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ABSTRACT

In this report, the progress made on the ribbon (sheet) beams and the

rectangular harmonic gyrotron is presented. A relativistic 3-D electron gun

simulation program, called 3-DTRAJ is completed. A 3-D general numerical

Poisson solvers is included in the program to take into account the

nonuniform electrode boundaries that are common to ribbon beam guns or

that may be required for any other gun structure. A novel computer

technique is developed to generate the complicated 3-D general boundary data

file of the MIG type guns by using a bot-map technique. At the same time, a

theoretical approach to the design of MIG type guns is also undertaken. The

location and the shape of the cathode is determined from the various

conservation equations. Using the laminar flow equations and Harker

synthesis technique, the required anode shapes are then determined. Finally,

the resulting electrode shapes are used in the simulation of the MIG-gun using

the 3-D-TRAJ program. Experimental set-up to test the various MIG type

electron guns and the axially grooved rectangular gyrotron is close to being

completed.
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INTRODUCTION

High power millimeter waves are generated by conventional gyrotrons

at the fundamental cyclotron frequency using an annular beam in a low Q

cylindrical cavity /I/. Since the generated output frequency is directly

proportional to the axial magnetic field, operation of the gyrotron at

millimeter wavelengths require superconducting magnets to produce the

very high magnetic fields.

Because of the quasi relativistic electron motion, the interaction

between the electrons and the electromagnetic fields are also very efficient at

the higher harmonics of the cyclotron frequency. Using a magnetron type

gyromagnetron and a rotating pencil beam, it was suggested that the

efficiency of higher harmonic operation can be further increased /2/. The

power output of this mode of operation is limited by the large space charge

forces present in the rotating pencil beam.

An alternate gyrotron configuration that uses a ribbon beam and an

axially grooved rectangular waveguide, as shown in Figure 1, is proposed by

Ferendeci /3/ with added advantages. Spreading the total current into a

ribbon shaped beam reduces the space charge forces considerably. The use of

the rectangular waveguide also reduces the thermal loading of the waveguide

walls. The efficiency of coupling at the higher harmonics ar also shown to be

very high/4/. Recent numerical simulations of the axially grooved

rectangular gyrotron verify that this interaction efficiency is indeed very

high and the start oscillation current levels at the higher harmonics fall

easily within the levels that are achievable with the present day electron

beams 15/.
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Figure 1. General schematic of the rectangular high
harmonic gyrotron.

Ribbon beams, once successfully generated, will also find applications

in other areas such as the quasi-optical cavity gyrotrons, free electron lasers,

etc.

RIBBON BEAMS

Very elegant numerical synthesis techniques are developed in the

design of cylindrical MIG guns/6,7/. Representing the electron beam by the

temperature limited flow equations/SI, Harker electrode synthesis is used to

determine the electrode structure consistent with the necessary laminar flow
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of electrons/9/. This design procedure allows high power, low velocity spread

electron beams to be generated in the MIG guns. By using the

Herrmannsfeldt's SLAC-226 program/10/, the actual trajectories of the

electrons and the spread in velocities are than calculated using the previously

synthesized electrode geometry. Both the Herrmannsfeldt's code and the

synthesis techniques incorporated in the design of rotating annular beams

use cylindrically symmetric geometries. Although this technique can be used

as an initial step in designing a ribbon beam, it does not predict the actual

beam profile and characteristic of the ribbon beam.

THREE DIMENSIONAL TRAJECTORY (3-D TRAJ) PROGRAM

One of the fundamental difficulties in solving a three dimensional (3-D)

trajectory problem lies in the solution of the Poisson (or Laplace) equation in

three dimensions subject to the proper boundary conditions /11/. If the

program is to be general in application and at the same time user friendly,

provisions should be available in the program to enter any arbitrary shaped

three dimensional boundaries into the program. This should also allow entry

of the specific boundary conditions such as the Drichlett and the Neumann

boundaries. Another important difficulty in the solution of partial differential

equations using finite difference techniques arises from the presence of the

non-uniform mesh points that appear at these boundaries. If a generalized

Poisson solver capable of overcoming the above difficulties is developed,

calculation of the electron trajectories becomes a routine process.
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* B.IELD MAIN BOUNDARY BITMAPDATA PRORAM ATA PROGRAM

IMAC-11

SVALUES %

i ISURFACE

t VELOCITY
t SPREAD

S MAC-11 4
S VAX 4

CRAY

Figure 2. Block diagram of the 3-DTRAJ Program

A generalized finite differences relativistic electron trajectory program

(3-D_TRAJ) is now completed. The block diagram of the program is shown in

Fig.2.

It consists of the following subprograms:

1) Boundary identification (BITMAP)

2) Poisson Solver,

3) Trajectory Solver

BOUNDARY IDENTIFICATION; BIT-MAP

One of the main difficulties in solving Poisson or Laplace equation is the

determination of the fractional distances from the regular mesh points to the

boundary locations.
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x) (1,J+I1,K)

P, dXp (,oKI

(I,- oJK 1 1 JK

(1€,J- IK) z

Figure 3. Fractional distances from the mesh point (ij,k) to

the boundary. For the case shown a2, YI, 0 1 and P2 are

equal to 1.0. c I and Y2 are less than 1.0.

Fig.3 shows the various distances from the mesh point (ij,k) to the

immediate neighboring mesh points. The regular mesh distances in each

direction are hx, hy and hz. For the boundary given in the figure, the regular

mesh points (ij,k-1) and (i+lj,k) fall inside a metal electrode. The

corresponding Laplacian for the mesh point (ij,k) can be written in terms of

the general fractional distances as

Yr

2 + c-1 2 2 2+
hx ( +x P10)1

2 -- [ + 2- +2-h((y1 y2) \ 72 Y 2 2 2
2~ta hY2 'Y
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Here the fractional distances al and o2, Pi and P2 and yi' and Y2 are in

the respective plus and minus x, y and z directions. In the above equation, it is

implied that the potentials include integers (i. j and/or k) if they are not

explicitly written. For the geometry shown in Fig.3, the fractional distances

a2, 71, P I and P2 are equal to 1.0. and ctl and y2 are less than 1.0.

In order to determine the fractional distances, a computer generated

approach using a bit-map technique is used.

.... .... _ ..... ...

Figure 4. Perspective drawing of a typical MIG gun

used to test the numerical code.

Figure 4 shows a typical rectangular gyrotron. It has a cathode, and two

anodes. Fractional distances for electrodes that can be represented by simple

surfaces can be calculated relatively easily. In general, many portions of the

electrodes can not easily be represented by analytical expressions. This

becomes especially difficult when unusual accelerator electrode shapes are

required.
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BOX-B

[/'LX Emitting Surface

BOX-A

III-oY " (a)

X X X

(b)

Y

Figure 5. a) Two boxes of a typical electrode and b) three

representative sections of the corner of the cathode. The

lower cross section is redundant

To calculate the fractional distances, the following procedure is used. A

given electrode is divided into smaller boxes with the requirements that any

cross sectional plane within this box can be approximated by a quadratic

10



equation. Fig.5 shows two adjacent boxes associated with the cathode. In order

to calculate the fractional distances for BOX-A, three representative cross

sections are chosen as shown in Fig.5.b. Only one cross section is required for

BOX-B.

These cross sections are drawn to scale as MacPaint documents on a

Macintosh computer. They are then bit-mapped using a simple program/12/.

Fig.6 shows a typical cross section and the corresponding bit-map for the

upper (boxed) region of a sample plane with more complicated cross section.

Within the chosen accuracy of the bit-map program, once the locations

of the points corresponding to these three plane boundaries are caiculated, a

2'nd order curve fitting passing through the three boundary points at a given

j-plane is used to calculate Ax and Az. Using this data, all Ay's are then

calculated for the given box. The resulting Deltas are stored in a file

DELTAS(DIR,ij,k) where DIR=x,y,z.

All the electrodes of the gun are assigned a number. Each numbered

electrode is also identified with the corresponding potential for that electrode.

The cathode is 5.0 and at 0=0.0 V, The anodes are numbered in such a way that

one can have 10 different electrodes (numbered from 11.0 to 20.0) with

different potentials. (Actually there is no limit to the number of electrodes

one can use in the program). 2.0 is reserved for the Neumann boundary.

Figure 6 shows the A z of the gun at the cathode region at the plane i=40 for

j=l-* 25 and k=l- 30. The (*) represent numbers >10.0.

Once the boundary file is created, the program is either run on Macll

using this data file, or transferred to a VAX or a CRAY for more faster and

efficient calculations.
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1000 00000000FFFFFFFFOI 00

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 OFFFFFFFFFFFFFFO 00 0 0 0 0 0 0 0 0 0
10 00 00 00 00 00 00 0 0FFFFFFFFFFFFFFFFFFFOO0 0 0 000 00
10 00 00O00O00O00O00 0OFFFFFFFFFFFFFFFFFFFFFF80 0 00 0 000 0
10 000 00 00 00 0 00 1FFFFFFFFFFFFFFFFFFFFFFFF8E 00 00 00 00 0
100 00 00 00 00 0 0 01 FFFFFFFFFFFFFFFFFFFFFFFFFOOOO0OO0OO0O
710 00 00 00 00 0 00 OFFFFFFFFFFFFFFFFFFFFFFFFFFFCFO 0 00 00 00 0
810 0 00 0 000 0 0 0 0 OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO 0 00 0 0 0 0 0
8 10 00 00 00 00 000 7IFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCF 0 00 00 00 0

10 100 00 00 00 0 00 OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC 0 00 00 00
10 100 00 00 0 00 0 0 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCO 00 00 00 0
110 0O0O00O0OO0O00O0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEOF 00 00 00 0

13 100 00 00 0 00 0OO7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC 00 00 00 0
14 10 00 00 00 000 1 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE 00 00 00 0
15 100 00 00 00 00 7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 00 00 00 0
16 10 00 00 00 000 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCO 0 00 0 00
17 00 00 0 00 0O0O3FFFFFFFFFFFFFFFFPFFFFFFFFFFFFFFFFFFFFFEO 0 00 00 0
18 00 00 00 0 00 OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO 0 00 0 00
19 0 000 00 0 00 1 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFS 0 00 00 0
20 00 00 00 0 00 7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC 0oO0OO0O
21 00 00 00 0 00 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC 0 00 00 0

1222 0 00 0 00 00 O3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE 0 00 0 00
23 0 00 00 0 00 O7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF 0 00 00 0
24 0 00 00 0 00 1 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO 00 00 0

25 0 00 00 0 00 3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCO 00 0 00
26 0 00 00 0 00 7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFCO 00 00 0
27 00 00 00 0 01 FFFFFFFFFFFi-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEO 0 000 0
28 0O0O 0O00O0O3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFOO0O00O0O
29 00 00 0 00 O7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFO 00 0 00
3 0 0O0OO0O00O0OFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8 0O00O0O

Figure 6. A scaled cross section of a typical electrode and b) bit-

mapped output of the boxed section.
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*********** 000000000000000
********---------

*********** 00C000000000007k

***** ******0C0 000- I

*********** 0C0000000000-00,
.44 4 4 4 . . . . .( . .C

**** *******0000000 )11)0

44-4-44444- -- -- - V) Ifl In
*44444444 0000000000l'-00010

**********00000000000000.V

4 *** 4 4 4 4Ifl OOO OOO .0000M'

4 **44* 0000000000000000(n

**44** N00000C0000*00000-

44 *4 4 ---------------------- 100000l~~f
4 *4*4444 000000000000000000

4444444- ---------------- n V) V) V)l~f
44444444 000000 ;;;;;0000000

4444444 O00000O00000000000O00

44 * 44----------------Inn0nfln0f0f

*******0000oo0000000000000o
44 4 4-------------------- IAnnIAnoooo

444440000000000000000000In

* 44 C*000 00O0000 000000000n

44*4---------------- nonno oon oon
*****00000000000000000000v

****0000000000000000000N
44*----------------IooAAnVnoonwnn

*4***000000000000000000000-

4*4 4 0000 00 0000'00O0000400000

* * * 4--------------------I
***000000000-000000000000W

**In0000000o 0000000000000r-

**000000000000000000000000

0*0;000000000'00000000000000vI

04 000000000000000000000000m

*0004000 00000 nOOnfOnn~~nn~~nnN

* 0000000I0000000 00000 000'

cc V) U) V)nn ~ V) n~~ n n~
4'000 N00000 00V0(40 0 0 00 W(N.JV)qVC

w
0

Figure 6. Az's of a typical DELTAS(DIR.NXMAX,NYMAX.NZMAX)

file at (1=40).

13



MAGNETIC FIELD DATA

Magnetic field data can be inputted in various ways:

a) Constant Bz,

b) Increasing Bz ,

c) Data from a File,

d) Calculate B from Biot-Savart Law,

e) Calculate B through elliptic integrals.

In cases c- e above, there is also a subprogram to Convert the magnetic

field data from Cylindrical (Br,Bz) to Rectangular (Bx,By,Bz) components. The

coordinate center of a magnetic field data can be adjusted with respect to the

gyrotron axis by specifying the distances xc and yc as shown in Fig.7. This is

necessary to take into account the displacements of the electrons due to the

drift at the cathode region.

YY

0 [ 

Xg

Figure 7. The location of the Magnetic field coil can be

changed with respect to the gyrotron coordinate system.
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MAIN PROGRAM

Once the boundary file is created and the magnetic field data is

generated, the main program takes over as shown in the Block diagram of

Fig.2.

First, Laplace equation is solved by setting the right hand side of the

Poisson equation to zero. An over-relaxation method is used for the iteration

solution of the Poisson equation. Either a minimum residue is set or, for the

initial calculations, a maximum number of iterations is chosen. At the

conclusion of the Laplace solution, there is an option to plot the equipotential

lines in two dimensions. Any errors in the fractional distances, i.e., file

DELTAS, show as unusual potential values in the vicinity of the error points. A

three dimensional equipotential profile with correct calculated fractional

distances is shown in Fig.8.

Once the potential data is found to be satisfactory, the solution continues

with the location of the emitting surface and calculation of the initial

velocities of the beamlets. The maximum number of rays can be set at 1000 but

this requires extensive memory space and at the same time slows down the

execution time. To prevent this, the maximum number of rays is limited to

300 in the development of the program.

Next, the trajectory calculations using a fourth order Runga-Kutta

method is initiated. After a calculation is made for a ray, the charge

corresponding for that ray at that point is stored in the neighboring mesh

points in proportion to their distances from the location of the charge. During

the trajectory run, the electron trajectories are also plotted in any chosen

plane. Once the program debugging is completed, these plotting routines can

15



be omitted to increase the execution time. Figure 9 shows typical trajectory

plots at the (x,y), (y,z) and (x,z) planes.

After the initial iteration process described above, the Poisson equation

is solved next this time taking into account the charge stored at each mesh

point during the previous trajectory calculation. Initial conditions for each

ray are then recalculated and the new trajectory calculations are made using

the new potentials. "Poisson+initial conditions+trajectories" constitute one

iteration for the main loop in Fig.2. The total number of main-iterations can be

set during the initial program data input.

43000
37000

5000

Figure 8 Three dimensional plot of the equipotential surfaces
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zz

Figure 9. The trajectory plots after an iteration in (y,x), (z,x)

and (z,y) planes.
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Figure 10.a. Sample plot of axial velocity distribution of

electrons (# of rays=100). The average vz and ±10% vz are

indicated in the figure.

U PERPENOICULAR

15.00-
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UI1

* 10.00E
R

0

5.00-

.o

0. 1700

Figure 10.b. Sample plot of perpendicular velocity

distribution of electrons (# of rays=100). The average vj.

and ±10% v1. are indicated in the figure.
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The final results contain various useful data. In addition to the current

per each ray, the perveance of the gun, the final axial and perpendicular

velocities and their final x,y,z locations for each ray can be stored in a file.

One can also calculate the distribution of the final axial and perpendicular

velocities and display them in graphical form as shown in Fig.lO.a and b. :t10%

deviations from the average velocities are also shown in the same figures to

indicate the extent of the velocity spread of the electrons.

In its present from, the 3-DTRAJ program can:

a) Solve Laplace or Poisson equation with arbitrary electrode

geometries.

b) Calculate trajectories of relativistic electrons,

c) Calculate the perveance of the gun, and

d) Can use any type of magnetic field data

At its present form, the program does not:

a) Include self-magnetic fields,

b) Check for beam crossings and

c) Include thermal effects.

One of the limiting aspects of the program is the choice of the

number of mesh points which critically depend on the RAM memory space

available for storing the various array information. For a choice of

NXMAX=80, NYMAX=40 and NZMAX=90 mesh points, the following arrays are

needed:

DELTAS(3,80,40,90)

POT(80,40,90)

RAYS-INFO(9,300)

BFIELD(3,19,19,50)

19



For single precision and 2'nd order curve fitting, to run the program

with these arrays, - 5.0 Mb of RAM memory is required. The accuracy of the

program can be increased by

- Increasing the number of mesh points.

- Using double precision

- Using higher order Runga-Kutta and

- Using higher order curve fitting

at the expense of increasing the execution time and the memory requirements

of the computer.

GUN DESIGN

Gun design for a ribbon (sheet) beam to be used in an axially grooved

rectangular gyrotron has more stringent requirements compared to other

gyrotrons, such as the quasi-optical gyrotron which also requires a sheet

beam for more efficient operation. As shown in Fig.1 1, the ideal height h of

the electron beam at the gyrotron location should be equal to 2pL. But, because

of the extended height L z of the cathode, the thickness of the rotating c-beam

becomes greater than 2pL as the beam enters the interaction region of the

gyrotron.

The beam requirements can be summarized as follows:

i) the thickness h of the beam should not exceed the cavity height b,

ii) the cross section of the beam should be as close to a rectangular

shape as possible to prevent beam interception by the cavity walls and,

iii) beam should have minimum spread in perpendicular velocity as it

enters the interaction region for maximum efficiency.

20
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Figure 11. (x,y) projection of the MIG gun for generating ribbon beams.

Since the electron; originate from different geometrical locations at the

cathode, their origin of emission should be such that they end up within the

gyrotron interaction region and not intercepted by the walls. Respective

beams, a originating from the top left comer and e originating from the

right lower comer of the cathode, should end up at the upper left and lower

right corners of the gyrotron. The initial electron guiding center

displacements should also be taken into account. The actual magnetic field

lines that the electrons are expected to follow will not coincide with field lines

at their origins of emission but will be displaced by their respective electron

Larmor radii.

21



The spread in v. as shown in Fig.10.b for a flat cathode has +30% spread

in vj. which will not be acceptable for the efficient operation of the gyrotron.

Thus the gun design should produce minimal spread in this velocity.

In order to satisfy the above requirements, a novel design approach is

used to find the proper electrode shapes for a rectangular version of a MIG

gun to produce an acceptable rotating sheet beam. Because of the electrode

configuration of the gyrotron and the magnetic field used in realizing this

gyrotron, both rectangular and cylindrical coordinates are carefully

incorporated into the design procedure. The procedure also requires, as a

priori knowledge, the spatial variation of the d.c. magnetic field produced by

the actual solenoidal coil that is used in the experiment.

Fig.11 shows the projections of the cathode and the gyrotron at the (xy)

plane. The ideal location of the emitting surface has to be found in such a way

that all the electrons entering the interaction region will all have the same vj

as well as the same velocity ratio a=v.L/vz.

In the design of the gun, following equations are used /13/:

i) From the conservation of conanical momentum

Bcy== Bgyg (1)

2) Larmor radius at the cathode

PL= rE (2)

3) Velocity ratio

6X( g )12 (3)
Bc)

Here Bc = magnetic field at the cathode

22



Bg = magnetic field at the gyrotron

c= guiding center at the cathode

yg = guiding center at the gyrotron

E= electric field at the cathode

Vo - final accelerating voltage.

The maximum drift is assumed to occur at the cathode and thus, the

electrons emitted at the cathode are assumed to follow the magnetic field lines

shifted by the Larmor radii of the electrons with respect to their origins of

emission. The cathode electric field Ec is also be assumed to be known.

y

d

Bz Yg

Bg

BC

zZgZ

Figure 12. The (y,z) plane of the gun and the location of the

corresponding parameters.

The magnetic fields generated by a conventional solenoidal coil has

cylindrical symmetry. For a given electron guiding center yg at the gyrotron,

the corresponding magnetic field Bg at the same location is found from the

magnetic field data by using a simple computer program. For a compression

23



ratio a (1.3 for the sample design) and a final accelerating potential of Vo , the

cathode magnetic field necessary to give this compression ratio is found by

calculating the ratio (BgiBc) from Eq.3. Then using Eq.1, Yc is calculated.

y

X

Emitin Surface

• "', rtron -

Electro-magnet

Figure 13. Emitting surface for Vo=80) kV and a= 1.3.

The magnetic field data is then scanned at the plane Yc. The

corresponding axial distance zc where the magnetic field is equal to Bc is found

24



(Fig.12). The actual emitted surface is then found by translating the guiding

center by the Larmor radius of the electron at the cathode using Eq.2.

In principle, this procedure is repeated for the number of electron

beamlets by incrementing the electron guiding center locations at the

gyrotron. To save calculational time, only representative electron beamlets in

the planes a, c and e are used in the final cathode surface plot given in Fig.13.

Voltage Contours: u=1.1 and u=-1.1
only 16 "", Mt U604 29-O

4

2-

-21-4 -3 -2 -!0!2 3 4
z wMS =P V

NNIO0 INW9=120 N4OO
R,-2.0 m j-.W ,4&D MGM* E,-4LO Wh/e

B-450 8 r-&7136 &P4

Figure 14. Potential profile at the plane c for the rectangular

MIG gun for Ec= 8 kV/cm and J-4 A/cm 2, Rc=2.0 cm. Range is

limited for small Rc.
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Voltage Contours: u=1.2 and u=-1.2

Ay S6 "M reed, 3,-0

3-

2-

NP-1000 1Mro=14o -. 01

R-4.0 oem -25 j-4.0 A/a E.-.O kV/me
B.-450 S r-o.71M P-o.o0687

Figure 15. Potential profiles at the plane c for the rectangular

MIG gun for Ec= 8 kV/cm and J=4 A/cm2 , Rc=4.0 cm.

The next step is to find the corresponding anode electrode shapes which

will produce the assumed electric field at the cathode, but at the same time

produce the necessary electron flow conditions for the beam. For the

combination of the cylindrically symmetric magnetic field and the

rectangular gun geometry, no electrode synthesis technique is available at

present. Harker type synthesis technique, developed for the cylindrically

symmetric MIG guns, can not be used for the given geometry because of the

26



resulting angular component E9 of Ec. But at the plane c, the electric field is

purely radial and to a first order approximation, the gun can be synthesized at

this plane using the Harker synthesis technique. A computer program

following Ref.(6, 7) is written to simulate the gun at this plane. The results of

this simulation are shown in Fig. 14 &15. For the low magnetic fields used in

the design of the gun (Bg=0.5 Tesla), the range of the useful solution becomes

limited for high cathode electric fields and high current densities. Reducing

E c allows increase in the corresponding range of the applicable

equipotentials.

EXPERIMENT

An experiment set-up to test the ribbon beam and the rectangular

gyrotron is close to being completed. For the initial experiments, special

planar cathodes as shown in Fig.16.a are obtained from Spectra-Mat, Inc. They

are rated at 10 A of total current and their emitting areas are 2 mm by 20 mm.

The cathode electrode is at present is being machined The cathode will be

inserted in a slot machined through the cathode electrode at the proper angle

as shown in Fig.16.b. Once the system is evacuated, the cathode will be

activated and initial runs will be carried out.

The general gyrotron experimental set-up is shown in Fig.17. A Vac-

Ion vacuum pump and stainless steel tubing with Con-Flat flanges are used.

The roughing pump is a cryogenic Vac-Sorb pump. The system is capable of

producing pressures less than 10-8 Torr.
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Figure 16. a) the cathode and the heater assembly and b)

location of emitting element in the cathode electrode.
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Figure 18. Essential components of the pulse circuit for the gyrotron
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A high voltage pulse generator capable of producing 80 kV pulse with

0.1 lpsec rise time, 3 Isec pulse duration, repetition rate of 4 pps and a current

range of 2-40 A is designed (Fig.18). The circuit is similar to the MIT design

/14/ and the pulse transformer containing the bifilar winding is

manufactured by Stangenes, Inc., CA.

PUBLICATIONS

Various papers on the design of the MIG-gun and on the development of

3-DTRAJ program are presented at the International Conferences on

Infrared and Millimeter Waves and APS Plasma Physics Conference. Copies of

the abstracts presented in these conferences are attached as an appendix. Two

Masters Thesis are completed, One, related to the 3-D Pierce type gun (Student:

Djamal Sulimani 115/), is completed in December of 1987. A second Master's

thesis (Student: Ammar Darkazanli /16/) related to the generalized Poisson

solver and the MIG gun is also completed in April, 1988. A Ph.D. student, Kurt

Ericksen is at present involved with the experimental and theoretical parts of

the research work at UC.

A paper entitled "Numerical Solution of Laplace Equation in Three

Dimensions for a Pierce type Electron Gun" is already published in Computers

& Electrical Engineering, Vol.15, No.3/4, pp.97-105 (1989). A Two additional

papers, one on "3-DTRAJ computer Program" and the other on the

"Resonant Modes of An Axially Grooved Rectangular Cavity" are being

prepared and will be submitted shortly for publication

As a result of accepting a new position at the Electrical and Computer

Engineering Department of the University of Cincinnati, progress in the

research project was initially slowed down considerably during the 1988-1989
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academic year. But now with the addition of Kurt Ericksen into the program,

the research project is moving along in an accelerated pace.

CONCLUSIONS

Most of the work done previously was concentrated on the design of

rectangular versions of the MIG gun. Various numerical programs have now

been developed to simulate such a gun. A general three dimensional

relativistic electron trajectory program called 3-DTRAJ is now completed.

This program, which can be thought of as a three dimensional extension of

Herrmannsfeldt's SLAC-260 program, is capable of solving Poisson equation

with arbitrary geometries. Certain programs run using this program indicate

that ribbon (sheet) beam gun designs based on Hernnannsfeldt's cylindrically

symmetric code introduces considerable velocity spread in the actual electron

velocities.

Although the experimental progress has been slowed down due to the

change in position from Case Western Reserve University to the University of

Cincinnati, the gap is now closed due to the availability of better equipment

and facilities at the University of Cincinnati.
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Design of a modified three dimensional MIG gun to produce energetic

rotating electron ribbon beams are presented. Two dimensional synthesis

technique is used to find the best possible electrode configuration in the

central plane. The gun is simulated using a 3-D numerical code that has been

developed to take into account the possible electrode geometries that are

encountered in such guns. Compression of the beam in one dimensions shows

marked improvements over compression in two dimensions which pose

certain restrictions on the performance of the gun. A gun is being

constructed to test the results.
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NUMERICAL SOLUTION OF LAPLACE EQUATION IN
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ELECTRON GUN
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Alr-act-ln this paper, as part of a three-dimensional ribbon beam gun design, Laplace equation is solved
in 3D for the case of boundaries which can be represented as simple surfaces which are subjected to
specified voltages. Curve fitting by the least squares method is used to characterize the accelerator electrode
shape as an extension of the ID laminar electron flow in a Pierce type electron gun. The method involves
solution of governing equations by an iterative finite difference technique. Modification of the standard
Leibmann procedure is used to greatly increase the rapidity of convergence. The technique of handling
irregular boundary points is considered in detail.

INTRODUCTION

Analytical solution of the Poisson equation, possible under very restricted simple cases, generally
involves applying the necessary boundary conditions as well as specifying the electrical charge
through proper flow equations. Two-dimensional solutions can be obtained provided there are
simple metallic boundaries and uniform charge. As the geometry becomes complicated, complexity
of the analytical solutions increases in proportion and sometimes even becomes impossible. On the
other hand, electrical characteristics of many electron devices are based on solution of the Poisson
equation. One of the major difficulties associated with that task is the specification of boundary
conditions appropriate to the problem. Only for simple geometries. Neumann boundary conditions
can be relatively easily incorporated into the numerical solution of the problem.

Numerical techniques may be used to overcome some of the difficulties associated with the
analytical methods. A finite difference or finite element technique may be used in the numerical
solution of the problem. In either case, proper boundary identification is required, and the relative
distances from the boundary points to the regular mesh points or the vertices of the triangles must
be known before the main program can be carried out.

In designing an electron gun, it is necessary to determine the proper electrode shapes so that the
resulting electron beam will have such desired characteristics as laminar flow or space charge
limited operation. Elegant synthesis techniques have been developed to find the required electrode
shapes possessing cylindrical symmetry (I]. With these techniques, Magnetron Injection Guns
(MIG) have been successfully designed and tested (2]. Before the gun is actually built, it is simulated
using a numerical code to verify the validity of the desired gun parameters (3].

Rotating electron ribbon beams are needed for realization of an axially grooved rectangular
gyrotron operating at the higher harmonics of the cyclotron frequency [4] and the quasi-optical
gyrotron [5). These beams require three-dimensional solution of the Poisson (or Laplace) equation
for the simulation of electron trajectories.

The model of the electron gun used in this study is the 3-D adaptation of the modified Pierce
electron gun (MPEG), which contains four essential components as shown in Fig. I [6]. Electrode

"Present address: Seflane W de Batna, Algeria.
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S"Fig. 1. General schematic of a 3D Pierce gun. (1) Focusing electrode, (2) acelerating electrode, (3) kicker
electrodes and (4) interaction region.

No. I consists of a flat (or curved) cathode having a height of 2/% and a width of 2w0 . The
surrounding focus electrodes are made up of two inclined planes and two half cones, all at the same
zero potential. The planes and the half cones make an angle 2 with the z axis. This angle is
considered a variable in the design of the gun. Electrode No. 2 consists of a metallic accelerating
plate that has a special curvature to maintain laminar electron flow of the electrons. It also contains
an opening (an aperture) allowing the electrons to flow through to the interaction region.

The No. 3 electrodes, called "kicker electrodes," consist of two straight plates and are separated
by a distance of 2ho to form a window at the center. Each of these electrodes is subjected to a
different potential which produces an electric field giving an initial kick to the electrons in the
transverse plane so that they can initiate rotational motion. If there is an increasing magnetic field
beyond the kicker electrodes, the perpendicular energy of the electrons increases and their orbits
get smaller, finally reaching their intended orbits before entering the interaction region. In the
problem considered here, the interaction region is replaced by the flat electrode No. 4, which is
used as a collector for the electrons. Figure 2 shows the projections of the pertinent distances and
parameters of the gun. The outer edges of electrodes Nos 2, 3 and 4 have the same circular shape
as of the focus electrodes and are independent of the z coordinate. Thus the Neumann boundaries
become a two-dimensional problem for the given geometry.

ACCELERATOR ELECTRODES IN RECTANGULAR
COORDINATES

A finite difference technique is used in the simulation of the electron gun. In solving Poisson
equation in 3D, boundary identification is a priority. By using a synthesis technique. appropriate
electrode shapes can be found so that the resulting structure will satisfy the requirements for the
proper operation of the device. In general, because of the occurrence of irregular boundaries, one
must also determine the distances between tiese boundary points and the regular mesh points. To
accomplish this, it is necessary to establish the precise shapes and the location of metallic
boundaries where potentials are applied. This can be done relatively easily, provided the surfaces
are simple and they can be represented by analytical equations.

The electrode shapes for the focusing and the accelerating electrodes are found from the
extension of the analysis based on the one-dimensional Pierce gun [7]. In this model, two infinitely
long parallel plates are separated by a distance "d." Electrons are emitted from one of the electrodes
and move toward the second electrode under the application of an accelerating potential V0. When
the resulting equations of motion of the electrons are solved with the help of the Maxwell and
energy conservation equations, the potential, charge and velocity variation as a function of the
distance x is found. In particular, the potential varies as F(x) = Ax"3 . The problem can then be
reduced to a finite geometry if a set of electrode shapes is found so that the potential variation
at the boundary of the finite beam is the same as the potential variation of the infinitely large beam.
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( b
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Fig. 2. Cross sectional diagrams and the coresponding parameters used in the program. Cross sections:
(a) AA. and (b) BB. Interaction region (No. 4 in Fig. 1) is replaced by a flat plate.

This synthesis procedure is carried out by means of conformal transformation

W - AZ"Y (I)

where W = u +jv and Z - x +jy are complex numbers

W - (u +"f) - (x +jy) 3 = r 3 ej' 3 . (2)

It is clear that at y -0, the real part of W isM - X (3) ",. :

and is the same as the required potential. Furthermore, we see that aw/az exists and is unique except
at: -, 0.

Thus u is a suitable potential function for this problem. The real part of equation (2) gives the
potential distribution. Equipotentials are found by setting u equal to a constant V. where V0 is an
arbitrary potential assigned to an equipotential surface. Consequently equation (2) gives

V 4-) Cos ( (4)

Setting VO - 0, the angle 9 is found to be 67. This is the angle a that the two flat plates attached
to the cathode make with the horizontal axis as shown in Fig. 2.

To find the shape of the accelerating electrode, equation (4) is solved for r

'4 O" ( S ) .'

Cos 34 ".1

For various values of 9. corresponding values of r can be found.

. ...........
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In finding the equation of the electrodes in an analytical form y =f(x), equation (5) is too
complex to transform it into rectangular coordinates. To surmount this problem, curve fitting by
the method of least squares is adapted. Equation (5) is solved for x and y in terms of the angle
0, and for different values of angle 0, corresponding x and y are found. The resulting points are
represented by a function of the form

y = G(x) = a, (x - x®)2 (6)
where x0o, at and a, are real numbers, and voo can be found by setting the angle 0 equal to zero
in equation (5).

Using the least squares method, the spatial dependence of the accelerator electrodes can be
written in the following form

G(x) = 8.813(x - 9.457)51 .  (7)

* - .. To find the equation for the two conical plates, it will be assumed that they have the same
inclination angle a as the two flat focusing plates above and below the cathode. The equation for
a general cone with the origin shifted to Yo and -z 0 can be written as

X, (Y-Yo) 2  (z+zo) (8)
a6+ b01 + 0

where ao, bo and co are constants. For a cone of semicircular shape (Fig. 2)

Z0 = tn-- ' (a)

co = L cos a + zo, (b)
and

R, = att - b0 = co tan r = (L cos a + zo) tan a. (c) (9)

It should be emphasized that for the present analysis, the semicircular edges of the accelerator
and the kicker electrodes have the same circular arc as the two ends of the focusing cone electrodes.
Note that in the program, provisions are made so that, if necessary, all the electrode parameters,
including the angle a, can be changed.

FINITE DIFFERENCE EQUATIONS IN 3D FOR DIFFERENT
MESH SIZES

The finite difference method is sufficiently well known in two dimensions [8], and little is
necessary to extend it to three dimensions. There are two main categories of boundaries to be

.. considered, namely regular and irregular.

Regular boundary conditions

The potential at a point in space can be found by the potentials surrounding that point. In three
dimensions and with different mesh sizes of h., hy and h, (Fig. 3(a)], the central potential, including
the charge density p, can be written as

to(x' YZ)" k'"'z-. -- I.. hlh'[o(x" + h,,y, z) +o(x - h,,y,.-)]

*hzh2[O(x, y+ + h,) + O(x, y - h,, z)y

+hh[to(x,y,.: + h)+O(x, y, z - h:)] Eh hshh(0

This is called the 7-point finite-difference equation in 3D for regular boundary. For the special
' case when h, - h, = h: - h and p - 0, it reduces to the following simple, well known form

tO(x, y, )..[tO(x + h,.y, :) + tO(x - h, y, + O(x, y + h. -) + tO(x, y - h,,:)

+0o(x'y'z+h)+0o(x'y'z-h)]. (11)
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Fig. 3. (a) Regular boundry and (b) irregular boundary points used to calculate the potentials. A, B -
and/or C may lie on a metallic boundary. a, b, and c are, respectively, the tractional distances from the

regular mesh point at 0 to the boundary points A. B and C.

•rregular. boundary conditions

Charge is usually present at the central regions of the gun where regular boundary points apply.
Near the metallic boundaries, p can be set to zero without changing the character of the problem.
Given boundary conditions of the Dirichlet type, the potential is known along the curved boundary.
on which points A, B and C lie. For simplicity, the subscript notation will be temporarily omitted,
and the relevant interior grid points will be labeled as 0, 1, 2 and 3 as indicated in Fig. 3(b). Using
partial expansion and combining the terms, the potential at the central point can be written as

*(~~)abc F h2h2  h2h2  h2h2

c '" ch -hX "Jr

____ h2h2  hh *2 (12
+ a(a+l)I" b(b+l) c(c+l) " . .

Here a, b and c are the fractional numbers in the x, y and z directions, respectively, and need to
be evaluated for each irregular point.

NMeumann boundary conditions
Neumann boundary conditions occur in the case of gaps between electrodes. Fortunately for the

pr oblem considered here, the distances between the edges of the different electrodes fail on simple :
planes. At the top and bottom they are flat planes, and at the edges they are circular, but in both
csstheir boundary lines are equidistant from each other. For the straight portions of the space
between the edges of the plates, Neumann boundary conditions, i.e. the zero normal derivative of
the potential, can easily be taken care of in the program. This is done by equating the potentiala igt the boundary to the neighboring interior n points se points lie in the direction of the
neormal to the boundary surface. ..o.

An interesting difficulty is encountered when mesh points lie close to the curved boundaries as
rhown in Fig. 4(a). For example, in considering point A, the finite difference expression includes
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a

(i. j-1. k) D(i. j. k)

(W. jBoundary

y
(a)

Kn

dmin

A Boundary

(b)

Fig. 4. Neumann boundary over an open ended curve. (a) Potential at D is extrapolated from potentials
at B and C. (b) Normal a is located by finding the minimum distance from the mesh point A to the

boundary curve.

points E and F. Now, however, no such boundary values are available. Fortunately, because of
the given geometry of the probem, the Neumann boundaries can still be treated as a two-dimen-
sional case. One way of doing this has been presented by Fox [91. Irregular points can be handled
by deriving special triangular finite difference equations. Using linear interpolation and introducing
point D as in Fig. 4(a), the potential at D can be written as

BD@o =@s +( c -4 ) (13)

or

DC BD@o = ' 4. + - @c.(14)

Also, to the same approximation

tn A AD
The Neumann boundaries represent gaps between surfaces that must be chosen so that the

normal component of the field is zero. Hence

*A 0- (16)

Substituting equation (16) into (14) results in

DC BD
OQk)- 0ij- 1, k) +700i- 1,jk). (17)
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Now the problem is to eliminate the parameters DC and BD. Using the law of sines and referring
to Fig. 4(b), one can write

BD BA BA . .. "

sinU sin, sin - - sinf+cosp

where P is the angle that the normal vector m makes with the y axis. BA and BC are set to one.
After some mathematical manipulations, one obtains

!(,, )tang
(i~J, k) - I (ij - I, k) + + tan 0(i - Ij, k), (18)

1 -+-tan# I tn

which represents a triangular finite difference equation for the general 2D Neumann problem for
equal mesh points.

In this case, tan P can be calculated [see Fig. 4(b)] from
tan (- 19)

where d.,. is the shortest distance from the mesh point A to the boundary and x.i. is the minimum
distance from the x-location of point A to the intersection of normal with the tangent on the
boundary.

NUMERICAL SOLUTION AND RESULTS

The geometry of the problem is a set of curved planes which intersect with the x, y and z axes
and produce fractions of the grid points a, b and c. Each fraction can be less than or equal to one
unit. Before solving the equations, these fractional distances are calculated for all the mesh points.
Only those that lie close to the boundary points will have fractional values. The results are stored
in a file and called back when needed in the main program.

The general approach is then to perform iterations over all grid points, starting from the nearest
nonzero potentials and moving toward the interior points using the appropriate finite-difference
approximation and successive over relaxation (SOR) method. The main objective of the relaxation
method is to relax the largest residual as close to zero as possible by changing the corresponding
nodal potentials by proper amounts. For a 3D system, it is necessary to change the nodal potentials
by one-sixth of the change effected in the residual [10].

To make the most effective use of SOR, it is important to use the optimum value of Wo where
w is a convergence factor determining the degree of control over the rate of convergence. The value
of c is dependent in a complex manner upon the boundary shape, boundary conditions and number
of nodes, so that its theoretical evaluation [Il is extremely difficult and indeed is possible only for
a few simple boundary shapes (12-14]. Since the boundaries in the present problem are also
extremely complicated, it is not theoretically possible to evaluate the optimum value of the
convergence factor.

In the present program, optimum convergence factor w in the range 1-2 was tried [151. As co
is varied, beginning with 1.0, each time the program is run, the number of iterations is recorded
to reach a specified minimum residual. In case the results converge too slowly, the calculation is
stopped, co is increased by a fraction and calculation is restarted. The best choice is the value of
(o that leads to a minimum number of iterations. In the present program, co = 1.75 reduced the
number of iterations from 332 to 57 for a residue of 0.001.

Throughout this study, potential distribution 0(x, y, z) in the interior regions of a 3D EG has
been simulated by a computer. The parameters used in the sample calculations are given in Table
I. Equipotential lines have been plotted on a Tektronik 4110 plotting terminal. Some of these
equipotential lines are shown in Figs 5-7 at different planes. The validity of the resulting solutions
is tested by the numerical print-out of the potential values and by visual inspection of the plots.
In the present electron gun design, all the dimensions of the gun, as well as the distances, including
the inclination angle 2, are considered variables. By varying especially the angle 2 around design

CAll| 19-14-
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Table I

%arameter Vej

2k 5.0 MM
2 we 45.0 mm

di ~ 10.7 MM
d2. 7.0 ymu

d) ~ 20.0 mm
V, 0.0 v

20.0 kV

V)L. 2.0kv Fg
_____0_0_____Fig. 5. Equipotential fines at y -0 in the (x,:x) plan.

angle of 670. one can automatically change other parameters of the focus and the accelerating
electrodes to allow for fine-tuning of the fields and eventually, well focused electron ribbon beams.

CONCLUSION

In this paper, the problem of non-symmetry was handled by solving Laplace equation in 3D
subject to specified boundary values of voltages on electrodes and normal fields on open curves.
Curve fitting by the least squares method has been use to determine the precise accelerator electrode

____________________ - .Fig. 7. Equipotential lines at (x. y) plane close to the left ofthe accelersting electrode. The fringing in the middle is due
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shapes needed to produce a laminar electron flow in the gun. A program has been developed which
,as coded in FORTRAN 77 to run in a VAX computer, and successful results have been obtained. -

The program can be extended without major modification to solve Poisson equation in 3D). Since
the charge is confined to the interior regions of the gun, inclusion of charge will affect only equation
(10). If the equations of motion and the space charge forces between electrons are included as well,
omplete gun design can be accomplished. For a given geometry, calculation of the electron

.rajectories will provide new fields to be substituted back into the trajectory equations. After a few
iterations, the complete set of electron trajectories can be determined. The plot of these trajectories
uill indicate the nature of the electron flow, their distribution and the spread in their velocities.
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