                                  | . 93<br>. 89<br>. 91<br>. 91                     | 46.<br>88.<br>55.<br>45.                            | 51.43<br>33.93<br>641  |
|                 |               | GPA  | 1.99           | .48<br>.49<br>.38<br>.31<br>.31                             | .40<br>.40<br>.39<br>.41<br>.41                  | tests<br>.24<br>.23<br>.24<br>.24                   | 59.12<br>19.51<br>641  |
|                 |               |      | GPA            | Enfistment ASVAB<br>AFGT<br>GT<br>MAM<br>EL<br>CL           | Concurrent ASVAB<br>AFQT<br>GT<br>MM<br>EL<br>CL | New predictor tests SP .2 RS .3 AS .2 VF .2 ASAP .0 | Mean<br>Std dev        |

### APPENDIX B

SAMPLE AND CORRECTED INCREMENTS IN VALIDITY BY NEW PREDICTOR TESTS, CONTROLLING FOR TIME IN SERVICE

#### APPENDIX B

# SAMPLE AND CORRECTED INCREMENTS IN VALIDITY BY NEW PREDICTOR TESTS, CONTROLLING FOR TIME IN SERVICE

The tables of this appendix report the ASVAB validities and the validity increments due to each new predictor test for the regressions in which time in service has first been entered as a predictor. A separate table is reported for each MOS. The tables contain the following information:

- o Multiple correlations (MR), sample validities, and validities corrected for range restriction
- o Estimates of the cross-validated multiple correlations (CVR)
- o Increment (IN) in the cross-validated multiple correlation over the ASVAB and time-in-service validity base due to the new predictor
- o Increment expressed as a percentage improvement (%) over the ASVAB and time-in-service base.

Grade-point average is combined for all four MOSs and reported in a separate table because all individuals received the same initial infantry training. Findings are reported for both enlistment and concurrent aptitude information.

There were occasional instances in which the increments in the CVR due to the new predictor test were negative. This is due to adjustments that are made in computing the CVR to account for the additional predictor. For those cases in which the change in CVR was negative, the additional predictor did not improve the overall validity.

Table B-1. Increments in validity by nëw predictor tests for infantry rifleman performance, adjusted for time in service

|                   |      | ĸ   |            | 4.0<br>4.1                                     | 16.0       |           | •      | • •    |                  | -:               | 14.6   |               |      | ×   |            |        | •      | 4.0    | • (    | ο σ            |                     |     | •      | •      | •      | • (    | 8<br>8<br>8<br>7 |
|-------------------|------|-----|------------|------------------------------------------------|------------|-----------|--------|--------|------------------|------------------|--------|---------------|------|-----|------------|--------|--------|--------|--------|----------------|---------------------|-----|--------|--------|--------|--------|------------------|
|                   |      | NI  |            | 6.0024<br>0.0055                               | 0.0559     |           |        |        | • •              | 0.0041           | 0.0522 |               |      | IN  |            |        | •      | 0.0017 | • (    | 0.0038         |                     |     |        | •      | •      | • (    | 9.8836<br>9.8386 |
|                   | PRO  | CVR |            | 0.3483<br>0.3467<br>0.3508<br>0.3467<br>0.3467 | 0.4042     |           | 0.3577 | 4561   | 4551             | 0.3618           | 0.4099 | ion           | PRO  | CVR |            | 0.4502 | 0.4489 | 0.4519 | 0.4490 | 0.4040<br>4998 | •                   | 4   |        |        |        |        | 6.4552<br>6.4962 |
|                   |      | MR  |            | 0.3787<br>0.3796<br>0.3833<br>0.3796           | 0.4317     |           | 0.3872 | 0.3072 | 9.3001           | 0.3932           | 0.4369 | restriction   |      | MR  |            | 0.4722 | 0.4729 | 0.4756 | 0.4730 | 9.4//5         |                     | 1   | 0.4/36 | 0.4/36 | 0.4743 | 0.4/36 | 0.5113           |
| 92<br>43          |      | ĸ   |            | 3.1<br>5.7<br>6.7                              |            |           |        |        | - c              | . *              | 9.0    | range         |      | ×   |            |        | 9.5    | 1.0    | 6.     | 2 G            | ;                   |     |        | •      | 4.6    | 9      | 8<br>9<br>9<br>7 |
| Sample validities |      | NI  |            | 0.0031<br>0.0193<br>0.0350<br>0.0004           | 0.0117     |           |        | • 0000 | 9.0000           | •                | 0.0041 |               |      | NI  |            |        | 0.0013 | 0.0083 | 0.9151 | 0.0001         |                     |     |        | •      | 0.0031 | 6.6681 | 6.6661<br>6.6618 |
| Sample            |      | CVR |            | 0.6124<br>0.6156<br>0.6317<br>0.6475<br>0.6475 | 0.6241     |           | 0.6574 | 6,6573 | 0.0542<br>0.6758 | 0.6573           | 0.6615 | corrected for | JKT  | CVR |            | 9.8066 | 0.8679 | 0.8149 | 0.8217 | 0.805/         |                     | 0   | 0.8221 | 0.8220 | 0.8252 |        | 6.8222<br>6.8239 |
| Panel A:          |      | ₹   |            | 0.6256<br>0.6297<br>0.6451<br>0.6601           | 0.6378     |           | 9.6686 | 0.6693 | 0.6/60           | 6694             | 0.6734 | Validities    |      | ¥.  |            | 0.8123 | 0.8140 | 0.8207 | 0.8273 | 0.8128         | •                   |     | 0.8273 | 0.82/6 | 0.8307 | 0.8355 | 6.8278<br>0.8295 |
| ă                 |      | ×   |            | 9.8<br>3.0<br>3.0                              | -:         |           | •      | 7.0    | 6<br>4. 0        | 2.0              | 9.6    |               |      | ĸ   |            |        | 4.0    | 9.6    | -      | — α<br>∞ α     |                     |     | ,      | 0.1    | 9.5    | 9.5    | - 0<br>.3<br>.5  |
|                   | HOPT | Z   |            | 0.0049<br>0.0062<br>0.0117                     | 0.0063     |           |        | 8.00.0 | 9.0024           | 6.0033<br>0.0162 | 0.0035 | Panel B       | +    | Z   |            |        | 0.0031 | 0.0040 | 0.0076 | 0.0126         |                     |     |        | 0.0003 | 9.9916 | 0.0035 | 6.9115<br>6.9823 |
|                   |      | CVR | apt i tude | 0.5839<br>0.5888<br>0.5901<br>0.5957           | 355 0.5902 | 2001      | 0.5999 | 0.6013 | 0.6023           | 6.6534           | 0.6034 |               | HOPT | CVR | apt i tude | 9.7006 | 0.7038 | 0.7046 | 0.7082 | 0.7133         | i tude              | 1   | 0.7078 |        | 0.7094 |        | 9.7192<br>9.7191 |
|                   |      | WR. | 1          | 0.5983<br>0.6042<br>0.6054<br>0.6107           | 9.6955     | ופוור אחר | 0.6135 | 9.6168 | 6.6169           | 6.0193           | 0.6180 |               |      | MR  | 1          | 9.7100 | 0.7138 | 9.7146 | 0.7181 | 0.7229         | Concurrent Aptitude | . ; | 0.7169 | 0.7185 | 0.7192 | 0.7210 | 9.7286<br>9.7199 |
| ŀ                 |      |     | Enlistment | ASVAB<br>SP<br>RS<br>AS<br>VF                  | ASAP 0.66  |           | ASVAB  |        | χ.<br>Υ.         | ς u              | ASAP   |               |      |     | Enlistment | ASVAB  | g.     | RS     | ΑS     | بر<br>الم      | Concur              |     | A:SVAB | SP     | S.     | AS     | VF<br>ASAP       |

Increment in cross—validated multiple correlation was negative due to insignificant improvement in validity by the new test relative to the number of predictors.

4

Table 8-2. Increments in validity by new predictor tests for infantry machinegunner performance, adjusted for time in service

(

|                   | i        | 1× 1     | 1                   | ဖ                  | ~              |                   | ₹.      |                     |        | 7.5    | 0.0    | •      |        | 7.     |                                |      | ĸ   |                     |        | 12.7   | 8.       | •      | 30.9             |
|-------------------|----------|----------|---------------------|--------------------|----------------|-------------------|---------|---------------------|--------|--------|--------|--------|--------|--------|--------------------------------|------|-----|---------------------|--------|--------|----------|--------|------------------|
|                   |          | *        |                     | 23                 | 3.7            |                   | 55.4    |                     |        | 7      | 0      | -      | _      | 35.2   |                                |      | ``  |                     |        | 12     | <b>-</b> |        | 30               |
|                   |          | NI       |                     | 9.6577             | 3.0991         | . ,               | 0.1352  |                     |        | 0.6228 | 0.0000 | •      | •      | 0.1670 |                                |      | N   |                     |        | 0.0429 | 0.0061   | •      | 0.1046           |
|                   | PRO      | CVR      |                     | 0.2441             | 0.2531         | 0.2339            | 0.3793  |                     | 0.3043 | 0.3270 | 0.3043 | 0.2949 | 0.2964 | 0.4113 | ion                            | PRG  | CVR |                     | 0.3384 | 0.3813 | 0.3445   | 0.3329 | 6.3384<br>6.4438 |
| <br> <br>         |          | MR       |                     | 0.3652             | 0.3791         | 9.3659<br>9.3659  | 0.4713  |                     | 0.4084 | 0.4320 | 0.4153 | 9.4085 | 0.4096 | 0.4960 | restriction                    |      | MR. |                     | 9.4323 | 6.4713 | 9.4433   | 0.4339 | 9.5196           |
| 77                |          | ĸ        |                     | 2.6                | <del>-</del> τ | , 6<br>, 5<br>, 5 | 0.0     |                     |        | 2.3    |        | 5.1    | 9.6    | •      |                                |      | к   |                     |        | 6.9    | 6.7      | 20.00  | e. *             |
| Sample validities | ,        | N        |                     | 0.0153             | 0.0107         | 9.8458<br>9.8832  | 0.0001  |                     |        | 9.0155 | 0.0076 | 0.0341 | 0.0040 | •      | ed for r                       |      | N.  |                     |        | 8.0073 | 6.9050   | 0.6223 | 8.8815<br>*      |
| Sample            | JKT      | CVR      |                     | 0.5900<br>0.6053   | 9.6006         | 8.5358<br>8.5932  | 0.5901  |                     | 0.6677 | 0.6832 | 0.6753 | 0.7018 | 0.6717 | 0.6655 | correct                        | JKT  | CVR |                     | 9.7716 | 0.7789 | 9.7766   | 0.7939 | 9.77.15          |
| Panel A:          |          | <b>™</b> |                     | 0.6368<br>0.6533   | 0.6494         | 8.6733            | 0.6405  |                     | 9.7036 | 0.7198 | 0.7130 | 0.7359 | 0.7699 | 0.7046 | Validities corrected for range |      | MR  |                     | 0.7947 | 0.8030 | 9.8010   | 0.8162 | 0.7979<br>0.7966 |
| P                 |          | ĸ        |                     | <del>د</del><br>80 | ٠.<br>ق        | * *               | 6.      |                     |        | 2.6    | 1.8    | •      | 1.0    | 1.7    |                                |      | ×   |                     |        | 6.7    | 6.7      | * (    | စ္<br>စ<br>စ     |
|                   | <b>-</b> | 2        |                     | 0.0116             | 9600.0         | 6 9977            | 0.6115  |                     |        | 0.9157 | 0.0111 | ٠      | 9.0068 | 9.0102 | Panet B:                       | -    | Ϋ́  |                     |        | 0.0057 | 0.0050   | * 0    | 6.0040<br>6.0061 |
|                   | HOPT     | CVR      | tude                | 0.6139<br>0.6248   | 0.6235         | 9.6138<br>9.6216  | g. 6254 | itudo               | 0.6136 | 0.6293 | 0.6247 | 0.6131 | 9.6196 | 0.6238 |                                | HOPT | CVR | itude               | 9.7665 | 0.7723 | 9.7716   | 9.7669 | 9.7795           |
|                   |          | MR       | Enlistment aptituda | 0.6570             | 9.9686         | 9.6596            | 0.6701  | Concurrent Aptitudo | 9.6568 | 0.6735 | 9.6696 | 0.6598 | 0.6653 | 0.6688 |                                |      | M.  | Enlistment Aptitude | 0.7903 | 0.7972 | 9.7966   | 0.7916 | 0.7957           |
|                   |          |          | Eni istn            | ASVAB              | RS             | A V               | ASAP    | Concur              | ASVAB  | S      | RS     | SY     | γF     | ASAP   |                                |      |     | Enlist              | ASVAB  | S      | S.       | AS.    | VF<br>ASAP       |

Increment in cross-validated multiple correlation was negative due to insignificant improvement in validity by the new test relative to the number of predictors. ŭ

Concurrent Aptitude

0.0154

0.3692 0.3846 0.3677 0.3613 0.3630

0.4560 0.4738 0.4609 0.4560 0.4573

0.0094 0.0051 0.0196 0.0028

0.8063 0.8157 0.8114 0.8259 0.8090 0.8090

0.8255 0.8354 0.8316 0.8444 0.8295

4.00 0.00 7.00 7.00

0.0106 0.0078 0.0067 0.0043 0.0054

0.7610 0.7716 0.7588 0.7618 0.7653

0.7854 0.7965 0.7942 0.7880 0.7911

ASVAB SP RS AS VF ASAP

0.0871

Table B-3. Increments in validity by new predictor tests for infantry mortarman performance, adjusted for time in service

|              | ¥                | CVR              | Z                | ĸ          | X.               | CVR              | N <sub>M</sub> | ĸ       | MR               | CVR              | Z                | к    |
|--------------|------------------|------------------|------------------|------------|------------------|------------------|----------------|---------|------------------|------------------|------------------|------|
| En istment   | apt              | itude            |                  |            |                  |                  |                |         |                  |                  |                  |      |
| <b>ASVAB</b> | 0.6336           | 0.5826           |                  |            | 0.6666           | 0.6215           |                |         |                  | 0.2213           |                  |      |
| S            | 0.6500           | 0.5977           |                  | •          | •                | 0.6407           | 0.0192         | 3.1     | •                | 0.2335           | 0.0122           | 5.5  |
| S.           | 0.6445           | 0.5911           |                  | •          | 9.7964           | 0.6645           | 0.0430         | 6.9     | 0.4420           | 0.3338           | 0.1126           | 50.9 |
| Y E          | 9.6565           | 9.6055           |                  | •          | . 695            | 0.6515           | 0.0300         | ₩.      | •                | 0.2868           | 0.0655           | 29.6 |
| ASAP         | 6.6419<br>6.6401 | 9.5888<br>9.5858 | 6.6632<br>6.6632 | 9 6<br>9 6 | 6.6819<br>6.6717 | 0.6355<br>0.6234 | 9.0019         | 9.3     | 0.3742<br>0.4849 | 0.2375<br>0.3911 | 0.0162<br>0.1698 | 7.3  |
| . °S         | rent Apt         | Apt i tude       |                  |            |                  |                  |                |         |                  |                  |                  |      |
| ASVAB        | 0.6288           | 0.5770           |                  |            | 9.7452           | 0.7129           |                |         | 0.3829           | 9.2615           |                  |      |
| S            | 0.6407           | 9.5866           | 9600.0           | 1.7        | 0.7535           | 0.7195           | 9.0067         | 6.9     | 391              | 0.2631           | 9.0016           | 9.6  |
| RS           | 0.6301           | 0.5738           |                  |            | 0.7531           | 9.7191           | 0.0062         | 6.0     | 0.4375           | 0.3276           |                  | 25.3 |
| AS           | 0.6451           | 0.5919           | 0.0149           | 5.6        | 0.7541           | 0.7203           | 9.0074         | 1.0     | 0.4194           | 0.3026           | 6.0411           | 15.7 |
| 7            | 0.6310           | 0.5749           | •                | •          | 0.7480           | 0.7132           | 0.0003         | 0.0     |                  | 9.2666           | 0.0051           | 2.0  |
| A:>AP        | 6.6335           | 6//0.0           | 0.0003           | 9.5        | 0.7467           | 0.7117           | *              | •       | 0.5008           | 0.4119           | 9.1594           | 57.5 |
|              |                  |                  | Panel B          | ••         | Validities       | corrected        | for            | range   | restrict         | ion              |                  |      |
|              |                  | HOPT             | <b>-</b>         |            |                  | JKT              |                |         |                  | PRO              |                  |      |
|              | MR               | CVR              | Z.               | к          | MR               | CVR              | N.             | ĸ       | X.               | CVR              | Z                | ×    |
| Enlistment   |                  | Aptitude         |                  |            |                  |                  |                |         |                  |                  |                  |      |
|              | 0.6852           | 0.6433           |                  |            |                  | 0.7313           |                |         | 0.3617           | 0.2320           |                  |      |
|              | 0.6987           | 0.6554           | 0.0121           | 6.1        | 0.7742           | 0.7438           | 0.0125         | 1.7     | 0.3775           | 0.2437           | 9.0117           | 5.0  |
|              | 0.6943           | 9.6501           | •                | - 0        | •                | 0.7594           | 0.0282         | დ.<br>( | 0.4468           | 0.3413           | 0.1093           | 47.1 |
|              | 6 6921           | 0.0010           | 0.010.0          | 9 . 0      | 0.7864           | 60.7.0           | 0.0135         | 7.7     | 9.4134           | 0.2955           | 9.0633           | 27.3 |
| A:SAP        | 0:6906           | 0.6458           | 0.0025           | . 4.       |                  | 0.7325           | 0.0012         | 9.2     | 0.4889           | 0.3972           | 0.1652           | 71.2 |
| Concur       | rent Apt         | itude            |                  |            |                  |                  |                |         |                  |                  |                  |      |
| ASVAB        | 9.6778           | 0.6348           |                  |            | 0.8115           | 0.7889           |                |         | 0.3886           | 0.2707           |                  |      |
|              | 0.6881           | 0.6431           | 0.0083           | 1.3        | 0.8180           | 0.7942           | 0.0052         | 0.7     | •                | •                | 0.0029           | 1.   |
|              | 0.6789           | 0.6322           |                  | •          | 0.8173           | 0.7934           | 0.0045         | 9.0     | 0.4432           | 0.3364           | 0.0656           | 24.2 |
|              | 0.691/           | 0.54/3           | 0.0125           | 2.6        | <u> </u>         | 0.7946           | 0.0057         | 6.7     | 0.4254           | 0.3121           | 0.0413           | 15.3 |
|              | 0000             | 0.000            | •                | •          | •                | 9.7838           | 9.0008         | 9       | 40               | -                | •                | 2.3  |
| ASAP         | 0.6817           | 0.6355           | 0.0007           | 9.1        | 0.8126           | 0.7881           | •              | *       | 0.5044           | 0.4174           | 0.1466           | 54.2 |

)

Ļ

Table B-4. Increments in validity by new prēdictor tests for infantry assaultman performance, adjusted for time in service

|            |                     | HOPT     | <b>-</b> |         |            | JKT              |          |       |             | PRO     |        |       |
|------------|---------------------|----------|----------|---------|------------|------------------|----------|-------|-------------|---------|--------|-------|
|            | Æ                   | CVR      | Z.       | ×       | MR         | CVR              | Z.       | ĸ     | ¥.          | CVR     | Z.     | ×     |
| Enlistment |                     | aptitude |          |         |            |                  |          |       |             |         |        |       |
| Q V        | 5048                | 4314     |          |         | 5281       | 0.4602           |          |       | 0.3739      | 0.2590  |        |       |
| 200        | 8 4 80              | 0.4625   | 1111     | 9       | 0.5411     | 0 4702           | 9199     | 2 2   | 0 4078      | P 2963  | 9 9374 | 14 4  |
| 5 0        | 20.00               | 4080     | •        |         | 0 5341     | A 4515           | 0.00.0   | i 6   | 9 375 B     | 0 2523  |        |       |
| 2 4        | 6.00.4              | 977.0    | 9700     | , r     | 9.5579     | 6.40.5           | 9.00.0   |       | 4818        | 0.202.0 | 0000   | 9     |
| 5 7        | 0.5236              | 4650     | 0.0240   | . a     | 6.507.6    | 4581             |          |       | 4964        | 0.233   | 9.0000 |       |
| ASAP       | 0.5111              | 0.4326   | 0.0012   | 0       | 0.5417     | 6.4709           | 9.0106   | 2.3   | 0.4451      | 0.3469  | 0.0879 | 33.9  |
| Concur     | rent Aptitude       | itude    |          |         |            |                  |          |       |             |         |        |       |
| ACVAD      | 3777                |          |          |         | 6250       | א האמז           |          |       | 4031        | 7007    |        |       |
|            | 0,07,0              | 2020.0   | 7200     | 1       | 0.020.0    | •                | 1700     | 9     | •           | 2474    | 0110   | ď     |
| )<br>(     | 9.084/              |          | 9.0034   |         | 0.6237     | 0.3040           | 1+00.0   | 0.    | 6.423       | 0000    | 8/10.0 | 9. ,  |
| <u>د</u> د | 0.3770              | 6.51.58  | 9000     | •       | 0.020      | 0.0750           | 4 4 4    | , ,   | 4044        | 0.2300  |        | • •   |
| ۲ :<br>د ک | 7,000.0             | 1670.0   | 0.6693   |         | 0.0447     | 0.3330           | <u>.</u> | 7.7   | 1404.0      | 2167.0  | 2010   |       |
|            | 100.0               | 6.0014   | 0.00     | 7 .     | 0070.0     | 0.5/5/           | • 00     | • 6   | 0.4243      |         | 0.0193 | , d   |
| JAN<br>T   | 6796.0              | 0176.0   | 1000.0   | -       | 0.6336     | 0.3047           | 0.0040   | 0.0   | 0004.0      | •       | 19/9.9 | F. C7 |
|            |                     |          | Panel B  |         | Validities | corrected for    |          | range | restriction | ion     |        |       |
|            |                     | HOPT     | F        |         |            | JKT              |          |       |             | PRO     |        |       |
|            | MR                  | CVR      | Z.       | к       | MR         | CVR              | Z        | ×     | MR          | CVR     | NI     | ×     |
| list       | Enlistment Aptitude | itude    |          |         |            |                  |          |       |             |         |        |       |
| ASVAB      | 0.5958              | 0.5420   |          |         | 0.7026     | 0.6668           |          |       | 0.4104      | 0.3096  |        |       |
| S i        | 0.6062              | 0.5496   | 0.0076   | 4.      | 9.7096     | 0.6716           |          | 6.7   | 0.4406      | 0.3413  | 0.0317 | 10.2  |
| S.         | 9.5978              | 0.5395   | •        |         | 9.7058     | 0.6673           | \$9 (    | 9     | 9.4128      | 9.505/  | * (    | • (   |
| S L        | 9.6142              | 0.5592   | 9.91/2   |         | 0.7237     | 9.6889           | 1120.0   | 3.5   | 0.41/5      | 9.3101  | 9.6665 | 9 0   |
| SAP        | 0: 6905             | 0.5427   | 0.0007   | , 6<br> | 0.7099     | 0.6719<br>0.6719 | 0.0051   | 8.8   | 0.4742      | 0.3855  | 0.0729 | 24.5  |
| Concur     | rent                | Aptitude |          |         |            |                  |          |       |             |         |        |       |
| VAB        | 0.6485              | 0.6040   |          |         | 0.7572     | 0.7292           |          |       | 0.4068      | 0.3048  |        |       |
| SP         | 0.6538              | 0.6062   | 0.0022   | 4.0     | 0.7616     | 9.7317           | 0.0024   | 0.3   | 0.4239      | 0.3189  | 0.0141 | 4.6   |
| RS         | 0.6485              | 0.6000   |          |         | 0.7573     | 0.7257           | •        | •     | 6           | 0.2965  | •      | •     |
| AS         | 0.6580              | 0.6113   |          |         | 0.7671     | 0.7380           | 0.0088   | 1.2   | 0           | 0.2972  | *      | *     |
| <u>۲</u>   | 0.6578              | 0.6119   | 0.0010   |         | 9.7572     | 9.7267           | •        | •     | 69          | 9.3153  | 9.0105 | 3.5   |
| DASAP      | 0.6522              | 0.6043   | 0.0003   | 0.0     | •          | 0.7317           | 0.0025   | 9.3   | 0.4689      | 0.3786  | 0.0738 | 24.2  |

Increment in cross-validated multiple correlation was negative due to insignificant improvement in validity by the new test relative to the number of predictors.

Table B-5. Increments in validity by new predictor tests for infantry training grades, controlling for time in service

|                  |      | ×   | ]          | •      |              |        | 2.1    | 1.5    |            |        | 9.1    | •      | •        | <b>+</b> | <del>-</del><br>8. | restriction |      | ĸ   |                     |        | •      | •      | •      | 6.9    | 9.6    |            |        | <br>   | • 6    | ه<br>د<br>د | 0.5    |
|------------------|------|-----|------------|--------|--------------|--------|--------|--------|------------|--------|--------|--------|----------|----------|--------------------|-------------|------|-----|---------------------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|-------------|--------|
|                  | œ    | NI  |            | •      | •            | •      | 0.0061 | 0.0045 |            |        | 0.0002 | •      | •        | 0.0041   | 0.0053             |             | 8    | NI  |                     |        | •      | ٠      | ٠      | 0.0038 | 0.0027 |            | !      | 0.0003 | • 0    | 8 .000 A    | 0.0023 |
| idities          | Base | CVR |            | 0.2960 | 0.2330       | 0.2932 | 0.3022 | 9.3005 |            | 9.2974 | 0.2976 | 0.2947 | 0.2973   | 0.3015   | 0.3027             | for range   | Bose | CVR |                     | 0.4305 | 0.4285 | 0.4296 | 0.4237 | 4.     | 0.4332 |            | 0.4289 | 0.4293 | 6.4271 | 0.4230      | 0.4313 |
| Sample validitie |      | 똪   |            | 0.3359 | 2000         |        | 3448   |        |            | 0.3370 | 0.3409 | 0.3384 | 0.3406   | 0.3442   | 0.3453             | corrected   |      | M.  |                     | 0.4566 | 9.4574 | 0.4584 | 0.4575 | 0.4626 | 0.4616 |            | 0.4552 | 0.4580 | 6.4551 | 4.500       | 0.4599 |
| A: Sa            |      | ×   |            | u<br>c | ο α          | 4      | 2.2    | *      |            |        | 6.3    | 6.7    | <u>-</u> | 1.7      | *                  |             |      | ĸ   |                     |        | 9.5    | 6.7    | 9.     | 6.0    | •      |            |        | - 1    | 9.0    | ο α<br>4 α  | ? *    |
| Panel A          | ∢    | Z.  |            | 000    | 0.0022       | 9.000  | 0.0105 | •      |            |        | 0.0017 | 0.0034 | 0.0057   | 0.0085   | •                  | Validities  | ∢    | 2.  |                     |        | 0.0012 | 0.0048 | 9.0066 | 0.0029 | •      |            |        | 9.0008 | 9.0018 | 9.0029      | *      |
|                  | Base | CVR |            | 0.4866 | 0.4000       | 0.4982 | 0.4971 | 0.4839 |            | 0.5041 | 0.5058 | 9.5075 | 0.5098   | ٠        | 0.5014             | Panel B:    | Base | CVR |                     | 0.6500 | 0.6511 | 0.6548 | 9.6566 | 0.6558 | 0.6483 |            | 0.6583 | 0.6591 | 0.6601 | 2 00 0      | 0.6566 |
|                  |      | MR  |            | 0.5137 | 0.0104       | 0.5270 | 0.5259 | 0.5139 | e e        | 0.5298 | 0.5339 | 0.5354 | 0.5376   | 0.5401   | 0.5299             | ď           |      | 꽃   |                     | 9.6658 | 0.6685 | 0.6719 | 0.6736 | 0.6729 | ø.6659 | <b>₽</b>   | 0.6736 | 0.6759 | 0.6769 | 6.5779      | 0.6736 |
|                  |      |     | Apt i tude | ASVAB  | بر<br>د<br>د | 2 4    | 5 P    | ASAP   | Apt i tude | ASVAB  | SP     | RS     | AS       | ٧F       | ASAP               |             |      |     | Aptitu              | ASVAB  | S<br>G | RS     | AS     | ٧F     | ASAP   | Apt i tude | ASVAB  | g, g   | និត    | S P         | ASAP   |
|                  |      |     | Enlistment |        |              |        |        |        | Concurrent |        |        |        |          |          |                    |             |      |     | Enlistment Aptitude |        |        |        |        |        | •      | Concurrent |        |        |        |             |        |

Increment in cross-validated multiple correlation by new test was negative due to adjustment made for shrinkage.

ţ

•