
An algorithm is presented for the rapid evaluation of expressions of the form E'V k= .i 'k  , at the
points z1 ,..., z,, which are arbitrarily distributed in the interval [-ir, 7r]. The algorithm is based
on trigonometric interpolation techniques and in most cases of practical interest, evaluation of the
above sum at rn points requires O(N • log N + m) operations. This problem can be viewed as a
generalization of the Discrete Fourier Transform and the scheme of the paper is widely applicable
to many problems encountered in mathematics, science and engineering.
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/ 1 Introduction

-Fourier techniques have been a popular analytical tool in the study of physics and gineering
for more than two centuries. A reason for the usefulness of such techniques is that trigono-
metric function -' -are eigenfunctions of the differentiation operator and can be effectively
used to model solutions of differential equations which arise in the fields mentioned above.

With the arrival of digital computers, it became theoretically possible to calculate the
Fourier series and Fourier transform of a function numerically. This was unrealistic in practice
however owing to the prohibitive complexity of even modestly sized problems. A major break-
through in overcoming this difficulty was the development of the Fast Fourier Transform (FFT)
algorithm in the 1960s which established Fourier analysis as a useful and practical numerical
tool. J .
4-Jn this paper;ve present~an algorithm for the rapid evaluation of expressions of tp form

N

E *. eiwk=, (1)
k=1

where wk E R and ak E C for k = 1,...,N, and x E [-7r, 7r].
The performance of the scheme is dependent on the distribution of frequencies, and we let

n denote the smallest power of 2 such that wk E - i, 21 for all k. Our algorithm then requires
a number of arithmetic operations proportional to

n1Iog2 n+ (N+m).loge (2)

to evaluate the sum at m arbitrary points in [-ir, 7r] where s is our required accuracy for the
results. In many cases of practical interest it turns out that n -, N and the operation count
reduces to

giving us a significant improvement over the N.m operations required for the direct evaluation.
The problem as described above can be viewed as a generalization of the discrete Fourier

transform, which is defined by the equations
IN-i -2irijklN,

F = y E fk. e- 0,. ..,IV- (4)
k=O

for a given sequence of N numbers fk E C. In this special case of (1), the frequencies Wk are
integers and the points xj are equally spaced in [0, 27r]. Under these conditions, the matrix
representation of the Fourier kernel has a simple structure which can be exploited, and the
well known and highly efficient Classical FFT algorithm provides a way of evaluating the N
sums (4) in O(N.log N) arithmetic operations with a very small constant as opposed to O(N 2 )
operations for the direct evaluation. There are in fact a variety of such schemes, but all are
purely algebraic in nature.

1, ... , . . .
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In the more general case, however, the underlying structure of the matrix is not so easily
exploitable. The algorithm of this paper makes use of some results from approximation theory
coupled with existing FFT techniques to give a very versatile solution for the generalized
problem.

The plan of the paper is as follows. We start in section 2 with some results from analysis and
approximation theory which are used in the design of the algorithm. An exact statement of the
problem in section 3 is then followed by an informal description of the algorithm in section 4.
In section 5 we introduce some notation which is used in a more detailed description of the
algorithm in section 6. In section 7 we describe some modifications to the scheme to improve
its performance for certain frequency distributions. The results of our numerical experiments
are presented in section 8 to illustrate the behavior and performance of the algorithm. Finally,
section 9 lists some generalizations of the method and some conclusions.

2 Mathematical and Numerical Preliminaries

2.1 Analytical Tools

The following well-known lemma gives us the convergence rate of Fourier series and can be
found in slightly different forms in, for example, [2, 41.

Lemma 2.1 Let f : R P- C be a 2r-periodic function with a Fourier series expansion

/(#)E= C: keik (5)

If f has a piecewise continuous p-th derivative then

Ck =O( kT) (6)

Another standard result is the translation-invariance of a Gaussian integral (see e.g.[11).

Lemma 2.2 Let b, u, v E R. Then

-'- - e-bX- dx -- = (7)

2.2 Relevant facts from Approximation Theory

The principal numerical tool of this paper is based on one simple observation to which this
section is devoted.

Consider the 21r-periodic function given by ei on the interval [-,r, r] with non-integer
frequency, c. This is discontinuous at odd integer multiples of 7r and from lemma 2.1 its
spectrum decays like 1/k. The Fourier series of such a function thus has poor convergence
properties. A standard technique for substantially improving the convergence rate is to multiply
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the function by a Gaussian bell e-b 2 where b is chosen such that e- b
r
2 = 5 for a specified error

tolerance e > 0, giving us
b = loge(1/e)(8b2 (8)

The effect of this is to smoothly force the discontinuity to be small, thereby increasing the
number of continuous derivatives at the ends of the interval to a precision e while preserving
the continuity of all derivatives away from these ends.

We consider now the properties of the new function,

G(x; b, c) = e-bz2 .ei . (9)

G still has a discontinuity of size - e at x = ±r. Let us define a slightly perturbed function
by

G(x) = (e-b'2 - e)" e"=  (10)

= G(x) -s.e t . (11)

Then G(z) has the following properties:

e IG(x) - G(x)l = e for x E [-7r, r]

9 C is continuous and @(-ir) = G(,r) = 0

e j has a piecewise continuous first derivative with a single discontinuity of size at +,r.

By lemma 2.1, we can write
001() : gke ikx (12)

k=-oo

where the gk decay like 0(1/k 2 ).
This suggests that if we keep only those coefficients which are bigger than C the truncation

error incurred will be O(e). As 0? is smooth except for a small discontinuity in its derivative,
we expect too that the number of such coefficients is small.

A precise statement of this fact along with more detailed error analysis are contained in the
following theorems.

Theorem 2.3 Let d(x) be defined by (10) for a given tolerance c > 0. Then,

O(x) = 1 hkes i k+0(6) (13)

where
hk .- 1e-(c-k) 2 /4b (14)

h¢ = 2 e(14)



Proof. The Fourier coefficients for d are given analytically by the formula//
27gk= j (z)e-ikxdX (15)

= .G(x)eikxdxT - 1 G(x)e -kzdx -j G(x)e-ikdx -

C. /? eicze-ik-dx (16)

The first integral can be obtained explicitly by completing the square and using Lemma 2.2
as follows

L G(x)e-kzdx = e eb,2 +i-ikd

00 e-b(z-i(-k)/2)-(-k)214bdx

= f" e - (c - k) 2 /4b.

We also have

-00 G(x) e - ik d + f G(x)e-ikxdx

1 I- eb= 2 ei(ck)xdx + e-bz2 ei(ck)xdx

- 21 e- bx2 cos((c - k)x)dx
2 [e_,_ks  oo 4b ze - b 2 sin((c- k)x)dx

s--k Tc - kiir

- 2e sin((c - k)r) + e .0 (c -k)2
- c - kk) "

Finally, 2c

C eie-ikxdX = k sin((c - k)r).

Substituting for these integrals in the formula (16), we find that the 1/(c - k) terms cancel,
and that

Sgk=hk +e .0 (c-k)2). (17)

where hk= are defined by

21-00 G(x)eikxdx (18)

- 1 -(c-k) 2 /4b. (19)
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Substituting now for g, in (12),

00 
kGiC) = 1 hke + R(x) (20)

where
00

R()o= s rk eikx (21)
k=-00 (c -k)2

for some set of coefficients rk.
The size of this error can be bounded as follows

00

kR(-)oo r E (c - k) 2 < er (22)
k=-00

where r,r' are real constants.
We can thus rewrite (20) as

00

d(z) = E he + O(e). (23)
k=-00

As a consequence of the fact that IG - GI = e and the result of the previous theorem, we
have

Corollary 2.4 Let G(x) = e-bx2 ei' and hk be defined by (14) for a given tolerance E > 0.
Then

G(x) = hke'k + 0(e) (24)
k=-oo

for z E [-ir, )].

The coefficients hk themselves look like a Gaussian with a peak at the nearest integer to c
which we denote by kc. They decay superalgebraically, i.e. faster than any finite power of 1/k.
Suppose we now keep only the q + I largest terms in the series, where

e- (( q+ l ) 12)214 b < 6 (25)

Rearranging and substituting for b from (8), we get

q :2- -. og,() (26)

Note that the bandwidth q is independent of the frequency c.
The next theorem gives an estimate for the truncation error of the series under these

conditions.



Theorem 2,5 Let G(x) = e- . a e" . Then, in the notation of this section,

kc+q/2
G(z)= : hkeik +0( ) (27)

k=kc-q/2

for z E [-7r, 7r].

Proof. The truncation error for the series is given by

kk+q/2+ kc-q/2-1

hke~c + Z >jjx(e-ck24 + ck)/b

E o e-k /14b
Coo

kq2+1

<0 l- -(kq/2+1)2i Ze/4b
k=O

< 17~

< + j0 e-x/4 dx)

:0

In summary, any function of the form e- bx2 . ei can be accurately represented using a
small number of terms of the form eik'.

Multiplying both sides of the formula (27) by e612 , we obtain an approximation to the
original function on the subinterval [-Z, ]:

kc+q/2

ei = e b - . E hke'kx +O(,.e) (28)
k=k :-q/2

where

r. = e/b 2 ./4 - (29)

is the maximum size of ebx2 on the subinterval.
The worst-case estimates obtained above provide us with rather pessimistic upper bounds

for the truncation errors.
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We estimated the actual error in approximating ei' using terms of the form eb
X

2 et'k for
different choices of tolerance e and number of terms q. The results are presented in Table 1.
We only tested the approximation for the constant function f(z) = 1 corresponding to the
frequency c = 0 as the spectra for all other frequencies are translates of the spectrum for this
one. The error estimates are thus valid for all real frequencies c. The approximation

q/2

f(z) = e . hke kx (30)
k=-q/2

to 1 with hk defined as in equation (14) was computed at n = 1000 equally spaced nodes Xk in
[-r/2, 2r/21 and the entries in the table are defined as follows:

* The numbers of terms, q, we used are given by

q-= 2. [ log.( +) 4 +4i (31)

for i = 0, 1, 2.

a E' is the maximum absolute error defined by

E' = max I1 - H(Xk)l (32)
<k<n

9 E' is the mean absolute error defined by

El = 1 i 1 - H(zk)I. (33)
k=1

TABLE 1:

q E00 E l

1 E-4 12 0.671 E-05 0.202 E-05
16 0.100 E-07 0.581 E-09
20 0.100 E-07 0.542 E-09

1 E-6 18 0.264 E-06 0.311 E-07
22 0.101 E-09 0.118 E-10
26 0.100 E-11 0.367 E-13

1 E-8 24 0.332 E-08 0.478 E-09
28 0.197 E-11 0.266 E-12
32 0.434 E-14 0.815 E-15

1 E-10 30 0.142 E-09 0.924 E-11
34 0.983 E-13 0.660 E-14
38 0.140 E-13 0.152 E-14
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We observe from the above results that in all our tests,

q12

lei= ' • E hkeikx < 2c (34)
k--q/2

and for larger q the truncation errors are several orders of magnitude less than e. The error
estimate 0(rc. -e) in (28) can thus be replaced by O(e) for most practical purposes.

Finally, by means of a simple linear transformation, the formula (28) generalizes from [-r, ir]
to any interval [a - d a + d] to give us the result upon which the algorithm is based.

Corollary 2.6 Let c be any real frequency, a, d be real numbers with d > 0 and -E > 0 be a

given tolerance. Then, in the notation of this section,

k, +q/2

e = e6((z - a r/d) 2 . E hke i k(z - a )r/d + O(E) (35)
k=k,-q/2

for z E [a - d/2, a + d/2].

3 Exact Statement of the Problem

In the following sections, we will assume that:

1. {wj,...,wtN} and {zt,...,Zm} are finite sequences of real numbers
2. n is an integer such that wk E [-!, 22. isaintgeruchhatkE -, ]for k --1,...,N

3. -,r < x, < ... < x.n < ,r

4. { aN,...,aN} is a finite sequence of complex numbers

5. We wish to evaluate the sums

N

sW(x) = ' ei'k ,  (36)
k=1i

for j = 1,..., m with a relative accuracy E > 0. More precisely, we are looking for a set

of numbers S(xj) such that
IS(Xj) -Sa.(Xj)l <e (37)

E = I I ce -

,n= mnnlnnu mn muuumn nnnm nnm n lun nlln nu nu ml 'Tg . . .



4 Informal Description of the Algorithm

The results of section 2 lead us to observe that the linear transformation described by equation
(36) has an approximate sparse factorization to a relative precision C.

The factors correspond to the following operations which are performed by the algorithm:

1. Obtain approximate Fourier coefficients for eb 2Sa,w(x) on the interval [-27r, 21r].

2. Evaluate this Fourier series at equally-spaced points in [-27r, 21r) using FFT.

3. Retrieve the approximate values of Sa,,(x) at equally spaced points in [-r, 7r] by multi-
plyiag by eb2

4. Split f-r, r] into small equal subintervals. Extend each subinterval to twice its length
and multiply the approximate values of S ,w(x) on each one by a Gaussian bell.

5. Apply FFT to new set of values on each subinterval, thereby obtaining short interpolat-
ing trigonometric polynomials which closely approximate e-b'(X-Ck) 2 S,,(x) on each k-th
subinterval whose center is ck.

6. Evaluate each series directly at the relevant points.

7. Retrieve approximate values of S0 ,,(xj) on the appropriate k-th subinterval by multiply-
ing by e'(z, - k)2 .

Remarks.

" In Step 1 a matrix P is applied to the vector of coefficients ak. Due to (27), this matrix
is given analytically and is banded to a precision c with bandwidth q.

* Steps 3-7 can be combined and represented by a block-diagonal matrix Q where the k-th
block is the product of the linear transformations on the k-th subinterval.

" The algorithm is divided into two parts:

- Initialization, which precomputes and stores the matrix operators P and Q in terms
of IWO and {:j}.

- Evaluation, which applies the sequence of linear transformations to the vector {0}
to obtain approximate values of the series at the specified points.

For many applications, the frequencies and points are fixed and we wish to evaluate
Sa.w(x) repeatedly for different sets of {ck}. With the above formulation the initializa-
tion only needs to be performed once for any number of subsequent evaluations giving
considerable time savings in such cases.
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e It remains for us to determine choices for the number of equally spaced points needed in
step 2 and for the subinterval size in step 4 such that the operation count is minimized
under the constraint that the interpolation errors are within our desired tolerance.

The FFT requires at least 2 points per wavelength to resolve a particular frequency. The
highest frequency term in the original series has a maximum of n wavelengths on the
interval [-27r, 27r]. If the subinterval size is such that the highest frequency term has
W wavelengths, the Fourier series for e-b'(X-c&) 2 SQ,(z) on each subinterval will have
W + q/2 as its highest frequency. We thus need 2W + q points on each subinterval, or
at least 2 + q/W points per wavelength to resolve this highest frequency and achieve our
desired accuracy. Our investigations showed that an optimal choice is a subinterval size
such that W = q/2, thus making our requirements 4 points per wavelength, 4n points on
[-27r, 2 1] and 2q points on each extended subinterval. As there are 2n points in [-7r, ,r
and q points in each unextended subinterval, the number of subintervals is given by 2n/q.

5 Notation

In this section we introduce some notation to be used in the detailed description of the algo-
rithm.

We assume that the problem to be solved is that as described in section 3 above. We assume
too that e > 0 is a given real error tolerance.

First we use the result 2.6 of section 2.2 with a = 2r" to obtain an approximation to the
series on [-,, ir].

We define p/ to be the nearest integer to 2wk for k = 1,..., N.
The real number b is defined such that e -b(2")2 = E, giving us

b = loge(1/e) (38)4r-2

From equation (27), each term e- bx2 . e iWkZ can be accurately represented by a short trigono-
metric polynomial whose dominant frequency is Pk. We define sets of numbers {Pji },..., {Piv}
to be the coefficients for each such polynomial according to the expression

Pik = 1 e
-(k-+j)/2)

2/46 (39)

for k = 1,.. .,N and j = -q/2,...,q/2. Here we define the bandwidth q to be the smallest
power of 2 such that

q : - . og,.(40)

as in (26), so that due to corollary 2.6,

q/2

ei z = ebz 2  E Pjk . e
i ( P + j )

x/
2  

O(,) (41)
j=-q/2
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for k = 1,...,N and x E [-r, ir].
We now define a function T(z), polynomial coefficients {/3}, and n to be a power of 2 such

that
N q/2

T(x) = Z ck E Pjk "ei(pk+j)./2 = Z 3oeijf/ 2 .  (42)
k=1 p=-q/2 j-=-n

We also define a function

U(x) = eb'2 . T(x) (43)

Observation 5.1 U(x) can be viewed as an approximation to Sc. (x) and furthermore, due

to (41),(42),(43) and the triangle inequality,

N

ISQ,(X) - U(x)l = 0(e) - IClKI (44)
j=1

for all x E [-7r, ir].

Let {tj} be a set of 4n equally spaced points in [-27r, 27r] defined by

tj = -27r + (j - 1)7r/n. (45)

for j = 1,...,4n.
We next consider the result 2.6 applied to each of a set of small subintervals of (-'r, 'r), and

introduce a notation for such subintervals and their associated expansions.

Let M = 2n/q denote the number of subintervals on [-7r, 7r].
We define the set of subintervals {Ak} for k = 1,...,M to be an equal partitioning of

[-r, r] by the formula

Ak = [ck - ,+ 2] (46)

where the length of each subinterval is a* = 2-r/M, and the center of each is given by

Ck= - + (k - -'). (47)

The extended subintervals {Bk} are then defined for k = 1,..., M by

Bk = [ck - 0, ck + 0] (48)

so that each Ak is of length a and each Bk is of length 2a, both centered at ck.
The scaled Gaussian bell e - b'(z -ck) 2 on each Bk is characterized by a number b' such that

e- b'Y2 = e, giving us
b'- =lIg'(1/C) = 47r b. (49)

a2 a2

The subintervals have been chosen such that on each Bk the Fourier series approximation

to e- b'(X -Ck) 2 • So,(x) to a precision e has 2q terms.
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For k = 1,...,M let the set of points {t } be the subset of {tj} which lie in Bk defined by

k +jE
~t- = q (50)

forj = -q,..q-
Let us now define the sets of numbers {V,},..., {VM} by

V k rr,' 4kk)2
e- -U(t*) (51)

= e-b'(tk-ck) 2 . eb6 () 2 . T(tk) (52)

for j=-q,...,q- I.
We denote by {7.k} the Discrete Fourier Transform of each {V} viewed as a sequence in j

for each fixed k, i.e.

k 1= v1 e-2"ij/2q (53)
= =-q

for j = -q,...,q- 1 and k ,...,M.

Observation 5.2 For k = 1,..., M, the set of coefficients {7} defines a q-th order interpo-
lating trigonometric polynomial which can be viewed as an approximation to e- S. (x)
on the interval Bk. Furthermore, defining a function on [-r, r] by

q-1

S(z) = e b'-- .  . ei((ZCkf/o when x E A&, (54)

we get

FI 0(c) (55)
_j= 1 IcI

for all z E [-r,Tr].

We partition the set of points {zj} according to subinterval, and for each k = 1,. we
define {nJ,...,z } to be the subset consisting of all points which lie in Ak. The integer nk
denotes the number of points in the k-th subinterval.

We notice now that (52),(53) and (54) constitute a sequence of linear transformations which
can be combined into a single matrix on each subinterval. To this end we define

q-1

= e ' -  .  , e=- .p(.C)/O e- 2,ipI/2q .e-b'(-Ck) 2 e6 )2  (56)p=_q 2q

for k = .M,j =1,..,n and I = -q,...,q- 1, so that,

12



Observation 5.3 In the notation of this section,

q-1
[;xk Qk . T(tk) (57)

for k =,.,M and j -,.,n.

A closer inspection of (56) reveals that the sum over p is in fact a geometrical series and
substituting for

I (t -ck)
q a

from (50), the sum can be written as

q1iPr((k-ck)/)-ip1d/q = q x - (58)

p=-q p=-q

Writing

Y = (XI - t,)ir/a, (59)

the sum can be further simplified to

it e ( 6 0 )
p. -q 1eI

, k,/2 .sin (q )k if y 0(61)= e sin(yk /2) I

and
q- 1

e'"f, =2q if y= . (62)
p=-q

This latter equation corresponds to the case when Z4 = tk for some j, k, 1, i.e. when one of the
points for evaluation coincides with one of the equally spaced points.

The definition (56) can thus be rewritten as

_ik sin(qyrj) bekca
, b'( -"  . I-.e- 1/2 .  .e b,(t: - ", )2 . eb(tk)2 if k', 0

Q k 2q siI(/2) (63){ ieb(tt 2  if yk = 0
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6 Detailed Description of the Algorithm

6.1 Numerical Procedure

This subsection contains a step by step breakdown of the details of the algorithm.

Initialization Phase
Comment (Input to this phase are the vectors {w,...,wN} and {ZI,.. ,m} and an error
tolerance e.]

Step 1.

Comment [Choose parameters. Compute nearest integer frequencies {Pk}. Evaluate Fourier
coefficients {Pjk} for each term e-b 2 eiwiz]

Determine n
Compute b and q in terms of the tolerance E
do k= 1, N

Pk = int(2Wk)
do j = -q/2,q/2

Compute Pik according to (39)
end do

end do

Step 2.

Comment [Geometrical preprocessing.]

Set number of subintervals, M = 2n/q.
Compute subinterval length, a = 2r/M, and b = b 47r 2 /a 2 .

do k = 1,M

Construct subintervals Ak and Bk and their center ck.
Construct subset {Xk,..., xk }

end do

Comment [Compute elements Qk of the nk x2q matrix corresponding to each k-th subinterval.]

do k= 1,M
do j = 1,nk

do L = -q,q- 1
Compute Q , according to (63)

end do
end do

end do

End of Initialization Phase

14



Evaluation Phase
Comment [Input to this phase is the vector {al,... aN. .

Step 1.

Comment [Compute Fourier coefficients Oj for e- bZ2 S.,().]

do k = 1,N
do j = -q/2,q/2

0end +j = Ip,+j + Pk
end do

end do

Step 2.

Comment [Evaluate this Fourier Series at equispaced points on [-2r, 21r] using inverse FFT.
Determine subsets of the resulting values according to subinterval.]

Compute T(tj) = Z-, 12 
3k -eiktj/2.

do k= 1,M
Construct subset {T(tq),...,T(tl

end do

Step 3.

Comment [On each subinterval, compute approximations to the series at points for evaluation
in terms of the values at equally spaced points.]

do k = 1,M
do j = 1,nk

end do
end do

End of Evaluation Phase

15



6.2 Complexity Analysis

In this subsection we present the operation counts for each stage of the algorithm.

Step Operation Explanation
Number Count

INITIALIZATION

1 O(N • q) Calculation of nearest integer to each of N frequencies. Fourier
coefficients Pik are computed. There are q of these for each of the
N terms in the original series.

2 O(m . q) Each of m points zi is assigned to a single subinterval Ak. Coef-
ficients Qk1 are computed. There are 2q of these for each of the
m points.

EVALUATION

1 O(N • q) Computation of the Fourier coefficients 0j. Each of the N coeffi-
cients ak contributes to q of these.

2 O(4n log 4n) Inverse FFT to evaluate the approximating Fourier series at 4n
points.

3 O(m- q) Computation of the approximation S(xj) at each of the m points.
Each of these is given by a linear combination of the values at 2q
equally spaced points.

Remark. In the description of the algorithm, n was chosen to be a power of 2. This is not
an essential requirement, but our reason for making such a choice is that step 2 of our scheme
consists of an FFT of size 4n, and the FFT algorithm is most efficient when n is a power of 2.

Adding the operation counts for each step of the algorithm, we obtain the estimates

A.N-q+B.m-q (64)

for the initialization time, and

C. n .logn + D • N .q + E. m q (65)

for the evaluation time where the coefficients A, B, C, D, E depend on the computer system,
language, implementation, etc.

In many cases of practical interest n - N and using the fact that q ,- log(!) the CPU time
estimate for evaluation reduces to the form

C.N. logN + (D .-N + E . m) -log ().66)
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The storage requirements of the algorithm are also an important characteristic. From the
above explanations for the initialization steps the asymptotic storage requirements are of the
form

A -N .q + IL .mq (67)

where once again the coefficients A, t are software- and hardwaxe-dependent.

7 Modifications for Special Cases

In certain cases of interest, the nature of the frequency distribution can be exploited to reduce
the operation count of the algorithm. Here we present informal outlines of such modifications
to the scheme in two particular situations.

7.1 Evaluation of Fourier Series at Arbitrary Points

If the frequencies Wk are all integers, the problem reduces to the evaluation of a Fourier series
on [-irl. We can obtain the values at equally spaced points on this interval by just using
an FFT with 4 points per wavelength and without having to first multiply the series by a
Gaussian bell. This eliminates the first step and roughly halves the required time for the
second step. Although the asymptotic time complexity is unchanged, such a modification
yields an anticipated speedup of a factor of 2.

7.2 Non-Homogeneous Frequency Distributions

The complexity of the algorithm is given in terms not of the number of frequencies, but in
terms of the size, n, of the smallest interval containing all the frequencies. Thus, for some
fixed number N of frequencies, the operation count will be much lower if the frequencies are
clustered together on an interval of size smaller than N than if they are widely spaced on an
interval of size much larger than N.

In some cases the frequencies may be distributed in a highly non-uniform manner, and can
be grouped into widely separated clusters on the real line. We may improve the algorithm's
performance in such cases by treating the series as a sum of separate sub-series, applying the
method to each and adding the results at the end. If a sub-series has 2q or fewer terms, then
we evaluate it directly. We also use the following simple result:

Observation 7.1 Let a, d be real numbers with d > 0 and suppose Wk E [a - d, a + d] for
k =,...,N. Then we can write

N N

L k e wk = es I , eka)W. (68)
k=1 k=i

For the series on the left hand side, n JaI + d whereas for the series on the right hand side,
all the frequencies are in [-d, d], so n d, giving us considerable time savings when jai > d.
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Remark.
This algorithm performs well when

* the frequencies within a cluster are close together

o there are very few clusters

and not so well if

o the frequencies are widely separated

o there are many clusters.

Most cases likely to be encountered in practice fall in the first category.

8 Numerical Results

A FORTRAN implementation of the algorithm of this paper has been written and consists
of two main subroutines, the first implementing the initialization stage, and the second the
evaluation stage.

Our numerical experiments were conducted on the Sun Sparcstation 1 and in this section
we present the results from some of our investigations. The 3 examples below illustrate the
performance of the algorithm when applied to a variety of input data for problems of differ-
ent sizes and different error tolerances. All computations were performed in double precision
arithmetic and in each case the series was evaluated by the direct method for error estimation
and timing comparisons.

A description of the entries in the tables follows, where N is the number of terms in the
series, m is the number of points for evaluation, S=,(xk) denotes the sum (1) evaluated directly
at the point xk and S(xk) denotes our approximation to the sum (1) at the point Xk as evaluated
using the algorithm of this paper.

" E' is the maximum relative error at any point of evaluation defined by:

E00= max I.(:h) - (69)

" E' is the mean relative error defined by:

E l1=-IZ 1 (7o)
m k=1 a

t, is the initialization time for the algorithm

* ,l is the CPU time for the subsequent evaluation stage of the algorithm
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* tdi, is the CPU time for the direct evaluation of the series

* tFFr is the CPU time for a single FFT of size N.

Example 1.
Here we evaluate a Fourier series at non-equally spaced points by choosing frequencies {WA;}
and points {zj} as defined by the formulae:

Wk = k- 1 - N/2 fork= ,...,N (71)

y = -7-COS (m-ir) forj=,...,m72)

and the coefficients {ak} generated randomly on the unit square in the complex plane with
R(ak) E [0, 1], Q(ak) E [0, 1]. The method for such a problem as described in section 7 was
employed in this case. Results of our experiments are presented in Tables 2-4.
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TABLE 2: Numerical Results for Example 1 with e = 10- 2, q =8

N m E E L  +t al tdir tFFT

64 64 0.127 E-03 0.359 E-04 0.02 0.01 0.04 0.002
128 128 0.131 E-03 0.247 E-04 0.06 0.02 0.17 0.004
256 256 0.102 E-03 0.176 E-04 0.10 0.05 0.65 0.009
512 512 0.808 E-04 0.130 E-04 0.22 0.10 2.51 0.021
1024 1024 0.705 E-04 0.950 E-05 0.46 0.20 10.01 0.047
2048 2048 0.556 E-04 0.659 E-05 0.92 0.43 40.03 0.102
4096 4096 0.624 E-04 0.469 E-05 1.81 0.97 160.48 0.219

TABLE 3: Numerical Results for Example 1 with e =10- , q = 16

N m E 00 E l tai al g tdir It FFT

64 64 0.294 E-06 0.523 E-07 0.04 0.02 0.04 0.002
128 128 0.375 E-06 0.421 E-07 0.10 0.04 0.17 0.004
256 256 0.258 E-06 0.198 E-07 0.18 0.06 0.65 0.009
512 512 0.210 E-06 0.192 E-07 0.35 0.14 2.51 0.021
1024 1024 0.144 E-06 0.127 E-07 0.74 0.29 10.01 0.047
2048 2048 0.112 E-06 0.935 E-08 1.47 0.64 40.03 0.102
4096 4096 0.972 E-07 0.629 E-08 2.95 1.41 160.48 0.219

TABLE 4: Numerical Results for Example 1 with e = 10-10, q = 32

N m E0°  E l a__a a_ tdir tFFT

64 64 0.207 E-10 0.190 E-11 0.08 0.03 0.04 0.002
128 128 0.318 E-10 0.298 E-11 0.15 0.05 0.17 0.004
256 256 0.161 E-10 0.112 E-11 0.30 0.11 0.65 0.009
512 512 0.162 E-10 0.808 E-12 0.60 0.22 2.51 0.021
1024 1024 0.920 E-11 0.526 E-12 1.25 0.46 10.01 0.047
2048 2048 0.124 E-10 0.379 E-12 2.63 0.93 40.03 0.102

4096 4096 0.819 E-11 0.292 E-12 5.36 2.13 160.48 0.219

Remark. In this example, direct evaluation of the trigonometric polynomial was performed
via Homer's scheme which can be found in [3] for example.
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Example 2.
In this example, the frequencies {wk} were randomly distributed on the interval [-N/2, NV/2],
the points {xi} randomly distributed on [-7r, 2r] and the coefficients {ak} generated randomly
as before on the unit square in the complex plane with R(ak) E [0, 11, ZI(Cik) E [0, i]. The
results are presented in Tables 5-7.

TABLE 5: Numerical Results for Example 2 with e - 10- 2, q = 8

N m E0 E l  Alg time Dir time
init eval init eval

64 64" 0.280 E-03 0.837 E-04 0.06 0.02 0.15 0.02
128 128 0.295 E-03 0.499 E-04 0.11 0.05 0.51 0.08
256 256 0.247 E-03 0.371 E-04 0.20 0.09 2.33 0.33
512 512 0.127 E-03 0.258 E-04 0.46 0.19 9.29 1.41
1024 1024 0.141 E-03 0.181 E-04 0.83 0.37 44.38
2048 2048 0.137 E-03 0.134 E-04 1.73 0.84 180.51
4096 4096 0.734 E-04 0.916 E-05 3.47 1.71 787.71

TABLE 6: Numerical Results for Example 2 with e = 10- 5 , q = 16

N m EOO E l  Aig time Dir time
init eval init eval

64 64 0.790 E-06 0.134 E-06 0.09 0.03 0.15 0.02
128 128 0.745 E-06 0.997 E-07 0.18 0.05 0.51 0.08
256 256 0.517 E-06 0.454 E-07 0.35 0.11 2.33 0.33
512 512 0.349 E-06 0.336 E-07 0.67 0.23 9.29 1.41
1024 1024 0.397 E-06 0.303 E-07 1.37 0.48 44.38
2048 2048 0.250 E-06 0.180 E-07 2.72 1.10 180.51
4096 4096 0.156 E-06 0.129 E-07 5.39 2.20 787.71

TABLE 7: Numerical Results for Example 2 with e = 10- 1° , q = 32

N m EOO El Alg time Dir time
init eval init eval

64 64 0.436 E-10 0.329 E-11 0.15 0.05 0.15 0.02
128 128 0.397 E-10 0.295 E-11 0.31 0.09 0.51 0.08
256 256 0.388 E-10 0.127 E-11 0.61 0.18 2.33 0.33
512 512 0.266 E-10 0.184 E-11 1.13 0.38 9.29 1.41
1024 1024 0.264 E-10 0.112 E-11 2.32 0.78 44.38
2048 2048 0.185 E-10 0.714 E-12 4.63 1.57 180.51
4096 4096 0.153 E-10 0.488 E-12 9.21 3.03 787.71
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Remark. In order to make a fair comparison of our method with the direct one in this
example, we also split the latter into an initialization stage, in which all the required complex
exponentials are precomputed and stored, and an evaluation stage in which the precomputed
matrix is applied to the set of coefficients {ak}. However, such a formulation requires N • m
storage, and for N, m > 1024 the available memory on the machine is insufficient. For larger
problems, the direct scheme has to compute all exponentials as needed and timings are pre-
sented for such an implementation in these cases.

Example 3.
In this example, the frequencies {wk} were randomly distributed on the interval [-N, -N/2]
for k = 1, N/2 and on [N/2, N] for k = N/2 + 1, N. As in the previous example, the points
{ x3} were randomly distributed on [-r, r] and the coefficients {a} generated randomly on
the unit square R(ak) E [0, 1], Q(ak) E [0,1].

The sums were calculated in two ways: first using the algorithm directly, and then using
the method of section 7, i.e. viewing S,, as a sum of two separate sub-series, applying the
algorithm to each and finally adding the results. Results of these tests are presented in Table
8.

TABLE 8: Numerical Results for Example 3 with e = 10- 2, q = S

N m 1 cluster 2 clusters tdir

_t_ _t_ te t j17i tevalal9  a IQ ala .a

128 256 0.18 0.08 0.30 0.06 1.64
256 512 0.37 0.18 0.48 0.18 6.69
512 1024 0.76 0.35 1.02 0.36 26.29
1024 2048 1.51 0.80 2.16 0.78 101.08

Remark. The timings for the 1 cluster and 2 cluster case are similar in this particular
example.

Example 4.
In this example, the frequencies {wk} were randomly distributed on the interval [-3N/2, -N]
for k = 1,N/2 and on [N, 3N/2] for k = N/2 + 1,N. Once again the points {xj} were
randomly distributed on [-7r, 7r] and the coefficients {ak} generated randomly on the unit
square (Qk) E (0, 1], !a(ak) E (0, 1].

The sums were calculated in two ways as in the previous example. Results of these tests
are presented in Table 9.
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TABLE 9: Numerical Results for Example 4 with e = 10-2 , q = 8

N m 1 cluster 2 clusters tdir

"inst tevml -ns _eal

_____ ___ ala al , ala

128 256 0.25 0.15 0.30 0.06 1.64
256 512 0.50 0.32 0.48 0.18 6.69
512 1024 1.00 0.71 1.02 0.36 26.29
1024 2048 2.00 1.41 2.16 0.78 101.08

Remark. In this example the clusters of frequencies are more widely separated than in
the previous example, and it is advantageous to consider the two sub-series separately in this
case.

The results as presented in the Tables 2-9 lead us to make the following observations:

1. The accuracy of the results is well within the specified tolerance level, C. For larger N, m
the method tends to be slightly more accurate.

2. The break even point of our algorithm with the direct calculation depends on the toler-
ance, but is at roughly N, m = 64 if the initialization time is ignored. If the initialization
time is included, the extrapolated break even point is at N, m Z 32. For N, m = 4096
our scheme is about 400 times faster than the direct method.

3. As expected, the computation time grows slightly more slowly than linearly with the
numbers of terms and points.

4. Evaluation of a Fourier series at an arbitrary set of points is roughly 4 times as expensive
as an FFT of the same size for 4-5 digits of accuracy.

5. In cases when the frequencies can be separated into widely separated clusters, it is often
cheaper computationally to consider the sub-series corresponding to each cluster sepa-
rately.
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9 Generalizations and Conclusions

The results of this paper can be generalized in the following ways:

1. One of the more far-reaching extensions of the method is a version of the algorithm in
higher dimensions. Investigations into this are currently in progress.

2. The Helmholtz equation in 2 dimensions is given by

y2o + ,€2= 0

and has particular solutions of the form

k(x, y) = e e

where p 2 + v 2 
- C2 . Solutions of this equation consist of linear combinations of such

functions subject to some boundary conditions, and the results of this paper admit a
generalization which constitutes a fast Helmholtz solver.

3. Some series of special functions reduce to the form (1) and can thus be rapidly evaluated
using the algorithm of this paper. In addition, a set of interpolation techniques similar
to those used in our scheme may be applied to other orthonormal bases of functions in
place of trigonometric polynomials to give fast algorithms for other integral transforms.

In conclusion, an algorithm has been presented for the rapid evaluation of series of the form
(1). The scheme is based on piecewise trigonometric interpolation of such series, and subsequent
direct evaluation of the resulting trigonometric polynomials. The problem can be viewed as a
generalization of the Discrete Fourier Transform, and the algorithm, while making use of some
simple results from analysis, is very versatile, and has wide-ranging potential applications in
many branches of mathematics, science and engineering.
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