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Significant progress was made in a number of aspects of nonlinear and stochastic

systems. An important problem in the adaptive estimation of a finite state Markov

chain was solved, and significant progress was made on the corresponding, but

much more difficult adaptive control problem. Problems of adaptive control with

unknown disturbance distributions were solved in the case of incomplete state obser-

vations. A study of the adaptive control of bilinear ARMAX models was completed.

Discretization procedures for adaptive Markov control processes were designed and

analyzed, and problems of adaptive control with unknown disturbance distributions

were solved in the case of incomplete state observations. In the area of nonlinear

systems, the effect of sampling on linearization for continuous time systems was

investigated. The smooth feedback stabilization of nonlinear systems was studied,

and a model reference adaptive control scheme for pure-feedback nonlinear systems

was developed and studied, and some problems in the linearization of discrete-time

nonlinear systems were solved. In addition, some important problems in the areas

of discrete event systems, robotics, and discrete time systems were solved.



1. SUMMARY OF RESEARCH PROGRESS AND RESULTS

During the five years supported by this grant, we have made significant progress

both in areas we proposed to investigate and in related areas. In this section, we

summarize the progress in those areas that have resulted in publications.

1.1. Stochastic Control.

1.1.1. Stochastic Control of Markov Processes.

We have begun a research program in a major new area involving adaptive esti-

mation and control problems for stochastic systems involving either incomplete (or

noisy) observations of the state or nonlinear dynamics. The first class of problems

we have studied involves finite state Markov chains with incomplete state obser-

vations and unknown parameters; in particular, we have studied certain classes of

quality control, replacement, and repair problems. However, we found that work

remained to be done for such problems with known parameters; this problem was

studied in [23] and [44]. In these papers, we consider partially observable Markov

decision processes with finite or countable (core) state and observation spaces and

finite action set. Following a standard approach, an equivalent completely observed

problem is formulated, with the same finite action set but with an uncountable state

space, namely the space of probability distributions on the original core state space.

It is observed that some characteristics induced in the original problem due to the

finiteness or countability of the spaces involved are reflected onto the equivalent

problem. Sufficient conditions are then derived for a bounded solution to the aver-

age cost optimality equation to exist. We illustrate these results in the context of

machine replacement problems. By utilizing the inherent convexity of the partially

observed problem, structural properties for average cost policies are obtained for a

two state replacement problem; these are similar to results available for discount

optimal policies. In particular, we show that the optimal policy has the "control

limit" or "bang-bang" form. The set of assumptions used seems to be significantly

less restrictive than others currently available. In [25], necessary conditions are

given for the existence of a bounded solution of the average cost optimality equa-

tion. We consider in [46] average cost Markov decision processes on a countable

state space and with unbounded costs. Under a penalizing condition on the cost for

unstable behavior, we establish the existence of a stable stationary strategy which

is strong average optimal.
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As a prelude to studying adaptive control, the problem of characterizing the

effects that uncertainties and/or small changes in the parameters of a model can

have on optimal policies is considered in [26], [43]. It is shown that changes in the

optimal policy are very difficult to detect, even for relatively simple models. By

showing for a machine replacement problem modeled by a partially observed, finite

state Markov decision process, that the infinite horizon, optimal discounted cost

function is piecewise linear, we have derived formulas for the optimal cost and the

optimal policy, thus providing a means for carrying out sensitivity analyses. This

work is extended in [24] to several other classes of problems, including an inspection

problem with standby units, an optimal stopping problem, input optimization for

infinite horizon programs, and Markov decision processes with lagged information.

We have studied in [27] controlled diffusion processes on an infinite horizon with

three non-standard cost criteria: weighted cost, variance sensitive cost, and overtak-

ing optimality. Under a stability assumption we establish the existence of stationary

Markov controls which are optimal for these criteria in certain classes. Also, under

very general conditions we establish the existence of an e-optimal Markov policy for

the weighted criterion.

1.1.2 Stochastic Adaptive Estimation and Control.

In [19], [29], and [38], the adaptive estimation of the state of a finite state Markov

chain with incomplete state observations and in which the state transition proba-

bilities depend on unknown parameters is studied. A new adaptive estimation

algorithm for finite state Markov processes with incomplete observations is devel-

oped. This algorithm is then analyzed via the Ordinary Differential Equation (ODE)

Method. That is, it is shown that the convergence of the parameter estimation al-

gorithm can be analyzed by studying an "averaged" ordinary differential equation.

The most crucial and difficult aspect of the proof is that of showing that, for each

value of the unknown parameter, an augmented Markov process has a unique in-

variant measure. New techniques for the analysis of the ergodicity of time-varying

Markov chains are utilized. The convergence of the recursive parameter estimates top

is studied, and the optimality of the adaptive state estimator is proved. 3
d 0We have begun to apply similar methods to adaptive stochastic control problems I On

with incomplete observations. We have first considered a quality control problem

in which a system, such as a manufacturing unit or computer communications
-aw.1ity Coeso
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network, can be in either of two states: good or bad. Control actions available

to the inspector/decision-maker are:

(a) produce without inspection,

(b) produce and inspect; or

(c) repair.

Under actions (a) and (b) the system is subject to Markovian deterioration, while
a repair puts the unit in the good state by the next decision time. Informative data

might become available while producing without inspection, and inspection is not
always perfect. Hence the problem is modeled as a partially observed Markov deci-

sion process (POMDP). Furthermore, we assume that deterioration of the system

depends on an unknown parameter, namely the probability of the state going from
the good to the bad state in one time epoch when no repair is done. For the case of

known parameters, we have shown (see above) that there is an optimal policy for the

infinite horizon average cost criterion that is of the control limit (bang-bang) type.

The adaptive stochastic control problem is, however, much more difficult than the
adaptive estimation problem, because the presence of feedback causes the system

transitions to depend on the parameter estimates and introduces discontinuities.

In [45] and [47], we have analyzed algorithms for this quality control problem

in which the parameter estimates are updated only after the system is repaired;

such algorithms are analogous to those in which estimates in queueing systems are

updated only after each busy cycle. Since the system is returned to the "good" state
after repair, one obtains a perfect observation of the state at that time, and our

algorithm uses the observation at the next time to estimate the parameter. Hence,
we develop parameter estimation techniques based on the information available

after actions that reset the state to a known value. At these times, the augmented

state process "regenerates," its future evolution becoming independent of the past.

Using the ODE method, we show that two algorithms, one based on maximum
likelihood and another based on prediction error, converge almost surely to the true

... : parameter value. In addition, we modify the method of Shwartz and Makowski to
prove optimality of the resulting certainty equivalent adaptive policy, assuming only

the existence of some sequence of parameter estimates converging almost surely to
the true parameter value. Again, the discontinuities and partial observations in

this problem preclude the direct use of previously existing methods, but we have
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been able to generalize the method to problems such as this. Also, we have avoided

the very strong standard assumption that the parameter estimates converge almost

surely to the true parameter value under any stationary policy. In [39] and [42], we

have proved some initial results toward the more difficult analysis of such adaptive

control problems, but in which the parameter estimates are updated at every time;

in this case, the regenerative structure used in [45], [47] is not present. Also, in [5]

our recent results for parameter-adaptive Markov decision processes (MDP's) are

extended to partially observable MDP's depending on unknown parameters. These

results include approximations converging uniformly to the optimal reward function

and asymptotically optimal adaptive policies.

Another aspect of our research on adaptive control has involved systems with

unknown disturbance distribution. In [6], we consider adaptive control of stochas-

tic systems in which the disturbance or driving process is a sequence of indepen-

dent identically distributed random variables with unknown distribution and a dis-

counted reward criterion is used. Three different adaptive policies are shown to

be asymptotically optimal, and for each of them we obtain uniform approx'-na-

tions of the optimal reward function. We have also obtained preliminary results

on the extension of these results to the situation in which only incomplete or noisy

observations of the state are available. In addition, we have in [17] extended the

nonparametric results of [6] to problems with incomplete state observations. Our

approach combines convergence results for empirical processes and recent results

on parameter-adaptive stochastic control problems. The important issue of im-

plementation has been addressed in [18], which presents finite-state discretization

procedures for discrete-time, infinite horizon, adaptive Markov control processes

which depend on unknown parameters. The discretizations are combined with a

consistent parameter estimation scheme to obtain uniform approximations to the

optimal value function and asymptotically optimal adaptive control policies.

We have investigated the adaptive control of stochastic bilinear systems in [2]

and [34]. The minimum variance control law for bilinear systems with known pa-

rameters is shown to yield in most cases controls with infinite variance; this calls

into question the use of the so-called bilinear self-tuning regulators. An adaptive

weighted minimum variance controller based upon the cost with weighted control

effort is suggested for first order bilinear systems and is shown to yield bounded-



ness of the closed loop system variables under a certain condition on the parameter

estimate.

1.2. Nonlinear Systems.

In order to deepen our insight into nonlinear systems, we have also investigated

and solved a number of problems in the linearization of discrete-time and discretized

nonlinear systems. In [1] and [301, necessary and sufficient conditions for approxi-

mate linearizability are given. We also give a sufficient condition for local lineariz-

ability. Finally, we present analogous results for multi-input nonlinear discrete-time

systems. In [31, necessary and sufficient conditions for local input-output lineariz-

ability are given. We show that these conditions are also sufficient for a formal

solution to the global input-output linearization problem. Finally, we show that ze-

ros at infinity of the system can be obtained by a particular structure algorithm for

locally input-output linearizable systems. Whereas the objective of input-output

linearizability is to make the input-dependent part of the output sequence linear

in the new input, that of immersion by nonsingular feedback into a linear system

(solved in [8], [35]) is to make the output sequence jointly linear in the new input

and some analytic function of the initial state. Necessary and sufficient conditions

for such immersion are given.

In [4], [31], we characterize the equivalence of single-input single-output discrete-

time nonlinear systems to linear ones, via a state-coordinate change and with or

without feedback. Four cases are distinguished by allowing or disallowing feedback

as well as by including the output map or not; the interdependence of these problems

is analyzed. An important feature that distinguishes these discrete-time problems

from the corresponding problem in continuous-time is that the state-coordinate

transformation is here directly computable as a higher composition of the system

and output maps. Finally, certain connections are made with the continuous-time

case. We build on these results in [16], [36], [401, [41] in which we investigate the

effect of sampling on linear equivalence for continuous time systems. It is shown

that the discretized system is linearizable by state coordinate change for an open

set of sampling times if and only if the continuous time system is linearizable by

state coordinate change. Also, for n = 2, we show that even though the discretized

system is linearizable by state coordinate change and feedback, the continuous time

affine complete analytic system is linearizable by state coordinate change only. Also,



we suggesi a method of proof when n > 3.

The papers [7], [32] investigate the global controllability of piecewise-linear (hy-

persurface) systems, which are defined as control systems that are subject to affine

dynamics on each of the components of a finite polyhedral partition. Various new

tools are developed for the study of the problem, including a classification of the

facets of the polyhedra in the partition. Necessary and sufficient conditions for

complete controllability are obtained via the study of a suitably defined controlla-

bility connection matrix of polyhedra. In [9] and [37], we investigate the problem

of smooth feedback stabilization of nonlinear systems with stable uncontrolled dy-

namics. We present sufficient conditions for the existence of a smooth feedback

stabilizing control that are also necessary in the case of linear systems. Analogous

results are established for discrete time systems.

1.3. Deterministic Nonlinear Adaptive Control.

Almost all of the work in the field of deterministic adaptive control is restricted

to the study of linear plants. In trying to extend adaptive schemes to nonlinear

systems, one is faced with considerable obstacles. The most important of these is

the lack of a systematic methodology for nonlinear feedback design. In recent years,

considerable effort has been invested in the study of canonical forms for nonlinear

systems and in particular the characterization of the class of those systems which

are linearizable under the action of the nonlinear feedback group. Equivalence to

linear dynamics is a particularly desirable property from the point of view of control

synthesis.

A possible design methodology, applicable to linearizable systems, is to build a

controller for the nonlinear system by designing one for the equivalent linear system

and utilizing the transformation (from linear to nonlinear) along with its inverse.

This approach has already been applied to the design of automatic flight-control

systems for aircraft of significant complexity. The chief drawback of this method

is that it relies on all the states being measured and on an exact cancellation of

nonlinear terms in order to get linear behavior. Consequently, in the case where the

plant contains unknown or uncertain parameters, adaptation is desirable in order

to robustify, i.e., make asymptotically exact, the cancellation of nonlinear terms. A

major difficulty here is that the linearizing transformation, being a function of the

system parameters, is itself unknown, and hence, the above design approach does not
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allow for a straightforward incorporation of an adaptive controller. The extension of

parameter adaptive algorithms developed for linear systems to "linearizable" ones

becomes, therefore, an important problem.

In a study [12], [33], that seems to be among the first of its kind, we restricted our

attention to "pure feedback" systems, a special class of nonlinear systems which arise

as a canonical form of linearizable dynamics. We presented an adaptive algorithm

and the design of a model reference adaptive controller for this class of problems.

An interesting feature of our adaptive scheme is that it updates estimates of the

feedback and coordinate transformation required to linearize the system. Under

some mild technical conditions, we established global convergence of the output

error for all initial estimates of the parameter vector lying in an open neighborhood

of the true parameters in the parameter space. Also, in simulation studies, the

performance of the algorithm was excellent. At first sight, this model might seem

as a fairly restricted class of nonlinear plants. One should keep in mind, though, that

not only does this model cover a wide range of interesting real life applications, but,

in addition, the pure-feedback form may be viewed as a canonical form of feedback

linearizable nonlinear systems.

1.4. Other Related Research.

We have also made progress in a number of other related areas of research. In

the are of robotics, the problem of selecting joint space trajectories for redundant

manipulators is considered in [13]. Solutions which allow secondary tasks to be

performed by the arm simultaneously with end-effector motions may be selected in

a number of ways. An algorithm to accomplish this by means of conditions on a

scalar function of the joint variables is introduced and analyzed in [13]. In [14],

the problem of the distribution of dynamic loads for multiple cooperating manip-

ulators, is considered. Methods of load distribution, which allow desired object

motion while selecting loads desirable for alleviating manipulator dynamic loads,

are developed. The motion and internal loads induced on an object manipulated by

two or more robotic mechanisms are considered in [28]. In particular, for a desired

motion trajectory of the object, the question of load distribution among the arms

is analyzed, with particular attention given to the internal loading of the object. A

new representation of the load distribution problem is given by the introduction of

a particular "non-squeezing" pseudoinverse, which is shown to possess properties

8



which expose the underlying structure of the problem. It is expected that by using

this pseudoinverse, new insight will be gained, and necessary analysis simplified, in

a number of aspects of multiple manipulator research. A number of these aspects

are detailed and illustrated using a two armed example.

In the area of discrete event dynamic systems, we have designed algorithms for

supervisor synthesis problems with partial observations [15]. These algorithms pro-

vide a good suboptimal solution to the problem; in addition, they involve new

classes of automata which are of interest in their own right. However, these solu-

tions are often too restrictive, and in [20] we have studied a more general class of

solutions. These give rise to another interesting class of supervisors, but they are

computationally much more difficult. In [211, we discuss the computation of supre-

mal controllable and normal sublanguages. We derive formulas for both supremal

controllable sublanguages and supremal normal sublanguages when the languages

involved are closed. As a result, those languages can be computed without applying

recursive algorithms.

Periodic orbits of the matrix Riccati equation are studied in [10]; it is shown

that periodic solutions are bounded if and only if the span of their range does not

intersect the orthogonal complement of the controllable subspace of the associated

linear system. In [11], a discrete-time, linear, time-invariant control system with a

fixed time delay in the feedback loop is considered; simple necessary and sufficient

conditions for feedback stabilization are developed. Based on a minimax criterion,

we define in [22] the concept of equalizability for a nonlinear, discrete-time commu-

nication channel. Sufficient conditions for a channel to be equalizable, via a finite

memory equalizer, are also derived.
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