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1. INTRODUCTION

When small particles suspended in a gseous medium flow through a long cylindrical tube or

conduit, the random Brownian movement, or diffusion of the particles which may be submicron

aerosols, atoms, or ions, may bring them into contact with the walls, where they adhere or lose their

charge. From the fraction of particles penetrating the conduit, the diffusion coefficient and particle

size may be calculated with the use of the appropriate relations. The case in hand is when no particles

enter the conduit, and formation in flight occurs within the containment; this arises when air

containing a radioactive, rare gas enters the conduit through a high-efficiency filter located far

upstream from the tube configuration. As the radioactive gas flows through the geometry, it decays,

giving rise to the steady production of a certain number of daughter atoms per unit volume. Unlike

the radioactive gas, the daughter atoms adhere to the wall and are lost by diffusion. This dispersion of

atoms may be considered to be an atomic aerosol (Tan and Hsu 1971) since it has the same property

as submicron aerosols in that they can be collected at a surface. The radioelements diffuse to the tube

walls where they decay into other radioelements.

Formation in flight diffusion equations have been derived for cylindrical tubes (Tan and Hsu

1971; Berezhnoi and Kirichenko 1964) and for flat channels (Berezhnoi and Kirichenko 1964),

including the mass transfer of aerosols with axial diffusion in narrow rectangular channels (Tan and

Hsu 1972).

Swirling flows related to ducts have been studied extensively (Fromm 1963; Pao 1967; Textor

1968). A well-defined configuration of a confined axially decaying vortex flow was introduced in a

study by Lavan, Nielsen, and Fejer (1969). Also, Tung and So (1973) presented a study applying the

fluid phase relations of Lavan, Nielsen, and Fejer (1969) to the case of a gas-solid suspension.

The present study utilizes the geometry of Lavan, Nielsen, and Fejer (1969) (see Figure 1) to

study the case of a laminar swirling flow of atomic particles formed in flight under electrostatic field

effects. The fluid phase is assumed incompressible and fully developed at both far upstream and

downstream positions from the juncture of the two pipes. A forced vortex is generated by the rotating

pipe, and it decays as the flow passes through the stationary duct because of wall surface friction. At

far downstream, the swirl vanishes, and it is assumed that the axial velocity converts back to the fully

.... ..... 1
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developed laminar parabolic profile. The particle concentration is assumed low enough so that the

effect on the fluid phase due to the presence of the particles is negligible (Soo 1967). The solutions of

the fluid phase velocities can then be effectively utilized to solve for the particulate relations. The

fluid phase velocities are obtained by solving the Navier-Stokes equations numerically.

2. FORMULATION

The motion of the fluid phase is given by solving the continuity and the Navier-Stokes equations

for a steady, laminar, incompressible, and axisymmetric swirling flow. The solution is given in terms

of the radial, tangential, and axial components of the fluid velocity (u, v, w in r, 0, and z coordinates,

respectively), pressure p, the density p, and v, the kinematic viscosity of the fluid phase material.

Hence, the fluid phase relations are (Schlichting 1968):

v Uv -v a _- 2V (2)

( 1.
u w 3 i&p [ Iaw + ±w (3)

and the continuity relation is

a(rU) + a (rW) 0. (4)
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The expression describing the steady-state mass diffusion of a constituent in a generating but

nonreacting binary gas mixture under electrostatic influences flowing through the system described in

Figure 1, assuming azimuthal symmetry and constant coefficient of diffusion is

coupled with the Poisson equation,

q (6)

where F is the inverse of relaxation time constant defined as

F-9WE/2a' , (7)

where ji and i are the viscosity of the fluid and material density of the particulate phase, respectively,

and a is the radius of a particle.

The boundary conditions of the solution take the following forms:

atr-0 w . ac 4) WS 0; (8)atr=O:u=v- = - C =*(8

(centerline)

R -. oz o.(9

at r = Ro: I w - c 0; v - +O : (9)

(wall)

4



atZ - C ;v rlw 2w 1 ; (10)

(far upstream)

atz +0: u=v= ;w= 2w (11)

(far downstream)

where 11 is the constant angular velocity of the rotating pipe, w is the mean axial flow velocity, and R,

is the radius of the pipe.

The flow configuration, together with the boundary conditions, is shown in Figure 1. The pipe

section at the left of the r-axis rotates with constant angular velocity 0 and creates the swirl, while the

pipe section at the right is held stationary. At z = 0, the two pipes join smoothly with no effect on the

flow. At far upstream (z = -. ) and downstream (z = +-0), the flow is assumed fully developed.

Since the radioelements are completely annihilated at the walls, c = 0 at r = R,; also, because of

the grounded walls, * = 0 at r = Ro Furthermore, it is assumed that c = 0 at z =

The following nondimensional forms may be introduced as:

R rfR. , Z =zlR. , * T WT/.;

w - W u, U , V= v/(Ro );
/2 W/2

R= ,R3/40 P -p/(PRo'2Q2);

S-R. q (,FP)
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where T, is the stream function at the wall. The Reynolds number is given by

411_ 2WRo
Rey = v R. (12)

and the swirl ratio is given by the ratio of the tangential velocity of the rotating pipe to the mean axia

velocity,

R. Ro(13)

The diffusive Peclet number is the ratio of the inertial to diffusive forces,

R°y (14)

and the electrostatic charge parameter is given by

2

*FD- MP (15)

The classical numerical approa %h which converts the velocity components into stream function Y,

vorticity , and circulation r was chosen because of its well-established stability.

The relations for the fluid phase after they have been expressed in nondimensional form were cam

into explicit finite difference molecules (Southwell 1940; Ames 1972) and solved by numerical

relaxation yielding results consistent with Lavan, Nielsen, and Fejer (1969) and Tung and Soo (1973).

As a result of the axial symmetry of the flow field, only the flow in the rectangular region defined by

6



D-[(RX) I 0<R5land0$X.Sl] (16)

need be considered where X is a mapping function given by Tung and Soo (1973) and used to

transform the z-axis into the x-axis. On D itself, parallel mesh points (41 x 41) were uniformly spaced

by an amount A in both radial and axial directions. Initial assumed values for r, C, and W were

specified, then an iterative procedure consisting of sweeps of the interior mesh points was

implemented until a convergence criteria (Forsythe and Wasow 1967) was satisfied.

The diffusion and Poisson equation can be written in nondimensional form as

(c + W * IX' W - + a *4aC* 2 + 1 (17)
W--F- 52- -R -. -

R* 2*

subject to

C* (R, X-0) - * (R, X-O) -0; (19)

C* (1,X) **(X) -0; (20)

(OX) - a (OX) -0. (21)

Defining F(X) as the ratio of the total particle flux over a cross-section at distance X from the far

upstream position (at z = .) to the rate of formation of the radioelements in the same element of the

tube, we have

F(X) u WC RdR. (22)

0
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After the fluid phase is solved, the respective velocities can be implemented into the solution of

the differential system encompassing Equations 17 to 21. Due to the universal stability of the implicit

method, this parabolic system was expressed in terms of the implicit finite difference discretization

technique such that the diffusion and Poisson equations take the forms, respectively,

PlijC i+lj-1 + 2ij C 1+1 j + 3ij *i+ lj+1 P4ijj-1

(23)
+5 i j, j+J1l aIij;

" i~jO j-1 + y2 i j j + 3i,jo j+l + 4aC* i+ I j 0'O (24)

where

i1 i T2) 2AR 2RjAR -(AR) (2.)

S(jP.JX i+l 'jWi' + .. 2 . 4aC*  ()

) AX (AR) 2  1 ,j

P3J Ui+I ,j 1.0 1
2iAj L 2AR 2Rj(AR) (AR)2 ;  (27)

P~jj I i,j+l - i'j- I
4 J=AR 2AR ; (2)

05 1 i,j+l-I i'j- I

14 -AR 2AR (29)

8



X5.+lWi+ ,j i,j + 1.0; (0)

1 ,J A(X

1 1 (31)

y 2.,j - 2 (32)ri- (32)

*J +-(AR)1 1

(AR)2" + 2R.(Ae) (33)

Convergence (Forsythe and Wasow 1967; Hornbeck 1975) was satisfied for all Peclet and

electrostatic charge parameters, with respect to the mesh sizes considered (AX, AR - 0.01, 0.025, 0.05).

The sparse and unsymmetric system resulting from the finite difference expressions for the diffusion

and Poisson system was solved by Gaussian elimination with full and partial pivoting with the aid of

the Crout reduction technique.

3. RESULTS AND DISCUSSIONS

Since the fluid phase relations have already been solved (Lavan, Nielsen, and Fejer 1969; Tung

and Soo 1973), they will not be discussed, except for the precision with which they matched the

available comparable calculations, which was within 0.01% for most cases.

The effect of the electrostatic field parameter, a, on the fraction of penetration over the complete

axial distance from far upstream to far downstream positions can be seen in Figure 2. Clearly, the

increase in charge causes a decreaft in penetration, F(X), since more atomic particles are attracted to

the walls where they become completely annihilated.

9



Figure 3 represents the effect of the charge on the centerline concentration over the complete

axial distance. A decrease in profile is accompanied by an increase in charge since the particles are

lost at the boundary. Figure 4 identifies the greater electrostatic potential due to the increase in

electric field.

Hence, the electrostatic charge parameter, -, has a significant impact upon nuclear particle

deposition in vortex flow when 1 < Rey < 10, 1 < S < 12, 15 P, 5 10, and 1 < - !5 10, which

represent an appreciable realistic range. Increasing - increased deposition and potential, regardless of

Rey, P, and S variations within these ranges.

10
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LIST OF SYMBOLS

a - Radius of a particle

c - Particle concentration

C - Dimensionless particle concentration

DP - Particle diffusivity

F - Inverse of relaxation time

Mil - Mass of a particle

p - Fluid static pressure

P - Dimensionless pressure

P. - Peclet number

L - Rate of particle generation per unit of volume

r - Radial coordinate

R - Dimensionless radial coordinate, r/R

Rey - Reynolds number

R. - Pipe radius

S - Swirl ratio

u - Radial velocity

U - Dimensionless radial velocity

v - Tangential velocity

V - Dimensionless tangential velocity

w - Axial velocity

w - Mean axial velocity

W - Dimensionless axial velocity

X - Transformation variable
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XI- First derivative of X with respect to Z

z - Axial coordinate

Z - Dimensionless axial coordinate

- Electrostatic charge parameter

r - Circulation

S- Permitivity of free space

AR - Radial change

AX - Axial change

- Viscosity of material constituting fluid phase

v - Kinematic viscosity of fluid

'-- - Kinematic viscosity of fluid phase materal

p - Fluid density

- Vorticity

-Stream function

r"'. *, 1P - Dimensionless circulation, vorticity, and stream functions, respectively

SElectrostatic potential

#* -Dimensionless electrostatic potential

- Constant angular velocity
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