
DTIC FILE COPY

O0

N First Year End Report for
0') Perception for Outdoor Navigation

Charles Thorpe and Takeo Kanade

CMU-RI-TR-90-23

SFCTE The Robotics Institute
MAR 14 1 Carnegie Mellon University

AR 1t41991 tsburg Pennsylvania 15213

.D November 1990

a 1990 canee Mellon Univaity

Reseuh sWored by DARPA, DOD, monhud by die US Army Ang Topogrqhk Labom es under
contract DACA 7649-C-0014, tidled ?erceptio for Outdoor Navipio.

APprovs3l to; p."':

.71 31/ o'9.

Form ApprovedREPORT DOCUMENTATION PAGE O MB No. 0704-0188

"Khi reporting burden for this collectioni of inform~atiOn is eltated to average i hour Per fesponse. including the time for reviewing instructions. searching existing atis sources.
gahiand maintaining the diatas needed. and comoweings and reviewing the collection Of IIOrMation Send commffefnts regarding this burden estimate or anv other aspect of this
colcinof information.micluding suggestions for reducing this burden, to Washington Hemacuarters, Services. Directorate for information operations and Reports. 12 i5 ietrson

Oavis mighway. Suite I1204. Arlington.VA 22202-4302. and to the office of Management and Budget. Paperworkc Reduction Project (0704-018). Washington, DC 20503.

1. AGENCY USE ONLY (Leave bjlank) I2. REPORT DATE I3. REPORT TYPE AND DATES COVERED
November 1990 Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

First Year End Report for Perception for Outdoor Navigation

6. AUTHOR(S)

Charles Thorpe and Takeo Kanade

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

The Robotics Institute
Carngie Mellon University CMU-RI-TR-90-23
Pittsburgh, PA 15213

9. SPONSORING; MONITORING AGENCY NAME(S) AND AODRESSRES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

DARPA DACA 7&-89-C-0014

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAiLABILITY STATEMENT j12b. DISTRIBUTION CODE

Approved for public releas;
Distribution unlimiited

13. ABSTRACT -MBaxrumiC~woras)

This report reviews progress at Carnegie Mellon from August 16, 1989 to August 15, 1990 on research sponsored by
DARPA, DoD, monitored by the U.S. Army Engineer Topographic Laboratories wnder contract DACA 76-89-C-0014,
title "Perception for Outdoor Navigation.-

Research supported by this contract includes perception for road following, twnain mapping for off-road navigation, and
systems software for building integrated mobile robots. We overview our efforts for the year, and list our publications
and personnel, then provide further detail on several of our subprojects.

14. SUBJECT TERMS 15 NUMBER OF PAGES
94 D

16. PRICE CODE

17. SECURITY CLASSIFICATION 8. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACTI
OF REPORT I OF THIS PAGE I OF ABSTRACT

unlimited unlimited I unlimited .

-ar~a rc '9 2 v :-19

Table of Contents

1 Introduction
1.1 Abstract 1
12 InUoductian 1
1±-1 SCARF 1
12.2 YARF 2
1.3 The EDDIE Architectural Toolkit mad Annotated 3
1..4 Range Da Analysis 4
1.3 Open Problems and Curent Work 5
I A Theses 6
1.5 Personnel 6
1.6 Publications 6

2 Toward Autonomous Driving: The CMU Navlab
2.1 Inroduion 9
2.1.1 Context 9
2.1.2 Navlab Teabed Vehicle 10
2.2 Color Vism for Road Following 11
22.1 SCARF 12
2.2.2 YARF 13
22..3 ALVINN 17
2.3 3-D Perception 19
2.3.1 Range sensing 20
2.3.2 Discrete objects and obstacle detection 21
2.3.3 Terrain modeling for cross-country navigation 24
2.3A Map building fon main feathres 26
2.3.5 High molution train models 27
2.36 Diacussim 29
2.4 Pbaing 30
2.5 Awchitectres and Systems 32
2.5.1 Backgound 33
2.5.2 EDDIE 34
2.53 Annotated Maps 35
2.5.4 AMV 36
2.5.5 Discussion 37
2.6 Contributions, Lessons, and Conclusion 38
2.6.1 Contrm xus 38
2.6.2 Prcepn Lau= 38
2.6.3 Symu Lesin 39
2.6.4 Conclusion 40
2.7 Acknowledsomnms 41
2.8 Refemnce 42

CONTENTS

3 Annotated Maps for Autonomous Land Vehicles
3.1 Introduction 45
3.1.1 Motivation 45
3.12 Related Work 45
3.2 Scenario 46
3.2.1 Knowledp and Organiation 47
322 Annouad Maps 47
3.2.3 Example Runs 47
3.3 Tenets of Map Consuicrion and Use 48
3.4 Implemmation of Annotaiomm 50
3.4.1 Representing Annotations 51
3.4.2 Implementation Details 51
3.4.3 Trigger Details 53
3.5 Conclusion 54
3.6 Acknowledgements 54
3.7 References 54

4 The Warp Machine on NAVLAB
4.1 Intooductioa 57
4.2 Hfisry of the Warp machine on NAVLAB 57
4.3 FIDO 60
4.3.1 FiDOAlgorithn 60
4.3.2 Implemeatio of FIDO on Warp 61
4.3.2.1 Image Pyramid Generation 62
4.3.2.2 Interest Operator 62
4.3.2.3 Image Pyramid Correlation 63
4.3.3 Paforman of the Vision Modules 64
4.4 SCARF 65
4.4.1 SCARF AlipmitN 65
4.42 Imlemeniron of SCARF on the Warp machine 66
4.42.1 Texur Opeaor 67
4.4.2.2 Classifier 67
4.42.3 Road Hough 68
4.42.4 Color Model Generator 69
4.4.3 Pefarnance of SCARF Implementation 70
4.5 ALVINN 72
4.6 Evaluation of die Warp machin on NAVLAB 72
4.6.1 Warp lHdwm 72
4.6.1.1 e Sim Host 73
4.6.1.2 The Emurad Host 73
4.6.1.3 The Warp Cell Array 74
4.6.2 Warp So&ftwam 74
4.62.1 Warp host 75
4.62.2 Fxtmm host 76
4.6.2.3 Wap srmy 76
4.7 Cou mlud=aa 78
4.8 References 79

ANNUAL REPORT AUGUST 1990

S YARF: A Progress Report
5.1 Introduction 81
5.2 Previous Work 82
5.2.1 MS (Martin Marien) 82
5.22 FMC S7uMt 82
52.3 MAR? (Unive of Maryln) 82
5.2.4 VaMols (UniBw Munich) 83
5.2.5 LANLOK (GMR) 83
5.2.6 Uivesalty of Bristol 83
5.2.7 AR? (CMU) 83
5.2.8 Sidewalk H (CMU) 84
5.2.9 SCARF (CMU) 84
5.2.10 ALVINN (CMU) 84
5.2.11 Analysis 85
5.3 Robust painted stripe detection 85
5.4 The mad model and fining detected feature locat 88
5.5 Bootsrap locaion of road features 89
5.6 bItm na vigation 92
5.7 Cmchuido 92
5.8 Aclmowledpmen 93
5.9 References 93

Accesion For

NTIS CPA,&I
DTIC TAB []
UnannoUIced
Justif.icatc

B y
Dist ibutin

Pv:'z~~~ C., ,

Dist

* *auvurV ,Y,

TOWARD AUTONOMOUS DRiVING

List of Figures
Figure 2.1: The Navlab 10
Figure 2.2: SCARF correctly finding the road in difficult shadows 13
Figure 2.3: SCARF finding an Intersection 14
Figure 2.4: YARF tracking yellow and white lines in complex shadows 1s
Figure 23: YARF tracking result 17
Figure 2A: ALVINN weights fbr one hidden unit. Bottom.* input weights. Top: output 19

weights. Positive weights are white, negative are black.
Figure 2.7: Building the obstacle map. 3.D data points are projected into discrete 22

buckets on a horizontal grid.
Figure 2.3: Obstacle detection on a sequence of Images. For each image, top: original 23

range Image; bottom left: overhead view; bottom right: segmented elevation
map.

Figure 2.9: Matching objects in a sequence of range images. White lines show 25
corresponding objects in sequential images.

Figure 2.10: Range image and elevation map. 26
Figure 2.11: Four levels of the terrain quadtree. 27
Figure 2.12: 3-D map built from 5 range images. 27
Figure 2.13: The Locus Method: intersection of scanned surface with vertical line in 29

world space (top), and sae intersection in image space (bottom).
Figure 2.14: An elevation map built by the locus algorithm from 122 range images, 30

covering 250 meters.
Figure 2.15: convromental cnstraints. 32
Figure 216: Planned path through cros.country terrain. Crossed squares are 33

inadmissible regions, pasmble areas are empty squares.
Figure 2.17: Position estimation during a robot run. The solid line shows the tccurate 35

vehicle track given by inertial navigation sensors. The dotted line -. lows the
less accurate vehicle track estimated by dead reckoning.

Figure 2.18: Annotated map of a suburban neighborhood, showing roads, intersections, 37
landmark annotations (small circles and dots), and trigger annotations (lines
across the road).

ANNOTATED MAPS

Figure 3.1: Map built of smburban streets and 3-D objects 49
Figure 3.2: Trigger annotations for sensing and vehicle control 49
Figure 3.3: Problem with refiring mission triggers 53

WARP ON NAVLAB

Figure 4.1: FIDO Block Diagram 61
Figure 4.2: SCARF Block Diagram 66
Figure 4.3: Road Hough 68
Figure 4.4: Implementation of ISODATA Clustering on the Warp Machine 69

YARF

Figure 5.1: Color classiflcatlon by hue to detect yellow stripes 86
Figure S.2: Yellow hue and white bar operators, unny Image 87
Figure SJ: Yellow hue and white bar opertors, shadowed image 87
Figure 54: Fit of road model to detected feature positions 89
Figure .5: Feature locatio in a sequence of eight frimes 90
Figure S.: Line segments extracted by the vanishing point Hough algorithm 91

D4UODUCI1ON1

Chapter 1: Introduction

Li Abstract
This report reviews propress a Carnegie Mellon from August 16,1989 to August 15, 1990 on research sponsored

by DARPA, DOD, monitored by the US Amy Engineer Topographic Laboratories under contract DACA 76-89-
C-0014, titled Pectinfor Otdoor Navigation'.

Research supported by dhis contract includes perception for rad following. terrain mapping for off-rad
navigation, ad systerns software for budlding integrated mobile robots. We overview our efforts foir die year, and
list our publications and personnel, then provide further detail on several of our subprojects.

1.2 Introduction
This report reviews progress at Carnegie Mellon from August 16, 1989 to August 15, 1990 on research sponsored

by DARPA, DOD, monitored by the US Army Engineer Topographic Laboratories under contract DACA 76-89-
C-0014, tidled 'Perception for Outdoor Navigation'.

During die put year, this coact~ has supported research on color vision for rmnd following. 3-1) pereptio -for

terra pin p g aid czass-country mobilit and system building for autononmous navigation. We have
demonst-ated aumnrous avigation on a variety of reds, including single lane dirt. gravel, and paved; and
multi-lane ras, with and without lane marktings. Our perception modules use a variety of techniques for video
processing (clusering theory, symbolic feature detection, neural nets), and for range data analysis (landmark
navigation, reflectance processing). We have also integrated position-based navigation (INS and GPS), and
combinations of all these techniques into mobile robot systems and demonstrations. Our scientific papers this year
include a book (Vision and Navigation: the CMU Navlab), three PhD dissertations, and an. MS thesis.

In the first chapter of this report we briefly summarize our pmogress over the pat yewr, and list persone and
publications. Following chapters go into greater detail on individual projects and acomlshments.

1.2.1 SCARF
SCARF, which qtsnds for Supervised Classiication Applied to Road Following, tracks roads by adaptive color

classification. Under previous contracts, we developed SCARF, implemented it on various computers including the
Warp, and used it for many Navlab rums. During this past year, Crisan finished her thesi on SCARF (31. This
entailed three new reseach initiatives: intersection detection, analysis of performoance on Warp, and tests on more
road types.

SCARFg op in ucmud emviwammu whom intersections may not be accurately mapped, and wheom the
sine aid shop of honch nadb may an be bw, While out ptulou eqeruas with SCARF intrsction
detection and a inmplaw of th nsrsectiom shape we we to build a sysm that did mat use such strog models.
Naive ap; m P-1 lo intersection det ctionm could be coiueinlyineftilnt: an intersaction with due roads,
each of which hes two riegi Pes of Areedom could mate a 6-D search. Our gIAp.oah insted, takes advantage of
scene Im~ tor M1 decouipm doe wmb int sepud smaller searches. After wre have cblaifed die pad into mad
andoffrood wesearchfor dkemasir oad. Thisisa -Deuc looking for rooangleand ofset OwceweflWdthe
mai wad, we seuch for the biggest breach road. This is alo a 2-D Vrolm since the br-uA cm leave the main
road at mny poit ag its length and a any angle. Once we find the first branch, other branh.s ar constrained in
leave the maim road a the - point. so additional sevches as each 1-D, looking a all possible angles. Each
smuch looks in the clmifledl inWg for a mad-sped region which hus a Oal probability of greater than 0.5. based

2 ANNUAL REPORT AUGUST 1990

on the clusification probabilities of its pixels. The search for branches terminates when none of the candidates have
high enough probability. A variation on this process confines the serch to the top portion of the image, sinm
SCARP pocenes sequences of images as the vehicle moves and intersections first appear in the upper part of the
images Once intersection hu been deteted in one image, the search in subsequent image can be confined to a
xallw nap of locaion and ugiles, depending on vehicle motion between homes.

SCARP wa the primary visio system dat used the Warp supercomputer on bad the Naviab. Our expuience
with Warp was somewhat mixed. In the early days of Warp, the software and hardware envirment had not
madt , md it was difficult to rally use fhe full power of the machine. Close cooperation between our group and
the Warp gmup led to some importat changes in hardware ad in the programming environment, which in utm
gave much better perfoannL

The early development of SCARF used our Flagstaff Hill bicycle path as the main test site. In the past year, we
have run SCARF on several more test sites. In particular, at DARPA's request we tested various road following
methods on sites that did not have paved roads. SCARF performed very well on gravel and dirt roads, as expected.
The most difficult case involved a dirt road in a forest, which was mainly distinguishable in the video images by
having less leaf cover than the surrounding forest floor. The philosophy of tracking the enmire rad, and using the
enire inage made it possible for SCARF to track f road even dough there were no cfear border lines We also
ran SCARF on unlined suburban ges, with excellent resul

A brief ownvew of SCARF, and a description of the systems of which it is a put, ae included in Chaptar 2 of
this report, "The New Generation System for the CMU Navlab". The Warp work is presented in more detail in
Chapter 4. Further details on SCARF may be found in Crismn's thesis [3].

1.2.2 YARF
Our system for following suctr rads is called YAR, for Yet Another Road Follower (an eaer version was

called FERMI (51). YAW address the problems of navigating on networks of city streets. This task requires the
folloin --NW

. roetb dmtim of romdfoaum (pinted suipe, mpavem/ shoulderboundarie, etc.);
• detection of changes in feature apFe Pwnr, such a changes in the color or continuity of a painted line;
" detectio of changes in ane geometry, such as the addition of a turn lane new an intrsection; and
" recognition of intersections, and path planning for navigation through them.

Current systems are limited in their ability to achieve these capabilities for several reasons. Frm, they typically
use a single segmentation technique. Any single method will fal under certon circumstances, limiting system
performance Second, mot system fail to determine the confidence with which the road has been detwce Many
currnt systems will follow tie resul of incorrect segmentations until the vehicle has driven off the road. Third,
they have no model of tie lane -orm of o rom. Driving on city mme requires that te system understand the
sommotics of Urn -os Finally, my system have limited capabilities for intersection navigation. Intrsections
cover a lar P a -m A to typical com filds of view, and c urre systems pmrcess only on im at a dn.

T% YARF system addreses these poblems in the following way:
o Muldple specialized segmentation, echnique for robustly extracting dlifferen kinds of road features.

On typial rail roads, h doue yellow lin a the cow of the road is deteted by looking for pxds
w"ic have a yellow hae, while the whim strip on the right aide of t lans is bein tracked bysezuu fir a bright bar oa specifie width mta spcfe oretain

* Rapclt detection of segmenm balrers and the anolys of possibl caus of falue to detect
chowme in mWadnermace ad the pprc of inesections.
.As eplicit model of thsle mcmr of tho road. This model focuses Imesin on windows in tho

INTRODUCTION 3

m in which features should appear. It contains semantic information about the lane structure. It also
provides the geometric model for the combination of the individual feature location measurements into
a single estimate of the vehicle position on the mad.

* Use of dat from multiple images calibrated into a single vehicle-centered coordinate system for
recognizing intersections and navigating through them.

PRoges in the laut year has included new tracker, models of mad curvature, and rad model fiting over multiple
imaes. The combination of these new approaches and techniques has enabled as to increase our maximum
dmon e spee from I kph to 15 kph, with all processing on a single Sm4. Parallel versions, still being tested,
hold die promise for further speed increases. YARF is described in Chapter 5, "YARP: A Progress Report.

12.3 The EDDIE Architectural Toolkit and Annotated Maps
Our new system, EDDIE (Efficient Decentralized Database and Interface Experiment), marks a turning point

away from centralized, standardized architectures, to a flexible architectural oolkit. Our previous architectures
concentrated an geometric reasoning and centralized, anonymous communications. EDDIE decentralizes those
functions Instead of all data flowing through a central map module, communications are now point to point This
allows de faster ommunicatios needed for reflex-level actions, while separating map-based reasoning into a
dedicated module.

EDDIE is nt a complete achitecmr, in the sense that it does not enforce a standard for how all robots ought to
be buiL Instead, it provides building blocks for c io, and for system start-up, monitoring, and controL
In addition, EDDIE uses and supports the new mechanisms of annotated maps and of the integrated controller,
described below.

EDDIE has been used to build several different architectures. The simplest systems use only a single perception
module and the controller to do road following. These systems use the built-in position tracking of the low-level
controle to monitor vehicle motion during image processing, and the smooth control modes of the contller to
tmck commanded paths. Mon complex systems add modules, such as an "emergency stop" module that uses RI M
ang da to find obstacles in the vehicle's path. The most complex sysems we have built with EDDIE use several
dfMt rad flowing modules, - landmark detcon, emergency so, and map position upda, along with
Annotated Maps for mission plannng and execution. A description of EDDIE is included in Chapter 2, -The New
Generation System for the CMU Navlab".

Int-grated Controller. Real-time mobile robot controllers have usually been designed with an emphasis on
control theory ignoring the imporance of system integration. Our new controller is based on the philosophy that
useful mobile robots require a real-time controller with a wide range of capabilities in addition to control theory.
These capabilities include-

* po estmaion
e mapping and tucking of paths,

* • h imrms,*Im mman 0~ m
* fast -o muauni-1do
* mulbpl client suppon ,
e and monboing vehicle sums for safety and debugging.

We lan deigaed ad implemented a controle funmework dat supports these capabilities. Using this homework,
individul modules inch m a position estimator, a pat tracker, a mappe, network servers and other crcial elements
have been uccewsly inmgrated into a conor for do Navlab autonomous vehicle. The controller incorqpommes
an mena orAiaton system into the low-level control loop, to provide accuate position estimation and path
tudakg. Theme capbilt int ml to EDDIE freeing other modules from meal-nm tasks d* properly belong
to the loweK-teml cenllaer, cloe to the harwa . Amidi's mater's thesis (11 discusses the msul of trials with

4 ANNUAL REPORT AUGUST 1990

differmt strategies for steering control, velocity control, and controller design.

Annoaed Map.: EDDIE does not have a global map at dhe center, as does CODGER. Local positions. used
only for the purpo. of obstacle avoidance or path folowing are never written into a map. Global, permanemt,
map are handled by the separate mechanism of "annotated maps'.

Besides the usual geometric dam, annotated maps provide a mechamsm for stong arbitrary bit fields, and
assciating dhose "annotazior" with particular objects or locations. The information is then either retrieved on
request, or automatically sent to a particular module by the 'trigger" mechanism when die vehicle arrives at a
specified location. In typical situaions, amnouicuis ar used to deaibe the appearance of roads and ludmarks.
Triggers are used to indicate changes in vehicle control and sensor processing during the course of a mission.

The most ambitious mission we have performed to date is a 0.4 mile run on unmodified suburban streets in
Pittsburgh's North Hills. This involved-

* Driving along curving suburban streets, with no pavement markings, including many different types of
driveways;

" Traversing four intersections, at two of which the Navlab had to make a 90 degree left turn;
" Stopping for unexpected obstacles, and resuming motion when clea
* Locating landmarks for position updates and for finding the destintio

We buit a mop of the mut, driving die Navib by hud and sing the leser scanner to record ft location of 3-D
objects. Object psitios wre meunted in multiple maM, to discad moving objects (pedestrians, car dogs) and
to improve the cury of measured position. The resulting map was annotated with triggers that controiled vehicle
path execution. During the run, the vehicle started moving slowly, while it found landmarks to initialize its position.
A trigger then caused the vehicle to speed up until it approached the rust turn. At that point, triggers caused various
modules to slow the Navlab, find 3-D objects, match them against the map, and update the vehicle's position
estimate. Through the turn, vision was not able to see the road, so another trigger caused dead reckomng to tak
control until the vehicle was lined up with d next oad, when the rod was again in t fi of view and vision
could renme controL Th. rnm p rceede in this fashion until the final triggs, which matched the mailo at the
destintiom with th map, and brought the vehicle to a stop.

Detail on cupzaed maps my be found in Chapter 3, 'Annotated Maps for Autonomous Land Vehicles'.

12.4 Range Data Analysis
We have continued the development of a robust map buidlding system for the Navlab. The maps produced by th

system am s-aI in amotated maps. Our map building is made robust by
* Using the position inkimation from the INS.
" Matching well-deined discrete objects between fomes before attempting to match terrain descriptions.
" Repesenig expUlicty uncenint and confidence to produce an accua map and to remove spurious

hems fnm the ap.

Matching object is not very apensive in our cm becase we have only a few objects to mach in each fume
and because we can assume dt we have a reasonable estimate of de dIsplament between frames horn INS mo
dead-cA, m g so that the locations of the objects detected in one image can be easily predicted in the next image.
1 mnw immum ar to rmove qurious objects ad to compute the location of the objects as accurately as posuible.

Spurios objects co be detected in two caw Noin in the ringe imap may cans. the object detection progum to
haciom, and moving objects (eg. people) crossing t el of view an detected as objects eve thog they
should not be inclded In a mop. Spurious objects must be eliminmad becaue they may lWad to dimnumin rumlts
whe they m used latr on t coaect die position of the vehicle. lh position ofthe objects must be xoid as

ITRODUCTION

accurately as possible so that the position corrections that are computed using the object map are also accurate.

The problem of spurious objects is solved by calculating a confidence measure for each object. The confidence of
an object is decreased if it is not found in an image in which it should appear based on previous observations and the
curm vehicle positon, otherwise the confidence is increased. The objects with low confidence are discarded.
Accum object locations am obtained by updating the uncertainty on object location (men and covariance ma=)
each time a object is observed in a new imal. The initial uncertainty is based on a senor model and depends
mostly on the distance between the object and the vehicle. The uncertainty also takes into accont the fact that only
a small part of the object smface is observed. The uncertainties are combined using standard maximum helihood

The same techniques are used to identify specific objects in the map and to correct the vehicle position as it
traverses a pre-stored map: the observations are matched with the information stored in the map. The matching uses
several observations to allow for uncertainty computation and removal of spurious object detection through
confidence evaluation. The map building and matching is now integrated into the annotated map navigation system
and has been demonstrated in complex navigation scenarios.

1.3 Open Problems and Current Work
The renuls presented in this report cover d fim yer of an ongoing research program. SCARF is currently not

active and the EDDIE toolkit is curredy stable. We continue our work in YARF, in annotated maps, and in range
data analysis. In addition, we have begun new projects in integrating muld-sensor data and in understanding neural
networks for road following.

YARF. The thesis work coming in YARF involves diagnosing failures of the trackers. If a white stripe is not
detected as predicted, it could be because it is temporarily occluded, or is in deep shadow, or because the road
markings changed, or because the road widens or turns abruptly. Some clues about the failure come from individual
tracker if the tracker window is all very dark, for instance, the vehicle may be entering a shadow. Other cues are
globak if the detected location is dnftig outward, perhaps the road is widening. Combining local reasoning, about
a-eauu-, and global reasring about geometry, wil give YARP increased capabilities to undirlimid the
simma, upde its models, and continue the run.

Annotated Maps. Our prototype implementation used a very low-level user interface, that allows unlimited
flexibility in specifying each annotation, but requires almost unlimited typing and mouse pointing. We are first
building a higher-level interface with macro capabilities, so we can define packages such as "turning at an
inascon" dt combine all the triggers typically used. In addition, we will build a computer interface, so
autonomous or computer-aided mission planning systems will be able to generate annotations. Finally, we ae
expanding oar umotated maps for off-road navigation. Instead of triggering a particular action when the vehicle
aumeu a line won. the road, we will build tigp dht fir when the vehicle enters or leaves a designated polygon
intdiet-mie

Rang Da. We have used INS (iertial navigation) data for matching discrete objects, and we have separately
developed the locus method for matching terrain patches and building maps. We will now combine th two idea,
usn W ifman to sed die locus search. The locus search finds dhe best Unsform twem two map patches
by a it dve process, which meamws the resdua match eor id updat the transform. h search F M pocN is
curey sow, sice it must mnder al Ax dge of fluedom (tmee trumwmlaand thrm roato). We will be
able tn run much more quickly by constraining th search, especially with aam angular infmaion fWim the
INS.

6 ANNUAL REPORT AUGUST 1990

Integrated Positloning. Our map navigation experiments currently update vehicle position using only the most
recent infoanation When 3-D) landmarks are seen, their position relative to the vehicle is used as an absolute
corriection; when the road is visible, its perceived lateral position and onentation are assumed to be exact; and, in
other CUes the INS data is used. A better scheme would use data fronm each souce, combined according to the
eror diutribuiu for the individual position updates. We already have estimates of the precision of our INS
systm. and of the 3-D landmark location measurements. We will use a Kalman filter to keep a ruuning track of the
best estimate of vehicle position, ad of the wror margins in that estimate.

u bIsrshigl Neural Nets. Under separate funding, we have driven the Naviab using neural nets to track the
road in video iages. We ame beginning a se of experiments to undersumnd what features the neural net "hidden
units" are matching, and whether we can achieve similar or superior performance by directly programming those
feature detectors. rather than learning weights.

1.4 Theses
Omead Amidi, "Integrated Mobile Robot Control", Master's Thesis, Departnent of Electrical and Computer

Engineering.

Jill Crisman. "Color Vision for the Detection of Unstructured Roads and Intersections", PhD Thesis Department
of Electrical and Computer Engineering.

InSo Kweon, "Modeling Rugged Terrain by Mobile Robots with Multiple Sensors", PhD Thesis, Robotics PhD
Prog=un

Anthony Sternz, 'The NAVLAB System for Mobile Robot Navigation", PhD Thesis, School of Computer
Science.

1.5 Personnel

Supported by this contract or doing closely related research:~

Faculzy Martial Hebert, Takeo Kanade, Chuck Thorpe

Staff: Mike Blackwell, Thad Druffel, Jim Frazier, Eric Hoffman, Ralph Hyre, Jim Moody, Bill Ross, Hans
Thomas

Graduate studenuc: Omead Amidi Jill Crisnman, Jennie Kay, Karl Kluge, InSo Kwoon, Dean Ponaerean, Doug
Reec, Tony Stentz

L6 Publicaloe
Selected publications byrmembers of our researchgroup, suported byor ofdirectinterest to this contrac

[11 Omed Amd
Integrated MobWe Robot Control.
Technical RepotM Robotics InstiWs Canegie Mellon University, 1990.

(21 DOWie Aubert and Charles Thorpe.
Color Image Processbngfor NaWgatOm. 7W Road Trackers.
Technica Report CMU-RI-TR-90O9, Robotics Insitte Canegie Mellon UnivwWsty 1990.

INTRODUCTION 7

[31 J. Cuisman.
Color Vision for the Detection of Unstructured Roads and Intersections.
PhD thesis, Camegie-Mellon University, 1990.

[4] Jill D. Crismn and Jon A. Webb.
The Warp Machine on Navlab.
Viion and Nagad"o The Carnegie Mellon Navlab.
Kuwe Academic Publishers, 1990, Chapter 14.

(5] Kald Klug and Charles E. Trpe.
Explicit Models for Robot Road Following.
Vision and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 3.

[6] Eric Krotkov, Reid Simmons, and Charles Thorpe.
Single Leg Walking with Integrated Perception, Planning, and Control.
In IROS 90. IEEE, July, 1990.

[71 InSo Kweon.
Modeling Rugged Terrain by Mobile Robots with Multiple Sensors.
PhD thesis, Carnegie-Mellon University, 1990.

[8] Dean A. Pomerleau.
Nea Network Based Autonomous Navigaion.
Vision and Navigation: Te Canegi Mellon Naviab.
Xuw, Academic Publishm, 1990, Chapter.

(91 Dong Hun Shin and Sanjiv Singh.
Vehicle aid Path Models for Autonomous Navigation.
Vviion and Navigation: The Carnegie Mellon Navlab.
Kluwer Academic Publishers, 1990, Chapter 13.

[101 T. Stentz.
The NAVLAB System for Mobile Robot Navigation.
PhD ftsi Carnegie-Mello University, 1989.

[11] Anthony Stem
The CODGER System for Mobile Robot Navigation.
Vision ardNaviptou: Te Ca Mellon Navlab.
Mower Academic Publisher 1990, Chopm 9.

[121 Anthony Stentz
Multi-Resolution Constraint Modeling for Mobile Robot Planning.
Vision and Navigation: The Carnegie Mellon Naviab.
Kluwer Academic Publisrs, 1990, Chapter 11.

[131 Ha=s Thomas, David Wettergrm, Charles Thorpe, and Regis Hoffman.
Simulation of the Ambler Environment
In 23rd PUbrgh Conference on Modeling and Simulation. IEEE, May, 1990.

(14] A. SUM and C. Thors
A ot Como= Archiowcture
In Proc. 6th Intenatonal SyWasum on Unmanned Unttuhed Submersibles. June, 1989.

[151 Chde. L Thorpe.
Ouloon Visual Naviption for Autonomous RobotL
Vision and Navigation: The Carnegie Mellon Navlab.
Mw.' Academic Publishers, 1990, Chapter 15.

[161 Cha ui Th'borpe
Vision and Navgation: the The Carnegie Mellon Navlab.
1l0wer Academic Publishers, 1990.

8 ANNUAL REPORT AUGUST 1990

[171 David Weuergreen, Hans Thomas, and Charles Thorpe.
Planning Strategies for the Ambler Walking RoboL
In IEE International Conference on Systems Engineering. MEE, August. 1990.

Chapter 2: Toward Autonomous Driving: The CMU Navlab

Charles Thorpe
Martial Hebert
Takeo Kanade
Steven Shafer

2.1 Introduction
The goal of the CMU Navlab project is to build autonomous systems capable of outdoor navigation, both on roads

and cross-country. Since the outset of the project in 1984, we have held two main tenets: the importance of
complete systems, rnd the importance of focusing on bottlenecks. Our emphasis on complete systems has meant
that, since the beginning, we have closed the loop from sensing to action, in realistic outdoor scenarios. We have
been forced to deal with the vagaries of natural illumination, of bright sunlight and clouds and rain and snow; and
we have had to confront the problems of camera calibration, path planning, real-time computing power, and
software system archicurs. While the logistical costs of performing such real experiments have sometimes been
significant, our resulting algorithms and systems are calibrated to reality. Our second principle, of focusing on the
bottlenecks, has pushed us to work on die most difficult problems first. For outdoor navigation, the biggest
challenge, and our main am of research, has been in image understanding in difficult conditions Instead of running
at high speeds on cleanly-mrked expressways, we have worked on unstructured roads (including dirt roads and a
winding asphalt bicycle path), on the changing appearance of structured roads in dappled shadows and at
intersections, and on off-road navigation over rough terrain. Once we had the first versions of reliable perception
software, we also developed novel planning methods for rough terrain, and have designed and built systems
software to forge the separate perception and planning modules into integrated systems. Other technologies, such as
vehicle design, high-speed computing, and control theory, are not the main bottlenecks. While important
components, they have been or ae being developed by other groups, often outside the mobile robotics community.
By directly conflunting the central areas of perception, planning, and system-building for mobile robots, we are
completing the missing links that will enable us to build the reliable high-speed mobile robots of the future.

We now have significant results in many of those areas. Our Navlab robot van (shown in Figure 2.1) drives itself
at slow speeds along unmarked, unmapped wails, locating and traversing intersections. On more typical structured
roads, the Navlab drives up to its mechanical limit of 28 kph. It can run without a map, or use maps it has built,
along with information from previous runs, to select different behaviors at different locations. Off road, the Navlab
can move slowly over moderately rough terrain, and can map large areas as it drives. The resulting software has
been transferred to other projects, including the DARPA Martin Marietta ALV and our own NASA-sponsored
AMBLER, a walking machine for planetary exploration.

2.1.1 Contet
Our work is part of the broader framework of DARPA's Strategic Computing Initiative, including the

Autonomous Laind Vehicle (ALV) project that began in 1984. Several of the contractors from Strategic Computing
Vision worked on perception and planning for autonomous naviaoL Among others, the Universty of
Maachu ts aid Honeywell developed moodn racking software (3, 6]; SRI developed trcking using 3-D
dam 7]; ADS built Qualitative Navigation (291. Martin Marietta built ad operated the ALV vehicle itself, and
developed their own mod following softwam (41]. Hughes and the University of Marylaid comUmbd off-road aid
on-rad navigatim, respectively, directly to the ALV testbed (20,42. The role of CMU was to build a New
Gemation Vision System. We were tasked to look beyond the immediate problems of getig the ALV through as
first dwmomarwion, md to address the issues of mre difficult perception and interation.

10 ANNUAL REPORT AUGUST 1990

Fagaus2.1: TheNaviab

Beyomnd the DARPA coiMniuaiz, doe pas five yam have see several othe outdoor mobile robot pojecMs in the
US, Tuam MM has begun work an viand nrakig for convo followig and ob$Wde avoidg=c [191. General
MOMor is woing on Ian following at high speds under relatively constant ilumution [21, 221. In Gernmy,
Profesaw Dickams and Graefe [321 have buil an elegnt control formulatin for drivng on auzobahns Fujitsu
and NISm In Jaw have built potop road-folowing softwar C331. The research at CMU. and within the
DARPA commnmuity is distinguished from all of thee by its concentration on the mmi diiu vision problems of
bad weather, bad lighing, and bad or chaging roads.

2±2 NaEab TWObe Velude
MIe NOva Yd"sl wu dedped ad buit in.1986 to povid a watbed for vision and uvgdo ampuimum. It

is bued an a smadd cammumWn van wit a rooftop sir coadimir plus one or sm video cium and a line
ranuinder maiead. ovar t cab. QOn the iulde, iz is a conpuar room, with five eleauuics racks, 2(3kw of
ombaud pow, ad migodhaumus cammoles and monime Over dme, the Navabw am uied Sum T's. Sm 4's.
w -0 gm im of the CMU1 / OR Wup soparmpuw.r vuto splaised. mdue conomlera,
33 o aoUpum an lautIn aeiga-da syim and a smeilie pauldauiug sm m..l We cormly mu only a mBi
potuah of the avaibhl tck space ad uleceoa pow. Our cumunt maide cmuoflw acsle fm alots in a
WE =@% and our gm -pla campuadog consists oft de Sm 3's in a sngl wp ad two Sm 4's ia uvjthr

TOWARD AUTONOMOUS DRVING 11

The most important payload of the Navlab is the researchers. There is always a safety driver in the driver's seat,

watching over the Navlab's autonomous runs. In the back, there is room for five researchers plus observers. The

quality of our mobile robot software ncased greatly when the graduate students and engineers were able to ride

along on autonomous rns, partly out of self-preservation, but mainly because they could see and feel how their

code worked. We run standad SunOs Unix1 on the Navlab, so we have a standamd propmming environment and

tools to f&n ad fix bup in out propams during an experimental rm (debuggers ediom, compilers, etc.).

2.2 Color Viion for Road Following
Roads that am nearly smght, evenly-illuminatd and well-marked, can be tracked easily in color or

monochrome video images. Finding the edges of a clean sidewalk, or tracking freshly-painted white stripes on an

empty expressway, are both straightforward. Road following becomes much more difficult when the road runs

through dappled shadows, or when illumination suddenly changes as he sun goes behind a cloud, or when the

"road" is a meandering bicycle path with no lines or stripes and with brokcn and uneven borders. Therefore, the

challenge in building truly autonomous road following systems is to be able to handle a variety of road conditions

and changing illumnination. To illustrate the problem, our first road following software ran a simple edge detector

(Roberts' operator, followed by thresholding) over the image, and looked for edge fagments that had strong

cont6t, were parallel, and pointed in roughly the comet direction. This wowd very well for clearly-maked
sidewalks. Wb we to our roboc onto a bicycle path, the highest-contrast edges in the scene wet shadow edges.
At the right time of day, the sadom of tree truk fen along the road, producing s-ong. straight, prallel edges at
nearly the predicted direcion. Our road-following software turned into tree-shadow-following software.

Navlab test sites include a variety of road conditions, from dirt roads to freeways. A single perception system

would not be able to address all possible configurations. Instead, our approach is to build different systems for

unstructured roads, such as dirt roads, and structured roads, such as highways and city streets. This allows us to take

advantage of the road structures when they am available while retaining the ability to deal with unstructured roads

when needed.

A first rsmm, SCARF, deals with unstrctured roads. The SCARF system uses ad ive color clusificaion. It

deals with choging iilumimadon md chong rod appeace by updating its color models for each now inige It

hundles poorly-defined roads by clasifying all the pixels in the image, and by using a simple road model in a voting

scheme to find the most probable road in the image.

YARF, our second vision system, deals with structured roads, such as highways and city streets. It takes

advantage of the lines and stripes of structured roads, and uses an explicit model of those features both to guide

individual trackers and to filter and validate its detected road model

SCARF uad YARF do not require my external input expect to bootstrap the system at dhe begiing of a run. A

ra fow sysem th ma an be rained on a section of road prior to a mission should be festr and more mliale.
To invesige ts ide, we have built ALVINN, the Ihin main color vision system currntly running on do Navib,

which us a connectonist uchimcme. It achieves its power by being trained directly on the curren road nd by

processig quickly so that small imperfections tend to be smoothed ouL

9 hIa UiMuM of Em b-uus, ad Uras is a uda.k .t Bdl Labx

12 ANNUAL REPORT AUGUST 1990

2..1 SCARF
Three approaches have been used in usmuctured road following: edge extraction, thresholding, and classification.

In systems that use edge extracton, gradient opmrators amre applied to the imag of the rod. Strong edges ate
assumed to correspond to mad edges and ae grouped to yield road geometry [42]. Edge-based systems can be very
fast and cm work well on clearly delineated roads with no shadows. As soon as strong shadows appear, howevr,
they brok down rapidly because strong edges now correspond to shadow edges. Sysems that u thresholding use
some combination of the color bands, e.g., red - blue, and threshold the resulting image (17,26,41]. Those systems
am also limited by shadows. They label all pixels with similu intensities as road. But when shadows are present,
shaded road and shaded off-road often have very similar features, thus confusing the classification.

Our approach to avoid shortfalls of those previous systems is to use adaptive color classification. We have built a
system, SCARF, which stands for Supervised Classification Applied to Road Following, to demonstrate the
performance of this approach [101. SCARF runs in a loop of. classify image pixels, find the road model that best
matches the classified data, and update the color modcls for classification. The simple models of road color and
geometry make very few assumptions about the road, and allow SCARF to run robustly even when following
unsmun reeds.

The first strength of SCARF comes from representing multiple color classes, as Gaussian distrilutons in full
RGB color, and from calculating probabilities instead of using binary thresholds. SCARF typically uses four color
classes lo describe rood appearance, aid four for off-rad object In the classificatin step, each p-i is compaed
to all eight clses. The outp of clossification is both the label of the most prob be clas, and its probability.
Having multiple classes allows SCARF to represent the different colors of the road (for instance asphalt, wet
patches, shadowed pavement, and leaves) and off-road objects (ees, sunlit grass, shaded grass, and leaves). Using
full color, instead of monochrome images or some combination of colors, keeps all the image information that may
be useful in discrimination. The Gaussian representation of each color class says, intuitively, whether a particular
variation in color is significant. Sunlit asphalt tends to be homogeneously colored, and is represented by a class
with small varimce grass has more variety, and is represented with corrsodingly l variances. Having
Gassim ,re aPrusenta of the colors for each class makes it possible to calculate the likelihood tht a given pix
beloon to a partiur class. While most other navigation systems imply use binary desholds, SCARF gives the
pobity for each classified point. This is especially important for cases such as dry leaves that occur both on and
off mad, for exampie. A particular pixel may somewhat more closely resemble offroad leaves than onroad leaves,
but the confidence that it should be classified as offroad will be very close to the confidence that it should be
classified as onroad, so that the pixel will (correctly) contribute very little to the overall road location determination.

Classified pixels vote for all mad locations that would conun them, with votes weighted by classifica on
confidence. The road with the most votes is used both for steering, and for recalculating the color clas using
nearest - clustering to collect new road ad off ad color statistics SCARF uses a simple model of road
pomery. Roeds areuprosamed tr iangles a edo image. The ax is constained to lie on a ptcula ima row,
c.PnMd tf die hr1a*.., and t bm of tie ngle has a Red wi dopendemem ad widt and cuiwa
calbatiom. T am two fie pumim 1 t column in which the aM appears, d t sew of the triangle in
the imgLe. Wile this simple 2-1ameter model does not represent curves or hills or road width varmimr, it does
approxim the road shape well enough to allow reliable driving. It is especially effective because the voting

procedure use all pixels, not Just those on the edges, aid is therefore relatively insensitive to mslsofcto A
model wit m are free parmees could repr t more poeential road shapes, but would odbu be led amy ad find
ems or beanm where in bet all that exist is noise. Furthemore, the simple mode allows Mr hm votig ad
f0 tos wel! iwth m@l amoumsa" odaa, soSCARF can pce. higly ded I (typIcly 60 by 64 or O
by 32) a lgh r (a m y two monds per hiae). Processng Me doe y apued aong do rood mum
dt small orros in road Ppquuenmaions are c1orrce before the vehicl arrives a theo msiatah locadoms

TOWARD AUTONOMOUS DRIVING 13

Proceating iages closely spaced in men mans that eae the dramti illuminatmo changes caused by clouds
covauizg th mu appear as gradual shft in rod appearance, and so do noL derail SCARF.

The basic SCARF symm nu m Sun wokrfaaius. It wu dmroriasead on a nmber of diffmret reads. SCARF
has &W= tdo Naviab alon binycle pah dist waft gravel reaft, ad submbrn smets SCARF has been
integrad in avnd of o NaOW* sym Firm 2.2 san SCARF conedy iifg doa road eve trugh
deap shadows, whave t read is not obviou m a humuna observer. kt socesuiy demamntrad dhat piel
cluiflcaeasedonmGuiP relxu mmof color ci....apprqxha for rosE navimiaaepreeneof
Sm g fulo I and Chaging Muinin.

We hav, built eal exzensious of SCARF. The firs extension is to use parallel hardware instead of
* conventional workstations to improve preformance. We have implemented SCARF on the WARP computer, a

ten-cell systolic array. SCARF is parallelized by dividing the image into strps, and by processing each strp on a
separate cell. The second extension to SCARF is to add to the road model by checing for interectons as well as
for the mom road. Figure 2.3 shows SCARF finding an intersection in a serie of images as the vehicle approaches
the bInc Apoint.

Fipure 22± SCARF anucdy Batding the road in difficult shadow

2.2= YAR?
1%; -1 of Md Mo§wiomn i ua umea nivumecifi Wcliqu to aeIm ~ q oef the prior

kaiwedg of the Iuvkomm, eg. wual-mudd highl sunPa-eI highways. Several syotm fm folowing
mau - z11 e hae bur deveoped. lw VaMos sMn (13Jconme quecind hudwue- wft a comns-um

finaldwo of the Ifub I n I ac1hiev -tn of up to %1=& Vabm um ton ms mmIe acos t mik t
POMdo at MWe =Wr ha and idf mokkIng Bowever it my be seml Ie a chowm i lflhahaam 6ini6ws
and Chaps i roed umuemue soh se humedim go LANE=O syzim. (21,2=1cmn = fte dWfPiu type of
-NI WGIVINS 10 M* read 04u S"bu eGe d&"=a Mowed by Hto Tra~nsk rgIN a sim, ad

INVue -okig LAP==O ha ber dimmwased off-ha o ftoede of intsm In t symm fto the
Uidvufy of DuaE (361. Mu mammad as regines of the kuag that ar bih thu6 a Elva

14 ANNUAL REPORT AUGUST 1990

Figm 2. 3SCARF ladhg an immsucti
taholdIM and limitd by Cdips of 11 Iulmei gbomety. A ciieulW We zs &i to the region after bwckprjection on

All dims systems wre limited by the ole Of a single segpuntno tehniue to locale the road. Therefore, they do
not hJIe MnY mchuM. for recovery in dhe event that this particuilar segfiemfdom technique should fail To addres
this. hk I, wehae neeowedoh YAF syate (yet Another Road Falow) which explcitly model. as many
sop@= of iced followisa pauible. for *ivkg o am Imledteto [2,41. HIhways fleeways. anal tweds, even
suusas ames hae Moog ,a m~ I m- i emsily idmibb (emmes. Fmr balnc. the road caer ine is yellow,
has a comm know 0Width, nd ift =MM is low dkm a I=w ilMeuhL 7be by ide of YAWY is to model
explchfy each hIINTIMI CoM~f ad fam..e. feI models we bold specaslined iage operaor that
Band fern.. Such a road muiuip Front 1 cumim models, we build specialized trakers thapqply the img
operalors on long sequenc of Waps by predicting dhe location of a feature in an mage fromz its ocatio inth
auevion lung,. A -acI far th e od cenw line finds a yellow, gripe in a sueD window in a color image and

predict in Jocatl. in the nex image W"n a model of road geometry ad ca- 0 vehicle motion. Also, constraint
model. pugde a way to detect and recover fro m cumr in 6e- detection. This nash. reaning esier, and mare
NuMLle Whom a Ike Uake feUs. for Wece, an explici model of road ad shoulder calors adjacent to the line
helps is dud~bg whoer dw Ike dl-; 11 -inud bee...a occluded, - -I at = an mecau or entered a shadow.
Tis I~kd atpamemi ands 9-amil -IFPmal Is vimi ftrbbg~t 11" r ulk an g iI mad- mcI In addition
10 110ame4le 0a0aft YAW -vaneexse ait model of the ache of 1, demor. and vehicle pomidom to yield
-pmd -1
YAWF ke fb maim campoaew faun, aces gepamnenimodling sur detcim ad rovry, ad noise

inddh
Spedeftead VFewi Tr'adkws

YAW ku kiitM i anm tdo bow bow io model ad wick spcfbw sucha asb toad edge mukiup
(Wh~f MIpm) o cuam HkM (yellw umpm)g and shealdum YAWF also use an exct pmay model of the
90ed conimb at amine aot, ye*en me ai = ofja at ipas tpo tripaes (&&g Iuh or selld and

TOWARD AUYTONIOMOUS DRIVING 15

maimum and cwunt road ctuvafare. Other features, which am not yet modeled but which may be helpful, unclude
locations of shadows. 3-D effects as the road goes through valleys and over hills. and global illumination changes.

'lbs yellow lin uncke, for inamce, uses the but of the lines for segfmentation Mwe hue is calculated for all
pixels wonhi a window ammud, te pedlcued line locatio. Pixels with a hoe between 40 (reddishi-yellow) and 100
(rm-a6ho-yellow) = aet to 1, adieu 0 0. lb. aelts of this deesholding = quim noisy. Pixels tham very close
to pay lays - .. te Ime value, while yellow line a dark shadows we ohm so duk doe digidaio ois
newly swms their yellow l.S. As a remai the images aftb hue sholding ofin hav isolated nois points both
fals positives .d false meptives. We clean up the usa with a "shrink and rowm opermar. The resulting iag
is nrmally damimud by one or two blab. conesponding Io die yellow line or lin. The blob descriptors axe
rturmed s the line locatioue. PRgr 2.4 show the yellow line tracker. md a seperate while line tscker, fliding the
moad fines even in complex shadows.

Fg.. 2.4: YAR? tcig yellow ad whim line in omimpiez shadows

Road Geoime"r

YARF is designed for higher speeds dun SCARP. and runs in a momn predictable enviranmeaL This requires and
allows a mor complex mond model thot encodes cwvahve as well as position YARF models doe road as a
geemmlized stipe. dot is a 11n 1 1l--lonal tm thot is swept perpendicular to a spine rme The spine is
modeled locally by a circudo w m f donngUnth do od One an a flat pmmd TheI equetion of the spin is found by
fining a ~ m u to the deumed ba..Since, the equrnia ofa cites

is INOanW. ad si 0v to Km we cM apniim a cheuw we with a pua-ala similar to doe gppac of
Dicmamis =2:

'l1m bm-sqimm vL o at im slope and hanse offset mu sadly composed wing the nimem d~nvre
Slew tis is dMs In vic camdhm-s, with the vehicl poledq appeednute alo t road, the pamemrs
Cci wM Pi .u goo 10uado t of ftn besfi chevs. In ;ins-i, - t appuaimaotim is adetimif for t
wIsofMC(in u anzd slopes of~writhn t Navbshs fiel of view. To improve te mWft of di. estimation,
we & the amm~model todbm deectd over afew fmes.

16 ANNUAL REPORT AUGUST 1990

Error Detection and Recovery

Occaionaily features are found incorrectly. YARF detects these mistakes both locally, bWsed on the results of a
single operaor, ad globally, checking for consistency. Local er detection depends on the specific operator.
Soein opertors, such as the oriented window tracker, can only report a correlation measure as a confidence. Others,
sach = die two.coWl blob deteor, can provide a little more information. The blob detector usually finds a light
blob (the white line) against a dark background (asphalt). It maintains statistics of the mean, variance, and
covariances of red, green, and blue, for both feature and background colors. If all pixels in its prediction window
am the background color, the color blob detector report a missing feature. If a light-colored blob is found, but only
at the edge o(the window, it reports a clipped feature. If all pixels are much lighter or darker than modeled by either
color, it rs a illumination shi It is up to the higher-level calling program to decide whether die oad has
widened, the white sripe is temporarily missing, or the lighting really has changed.

Global error detection uses the output from all feature detectors is a single frame. There are many ways to check
for data consistency. The simplest, performing a least-squares fit and examining the residual, gives some cues as to
whether there is an outlier, but does not reliably indicate which point is in error. Better approaches come from the
"robust statistic" literature.

Error detection and recovery in a crtical component of YARF. It allows for robust navigation in the presence of
changing illuminaton, shadows, and noisy road features while using fast and simple specialized trackers.

We have achieved good results by ftting curves to the points detected over the three most current frames, with no
error weighting or filtering at all. For instance, Figure 2.5(a) shows the features (center line and edge markings)
extracted from an road scene, Figure 2.5(b) shows the road the road model fit to the features using straight
least-squares. In Figure 2.5, the diamonds show tracked left and right lane lines, and the solid circles show
estimated road position and heading. For the relatively slow speeds (up to approximately 15 kph) of YARF, and
with the Navlab's accurate dead reckoning, the errors in detected positions am probably dominated by image
pnoise rather thn vehicle motionoi Future rans at higher speeds, will probably require mote
elabemm filtering schemes We am working on two appmaches to noise filtering: Kalman filtes, and robust
-iatii

The intition behind a Kalman filter is that the current es mate of state is a combination of current measurements
and the previous sate estimate, transfonned to account for system dynamics. The weight given to current
meaurement depends on their believed accuracy. The weight given to the previous estimate depends both on how
accurat the Previous estimate was thought to be, and on how accurately it can be transformed into current
codinats. In the cam of road following, the weight for current detected features comes from the accuracy of
feature detctiot ad camera calibramion. Vehicle motion errors can be reduced by inertial sensing. Road model
eMrs will depend on the situation. For the gentle curves and smoothly varying cuvam of an interste, pror
esmt cm be inuqioloted for long distances, ad cm carry dh vehicle througl shadom aid othr visually
conuing ares whm cuin trI-king fails. For the winding -rs of country rods, however, dw road model cm
choaue rdially over very short distances, and the weight given to prior models in the filter equations must decrease

pidly.

Kalman filtering 'muces the influence of noise in the system but it does not remove oudiais, io., measurements
at fr hom the reel valu. Robost statistics provide a way to eliminate oudies by minimizing a function of the

lem-qu d muetm fa s off mom rapidy fb mp rdual Ou i eliminam became thy do ns
caalbuus to the overall sum of residuls. We are currently evaluating such a technique, M-estimatio in YARF.

TOWARD AUTONOMOUS DRIMWG 17

(a) Extracted center and edge features

3

(b) Road model derve fi: etrsetated above. Diamonds show
detected fea=. locadoms solid cirle show derved cener ine.

igum 2.5: YARP trcig remit

YARP bw deiu the NAVLAB at spoeth of up to 15.0 mnph am a pobi med. The awvirmm used in the
R9 pume camid larg sW aw genad. by suunding ames It aim including releivel high-curvature

ves, tbu deacmug the juefermum of dke reid model.

YARF wodks bern.. of the integration of all its modeled constaints. Explicitly modeling tracker performance
and feture appemace and using specialzed vackers allows high speeds, high acuay, aid local failure
detcdon. Explicity modeling moid gomemy allows atwe pedicdons, and enables -k error detction.
Explicitly modeling ea ad unamaminty Alw YAR? to correctl sara its prediction windows. AMd explicitly
modeling doomge in reod geomety glvs YAP t capabiliw t und sthm aseow wi inumecaiw. and odhe

beo. in as o m ad ap u~ um aels t cinue myam-a of highwy bw. following.

223ALVMN
SCANE ad YARF do not req.. my inpu ada dm video Wagm inpt for bWasmppng he systm. If we

allow desyum w be mauly uinudoaapen ofthw d w be bllowedwe daasdbbe to buid a famr
an m tbe symn siwnemoeprim iftuud ou mraid Igo-m ad geomety is avalble. ALVMN, for
q nam 1 Loid Vehicle in a Nemal NHK inple m t Idea. ALYW wes bulk by doe CM Cabuecdania
row (35). Mwe welghm in t hddam unit of ALVUINs mm netwo-rk astained by divin doe Naviab by
hond. Dufin the tuing phse ALVIN hqm t emma lnge, ad th edsin anglsko hu a driver
a uck iM M . wmgp is puixuemd to enhowc toid C~anoLM h nbeed imp ad t mring angle

18 ANNUAL REPORT AUGUST 1990

a fed to a back-propagnuon algorithm that adjusts weights in the hidden units, until the weights settle to values that
give the correct steering response for each input image. Typically, training takes less than a hundred input images
and uses less than 5 minutes.

With this training scheme, ALVINN directy learns how to follow roads. It is mom difficult to train the network
to recover fom arrors, when it is not quite aligned on the road. To provide examples of images from slightly
different vantage points, and the proper steerming commands, each input image is reused in several positions. The
images are shifted to simulate a variety of rors, and the steering command is shifted to generate the command that
would bring the Navlab back on to the road.

When ALVINN runs, it preprocesses the input images, and gives them to the net. ALVINN then directly outputs
the steering wheel angles as dictated by the network, with no reasoning about mad location. ALVINN uses
reduced-resolution images (typically 30 by 32 or 45 by 48 pixels), and runs in about a fifteenth of a second per
image.

One characterization of ALVINN is that it uses a compiled representation, going straight from images to steering
with no intermediate geometric or symbolic representation. During its learning phase, the back-propagation
algorithm automatically compiles this knowledge, by selecting the features that discriminate between different
stering angles, which correspond to different road locations. Since ALVINN starts with no pre-conceived idea of
what the road looks li, it learns different sets of weights to follow many different types of roads with no change in
the underlying algorithms.

The disadvantage of a compiled representation such as that used by ALVINN is that it cannot take advantage of
geometric or symbolic input. If ALVINN is trained to run on a particular road, it is impossible to tell it that a
second road is just like the first, only twice as wide. Since there is no explicit representation of "road width", or
even of "road", there ae no symbolic parameters to be changed or manipulated. The advantage of such a
repesntlation is that it is fas, and is easy to train for a particular road. The weights learned by ALVINN tend to be
large, low-frequency edge masks, or matched filters that look for the road in general locations. Thus. local

pections in the mad or in lighting do not greatly distar the ouput steering direction. Figure 2.6 shows the
weight for om of ALVINN's hidden units. The square shows die weights coming in to one hidden unit from the
input image, and the line at the top shows the weights going out to diffMe= steeing angles. White indicates
positive weights, and dark negative. This unit mainly looks for a road on the left edge of the image, and mainly
votes for turning left. There is also a secondary pattern that would match a road further to the right, and slightly
positive weights supporting straight ahead seering.

ALVINN is the fastest of our current road following systems, because of its compiled represemation. It has also
been the moat difficult to integrate into systems, because it does not output detected road locations. While SCARF
and YARF report ie location and arentation of the road, ALVINN only produces steering commnids. It is,
howeve, posible lo reaon gIemricaily about ALVINN's stering output to infer some information about road
location. Thm oupu ac will bring the Navlab onto the cem of d road at some diaice along the arc. This
dislance would in gneal be unknown, depending on the particular driving style used during training, except that the
artificially shied images, used in training die Navlab to return to tie road, use a particula specified geometry. This
geometry, usd for shifting the roeds to provide traiing examples, can also be used to measure how far along die
Mering ar the crer of t wad lies, The intersection of de arc and di road center gives a single point known to
lie on dhe load cee m . Observins sev l of them pois over time allows s 10 apprximat the appaum road
positions and shape which allows die map-based reasoning needed to intgrate ALVINN with other system

TOWARD AUTFONOMOUS DRiIMG 19

Figure 2A ALVUI4N weights for one hiddn unit. Downs: input weights. Tocp
output weights. Positive weights mr whis, a~tive mr black.

2.3 3-D Perception
An outdoor mobile robot needs information derived fron appeaace (e g. roid location in a color image, or
Ima type), but it also needs to know the geametry of die observed environment. In me tmks, suh as

ecao comimy avga thde most iWpau infruiona is the gemetry of the wma, the set of 3-D suciace
obsevev or eavasud by the vehicL Mms Mt stop sow- & budlding seamutol.I qmue-wIido of a tamin is to
choms a soIle" nm ainusy a single color cmmia not stilmbles for colecng 3-D dsm. Ass siernudve is to
- pidv techique for teovering 3-D da such asm visia. Tbere an slgnftcm dawbacks to o

telulquinlading hihcm WtONl demand, diflt at musgmg bland swhmfaced reliance on uen
ghsng. IId, we un so act sugar, a lase tng scmer, whic cm gumm a high radiaution depth imag

of doe lm a ft of the vehicle. Using snch a sewdevlkises the need for inheing 3-D infotn ftom 2-D
Inhetalm@4od being active is als Im soneitive to outsde ilumlnulon. The technlog used in the smene is

very tum soad i not wed very widely yet. We discua the dmwbacb, advsontaus sod y amp PectL for futue
imp aoLe.... i ft iciolog in Section 23.1.

20 ANNUAL REPORT AUGUST 1990

The teain can be described at different levels of resolution depending on the task, the environment, and the
amount of computation time allocated for 3-D perception in the system. For example, a system that follows roads
that are known to be locally flat and mostly obstacle free, requires a completely different representation than a
system that navigates through rugged open terrain. In the latter case, vehicle safety becomes the overwhelming
issue while vehicle speed becomes much less important. This is consistent with the general approach that the
componesf a mobile robot must be tailored to environment and task.

In addition to several types of terrain representations, we also distinguish between tecliques that involve
building a representation from a single image, and techniques that put together repreentatin from several images
to build a consistent map of the terrain traversed by the vehicle. An example of the former is fast obstacle detection
in which the goal is to detect unexpected objects in the current image as fast as possible. An example of the latter is
building a 3-D map of a long stretch of terrain so that the system can later use the map to retraverse that area.
Depending on the environment and the task, we should be able to build maps at all levels of resolution.

We have identified three types of representations that we discuss in detail in the following sections. For each type

of representation we describe two types of processing- range data processing for building a terrain representation
from a single range image, and matching techniques for building consistent maps from several observations.

1. Discrete objects and obstacle detection: A coarse description of the environment is one in which only
discrete objects am represented without an explicit representation of the surrounding terrain. This
representation s appropriate when navigating in mild terrain with clearly defined objects. There ar
two applications of this level of representation: fast detection of obstacles during road following, and
building map of the objects observed as the vehicle travels on a network of roads. Such a map may
be used in a map-bosed navigation system to correct the vehicle position by matching observed objects
with predicted objects from the map.

2. Feature-based terrain modeling: A finer description of the environment involves describing the terrain
by a set of features (regions and edges) in addition to discrete objects. This representation is used for
cross-country navigation, in which the vehicle, in order to navigate safely, must take into account the
local shape of the terrain as well as discrete objects. The terrain features = be used in conjunction
with discret objects to build more reliable terrain maps over many images. This is partcularly ue in
mild open terrain in which not enough discrete objects am observed to reliably match obsevations.

3. High rewsodon terrain models: The hghestresolution re is achieved by building
elevtin rope, the spatial resolution of which may be as fine as 10c. Large terrain map can be
built from indivdual high resolution maps by correlation-type matching. The advantage over featue-
or object-baed reptesentations is that information about the local shape of the terrain is preserved
everywhere. The price to pay is much higher computation time. Therefore, high resolution terrain
maps am most useful in applications in which the computations can be done off-line, or applications in
which stop-and-go motion of the vehicle is acceptable. The latter situation occurs when navigating
through very difficult terrain in which case the best terrain description is necessary to ensure the safety
of the vehicle.

2-U Ramp sensing
The sia.nr tot we use oa the Navlab is the ERIM scanner (Table2.1). This scauner is typical of the class of laser

rmage fidersbaed on the meumummnt of the p-e shift of an amplitude modubled laser 5. Table 2.1 lists
chaacterisc of both the ERIM, one of the earliest scanners, and the Perceptron, a later modeL

Usmigan acti laser mge finder has considerable advantages over more traditional techniques such as stereo
visio. It is insensitive to outside illumination, it is fast compaed to the computation time nquired by standard
passive techniques, and it provides a high resoluton imge map as opposd to the sp-se map produced by most
passive techniqueL Howevr, we have fomd a number of problems with this law ranging technology that should
be addressed in order for it o be widely ueed

, Mived points.: At the boundary between two objects, one put of the lw spot. or fotqri is on oe

TOWARD AUTONOMOUS DRIVING 21

ERIM Perceptron

Eye Safe yes (?) yes
Field of View 80h by 30v 60 by 60 (programmable tilt)
Pixels 256 by 64 256 by 256
Ambiguity interval 20 m 40 m
Depth 8 bits (8 on) 12 bits (I cm)
Inensity 8 bits 8 bits
Maxrange 40m (?) 50m
Scanrate 2 frames / sec 2 frames / sec
Scan directio top to bottom programmable
Inerfce VME to Sun VME to Sun
Temperature narrow range 'Pittsburgh'
Construction wire wrap printed circuit
Components all custom most off the shelf
Size 90w by 35h by 45d cm 45w by 35h by 35d
Weight 50kg < 25kg
Power 26VDC 10VAC

Table 2.1: Relative performance of example range scanners

surface while the other is on the other surface. Since the sensor integrates over the entire footprint, the
resulting measured point does not lie on either surface but is "in between" the two surfaces. Such a
point is a mixed point, because it is measmued from a mixture of reflections fom both surfaces. Mixed
points no inevitable with the Cure technology. Man mixed m'ints can be removed through median
filtering. However, the mixed point problem implies that edges in range images, especially edges
between distant objects, are highly unreliable. This should be taken into account in the choice of range
image processing algorithms.

* Acquisition rate: The typical acquisition rate of two images/second is too slow. The motion of the
vehicle can be significant while the image is being scanned, thus leading to a distorted range image.
This is not a problem at very low speed, such as in cross country navigation, but may preclude the use
of this type of sensing at higher speeds, such as in highway driving, and for tracking moving obstacles.

* Seauddviy to surface materi: In early scanmers, the measured range varied with surface type. More
recent scanners can adjust for different uniform surfaces, but still have problems with edges between
srfaces that ar at the sane depth but have different reflectances. The change in reflectance causes
changes in itmnal sem gins, which upsets the phase detection, which produces a spurious depth
edge,

2.3.2 Discrete objects and obstacle detection
The lowest resolution terrain representation is an object map which contains a small number of objects

represented by their trace on the pound plane. Several techniques have been proposed for obstacle detection. The
Martin-Marietta ALV [14,15,41] detects obstacles by computing the difference between the observed range image

and pre-comlpumed images of ideal ground planes at several different slope angles. Points that are far from the ideal
mmad pbman goped into reions that ar reported as obstacles to a path plon. A very fast implementatim

of this teclualqh is pmoble since it requires only image differences and region grouping. It makes, however, strng
munpalOns on the shape of the terain. Speciically, it restrcs teain shape to a few admissible slopes and

elevations. It also takes into account only the absolute positions of the potential obstacle points, not relative

positions and slopes. As a result a short, sharp ridge or step would be overlooked, even though it may be an
oblacle. Another apprch proposed by the Hughes Al group (11] is to detect the obstacles by thresholding the
nmalzed rnWe adiet, ADID, and by thresholding the radial slope, DAIAD. The first test detcts the
1,,1tiuctes in range, while the mond test detects the portion of the terrain with high slope. This approach has
the advanagp of taking a vehicle model into account when deciding whther a point is part of an obstacle.

We m elevation map approach to detect obstacles for the Navlab. Each cell of the terrain contains the set of

22 ANNUAL REPORT AUGUST 1990

data points that fail within its field. We can then estimate the surface normal at each elevation map cell by itting a
reference surface to the corresponding set of data points. Cell that have a surface normal far from the vehicle's idea
of the vertical direction are reported as part of the ptojcnon of an obstacle (Figure2.7). Obstacle cells are then
grouped ino regions corresponiding to indivial obstacles. The final product of the obstacle detection algorithm is
a set of 2-D polygonal appnoitmatios of the botudaries of the detected obstacles that is sent to an A*-type path
pluuw. In addition we can toughly classify the obstacles into holes or butrps according to the shap of the
surfaces inside the polygons.

Figu= 2A8 shows the result of applying the obstacle detection algorithm to a sequence of SUIM images. The
Fig=e shows the original range images (top), the tange pixels projected in the elevation map (lef), and the resuilting
polygonal obstacle map (right). The large enclosing polygon in dhe obstacle map is the limit of dhe visible portion of
the world.

LIST OF
MEASURED POINTS

BUCKET (I. j

Figure 2.7: Building the obstacle map. 3-D data points are projected into
discrete buckets on a horital grid.

The obstcle detection algorithm does riot make assumaptions on the positio of the pound plane in that it only
asumes that the plai roughly horizontal with respect to the vehicle. Computing the slope within each coil has a
maooshing ediec dot may cause real obsacles to he tudweteud Thuorwe, the meobin of the elhvatiom map must
be chonse so dha esch ce9 is sipfficansy smaflke dn the typical expected obsclu. In the cae of Figoue 2.8, the
mooblaa is twenty - rimees-s. -hewsie of the deectable obstacle alo varim with the dismaim from the vehicle
doe to spinier tig pixels at longe dismances.

In ha obumle detecton mode. several improvemts can be used to dees the computaion tim We need to
look forobscluonly in anarrw so*inftezofhevehicle. We donot need w oectalthe objects, itis
siclem wo aism alam a xoo as an object is ko=&d We do wot ined high spatial tesolution at clone range,
theudeIm 1the dew can be subsumpled clos to die vehicle. Takting into acmt tho m ements ve waheved
fut obmle detection that ru in G00 = cn a SPARC wr~on, which is fast 600ugh at the em AI speech
considuring the fAct that the acqisition ime is stil 500 ms on average.

TOWARD AUTONOMOUS DRIVING 23

Fig=2.8U: Obstacm demcdamo amsqueceof images For each imag~Wo
aighie 1311p imaMS barn left oveiheAMl vIew ban fighc SegMAe

-bd a.

Anoterw appic~aio of object detectom as to build objec map by cambnng man observadom Combining
om~hdau is aldca to iomve object. localizatio, and to remove spoulaus objects Marhiag objects is not very
mpuueaa in our asm because we hmv only a few objects to mach in each ftmm and becam we can .mm that

we haa enamb adinm of thedlqAwlacmnwm bewenhumfiomumINS a iin-ehean so dotn the loicatos
o(theobjects dmsclin o m p cambe easily pwimdainteneow hng.1 bma isism to remove
11Ium objectsuad tom cam dam location offta objects - acaamy as pauiblm. Spunocumobjects catbe
demeicd in two cum: naim in dam rmm kuap my causm dhe object deteodion pengui to hackna ad moving

24 ANNUAL REPORT AUGUST 1990

objects (e.g. people) crossing the field of view are detected as objects even though they should not be included in a
map. Spurious objects must be eliminated because they may lead to disastrous results when they are used later on to
corect im position of the vehicle. The position of the objects must be computed as accurately as possible so that
the position corrections that are computed using the object map are also accurate.

The problem of spurious objects is solved by calculating a confidence measure for each object. Once an object
has been seen in one image, it should appear in subsequent images, as predicted by vehicle motion, object position,
ad sensor field of view. If it appears as predicted, its confidence is increased, otherwise its confidence decreases.
Objects with low confidence re discarded. Accurate object locations are obtained by updating the uncertainty on
object location (mean and covariance matrix) each time an object is observed in a new image. The initial
uncertainty is based on a sensor model and depends mostly on the dim between the object and the vehicle. The
uncertainty also takes into account the fact that only a small part of the object surface is observed. The uncertainties
are combined using standard maximum likelihood techniques. Figure 2.9 shows a sequence of fourteen images.
The images are separated by about 50 cm. The white lines connect the objects that are matched between images.
The white dots indicate the locations of the detected objects in the images. Spurious objects are detected in images
13, 18, 20, and 22. Since they are not matched, their confidence is low and they are eventually discarded from the
map.

2. Terrain modeling for cross-country navigation
Obstacle deocon is sufficient for navigation in flat terrain with discrete obstacles, such as following a road

bordered by trees. We need a mor detailed description when the terrain is uneven as in the case of cross-country
navigation. For that purpose, an elevation map could be used directly (12] by a path planner. This approach is
costly because of the amount of data to be handled by the planner which does not need such a high resolution
description to do the job in most cases. For example, the planner should not need to scan a full elevation map if the
train is completely flat. In ft example, the terrain representation should provide enough information to quickly
identify the fact that no search is needed. An alternative to elevation rnaps is to group smooth portions of the teain
ino reSions and edges that are the basic units manipulated by the planner. Thi set of features provides a compact
twain reptesentatil However, the plainer may still need information at a higher resolution tha the featue map.
For example, in cluttred environmen the planer has to examine small portions of the terrain to decide which
areas ae traversable (391. Therefore, a compromise repesentation should include both high resolution elevation
data and feature information and should allow for efficient access to large chunks of terrain.

Such a compromise is realized by organizing elevation and feature maps in a quadiree structure. Each node of the
tree contains information that describes the portion of the terrain covered by the corrsponding quadrant minimum
and maximum elevation, maximum slope, average elevation, and maximum discontinuity within the quadrant.
Discontinuies and slopes are computed by applying a gradient operator to the elevation map. Using this

e e sas a considerable amount of computation time both in building the -rin re esentation and in
ft it for path planning. A complete terain representation can now be built in 2 secoands on a SPARC

worlktation. Fgure 2.11 shows several levels of the qume representation built front the rag image of Figure
2.10.

The rain model frm a single range image may not be sufficient due to the limited field of view of the sensor.
In our ca, the map is accurmat enough ap to 6 meters in front of the vehicle. However, quadbue uPVnmmations
fhm cmuwuldve images cm be fused to yield a lager model of the train. In the curent Navlab configmation, we
.m de INS radiog to egister in x, y, roil pit, ad yaw. Registrion in z is achieved by calculat the z offast
between maps the mome difference of z value.

TOWARD AUTONOMOUS DRMWhI 25

F~W. 2.t* MhIfgobpimenauqumm of zmpim@a Wam d w
:M, Io F object in ampoound l mg

Our goa wM to jOvids our cou county p~m wit a methd of goig iufmm. aliw te na uuud it
efIclend. Wthog mom iname"ds mouing the plumor would hav o umb lodihidml ailment of theduoa MW 10 Obtan Me inftomda it me&a Since thu p~m w th i ns my owlqpig was. w usti
method c mm b d11cgm of hfaL

Thre 9 n M~u compact ad elegma method to modal t win tht a aomay Mym mmdi to
N'u..F- thinge "& i IGN ud fOlwing. tmu an no reginu. di e S I uud to be Muavuumblu. Uliho

ilour 10 -10m dm =040Muy sYsM tim t dm1 with Mnny doped mSloos of mmaual made. ot

26 ANNUAL REPORT AUGUST 1990

just discm objemu In addition, due to the comlexity and randomness of natual terin, uzy anempt to make the
problemn simple by fitting mathematical mdels to the terrai ends up with a mremtmfn that is Just as intratable
a anlevaionmap.

luand, of looking for a mome cam p seumo we wirrled aw goa by ipmnnga syiten that
tqremensd the rana imchicaly, in a pysuam of elpatinem ofi descendin remawom. Getting information
abouta pmbh a aIn using the tmrain pyramid. i mar effilenstha m g the maw elevatio map in the .me way
tlat repenting an object with a qud-uwe is more efficient that uepmaensing it with pixels. For a MUll Wiia cost
the aimomi of dupiaue ompanda. dfat needeid by td cmu wuum pkme as vastly reduced.

By considering what the plane needed wo kmow about the *ean we was able to reduce the computatios by
adding extra feaes= to the twain pyramid, such as twain discontiuity and terain gadientL We only added such
feature if the initial overhead of calculating the feature was less then t comnpuanal beneit to the planner.

Figure 2.10(k Ramp kupg ad. eeat map.

2.3.4 Map building from terain feures
As in the cm of object 1 ucr ip -Io, compasiW map cm be balk Amu an decrptions. The buic Ilblem is

to ma - 1 m infme bteen soccessive iuges ad to cempme the umfalbnaianbetee feaes. In ths
camedm thm doth regions that dmibs the mumin pInuWmem11 by their neo, the eqmuda of the umdmtying
ushme the ane at the regionam ado h e d &euim at the tie N objects m 4inhsd they m- oo ama d in
the mcing indo mway a 1e1 I Phoy. fdo vde fim avin a szuL d o f dep olthezu cm alm
be md for tho mathing. As In the cmof object uti a I~d estimme of the, diapheemu betwee
succeseve Ams is aed to pedict the matching fu-m-s. A much V m Fetpl- is md oo find the met conimnt 9
of matches As before, the1 - m Iis actaufl very feat due lo the mml umbeeof feemmim ad the, fact shat the iniia
gua of do 1 -1,~o bteen lon" s amo1y quitclose so ued veins The femmums- weighud anthe
Meuch p F ,Ing oo bow tdlk*l they cm be domaged. The refibtyt of a fume dope n its Mym dime
objicavem mmv relaleb dwe am~i reolm ad weed edges One a met of camo rnihes as (md, the

This a" buildig qipuch bes bee mad = nqunee of Wemp wit emn in positon esmami of up to I

TOWARD AUTON4OMOUS DRIVWJ 27

meowr im umdom ad 20 1dVigr in mum. For cmbe fig.m 2.12 showis a ueuneof five map that a

Pip. 2.12. 3-D mop buil t m 5 topg images

2.J la r- add Inwaia moeb
Mws hWO xuuaud I oin; P II m isa levuio. m, dot is a Imocda. vnft) repamood by a uguiw

spM ot vs.. (x5 v). Ths moat raghxwud way w ccnvut a mpg imWa t= kam lea mop repaumuia
wouM be so mop awk b (rewcobumpg) of the rmp Imag wo a (Wz) locati In mop comdlums Than
- a inbw ipublums with this apwc

* Sampftg: Siam this apre Is ile to imag mp~ the dkisedm of dea puisa bthe
elevadWm map is m udfbu. The mop pm su - hAwl ham doe senw.

* Sw : .Objes mae mpg ddows th- dwIs .00 faspsee ta snovisible m the lie
*a~ th um s 1mM at view. Shadow =Sgim mmn be w*Ulidy Moded mad I , enml

up ydao= so 1 6fc -I l. is avaialeI tonsd glo w diffculty 1mm is w dlsdnpus
It m --- mdm W imge -sow md asglcm oimop with so infcmmatlim thu o vpin smapling

28 ANNUAL REPORT AUGUST 1990

e Uncenaimny: Range measurements ame corrupted by noise due to electronic noise, surface material, lase
footprMs etc. The noise can be modeled by a variance, ca, for each measueeL As a frst
approximation, a depends only on the measured rangeL This uncertainty is repreented in sensor space
andA must be converted into a recprsetatio of the uncertainly in the elevation mnap.

Tose problem could be solved by applying a standard iniarpolation technique to the sparse elevation map. This
would provide a dense elevation dhat is a reasonable interpolation, of the sparse input. However, such an
imupoImIon techntique would not take into accotunt dhe geometry of the sensor thus making it difficult to identify
shadow or to convert sensor uncertainty to map uncertainty.

The lona algorithm overcomes many of these problem by explicitly taking into account the senso geometry in
building a dense elevation map. The idea is illustrated in Fgiu 2.13: Finding die elevation z of a point (xy) is
equivalent to computing the intersection of the surface observed by the sensor with a vertical line passing through
(x,y). Knowing the geometry of the sensor, the line can be represented in image space by an analytical equation of
the forn ran geuufrc) where r and c are the row and column coordinates in the image. (The projection of this line
into the image defines a locus of points which gives the algorithm its name.) The intersection between the line and
the observed surface is found between two adjaenc pixels (rl1 ,) and (r2,c2) such that range, <flr,,c1) and
raxge2>flr 2 c2), where range, and range2 are the values in the image. The final value of z is obtained by

1 1 p1 1 g the rage betweent (rl1 ,) and (r2,c2).

Thse key point ao hecus algorithm is dhat the interpoiation is taking place in the img instead of in the map.
This allows n to explicitly take into account the sensor modek the uncertainty on z is computed by combining the
knownuncertainties at (r1 ,) and (%2,c2). The unknown regions in the map can be detected by observing that (zxy)
belongs to anunknown region of the map if (rc 1) or(r 2,c2) ameona range discontinuity in the image. Another
important consequence is that the elevation can be computed at any point of the map without having to recompute
the entire map whereas standard map interpolation would have to compute the entire sparse map before interpolating
the dense map. Finally, there is no constraint on where the map coordinate system is located with respect to the
image. In particular, we can genesalize the algonthn to compute the intersection of anty line in space with the

This a hniqiue bes been used to build terrai 'nap with reaoluuin as fne as 10 cm, that include uncertainty and
explicit representation of unknown regions. lbs locus algorithm cut also be used to bxul large map by matching
maps from, individual images. Two images of the same area taken fronm two different locations, are related by a

trnformation T (rotation and translation) between the two locations. The matching problem is essentially to
compute T asaccuraely as possible Once this is done, the map can easily be merged into a larger composite map.
Given somse value of T, we can compute from the images two elevations x, and z2 for each point (xy) in the map.
The squared difference (zl-t2)2 is a measure of how good our knowledge of T is. Since one point in the amp is not
sufficien becinu of the uncertainty, we can use the suni of the squared differences, E(7), over the paut of the map
dot is vial in bach iwmags E(7) is minimumz when T is the amse tznrformadon between the locations at which
the two images wen. Starting with a initial estimtion of T we can therefor apply a minimization algorithm
(gmllemdescutoo(I to ,Fame te bestpouuibbevalue of T. Iapractice, dieinitial value of Tis -1 muted
from fatni maihing or fronm the positioning system of the vehicle. E7 is not computed over smooth as of the
rap, which would povide little variaion a a funiction of T.

TiW n elting echniqu hus been applied to the building of lop map (several hundred meters) using many
tangs umnavs collecled n the vehicle travels. Experimental ress show dhat the locu algorithm can be used to
build acconoamap over long distace. of uvel. Figure 2.14 shows a map built by combining 122 range images.

The lam, algorithm provides a basis for a number of other map operations. For instance, maushing local map for

TOWARD AUTONOMOUS DR1VDI1G 29

the vehicle with low-cesoludon aerial elevauio maps can be implemented using dhe locus algorilhnL Detaied terai
features, such as ridges and valleys can be erncied froma high resolution maps (271.

23.6Cdo DlO=jo

lTo 'ai Iupuau Itha1P - -dt we have developed have proved wo be critical !an budlding a successful mobile
tabot tha includes capabilities of obstacle avoidmnce, open twran navigation, and map budlding. We have also

. I ajdotm luow imag fnding is a sensor modality doat should be used, being superior to painl tecniues
st las taanes odae guih I b. Ioa, howevea mamvolddom lpiansincluding:

*SmJhaw Using paosutel infmation a suftlent for mos invigdon tus. loo or uask
would be bamfia to icluldy mp geo- 1muilfmidon wit apgpe-sa- - iznumedan. For
emq osa oo se=yiprati betvcgio.I r ofolowing de usof

paeIr idnibmadom would help distinguish beatwoua sftaos and other illmimuiona efcts and die
@un of tal objects an die road. TIsO would Sadsy intprove tho parkomnc of color clusilicasion,

bot x~e 1Ai- color mod ampg isammla be -ergod. We haoe dorn same limiond expubmuis with
WN m in hash at the level of d th nuq conmucting a 'coalmudsms image ad at the level of
to -n Irmseaftiau Aucolorsad angsihas.Tm. Ma mm we the oImcof shelevat which
iIx do hould be mergd (hasps, fasua for npeuamu), ad die difficulty of saccurately
mgi ilg tan w ad color canaL Modh n- wadc vamns to be damrn . s ow.

*Use of rqlammce: In additio, Im range, a himw scanne ce also mas an wage of t energy of the
refecied lew bo ibis Iage osusy called the rq7&.c u M hagis similer to an intanity haag

30 ANNUAL REPORT AUGUST 1990

Fgur 2.14: An elevation mapi built by the locus algcmithm from 122 range
imags -oef 250 maer&

CXmp that it is largey insenstiv to otid illmfhmom. Therefor it does Ma exhbit effects, such as
-4dows, highlim or aaeflacma all of which ms hod to moodel, We bave and reflectonce dat
for road following and objec recogniton with somes sen The mam limitation was poor
; 1 61n- Ie1 0 the reflectance messurmg, which we believe is not inherent to the technology but is due
to the particular sew diat we were using. Those preliminary eqpeiments have shon that active
reflectance unages are an attractive alternative to intensity imtages and that research in this direction
should be pursued further.

*Uncesdouy: We haoe proposed ways of representing uncertainty for various terain representatons.
However, the way we dal with uncertainty is still somewhat ad hoc in that it makes heavy use of the
dcoostcsre of ow ura arid the particular epmq4idons dhat we bane developed. A more
systematic approach to modeling uncenainy in 3-D terain is needed.

bledligent uain requre purception, planning, and control. While our main emphasis has been on perception,
we have also developed the planning and control needed for smoothly following rads, and for traversing rugged
off-road Mwain that challenges the limits of the vehicle hardware

The role of ;l-mIng is to geneate trajectories that meet goal requireus (such as positioning to see a Landmark.,
for etmple) without endangering the roboL It mum also makeo saw dim the robot is kinematically able to execue
them U)SCIDus all in the IpA sence of uncertinty in the rebts controlAmad cowrummmat. A number of systems
hove bee. built th addoo. a mbuat of these ia... Bduy pbumuurs war-Ieud for indoor mobile robots ad
aased thedoM . , km -could be modeledas a ft lo-Fm wivt p olom or polyhsdral objects (9.24,301.
F- 11 u goo, th robot was asmed to be circulr ad anihcim.Law, Laond [23 and Jacobs
(181 folosed. the omlirctomil requiroeut by moeiga car-lk robot with a minimum turning radius. In a
57M defluopenFd at H h.(121, the indwooenvirtnment constrain was relaxed ade a planner was developed to
pi pot in off-food envlMr-Inuuts None of doe above symsee wen able Io reuons about sophisticated goal
I Ikma ad arnedatY in F0PeAPtIoR ad ca000L The theoica gueundwodk was spelled out in (38]. but

withou acul buiding a on*bl pI er Phemingf wit uncerminy hs bm exre in anipulatin (311, but it
is me how 10 apply the da --qcfic aM of these tehniques oplanning foramobile moW

TOWARD AUTONOMOUS DRIVING 31

While the contributions of the above work are very important, in many cases it is difficult to see how to extend
them to address the remaining issues or how to generalize to other robots or environments. Our planner addresses
those problems by providing a framework for building efficient planners for different types of robots, environments,
goals, and uncertainty models.

Te first stop in building a planer is to define the constraints that must be used to compute a safe trajectory and
to reach the goal. We define three types of conmaints: sensing, environmental, and kinematic. First, we select
positions at which the robot registers its position relative to the world or to map new areas. Those positions are
integnedia gls that provide additional constraints to the planner. Second, we identify placements
(confiuations) of the robot in the environment that will incapacitate it or render it unable to locomote. They define
envirnmental constraints that a trajectory must satisfy. Such configurations include those that bring the robot in
contact with other objects in the environment, as has been modeled in traditional indoor robotics. Outdoor robots
face other hazards as well. Configurations that cause the robot to tp over or place it in situations where it cannot
propel itself forward are also be avoided. Figure 2.15 shows a set of environmental constraints. Third, we define
kinematic constraints. Most robots are not omnidirectional. They cannot travel between two arbitrary
configurations within given bounds. For example, car-like vehicles cannot translate directly sideways. In the case
of the Navlab, the minimum turning radius is seven metes. In addition to the three basic constraints, uncertainty in
robot position must be taken into account. Sources of uncertainty range from random error in the robot's control to
gross ens such as whee slippage. Our local path planner accounts for control-based uncertainty to avoid
collisims and to puartee goal attainment.

The planer generates traiectories to the next sensing point using a range map of the terrain in front of the robot
acquired from an ERIM laser rangefinder. Since the Navlab's pose can be represented by two translational
parameters and one heading parameter, the planner must find an admissible trajectory through a three-dimensional
configuration space. Conceptually, each constraint is represented by a functional inequality of the form ftp) < K,
where p is the vector of robot configuration parameters. The constraint is satisfied if the inequality is satisfied.
Applying the constraint divides the configuration space into admissible subspaces. The sensing positions form a
subspaec of this configuration space which comprises the goal of the path. The environmental constmints form a
subapace representing unsafe configutions for the robot. The kinematic constraints dictme the functional form of
the trajectory, and the uncertainty constraints dictate an envelope about the uajectory guanmteed to contain the
robot.

Analytic approaches to the problem are infeasible given the complexity of some of the constraint functions.
Furthermore, the constraints are dependent on the terrain itself, which does not have a functional form. A
straightforward approach is to tesselate the space into pixel-sized points, evaluate the constraints at each point, and
search the resultant lattice. However, even for moderately-sized planning spaces, the number of points (states)
makes the search prohibitively expensive. Instead, our planner finds paths for a mobile robot using a parameter
resolution hierarchy. In this hierarchy, all constraints (sensing, enviromentd, kinematic, uncertainty, etc.) are
evaluated - 1 a ubspace of configurations at a time (rater than individual configuration points), thus reducing
the total mmer of sates in the sew . Sensing and environmental constraints am evaluated across dree-
dmnsional voxels in configuration space, kinematic constraints an enforced between faces of the voxels, and
uncertinty costraints determine the voxel expansion needed to bound the robot's pose The planne finds a
trajectory by searching connected sequences of voxels. For a given subspace, the plann evaluates each constraint
to determine whether at l none, or some mfigsrations in the subepace satisfy the constraint. The planner begins by
considering large subspaces. Passage throuigh the subspace is permitted if all, constraints are satisfied for all
configrtion. If at laut one consniint fails for all configurations, the entire subapace is untraveriable and is
removed fom further consideration. In the event of the remaining cm (at lan one constraint is not satisfied by at
lou one configurati), the sub pace may be traversable, so the planm subdivides the subspace into smaller spaces

32 ANNUAL REPORT AUGUST 1990

ad continuies to plan at a higher resolution. Most of te coastrant are modeled uniformly as functional
ineqaliies. Thus, the planne can classify a subspace into one of the three cases by computing the upper and lower

bomuds for the function across the subspece and competing them to a constant A cost can be assigned to each
nsubece and a utaiard, depth-frst breadth-first or heuisi search can be employed.

he in IIes representation of the terain described, above provWde = efficient way to inaplemen the hierarchical
seerch. Relev=ust tain porameters such as min and max elevatio are maintained for each quadrant so that the
planner does nM have to go back to the highest resolution map oo evaluat its consaints. Figure 2.16 shows one
slice of the cons:nt space genated by running our cross-country plainer on the elevaton map of Figure 2.10.
The crisned * == reptesent inadmissible -ra of erain,.e are on which it is ilega to pu the center of the
vehicle. In the prces of planning this path, the planner mae 1493 queries for terrain iniformation. This shows t
efficiency of-both hierarchical search and hierarchical representation of the terrain.

Due to the uniform way in which the constraints ame modeled and the resolution hierarchy is built, the framework
employed in this planner is applicable to other classes of robots, environments, and goal specifications. Future work
will include butiding a complete system around the planner to autonomously drive the Naviab off-mad,
6 nplementing algorithnic improvements ad utilzig faster computer hardware to increase perfomance, and
extending this wait to operate on marn capable off-mad vehicles.

_C;_g - .

MM"s n amt so" Ca"m C~

Figre 2.15: Environmental constraints.

2.5 Arcuiectme and Syaten
Mwg uafm uch--a decone of a mobile robot is th unwwk that smembi.s the saparan components for sensing,

planing aid consul, into a coherent system. Simple robots, performing simple tasks, often have an "arciecurew
tdot cm on f&s fixed seW=nc of subroutn cafls repeftad withou variation More complex robots and missions
inquin 21= I ucave, to enabl chaning behaviors ad conflicting subgoals, and to specify flunctions and
izmhmu so Stamps of reserchers con cntrbut to building the system.

MIC Ieen mclmecnue for theNavlab Is bedon a ttcalled DDIHwhichprovides " ca nicamnsad a
dktfgtinfae lo our low-leve vehicle consul. On top ofEDDlE we have buil tools mih uteAnaedMAp. a
madhenb for suing objec and miulon information Our meet ambition systems have mWe EDDIB ad
emamei for navigating suburba -ets in asystem wecall the"Anuoaow Mil V ~hl.

TOWARD AUTONOMOUS DRIVING 33

Figure 2. 1& Planned path through cross-country terrin. Qwosed square are
inadnissible regions, passable ara un empty squaes.

2.5.1 Background
The most conventional architectures sepuusa robot software into separate modules for sensing, thinking, and

control. This has the advantage of giving one module control of the vehicle, another control of all sensors, and a
thir control of modeling and planning. This decomposition groups design tasks in the likely areas of expertise of
separate research groups. The drawback of this approach is that it does not allow for high-speed special-purpose
reflexes, that must do sensing, thinking, and control all in one tightly-inteprated modulc 4

1Ue opposite aach is typified by Brools in his submamption archiecure (8]. In his robots, each module
cvsthe competeuage fasom senamy nput ao coioW ouapw He divides his modules ino a hierarchy of

fu cub ac uuamiWg the lower levels. T7he flit module watchas smiua data and moves the vehicle away
firom. obstacles. The nust lar mome the vehicle randomuly, unles the lowest layrer takes over to avoid hitting an
objecL Hgher layers add purpose to the wanidering (eg. towards open doorways), look for objects of interst, and
so forth. Each layer is relatively simple to build, and at least in principle mostly decoupled from adjacent layers.
But with no central world model, it takes careful design to ensure that various modules us not working at cross
purposes. Reliated ideas include reative or reflexive planning. which emphasize quick response rather than careful
prepianningM and behaviors, which package sensing and control modes appropriate for specific situations (34].

Sevu som" have been md. to buld wchrncmas dont combine the best of both approaches. 7bese systems
* typicaly; al ose a hisuuchy, in which saeno inorpremiam at each level Amed int both planning a the -am level

and higer-levemnor inserpealom (1. Plans each levdel usp deoPosIaed ito lower-levl steps, and eiven to
the next mlowrlvelfor execution. Mhe hieauchies us often srtwuedby tiue (quick reflexes at the low level,
taugh sower procsse athigherlevels);dataabsrcton(mw sgnalsto smboli eoing); ad space (ocal
effct to gobal datsasns). In trying to encompas all possible sys these genml-purpose atecturs Iose
their precripiv power Their main contribution may instead be descriptive providing a common vocabulairy in
which to dieciss the differences between chitectures

For doe NOWab our first redadlaicn was CODGER, for CDmunctios ase for GEometric
Runomning (16.37,401. CODGER is a cenmllued achioctuum focused on a module called the Local Map Builder

34 ANNUAL REPORT AUGUST 1990

(LMB). CODGER was designed to handle all communications and geometric transforms, to make it easier to build
and interface individual modules. Communications are anonymous; modules send data and requests to the LMB,
and receive responses when available, without knowing which other modules are generating or using data or where
those modules am running. The LMB stores all geometric objects, and keeps track of a history list of vehicle motion
and position updates. CODGER uses its history list to answer geometric quenes that involved multiple coordinate
fn.. The LMB can take a location specified relative to the vehicle at a particular time, and retm the coordinates
of that point, either in the world frame, or relative to the vehicle at a different time.

2.5.2 EDDIE
Our current system on the Navlab is based on EDDIE (Efficient Decentralized Database and Interface

Experiment). EDDIE does not specify a particular architecture, but rather provides a toolkit which allows specific
systems to be built quickly and easily. Vehicle positions are maintained by the lowest level controller, which has
the closest access to the vehicle and therefore the most accurate information. Communications are greatly
simplified, and are point to point, increasing their efficiency. The map is divided into local and global
representations. By splitting architectural functions into separate pieces for local communications, vehicle history,
and map handling, the individual modules are much smaller and easier to maintain.

The first pot of EDDIE is the new real-time contoller. This module does low-level vehicle control and handles
mm ado with higher-level modules, and in addition maintains the curent vehicle position. Vehicle motion

commands arrive at the contrller labeled as either "immediate" or "queued. The contmrolle parses incoming
commands, handles the queue, and taks to the hardware motion controller at the appropriate times to set new
steering wheel positions and vehicle velocities. By querying the vehicle's encoders at frequent intervals, the
controller is able to maintain an accurate dead-reckoned position estimate. In EDDIE, no vehicle position history is
kept. The only times when it is necessary to know vehicle position are when new data is acquired, or during
trajectory planning. It is easier, and more accurate, to dispense with history mechanisms, and instead to query the
controller for the current vehicle position each time an image is digitized, and whenever a planner needs to know the
vehicle's location.

The vehicle contrler uses different trckging strategies to keep the vehicle on the desired path. It can also be
called upon to follow a previously recorded map if the perception clients are temporarily unable to navigate the
vehicle. This keeps the vehicle on a safe path while the vehicle turns sharp corners, outside the camera's field of
view, or travels through featureless or confusing visual scenes. Another safety consideration is smoothly regulating
velocity, trading some reduction in accuracy of velocity for smooth accelerations and reduced vehicle roil around
sharp curves. The controller warns against system failures and records a log of events for future reference. This is
extremely valuable in system configuration and debugging. The low-level controller is also responsible for utilizing
INS and encoder data to find the best estimate of current position and relaying it to external clients through the
ethemet. Fgur 2.17 shows accurate vehicle position estimation, using the INS (solid line), and the less accurate,
but sill nsble, estimation using only dead reckoning (dotted line). The clients am maneged by a software server
which phori the connections in order to meet the needs of many clients without degrading the level of
performance required by citical components of tie system (2].

Closing all positio-estimation loops through the controller allows transparent path modificatiom. We have
implemented a joystick interfac that allows a user to modify commanded trajectories. Joystick input is simply
summed with computer input, so the user has the sensation of "nudging" the vehicle away from its plumed path.
1he Naviab is also being equipp ed with a "soft bumper", a ring of ultrnonc range sensms to detect neauby objects

before allision. When complet, the soft bumper will ineract with the controlleir in to sum manner as th
joystick, by adding its control inipt to the input from planning, but will have progressively higher pin as the time

TOWARD AUTONOMOUS DRIVNG 35

Sol

Figure 2.17: Position estimation during a robot run. Ile solid line shows
the accurate vehicle track given by inertial navigation sensors. The dotted

line shows the less accurate vehicle track estimated by dead reckoning.

to collision decreases. Previous systems would have been destroyed by this subversion of planned paths inc
CODGER kapl vehicle position history by an open-ioop expetationi of perfect path tracking. In dhe EDDIE system,
all positio, queries an handled directly by the conurolle, and are thereoce answered corretl eve if the path has
been moffified.

Commimucatlons in EDDIE we unexodc and uninuesting, but f=4~ with point-to-point connections. We
currently us TCP/IP over the ethernet, but could go to shaed memory or other protocols for particular connectios,
a needed. Instead of building special-purpose synchronization mechanisms, EDDIE simply uses a blocking read to
pauise module execution until data arrives.

2.3 Annotated Maps
EDDIE does not have a gloAl map at the canter. Local positions, used only for dhe purposes of obst*l

avoidanc or path foowing are new writen int a map. Global, perumnt, map are hbodled by the sepam
uci of *soowed map*.

Annotmd mop sort with a geomtic representaton of objeco, such a rods, intectons and Isadmaks.
Anootdom me additional infonuoadon, no utuily contained in maps daed to a partiular location or object.
Amamatiaue hold a wide variety at knowledge, both procedural (action and methods) ad declaratve (dat), Mid to
a particula mW locaton or object Annowatons can tuag hon high-lvel ('church") io geameftic ("steeple helgi
25A, .0) to mmwo-pcific ("look for long nearly-veral edges") wo raw ua ("color R1 01 Dl"). Mwe kwiedge
in an amnowmimca com fro a wide variety of sauces such as human perms misson planning sofwt and
am the veblel's own observations ad experiences on previote minsions.

36 ANNUAL REPORT AUGUST 1990

A map manager module controls the annotated map. Two forms of access are provided, queries and triggers.
Queries allow a module to fetch information on demand. They return all annotations of the requested type within a
specified polygon. Typical queries ask for descriptions of landmarks, or for which recognition methods have
worked for this landmark on previous vehicle ruts. Triggers are a special form of amotations, monitored by the
EDDIE map manager. When the vehicle reaches the trigger's location, the map manager automatically sends a
specified message to a named module. Triggers may be set up during mission planning, and used to wake up
sleeping processes at specified locations or to alert a frming module to a change in conditions. In a typical run,
triggers ae used to tell the vehicle when and where to look for landnarks, and when to switch from straight road
following to the slower intersection navigation code.

Annotated maps are not designed to be a master control, but rather to serve as a scratchpad (for queries) and alarm
clock (for triggers), in the EDDIE architecture. Annotations have a standard format for header information, such as
type and location. The format for the rest of the annotation is defined by the modules that post and retrieve the
annotations, and need not be interpreted by the map manager.

Annotated maps provide a convenient framework for organizing knowledge. Tying the knowledge in annotations
to particular locations in the map makes it possible to pre-plan difficult mission segments, and to retrieve that
information efficiedly during execution. This framework enables missions that would not otherwise be possible,
due to real-time consraints and limits in processing and algorithmic power.

2-5.4 AMY
We have built several systems on top of EDDIE and the Annotated Maps. The road following system for the

Navlab is the Autonomous Mail Vehicle, or AMV. This system draws its inspiration from postal deliveries in
suburban or rural areas, which follow the same route day after day, undeterred by "rain nor snow nor dark of stormy
night". The mail carriers drive at relatively slow speeds, often on many different kinds of roads. They do gross
navigation through a network of roads and intersections, and fine position servoing to mail boxes.

This type of system is an example of a broader class of applications which focus on map building and reuse,
pohitin"ng. road following, and object recognition. Our AMV project is investigating those issues, including
strategies for using different sensors and different image undermtnding operators for the perception components.

The most ambitious mission we have performed to date is a 0.4 mile run on unmodified suburban streets in
Pittsburgh's North Hills. This involved-

* Driving along curving suburban streets, with no pavement markings, including many different types of
driveways;

* Traversing four intersections, at two of which the Navlab had to make a 90 degree left an;
" Stopping for unexpected obstacles, and resuming motion when clear,
9 Lcating lohars for position updates and for finding the destination.

We built n annotated map of the mute, driving the Naviab by hand and using the lasr seamer to r ard the
location of 3-D objecti. Object positions were measured in multiple images, to discard moving objects (pedestrians,
cars, dogs) and to improve the accuracy of measured position. The man was then annotated with triggers that
controlled vehicle path execution. During the run. the vehicle started moving slowly, while it found landmarks to
initiali its poiti. A trigger then caused the vehicle to speed up until it approace the first tm. At that point,
rig s mamd various modules to slow the Navlab, find 3-D objecm, match them against the map, mid updae the

vuairce's position estimate. Through the am, vision was not able to so te rad, so moew rigger caused dead
I Iknin to talb cowml until the vehicle wu lined up with ths nest road, when the rod was again in the field of

view mid vision could resume contol. The rim proceeded in this fbuho until the final triggers, which matched the
mailbox at the destintion with te map, and brought the vehicle to a stop.

TOWARD AUTONOMOUS DRIVUNG 37

S

Figure 2.18: Annomed map of a suburban neighborhood, showing roads,
ina dctons. landmiark annomons (small ciicles and dots), and trigge

anuownom acn nrous the ro.

2.5. Discuudom
Tfle main hamen of EDDIE and t Annoshed Map reflec our curent 66inkin outcctu

" T* Spcfcmadulzdr EDDIE does no impose pu-t-i-ula oameclvity or ma1 ft e,P but inslad
provid mai lo Ie n build thei own. In puicuiw, much of the dm that CODGER pot inso a
ceml dmnkue propery belongs whin a single module or pair of comnuninig P zomma, as
mncoumpi by EDDIE.

* EsVm um he ma imporm modal. mainuined by an urchimu are vehicle pmos. EDDIE,
explicity q=Win the lowuarevel hardware for ciuspomto, lathe dim wing to infe vehicle
modom ft. Wowe levd&

* Aucileml Suppart EDDE unw monoamd. m~as to psuvids pmnametoo ai t an -innedimt
level of absmctin, whil adding support for sof burnp.., joysick., ad othe physlics-level1 cast
lowe leveLs Tn both CODGER ad EDDIE we have lef highar, Al-level suppoc to be provid by
othe inodnles mu nooded.

38 ANNUAL REPORT AUGUST 1990

The evolution of our architectures up to EDDIE is a natural one in the evolution of the Navlab project. In the
early days, the nature of the modules and their interactions were not known, and our major concern was to not
preclude any conceivable system design. Thus, we built CODGER, which was very general and provided easy
reconfiguration through anonymity of data swing and access. Now that we know the specific configuration of
low-level modules that we need to run the NAVLAB, and how they communicate and synchronize with each other,
we seek the simplicity and higher performan that can be achieved by a mor specialized architecture. EDDIE is
that new design.

2.6 Contributions, Leson, and Condusions
We began the Navlab project six years ago with the frm conviction that the best way to make real progress on

outdoor mobile robots was to build complete systems, and to concentrate our efforts on eliminating the bottleneck of
inadequate perception. We continue to agree with, and to follow, those convictions. Following those general
guidelines, we have built a number of successful perception, planning, and control modules, and integrated them
into systems that drive the Navlab on a wide variety of test sites. During the course of our work, we have also been
surprised (usually unpleasantly) by several other aspects of building mobile robots: problems with sensors,
difficulty of using experimental computers, questions of how to evaluate our work and how to compare it with
results fron other groups, and the critical importance of simplicity, and of defining the environment in which the
vehicle must operate.

2.6.1 Contributions
Navlab experiments have validated and demonstrated several new ideas.

1. SCARF demonstrates following unstructured roads using color classification. SCARF uses adaptive
classification; multiple classes, described by Gaussian distributions in RGB color space; and simple,
piece-wise linear road models. These features enable SCARF to follow roads with indistinct edges
and changing appearance.

2. YARF uses specialized operators for tracking individual features, combined into a reliable road
follower for structured roads. On roads that have lane markinp and smooth curves, YARF gains
performance by using models of road shape and feature appearance.

3. ALVWIN demmaue neural net learning to track roads. A single algorithm learn many different
ras, with only a few minutes training tine for each new road.

4. Our algondims build accurate descriptions of unstructured terain from 3-D data. Different levels of
descriptions are available, depending on the task requirements and available processing power. This
information is directly useful for cross-country navigation.

5. The Navlab builds maps of rugged terrain, combining many noisy 3-D range images to form large-
scale mops Our approach uses a combination of iconic matching, feature matching, and vehicle
position sensing. This has been shown before for simple indoor environments, but we invented new
techniques and representations for outoo unstructured tMain.

6. Cross-country trajectory planning requires not only a representation of obstacles, but also reasoning
about vehicle capabilities, limits, and inaccurcie These constraints can be combined efficiently and
powerfuy, to guide the vehicle up to the limits of their sensing ain mechnisms

7. Simple chitectures work beL Diewing the- nuctre of te dam and coanol flow is not needed. It is
bear to build a tooikit that prmoid, communication, syrch tion, map dam handling. and clean
intorae to de low-level comol, and let individual system builkes tailor the sysemr stuctPme to their
own reeds.

24.2 Percption Lasons
P e pm:n Perception continue to be the bottlenoc. That is not to say that the other aspects of mobile robots ae

solved pmoblem (pah plannig, map repsentation, etc.) but rather de they caot be prpery explred ml
robust peception components m built. The peftmuce of a mobile robot system depends on the performance of
th pereprin components. It is often assumed that robots em control system and dt perception will provide

TOWARD AUTONOMOUS DRIVING 39

clean numerical input; or that robots are cognitive problem-solvers, and that perception will provide clean symbolic
scene descriptions. Neither of those assumptions are justified by the current state of the art in perception. Robots
will not fulfill their potential unless we continue to improve perception capability.

Seeso: While the most important scientific bottlenecks to perception involve inadequate algothms, the current
sta. of the art of ensor design is also a stumbling bock. Too much effort has been spent in overcoming sensor
limitations, which is necessary to do real experiments but makes no lasting scientific contribution. A few examples:
ler scanning technology is a great advent in 3-D sening. It still has considerable limitations, however: slow
image acquisition which puts a severe limit on the speed of the vehicle, ambiguity intervals, bad behavior on certain

material ypes, etc. Color cameras also have problems: limited field of view, inadequate dynamic range for mixed
sun / shadow conditions, unpredictable response from automatic iises and gains, etc. We do not believe that any
one magic sensor will "solve" the outdoor robot problem, but advances in sensors will certainly enable and
encourage advances in the image understanding algorithms. We continue to build better algorithms, but their full
power will not become useful until we have adequate sensors.

2.63 System Lessons
Desig for task and environment- Mobile robots operate in a certain environment to carry out a certain task. In

the cunt ame of the ar, them is no such thing as a completely general-pupse robot, universal vision system, or
geut acehitcms. Tracking highways requires substantially different processing from driving cross-country.
Some of the concPw we shared 0ocal map building, contol) and some systems use shsred modules, such as neural
nets, which adapt to different situations. But currently the right way to build mobile robot systems is to incorporate
in the design, from die beginning, knowledge of the task and the environment. Too often, neat ideas are investigated
in perception or planning and then artificially matched to an environment and a task. While this is great to
demonstrate some new research results, it usually does not conatribute much to mobile robots.

Siupliity: The simplest approach is always the best. Designing a complex system does not solve any problems,
especially if the components of the system (e.g. perception components) have not even been considered yet. The
reseach commmity is full of proposed auchiectural standards that needlessly complicate mobile robots, and that are
not bsed on otpuime with working pemeptio systems. Simpler is bet er. For example, the approach tha we
have followed in our AMV system is to:

1. Define die task Track roads with the help of a map, and perform actions at specific locations.
2. Develop and analyze the necessary components: mad following, object detection, map building.
3. Build and evaluate the components separately to understand their limitations. For example, we first

built a smale system that tracks a road map and stops at specific objects, then expanded to annotated
maps and the AMV.

4. Define representations that are matched with the task, such as the annotated maps.
S. Put together components and representations in a system that is configured for the task. The system is

"smple in the sense that it includes only the functionality that is needed for the task using the selected
COmpOean

6. Experiment. the important point is that do experimentel p is used to evaluae how well the
minio is caried out and to maybe add new perception components, or modify the re-esetatin. t
is nort used for ebugging a giant complex system.

Computadom Fast computation is of cou of great help in building a mobile robot systems. Not only does it
improve the performance of tho final system, it also holds the promise for more images processed, fas runs, and
men expeimens and thus fasm progress in the baic resach. We have found, however, that faster computation
shuld not be the highest priority. In the early stqges of a mobile robot project, especally, the rearchers need to

y may differmt possible appraches to pmeptio. It is more important to have easy-to-ur computers, with
we -apported and efficient compiler., than to have the ultimate in running speed. It is also crucial tnat 110 be well

40 ANNUAL REPORT AUGUST 1990

supported, both for image digitization and for communicating results. Now, after six years of the project, our
algorithms are stable enough that we can properly take advantage of non-standard high-speed machines; but those
machines should be stable and well-supported. It is very difficult to do robotics research simultaneously with
hardware or operating systems research.

Vehiir. The vehicle itself must be considered an integral part of a mobile robot system, not just a platform on
which experiments are conducte. The Navlab was specialized for our early systems, and provides the high-
accuracy motion and slow speeds we needed [23]. It was not designed for rough terrain motion, nor for highway
speeds. We am currently building new totbed vehicles, that will be capable of the higher speeds that our perception
and control can now handle and will be more capable of rough terrain operation. Am oaethed vehicles am being
selected and modified to complement the capabilities of our sensors, percepton algorithms, and planners.

Controller. Real-time mobile robot controllers need to integrate a wide range of capabilities, beyond just control
theory: position estimation, mapping and tracking of paths, human interfaces, fast communication, multiple client
support, and monitoring vehicle status for safety and debugging. Most mobile robots do not push the limits of
currean control theory. The major issue in controller design is not control theory, but rather design for system
integrao

Debuging and Monitoring: At slow speeds, it is relatively easy to watch the performance of a system. Our
first color road trackers, for instance, ran in tens of seconds, which gave ample opportunity for watching graphics,
saving the files t disk noting the response of the vehicle, and so forth. It is much more difficult to debug a system
runmning at higher speeds YARF now runs in less than a second, which is faste than we can write an image to disk
(for later examination), faster than we can examine the debugging graphics, and even too quick to read text output.
As a corollary, YARF can now process hundreds of images in a typical run, or thousands of images during a day's
experiments, which makes examining the output by hand tedious at best. We need both better technology (faster
disks, better video recorders, etc.) and better ideas for debugging complex real-time systems.

__-lerimatal evaluatow Even with proper tools to monitor a particular systea, it is difficult to measumre
prope m. The baic problem is how to answer the questions "Does it work?, and, "Does it work bettr". Some
system an eay to meum: did an obstacle avoidanc system nm over a tree or not? Others a more difficult
did the vehicle clip a core because of bad calibration, bad trajectory pIaning, bad imag processing, or bed
control? The problems become worse when comparing work from different research groups. All papers on road
following claim success. Most ar missing crucial details which would enable evaluating competing algorithms.
Even where all the details of the software are spelled out, crucial differences in hardware (processing rates, camera
capabilitd, vehicle and camera control etc.) make head to head comparisons difficult. Common inage databases
provide only a small part of the solution, since different algorithms and vehicles may need different sor vantage
point image collection firquency, auxiliary data, and so forth.

2A64 Conduulmu
We we still in the erly staps of undesmnding how to build reliable outdoor mobile robots, both at CKU und in

the community a a whole. It is far too early to try to defne standards for moat modules or achiectues. We am
still fa from being able to design a robot top.down from general specifications, and far fom bein able to build
peception algorids with specified performance on demand.

The Vopu in in our poup and in oher Soup wound to world so hr is largely atribble to the expeimental
spoah mad to the emphas on building complete sysems Mobile robot reserch is not jt research in
pwcqW=tio algorimu, or usrs or archhietnues, or compuer, or vehils or controfll Many e moduls,

TOWARD AUTONOMOUS DRIVING 41

developed in isolation in the laboratory, have proven difficult to use or incomplete in the context of real outdoor

systems. Our greams advances have come by developing modules to fit a certain system need. using real vehicle
dat for development and debugging, and testing the modules in the context of a complete vehicle running realistic

This veimenal appoach will continue to be fruitful. In the first six yeas of this project, we hafe gone from
excucitngly slow motion (2 cm / seac) in beign conditions (clean sidewalks) to driving up to the vehicle's top
speed (20 mph) on a variety of real roads. These remain big challenges ahead both in driving on roads (handling a
variety of lighting codi om, dealing with changing road shapes and lane markings, and handling traffic); and in
driving cros.-comntr (moving at higher speeds, mapping terrain and avoiding obstacles). We ae working in both
those areas. For road tracking, we continue to pursue vision for road tracking, including ALVINN for learning road
tracking and YARF for detecting and explaining changes in mad shapes. Other projects at CMU are working on
strategies for interacting with other traffic, and on tracking moving objects. We continue to need new sensors, both
for road tracking and for longer-range obstacle detection. Off road, we are working with new range sensors, with
inertially stabilized sensor platforms, and with new computer architectures, to build faster and more accurate
systems. For both on and off road systems, we am refining our software architecture, continuing the development of
maps and planning systems, and building new testhed vehicles.

While general-purpose systems am still far off, the large amount of experimental work over the pas few years has
bnoght sevmal mobile robot research ps to the threshold of applications in limited domains. Prototype robots
an beng Vropaed or built for several environments. Bam terrain, such as planetary surfaces or some hazrdous
waste sites, allows easier perception. limited-access environments, such as underground or strip mines, decrease
the need for safety checks and eliminate unknown moving obstacles. Convoy following relies on a person driving
the lead vehicle to avoid difficult situations, while subsequent robotic vehicles have the much simpler task of
tracking the leader. Other applications involve a human supervising one or more semi-autonomous vehicles, so the
vehicles can handle routine cases and decrease operator workload. All these applications will not only be useful in

themselves, but will continue to build the components needed for the truly intelligent autonomous vehicles of the
futroe.

2.7 Aduowledgements
Navlab work is the product of many people. Takeo Kanade, William Whittaker, and Steve Shafer have all shared

in Principal Investigator responsibilities. Navlab planning and systems have been done by Tony Stentz and Eddie

Wyatt. The new controller is the work of Omead Amidi. Martial Hebert is the CMU expert on 3-D perception,
including the Navlab's medium resolution mapping. Dave Simon built the first AMV prototype, and Jay Gowdy

continues drvelOpment. Karl Kluge is following structured roads with explicit models, while Jill Crisman and
Didier Aubert work on unstructured roads with simple qPeamac1 modeL. Dirk Lager is working on the sona
'soft bm e. Ken Rosmnblatt is developing new system atinepaon apoches Dean Pom rlen a student of
Dae T emtaky, do. neural net on the Navlab.

Thanks alo w those who keep th Navlab aive and poducvc especially Jim Frazier, Bill Ros, Jim Moody,
mad Eric Hofflas.

This peper benefit d rm commems ad contributions of ftlus from many peol eespeciallly Dik Ln ,
Dider Aubet, Karl luge, Omead Amidi, Jill Criman, Dean Pmerlaw and Jay 3owdy.

This res-meb is Ipmmns 1 in part by com ts from DARPA (dd "Perception for Otdoor Navigation" mad
"Developme of an Ingamed ALV System"), by NASA under rmut NAGW-1175, by the National Science
F-a o1k camet DCR4.04t99, =d by the Digital Equipm@t Coqoaion Exsmmal Research Pro ..

42 ANNUAL REPORT AUGUST 1990

2.8 References
[11 J. Album, H. McCain, and R. Lumia.

NASA IPIS Standard Reference Model for lerobot Control System Architecture (NASWEH).
Technical Report Technical Note 1235, National Bureau of Standards, 1987.

(2] 0. Andi.
hat rsed Mobile Robot Control.
Technical Report Robotics Institute Carnegie Mellon University, 1990.

(3] P. Amwduu
A Compumdtouaal Fhomework and an Algorithm for the Measurment of Visual Motion.
IJCV 201)1989.

[4] D. Aubert and C. Thore.
Color Image Processing for Navigation: Two Road Trackers.
Technical Report CMU-RI-TR-90-09. Robotics Institute, Carnegie Mellon University, 1990.

[5] P. Besi.
Range Imaging Sensors.
Technical Report GMR-6090, Gereral Motors Research Labs, Warren, MI. 1988.

(61 B. Bhianu P. Symosek, J. Ming, W. Burger, H. Nasr and J. Kim.
Qualttve Target Motion Detection and Tracking.
In Proc. Image Understad~g Workshop. Morgan Kaufmiamu Publishers, 1989.

M7 A.DBolikuad R. oflk.
qpuunmo Spac= An Approach to tie Inotegreion of Visoil Informnaton.

In Proc. Image Understanding Workshop. Morgi Kmfmann Publishers 1989.

(8] R. Brooks.
A Robust Layered Control System for a Mobile Robot.
IVE Journal of Robotics and Automation RA-2(t), 1986.

(9] R. Brooks.
Solving the Find-Path Problem by Representing Free Space as generalizd Cones.
Technical Report A.L Memo No. 674, MIT, ,May, 1982

[101 J. CtisUI and C. Thorpe.
Color Vision for Road Following.
Visom and Nav~gation. The Carnegie Mellon Nav"b
Xkiwe Academnic Publihers, 199, Chapter 2.

[111 M. Daily, J. Harris and K. Reiser.
Detetig Obstacles in Range Imnagery.
In Proc. Image UndersandIng Workshop. Los Angeles, 1987.

(12] M. Daffy, J. Harris and K. Reiser.
An Opuuionaf Perception Systemn for Cross-Country Navigation.
In Proc. Image Undersanding Workshop. Cambridge, 1988.

[13] EDIki.iiUniis d A. Zp.
A Cuasuad Schemne for Imtproving Road Vehicle Guidace by Compute Vision.
In Poc 10thIFAC. Munich, July, 1987.

[14] R. Dunlay and D. Morgenthaler.
Obstace Desection and Avoidernce from Range Data
In Proc. SPIE Mobie Robots Coifmrence. Cambridge, MA, 1986.

[15] T. Dmula.
Obacis Avoidanc Perception Processing for die Autoomou Land Vehicl
In Proc. lUE Robotics and Autmation. Philadelphia, 1988.

TOWARD ALTFNOMOUS DRIING 43

[161 Y. Gala and A. Stentz.
Mobile Robot Navigation: The CMU System.
IEEE Expert, 1987.

[171 Y. Golo. K. Matsuzaki, L Kweon, and T. Obatake.
CMU Sidewalk Navigation System: A Blackboard-Based Outdoor Navigation System Using Sensor Fusion

with Color-Range Images.
Io Proc. FiruJoint Conference ACM/IEEE. London, November, 1986.

[18] P. Jacobs and J. Canny.
Planning Smooth Paths for Mobile Robots.
In Proc. IEEE International Conference on Robotics and Automation. Cincinnati, February. 1986.

(191 N. Kehtarnavaz and N. Griswold.
Establishing collision-zones under uncertainty.
In Mobile Robots IV. SPIE, November, 1989.

[201 D. Keirsey, D. Payton, and J. Rosenblau.
Autonomous Navigation in Cross Country Terrain.
In Proc. Imtage Understanding Workshop. Morgan Kaufmann Publishers, 1988.

(21] S. Kenue.
Laneloi Detection of Land Boundaries and Vehicle Tracking Using Image-Processing Techniques. Part I:

Hosigh-Tramfoanm, Region-Tracing, and Correlation Algoridtns.
In Mobil Robots IV. SPIE November, 1989.

(22] S. K.....
Laneloic Detection of Land Boundaries and Vehicle Tracking Using Imag-Processing Techniues. Part EL

Template Matching Algorithms.
In Mobile Robots IV. SPIE, November, 1989.

[23] K. Dowling, R. Guzikowski, J. Ladd, H. Pangels, S. Singh, and W. Whittaker.
Naviab: An Autonomous Navigation Testbed.
Vision and Navigation: The Carnegie Mellon Naviab.
Kluwer Academic Publishers, 1990, Chapter 12.

[241 0. Khatib.
Real-rum Obstacle Avoidance for Manipulators and Mobile Robots.
Z=R 5(0), Spring. 1986.

(25] K. Kiqe and C. Thorpe.
Explicit Models for Robot Road Following.
Vision and Navigation: The Carnegie Mellon Naviab.
Kluwer Academic Publishers, 1990, Chapter 3.

[26] D. Kum, G. Phipps, A. Hsueh.
Autonomous Land Vehicle Road Following.
In Proc. ICCV. London, June, 1987.

(271 L Kweon.
Mngf Rugged Terrain By Mobile Robots With Multiple Sentors.

PhDE thi. Canegie Mellon, July, 1990.

[28 Jo..4001mo(l.
Findin Coilisio-Free Smooth Trajectories for a Non-Holonomic Mobile Robot.
In Pruc. MCCM. August, 1987.

(29] T. Levda, D. Lawton, D. Chelberg, and P. Nelson
Qmeiivs Navigation.
In Proc. ImAe Understanding Workshop. Morgan Kaufmann Publishers, 1987.

[30] T. Lossno-Peaes
Spatia Planning: A Configuration Space Approach.
1W~f Tranactdons on Comtputers C-32(2). February, 1983.

44 ANNUAL REPORT AUGUST 1990

(311 T. Lozano-Perez, M. Mason, R. Taylor.
Automatic Synthesis of Fme-Motion Strategies for Robots.
IJRR 3(0), February, 1984.

(321 B. Mysliwelz, and E. Dickmanns.
Distributed Scene Analysis for Autonomous Road Vehicle Guidance.
In Proc. SPHE Conference on Mobile Robots. November, 1967.

[331 T. Mildi, X~ Obscor and K.LIKurahushi
Image Processing System for Autonomous Vehicle.
In Mobile Robots IV. SPIE, November, 1989.

(34] D. Paygon
An Architecture For Reflexive Autonomous Vehicle Control.
In Proc. of IEEE International Conference on Robotics and Automation. MEE, 1986.

[35] D. Pomerleau.
Neural Network Based Autonomous Navigation.
Vision and Navigation: The Carnegie Mellon Navidb.
Kluwer Academic Publishers, 1990, Chapter 5.
L36 Shauser and B. Thomas.
Finding Road Lane Boundaries for Vision Guided Vehicle Navigation.
In Roundtable Discussion on Vision-Based Vehicle Guidance 90. July, 1990.

[37] S. Shafer, A. Ssentz and C. Thorpe.
An Architecture for Sensor Fusion in a Mobile Robot.
Technical Report CMU-RI-TR-86-9, Carnegie-Mellon University, the Robotics Institute, 1986.

(381 R. Smith, M. Self, and P. Cheeseman.
Estimating Uncertain Spatial Relationships in Robotics.
In Proc. AAAI Workshop on Uncertainty. 1986.

(391 A. StentLz
Multi-Resolution Constraint Modeling for Mobile Robot Planning.
Vsiou and Navigation: The Carnegie Mellon Naviab.
Kluwer Academic Publishers 1990, Chapter 11.

[401 A. Sti.
Tie CODGER System for Mobile Robot Navigation.
VIsion and Navigation: 77e Carnegie Mellon Na"ib
Kluwer Academic Publishers, 1990, Chapter 9.

[411 M. Turk, D. Morgenthaler, K. Gremban and M. Maim
V1TS-A Vision System for Autonomous land Vehicle Navigation.
IEEE PAM!f , May, 1988.

(42] A. Waxan, J. LeMbigne, L Davis, and T. Siddalingaiah.
A Visual Navigation System for Autonomous Land Veicle.
IFJ2J. Robotics and Automation RA-3: 124-141, April, 1987.

Chapter 3: Annotated Maps for Autonomous Land Vehicles

3.1 Introduction

3.1.1 Motivation
Much of the infonmticn that mobile robots need is tied dirctly to particular objects or locations. Maps, object

models and other data smcrures stor seful information, but do not organize t in eflicient and useful ways. We
have built a new map-biaed knowledge representation, the "amotated map", to index information to the relevant
object and locations. The annotations are used for a wide variety of purposes: describing objects, providing hints
for perception or control, or specifying particular actions to be taken. We have provided a query mechanism to
retrieve annotations based on their map locations. We have also built "triggers", which cause a specified message to
be delivered to a particular process when the vehicle reaches a given location in the map.

These annotated maps serve a crucial role in enabling missions that are otherwise beyond the reach of
autonomous systems. Control descriptors allow mission planners to specify what the vehicle is to do at particular
locations, reducing the need for oubowd planning. Object descriptr contain detailed instructions of how to
recognize a particular object, or contain the appearance of this object as seen by a particular senso on a previous
vehicle rum. Such infonmatim mrealy simplifis the problem of seeing ad recognizing objects. Geometric queries
enable the vehicle ID focc its attention on objects in its vicinity, reducing database access and matching time. The
trigger mechanism frees individual modules from having to track vehicle position, allowing them to devote their
processing to the task at hand or to lie dormant until they receive their trigger message.

Annotated maps do not by themselves solve difficult problems of sensing, thinking, or control for autonomous
vehicles. Their contribution is to provide a framework that makes it easy for other modules to cooperate in planning
and executing a mission. Annotated maps thus fill a need that is common to many different vehicles, missions, and
architectures.

Many analogm annotated maps exist for human ue. Ammtical navigation charts contain symbolic
descriptions of rous (airways) and landmarks, and include annotations such as the Morse code call leters of radio
navigation beacons. The AAA produces "rriptiks"1, which include annotations for route, current conditions
("construction", "speed check"), road type (interstate, two lane, etc.), genenl conditions ("winds through rolling
hills"), points of interest (rest areas, gas, food, and lodging) etc. An intelligent person can usually drive a route
without such aids; but they do provide a convenient frnmework for preplaning, and make "mission execution"
easier. Furthermore, as we drive a route, we build our own mental representations of landmark appearance, curves
in the road, and so frth, which we use to follow the same route more easily at a later time. Our annotated maps
provide the same kind of functionality for autonomous mobile vehicles.

3.1.2 Related Work
At CMU, we have developed a family of autonomous mobile lbots over the pan ten years. Vehicles have

included Neptune, a tmbed for smo vision and path plaming [121; the Terregpor, our frs outdor mbile robot
[17]; the AMBLER, a walking machine for planetary exploration C2]; and pricipally, the CMU Navlab (15,161.

Our experience, especially with the Navlab, has driven the design of the asnotated maps. We aledy have
perception and control modules dt can use infomation from annotated map including color vwi [5,9], neural

1Tdpkh ae gimd u'ka of do Ammilem Aumabi AuxiW

46 ANNUAL REPORT AUGUST 1990

networks [101, 3-D object recognition [7], and planning [11]. We have also built the EDDIE architecture, which
provides inter-module communications, control, and system structure for mobile robots (13, 141. The tools provided
by EDDIE are used for the messages that undedy queries and triggers in the annotated map.

Many other groups are working on related problems of mobile robots and knowledge representation. Rather than
competing with the ideas of annotated maps, most of this research is providing useful tools and idea that could use
or help generate the amotated maps.

Pennema, Ha=on, and Risemn at the University of Mmaschusetts are building world models and maps for their
mobile robot, Harvey [6]. They have defined t concepts of "neighbtohoods" (topological regions), "locales"
(information to decide whether the robot is within a neighborhood), "milestones" (perception for verification), and
actions. The UMass map and plan representations are similar to some of the uses of annotations, but have simple,
fixed formats, are focused on declarative representations of 3-D object models, and do not provide map-based

triggers.

Rod Brooks at MIT has long argued for simple robots with simple control schemes and simple world maps [3].
We concur that simple, sensor-based maps of particular locations are often useful. The lowest levels of our
descript annotations are designed to contain precisely the sort of information that Brooks' robots use to calculate
their position or to cause a particular action, in a small local area. We disagree with Brooks' contention that this is
the only sort of infomation that a robot should remember. Robots often work in open, featureless environments,
and need picise maps and accurate navigation evea where no landmarks may be nearby. Annotated maps are
designed to keep precise metric information in the geometric levels of annotaions, as well as the lower-level cues
advocated by Brooks.

Kender gives a much more abstract view of planning for sensor-based navigation [8]. He describes the
combinatorial problem of deciding which sensors to use, and which landmarks should be recognized, in order to
reach a given loal. The results of analyses such as Kender' should be entered into trigger, to tell the vehicle what
to lok for, and into object descriptors, to say how to look for those objects.

Blidberg ,,. his asociaes at the University of New Hampshire's Maine Systems Engineering Laboratory have
Inplemented world models for underwater mobile robots [4]. Most of their work has concentrated on efficient

descriptions of space, such as quadtrees. These spatial descriptions am importnt, but do not include many of the
other forms of knowledge (actions, descriptions) for which annotated maps are useful.

3.2 Scenario
A typical mission for our Navlab mobile robot is a delivery task on unlined, unmodified suburban streets. The

Navlab ha specidied perception modules, including color vision for road followmg on major roads [9], dit
roads [5I. and suburba smem (101. It also has 3-D perception, using a amning laser rangefinder, for landmark
recognition nd obstacle detection [7. Inertial navigtion on the Navlab is acur enough to drive blind for short

diances l].

In order to accomplish its mission, the Navlab must use several of these modules. Road following using color
vision will follow m eets, but will not be able to recognize intersections. Inertial navigation will drive through
inm emd , but mt han an accoratstarting position. Landmark recouition will updat vehicle position before
intmectiom, but is too slow to be ntun continously. Only a combination of all thoe modules, each running at the
apppraw lacadon, wil pduce an accurats and efficient mission.

ANNOTATED MAPS 47

3..1 Knowledge and Organization
In general, planning and executing such a mission requires several types of knowledge: what to look for, and how

to see it; what to do, and how to accomplish it; where to go, and how to get there. The knowledge may range from
high-level symbols, to low-level raw data. Knowledge is both internal to a single module, and used by controlling
modules to switch between knowledge sources. Approaching the intersection, for instance, the perceptual
knowledge includes:

* symbolic: intersection
* geometrk: size and shapes of intersecting roads
* sewsor-specific: use laser range finder to pinpoint the position by landmark identification
* raw data: landmark 2 meters tal, 0.4 meters wide at position (xy)

Control knowledge can also span a range of levels:
* symbolic: turn left at intersection
* geometric: intersection angle 45 degrees
* vehicle-specific: turn with a circular arc of radius 15m
9 raw data: steering wheel position left 1200 clicks

This knowledge must be carefully organized if it is to be useful. If the vehicle has to sort through all bits of
information it has about every possible object, it will overshoot the intersection long before it has figured out how to
recognize it or deduced that it was supposed to turn. it is far better to have information tied directly to the map, or
automatically retrieved as needed. The landmark recogunition module, for instance, must be able to ask for a
descriptiot of objects within its field of view, and retrieve the knowledge it needs to recognize them.

3..2 Annotated Maps
Annotated maps provide the mechanism for organizing this knowledge, by tying information to a map. The

annotations contain knowledge about particular objects, locations, or actions. Annotations come in one of two
classes: descriptors and triggers. Descriptors are passive, and are retrieved by queries based on geometry and object
type. A quay for "all objects of type 'inersection' in this polygon" would return the annotation for the requested
intersection, if it were in range. Triggers are active, fring when the vehicle reaches a particular location or crosses a
cerain line. A trigger will send a message to a particular module, such as contrller. start turning hard left in five
man feet'.

The knowledge in these annotations comes fron many sources, including human experts, mission planning
software, and even the vehicle's own observations and experiences on previous missions. It is both declarative
(data) and procedural (methods and procedures). The level of the annotations depends partly on the vehicle's
computational capabilities. Simple vehicles, in known environments, ae able to execute simple pre-planned
missions by having every object and action completely annotated at low levels. A more challenging environment,
with mome variation over time, may require higher-level symbolic descriptors in the map and more reasoning at run
time. Practical missions will probably require a mix of levels of detail. Even a sophisticated vehicle may, for
imtance, decide to reord the locations of speclar reflections from a mailbox, and use those specularities as
recognition cues. It may be much more difficult to reconsumt a 3-D model from the observed data, and to later
predit the p; from die modeL

3.23 Example Runs
Figure 3.1 and 3.2 show a typical annotated map. Figure 3.1 shows a map of a suburban area, including about

0.7 n of road with two T intersections, and a variety of 3-D objects. Object information was collected using the
ERIM laser range finder, and the road information was collected by using the inertial navigation system to provide
accurate vehicle positions while we taversed the mute. Fgur 3.2 shows a detail of the first intersection, including
the Navlab's position during a run and several triggers.

48 ANNUAL REPORT AUGUST 1990

The goal of this run was to drive from a house near the beginning of the map to a specified house near the end.
Annotations were added to the map to enable the Navlab to carry out this mission. There were annotations to set the
speed appropriately: up to 3.0 m/s in straightaways and down to 0.5 mr/s in intesections. Other annotations
activated and deactivated the module that uses the laser range finder to correct vehicle position based on detected
landmarks. Before every intersection there was an annotam that switched driving control from a neural network
vision peamn ID a module that used knowledge from the map of the intersection structure and dad reckoning to
traverse the intersectio Finally, there was an annotation at the end of the routs that caused the vehicle to stop at
the appropuiam object. The rout was successfully traversed autonomously.

In this run, and a variety of other rins, we have successfWly used nine different types of trigger annotations:
•setspeed
* dead reckon through intersection
" resume vision after intersection
" start landmark matching
* stop landmark matching
" stop at objects
" stop and start fast obstacle detection
" use vision through intersection
" switch perception modules

3.3 Tenets of Map Construction and Use
Several key ideas underly our design for annotated maps, reflecting our experience in building perception and

navigation systems for a variety of robots.

Minimize semantic interpretation. No-one can predict all the kinds of knowledge that will be placed in
annotations. Moreover, the map module need not understand the annotations. The only common knowledge in
annotations should be enough header information to store and retrieve the annotation. All the rest of the annotation
belongs to the modules that create it and interpret it, with the format to be decided upon by the module creators. The
annotmad map serves only as a scrarpad.

No specdalied query languap is needed. The standard queries ask for all objects of type X within polygon
Y. Any query more ambiious than that need not be supported. Any more detailed query would require that the map
module know the internal details of each type of annotation. It is more efficient, and a better abstraction, to let the
querying module sort through the returned objects.

Separate gda positio tracdng from local servoing. Maintaining the current position estimate in local
coordinates is a real-time job, and is best done by the low level real-time controler. In order that locations stored in
local coordinates will always be consistent, the controller's local coordinates should never be updated. Commanded
trjectories. cnma positions of obstacles to be avoided, and other phenomena that are used once and then
discuded, should be bept in local coordinates and nov. a-er-d into the map. Map-basd calculations, such as
marhing landmarks against a map, or interpreting a position fix, m perlodic nts best done by a sepma
Navigaor module. The Navigator mams the transform from local to world coordinam. Any module that needs
to know current vehicle position in world coordinates must acquire the Navigator's transform, then apply that to the
running positin report of the controller. In pactice, acquiring the Navlab's current transform is done in one of two
ways, specified at srt-up:

" Ta Navigtor can send its trasfom every time it is updated. Tis is used by fast-running modules
tat always need t latest upda.

" Slower modules, that have a longer cycle time, may not need every updated transforn. Wore,
reeiving too many updtes before the module is ready to read them may caum the inut queue to

ANNOTATED MAPS 49

Figure 3. 1: Map built of suburban satets and 3-D objects

Pigir 31 Tdiggw uwAioau for n..ft mid vehicl cannel

50 ANNUAL REPORT AUGUST 1990

overflow. Instead, these modules are notified that a new transform is ready, but do not receive the
update until they request it. The Navigator stores which modules have been notified and have not yet
requested updates, to avoid sending repeated notifications.

Ceuanalus pmitie traking. Modules often want to perform specific actions when the vehicle arrives at
ouicular locations in the map. If each module were to continuously poll the Navigator and controller for current
position, the conoller could become overloaded. Active polling also means that those modules me using computer
cycles. Momover, a Navigator position update may skip the vehicle position estimate past the point for which a
module is waiting. For each update, each module would have to figure out if any of its target positis had been
passed We prefer to have a single module, the map manage, doing position tacking for all modules. On reaching
the points of interest, it awakens or signals the appropriate module. This is the function of *trigger annotations.

No master control The map module is best thought of as an alarm clock (for the triggers) and a scratchpad (for
descriptors and trigger messages). It is not some "master" module that controls all thinking, and that therefore can
become a major bottleneck. We prefer point-to-point communication between modules, with flow of data and

control decided on module by module, rather than forcing all information through a single controller.

Plan incrementally. The map module is designed to be used by many programs, for many purposes, at many
times. Some information may be permnent; other annotations may be added to provide directions for only a single
mision. It is at advantage to be able to upate, add, and delete at various times. In particular, display and user
interface modules may read the annotated map from a file, look at it, display the annoatimons, change things, and
write it back out.

3.4 Implementation of Annotations
The annotated map needs to provide efficient access, indexed by position. The annotations themselves need to

contain an arbitrary amount of data, with a minimum of externally imposed organization on the contents. We have
designed and implemened a two-par replesentation, consisting of a map grid and an annotation database. Each
square of the grid contains a list of any anmotations that am included in that square's -ma.

Adding at amotation to the map is a two-step promeu FMrst, the actiel annotation is added to the annotation
database. Secondly, the map grid must be updated. The location of die annotation is either a point, aline, ora
polygon. This location can either be specified directly, for those annotations tied to a location, or retrieved from an
object description, for those annotations that describe an object. The location is then scan-converted (converted to a
list of cells) into die grid, and a pointer to the appropriate entry in the database is written into each of the
coresponding-grid cells.

Retrieval of annotations in response to a query is also a two-step process. Queries can specify a polygon and an
annotation type, The query polygon is scat-converted into grid cells. The atiom pointed to by each of those
cells are colecvd checlad to me if they match the specified type, nid euiled.

Triggers work similarly. At each cycle, the map module calculat the cu nt vehicle position. It calculates the
line on which the vehicle has moved since the last cycle, and sm converts that line into the grid. Each cell through
which the vehidcle has moved is checked for trigger annotation. If any am found that have not already been fired,
their meses e amt to their destination module. Since the location of a trigger can be a point, line, or set of
lines, a trigw a be red when the vehicle reaches a certain location or when it enters a given polygon.

ANNaATED MAPS 51

3.4.1 Representing Annotations
Annotations are represented with a uniform header format, plus a free-format data field. Typical header fields

include:

header
(type, destination module, used flag, text desction, location, next objec previous object, data size)

dam
(pointer to data)

The header porion contains all the information that the map module needs to undermnd. "Type" and "location"
ar sufficient for answering queries; "destination" is required for sending trigger messages. The "used" flag is set
when a trigger is fired, to avoid firing the same trigger repeatedly if the vehicle stays in the area covered by the
trigger for more than one cycle. "Text description" is used by graphics display modules. This information is also
sent as part of messages, to make it easier to debug receiving modules. The "location" of the annotation is used both
in initially setting up the grid pointers, and for the use of the receiving module. "Next object" and "previous object"
are used to describe extended linear objects. Extended objects may also have branches, which meet at intersections.
Intersections have a center point, and any number of vertices, each of which points to the beginning of an extended
object The most common extended objects are roads, which are represented as short segments pointing to their
pmeeding or following segments, or pointing to intersections.

The data portion of the annotation is, in the view of the map, an undifferentiated field of bytes. Any internal
stucture need only be understood by the modules that create and read the annotation. Since the headers have a
known, fixed size, they can be stored in a random-access file. The data may be stored as a stream of bytes, with the
header containing only a pointer to the beginning of the data and the number of bytes.

3.4.2 Implementation Details
Our prototype implementation has tested some of our design decisions, while other details will be decided after

further data collection and analysi

Grid cel size. If grid cells am too small, queries will have to look at ge number of cells, and map soag will
become a problem But the querying becomes simpler, because any object found in any of the cells can be returned.
Larger cells give faster lookups, but are no longer selective enough to answer queries on their own. Instead, objects
within grid cells must still be checked to make sure they are within the query polygon. For autonomous land
vehicles with seno ranges of two to thirty meters, a grid with 0.5 to 1.0 meter cell spacing probably provides the
right tradeoff; our current implementation uses 0.5 meter cells.

Handling large maps. For a grid with 1.0 m cells, each square kilometer will contain a million cells. Each cell
can be repmsenled with at most a few bytes of data, depending an antotation density. The amount of memory
required by a VW this sde is easily within de capability of %day's computer systms, but for mission m ining
seveal kilonears, we will not be able to keep the whole grid in main memory at once. One possible solution is
implemning quad-fees to take advantage of sparse data requirements over most of te grid. A more likely strategy
is to keep the grid an secondary storage, and only keep a window around the ctrrent vehicle position in main
memory. The amnowion databases themnelves may also need to be kept on backing store, and only read in as
needed.

Disirbaled databasm, Object derip i might be most easily implemented in s dtae internal to
the modules ot usde m. The the annouons need only rmmn dt indez of the database entry. The problem with
this method Is sinsng cotsisumecy between databases in the modules, and indices in the gid. At the opposite

52 ANNUAL REPORT AUGUST 1990

extreme, the map annotations could contain all the dat. The disadvantage of this approach is requiring more traffic
between maps and objects. An intermediate approach is to start with all the knowledge in the map annotations, but
have it automatically replicated in the appropriate modules at system initildization time. This ensures consistency
while reducing runtime overhead, at the expense of startup costs. The design of distributed databases interacts with
the design for handling large maps Keeping annotations in individnl modules would decrease the amount of
infouimatio needed by the map module, and thus make building large maps somewhat easier.

In the cmem impementio, the annotation database is static during a run. When the system is initialized the
user adds atop points, turn points, or other triggers to specify the curmnt mission. When the user is ready, the
interface module saves the current annotation database and sends de name of the file to the map module. At start
up, each module that needs a copy of the annotation database requests the name of the fie from the map module. So
modules contain a complete, consistent copy of the annotation database. The map module builds the grid, so it can
handle geometric queries. It communicates with the other modules by specifying the index in the annotation
database of the objects that match the current query. The map module also watches the grid for triggers.

Map update. Changing an annotation during a run is conceptually easy. Moving objects and annotations is more
difficult. If a single object moves, it is easy to erase it from one part of the map and write it into another location.
But if an entir portion of the map moves, such as discovering that a prtion of the road is really longer than
previously thought, the changes can be very hard to handle. Many objects would have to move: the road, all objects
attached to it, all ladmarks that were sn an previous inaccurate nms and indexed to the road, planned mission
steps bad on following the road or on seeing those landmars, et. It is probably beter to note the new
information. keep running with the flawed map, and build a new map at the end of this rim, rather than try to do
updates on the fly. Map update strategy is also influenced by the "large maps" and "distributed databases" design
issues. If an individual module updates its copy of an object description annotation, it will need to make sure any
permanent information is written out when the run is terminated or when that portion of the map is overwriten by a
new data window.

Since in de crn implemen o, each module keeps its own internal copy of the annotation database, map
updates must be specialy handled while building a new map. Under most circumstances, th map updates refer to
objects that the vehicle will not see again on this run, and therfor die updaes need not be propagated to all the
modules. At the end of a n, all the new objects can be writen to a new mape,o be used on succeeding runs.
The exception is for building maps of intersections. Our procedure is to drive through the intersection, following
one branch, and building a map; then to reposition the vehicle before the intersection, and follow the second branch.
In order to regisner the two branches correcly, the perception and matching systems need to find newly-mapped
landmarks. The map manager writes the annotation database to a file and notifies the relevant modules, which read
in the updae databam.

TIsrihes. Conepwally, it is easy t add annotatiom to the map. A program ads in the annoaion database,
adds new smomms, and wrs the updated files Machi -generated annoaions such s object descriptiois, use
intere o reed and wrft t map, and to inse anotations into the annotation dambas. Annotations
added by hand requmre, besides the basic map inmrfce routines, a user interfae to point to locations or objects on
die map, tM or read die amnotation data, display the resulting map, and ask for verificaton. While the format and
contents of the annotations will vary, te is still a lapr body of common fnctions that use stendard modules. We
have built an in-face, using X windows, that allows a user to add new objets and trigges to the map. The same
interface is aln ud o displa the vehicle and map during a rum.

ANNOTATED MAPS 53

3.4.3 Trigger Details
In order for the map module to track vehicle position, it must know both the controller's curren local position

estimate, and tho navigator's transfom dhat relates local to global cooklinates Position queries to our vehicle
controlls m= efficient, returning in lIss dun 10 miilliseconds. Our ctment imp -luentazion uses a efficient process
for gung =sxm from the navigaor, by haing dae tnvatr send the wonsfian each time it is updaed. Since
landmark sighfiups or position fixe we relaively infequent, an event-driven trmasforna update is much moan
efficient dhan Pilling.

When the navigatr updates position. the map module hasn to pay special attention to triggers. It may be that the
vehicle position estimate will jump fowrskipping same trggeus; or it may be that it will move backwards,
creating the potenti for firing trigges that have already been fired (see Figure 3.3). If the position update is
relatively small, it makes sense to use the line of vehicle travel, plus the "used" flag, to make sure that all
appropriate triggers get fred once. If the update is large. it may no longer make sense to fret triggers that should
have been fred long ago: and it may make sense to refire triggers that were fired very prematurely. Details of these
design decisions are yet to be worked out.

ion

* dm7~ Thqer
IM0 PONO f I

Z01* date

Cue 1: postdon updat skips ove trigger Cuse 2: position updat causes retrveral Of trigger

Plges 3.3: Problua with rn~fn miuloe rIjns

he acmism of notifyin a module of a rigger is by smudin a manges OWe a port. In the Unix opurning
systMMpom cnbe SK up by odcosig therat = ndlsmoing I d oth tomfnd out vimwould Mw toto talk
to them. Once connected, porn ew s inlmu ad con be rad and win amily. A module con adly check if
thare=amy bywe waitnan inW artg. Uf not, it hu notmuc- eia a mon adcon condomruning. Vf so.
it co noed the mesaqe uder aflame due momoiy sme for dhe mooms, and noad dhe ;paqh gbeI-ro of
byin s Ints mmory. A rumoing module cm pulodiculy check 10 we if a aenqe is weNg.o A sleeping Module

54 ANNUAL REPORT AUGUST 1990

can simply block on read, wich will caus it to pause until data arrives. It is possible to set ters. so a module can
wait until eithe a timer expires or a message arrives, whicheve occurs first. It is also possible to have an incoming
message generate an interrupt. so the module can be notified while ruzuing even without checking for incoming

3.S Conclusion
Annotated map provide a rnework to organize knowledge storag and retrival for autonomous Mobile robots.

The Navlab group at CMU, and other groups around the world, have my of the individual pieces of a complete
system: sensing, senso understanding, local trajectory pluuting control, and vehicles. These poece in themselves
am only sufficient to perform limited tasks. Integrating those components into an efficient systm is one of the
difficult remaining gaps. The annotated map helps fll that gap. By providing generic data handling, it allows
diverse modules to communicate their specialized knowledge. By tying this knowledge to specific locations and
objects, the annotated map provides a focus of attention, using an efficient grid structure to answer queries about
specific parts of the map. And through the automatic trigger, the annotated map eliminates the need for individual
modules to attend to vehicle position and map location. We have built our first prototype annotated map, interfaced
severa modules to it, and used it to store and retrieve data during real Navlab was. We are currently addressing the
issues of lage maps, and continue to interfac more modules and to use annotated maps to manage a wider variety
of knowledge.

3.6 Acknowledgements
Our wotk with autonomous mobile robots, and the Naviab in particular, is done with a host of colleagues in the

Robotics Institute and School of Computer Science at CMU. Our thaks especially to Takeo Kanade and William
Whittaker, co-principal investigators-, to Jull Crisman, Martial Hebert, Dean Pomerleau, Didier Aubert, and Karl
Kluge, who built the perception modules that the anniotated maps support and to Jim Frazier, who keeps the Naviab
wanning and happy. Martial Hebert, along with our colleagues Stan Dunn, Joe Cuschieri and K. Ganea of Florida
Atlantic University, provided useful comments on early verson of this npon. This msewch is sponsored in port by
contracts from DARPA, titled IPection for Outdoor Navigatin and Deveopmmnt of an Integrated ALY
System".

3.7 References
() Omead AmidL

Integrated Mobik Robot Control.
Technical Report, Robotics Institute, Carnegie Mellon University, 1990.

[2] J. Sares, BE ichen, T. IKnade, L. Kzntkv, T. Mitchell, R. Simmons and W. Whinake.
Ambluw An Atoomous Rovw for Planetary Exploration.
MEEE campua. ,June, 1969.

[31 R. hum Am
A Robust Layered Control Systm for a Mobile Robot.
ZUE Jorai of Robotics aid Aaawmaton RA-2(l), 1986.

(41 Steve 0. Clupell
A Shttpls Worl Model for a Autoomous VehicLe
In Sah lnuneional Syzpeiim an Uumuned Usiarthed Subuwalblc Technolog. Marinie Systems

Enowering Laborsaoy, Universty of Now HaWmpsi Jw^e 1989.

ANNOTATED MAPS 55

(5] ll D. Cnsnian and Charles E. Thorpe.
Color Vision for Road Following.
In Chadle EL Thorpe (editor), Vision and Navigasion: The Carnegie Mellon Naviab, chapter 2. Kluwer

Academic PubLihers, 1990.

[6] Claude Peanema, Alien Hammo and Edward R iseman.
Towards Autonomou Mobile Robot Navigation.
In DARPA Image Undmranding Worksrhop. Morgan Kaufinuin May, 1989.

M7 MkUd liHee InSo Kweon and Takeo Kmnade.
3-1) Vision Techniques for Autonomtous Vehicles
In Chailm L. Thorpe (editor). Vision and Navigation: The Carnegie Mellon Naviab, chapterS8. Kluwer

Acalemic Publisbeirs, 1990.

[81 J. R. Kmnder and A. Leff.
Why Direction-Giving is Hard: The Complexity of Linear Navigation by Landmarks in One-Dimensional

Navigation.
IEEE Transations on Systems. Man, and Cybernetics 19(6), November/December. 1989.

[91 L_ Kluge and C. Thorpe.
Explicit Models for Robot Road Following.
In Charles E. Thorpe (editor), Vision and Navigation: The Carnegie Mellon Navlab, chapter 3. Kluwer

Academk Publishers. 1990.

[101 Dean A. Pomeirleu.
Newal Nawerk Based Autownm Navigation
In Chiwles; 3 Thorpe (editor), Vimin adNavigadon: 77e Carnegie Mellon Navla, chapter 5. Kluwer

Academic Publishus, 1990.
[11] Anthony Stentz.

Multi-Resolution Constraint Modeling for Mobile Robot Planning.
In Charles E. Thorpe (editor), Vision and Navigation: The Carnegie Mellon Naviab, chapter 11. Kluwer

Academic Publishers. 1990.

[121 Charles F. Thorpe.
FIDO: Vision and Navwgadon for a Robot Rover.
PhD) thesi Carnegie-Mellon University, December, 1984.

[131 A. Soon and C Thorpe- -o oml Awhemczes.
In &kh Internatiounal Symposiumt on Unanned U,'Aeduered Subumerulbls. June, 1989.

(141 Charles FThorpe.
Outdoor Visual Navigation for Autonmous Robots
In T. IKansde, P. C. A. Grown and L. 0. Hertzberger (editor), IAS-2. CIP.Gegevens Koninklijke Bibliotbeek,

Den Haag, the Netherlands, 1989.

[15] Charles E. Thorpe.
Vison and Navi gaton: The Carnegie Mellon Naviab.
Klower Academic Publishems 1990.

[16] C 7hrpeK Febet, T. Kiakad S.Sha.
Yue.m ad UN40ato. for the CaneagieoMofla NOWla.
MEE PAWI 10(3), 1988.

[17] R. Wailee, A. Stam C Thorpe, IL Moravec, W. Whittaker and T. Kanade.
Flut esults in Robot Road-Following.
In Proc. IJCA1485. August. 198.

56 ANNUALM.EORT AUGUST 1990

Chapter 4: The Warp Machine on NAVLAB

4.1 Introduction
The Carnegie Mellon Warp machine is a systolic array computer developed by H. T. Kung's group, and used for

many appicaiom including image processing and mobile robot control (1]. We relam the history of die use of the
Warp machine on NAVLAB (Navigation Laboruay) and evaluate the Warp machine in light of this experience.
As we will demonstrate, the Warp and NAVLAB projects influenced each other in several ways; this influence led
to increased capabilities in the Warp machine and useful applications experience, as well as increased capabilities
for NAVLAB.

We begin with a short history of the Warp machine on NAVLAB. Next we describe the major NAVLAB systems
that were implemented using the Warp machine. Then we evaluate the Warp machine using experience from these
systems.

4.2 History of the Warp machine on NAVLAB
This section traces the history of the development of-the machine, its software, and its application on NAVLAB,

and discuss the motivations that led to key decisions. The earliest systolic arry designs that led to the Warp
machine we two-led pipelined ways by Kung, t aL [6,9], described in the ady 1980s. The systolic array
formed o pipeline, brawe the linear way of cells could pipeline data fiU om cell to the ne and within each
cell the floating-point pipeline formed another. These designs were shown to be capable of convolution.

With the introduction of the Weitek 1032 floating point chips in 1983, it became possible to implement a
powerful machine based on these ideas using ordinary engineering effort- i.e., without custom VLSI and with a
moderate number of processors. A machine using these chips was designed in the fall of 1983, and it was shown to
be capable of performing one- and two-dimensional convolution as well as the Fast Fourier Transform (FFI (7].

At this point the Warp cell included the Weitek floating point chips, which were fed dat from a pipelined register
file, two input and output queues connecting each cell, mad some onboard cell memory (8]. Addresses wee supplied
externally via a third queue. No d *mdpendn branching or address generation was possible.

In early 1984 a group of researchers, including hardware, software, and applications designers, began planning the
design of the Warp computer. The design of the machine changed rapidly, and became much more general. Data
dependent control flow and program memory was added. A crossbar, originally with limited interconnection and
later with full generality, was added to connect the various functional units on the cell. The pipelined register files
were replaced by random access register files.

The cell at this point had several ferus dat waer eliminted later. The address queue wa still the sole sorce
of addres for ceas. It was thought tat addrs Saw on for complex addessing operations such as FTr couN
be factored ow from th aray mad parormed on a special board called the Interface UniL The address mad dam
paths between cls fed into RAMs with read and write counters t coultd be incremented or held-not queues.
This made it possible for the queue to be used as an auiliay scratchpd register file. lowever, it was not possible
to switch back md forth betwee using the RAM a a register file and as a queue, since the counter. could not be
saved or resmed. Thus, usag the RAM as a scratchiad register file eliminated one dam pth to the cell. There was
also a "loopback" feat., wher the oupu ofa cll could be fed back into it input queu in ode to allow a cell to
simulate muklipl cell.-

The Warp cell was built in prototype form, as a two-cell arrmy with an interface unit, called the "demonstration"

58 ANNUAL REPORT AUGUST 1990

machine. Assembler development proceeded in parallel through two stages: ftrst at the 100 ns, 16-bit word level
(sunmer of 1984), and later at the 200 ns, 32-bit word level (fall of 1984). Even before assemblers or simulators
were available, pmgrams such as affine transformation, clipping, histogram, median filtering, and binary image
processing were being written.

Canegi Mell selected General Electric and Honeywell as industrial parners to help in the later design and
build die full-scale machines at the beginning of 1985. They participated in the design and construction of the first
two-cell demonstration machine and in the design of the eternal host software.

The first demonstration Warp cell array was completed and demonstrated in mid-1985. The array consisted of two
Warp cells and an interface unit. The array was controlled and fed data by a Sun 2, which also ran applications code
not running on the Warp array. (The external host had not yet been completed).

FIDO, a stereo vision system used to drive a robot vehicle, was a key application of the Warp machine in the early
part of the project. It was proposed to speed up FIDO by a factor of ten, from about 30 seconds/step to about 3
seconds/step. Implementation of FIDO algorithms on the Warp machine started in the summer of 1984.

The start of the Parallel Vision and Road Following projects in January of 1985 led to early use of the Warp
machine in real situations. In most hardware projects, applications of the hardware to real problems occurs only
after much of the sftwme ad hardwm is already developed. But these projects helped provide focus and direction
for de Warp project oven as the hardware and software were being defined. A simple color-bued road-following
program was implemented an Warp in July, 1985, and used to drive the Terepaor in the fall. To our knowledge,
this is the first application of a supercomputer to actual control of a robot vehicle. These runs set records for speed
and distance (up to several hundred meters at 0.5 km/hr) of the Terregator.

In parallel with the applications of the demonstration Warp array, the development of the W2 compiler proceeded.
Early in the compiler's design, it was realized that a design error in the cell made it difficult to generate code
efficiently. Th problem was that on transfer of a word of data from one cell to another, the receiving cell had to
expliciy increm its queue counte when the word arrived (I, Section IVa]. In order to generate such code, the
sending and receiving loop had to be muwond three times in general. Thi led to very large code bodies. A
hardware chop was completed by the end of September, at which time the old machine (and WI progrnming)
was retired and the new machine (with W2) was used exclusively.

In December of 1985 we began serious plans for installation of a Warp machine on NAVLAB. Since NAVLAB
was to be a self-contained machine, it was not practical to do the image processing remotely using the Warp
machine, as we had with Teegator. But installing a new computer like the Warp machine in a moving environment
required careful planning, both to ensure that it was useful to NAVLAB and to guarantee that this almost-unique
machine wa not damaged. Issues like cooling and vibraion-of die Warp cell amy were considered in particular.
In fact, a we loer lered, I Ido critical Wsu were coling of the exerl hot MC68020 proe a n and memory
bo mand comectar dame as the Warp cells we removed and replaced in the backplae. Cooling of the Warp
cells was not diult because they dissipated much less hen per area than the commercial external host boards,
which were tightly packed with chips. Vibration was easily dealt with by ordinary measures like mounting a plate to
hold the Warp cells in place, and mounting the rack holding the Warp machine with shock-absorbing mounts.

As t &us fall-scale proto es were being built, we began to look forwad to the production Warp machines,
which would be built using prined- boards. The change frm whrwr to printed-circu bods allowed
some ed"g; in pwtcua, we reimplemented de ce inpm queues with secial-purpous chips, and einated the
loopbeck 6mis, freeing a lot of bord area. Ths ae wa used to expand the cell dama and program memory by a

WARP ON NAVLAB 59

factor of eight, add another register file and local address generation, and add local control so a cell could be
blocked if it tried to write to a full queue at an adjacent cell, or read from an empty queue. The result of all these
changes was to create a much more powerful cell, with flexibility comparable to a standard computer. The
extensive changes (particularly the blocking mechanism) required considerable redesign time. The firs full-scale
PC Warp machine (called the "production" machine) wu accepted at Canegie Mellon from General Electric in the
spring of 1987.

Towards de end of 1986 Hamey began developing the Apply compiler. Apply had been previously developed as
a C subroutine package for writing image pmcessing functions; the programmer would write a simple subroutine
that processed a window of an image and the Apply subroutine would "apply" the subroutine all across an image.
This was done to speed up image processing using a subroutine package for accessing images in different formats;
the C Apply subroutine buffered the image especially efficiently. Hamey adapted the C subroutine idea to a code
generator for the Warp machine that took W2-like Apply programs and generated W2 programs. In the summer of
1987, Wu developed the first "full" Apply compiler, that took Ada-like Apply programs and generated W2
code [5]. This compiler took advantage of the Warp cell's capabilities and generated efficient W2 programs for
local image processing functions. At the same tine, Ribas developed a library of approximately one hundred Apply
programs.

The new Warp pmtotype was used extensively with Terrega"or in stereo vision, obstacle avoidance (using the
ERIM scanning lw rangefinder), as well as color-bared road following. from April to August 1986.

The NAVLAB work on the Warp machine began in June 1986. The work included development of a geometry
module for color road classification, which was tested from the beginning on the Warp machine. One of the
wirewrap prototype machines was mounted in NAVLAB January 1987, and demonstrated color-based road
following and ERIM-based collision avoidance in the spring of 1987. Both the color and the ERIM code were run
on the same Warp machine; we thought we could get better performance with two Warp machines, and tried this
idea later in the yew.

In the cause of integrating the Warp machine into NAVLAB we replaced a complex linking ixcedum that
combined the C puopnm calling die W2 Warp program with a runtime code downioding interfae. The some
interface supported remote procedure call of Warp routines over the EtherueL As a result, in early 1987 we
constructed a rnme code downloading procedure together with an interface that allowed calling Warp routines
remotely with an Ethernet interface. This interface greatly aided development of Warp code,.

A second, smaller (four-cell) PC Warp system was mounted on NAVLAB in November 1987. With two separate
Warp arrays we could do the ERIM processing in parallel with the color-bond road following. This two Warp
machine system was demonstrated at the end of 1987. However, there were serious problems with mounting a
second Warp machine on NAVLAB. The Warp cells wen not a prioblem; a ton cell ary could emsily be split into
two arrs. But the exterul host boards hod to be duplicad, something which we wen loth to do because of the
expese. Moreovr, the external host was one of the leat reliable components duplicating it reduced its reliability
conIF ndingly.

In this period we seriously addressed the ise of cooling for the Warp machine, paticularly its external hosL We
installed a special air conditioner for Warp, and added teperatw P sensors that would automatically turn off the
Warp machine when di e t m;Pratue went too high. This allowed us to run the Warp machine continhously on
NAVLAB, ving us a dn Warp systm; two in de laboram y, ad one oa NAVLAB, which could be used
noely whe the NAVLAB was at hbom ad connected to Ethar.

60 ANNUAL REPORT AUGUST 1990

The major application of the Warp machine from here on was color-based road following. In the sping of 1988
an adaptive color classification algorithm, using one or two cameras (one with the iris wide open and one with the
iris nearly closed, to increase the dynamic range) and a simple geometric model was implemente& The SCARF
road following algorithm was re-implemented on the Warp machine in October with a speed of four seconds per
image. This was sped up to two secods per image in November. The resulting system was demonstrated in
December, NAVLAB was driven at one meter/smnd, with a processing speed of ten to one hundred over the same
algorithm rMing on the Sun. SCARF speed was further improved in February 1989.

At this point development of ALVINN, for neural net-baed road following, began. A three-layer neural net was
tned to recognize driving direction in graphics-generated road images. The training was done off-line, in an
eight-hour run on the Warp machine in the laboratory. The resulting trained network was then used to drive
NAVLAB. Runs began approximately in February of 1989. Images could be processed as quickly at 0.75 s/unage;
on March 16 a new NAVLAB record of 1.3 rn/s was set. Later, in June, we found that we could train the network
"on the fly" by feeding it live road images and driver steering angle while NAVLAB was under human control.
This training was done using the Warp machine on the NAVLAB. The resulting technique was very powerful we
could for example train the network by driving the NAVLAB halfway along a test course under driver control, and
then allow the network to take over vehicle control

In cder to see further speed improvement both in the color-bod and the neural net-based road following work it
was thought tha the Sui 3 Warp host should be replaced with the newly available Stn 4. To do this for the Warp
host would involve extensive changes to the Warp softwae. Moreover, the Sun 4 was several times morn powerful
than the Sun 3 and its integrated, general-purpose nature made this power more usable than the Sun 3/Warp machine
combination. The Sun 4 also required less power, space and cooling, which were critical limitations on NAVLAB.
Accordingly, the Warp machine was taken off NAVLAB September 6, 1989, and replaced by a Sun 4.

4.3 FIDO
FIDO (Find Instead of Destroy Objects) was a sweo vision navigation system used for the control of robot

vehicles; it inchded a stmeo vision module, a path planner, and a moion genraw. This system descended from
work doe by Morovec at Staford [121. After Moravec cam to Camegie Mellon in 1980, work was done by
Thorpe and Matthies [11, 14], who gave the system its nme. Morn recently, work was continued by gfinker,
Crisman and Chuie (2] as well as others. This vision system was unusual in its longevity and in the range of speed
over its span of development: Moravec's original algorithm, which was heavily optimized (though different in many
important ways from the FDO algorithm), took fifteen minutes to make a single step while running on an unloaded
DEC KLI0, the Vax 780 implementation ran at thirty-five seconds per step, the Sun 3 implementation took 8.5
seconds per step; and the implementation on the Warp machine took 4.8 seconds per step.

43.1 FIDO Algrthm
F MO was a feitne-based algorithm. Afeaawe was a point that was detected with FIDO's interest operamr and

located in d space by correlation between te left and right images. An obstack was a feature that
the vehicle could not drive over-i.e., a feature sufficiently above ground level. It was assumed that all actual
obstacles to de vehicl would have enough image features to be detected by FIDO a obstces.

FIDO perfomed the following eM, as shown figure 4.1. Fka, it took two 512x512 images of its
nvironment, a left image and a rig image. Te two input im ware redt by th Image

Gmmr by succeive f sro of two, cating images of sine 256x256, 128x 128, and so on. Then Imag
PyumW Couvekaton was med to locm all of the jueviously kn ow ats in the new right image. If do feae

WARP ON NAVLAB 61

Fef g urage 1 ID ag

Left

coud b sen i di ne scneitbcme Pam d feaue Rimghtyai rlainwste ue oietf

gt r fyramideature
o ctImage Pyramid Correlation

Generator

tet o Rvio k Features

1 made Pyralm ld

4.Icorrelation

Feature
Locations

interener

Fq~ ~~~iag PyramD Boc iga

FDOu he s ben impewmeed n the deonsa~tionecWarps~ystCr emato wl teoNoypeWamache inthe

sumero 19 De wur frC hu igathte paid horpe sge new erion of the FcO sem tng ontm war,
whchw, then fine-isitil desin ph fe They idetifed he thee meator vis alidthmse (cead on, neews
opetor, and stpramid gner te atinc h lcner. The sitable fpaor pmnion n fasytolesi arra sucht

cothed We a macne. obscem iTntr th ed erne Ioa e W a d acin Nxae thrie ision ode w

lemeated h thin n a Wa p iiobylnke on th tce dremoinstato ap wsste.ntifed, wn the protocea
WirpcmachOne Stpwas ilthe oule werdePt rPle.Tentee yeraunr usinge new fetidsi the exenlhs n t

used to find the correponding point features in the left image pyramid. The new features and the trce features
were combined to form the new fist of "previously known" feature for the neut image,

4.3.W Impmmta on of F O on War
FcO he beeo implemented ta die dem onthm Warp em as well as the ow ibe Warp thei p ntce

raminer of 1984, Dow. Chag, Mattie and Thorpe deigned a new version of the FIDO system to run an War,
which was then in its initial desig phase. They identified the tloe mAjor viio algorithms (correlation. interest
operator, an pyramid gpenrtion), which were considered to be suiable for'ipeeai on a systolic army such
asteWarp iscin. Then thy redesigned FlD0 o uan theWarp mcie Next the threvisionmodules were
iieed 1-------auing Warp mircd by Klinker on the demntation Warp sysem Law, when the prototype
Warp machine was available the modules wete reimplemented by Chloe using W2 and the exteral host and the
Warp anyr= puns of th algorith in parallel.

Each of doe modules that were implemented on the Warp machine will be now described and their pezformanc

62 ANNUAL REPORT AUGUST 1990

will be given.

43.2.1 Image Pyramid Generation
The image pyramid consisted of seven levels, starting with a 512x512 image and ending with an 8x8 image.

Areas of 2x2 pixels were replaced by one pixel in the next level of the pyramid. The new pixel value in a lower
resolution image was computed by averaging over a window in the higher resolution image. The simplest averaging
was to take a 2x2 pixel area and average it to one pixeL The initial implementation on the Warp array used
overlapping 4 x4 windows, which gave slightly better results than 2x2 windows.

The pyramid generation algorithm was implemented in Wl in a systolic scheme, as suggested by Kung for
convolution-type algorithms [7]. The algorithm accumulated sixteen pixels in a 4x4 window and then normalized
to produce one reduced pixel value. This was mapped onto the Warp array as nine modules, with the first eight each
adding two new pixel values to the accumulated partial sum, and the ninth module normalizing the result. The
second, fourth and sixth module also stored the partial results until the necessar, pixels from the next row
underlying the 4x4 window had arrived at the module. The new data and the partial results were then sent together
to the next module.

A simpler sequential algorithm (with non-overlapping reduction windows) took about one second on a Vax/780.
Nine Warp cells provided a speed-up of 14, which was relatively small. The implementation of the pyramid
generation algorithm was communication intensive: it used the adder effectively only half of the time (in every other
row). It did not use the multipliers at all (except for a normalimtion). Each Warp cell was used as a 2.5 MFLOPS
machine, for 25 MFLOPS from the army. This explains the relatively small speed-up of the pyramid generation
algorithm. Adding more cells would not increase the speed since this would not reduce the communication
requirement.

This module was later reimplemented as a C program to run on the cluster processors, since very little
computation was done here. This made it possible to do the two pyramid generations in parallel using the two
cluster pocemors. In this implementation non-overlapping 2x2 windows were used instead of the overlapping
4x4 windows in the implementation on the Warp machine, to simplify the computation.

4.3.2.2 Interest Operator

FIDO detected features with an interest operator, which was designed to detect points that could be localized well
in different images (for example corners). Such points had image intensities that changed rapidly in all directions.

The interest operator took squared pixel differences in the 3x3 neighborhood around the point [3, 14]. The output
of the operator was the minimum of the squared differences in the vertical, horizontal, and both diagonal directions.
The interest values were locally maximized in one hundred subimages that were arranged in a lOx 10 grid. The
maxima of all subimages were stored in a list ordered by decreasing interest values. This gave a set of point
fmtures, distributed across the image, which could be localized in other images.

Only the firt pat of this algorithm, accumulating squared pixel differences in all four directions for every pixel,
was implemented in Wl on the Warp array. In the demonstration system, the processing sopped here. Later, we
implemented the minimization, maximization, and list formation on the cluster output processor.

The inmt operator did not offer a good partitioning into modules with similar timings. We thus did not try to
implement it in a systolic scheme, as was described for the pyramid generation algorithm in the previous section.
Instead, we used the pw panWoning model [101 whem dw was divided into equally snd Pu In this scheme,
each cell perfonned the complete algorithm on a portion of the data. An mx n img was divided into c vertical
stripes to be processed on c differm cel. For the inteest operator, de stripes had to overlap by four pixels, due to

WARP ON NAVLAB 63

the width of the operator window. Thus, every cell ran on m. (-41+4) pixels. The systolic communication facilities

were then used like a "bus": each cell received data from the previous cell and sent it to the next cell. The host sent
the data interleaved such that each cell could use every c¢ pixel for itself. At the beginning of every new iteration, c
new pixels were sent over the "bus." The offset between programs that ran on neighboring cells was two cycles
such that each cell sated a new iteration exactly when a new pixel arrived.

The sequential algorithm ran in about 2.65 seconds on a Va=i780. Ten Warp cells provided a speed-up of 26.5.
The adder was the most used resotrme of the interest operator. It was used in ftoy out of sixty-five cycles of the
innemmt loop. The multiplier was barely used (four multiplications in sixty-five cycles). The algorithm thus used
each cell as a 3.4 MFLOP machine. The addition of more cells would greatly improve the speed. In the described
implementation, each cell needed a new pixel every sixty-five cycles. Thus, maximally sixty-five cells could have
been used in parallel before the interest operator had become 1/0 limited.

4.3.2.3 Image Pyramid Correlation
For a given pair of images and a given list of point features in one image, the correlation algorithm found the

corrspondaing point features in the other image. The search for the most likely correspondence was performed on
the image pyramids, srwing at the lowest resolution (8x8) image. At each level, a 4 x4 template around the
intmesting point was correlated with an 8x8 seach area in the other image at the same resolution. The best
matching position of the template in the search area determined the position of the search area in the next higher
resolution image in the pyramid [121.

A pseudo-normalized correlation was used, as given by this formula [3]:

CORRIm - 2
(ta+(S2-$t1)/16

3 3 3
with$1" , p o ' .j *. . S2_ Z 0 (1,+,,)2 , St=d Z 10141j+

where ti denotes the template element at position (ij), and I,, denotes pixel at position (i+l,j+m) in the

image.

In the W1 version of the algorithm, the Warp machine found the positions of all features for one given pyramid
level at a time. First, templates for all pyramid levels were sent. The cells stored the templates and computed their
means and variances. Then the search areas of each level were given to the Warp array in the same sequence as the
templates. The cells correlated the current template with the cument search area and sent the correlation results for
every template position to the output cluster. The cluster processor then found the best position of each template
within its search window and determined the search areas for the next higher resolution. The process was repeated
fr all of the images in the pyramid [3].

The correlation algorithm was implemented in a systolic programming scheme, just as in the pyramid generation
algorithm. It was designed as nine modules. Each of the fist eight modules covered two template elements. The
algorithm was designed so that initially, each module received the template elements and stoed the respective
template elements of each template. Te mean and the variance of all templates were computed and stored in the
ninth module. Then, in the corelaton pm, each module got the pixels of the seuch - and the partial sums S,
S2, and S, from its left neighbor and updated the ptial sumi before it sent them to its right neighbor with the next
pair of pixels. As in the case of data pyramid generation, the second, fourth and sixth module stred the derived
partial results until the pixes of the next row, underlying the current window position, arrived. The ninth module

64 ANNUAL REPORT AUGUST 1990

combined the partial sums and the mean and variance of the current template into a correlation value that denoted
how well the template fitted the data in the search area at the current position.

The sequential algorithm took about 2.3 seconds on a Vax 780. Nine cells provided a speed-up factor of
seventy-eight. This was a much higher speed-up than that achieved by the pyramid generation algorithm and the
interest opera because the multiplier was used in evey cycle and the adder was used in every other cycle. Each
cell thus ran here as 7.5 MFLOP a machine. The communiati facilities were also used in every other cycle.
Therefore, the correlation algorithm was a fairly well balanced algodim. The maximum speed-up would have been
reached if eighteen cells had been used (due to omm ion requirements).

This module was originally written as a systolic program, but could not be raimplemented in W2 in this way
because the prototype W2 compiler allowed only homogeneous code. Instead, it was implemented using input
partitioning, like the interest operator.

4.3.3 Performance of the Vision Modules
The reimplementation of FIDO led to a total system time for one step of 4.8 seconds, which was a large speedup

over the original time, but still relatively small compared to the time that had been achieved by that time on a Sun 3
alone (8.5 seconds). In this section we will analyze the performance of the FIDO system on the Warp machine.

Most interesting was the pyramid generation module on the Warp machine. It actually took longer to run on the
Warp machine than on the Sun alone. This was because tho data flow between the clusters and the Warp machine
was unbalanced. Tue consuming manipulations were required to order the data correctly for the Warp machine in
this implementation, but the actual pyramid generation on the Warp array was not computationally intensive. The
array was virtually starved for data. This was a case where the ordering of data was too complex for the Warp
machine (specifically the clusters). A more efficient implementation would be for the cluster processors to send the
pixels in the order that they were stored in memory so that data could flow rapidly into the array, and the Warp array
could reorder the data.

The interest operator and correlation functions did not perform at the predicted speeds on the prototype machine,
although they were faster than the comparable Sun functiom. If the sttup times on the Warp machine were
subtracted (the startup time was much lower on the production Warp machine), then the actual times were close to
th predicted times.

The interest operator requited about 0.1 seconds of Warp array processing time for the ten cell implementation
compared with a one second Sun 3 time. Additional time was spent starting the Warp array (about 25 milliseconds).
However, most of the time was spent in post processing. After the interest operator was run, the cluster processors
sorted and selected the resulting data. This was about 28% slower than the Sun 3 processor, because of a slower

clock rae

The coration function had less than a factor of three speedup, compared to a Sun 3 alone. As with the interest
operator, the time required for the correlation function on the Warp arry was small. However the time spent
processing data for the Warp array on the cluster processors dominated the total execution time. This time included

the following:
" Statup overhad of 25 ms. In one step, correlation was called seven times, for a total overhead of

ay 0.2 eo nds.
0 Rearragin da for the Warp machin. Complex addreumng wu needd to send the image patches

from the diffi nt pyramid levels o the Warp machine.
" Fixed loop function of the W2 compiler. A fixed umber of fetures must be processed in every

correlation, in our cast fifty, although the average umber of etm in a correlation was

WARP ON NAVLAB 65

approximately twenty-five.

Work on FIDO stopped in 1987. The move from Terregator to NAVLAB, with its ERIM laser range scanner,
ended it. FIDO's stereo vision was not as reliable, and could not be made significantly faster, than the ERIM
scanner. While FIDO could locate a small number of "feature points" in a few seconds of Warp machine time, the
ERIM scanner provides a dense three-dimensional array of points in one-half second scanning time and a few
seconds of processing. Moreover, ERIM worked much more reliably than FDO-it could even be used at night,
and FIDO's interest operator, designed to look for object corners in indoor images, never performed very well
outdoors; it was confused by image clutter, such as leaves, in outdoor images.

4.4 SCARF
SCARF (Supervised Classification Applied to Road-Following) is a road-following navigation system used to

drive the Navlab. The system labels every pixel in an image as road or off-road depending on how well the color of
the pixel matches road and off-road colors from previous images. The road location is determined by matching an
ideal road shape model with the labeled image data. This location is then used to update the stored road and
off-road colors and to steer the robot vehicle. This system has evolved over a period of four years and is still being
used as a research tool today.

SCARF has had several implementatin on the Warp machine. The first of these implemation was written in
W2 and Apply on the prototype Warp machine. This implementation showed only a factor of two speedup over the
Sun 3 version of the code. Later versions of SCARF were implemented on the production machine. We used the
Warp machine to process two larger images rather than the one smaller image of the prototype implementation. In
this case we saw a speedup of six over the Sun 3 implementation. The fastest SCARF system had a total one second
Warp machine time and a total time of three seconds counting all the overhead including vehicle control. Compared
to a Sun 3 implementation, fie speedup was thirty for the Warp machine time or ten counting all overheads.

In the nuext sectio, we will describe the SCARF algorithm in more detail. Then we will show equations for each
SCARF module tha was implemented on the Warp machine and describe their implemenation. Finally, we will
discuss how the later SCARF implemetions were derived from die first and discuss n general tem the timing of
the systems.

4.4.1 SCARF Algorithm
The program flow and data transfer between the different SCARF modules are shown in Figure 4.2. SCARF

starts with (480x512) RGB images from the color camera. The Image Pyramid Generator creates an image
pyramid for each of the ROB input images. The Teture Operator takes the blue image pyramid and creates an
image corresponding to the texture seen in the scene. The textur image and the smallest level of the RGB pyramid,
the RGB Images, am sn to the Clkakr. The Clasaifler comnpaes the color of ach piel in the image with
remembered road and off-road color described by the Color Model. Each color pixel is assignod a value in the
Probabilki Image lepresenting the likelihood that the pixel is a road pixel. This image is usedu voting weights by
the Road Hough module. Each pixel votes, using its assigned probability, for all of the possible roads that contain
that pixel. The Road Location with the largest accumulated voJe is selected as the be t road. Th resulting Road
Location is used by the Color Model Generator to label pixels in the image as road and off-road. The labeled pixels
we then aned to formulate new road and off-road colors models The Road Location is also ued to generate motion
commands for the veicle.

66 ANNUAL REPORT AUGUST 1990

Camera

Input RGB Images

Iage Pyramid Blue Image PEamX Texture
E enerator Oeao

RGS IagesTexture Image

Color Model Probability Image

S Road
Hough

Generator Road Location

Figure 4.2: SCARF Block Diagram

4.4.2 Implementation of SCARF on the Warp mchine
SCARF has been implemented on dfe prototyp Warp system as weil as dhe production machine. In dhe initial

system, four modules were picked for implementation on dhe Warp machine: die Texture Operator, die Classifier,
the Road Hough, and die Color Model Generator. Tine modle were initially implemented by Crisman and Webb
for doe prootp machine. Latw, Chen and Crisnan imiplemented a difert version of SCARF on the production
machine. This version was mor cm pusationally expensive tha die original systm. A &Wna SCARF system was

implementedP by Cuisman. It had only one module to pr cessmdie entire SCARF algorithm.

T1e next sections will describe each module that was implemented in more detail The general equations will be
given and a brief overview of how the algordiths were divided among the Warp celLa Fnaly we will discuss how
thes modules were combined to form the SCARF system and give overviews of their performance.

WARP ON NAVLAB 67

4.4.M Texture Operator
The Texture Operator consists of two Roberts' edge operators and a Texture Determination operator. The first

Roberts' operator is run over the 120x 128 blue image to form a 120x 128 Fine Edge Image. The second Roberts'
operator is run over the 30x32 image to form the 30x32 Coarse Edge Image. A Roberts operator computes an
edge value by looling at the input image, in, values around the edge pixel location. Therefre edge value at row i
aid columnj is calculated by

edge(lU] = liai][Il - in[i+lUj+llI + ini+l]j] - in[][j+]l.

The final phase of the Teziwe Operator is the Texture Determinaon operator. It first creates a Fine Texture
Image and them counts the fine mure pixels in a region to fa the smaller, output Texture Image. The Fine
Texture Image is computed from the Fine Edge Image, the Coarse Edge Image, and the Average Image. The
Average Image is the 60 x 64 input blue image. The pixel located at row i and column j of Fine Texture Image is
calculated by

fine-texaureil[jj = THRESHOLD (fine..edge(ij] / (a coarse.edge[14]lj/4] + (1-) averagei/211[/2])).
THRESHOLD is a thresholding function that outputs a I if its argument is greater than a particular threshold value
and 0 otherwise. The constant a=0.2 is a weighting value; it was set heuristically. The purpose of the Fine Texture
Image was to locate texture in the input image that was independent of brightness and scale.

The implementtin on the Warp machine used three differant modules, the first two of which wer Roberts edge
operators and the third was a combination of the Texre Determination operator. Although the algorithm was the
same for the edge operators, they needed to be implemented separately since the input images were different sizes.

The edge operators were written in Apply and the last module was implemented in W2. The input images were
divided column-wise among the cells. To speed up the processing time, the loops were unwound and each pixel of
the output Texture Image was calculated immediately after the calculation of the corresponding 4x4 block of the
Fine Texture Image. Therefore there were 16 explicit equations in the W2 code for each of the fine texture pixels in
the block, each of which was followed by a counter keeping track of the sum.

4.4..2 Classifer
The classification module of SCARF uses a Bayesian classification technique to determine the lilihood that

each pixel is a tad pixel by matching pixel colors with remembered road class color. A Bayesian classifier takes a
d-dimensional measurement vector, x, and chooses the best class label, , from a set of K classes, using a
previously computed, class conditional probability, P(x I w), for each class [4, Section 2.8]. For our case x = [Red

Green Blue Texure]T. We assume that the class conditional probability can be modeled by a Gaussian distribution
and therefore, is totally specified by (mj,Cj.Nj}, the mean color and texture, the covariance matrix describing the
relationship between the colors and texture, and the number of samples in class wj. This classifier can be shown to
be equivalent to picking the class that maximizes the following likelihood

Xj a /n(NI) - d2I(x)- lt2 In (jj1) -in(-M)2j1*-j
where each pixel provides a four dhensional measurement vector (d = 4). To get the Probability Image value the
exponential function is applied to the maximum lilelihood value. The sign is negated if the maximum class is an
off-red class.

This module was implemened in W2 by once again dividing the input 30x32 ROB Images and Texture Image
into column stipes. The input stati dcal color models wee duplicated on each cell. Notice that the first three terms
of the likelihood calculation can be computed only once for each class rather than once for each pixel and was
passed as input into the Warp aay. To get the desired ptbility measum, an exponential function is needed. An
app oximuado to an exponential wa implemented on the Warp cells.

68 ANNUAL REPORT AUGUST 1990

4.42.3 Road Houegh,
7his SCARF module sembces through all possible road interprewins for the road having the gremest

accunulaied piobability based an dhe Probabity Image fmur the Clau~1r. We assumue the road is locally nearly
staighi, and can be pssamewrized using (v, 9) where v is the colare whom the center of the rood intecepts with dhe
vanishing rowm i ae ad where 0 is the angle diffeece from peapentdicular where the cente line lies (see
Figi 4.3.) These two pum am tshe axes ofan accumelma space used for collecting vows& Each pixelin the
probWAiy imag votes for all the rooshait caoan thst piel by adding its ptobability to the juoper positions in the
aOcnaui3r. For each angle 9j. a given pixe locina (r. c) wil vote for a aet of vanishing points lying between v,

ad v. given froms the equations below

v,-c+(rhz)tan 0+(w/l)Qr-horiz).

whaerhozis thehornrow indieimage, wis the rodwidth atiebottom ofthe iage and is thlengthfrom
the horizon row to dhe bottom of the image. T1he maximum value of the accumulator is chosen to be the road.

V

horiz

I

ftg.. 43: Road Hough

Thu module un inopuplmed by diseribudag the input PtobahWay impg colkin-wise usag the cells Tlea
was no ovesiqiofthe input betw en Cells. Howevaacomplet oughspacewacalumd on eah cel. To get
the output Bough, the Winddal cells Hough spaces wes added as the output Hough Space was passednrugh the

WARP ON NAYLAB 69

4.4±4 Color Model Generator
This function calculates the road and off-road color models after each image is processed so that the system can

adapt to cbmging illumination conditions. The texture model is not adapted and therefore is not computed after
each imageh~ likee color model The mad and off-road color models are modified in three steps. First a set of
pixels in the current umage is chosen as road and off-road tranig sets. Next the training sets are subdivided into
classes using an LSODATA clustering algorithm. Finally, die new statistical color models am calculated for each

HostasWar

Road Location Hs IWapRGB Images

Classa Rlas Cmass
Image Imgsrmg

(N, SUM C)M

moul a sow i Fg a lculase wthaCaIaggerdonte exlashs t and Ceinutss
Imge.Ths e asclld Meera tieImfagh nwclr oesweene. Iagtrte s Ite a gte

The Supie Fioule omA:e - epiel vaufro L aT labedinpu tonn g th e t Thp labes echimg

70 ANNUAL REPORT AUGUST 1990

pixel were stored in the input Class Image which either labeled each pixel as one of the road or off-road classes, or
as unknown. It also read the RGB Images. From this it accumulated the sums, sump and the squared sums, sum of
the red, pa. and blue pixel value for each class wj. It also counted the total number of samples per labeled class,
N. Color values wee calculated for each class using samples labeled from the Class Image. From this information,
the mean color of each road and off-road classes wer calculated by an e tl hot routine.

The Adjust Module adjusted the Class Image by using the current mean colors rad and off-road classes. It read
the mean class colon from the external host. the old Class Image, and the input RGB Images. Any pixel that was
labeled a unknown in the old Class Image remained labeled as unknown. If the pixel was labeled as one of the road
classes, th the pi e color (from the input color images) was rompared with each of the road mean colors. The
pixel was then re-labeled as the class whose mean color most closely matched the pixel color value,. Similarly, if the
pixel was labeled as off-road in the Class Image, then the new Class Image label was determined by the class whose
color mean value was closest to the original pixel data. This module wrote a new Class Image.

The Sample module was implemented in W2 by dividing the RGB Images and the Class Image evenly among the
cells. Each cell calculated its own partial sum of the color values for each class, partial sum of the color values
squared, and number pixels with each labeL The resulting sums were accumulated as the values were passed out of
the Warp array and to the external host. The host then calculated the statistical color models using this values by the
standard stsastcal equation for mean and covariance. The new mean values were then passed into the Adjust
model

The Adjust module was implemented in W2 by also dividing the input Class Image and RGB Images evenly
column-wise among the cells. The mean values were copied to all of the cells. Therefore each cell produced a
column stripe of the output Class Image.

4.4.3 Pewfornmne of SCARF Implementations
SCARF was picked for iplenrtion on the prototype Warp machine in January of 1987. At that time, the

system was already implemented on a Sun 3 and was processing images in about thirty seconds per image. During
the time that W2 code was implemented, the C code was optimized, giving a final Sun 3 time of about twenty
seconds.

The first implementation of SCARF used the prototype Warp machine and was completed in March of 1987.
This implementation used only eight of the ten available cells so that the column data could be distributed evenly
among the cells to simplify the implementation. Initially, the modules were implemented as described above.
However, the time for downloading microcode to the Warp cells and the time required for passing data to and from
the cells prevented any speed up of the implementation on the Warp machine over the Sun 3 implementation. This
impleentation required about fouren downloads of Warp microcode ud image data.

To improve the processing speed, the microcode for individul modules were linked Kete foaming three
micmcode blocks. As a result, the micnroode was downlode only the times per image. To impmve this rate, we
implemented the two Roberts oprators in W2 to reduce die size of the microcode equired for these modules. At
this time, the microcode could be linked into two separm sections and then required only two downloads per image.

We also noticed that we were posing in input image dat repeaedly to the Warp ary. By locking the Warp
machine so dilt no other u could access the machine, and declaring the repeaed input as global dam in the same
position in each W2 module, the input could be loaded onca, and then used by diffunt modules without being
reloaded. Wish this modification we med to see an improvement over the Sun 3 tim.

WARP ON NAVLAB 71

We implemented a version of Image Pyramid Generator on the cluster processors. This removed some of the

load from the Warp aray and had the additional advantage that the data from the frame buffer did not need to be

copied to the external host before it was Iransferred to the cluster memory. Instead, the reduction implementation

read the first of its inputs directly from the frame buffer and this data was nev copied. In order to be as fast as

possible, however, this implementation only approximated the averaging that was done in the Sun implementation.

Using microcode linking, common global storage, and by hid optmizing die W2 code, we were able to get the

sysm running in about ten seconds per image. This speedup was small, but the results were promising for future
implementatio on the production Warp machine.

The next implementation of SCARF was more computationally expensive than the original version. It used two

color camera inputs rather than the original one camera. It also classified 60x64 images rather than the original

30x32 images. The image pyramid generator now had twice as much data to process, and the classifier and the

color model update had four times as much data since the vectors were now six dimensional rather than four as

before. This implementation ran in about sixty seconds on a Sun 3.

This new SCARF was implemented on the new production machine by Chen and Crisman. On this machine, we

had eight times man cell memory for global data and for programs. This machine used DMA for faster 1/0 from

the external host to the Warp cells. The image data was now divided by rows on the cells rather than by columns.
This allowed an evm divisim of the 60 rows among ten cells rather han 64 columns divided among eight cells.

The new machine allowed successful use of the rverse data path feature where data could be accumulated on one

data path onto the last cell, then the data could be passed back and copied into the other cells. This then allowed us

to combine the Sample and Adjust modules from the Color Model Update into one W2 module. To do this the

Sample module was modified so that after all of the sums were passed to the last cell, the last cell would calculate

the new mean values and pass then back to all of the other cells. Then the Adjust module can be run without the
intervention of the external host.

The larger memory of this machine also allowed us tn soe the RGB Images in a global memory location and then

only input ids data once per pocessing step. The incease in pmrpam memory allowed all of the modules to be

linkd imo one microcode which was only downloaded to the Warp machine once before any image processing
began. This implementation required about ten seconds per image, which was a speedup of six over the Sun 3

implementation.

The last implementation of SCARF on the Warp machine was completed in September of 1989 on the production

machine. This version still used 60x64 images; however, it returned to the original one camera version of the code.

The entire SCARF loop was implemented in one W2 function and one function was set up to iniualize the whole

system. The initialization Vpocess read in a 480x512 image and created a 60x64 image in Warp's cell memory.

The W2 SCARF loop function mrd by doing the Color Modd Gewator on the resident uag in memory. Then
the new colr imp was read ino the Warp cells and reduced. Next the C&&r and the Road Hough was applied

to the input image. Only the resuling rood location was pised out of the Warp aray. Therefore, th main W2 loop

function read only the full me color images, and wrote a couple of floating point numbers representing the road

location in the image.

This version o SCARF ran in one second of Warp machine time, and a total of three seconds of time which

include meP limited displays ad sndin moion commnds to do robot vehicle. This implem ati is

challenged only by a similar Sun 4/Androx implementation which process lower resolution 30x32 images in 3.5
mons.

72 ANNUAL REPORT AUGUST 1990

4.5 ALVINN
ALVINN (Autonomous Land Vehicle in a Neural Network) applied connectionist techniques to the same problem

addressed by SCARF, that is, road following using color images [13]. The key difference is that while SCARF was
"trained!" by hand, adapting standard vision algorithms to the recognition of a road, ALVINN used a neural
network leianing algorithm to automatically learn what image features were useful to discover the position of the
road.

Th development of ALVINN on he Warp machine went drough two phases. In the first phase, from
appoximaty February through May 1989, a road image geneaor was implemened and used to generate training
images that were fed, together with the com mad position, to a standard back propagation learning algorithm.
The back propagatim algorithm ran on Warp, off-line; training runs were done overnight in the lab. After training,
the learned network was used on NAVLAB to control the vehicle. (The network was run on a Sun 3, since

application of the network, once it was learned, required relatively little computation).

This training technique fully exploited the power of the Warp machine; eight hour runs were used of the Warp
machine, with approximately three-quarters of the time during these runs representing actual Warp machine time.
Comparable training on a VAX 780 would have taken months.

Thining uing this method demonstraed he feasibility of using a neural network to control a robot vehicle. But
the method suffered from a serious problem. Essentially, the process of adapting computer vision techniques to road
recognit was replaced by the prous of aapti n computer gahi techniques to rad image generation. This
"forward" genertion problem was easier than the "inverse" recognition problem, at least for the simple roads in
the park, but it still required human intervention, so that the generated road images accurately represented the range
of images that would be presented to NAVLAB. For successful navigation in more varied environments, the road
image generation code would have to become more and more complicated and difficult to program and test.

To overcome this, training "on the fly" was attempted, starting in June 1989. Road images were taken directly
from the camera, reduced in size, and presented to di neurl network together with the curnt driver's steerig
angle (with the vehicle under human control). A clever technique was used to create many example imags from
one mad imape ad ering angle. With the Warp machine on NAVLAB, b ppgmon was used to modify the

neural network weights as the vehicle was driven up the road.

Remarkably, it was found that with a short sequence of a few tens of images, the network could be trained

successfully to follow the road. The eight-hour runs on the Warp machine in the lab were replaced by short runs
driving NAVLAB for about ten minutes. Apparently, the intense training of the network in the long runs was
unne-e-sar, in fact, the road following problem was much easier than it had appeared bad on the long runs.

4.6 Evaluation of the Warp machine on NAVLAB
We now cridaily evaluate the Warp machine in light of the NAVLAB experience. We will meat hardware and

softwm ely.

4.6.1 Warp Hardware
The Worp hadware consists of three components: the Sun host, the external host, and the Warp arry itself.

WARP ON NAVLAB 73

4.6.1.1 The Sun Host
The choice of a Sun as the host of the Warp machine was one of the good early decisions made in the Warp

project. At the time, the Sun workstation was one of the most powerful general-purpose workstations available; as it
turned out. Sun continued to lead the field both in hardware and in software. The NAVLAB group decided to use
Sun worksmtions the basic general-purpose computing element on NAVLAB. Since the Warp machine had a
Sun host. NAVLAB prograns could be run on the Warp host whether or not they used the Warp array. This was
important becaue of the limited space and power on NAVLAB; having to provide power and space for a
workstak that could only be used for controlling Warp programs would have been an extra burden. This is
demontted, in fact, by the evental decision to remove the Warp machine fron NAVLAB; this happened largely
because the NAVLAB group moved to Sun 4 workstations. Upgrading the Warp host to a Sun 4 would have
required extensive changes to the software. Thus, the Warp host would have been unavailable for running the rest of
NAVLAB software.

4.6.1.2 The External Host
The Warp machine's external host consists of three MC68020 processors in a VME card cage, together with their

memories totaling fourteen megabytes. Two of the processors input and output data to the Warp array, through a
special board called the switch; these processors ae called the "cluster" processors. The third processor performs
auxiliary functian it is called the "support" processor. The external host communicate with the Sun through a
VME bu mpar. The external host can cage lso held commercial digitizer boards, which wer originally
Datacube and later Mtox VIP boards.

A key early decision was to use a commercially available system that was programmable in C. This decision has
been validated by the ease of code generation by the W2 compiler for the external host input and output routines
(using a commercially supplied C compiler) and by the availability of commercial boards for digitization. We had
to do little software development for the basic functionality, and hardware development was limited to the switch
board.

Becaue of the use of industry-standard procesuors and buses, the external host was the weakes part of the Warp
machine. In our caly versions of FIDO on the Warp machine this kept us from realizing full ue of the Warp array,
because of the constraints in naranging data on the externl host.

The decision to include the support processor was questionable. The support processor was intended to be used
for auxiliary functions, such as controlling the digitizer board and possibly controlling the driving functions on
NAVLAB; as it turned out, the digitizer boards were controlled by the Sun, and NAVLAB driving functions were
controlled by a separate proces entirely. In fac the support processor was never used, because of the difficulty
of progrnmming it and the absence of almost any debugging facility in the external host. System cost could have
ban reduced by almost a third by eliminating the support processor, with no Ios of functionality.

Mny of the exteml host cabilides were completely unused. For example, it wa posaible to ue the exteral
host to drive - RS232 connection; this connection, or another similar smndut in-tae could have been used to
control NAVLAB. This was never done, because the NAVLAB contolling softwae and hardware was developed
independently, id because of the difficulty of adapting such an interface to a new computer like the Warp machine.

Placing the digiizer boans in the external host wu also questionable. The intention wu to feed data directly
from the digitizer bormd to the Warp machine under control of d cluster or support pr c ssors. In fact, the normal
method wa to copy dm from the digitizer board into the Sin's memory, and then to subsunple the da there and
pms it to the duste processor for use in the Warp machine. Only in the most optimized vesions of FIDO and
SCARF did we actmnoly use the support pacessor to take data directly from the digitizer board. In all other systems,

74 ANNUAL REPORT AUGUST 1990

the data traveled twice over the VME repeater connecting the external host to the Sun.

The large memories in the external host were rarely used in NAVLAB. NAVLAB datasets were generally quite
small, and there was no need for more than a few megabytes of memory. However, the laV memories were useful

in order to maintain compatibility with the Warp machines in the lab, whem the large memories were used by other
programs. When NAVLAB was docked and connected to the Ethernet, programs could be run interchangeably on
the NAVLAB or the lab Warp machine.

4.6.3 The Warp Cell Array
The overal strcine of the Warp cell armay, a short linear array, has been validated by our experience on

NAVLAB. The linear array was quite capable for the low- to mid-level vision algorithms we intended to implement

on it at the start of the project; as the range of applications increased to include mid-level processing in SCARF and
the neural network back propagation algorithm, the same linear array was usable. The key reason for this was the
very high I/0 rate within the array; this allowed us to overcome its limited connectivity.

The short linear array also lent itself to dealing with the relatively small datasets (32x32 or 64x64 images) in

SCARF. Our early applications studies of the Warp machine were oriented towards dealing with standard 256x 256
or 512x 512 images. We thought that the increased power of the Warp machine would make it possible for the
sme processing then being done on small images to be doae on large images, which would improve the accuracy
and utility of color vision. As it tmued out, this was not trm. No sed vision performance could be obtained
by using moe spatially dense images; the rod was a fairly large object in most of the scene, and where it was small
(near the horizon), recognizing it accurately was useless, because of other uncertainties in the system. So we turned
instead to processing small images with the Warp machine. The short linear array was just as suitable for this as it
was for processing large images; in fact, with small images the relatively small Warp cell memory could be used to

store previous images and other datasets, as in SCARF.

The two-way /O pathway within the array was used to allow the computation of a result known to all cells
entirely within the array;, this was used in SCARF and in some implementations of the back propagation algorithm.
In fact, for many purposes a cdular connection (allowing the last cell to communicate directly with the first) would
have been preferable.

The Warp cell included hardware floating point; this facility was one of the main reasons for building the Warp
machine in the first place, and was one of the most expensive features in the Warp machine. The NAVLAB
application made good use of Warp's floating point hardware. In SCARF, floating point was used extensively in the
calculation of road statistics and their application to color pixel classification; in ALVINN, floating point was
necessary for a good implementation of the back propagation algorithm. These applications of floating point came
from outside the Warp project; independently, the NAVLAB group begar using statistical methods for color

cmificato, san the neural network group required floating point for their work. Without floating point the Warp
machine would have ben far Iw effective a a tool on NAVLAB.

4.6.2 Warp Software
As with hardware, we divide the software discussion into three parts: Warp host (Sun) software, external host

sftare, and Warp cel software (the W2 and Apply compilers).

WARP ON NAVLAB 75

4.6.2.1 Warp host
The Warp array was used as an "attached processor" to the Sun. Datasets were downloaded into the external

host, and then the Warp array was called to process them, usually while the Sun waited. (In fact, Sun processing
could go on in parallel, and this was done in some of the SCARF systems. But generally this feature was not

exploited because there was little for the Sun to do from the time the image was captured to the time the road was
mgopied).

This model was extremely useful in the development of software for the Warp machine. It was implemented
using a mechanism that allowed replacement of a subroutine call in C by a single subroutine call in the Warp
software package; the subroutine handled all transfer of data to and fima the Warp external host, locking the Warp
machine for exclusive use, and downloading and call of the Warp program. This could happen even if the Sun
executing the call to the Warp machine was not a Warp host; data would be transferred over the Ethemet to a
selected Warp host. It is quite likely that the Warp machine would not have been used much at all in real
applications without such a simple method for accessing the machine.

However, the attached processor model implies many overheads. The Sun can become a bottleneck for

processing. The startup time for the Warp machine can be quite significant. A serial processor, the Sun, must
prepare damsets for a much more powerful parallel processor, the Warp array. Data structures must be moved from
the Sun into the exteul host for processing. All of these overheads seriously affected the performance of the Warp
machine on NAVLAB.

For eximple, images as captured by the Datacube boards were 480x 512 in size. They had to be reduced in size
for processing, since spatial resolution was not an important factor in road recognition. This could be done on the
Sun, in the external host, or on the Warp machine. Existing libraries of software made image reduction on the Sun
trivial - in fact, transparent to the programmer. Programming the external host (the logical place) to do the reduction
was difficult, and the Warp cell array could do the reduction only if the images were first transferred from the

Datacube boards to the external host memory either by the Sun or the external host. These tradeoffs made image

reduction usually happen on the Sun, although in some SCARF systems it was implemented on the external host.

The Warp machine's startup time (time to start up a Warp program with the code already downloaded) was about
25 ms. This time was not a significant fraction of processing time for 256x256 or 512x512 images; in fact, the
minimum processing time for 512x512 images was about 60 ms, and usually several times longer. But for small,
32x32 or 64x64 images, this time could be a significant fraction of total time, particularly if several Warp
functions were applied to process the image and recognize the road, as in SCARF. As a result, the programmer had
to spend a lot of time organizing the Warp functions so they could be executed as the result of a single call, to
reduce the overhead. We would have been better served had the startup time been significantly reduced; this could
have been done by providing special hardware in the Warp machine's interface unit to allow the Warp machine to
initialize itself. As it was, the Sun had to issue special commands to do the various stages of intialization.

Moving dat structures back and forth from the extemnl host implied coniderable programming difulty, since
ninny of thes structurm were embedded in various ways in C progrms. This was especially am for FIDO, an old
program that had been worod on by a number of pogrammem. All of the data structures had to be "cleaned up"
before the Warp programming could begin; and the process of cleaning up the data structures introduced new
overeads.

If we had not used the "atached processor" model, we might have taken an "ary-centered" view of the Warp
machine. In this model, the Warp ary would have been viewed as the cential pmrcessing resource, and other
devicm, such as the extrnal host, would have been viewed as supplying data for the Warp machine. We could have

76 ANNUAL REPORT AUGUST 1990

attached multiple I/O devices, supplying data from different cameras and perhaps the ERIM laser scanner, and
coordinated the processing through the Warp machine. This model would have required much more sophisticated
Warp software- we would have needed an operating system on the Warp array to manage all these resources. But
such a model would overcome the other problems discussed in this section.

4.6.2.2 Exiual host
The external host software was designed on the assumption that in NAVLAB speed was of overriding importance,

code would be linked together before runtime (i.e., runtime downloading of code was not necessary), and a library
of compiled code could be built up that was not changed frequently.

In fact, these assumptions were largely untrue. The W2 compiler made it possible to write new routines and test
research ideas using the Warp machine, which made it much more important to allow rapid.testing of new code.
(The early development of FIDO, with its programming of a few routines in microcode by several programmers
over a period of months, much more closely matches the model we had in mind when the external host software was
designed.) The difficult programming environment of the external host, which might have been acceptable if the
code was not modified much, instead meant that it was reduced to performing I/O to and from the Warp array, using
programs generated by the W2 compiler. And testing of new Warp routines could be best done using an interactive
system, which meant that the external host software had to be adapted to allow runtime downloading of code.

One of the reasons for the difficult programming environment on the external host was that control of the
development of external host software was transferred to Carnegie Mellon's industrial parters at an early stage of
the project, well before it was used. This made it difficult to change the software as our applications experience
grew. The industial partners did a competent job of maintaining and extending the external host software as it was
originally designed; but the software would have had to be redesigned extensively to be widely used in NAVLAB.

The use of the external host in FIDO shows its capabilities when the programming difficulties are overcome.
Irregular operations were mapped onto it as part of pre- and post-processing of data from the Warp machine. Also,
it performed menory access-intensive but not compute-intensive computations as well as or better than the Warp
array, which could also allow the Warp array to be used for something else in the meantime.

4.62.3 Warp array
In this section we discuss the Warp array software (primarily the W2 compiler) as seen by the user. This includes

many design decisions that were essentially forced by the Warp cell hardware, and thus are really hardware issues.
Distinguishing between W2 issues forced by the hardware and forced by other concerns is appropriate for another

W2 made the Warp machine much more programmable than we expected. This led to major changes in the
importance of some parts of the system and made it possible to overcome deficiencies in one aea by using another
instead. For eampe we ould modify our pogins to accommodaft a regular data pattern from the host which
led to higher I/0 rates. This was importnt even in the later vesimons of the host, which had faster processors and
higher data rates, but which could use DMA, which required a regular address patten. This flexibility was the main
reason we were able to observe the predicted performance of FDO in actual Warp runs.

W2 is a simple 'Pascal-like" language for programmes to implement. All that is required is that the programmer
understad a very simple model of the machine, i.e. that thee ar 10 cels in pallel connected by a daa path. The
programme, however, must decide how to paralelize his pogrus. A W2 function to average a 4x4 window of
piels is as follows:

WARP ON NAVLAB 77

procedure reduce (;
begin

int r, c, row, pos;
float acc;

for r :- 0 to eval(SWATHROWS-1) do begin
for c :- 0 to eval(NCOLS-1) do begin

pos : 4*r*IMGCOLS+c*4;
acc :- imgbuf [pos]+imgbuf [pos+l] +imgbuf [pos+2] +

imgbuf[pos+3];
pos :-pos + IMGCOLS;
acc :- acc+imgbuf [pos] +imgbuf [pos+l] +imgbuf [pos+2] +

imgbuf[pos+3];
po8 :- pos + IMGCOLS;
acc - acc+imgbuf [pos] +imgbuf [pos+l] +imgbuf [pos+2] +

imgbuf [pos+3];
pos := pos + IMGCOLS;
out(r*NCOLS+c] = pos * 0.0625;

end;
end;

end;

Before this function is called, the input imag to be reduced is divided into row swaths across the cells. 'Pos'
marks the position in the input image and 'ace' accumulates the sum of the pixel values.

W2 made it possible to experiment with different algorithms, in the context of a research system such as FIDO,
while getting good use of the powerful Warp array. As we programmed more and more of FIDO on the production
Warp machine, programmability was essential, especially as it allowed us to make use of more complex
programming models that used the powerful Warp array more and required less intervention by the relatively weak
host.

Apply was used far less in the NAVLAB work than we had hoped. This was partly because of the relatively late
introduction of Apply into the project; the first true Apply compiler for the Warp machine was not running until the
fall of 1987, one year after the NAVLAB group began woridng with the Warp machine. By this time much of the
programming difficultes Apply addressed had been overcome by learning on the part of NAVLAB programmers.
Just as important. Apply code tended to be larger thun W2 code for the same problem. In order to process the
borders of the image properly, Apply duplicated the inner loop of the image processing function once, leading to a
doubling of the code size. This was a serious problem when the user was attempting to keep all code for the entire
SCARF application, for example, on the machine at the same time. W2 programs were smaller, though no faster
than the Apply programs.

Border processing was a problem for the W2 programs, too, however. The C functions processed borders by
duplicating rows and columns new the edges of the image. This was hard for the W2 programs to do. It was
simpler just to u a consmtf value (0) for the borier of the image. However, this led to spuuriouly high values of
edge dectors like Roberts near the image border. Tis sometimes affected the acuracy of the road image
processing bned on the textnre image.

W2 did not support function calls until quite late in the project. Macro calls were used instead. This led to code
size problems for truicendental functions, so that approximations were used instead. This often led to less accurate
results than doe used on the Suns. In particular, the classification in the SCARF system was often noisier for the
W2 implementation th for the Sun implementations.

The were some peculiarities in converting data between the external host and the Warp array. Because the

78 ANNUAL REPORT AUGUST 1990

Warp machine's primary processing power was in floating point, all images were best processed in this way. The

interface unit had hardware conversion of 8-bit and 16-bit integers to and from floating point, but could not convert

32-bit integers. As a result, 32-bit integer images in the external host had to be treated differently from 8- or 16-bit

integer imge&

Primarily a a result of the fixed-size queues, it was impossible to use variable-length for loops in W2 programs

until the design change that allowed blocking on writing to a full queue, or reading an empty one, was fully

integrated into W2. This meant that image sizes were fixed at compile time. This increased code size (for example,

in SCARF there we three different versions of the Roberts operator).

It was impossible within W2 to execute a W2 function repeatedly until some condition was met, for example

repeatedly classifying image regions until convergence was achieved. This was a consequence of the distributed

nature of control in the Warp machine. The result of this was that the Warp host was involved in repeatedly calling

W2 programs and testing for convergence, which significantly increased overheads.

Partly as a result of the small datasets used on NAVLAB, and partly as a result of limited hardware support, we

still needed to use speed tricks to generate Warp code that was significantly faster than the Sun code. For example,

we had to avoid using division on the Warp machine, especially when doing integer index calculation for arrays.

Given the research that was going on in the Warp project while the Warp machine was being used in the
NAVLAB project, it is remarkable that things worked as well as they did. NAVLAB programmers commonly had

to deal with new features in the W2 compiler, for example, and it is only due to the good support from the compiler

group that they were able to overcome bugs that were due to idiosyncrasies of the machine, and were extremely

difficult to identify without experience.

4.7 Conclusions
This report tells the story of a unique experiment; the installation and use of a parallel supercomputer on a robot

vehicle. Let us ry to summarize and draw some conclusions from this expenmenL
SThe Warp machine was useful in the NAVLAB poject. The programmable floating point capability it
brought to NAVLAB was unavailable by other means. Key elements of the architecture, such as its
high 1/O rate and the short linear array, have been validated by the NAVLAB experience. The high
processing rate of SCARF could not have been obtained without the Warp machine, and it was the
presence of the Warp machine on NAVLAB that led to ALVINN.

* Early applications support is essential. The development of FIDO and other vision applications guided
the early design of the Warp machine and provided test programs and early demonstrations. Without
this early work, the Warp machine may never have been used on NAVLAB.

* Continuing software support is essential in a project such as this. It is impossible for hardware and
software designers to anticipate all of the issues that will turn up in use of the machine, even if
applications designers participate early in the project. This is partly because applcions can change,
and partly becaum success in one am can affect others. For example, the Warp machine became much
man programmable tm we anticipated because of the W2 compiler, which made the design of the
exernl hos partly obooke.

* The "attached processor" model used in the Warp machine is natural and easy to use by the
programmer, but it leads only with great difficulty to large speedups in programs. Data strui s must
be redeigned, careful attention has to be paid to small details of implementation, and so on. If we want
to see speedups more than a factor of about ten, we must abandon this modeL

WARP ON NAVLAB 79

Acknowledgments

"We" in this chapter refers to a very large group of people, indeed; too many to list here. The Warp project at
Carnegie Mellon and General Electric and Warp applications development (including the Parallel Vision and
NAVLAB projects) included over seventy people. We also benefited from the support of the Field Robotics Center
and from many discussions with the vision group at Carnegie Mellon.

Research on NAVLAB (including Parallel Vision research) was supported by the Defense Advanced Research
Projects Agency, DOD, (DARPA) under contracts DACA76-89-C-0014, DACA76-86-C-0019, DACA76-85-
C-0003, and DACA764-C-0002, all monitored by the Engineer Topographic Laboratories. The Warp project was
supponed in prt by the DARPA under Contract N00039-85-C-0134, monitored by the Space and Naval Warfare
Systems Command, and in part by the Office of Naval Research under Contracts N00014-87-K-0385 and
N00014-87-K-0533. The ALVINN work was supported by the Office of Naval Research under Contracts
N00014-87-K-0385 and N00014-87-K-0533, by National Science Foundation Grant EET-8716324, and by the
DARPA monitored by the Space and Naval Warfare Systems Command under Contract N00039-87-C-0251. The
views and conclusions in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the funding agencies or the US government.

4.8 References

[1] Anneasone M., Amould, E., Gross, T., Kung, H. T., Lam, M., Menzilcioglu, 0. and Webb, J. A.
The Warp Computer: Architecture, Implementation and Performance.
IEEE Transactions on Computers C-36(12):1523-1538, December, 1987.

121 Clune, E., Crisman, J. D., Klinker, G. J., and Webb, J. A.
Implementation and Performance of a Complex Vision System on a Systolic Array Machine.
Technical Report CMU-RI-TR-87-16, Robotics Institute, Carnegie Mellon University, 1987.

[3] Dew, P. and Chang, C.H.
Passive Navigation by a Robot on the CMU Warp Machine.
Aug, 1984.
Imeml report, Deparmnet of Computer Science, Carnegie-Mellon University, Aug. 1984.

(41 Duda R. O. and Ha, P. E.
Pattern Classification and Scene Analysis.
Wiley, 1973.

[5] Hamey, L. G. C., Webb, J. A., and Wu, I-C.
An Architecture Independent Programming Language for Low-Level Vision.
Computer Vision, Graphics, and Image Processing 48:246-264, 1989.

[61 Kung, H.T., Ruane, L.M., and Yen, D.W.L.
Two-lave Ptpelined Systolic Array for Multidimensional Convolution.
Image and Vision Computing (1):30-36, February, 1983.
An improved version appears as a CMU Computer Sci Deprtment technical report November 1982.

7 Kung iLT.
Systolic Algorithms for the CMU Warp Processor.
In Proceedings of the Seventh International Conference on Pattern Recognition, pages 570-577.

International Association for Pattern Recognition, 1984.
A revind revion appea-s n Chapter 3 in Systolic Signal Processing Systems, efited by E E. Swartzlander,

Jr., pp. 73-95, New York, Marcel Dekka, 1987.

(81 Kung. XT. aid M zioglu, 0.
Wur. A Prormmable Sysiolic Army Processor.
In Proceedings of SPIE Symposiu, Vol. 495, Rel-7me Signal Processing VII, pages 130-136. Society of

PhowoOpdcal In1trumenon Engineers, August, 1984.

80 ANNUAL REPORT AUGUST 1990

[91 Kung, H.T. and Picard, R.L.
One-Dimensional Systolic Arrays for Multidimensional Convolution and Resampling.
In Fu, King-sun (editor), ViSlfor Pattern Recognition and Image Processing, pages 9-24. Springer-Veriag,

1984.
A preliminary version, "Hardware Pipelines for Multi-Dimensional Convolution and Resampling," appears

in Proceedings of the 1981 IEEE Computer Society Workshop on Computer Architecture for Pattern
Analysis and Image Database Management, Hot Springs, Virginia, November 1981, pp. 237-278.

(10] Kung, H. T. and Webb, J. A.
Mapping Image Processing Opermions onto a Linear Systolic Machine.
Distribued Compting 1(4):246-257, 1986.

(11] L.H. Maides, C.L. Thorpe.
Experience with visual robot navigation.
In Proc. IEEE OCEANS'84 Conf., pages 594-7. IEEE, September, 1984.

[12] Moravec, H.
Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover.
Technical Report CMU-RI-TR-3, Carnegie-Mellon University Robotics Institute, September, 1980.

(131 Pomerleau, D. A.
ALVINN: An Autonomous Land Vehicle In a Neural Network.
In Touretzky, D. S. (editor), Advances in Neural Information Processing Systems. Kaufmann, 1989.

[14] Thorp% C..
FIDO: Vision and Navigation for a Robot Rover.
PhD ftsis, Canegie-Melon University, Decembw, 1984.

Chapter 5: Autonomous Navigation of Structured City Roads

5.1 Introduction
In 1985, 8131% of the intercity passenger traffic in the United States - 1,418 billion passenger-miles - was

done by private car. This translates into a tremendous amount of time spent by drivers engaged in the task of
visually tracking and driving along a road. As autonomous road following programs become more competent they
will be able to take over more and more of the burden of driving - at first, in daylight tnder light traffic conditions,
then later under moe challenging illumination, weather, and traffic conditions. Driving long stretches on open
freeway, while probably the easiest road following task to automate first, is only pan of the larger domain of
autonomous road following. The length of the average automobile trip in the United States in 1983 was just 7.9
miles [211. In order to liberate people from the tedium of driving, road following systems will need to be able to
follow city streets and maneuver through intersections, keeping track of what lanes are available for use, and not
straying into lanes for oncoming traffic.

The gap between this vision of robot chauffeurs whisking people to and from work while they read the morning

paper and the state of the art in robot road following is wide. While lane following on a freeway has been
demonstrated at speeds of up to 96 kmnlr (13), lane following is only one of the capabilities that an autonomous
road following system must have. Current systems, while they have achieved fair levels of robustness in staying on
the road, don't model the lane structure of the road. In order to progress toward the ultimate goal of robot
chauffeurs, road following systems need improved capability to keer track of the lane structum of the road (both for
purposes of lane following and for purposes of planning such as deciding if it is possible to change lanes or pass)
and improved capability to detect and navigate through intersections.

Achieving these capabilities requires first the ability to robustly detect various road features (painted stripes,
road/shoulder boundaries, etc.) under a variety of conditions (changes in lighting, pavement color, etc.). Dealing
with different feature appearances can best be accomplished through ?he knowledge-based application of specialized
segmentation techniques that work well in specific cases. As an example, yellow stripes can be located in both sunlit
and shadowed image regions by thresholding on the pae hue value. Given a known rad geometry, the ability to
reliably locam road femAu allows a system to detmne the position of the vehicle relative to the road and drive
the vehicle along the rmad in its lan. It is also necessary to instrument the segmentation techniques so that the
system can detect when they have failed, and to implement strategies for determining the cause of failure and
recovering from the problem. Lane boundaries may shift, requiring a change in the road model; markings may
change in appearance, requiring a change in segmentation technique; or the vehicle may be approaching an
intersection, requiring changes in sensing strategy.

Improvements in intersection navigation capability and the capability to detect and corect for changes in lane

sructure we particularly critical for making progress uwds systems dta can autonomously drive on city streets.
On the highway, lIne owt-e is relatively Bued, .d the vehic does not have to go numd sharp carem or #ack
the positoi o the road across a lar recdo. In the city, liue edes shiMu right and left tun lanes appear n
inmersectiot., and a vehicle needs to be able to maneuver its way through intersctions. Inersections cover a large
m on the gound, creating a need to combine infomation from several images in order to fix thu location of the
vehicle h inmsecti and pla a pb through it.

The ;Mem of aumaomom rad following ian uwba envimameat can be decomposed into the following
uItbprolem: segmentation of the image dat to extraet road fesws mdeling of die local o d gomery for
veMcle localiion ad path pma ng, and intersection tagation. Ine do t M MXM we eWiNe MlUOM v
exI systems ftcin on their approaches to these sdpWb Afmte M udin our p;a to these tsks we

82 ANNUAL REPORT AUGUST 1990

present results in robust detection of painted lane markings, fitting features positions to a model of road geometry,
and locating road features without using a strong a-priori model. We close by discussing our planned extensions to
enable the system to navigate through intersections.

5.2 Previous Work

S.2.1 VITS (Martin Marietta) [20]
• Sellmeatm The road is extracted by thresholding a (red minus blue) image. The basic algorithm

was extnded to include two road classes, suuey and shaded, whose thresholds were found by sampling
ner the bottom of fe image (which is assumed to be all roed).

* Road model: The system assumes that the ground is locally flat, and projects the boundary of the road
regions onto the ground. More sophisticated models of road geometry such as the hili-and-dale or
zero-bank algorithm were rejected because of sensitivity to errors in segmentation and matching of
corresponding points on the road edges, and because they could not handle intersections.

The VITS system was able to achieve fairly impressive performance, driving at up to 20 km/br. on straight.
obstacle-free stretches of road. While the paper referenced mentions intersection navigation as a criterion for
selecting a technique for recovering the road shape, intersection navigation was not implemented. Sacrificing
general capability for speed, the restriction to two road color classes limits the robusume of the segmentation.

S.2.2 FMC system [11]
" Segmentation: Regions from an Ohlander-Price style segmentation of an initial image are classified as

road/non-road, and an optimal transform is derived to maximally separate road and non-road pixels.
Normalized histograms of the transformed road and non-road pixels are used to generate likelihood
ratios for each level of the transformed feature, which are then used to classify pixels in succeeding
images. The likelihood ratios are updated for each image in order to handle changes in road color and

" Read iodeb Line segments fit to the rad region boundaries are tested for continuity with the road
bm I iem fiom the pirvioms image, cosistency with conman on the angle between successive
segmem om each siad, and pamlelisa between segmems sepuawd by the expecut rood widh.

" Inariedhom The system examined the ro d region boundary segments for lines which might support
an intmercting road.

The FMC system was also able to make runs at speed of up to 19 km/hr., with an image cycle time of 1.5 seconds.
As in the VITS system, the mad is reconstructed from te segmentation rather than fitting a road model to the results
of the mmenation. Speed was a major criteria driving the design of the system, again resulting in a tradeoff
between robumen and eed.

5.23 MAR (Uiv ht of ryl W [23]
* Sgmeaihrn Smal windows ar placed at the ymdid locais of the road edgs at'he b of

th biag. Sabel edge duocting and th Hough as me md to detemine the rad edge locution
in the window. The sysuem tha repeats this pce, tracking the femnm up trough t image.
R Rad Musk Resemchers at do Univerty of Mryla d inveSgated a number of alg rhms for
exrci 3-D road so tr-P from image dn. Ie most seopisicamd algorithm [5i models th road as
a horintmal segment swept pependicum to a spine curve. Gloal Woptimhmi of the result is usd to
faiu t fuarm in local point munching betwen he roadedges.

11e MAR (for MPyimd Rond Fofmw) syhm was ported to the Matin Maineo ALV and drove the vehicle.
Mw al lm mIw rmomy of road shop Wim umage domme probably do mot dgpufim congibutions of this
wa Recently nwy have bow we n declative vid u ge for road following [61.

YARF 83

5.2.4 VaMoRs (UniBw Munich) [13]
" Segmentatio.: Six 48-by-48 pixel windows selected from a grey-scale road image are convolved with

one of 16 oriented bar masks for edge detection.
* Road model The system uses the flat earth assumption, and models the lane followed as having

parallel edges with constant separation and locally constant horizontal curvature.

The VaMoRs system combines custom hardware for image processing with an elegant control formulation to
achieve runs at speeds of up to 96 km/hr. The system fits the lane edge points to a model of the road geometry rather
than recoatructing the road boundars from the segmentation results. The system does not model road structure
other thm the l=e being followed, and does not handle intersections. The experience of the NAVLAB group at
CMU with the use of orimted edge tackers 221 suggests that reliance on them as the only method of segmentation
will not be robust under difficult shadow conditions, although the Munich researchers claim that they have not
encountered problems with this.

5.2.5 LANELOK (GMR) [81, [91
* Segmentation: Several segmentation methods were tested. In the first method, edges segments are

extracted from a thresholded Sobel edge image, and the edge segments vote in a Hough transform for
* right and left lane edges. In the second method, growing and shrinking ae applied to the binary edge

image to thicken the lane boundaries, and region tracing is applied to extract them. In the third method,
semh ares defined around the expected locations of the left and right lane edges, and template
correlation is done to find the lane makem A least-squares fit is done to the optimum correlatio
values to detrmine the line edges. These methods have been tested independendy, md are not used
cooperaitly.

• Road Mode: The lane is modeled as having parallel edges separated by a constant width. Shifts in the
lane markers are detected and corrected for.

LANELOK's algorithms have been tested on more than 3000 frames of videotaped data. The system is designed
to track lane boundaries in a freeway environment, and appears to work well, if slowly (three secondsfimage on a
VAX 8600 for the template correlation algorithm, similar times for the Hough algorithm). The system also
incorporates chocie deectim, using template correlation to locae other vehicles in the lne.

5.2.6 University of Bristol [171
" Setmutatom: White lane markings are detected by coating a binary image in which the selected

pixels correspond to pixels in the intensity image which are brighter than a threshold value and between
two strong intensity gradients of opposite sign sepaated by the expected lane marking width. Regions
in the binary image are exuctd, and shape cues m used to eliminae noise regions.

* Road modek The surviving regions ae backprojected onto the ground plane, md a parabolic model is
fit to each candidate region. Dashed lae markings w accommodated by fiting arcs to all pairs of short
r Minimum separation md constant separation constraints are sed to eliminate errneous
candidam, and to prduc a final set of consimt lan markings.

From (171 it is umrcla how much aig the algorit has received, but he appr seoa s sound, md could
adat easily to m ium ioved ssgmsmio. tchniques

S.±7 A" (CM) [121
"--sf* The syem has twoa g algmidms, a prUalls corraeltion echnique and a Sobel
0ap Ia". hs alldmi hnm ued in md=. w uck rodis in sral inmges. If the rmuls of the
two mkNg mehods diverge, "u ailure mualyis; nmis m invoked to determine the came of the
pro1lem (0affswcdaUu chuag. in oad wkth, chams in fas material, overposmas, occlmu.
v s em se ma), md qag m corective acti m hLm

84 ANNUAL REPORT AUGUST 1990

* Road Model: The road is modeled as locally having a parabolic shape. No interior road stncture is
modeled.

The ARF system works in the domain of tracking road networks in aerial unages rath than in a vehicle
navigation domain, but is included because of the influence of its architecture on the design of YARF (specifically,
the use of multiple segmentation techniques and explicit failure analysis).

S28 Sidewalk H (CMU) [7]
* Sgmemtadu. The system uses an earlier version of the color classification algorithm that is used in

the SCARF system described below. It can also fuse the color segmentation with a range image
segmentation to distinguish between stairs, a ramp, and the sunmmding grass slope.

* Road Model: The system has a map of the geometry of the system of sidewalks it navigates on.
• Intersections: Line segments fit to the edges of the extracted road region are matched with expected

edges from the map to determine position within an intersection.

The Sidewalk II system was designed to operate in an environment where the segmentation problem would be
relatively easy, allowing exploration of the higher level issues of route planning and intersection navigation. It
performed well, albeit at slow speeds, but is limited by its need for a geometric map of the intersectims it will
encoute.

2.9 SCARF (CMU) [41
* Seimetatio. An adaptive color classification scheme is used, with four to eight color classes each

used to model road and non-road areas.
* Road model: The system assumes that the road is locally straight, with a known constant width. The

classified pixels vote in a Hough scheme to locate the vanishing point and orientation of the road in the
image.
Inersection: Once the main road has been found, the pixels on that road are subtracted from the
Hough space aid further peaks corresponding to int cting paths are searched for.

The SCARF system has been one of the most robust and succesful of de road following systems developed at
CMU, foowing di path up Flagstaff Hill under a wide variety of weater ad rood conditions. With it Hough
voting schume, it is the only one of the syems dicussed that has an explicit reprsentation of how certain it is that
it has found the roa.

.±10 ALVINN (CMU) [1S]
Smneadeiam ALVINN does not have a fixed segmentation technique. It consists of a three-layer

k don neural network which is trained on the road to be followed or on simulated data.
SRom nmode: Them is no model of the rad, other than whatever model is impliitly encoded in the
w a ed by the ntwo

ALVUWN is ad gwity. As meadoned above, it does not have a fixed segmentation and evidence combination
smatgy, but leams oae from trauing examples. It performs very well, and has driven the NAVLAB at is top speed
of 20 MML On the other hand. its Iack of any explicit representaion mak ithard to evaluate how general a rood
folow cambility it pomesses (for imstnce, cat it be tramed ton folow in any lane on meds of differing

YARF 85

S.2-11 Analysis
All of these systems use a single segmentation technique to locate the road, making them vulnerable to situations

in which that technique fails. Binford made the same point with respect to object recognition programs (3]. Global
color classification schemes such as those used in (201. [181, and [II] work well for segmenting the road surface
from the background. but work less well at detecting painted lane marking because they look only at pixel color and
fail to consider geometric constram. Edge dectors have problems with textured areas and shadows, pamularly
moled shadow flom trees.

There are two clams of techniques used to compensate for erros made by the segmentation algorithms. The frst
is focuing, in which predicnos of road feature location am used to limit the areas of the image which are examined
(23], (131, [9]. The second is use of global constraints, in which a model of the road stucture is used to eliminate

errors in segmentation. A good example of this second approach is the Hough voting scheme used in SCARF, which
uses the assumptions of constant known road width and a straight road to correctly locate the road even in cases
where there are many misclassified pixels.

Few of these systems have any explicit representation of how confident they are that they located the road,
making it posible for them to "hallucinate" and drive off the road. Only LANELOK (and ARF in the aerial road
tracking domain) has any mechanism for detecting changes in road strtwe based on segmentation failures.
in-ersection nuvigaion capabilities of these systems am very limited. This is largely because they process one imag

at a tim. and real city intursectias ae large compared to the field of view of typical canmas. The exception to this
is the Sidewalk U sysmn, which used a second cmera to see around corners at inersi

YARF addresses these problems through the following mechanisms:
" multiple segmentation techniques which are specialized to detect particular kinds of features or to work

in particular situations;
• examination of the results of the segmentation techniques and their geometric consistency with a model

of the road structre to detect when the systems fails, when the road appearance or structure changes, or
when d vehicle is approaching an intersection; and

" use of a local map to insegrt feature location data and locations where sego mation failures have
occurrd over - fam.

The reming sections of this chapter describe ow curent smrch m implementing these mechaisms, describing
the Vros we have made since th initia results reported in (101.

S.3 Robust painted stripe detection
A major component of the program of research we described in (101 was the investigation of specialized

segmntation techiqus to robuay extract different types of road features. Our recent experiments in this area have
conceuted on tesing two algorithms, one for detecting yellow sripes using pixel hue, and the other for detecting
white sip using an oresed bar detector. These algorithms have been tested both in open loop mode, wher they
tck a stripe u a human drives the vehicle, ad in dosed loop mode, where their reawt ame maid to drive the

vehicle. The ipIem U o ut thes algoiums is described in detail in [1].

Hue appear. to be a very stabe cue for detecting yelow stripes under a wide vaiety of road and lighting
coadims. Paing tbd at zo degr= on te color wbeel, pun yellow has a hue of 60 degesP. Histograms of
yellow ips piels in both brlght, sunlit imags and daker, shadowed imgs show a peak located at 60 degrees,
with a width of 30 de gm on either side. Pxels wih hues betwe 30 and 90 degpee am classled as yelow,
pixels with bass ousd this nge am classiid a backpommd (m fip 5.1). In onr to avoid Smy pixes being
cludW as yellow due to th insability of hue near the imity a ,we also mcreyellow pixek w have a
uammad of at leat 0.1. The al rithm does not expicidly compute theo he of the pixels. Itmead, it tests d RGB

86 ANNUAL REPORT AUGUST 1990

value against two planes containing the intensity axis which bound the desired section of the color cube. Those
pixels whose RGB values fall an the coact side of both planes are labeled as yellow pixels, other pixels are labeled
as background. The mean row and column of the yellow pixels is returned as the position of the center of the yellow
gtripe.

Robust detection of white snipes is done by looking for a bright bar of a specified width at a specified orientation.
Using an oriented operator reduces the effects of noise such as shadows or oil stains on the pavemeaL Searching for
a bar rather than an edge and blurring along the direction of the bar also improves the robustness of the operator.
The correlation is done with the blue band of the color road ina.

Two techniques am used together to achieve a fast correlation. The first is de use of only +1 and -I as weights.
This speeds up the correlation by reducing the number of additions and subtractions needed. When the mask is
shifted one pixel to the right, the leftmost pixel previously included in the correlation sum is removed, the new
rightmost pixel value is added in, and corrections are made for pixels whose weight changes sign when the mask is
shifted. As an example, if the mask is (-I -I -I I I I -I -I -1), only four additions/subtractions are needed- one for
the pixel which shifts off the left edge of the correlation window, one for the new pixel on the right edge, and one
each for the two pixels whose weights change sign. The second technique used to increase the speed of the
correlation is using a window which is a parallelogram pallel to either the rows or columns of the image rather
than an oriented rectangle, which speeds up the correlation through a more regular patern of pixel access.

Figures 5.2 shows these oprators tucuking the center double yellow line and the right and left white lines on a
sunny, well-lit road. Figure 5.3 shows them tcking the center double yellow line and right white line on a road
covered with mottled shadows from trees. While these algorithms do not perform perfectly, they appear to be more
robust than any of the other techniques we had investigated. Detecting when these operators have failed to find the
desired feature is simple. In the case of the oriented bar operator, the correlation peak will not differ sufficiently
from the background level In the case of the yellow hue operator, the area of the yellow pixel regions in the window
is either very small (if there is no yellow stripe) or much larger than the road model would predict (if the window
falls onto a grassy a*=o - surprisingly, some grass has a hue very close to the hue of yellow stripes). In the next
secton we discus the combiaion of the individual measurements of feature position into an estimate of the local
road curvatme and the position of the vehicle on the rad.

(0 degrees)

Figure 5.1: Color classification by hue to detect yellow stripes

YARP 87

Figure 51-~ Yellow hue and white bar operators, sunny image

ftgum 3.3: Yelow has and whim bar opesmu shadowed image

88 ANNUAL REPORT AUGUST 1990

5.4 The road model and fitting detected feature locations
YARF models the road as a generalized sipe - a one-dimensional feature cross-section which is swept

perpendicular to a spine curve. The road in figure 5.2, for example, can be modeled by the following feature
cloHsecion:

" a solid white stripe which starts -358 cm. from the spine;
* a Ine of pavement which starts -342 cm. from the spine;
" a solid double yellow line which sum 0 cm from the spine;
* a lae of pavement which starts 50 cm. from the spine;
" a solid white stripe which starts 403 cm. from the spine; and
" a shoulder which starts 419 cm. from the spine.

An important design decision is the question of how complex a spine curve should be allowed. Should the road
model allow for banking? Should it assume a locally flat ground plane, or allow changes in surface slope?
Answering these questions requires considering not only how roads behave in the real world, but what kinds of
models produce algorithms that are computationally tractable and results which are stable in the presense of noise
and usable for navigation even if they do not reproduce the world with complete fidelity.

We have chosen to adopt a model similar to that used in the Munich VaMoRs system [13] and work at the
University of Bristol [17]. The road spine is ocally approximated by a circular arc, with the road lying in a flat
ground pne. In order to do a line least-squares fit, a parbolic apoximation to a circular arc is made, x = 0.5 *
curvaire *y2 + skop *y + lam _offwt. Such a model allows cmpuationally efficient fitting, and produces
results on real reads that allow robust navigation even though the actual road may not be flat or locally a circular
arc. The model of the featur crossection is used to correct the position of the detected points so that they lie
roughly along the center spine of the mad. We add the feature offset to the x coordinate given by the parabola
equation above, which is a small-angle approximation to the proper correction (it assumes that the cosine of the
angle between the tangent to the road and the y axis is approximately one).

Figure 5.4 shows the fit of the road model describes above to the feature positions detected in figure 5.2. The
diamonds are the individual featu locations, labeled with the coresponding feature number. The black dots lie
along the parabolic fit, and the equivalent circular atc spine road model is drawn to show the road features. To give
an idea of scale, the tck marks on the line on the left of the drawing ar saced two metes apsrt.

In order to increase the stability of the parameter estimates, we fit the model to the points detected over the last
several frames (typically three to six). Figure 5.5 shows data accumulated over a sequence of eight images placed
into a global coordinate frame. The squares show the individual feature position estimates. The left digit of the
number by each square is the frame number, while the right digit is the feature number in the cross-section model.
The asterisks connected by dashed lines show the desred pad fed to the path planner, and the diamonds with lines
pointing out from them show the estimates of road centerine position and diection. As can be seen from this
figne., our camera calibration and the inertial navisation data ;rum by the veidcle ar very accume - de
points fiem diffeent images along he two lame make e up very well as te vehicle goes thrugh the gentle
curve.

We have done some experiments with using robust M-estimation [2] to perform the fit. Standard leas squares
minimizes the squme of the residuals of the data values. Robust M-estimation minimzs the sum of a function of
the residuals which fals off m rapidly for la residuals, malting the fit less ssitive to outlying data
obewvaiom and dwin thek deiection. So far we do not have resubs which allow us to dec if this will
uccerufy help in thdetecIm of inrrct fere location at.

In the mode whe YARF is following a road between inmsections, a pPPlct-segment-fit-move loop is used.

YARF 89

Inertial navigation is combined with the estimate of vehicle position from the previous image to predict feature
locations in the current image. When started, the system does not have a prediction of where to place trackers to
locate the road features. Initially we had a human operator use a cursor to select points along one feature to provide
the system with the initial vehicle positon relative to the mad. Now we are experimenting with a technique to
automatically extact candidate road features using Sobel edge detection, Hough transforms, and shared vanishing

point and global continuity constraints. We descie s algorithm in the next section.

3

1 5

3 5

3 5
3

Figure 5.4: Fit of road model to detected feature positions

5.5 Bootstrap location of road features
There are two main techniques to compensate for incorrect segmentation results, the use of prediction to focus

processing near features and the use of global constraint. In YARF's road-following mode, focusing is used, both to

reduce computation cost and to reduce errors in feature location. In the absence of predictions of feature locations,
global constraints must be used.

The features which form a straight road are parallel lines on the ground, which project into the image as lines
which meet at a common vanishing poinL In order to handle curved roads, the road is modeled a a sequence of

straight segments by dividing the image verticaly into a small number of horizotal bonds and approximating the
road as stright within each band, as Polk and Jai do [141. In order to reduce the chances of noise in dhe i
leading to the s ion of a spuious vanishing point in some of the bands, a global optimization is performed which
takes into account both the support for a given vanishing point within a bond and the continuity of features between
bowls.

The Sobel edge detector is run on an image produced by prepocesing an RGB rad image. We have
experimented with various kinds of preprocessed images, including the red, green, and blue bonds of the color

i-qp. the itnt image corresponding to the color image, and dhe (blue minia red) image. The gradient

90 ANNUAL REPORT AUGUST 1990

c73
c;3

~'01 031

jT,, 4 1 0 i 13 3 4

.. # J3

4 3

Figure 5.5: Feature locations in a sequence of eight frames

magnitudes are thresholded to create a binary image of candidate edge points. Any segmentation technique could be
used which would give points where there are discontinuities in the image along with an estimate of the orientation
of the discontinuities.

Lines in the image am represented by the column where they cross a specified row (in this case, the row which
contaims the ha n), and the angle they make with respect to the rows of the imar. Given an edge point (row, coo
with gradient direction thea, and a vanishing point vp, the line orientation voted for is thetat = arctan((row -
horizon) / (cot - vp)). The difference in angle between the line and the edge gradient estimate is d =fu -min(I
thetali, - theta 1, 180 - I thetal, - theta I). The vote for the line with vanishing point vp and orientation thetai,,
has weight 1.0 - (diff4 , / 90). In order not to bias the voting against lines near the comers of the image, the votes
for a given line are normalized by the visible length of that line in the image.

The image is divided into a small number of horizontal bands (four to seven), and voting for the most popular
vanishing point is one for each band. Once all the edge points have voted for all the lines they could lie on, the
accumulaeor array is thuesholded, and peaks in the accumulator array am detected. All the desected peak bins which
suppon a given vankiing point ae summed to give the total supp rt for that vanishing point. The top three
candidate vanishing points for each horizontal band in the image compete in a search for the giobal y best set of
vanishing points. The criterion function for that search has a term far the strength of support for each vanishing
point in the set, and a term which rewards continuity of features between adjacent bands in the image.

As a method for extracting road feates, this technique has several advantages. The only calibration required is
the determination of the horizon row, which can be easily computed fom an image takm on a straight stretch of
road. The model of rad appearance used is fairly generic, assuming only that the road consists of feamm separated
by constant wWths and curving slowly enough that they can be approximated by might lines within a horizontal
baod of the image. This eliminates the need to train the system seprately for each road it encounter It extracts as

YARF 91

much of the overall lane and mad structare as it can detect, rather than just a right and left road edge or road
centerine. If given a model of the road sructure so that it could label the various features found, it could steer the
vehicle down a seified lane using a pure pursuit strategy, once again without having to have any calibration from
the image to de world other than a single Sai parameter. While relatively slow in a serial implementation, the
algorithm has a great deal of puallelism that could be exploited.

Figure 5.6 Aw the results of the bootstrap algorithm on the image from figure 5.. The algorithm successfully
finds the whi swripes on the left and right side of the mad, the double yellow line in the middle, and part of the
shoulder edge. There am a few extraneous edge segments caused by noise, for instance the oe shadow which runs
parallel o the wad.

This part of the research is still very experimental, and quantitative performance results are not yet available.
Also, the issues of the best preprocessing to apply to the color image to produce the single-band image that the Sobel
is run on, and how to set thresholds used in the algorithm are still under investigation.

So far we have described how YARF fids the location of the road in an initial image, how it locates individual
featutes given a prediction of the road location in subsequent images, and how it combines those new data points
into an updated estimate of the vehicle position on the road. Next we discuss our plans to integrate featra locations
from multiple images ia a local map, to mason about deteced failures to locate feaouus in order to detect changes
in the nd structore and the app ach of inersectit=s ud to use the integmed local map to navigate through

P~gs 5A* Lin segments eacted by the vanishing point Bough algrthm

92 ANNUAL REPORT AUGUST 1990

5.6 Intersection navigation
In oraer to navigae a vehicle through an intersection, an autonomous road following system must detec that the

vehicle is aproaching an intersection, u perception to locate the roads branching out fohn the itersection, and
plan a pah from the current ae through the intersection into the desired line of the nex road segment to be
followed. Mor general intersection navigation capabilities than have been demonsmaed in current systems require
the coorduintio of perceptual dam from multiple images into a single local map of the intersection.

Ther we everal meman for this. The first is that it gives the system a memory - once th system has detected
an approaching intersection based on the disappearance of some of the road features, it does not have to devote
processing cycles to remalm this discovery on d following images. The second mam is that interctions of city
steets cover a large area compared to typical camera fields of view. The integration of perception results from
multiple images (both from the same camera over time as the vehicle moves, and from multiple cameras pointing in

different directions to cover a larger field of view) is necessary in order to create a complete modcl of the
intersection's geometry. Part of the NAVLAB project at CMU has been the creation of utilities to support an
annotated map for robot navigation [19]. The function of the annotated map is to provide a framework for the
communication of the results of different perception modules through a shared geometric database. YARF will use
the annotated map facility to store results from multiple imges i. a common coordinate system

Our first expermems will focus on the question of whether the results from multiple u taken by multiple
camerm can be combined to produce a coherent, accurate map of the scee geometry. The coherence of dam from
multiple frames akm by a moving camera (see figure 5.5) is promising. In our initial experments we will run the
road following process with two different cameras at the same time and eatmine how well the featwre positions
match between the two cameras.

The next step is to use local map data to detect the approach of an intersection. The annotated map will be used to
store infonnmaion about locations where features were not detected where they were expected. YARF will then
reason about the missing feature data to determine whether the road model has changed, whether a feature has
become obaured, whether a diOret segmentation technique should be switched to because of a change in feae
appence, or whether the vehicle is approaching an intersection.

After YARF has the capability to detect that the vehicle is approaching an intersectio the fiusl step is to creea
perception str es for locating the roads branching out of the intersection. Rather than assume complete
knowledge of the intersection geometry as the Sidewalk II system did, YARF will assume only knowledge of the

feature cross-sections of the roads which meet at the intersection. The current plan is to use a feed-forward tacking
sMey similar to that used by MARF to follow road features around corners and through the iuersection, using the
feature czoss-section models to predict feature locations once an initial estimate of a rod branch's location is
avaMible. YARF will use multiple cames to cover a wider field of view, using calibration formaion to track
featurs -soe verlappg bkbds of view.

5.7 Coadusm
The YARF project has mae subsintial progress sme we reported our first relts. We have gone from an initial

pot-luck collection of segmentation techniques to focused research into robust thniques to tak different types
of red amre. We have implemented routines to fit individual estimas of rod feature locations to models of
gemeraid sripe rod wh spines am locally apolimmely circular ua, and me invei ng ieams of filering
and the m of rlbt estimation to imove reliabity. We have mo primi y epe i a I n de initial
laJOC of rdi me uig oh line dmctin mtcique and died vnisiting point cemsatim. We have a
Pin1 of to add ammseta mdvl loa nlhislam eino doue s)ym. YARF ha driven t NAVLAB at

YARF 93

speeds of up to 6,75 MPH on a public road running through a golf course near campus, and we expect speed
improvenments fiun die use of multiple processors

Other , 4 e- r within doe NAVLAB piroject at CMU has focused on planning in the domain of driving in traffic
on city streets. adin a simulasor (PHAROS) to provildo h inp~ut of die system [16). As the YARF project
V mg -11 - it will provide sam of t pasupum capabilities needed to trasfer results from the tesearci using the
PHAROS simlator into the real world. It provides -n open endedI architecture which improved segmentation
tecluque anmeily be plugged into to impow ve ys performance.

5.8 Acmkn~dgemwits
Our thanks to Thiad Druffel, who worked on various peces of the system, and implemented a multiprocessor

version of YARF.

This research is sponsored by DARPA, DOD, monitored by the US Army Engineer Topographic Laboratories
under conract DACA 76-99-C-00 14, titled "Perception for Outdoor Navigation".

5.3 Reference

(11 Aabut Didier, aid Tbaspe ucLw
Colw mp Processing for Nevlgdm Two Road 7acken
Technical Repart CMU-RI-Th.90.09, Robotics Insikte Cane*i Mellon, April, 1990.

[2] BesI, Paul J.. Birch, Jeffrey B., and Watson, Layne T.
Robust Window Operaors.
In Proceedings International Conference on Computer Vision. 1988.

[31 Binford, T.O0.
Survey of model-based image analysis systms.
InLJ.RobdaRewch 1, 1961.

[4] Cdsom,fllL
Color Yuan for tMe Detection of Unwucaud Roads and Iatwectong.
PhED tsis, Carnegie-Mellon Univesity, 1990.

(51 DeMaithon, Dutiel, uid Davis, Larry.
Recomucn Ption iof a Road by Local Image Matches and Global 3D Optimization.
In Proceedings 1990 IEEE International Conference on Robotics and Automation. May, 1990.

[6] Dickinson, S.. aid Davis, L
An Expert Vision System for Autonomous Laud Vehicle Road Following.
In Computer Viion and Pattern Recognition Conference. 1988.

M7 Gaso, Y.. Marinki, I. Kweon L. and Obatahe, T.
OMU Sidvwalk Navigation System: A Blcbid-udQaoow Navigaton system Using Samar Fusion

With oodaeIq
In Proc Fall Joint Comput. Confrencer. November, 196.

(8) X1000e, S Nn'Ie IL
LANELOIL Detection of Lut bosundaries and Vehicle Tucking Using Image-Processing Tetchniqueis - Paut

k Bought-Traislbm, Region Tacig aid Correlation Algeritnus.
In SF15 Mobile Robotw IV. 1969.

[91 Kim emu idwL
LANEOK: Detetio oftLu boundaries ad Vehicl T=aning Using Img-rcsigTechniques - put

IL Template Matching Algorithos.
In SPIN Mobil Roboes IV. 1989.

94 ANNUAL REPORT AUGUST 1990

(101 luse, KI, aid Thorpe, Charles L.
Explicit Models for Robot Road Following.
Viion and Navigation: The Carnegie Mellon Naviab.
Iluwer Acadeni PNbs 199(X Chapter 3.

(11] Koo. Darwin; Phipps, Gar, and fisuc, A.-Chuan.
AuMoiimoi Laid Vehicle Road Following.
In Proceedings First Inbarviadonal Conference on Computer Vison June, 1987.

112] Mclaowii, Dmvi M., aid Deaiger, Jerry L
Coqwwmiv Mediods for Road Tracking In Aerial Imagery.
In Proceadins Comuaa Vision and Pattern Recognidon. June, 1988.

[13] Mysliwuiz Birger D., ad Dickmumsns, L. D.
DisriuWe Scene Analysis for Autonomous Road Vehicle Guidance.
In Proceedings SPIE Conference on Mobile Robots. November, 1987.

[14] Pok Amy, and Jain, Ramesh.
A Parallel Architecture for Curvaure-Based Road Scene Classification.
In Roundtable Discussion on Vision-Based Vehicle Guidance '90 (in conjunction with IROS). July, 1990.

[15] Poinereu, Dean A.
Neual Network Based Autonomous Navigation
Vison And Navigaton: The Carneie Mellon Navlab.
Klwer Academ Publishers, 1990, Chapter 5.

(16] Roocm Douglas A., aid Shafet, Stw.
An Overview of ts PHIAROS Traffic Simulator.
In Proceedings of the Second International Conference on Road Safety. September, 1987.

(17] Schaser, L T., ad ThomaIs. B. T.
Finding Road LIne Boundaries for Vision Guided Vehicle Navigation.
In Roundtable Discussion on Vision-Based Vehicle Guidance'90 (in conjunction with IROS). July, 1990.

(181 Thorpe, Charles; Hebert Martial; Kanade, Takeo, aid Shafer, Steven A.
Vasion aid Navigatio, for dhe Curnge-Melau Navb.
IZU Transations on Patter Anelysi and Machine Intelligence 10M3, May, 1988.

(191 Thiorpe, Chale. aid Gowdy, Jay.
Anoaed Map for Anmamo.. Lad VdehLs
In Proceedings of the DARPA Image Undersotadn Workhop. 1990.

(201 Turk, Matthew A.; MorgenthaWe, David G.; Gremban, Keith D.; aid Mum. Martin.
VIT - A Vision System for Autonomous Land Vehicle Navigation.
IEEE Transacaions on Pattern Analysis and Machine Intelligence 10(3), May, 1988.

[211 U. S. Bina of the Census.
Statstcal Abstract of the United States: 1988.
U. S. Bum=a of dhe Cerm. 1987.

(221 ac R4 MauKl L; Gat%, Y.;, Crls.;1 Webb, J.; aid Kaiade, T.
Propin Robot Road Faloig.
In Proeding IEE Internationa Confeenc on Robotics md Aaaaoele APL 198&

[231 A. Waxuuai J. LeMaigne, L Dras, B. Srinivasan, T. Kushner, B. Liaig aid T. Siddsllngaiah.
A visua navigation sysem for autonomous laid vehicles.
Journa offRobotics and Automation, Vo. .1987.

